福建省厦门市2015-2016学年高二下学期期末数学试卷(理科)

合集下载

2015-2016学年度上学期期末考试高三年级数学理科试卷

2015-2016学年度上学期期末考试高三年级数学理科试卷

2015-2016学年度上学期期末考试高三年级数学理科试卷 命题学校:东北育才一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只 有一项是符合题目要求的)1.已知集和{}0232=+-=x x x A ,{}24log ==x x B ,则=B A ( ) A.{}2,1,2- B.{}2,1 C.{}2,2- D.{}22.若复数()()i a a a z 3322++-+=为纯虚数(i 为虚数单位),则实数a 的值是( )A.3-B.13或-C. 1-3或D. 13.已知向量()31,=a ,()m ,2-=b ,若a 与2b a +垂直,则m 的值为( )A.1B.1-C.21-D.21 4.直线()0112=+++y a x 的倾斜角的取值范围是( ) A.⎥⎦⎤⎢⎣⎡4,0π B.⎪⎭⎫⎢⎣⎡ππ,43 C.⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡πππ,24,0 D.⎪⎭⎫⎢⎣⎡⎪⎭⎫⎢⎣⎡ππππ,432,4 5.若数列{}n a 的通项公式是()()231--=n a n n ,则=+⋯++1021a a a ( )A.15B.12C.12-D.15-6.已知四棱锥ABCD P -的三视图如图所示,则四棱锥ABCD P -的四个侧面中面积最大的值是( )A.3B.52C.6D.87.右图是某算法的程序框图,若程序运行后输出的结果是27,则判断框①处应填入的条件是( )A.2>nB.3>nC.4>nD.5>n8.已知集合{}4,3,2,1=A ,{}7,6,5=B ,{}9,8=C .现在从三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合,则一共可以组成( )个集合A.24B.36C.26D.279.已知点()02,P ,正方形ABCD 内接于⊙O :222=+y x ,N M 、分别为边BC AB 、的中点,当正方形ABCD 绕圆心O 旋转时,ON PM ⋅的取值范围为( )A.[]11-,B.[]22-, C.[]22-, D.⎥⎦⎤⎢⎣⎡2222-, 10.设双曲线13422=-y x 的左,右焦点分别为21,F F ,过1F 的直线交双曲线左支于B A ,两点,则22AF BF +的最小值为( ) A.219 B.11 C.12 D.16 11.已知球O 半径为5,设C B A S 、、、是球面上四个点,其中︒=∠120ABC ,2==BC AB ,平面⊥SAC 平面ABC ,则棱锥ABC S -的体积的最大值为( ) A.33 B.23 C.3 D.33 12.已知函数()1323+-=x x x f ,()⎪⎩⎪⎨⎧≤--->+=0,860,412x x x x x x x g ,则方程()[]0=-a x fg(a 为正实数)的根的个数不可能为( )A.个3B.个4C.个5D.个6二、填空题(本大题共4小题,每小题5分,共20分)13.设0,0>>b a ,3是a 3与b 3的等比中项,其中b a 11+的最小值为 14.在52⎪⎭⎫ ⎝⎛-x a x 的二项展开式中,x 的一次项系数是10-,则实数a 的值为 15.设[]m 表示不超过实数m 的最大整数,则在直角坐标平面xOy 上,满足[][]5022=+y x 的点()y x P ,所形成的图形的面积为16.定义区间()(][)[]d c d c d c d c ,,,,、、、的长度均为()c d c d >-,已知事数0>p ,则满足不等式111≥+-xp x 的x 构成的区间长度之和为 三、解答题:本大题共6小题,解答应写出文字说明、证明过程或演算步骤17.(本小题满分12分)已知函数()()R x x x x f ∈--=21cos 2sin 232 (1) 当⎥⎦⎤⎢⎣⎡-∈125,12ππx 时,求函数()x f 的最小值和最大值 (2) 设ABC ∆的内角C B A ,,的对应边分别为c b a ,,,且3=c ,()0=C f ,若向量()A ,sin 1=m 与向量()B ,sin 2=n 共线,求b a ,的值18.(本小题满分12分)某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是31每次测试通过与否互相独立.规定:若前4次都没有通过测试,则第5次不能参加测试.(1) 求该学生考上大学的概率;(2) 如果考上大学或参加完5次测试就结束,记该生参加测试的次数为ξ,求变量ξ的分布列及数学期望ξE .19.(本小题满分12分)如图,在长方形ABCD 中,2=AB ,1=AD ,E 为DC 的中点,现将DAE ∆沿AE 折起,使平面⊥DAE 平面ABCE ,连BE DC DB ,,(1) 求证:ADE BE 平面⊥(2) 求二面角C BD E --的余弦值20.(本小题满分12分) 已知21F F 、分别为椭圆()01:22221>>=+b a bx a y C 的上、下焦点,其中1F 也是抛物线ADEy x C 4:22=的焦点,点M 是1C 与2C 在第二象限的交点,且351=MF (1) 求椭圆1C 的方程; (2) 当过点()3,1P 的动直线l 与椭圆1C 相交于两个不同点B A ,时,在线段AB 上取点Q ,满=证明:点Q 总在某定直线上.21.(本小题满分12分)设函数()x x xa x f ln +=,()323--=x x x g 其中R a ∈. (1) 当2=a 时,求曲线()x f y =在点()()1,1f P 处的切线方程;(2) 若存在[]2,0,21∈x x ,使得()()M x g x g ≥-21成立,求整数M 的最大值;(3) 若对任意⎥⎦⎤⎢⎣⎡∈2,21t s 、都有()()t g s f ≥,求a 的取值范围.选做题(请考生从22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分)22.(本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆内接于⊙O ,AB 是⊙O 的直径,PA 是过点A 的直线,且ABC PAC ∠=∠(1) 求证:PA 是⊙O 的切线; (2) 如果弦CD 交AB 于点E ,8=AC ,5:6:=ED CE ,3:2:=EB AE ,求BCE ∠sin23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系 ,直线l的极坐标方程为224sin =⎪⎭⎫ ⎝⎛+πθρ.圆C 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=θθsin 22cos 22r y r x ,()0>r 为参数,θ (1) 求圆心C 的一个极坐标;(2) 当r 为何值时,圆C 上的点到直线l 的最大距离为324.(本小题满分10分)选修4-5:不等式选讲 设函数()()R x x x x f ∈-+-=3212(1) 解不等式()5≤x f ;(2) 若()()mx f x g +=1的定义域为R ,求实数m 的取值范围.。

厦门市2015—2016学年度第一学期高二年级质量检测数学(

厦门市2015—2016学年度第一学期高二年级质量检测数学(

厦门市2015—2016学年度第一学期高二年级质量检测数学(文科)参考答案一、选择题:(本大题共12小题,每小题5分,共60分)12.设11(,)A x y 、22(,)B x y ,由2(1)y x y k x ⎧=⎨=-⎩得222(21)0k x k x k -++=,即121x x ⋅=.又211222y x y x ⎧=⎪⎨=⎪⎩,∴21212()1y y x x ⋅=⋅=即121y y ⋅=-,∴12120x x y y ⋅+⋅=, 即OA OB ⊥.设33(,)C x y 、44(,)D x y ,直线OA :1y k x =,直线OB :2y k x =,则121k k ⋅=-.由21y x y k x ⎧=⎨=⎩得00x y =⎧⎨=⎩或21111x k y k ⎧=⎪⎪⎨⎪=⎪⎩即21111(,)A k k ,同理22211(,)B k k .由221(2)4x y yk x ⎧-+=⎨=⎩得00x y =⎧⎨=⎩或211214141x k k y k ⎧=⎪+⎪⎨⎪=⎪+⎩即1221144(,)11k D k k ++, 同理2222244(,)11k E k k ++.∴OA =,OB = OD =OE =∴221122221211111(1)(1)2(1)(1)12116161642OABODEk k OA OB S k k k k S OD OE ∆∆++++++====≥. 二、填空题:(本大题共4小题,每小题5分,共20分)13.,x R ∀∈21xx ≠+; 14.815y x =- ; 15.3λ<; 16.20. 三、解答题:(本大题共6小题,共70分.解答应写出文字说明,或演算步骤). 17.本题考查等差、等比数列的通项公式及前n 项和公式等基础知识,考查运算求解能力.考查化归与转化思想、方程思想.满分10分. 【解析】(Ⅰ)设等比数列{}n a 的首项为1a ,公比为q .364,32a a ==,解得12,1q a ==, ··································· 3分 1112n n n a a q --∴==. ······················································· 4分(Ⅱ)设等差数列{}n b 的首项为1b ,公差为d .4145b =+=,21b =,∴4224,d b b =-=即2d =,11=-b , ·········· 6分∴23n b n =-, ··································································· 7分 ∴数列{}+n n a b 的前n 项和为11()(1)12n n n n b b a q T q +-=+-12(123)122n n n --+-=+- ···························································· 9分 2221n n n =+-- . ···································································· 10分18.本题考查正弦、余弦定理和解三角形等基础知识,考查运算能力、思维分析能力,考查化归与转化思想、方程思想、分类讨论思想.本题满分12分.【解析】(Ⅰ) 由正弦定理,结合条件:sin (sin sin c C a A b B ⋅⋅⋅=+(可得,2(a c b a b -⋅=⋅+( ································· 2分22a b =+22b b a =+.222b a c ∴+-, ··········································································· 4分2222a c ab b ==+-,即 cos C =,0C π<<,6C π∴=. ········· 6分(Ⅱ)法一:由余弦定理,结合条件:32=a ,2c =, 又由(Ⅰ)知6C π=,可得 2222cos c a b ab C =+-,∴24122b =+-⋅,即2680b b -+=, ··········· 8分 解得2b =或4b =,经检验,两解均有意义. ··········· 11分综上,ABC ∆周长为4+6+ ··· 12分法二:由正弦定理,结合条件:32=a ,2c =,又由(Ⅰ)知6C π=,可得1sin 2sin 2a C A c === ············································ 7分 a c > A C ∴> 3A π∴=或23π,从而2B π=或6π. ······························· 8分当2B π=时,ABC ∆为直角三角形,4b ∴=,ABC ∴∆周长为6+ 当6B π=时,ABC ∆为等腰三角形,2b c ∴==,ABC ∴∆周长为4+ 11分综上,ABC ∆周长为4+6+ ··· 12分 19.本题考查抛物线定义,直线与抛物线关系,考查运算求解能力.考查化归与转化思想、数形结合思想、分类讨论思想.本题满分12分.【解析】(Ⅰ)由题意得,M 到点(3,0)的距离与到直线3x =-的距离都等于半径,由抛物线的定义可知, C 的轨迹是抛物线,设其方程为22y px =,32p=, ∴M 的轨迹方程为212y x =. ··································· 3分 (Ⅱ)法一:显然斜率不为0,设直线l :6x ty =+,11(,)A x y 、22(,)B x y2AP PB =,∴1122(6,)2(6,)x y x y --=-,∴122y y =-, ···················· 6分 由2126y x x ty ⎧=⎨=+⎩得212720y ty --=∴12121272y y t y y +=⎧⎨⋅=-⎩, ································ 8分又122y y =-,∴ 121260.5y y t =⎧⎪=-⎨⎪=⎩或121260.5y y t =-⎧⎪=⎨⎪=-⎩ , ······································ 10分∴ 直线l 的方程是212y x =-或212y x =-+. ·································· 12分法二:①当直线l 的斜率不存在时,直线l :x =6,显然不成立. ················ 4分 ②当直线l 的斜率存在时,设直线l :(6)y k x =-,11(,)A x y 、22(,)B x y ,2AP PB =, ∴1122(6,)2(6,)x y x y --=-,∴12218x x +=, ··············· 7分由212(6)y x y k x ⎧=⎨=-⎩得222212(1)360k x k x k -++=,∴21221212(1)36k x x k x x ⎧++=⎪⎨⎪⋅=⎩, ·· 9分 ∴121232x x k =⎧⎪=⎨⎪=±⎩······················································································ 11分 ∴直线l 的方程是212y x =-或212y x =-+. ·············· 12分20.本题考查等差等比数列的定义、性质,等差等比数列的综合运用,及求数列的前n 项和,考查运算求解能力.考查化归与转化思想、方程思想.本题满分12分. 【解析】(I )13,,n n a a +成等差数列,1123,32(3),n n n n a a a a ++∴=+∴-=- ··· 2分 即11323n n n n b a b a ++-==-,又131a -=,······································· 4分 ∴{}n b 是首项为1,公比为2的等比数列. ··································· 5分(II ){}n b 是首项为1,公比为2的等比数列,∴132n n n b a -=-=,即123n n a -=+. ··················································· 7分 又22log (26)log 2n n n c a n =-==, ··············································· 8分212111111()(21)(21)22121n n c c n n n n -+∴==--+-+, ······································· 9分 13352121111n n n T c c c c c c -+∴=+++111111(1)23352121n n =-+-++--+ ················································· 10分 111(1)2212n =-<+.······························································ 12分 21.本题考查解二次不等式、利用二次函数和基本不等式求最值,考查数学建模能力,信息处理能力和运算能力,考查化归转化思想、数形结合思想、函数方程思想和分类讨论思想.本题满分12分. 【解析】(Ⅰ)设该企业计划在A 国投入的总成本为()Q x (亿元), 则当010x ≤≤时,25()1644x x Q x =++,依题意:25()51644x x Q x =++≤, ············································· 1分 即24600x x +-≤,解得106x -≤≤, ··················· 3分 结合条件010x ≤≤,06x ∴≤≤.················· 4分 (Ⅱ)依题意,该企业计划在A 国投入的总成本为25,010,1644()42,10.5x x x Q x x x x ⎧++≤≤⎪⎪=⎨⎪+->⎪⎩5分 则平均处理成本为251,010,()1644421,10.5x x Q x x x x x x⎧++≤≤⎪⎪=⎨⎪-+>⎪⎩ ·········· 6分(i) 当010x ≤≤时,()51116444Q x x x x =++≥=5164x x =,即x =min()Q x x ⎛⎫= ⎪⎝⎭. ·············· 8分 (ii) 当10x >时, 22()42119914()520100Q x x x x x =-+=-+, ∴当1120x =即x =20时,min ()99100Q x x ⎛⎫=> ⎪⎝⎭. ············· 10分 ∴当x =min()Q x x ⎛⎫= ⎪⎝⎭. ···················· 11分 答:(Ⅰ)该工艺处理量x 的取值范围是06x ≤≤.(Ⅱ)该企业处理量为亿元. ······························································································· 12分 22.本题考查曲线的轨迹方程、直线和椭圆的位置关系、弦长公式、定点定值问题等知识,考查运算求解能力,探究论证能力.考查化归与转化思想、数形结合思想、函数方程思想、分类讨论思想.本题满分12分. 【解析】(I )设M 的坐标为(,)x y ,则1A M k x =≠,2A M k x =≠,12=-(x ≠, ········································· 1分化简得点M的轨迹方程是221(2x y x +=≠. ····································· 3分 (Ⅱ)①当直线l的斜率不存在时,PQ = ···································· 4分②当直线l 的斜率存在时,设11(,)P x y ,22(,)Q x y ,直线l 的方程为:(1)y k x =-,则2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩得,2222(21)4220k x k x k +-+-=,∴212221224212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, · 6分222)1)2121k PQ k k +===+>++ ·· 7分综上所述,PQ. ··············· 8分(Ⅲ)假设点N 存在,由椭圆的对称性得,则点N 一定在x 轴上,不妨设点(,0)N n ,当直线l 的斜率存在时,由(Ⅱ)得212221224212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, ∴22121212122(1)(1)[()1]21k y y k x k x k x x x x k ⋅=--=⋅-++=-+,11(,)NP x n y =-,22(,)NQ x n y =-,∴21212121212()()()NP NQ x n x n y y x x n x x n y y ⋅=-⋅-+⋅=⋅-+++⋅∴22222222222224(241)221212121k k k n n k n NP NQ n n k k k k --++-⋅=-+-=++++ ·· 10分 对于任意的k ,0NP NQ ⋅=,∴22241020n n n ⎧-+=⎪⎨-=⎪⎩, ······························· 11分方程组无解,∴点N 不存在.综上所述,不存在符合条件的点N . ············································· 12分。

厦门市2016~2017学年第二学期高二年级理科数学质量检测答案 纯word 可编辑

厦门市2016~2017学年第二学期高二年级理科数学质量检测答案  纯word 可编辑

厦门市2016-2017学年度第二学期高二年级质量检测数学(理科)试题参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分.1~5:ABBAD 6~10:DBCCD 11~12:CA 第12题参考解答:解法1:由题意知()f x 关于1x =对称,且1x ≥时,'()ln 10f x x =+>,()f x ∴在[1,)+∞上单调递增,从而在(,1)-∞上单调递减;由(1)(1)xf e f ax +≥+知:(ⅰ)当0a ≥时,11ax +≥,11xe ax +≥+(*),0x =时,21>,(*)式成立;(0,3]x ∈时,xe a x≤,令()xe h x x=,2(1)'()x e x h x x -=,令'()0h x ≤,得[0,1]x ∈;'()0h x ≥,得[1,3]x ∈, ()f x ∴在[0,1]单调递减,[1,3]单调递增;()f x ∴的最小值为(1)f e =,a e ∴≤ 0a e ∴≤≤.(ⅱ)当0a ≤时,11ax +<,2(1)11ax ax -+=->, 由()f x 关于1x =对称,知(1)(1)f ax f ax +=-,(1)(1)(1)x f e f ax f ax ∴+≥+=-,11x e ax +≥-,x e ax ∴≥-, 与(ⅰ)同理,可得0a e ≤-≤,0e a ∴-≤≤. 综上,[,]a e e ∈-.解法2:令()(1)F x f x =+,则()F x 为偶函数且在[0,)+∞单调递增,故原不等式可化为()()x F e F ax ≥对任意[0,3]x ∈恒成立,从而x e ax ≥,结合图像转化为切线问题求解即可.二、填空题:本大题共4小题,每小题5分,共20分.13.40 14.2 15.1m < 16.2y x =± 第16题参考解答: 解法一(几何法):设左焦点为E ,连接EN 、NF ,点MON OF =,所以FON ∆为等腰三角形;OM 为FON ∠的角平分线,所以M 为NF 中点,NF OM ⊥.焦点(,0)F c 到渐近线0bx ay -=的距离d b ==从而在Rt FMO ∆中,OF c =,OM a =所以2NE a =,2NF b =,由双曲线定义:2NF NE a -=所以2ba=,从而渐近线方程为:2y x =± 解法二(参数法):设过第一象限的渐近线的倾斜角为θ,则由角平分线,可设(cos 2,sin 2)N c c θθ其中2222222222222222222cos sin 1tan cos 2cos sin 1tan 2sin cos 2tan 22sin 2cos sin 1tan a b a b a b c ab ab a b c θθθθθθθθθθθθθθ⎧----====⎪⎪+++⎨⎪====⎪+++⎩化简可得222(,)a b ab N c c -满足双曲线方程22221x y a b-=代入可得所以2ba=,从而渐近线方程为:2y x =± 解法三(坐标法):设过第一象限的渐近线的倾斜角为θ,则tan b a θ=则2222tan 2tan 21tan ON ab k a b θθθ===--,所以直线ON 方程为:222aby x a b=- 与双曲线联立可得222(,)a b abN c c-以下同上.三、解答题:本大题共6小题,共70分.17.本小题考查最小二乘法、相关指数2R 、拟合效果比较等统计学知识;考查数学阅读、数据分析与处理、运算求解等数学能力;考查统计概率思想。

福建省厦门市海沧中学2015-2016学年高二下学期期末考试数学(理)试题 含答案

福建省厦门市海沧中学2015-2016学年高二下学期期末考试数学(理)试题 含答案

绝密★启用前厦门海沧中学2016年高2014级第二学段期末质量评估数学(理)试题(满分:150分;考试时间:120分钟)一、选择题1.下列求导运算正确的是( )A .2'31)3(x xx +=+ B .2ln 1)(log'2x x =C .e x x 3'log 3)3(= D .x x x x sin 2)cos ('2-=2.若曲线2y xax b =++在点(0,)b 处的切线方程是10x y -+=,则()A .1,1a b ==B . 1,1a b =-=C .1,1a b ==-D .1,1a b =-=-3.厦门海沧中学艺术节招募了30名志愿者(编号分别是1,2,⋅⋅⋅,30号),现从中任意选取6人按编号大小分成两组分配到十佳歌手组、小品组,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一组的选取种数是( )A .25B .32C .60D .100 4.设复数z 满足||2+=+z z i ,那么z 等于( )A .34-+i B .34-i C .34--i D .34+i5.在二项式1()nxx的展开式中恰好第5项的二项式系数最大,则展开式中含2x 项的系数是( ).A .-56B .-35C .35D .56 6.已知13)(23+-+=mx x x x f 在]2,2[-为单调增函数,则实数m 的取值范围为( )A .3-≤mB .0≤mC . 24-≥mD .1-≥m7.将5名志愿者分配到3个不同的奥运场馆参加接等工作,每个场馆至少分配一名志愿者的方案种数为( ) A .240 B .300 C .150 D .180 8.120(1)d x x x --⎰等于()A .14B .12C .14π- D .24π-9.设函数f (x)的定义域为R ,x 0(x 0≠0)是f (x)的极大值点,以下结论一定正确的是( )A .x R ∀∈,0()()f x f x ≤ B .0x -是()f x --的极小值点C .0x -是()f x -的极小值点 D .0x -是()f x -的极小值点10.定义在R 上的函数()f x 满足()41f =,()f x '为()f x 的导函数,已知函数()y f x '=的图象如图所示.若两正数a b ,满足1(2)f a b <+,则22b a ++的取值范围是( )A .11,32⎛⎫ ⎪⎝⎭B .1,(3,+)2⎛⎫-∞∞ ⎪⎝⎭C .(,3)-∞-D .1,32⎛⎫⎪⎝⎭11.已知函数()()2212,3ln 2f x xax g x a x b =+=+,设两曲线()(),y f x y g x ==有公共点,且在该点处的切线相同,则()0,a ∈+∞时,实数b 的最大值是( ) A .6136eB .616eC .2372eD .2332e12.设函数()f x =(21)xe x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是( )(A )[-32e ,1) (B )[—32e ,34) (C)[32e ,1) (D)[32e ,34) 二、填空题13.由直线y=2x 及曲线y=4﹣2x 2围成的封闭图形的面积为14.设20sin 12cos 2x a x dxπ⎛⎫=-+ ⎪⎝⎭⎰,则()6212a x x x ⎛⎫-⋅+ ⎪⎝⎭的展开式中常数项是 .15.已知()f x 为定义在(0,+∞)上的可导函数,且()'()f x xf x >恒成立,则不等式0)()1(2>-x f xf x 的解集为 .16.函数()ln f x a x x =+,对任意的1[]x e e∈,时,()0f x ≥恒成立,则a 的范围为 .三、解答题17(本题满分10分)已知z 为复数,2z i +为实数,且(12)i z -为纯虚数,其中i 是虚数单位. (1)求复数z ;(2)若复数z 满足1z ω-=,求ω的最小值.18(本小题满分12分,请写出简要过程,直接书写结果没分) 六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端; (2)甲、乙必须相邻;(3)甲、乙不相邻; (4)甲、乙按自左至右顺序排队(可以不相邻); (5)甲、乙站在两端.19.(本小题满分12分)已知函数3()16f x xx =+-.(1)求曲线()y f x =在点(2,6)-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.20. (本小题满分12分)已知n二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3 (1)求n 的值;(2)求展开式中3x 项的系数(3)计算式子01231010101010102481024CC C C C -+-++的值.21.(本小题满分12分)已知函数3()f x x ax =+.(Ⅰ)若()f x 在1x =处的切线平行于x 轴,求a 的值和()f x 的极值;(Ⅱ)若过点(1,0)A 可作曲线)(x f y =的三条切线,求a 的取值范围.22.(本小题满分12分).设.0,)53()(22≠+-=m e mx m xx f mx 其中 的单调性)讨论()(1x f 的取值范围恰有两个零点,求)若(m 52)()(2--=x mx f x g数学试卷(理)答案教师版一选择题 1.下列求导运算正确的是( B ) A .2'31)3(x xx +=+ B .2ln 1)(log'2x x =C .e x x 3'log 3)3(= D .x x x x sin 2)cos ('2-=2.若曲线2y xax b =++在点(0,)b 处的切线方程是10x y -+=,则(A )A .1,1a b ==B . 1,1a b =-=C .1,1a b ==-D .1,1a b =-=-3.重庆42中艺术节招募了30名志愿者(编号分别是1,2,⋅⋅⋅,30号),现从中任意选取6人按编号大小分成两组分配到十佳歌手组、小品组,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一组的选取种数是( C )A .25B .32C .60D .1004.设复数z 满足||2+=+z z i ,那么z 等于( D )A .34-+i B .34-i C .34--i D .34+i5.在二项式1()nxx的展开式中恰好第5项的二项式系数最大,则展开式中含2x 项的系数是( A )。

厦门市2015~2016学年第二学期高二年级文科数学质量检测答案 纯word 可编辑

厦门市2015~2016学年第二学期高二年级文科数学质量检测答案  纯word 可编辑

厦门市2015—2016学年度第二学期高二年级质量检测数学(文科)参考答案二、填空题(本大题共4小题,每小题5分,共20分)13.3455i +; 14.[2,)+∞ ; 15.12; 16.①④. 三、解答题:(本大题共6小题,共70分.解答应写出文字说明,或演算步骤).17.本题主要考查导数的几何意义,导数与极值的关系,考查运算求解能力和数学应用意识,考查化归与转化思想.满分10分. 【解析】函数)(x f 定义域R ,)1)(3(3963)(2+-=--='x x x x x f .............................. 2分 (Ⅰ)9)(0-='=x f k ,00=∴x 或20=x , 当00=x ,3)(0-=x f ,3-=∴b当20=x ,25)(0-=x f ,7-=∴b ........................................................................ 5分 (Ⅱ)令0)(='x f 得11-=x ,32=x当x 变化时,()f x ',()f x 的变化情况如下表:9分 ∴)(x f 极大值为(1)2f -=,)(x f 极小值为(3)30f =- ......................................... 10分 18.本题主要考查线性回归分析方程的求法,2R 的求法及其统计意义.考查数据处理能力和数学应用意识.本题满分12分. 【解析】(Ⅰ)∵5x =,15y =,41320i ii x y==∑,421110i i x ==∑, .................................... 1分∴4142214320300ˆ21101004i ii ii x y x ybxx ==--===--∑∑,ˆˆ15255a y bx =-=-⨯= ..................... 5分 ∴所求的回归直线方程是25y x =+. ...................................................................... 6分 (Ⅱ)∵421ˆ()=14iii y y=-∑,421()=54i i y y =-∑ ................................................................ 8分∴4221421ˆ()141110.260.7454()iii i i y yR y y ==-=-=-≈-=-∑∑ ........................................... 11分说明销售件数的差异有74%是由关注人数引起的............................................ 12分 19.本题考查椭圆的定义及直线与椭圆的位置关系等基础知识,考查运算求解能力.考查数形结合思想.本题满分12分. 【解析】(Ⅰ)椭圆中心到l 的距离为c a bc c b bc24122⨯==+,即b a 2= .......................... 3分 点)23,1(代入椭圆方程得⎩⎨⎧==12b a ,即椭圆方程为1422=+y x . ................... 5分 (Ⅱ) 法一:设11(,)M x y ,22(,)N x y ,00(,)P x y 则12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ .......................... 6分 221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,1212121214y y y y x x x x -+⋅=--+即0121200104y y y x x x --⋅=--- ...................... 10分 因为114MN OP k k ⋅=-≠-,所以直线MN 与直线OP 不垂直. .......................... 12分法二:设直线方程y kx b =+,11(,)M x y ,22(,)N x y ,00(,)P x y2214x y y kx b ⎧+=⎪⎨⎪=+⎩得222(14)8440k x kbx b +++-= ................................................... 7分 ∴122814kb x x k -+=+,212122282()221414k b by y k x x b b k k -+=++=+=++ ......... 9分 0120120104OP y y y k x x x k-+===--+ ................................................................................ 10分因为114MN OP k k ⋅=-≠-,所以直线MN 与直线OP 不垂直. .......................... 12分20. 本题主要考查解二次不等式、利用导数求最值,考查学生数学建模能力,信息处理能力和运算求解能力,考查化归转化思想、数形结合思想、函数方程思想和分类讨论思想.本题满分12分. 【解析】由题意可知,当x =2时,(2)f =5.2,所以2190.722 5.242a -⨯+⨯=,解得:4a =-, 所以222(2ln 2),02;()194ln ,215.42x x x f x x x x x ⎧-<<⎪⎪=⎨⎪--+≤≤⎪⎩…………………………………………………3分 (Ⅰ)当215x ≤≤时,219()4ln 42f x x x x =--+,24998(1)(8)'()2222x x x x x f x x x x--+----=-+==; 当x 变化时,()f x ',()f x 的变化情况如下表................................................................................................................................... 6分当215x ≤≤时,2max 19()(8)4ln 88811.642f x f ==--⨯+⨯=. 当02x <<时,2()22(2ln 2)2 5.2f x <⨯-⨯=所以该小微企业投入8万元,净利润最大. ........................................................ 8分 (Ⅱ)当02x <<时,22(2ln 2)0x x -<,解得0ln 2x <<,该企业亏本;...... 10分 当215x ≤≤时,(2) 5.2f =,219(15)4ln1515150.45042f =--⨯+⨯=>, 所以min ()(15)0.450f x f ==>,所以当0ln 2x <<即00.7x <<时,该企业会亏本. .................................... 11分答:(Ⅰ)该小微企业投入8万元,净利润最大;(Ⅱ)当00.7x <<时,该企业会亏本. ........................................................... 12分 21.本题考查抛物线的定义及性质等基础知识,考查化归转化思想、数形结合思想及整体代入等思想.本题满分12分. 【解析】(Ⅰ)点8(,4)P p,88222p PF PQ p p =+==⨯所以4=p ,即抛物线x y 82= ............................................................................ 4分(Ⅱ)显然直线斜率存在且不为0,设直线AB 方程为)2(-=x k y ,则直线CD 方程为)2(1--=x ky ,设11(,)A x y ,22(,)B x y法一:⎩⎨⎧-==)2(82x k y x y ,01682=--k y ky 所以⎪⎩⎪⎨⎧-=⋅=+1682121y y k y y , .............................. 6分12218(1)AB y k =-=+同理)1(82k CD += ................................. 9分 128232)1(32)11)(1(32212222=⨯≥+=++=⋅=k k k k CD AB S ............ 11分当k k=1即1±=k 时等号成立 当1±=k 时四边形面积有最小值128 .................................................................. 12分法二:⎩⎨⎧-==)2(82x k y x y ,04)84(2222=++-k x k x k 所以⎪⎩⎪⎨⎧=⋅+=+484212221x x k k x x .......... 6分21228(1)4k AB x x k+=++=同理)1(82k CD += ........................................... 9分 222221(1)13232()3221282k S AB CD k k k +=⋅==+≥⨯= ....................... 11分 当k k=1即1±=k 时等号成立 当1±=k 时四边形面积有最小值128 .................................................................. 12分法三:设直线AB 方程为2x my =+,显然0m ≠,则直线CD 方程为12x y m=-+设11(,)A x y ,22(,)B x y282y x x my ⎧=⎨=+⎩,28160y my --=所以1212816y y m y y +=⎧⎨⋅=-⎩ ....................................... 6分 212124()88(1)AB x x m y y m =++=++=+同理218(1)CD m=+ ............ 9分222211132(1)(1)32()3221282S AB CD m m m m =⋅=++=+≥⨯= ......... 11分当1m m=即1m =±时等号成立 , 当1m =±时四边形面积有最小值128 ................................................................. 12分22.本题主要考查导数与单调性,导数与最值的关系,考查运算求解能力,化归与转化思想,数学应用意识.本题满分12分. 【解析】(Ⅰ)由题意得,2()[(2)2](2)()x x f x x a x a e x x a e '=-+--=-+-............... 2分 当0a >时,由()0f x '≥⇒2x a -≤≤,∴()f x 的单调递增区间是[2,]a -()f x 的单调递减区间是(,2]-∞-和[,)a +∞ ....................................................... 3分当1a ≥时,()f x 在[0,1]上单调递增,∴max ()(1)(21)f x f a e ==-=⇒112a =+<,不符合题意,舍去 当01a ≤<时,()f x 在[0,]a 上单调递增,在[,1)a 上单调递减,∴max ()()a f x f a ae ===⇒12a =,符合题意;综上所述,存在12a =,使得当[0,1]x ∈时,函数()f x; ..... 6分 (Ⅱ)当(0,1]x ∈时,要证322x x x -->,即证211ln ())222x x x x e x-++<- .................................................................. 8分 设211()()22x g x x x e =-++,由(Ⅰ)可得max 1()()22g x g == ................. 9分设ln ())xh x x=-,2ln 1()()x h x x '-= ()h x 在(0,1]上单调递减,min ()(1)h x h == ................................................... 11分∴211ln ())22x x x x e x-++<-即322x x x -->................. 12分。

2015-2016学年福建省厦门市高二(下)期末数学试卷(文科) 解析版

2015-2016学年福建省厦门市高二(下)期末数学试卷(文科) 解析版

2015-2016学年福建省厦门市高二(下)期末数学试卷(文科)一、选择题(每题5分)1.(5分)(2016春•厦门期末)已知a,b∈R,i是虚数单位,若3+bi与a﹣i互为共轭复数,则|a+bi|等于()A .B.5 C . D.102.(5分)(2016春•厦门期末)用反证法证明命题:“若a,b,c为不全相等的实数,且a+b+c=0,则a,b,c至少有一个负数”,假设原命题不成立的内容是()A.a,b,c都大于0 B.a,b,c都是非负数C.a,b,c至多两个负数D.a,b,c至多一个负数3.(5分)(2016春•厦门期末)已知命题p:∀x∈R,x2+x+1≤0,则()A.p是真命题,¬p:∃x0∈R,使得x02+x0+1>0B.p是真命题,¬p:∀x∈R,使得x2+x+1>0C.p是假命题,¬p:∃x0∈R,使得x02+x0+1>0D.p是假命题,¬p:∀x∈R,使得x2+x+1>04.(5分)(2016春•厦门期末)函数f(x)的导函数为f′(x),若f(x)=sinx,则下列等式正确的是()A.f ()=f′()B.f ()=f′()C.f ()=f′()D.f ()=f′()5.(5分)(2016春•厦门期末)2016法国欧洲杯比赛于6月中旬揭开战幕,随机询问100参考公式k2=,(其中n=a+b+c+d))A.有95%的把握认为“喜欢足球与性别相关”B.有95%的把握认为“喜欢足球与性别无关”C.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别无关”D.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别有关”6.(5分)(2016春•厦门期末)下列选项中,与其他三个选项所蕴含的数学推理不同的是()A.独脚难行,孤掌难鸣B.前人栽树,后人乘凉C.物以类聚,人以群分D.飘风不终朝,骤雨不终日7.(5分)(2016春•厦门期末)已知过双曲线Г:=1(a>0,b>0)的右焦点F2作圆x2+y2=a2的切线,交双曲线Г的左支交于点A,且AF1⊥AF2,则双曲线的渐近线方程是()A.y=±2x B.y=±x C.y=±x D.y=±x8.(5分)(2016春•厦门期末)定义在R上的函数f(x),其导函数是f′(x),若x•f′(x)+f(x)<0,则下列结论一定正确的是()A.3f(2)<2f(3)B.3f(2)>2f(3)C.2f(2)<3f(3)D.2f(2)>3f(3)9.(5分)(2016春•厦门期末)“a=4或a=﹣3“是”函数f(x)=x3+ax2+bx+a2在x=1处有极值10“的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件10.(5分)(2016春•厦门期末)记半径为1的圆为C1,C1的外切正三角形的外接圆为C2,C2的外切正三角形的外接圆C3,…C n﹣1的外切正三角形的外接圆为C n,则C16的面积是()A.215•πB.216•πC.230•πD.232•π11.(5分)(2016春•厦门期末)函数f(x)图象如图所示,则f(x)的解析式可能是()A.f(x)=lnx﹣sinx B.f(x)=lnx+cosx C.f(x)=lnx+sinx D.f(x)=lnx﹣cosx 12.(5分)(2016春•厦门期末)点M在抛物线C:x2=2py(p>0)上,以M为圆心的圆与x轴相切于点N,过点N作直线与C相切于点P(异于点O),OP的中点为Q,则()A.点Q在圆M内B.点Q在圆M上C.点Q在圆M外D.以上结论都有可能二、填空题(每题5分)13.(5分)(2016春•厦门期末)若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数=.14.(5分)(2016春•厦门期末)已知命题p:a≥2;命题q:对任意实数x∈[﹣1,1],关于x的不等式x2﹣a≤0恒成立,若p且q是真命题,则实数a的取值范围是.15.(5分)(2016春•厦门期末)已知点P是椭圆Г:=1(a>b>0)上的一点,F1、F2为椭圆的左、右焦点,若∠F1PF2=60°,且△PF1F2的面积为a2,则椭圆的离心率是.16.(5分)(2016春•厦门期末)已知函数f(x)=(m≠0),则下列结论正确的是①函数f(x)是奇函数,且过点(0,0);②函数f(x)的极值点是x=±;③当m<0时,函数f(x)是单调递减函数,值域是R;④当m>0时,函数y=f(x)﹣a的零点个数可以是0个,1个,2个.三、解答题17.(10分)(2016春•厦门期末)已知函数f(x)=x3﹣3x2﹣9x﹣3(1)若函数f(x)在点(x0,f(x0))处的切线方程为y=﹣9x+b,求b的值;(2)求函数f(x)的极值.18.(12分)(2016春•厦门期末)网购已成为当今消费者喜欢的购物方式,某机构对A、B、C、D四家同类运动服装网店的关注人数x(千人)与其商品销售件数y(百件)进行统计来近似刻画它们之间的关系(1)求y与x的回归直线方程;(2)在(1)的回归模型中,请用R2说明,销售件数的差异有多大程度是由关注人数引起的?(精确到0.01)参考公式::;;R2═1﹣参考数据:x i y i=320;x2=110.19.(12分)(2016春•厦门期末)椭圆Г:=1(a>b>0)过点(1,),且直线l过椭圆Г的上顶点和左焦点,椭圆中心到直线l的距离等于焦距长的.(1)求椭圆Г的方程;(2)若一条与坐标轴不平行且不过原点的直线交椭圆Г于不同的两点M、N,点P为线段MN的中点,求证:直线MN与直线OP不垂直.20.(12分)(2016春•厦门期末)厦门日报讯,2016年5月1日上午,厦门海洋综合行政执法支队在公务码头启动了2016年休渔监管执法的首日行动,这标志着厦门海域正式步入为期4个半月的休渔期.某小微企业决定囤积一些冰鲜产品,销售所囤积鱼品的净利润y 万元与投入x万元之间近似满足函数关系:f(x)=若投入2万元,可得到净利润为5.2万元.(1)试求该小微企业投入多少万元时,获得的净利润最大;(2)请判断该小微企业是否会亏本,若亏本,求出投入资金的范围;若不亏本,请说明理由(参考数据:ln2=0.7,ln15=2.7)21.(12分)(2016春•厦门期末)抛物线y2=2px(p>0)的焦点为F,直线y=4与抛物线和y轴分别交于点P、Q,且|PF|=2|PQ|(1)求抛物线的方程;(2)过点F作互相垂直的两直线分别交抛物线于点A、B、C、D,求四边形ACBD面积的最小值.22.(12分)(2016春•厦门期末)函数f(x)=(﹣x2+ax+a)e x(a>0,e是自然常数)(1)当x∈[0,1]时,函数f(x)的最大值是,求a的值;(2)当x∈(0,1]时,证明:2x3﹣x2﹣x>.2015-2016学年福建省厦门市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(每题5分)1.(5分)(2016春•厦门期末)已知a,b∈R,i是虚数单位,若3+bi与a﹣i互为共轭复数,则|a+bi|等于()A.B.5 C. D.10【分析】由已知求得a,b的值,然后代入复数模的计算公式得答案.【解答】解:∵3+bi与a﹣i互为共轭复数,∴a=3,b=1,则|a+bi|=|3+i|=.故选:C.【点评】本题考查共轭复数的概念,考查了复数相等的条件及复数模的求法,是基础题.2.(5分)(2016春•厦门期末)用反证法证明命题:“若a,b,c为不全相等的实数,且a+b+c=0,则a,b,c至少有一个负数”,假设原命题不成立的内容是()A.a,b,c都大于0 B.a,b,c都是非负数C.a,b,c至多两个负数D.a,b,c至多一个负数【分析】用反证法证明数学命题时,应先假设结论的否定成立.【解答】解:“a,b,c中至少有一个负数”的否定为“a,b,c都是非负数”,由用反证法证明数学命题的方法可得,应假设“a,b,c都是非负数”,故选:B.【点评】本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.3.(5分)(2016春•厦门期末)已知命题p:∀x∈R,x2+x+1≤0,则()A.p是真命题,¬p:∃x0∈R,使得x02+x0+1>0B.p是真命题,¬p:∀x∈R,使得x2+x+1>0C.p是假命题,¬p:∃x0∈R,使得x02+x0+1>0D.p是假命题,¬p:∀x∈R,使得x2+x+1>0【分析】根据一元二次函数和不等式的关系判断命题的真假,根据全称命题的否定是特称命题进行判断即可.【解答】解:命题是全称命题,∵判别式△=1﹣4=﹣3<0,∴∀x∈R,x2+x+1>0,故命题p是假命题,∵命题是全称命题则命题的否定是¬p:∃x0∈R,使得x02+x0+1>0,故选:C.【点评】本题主要考查含有量词的命题的否定以及全称命题的真假判断,比较基础.4.(5分)(2016春•厦门期末)函数f(x)的导函数为f′(x),若f(x)=sinx,则下列等式正确的是()A.f ()=f′()B.f ()=f′()C.f ()=f′()D.f ()=f′()【分析】根据基本导数公式求导,再根据各选项可知若f(x)=f′(x),则sinx=cosx,判断即可.【解答】解:∵f(x)=sinx,∴f′(x)=cosx,若f(x)=f′(x),∴sinx=cosx,∴sin =cos,∴f ()=f′(),故选:D.【点评】本题考查了导数的运算法则和三角函数值,属于基础题.5.(5分)(2016春•厦门期末)2016法国欧洲杯比赛于6月中旬揭开战幕,随机询问100参考公式k2=,(其中n=a+b+c+d))A.有95%的把握认为“喜欢足球与性别相关”B.有95%的把握认为“喜欢足球与性别无关”C.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别无关”D.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别有关”【分析】根据条件求出观测值,同所给的临界值进行比较,根据4.17>3.841,即可得到结论.【解答】解:由题意K2=≈4.17,由于P(x2≥3.841)≈0.05,∴有95%把握认为“喜欢足球与性别相关”.故选:A.【点评】本题考查独立性检验的应用,解题的关键是正确理解观测值对应的概率的意义.6.(5分)(2016春•厦门期末)下列选项中,与其他三个选项所蕴含的数学推理不同的是()A.独脚难行,孤掌难鸣B.前人栽树,后人乘凉C.物以类聚,人以群分D.飘风不终朝,骤雨不终日【分析】利用归纳推理、演绎推理的定义,即可得出结论.【解答】解:由题意,根据归纳推理是由特殊到一般的推理过程,可得A,C,D是归纳推理,B是演绎推理,故选:B.【点评】判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,即是否是由一般到特殊的推理过程.7.(5分)(2016春•厦门期末)已知过双曲线Г:=1(a>0,b>0)的右焦点F2作圆x2+y2=a2的切线,交双曲线Г的左支交于点A,且AF1⊥AF2,则双曲线的渐近线方程是()A.y=±2x B.y=±x C.y=±x D.y=±x【分析】设切点为M,连接OM,运用切线的性质,以及中位线定理,可得AF1=2a,由双曲线的定义,可得AF2=2a+AF1=4a,再由勾股定理,可得c2=5a2,结合a,b,c的关系,可得b=2a,进而得到双曲线的渐近线方程.【解答】解:设切点为M,连接OM,可得OM⊥AF2,AF1⊥AF2,可得AF1∥OM,且OM=a,AF1=2a,由双曲线的定义,可得AF2=2a+AF1=4a,在直角三角形AF1F2中,AF12+AF22=F1F22,即为4a2+16a2=4c2,即有c2=5a2,由c2=a2+b2,可得b=2a,可得双曲线的渐近线方程为y=±x,即为y=±2x.故选:A.【点评】本题考查双曲线的定义、方程和性质,主要是渐近线方程的求法,注意运用直线和圆相切的条件和中位线定理、勾股定理,考查运算能力,属于中档题.8.(5分)(2016春•厦门期末)定义在R上的函数f(x),其导函数是f′(x),若x•f′(x)+f(x)<0,则下列结论一定正确的是()A.3f(2)<2f(3)B.3f(2)>2f(3)C.2f(2)<3f(3)D.2f(2)>3f(3)【分析】构造函数g(x)=xf(x)求函数的导数,利用函数的单调性即可求不等式.【解答】解:设g(x)=xf(x),则g′(x)=[xf(x)]′=xf′(x)+f(x)<0,即函数g(x)=xf(x)单调递减,显然g(2)>g(3),则2f(2)>3f(3),故选:D.【点评】本题主要考查函数单调性的应用,根据条件构造函数,求函数的导数,利用函数的单调性和导数之间的关系是解决本题的关键.9.(5分)(2016春•厦门期末)“a=4或a=﹣3“是”函数f(x)=x3+ax2+bx+a2在x=1处有极值10“的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件【分析】利用导数与极值的关系、简易逻辑的判定方法即可判断出结论.【解答】解:f(x)=x3+ax2+bx+a2,f′(x)=3x2+2ax+b.∵f(x)在x=1处有极值10,∴f′(1)=3+2a+b=0,1+a+b+a2=10,化为a2﹣a﹣12=0,解得a=4或a=﹣3.反之不成立,f(x)在x=1处不一定有极值10.故“a=4或a=﹣3“是”函数f(x)=x3+ax2+bx+a2在x=1处有极值10”的必要不充分条件.故选:A.【点评】本题考查了导数与极值的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.10.(5分)(2016春•厦门期末)记半径为1的圆为C1,C1的外切正三角形的外接圆为C2,C2的外切正三角形的外接圆C3,…C n﹣1的外切正三角形的外接圆为C n,则C16的面积是()A.215•πB.216•πC.230•πD.232•π【分析】由题意,C1的半径为1,C2的半径为2,…C16的半径为215,即可求出C16的面积.【解答】解:由题意,C1的半径为1,C2的半径为2,…C16的半径为215,∴C16的面积是230•π,故选:C.【点评】本题考查归纳推理,考查学生的计算能力,确定C16的半径是关键.11.(5分)(2016春•厦门期末)函数f(x)图象如图所示,则f(x)的解析式可能是()A.f(x)=lnx﹣sinx B.f(x)=lnx+cosx C.f(x)=lnx+sinx D.f(x)=lnx﹣cosx 【分析】由图象可知,f(1)>f()>0,分别对A,B,C,D计算f(1),f(),再比较即可.【解答】解:由图象可知,f(1)>f()>0,当x=1时,对于A:f(1)=ln1﹣sin1<0,不符合,对于D,f(1)=ln1﹣cos1<0,不符合,对于B:∵f()=ln+cos=ln,f(1)=ln1+cos1=cos1,对于C:∵f()=ln+sin=ln+1,f(1)=ln1+sin1=sin1,∴f()>f(1),不符合故选:B【点评】本题考查了函数图象的识别,最关键是利用排除法和函数值得变化趋势,属于基础题.12.(5分)(2016春•厦门期末)点M在抛物线C:x2=2py(p>0)上,以M为圆心的圆与x轴相切于点N,过点N作直线与C相切于点P(异于点O),OP的中点为Q,则()A.点Q在圆M内B.点Q在圆M上C.点Q在圆M外D.以上结论都有可能【分析】设切点的坐标,可得切线方程,进而可得N,M的坐标,即可得出结论.【解答】解:设P(a,b),则∵x2=2py,∴y=x2,∴y′=,∴过P的切线的方程为y﹣b=(x﹣a),即y=x﹣b,令y=0,可得x==,代入抛物线C:x2=2py,可得y==,∴M(,)OP的中点为Q(,),∴|MQ|=,∴点Q在圆M上,故选:B.【点评】本题考查抛物线与圆的方程的综合,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题.二、填空题(每题5分)13.(5分)(2016春•厦门期末)若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数=.【分析】由图得到点Z对应的复数z,代入复数,然后利用复数代数形式的乘除运算化简,则答案可求.【解答】解:由图可知:z=﹣1+2i.则复数==,故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.14.(5分)(2016春•厦门期末)已知命题p:a≥2;命题q:对任意实数x∈[﹣1,1],关于x的不等式x2﹣a≤0恒成立,若p且q是真命题,则实数a的取值范围是[2,+∞).【分析】根据不等式恒成立求出命题q的等价条件,结合p且q是真命题,建立不等式关系进行求解即可.【解答】解:命题q:对任意实数x∈[﹣1,1],关于x的不等式x2﹣a≤0恒成立,即a≥x2,恒成立,∵0≤x2≤1,∴a≥1,若p且q是真命题,则p,q同时为真命题,则,即a≥2,故答案为:[2,+∞)【点评】本题主要考查复合命题真假关系的应用,求出命题的等价条件是解决本题的关键.15.(5分)(2016春•厦门期末)已知点P是椭圆Г:=1(a>b>0)上的一点,F1、F2为椭圆的左、右焦点,若∠F1PF2=60°,且△PF1F2的面积为a2,则椭圆的离心率是.【分析】由∠F1PF2=60°,△PF1F2的面积为a2,可得|PF1|•|PF2|.再根据椭圆的定义可得|PF1|+|PF2|=2a,利用余弦定理得到a,c的关系,即可求出椭圆的离心率.【解答】解:由∠F1PF2=60°,△PF1F2的面积为a2,可得|PF1|•|PF2|•sin∠F1PF2=|PF1|•|PF2|=a2,∴|PF1|•|PF2|=a2.再根据椭圆的定义可得|PF1|+|PF2|=2a.再利用余弦定理可得4c2=|PF1|2+|PF2|2﹣2|PF1||PF2|•cos60°=(|PF1|+|PF2|)2﹣3PF1•PF2=4a2﹣3a2,求得a=2c,∴e==.故答案为:.【点评】本题主要考查余弦定理,椭圆的定义、标准方程,以及简单性质的应用,属于中档题.16.(5分)(2016春•厦门期末)已知函数f(x)=(m≠0),则下列结论正确的是①④①函数f(x)是奇函数,且过点(0,0);②函数f(x)的极值点是x=±;③当m<0时,函数f(x)是单调递减函数,值域是R;④当m>0时,函数y=f(x)﹣a的零点个数可以是0个,1个,2个.【分析】利用函数的解析式对4个选项分别进行判断,即可得出结论.【解答】解:①∵f(﹣x)=﹣=﹣f(x),∴函数f(x)是奇函数,∵f(0)=0,∴函数f(x)过点(0,0),故正确;②m>0,函数f(x)的极值点是x=±;,故不正确③当m<0时,x=0,f(0)=0,x≠0,f(x)=,函数f(x)在(﹣∞,0),(0,+∞)单调递减函数,故不正确;④当m>0时,x=0,f(0)=0,x≠0,f(x)=,大致图象如图所示所以函数y=f(x)﹣a的零点个数可以是0个,1个,2个.正确.故答案为:①④.【点评】本题考查函数的解析式与性质,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.三、解答题17.(10分)(2016春•厦门期末)已知函数f(x)=x3﹣3x2﹣9x﹣3(1)若函数f(x)在点(x0,f(x0))处的切线方程为y=﹣9x+b,求b的值;(2)求函数f(x)的极值.【分析】(1)求导数,f′(x)=3x2﹣6x﹣9,根据函数在图象上某点导数值和过该点切线斜率的关系即可求出x0的值,从而求出切点的坐标,进而求出b的值;(2)根据二次函数的图象容易判断导数的符号,根据极值的定义便可求出函数f(x)的极大值和极小值.【解答】解:(1)f′(x)=3x2﹣6x﹣9,根据题意,;∴x0=0,或2;∴①当x0=0时,f(x0)=﹣3;∴切线方程为y=﹣9x﹣3;∴b=﹣3;②当x0=2时,f(x0)=﹣25;切线方程为y=﹣9x﹣7;∴b=﹣7;(2)f′(x)=3(x﹣3)(x+1);∴x<﹣1时,f′(x)>0,﹣1<x<3时,f′(x)<0,x>3时,f′(x)>0;∴f(x)的极大值为f(﹣1)=2,f(x)的极小值为f(3)=﹣30.【点评】考查函数在函数图象上某点的导数的几何意义,直线的点斜式方程,以及二次函数的图象,极大值和极小值的概念及求法.18.(12分)(2016春•厦门期末)网购已成为当今消费者喜欢的购物方式,某机构对A、B、C、D四家同类运动服装网店的关注人数x(千人)与其商品销售件数y(百件)进行统计来近似刻画它们之间的关系(1)求y与x的回归直线方程;(2)在(1)的回归模型中,请用R2说明,销售件数的差异有多大程度是由关注人数引起的?(精确到0.01)参考公式::;;R2═1﹣参考数据:x i y i=320;x2=110.【分析】(1)根据所给的数据,做出x,y的平均数,即得到这组数据的样本中心点,根据最小二乘法做出线性回归方程的系数,写出线性回归方程.(2)相关指数R2的计算公式,求得R2的值,即可求得销售件数的差异有多大程度是由关注人数引起的.【解答】解:(1)由==5,==15,x i y i=320,=110,===2,∴=15﹣2×5=5,∴线性回归方程为=2x+5;(2)(y i﹣)2=54,(y i﹣)2=14,R2═1﹣=1﹣=0.74,说明销售件数的差异有74%程度是由关注人数引起的.【点评】本题考查线性回归方程,考查最小二乘法求线性回归方程的系数及相关指数的计算,考查样本中心点的求法,属于基础题.19.(12分)(2016春•厦门期末)椭圆Г:=1(a>b>0)过点(1,),且直线l过椭圆Г的上顶点和左焦点,椭圆中心到直线l的距离等于焦距长的.(1)求椭圆Г的方程;(2)若一条与坐标轴不平行且不过原点的直线交椭圆Г于不同的两点M、N,点P为线段MN的中点,求证:直线MN与直线OP不垂直.【分析】(1)利用点到直线的距离公式整理可知a=2b,将点(1,)代入椭圆方程计算可知a=2、b=1,进而可得结论;(2)通过设点M(x1,y1)、N(x2,y2)、P(x0,y0),结合中点坐标公式,将点M、N代入椭圆方程并做差,计算即得结论.【解答】(1)解:椭圆中心到l的距离为==×2c,即a=2b,点(1,)代入椭圆方程,得:a=2、b=1,∴椭圆Г的方程为:+y2=1;(2)证明:法一:设点M(x1,y1),N(x2,y2),P(x0,y0),则,,∵•=﹣,即•=﹣,∴k MN•k OP=﹣≠﹣1,即直线MN与直线OP不垂直.法二:设直线方程为y=kx+b,M(x1,y1),N(x2,y2),P(x0,y0),联立,整理得:(1+4k2)x2+8kbx+4b2﹣4=0,∴x1+x2=﹣,y1+y2=k(x1+x2)+2b=,∴k OP===﹣,∵k MN•k OP=﹣≠﹣1,∴直线MN与直线OP不垂直.【点评】本题考查椭圆的定义及直线与椭圆的位置关系等基础知识,考查运算求解能力,考查数形结合思想,注意解题方法的积累,属于中档题.20.(12分)(2016春•厦门期末)厦门日报讯,2016年5月1日上午,厦门海洋综合行政执法支队在公务码头启动了2016年休渔监管执法的首日行动,这标志着厦门海域正式步入为期4个半月的休渔期.某小微企业决定囤积一些冰鲜产品,销售所囤积鱼品的净利润y 万元与投入x万元之间近似满足函数关系:f(x)=若投入2万元,可得到净利润为5.2万元.(1)试求该小微企业投入多少万元时,获得的净利润最大;(2)请判断该小微企业是否会亏本,若亏本,求出投入资金的范围;若不亏本,请说明理由(参考数据:ln2=0.7,ln15=2.7)【分析】(1)由题意可得f(2)=5.2,解得a=﹣4,讨论2≤x≤15时,求得导数和单调区间、极值和最值;由0<x<2时,f(x)的单调性可得f(x)的最大值;(2)讨论0<x<2时,f(x)<0的x的范围,由f(x)在[2,15]的端点的函数值,可得f(x)>0,即可判断企业亏本的x的范围.【解答】解:(1)由题意可知,当x=2时,f(2)=5.2,即有aln2﹣×22+×2=5.2,解得a=﹣4.则f(x)=.当2≤x≤15时,f(x)=﹣4lnx﹣x2+x,f′(x)=﹣﹣x+=﹣,当2<x<8时,f′(x)>0,f(x)递增;当8<x<15时,f′(x)<0,f(x)递减.当2≤x≤15时,f(x)max=f(8)=﹣4ln8﹣16+36=11.6.当0<x<2时,f(x)<2×4﹣(2ln2)×2=5.2.故该小微企业投入8万元时,获得的净利润最大;(2)当0<x<2时,2x2﹣(2ln2)x<0,解得0<x<ln2,该企业亏本;当2≤x≤15时,f(2)=5.2,f(15)=﹣4ln15﹣×152+×15=0.45>0,则f(x)min=f(15)=0.45>0,综上可得,0<x<ln2,即0<x<0.7时,该企业亏本.【点评】本题考查导数在实际问题中的运用:求最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.21.(12分)(2016春•厦门期末)抛物线y2=2px(p>0)的焦点为F,直线y=4与抛物线和y轴分别交于点P、Q,且|PF|=2|PQ|(1)求抛物线的方程;(2)过点F作互相垂直的两直线分别交抛物线于点A、B、C、D,求四边形ACBD面积的最小值.【分析】(1)求得抛物线的焦点和准线方程,以及P,Q的坐标,运用抛物线的定义和两点的距离公式,解方程可得p=4,进而得到抛物线的方程;(2)设AB:x=my+2,CD:x=﹣y+2(m≠0),联立抛物线方程,消去x,得到y的方程,运用韦达定理和弦长公式可得|AB|,|CD|,由四边形的面积公式可得S=|AB||CD|,运用基本不等式即可得到所求最小值.【解答】解:(1)抛物线y2=2px(p>0)的焦点为F(,0),准线方程为x=﹣,由题意可得P(,4),Q(0,4),由|PF|=2|PQ|,结合抛物线的定义可得|PF|=+,即有+=2•(p>0),解得p=4,则抛物线的方程为y2=8x;(2)由(1)知:F(2,0),设AB:x=my+2,CD:x=﹣y+2(m≠0),联立AB方程与抛物线的方程得:y2﹣8my﹣16=0,设A(x1,y1),B(x2,y2),则y1+y2=8m,y1y2=﹣16,∴|AB|=•=•=8(1+m2),同理:|CD|=8(1+).∴四边形ACBD的面积:S=|AB||CD|=32(1+m2)(1+)=32(2+m2+)≥128.当且仅当m2=即:m=±1时等号成立.∴四边形ACBD的面积的最小值为128.【点评】本题考查抛物线的标准方程的求法,直线与抛物线的位置关系的应用,四边形面积的最值以及基本不等式的应用,考查转化思想以及计算能力.22.(12分)(2016春•厦门期末)函数f(x)=(﹣x2+ax+a)e x(a>0,e是自然常数)(1)当x∈[0,1]时,函数f(x)的最大值是,求a的值;(2)当x∈(0,1]时,证明:2x3﹣x2﹣x>.【分析】(1)求出函数的导数,通过讨论a的范围求出函数的单调区间,得到函数的最大值,从而求出a的值即可;(2)问题转化为(﹣x2+x+)e x<(1﹣),设g(x)=﹣x2+x+)e x,设h(x)=(1﹣),根据函数的单调性分别求出其最大值和最小值,从而证出结论.【解答】解:(1)由题意得:f′(x)=﹣(x+2)(x﹣a)e x,a>0时,由f′(x)≥0,解得:﹣2≤x≤a,∴f(x)在[﹣2,a]递增,在(﹣∞,﹣2],[a,+∞)递减,a≥1时,f(x)在[0,1]递增,∴f(x)max=f(1)=(2a﹣1)e=,解得:a=+<1,不合题意,舍,0≤a<1时,f(x)在[0,a]递增,在[a,1]递减,∴f(x)max=f(a)=ae a=,解得:a=,符合题意,综上,存在a=,使得x∈[0,1]时,f(x)的最大值是;(2)当x∈(0,1]时,要证:2x3﹣x2﹣x>,即证(﹣x2+x+)e x<(1﹣),设g(x)=﹣x2+x+)e x,由(1)可得g(x)max=g()=,设h(x)=(1﹣),h′(x)=,h(x)在(0,1]递减,h(x)min=h(1)=,∴(﹣x2+x+)e x<(1﹣),即2x3﹣x2﹣x>.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.参与本试卷答题和审题的老师有:sxs123;546278733@;maths;whgcn;双曲线;沂蒙松;wkl197822;990524069@;cst;1619495736(排名不分先后)菁优网2016年9月4日。

人教版高二(理科)第一学期期末考试数学试题-含答案

人教版高二(理科)第一学期期末考试数学试题-含答案

2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。

福建省厦门市第一中学2015-2016学年高一上学期期中考试数学试卷+Word版含答案

福建省厦门市第一中学2015-2016学年高一上学期期中考试数学试卷+Word版含答案

四大名补(文灶校区)版权所有@四大名补教育福建省厦门第一中学2015-2016学年度第一学期期中考试高一年数学试卷命题教师吴享平审核教师肖文辉2015.11第Ⅰ卷(满分60分)一.选择题(本小题共12题,每小题5分,共60分)1.已知全集{1,2,3,4,5,6,7},{1,3,5},{2,4,5,7}U A B ===,则集合()U C A B 为A.{1,2,3,4,6,7} B.{1,2,5} C.{3,5,7} D.{6}2.下列函数中,能用二分法求零点的是A.x x f 2log )(= B.2)(xx f -= C.2)(xx f = D.||)(x x f =3.函数x xy -=31的图像关于A.x 轴对称 B.y 轴对称C.坐标原点对称D.直线y x =对称4.函数()ln(4)f x x =+-的定义域是A.(1,)+∞ B.[1,4) C.(1,4]D.(4,)+∞5.已知幂函数)(x f 的图象经过点(9,3),则=)41(f A.1B .21C.41 D.1616.若函数2)()(-=x f x F 在(,0)-∞内有零点,则()y f x =的图像可能是A .B .C .D .7.下列函数中,是偶函数且在(0,)+∞上为减函数的是A.2y x = B.3y x = C.2y x -= D.3y x -=8.某新品牌电视投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销量y 与投放市场的月数x 之间的关系的是A.x y 100=B.10050502+-=x x y C.xy 250⨯= D.100log 1002+=x y 9.计算:2666)3(log )18(log )2(log +⋅的值为A.1B.2C.3D.410.对于实数a 和b,定义运算“*”:22,*,a ab a b a b b ab a b⎧-≤⎪=⎨->⎪⎩ ,设()(21)*(1)f x x x =--,且关于x 的方程()()f x a a R =∈恰有三个互不相等的实数根,则实数a 的取值范围是A.1[0,]4B.1[0,]16 C.1(0,](1,)4+∞U D.1(0,)411.已知函数k x x f +-=||2|log |)(2有四个零点4321,,,x x x x ,则k x x x x ++++4321的取值范围为A.),8(+∞ B.),4(+∞ C.)8,(-∞ D.)4,(-∞12.定义在D 上的函数()f x 若同时满足:①存在0M >,使得对任意的12,x x D ∈,都有12|()()|f x f x M -<;②()f x 的图像存在对称中心。

(解析版)福建省厦门市2016届九年级上学期质量检测数学试卷

(解析版)福建省厦门市2016届九年级上学期质量检测数学试卷

2015—2016学年(上) 厦门市九年级质量检测数学参考答案解析一、选择题(每小题4分,共24分)1、在四个数3、2、1.7、2中,最大的是( )A.3B.2C.1.7D.2解析:本题考查实数比较大小,414.12,732.13≈≈,故答案选D 。

2、下列图形中,属于中心对称图形的是( )A.锐角三角形B.直角三角形C.菱形D.对角互补的四边形解析:本题考查中心对称图形定义,旋转180后和图形本身重合,选项中只有菱形满足条件,故答案选C 。

3、关于x 的一元二次方程)04,0(022>-≠=++ac b a c bx ax 的根是( )A.aacb b 242-±B.a ac b b 242-+-C.242ac b b -+-D.aac b b 242-±-解析:本题考查了一元二次方程求根公式的识记,故答案选D 。

4、如图1,已知AB 是O 的直径,E D C 、、是O Θ上的三个点,在下列各组角中,相等的是( )A.C ∠和D ∠B.DAB ∠和CAB ∠C.C ∠和EBA ∠D.DAB ∠和DBE ∠解析:本题考查了同圆中,相等的圆周角,C ∠和D ∠都是直径所对的圆周角为90,故答案选A 。

5、某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分,笔试成绩为90分,若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是()A.29085+ B.2390785⨯+⨯C.10390785⨯+⨯D.103.0907.085⨯+⨯解析:此题考查加权平均数的计算。

加权平均数的公式为的权为为数据,x w x w w w w x w x w x nnn ,212211+⋯⋯+++⋯⋯++。

题中甲的面试成绩为85分,对应权重为7;面试成绩为85分,对应权重为3。

代入公式即可,故答案选C 。

6、如图2,点E D 、在ABC ∆的边BC 上,CAE BAD AED ADE ∠=∠∠=∠,,则下列结论正确的是( )A.ABD ∆和ACE ∆成轴对称B.ABD ∆和ACE ∆成中心对称C.ABD ∆经过旋转可以和ACE ∆重合D.ABD ∆经过平移可以和ACE ∆重合解析:此题考查外角、等腰三角形及轴对称。

最新-厦门市下高二期末质检卷(理)资料

最新-厦门市下高二期末质检卷(理)资料

福建省厦门2016-2017学年度下学期期末考试高二数学(理科)试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题所给出的四个备选项中,只有一项是符合题目要求的. 1.复数ii+1(i 为复数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.抛物线y x 42=上一点()1,a P 到焦点的距离是( )A .1B .2C .3D .43.甲乙丙丁四人站成一排,要求甲乙相邻,则不同的排法是( ) A .6 B .12C .18D .244.在一次投篮训练中,甲乙各投一次,设p :“甲投中”,q :“乙投中”,则至少一人没有投中可表示为( ) A .q p ⌝∨⌝B .q p ⌝∨C .q p ⌝∧⌝D .q p ∨5.正方体1111D C B A ABCD -中,N 为1BB 中点,则直线AN 与C B 1所成角的余弦值为( )A .105B .55 C .10103 D .10106.已知正态分布密度函数()()()2221,,2x x e x μσϕπσ--=∈-∞+∞ ,以下关于正态曲线的说法错误的是( )A .曲线与x 轴之间的面积为1B .曲线在u x =处达到峰值σπ21C .当σ的值一定时,曲线的位置由u 确定,曲线随着u 的变化而沿x 轴平移D .当u 的值一定时,曲线的形状由σ确定,σ越小,曲线越矮胖7.若()nx -1的二项展开式中仅有第五项的二项式系数最大,则展开式中所有项的系数的绝对值之和是( )A .1B .256C .512D .10248.现有红、黄、蓝三种颜色供选择,在如图所示的五个空格里涂上颜色,,要求相邻空格不同色,则涂色方法种数是( )12 3 4 5A .24B .36C .48D .1089.我国古代数学明珠《九章算术》中记录割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。

2014-2015学年高二上学期期末考试数学(理)试题_Word版含答案

2014-2015学年高二上学期期末考试数学(理)试题_Word版含答案

2016级高二期末考试试卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.i 为虚数单位,则2013i = ( )A .i -B .1-C .iD .1 2.若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e3.已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是 ( )A .34y x =±B .43y x =±C.y x = D.y x = 4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行. 其中正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有( )A .7个B .12个C .24个D .35个 6.下列推理中属于归纳推理且结论正确的是( )A .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>7.已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)8.抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90AFB ∠=.过弦AB的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为ABC .1D二、 75分,共35分.9.204sin xdx π=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是 11.曲线C :ln xy x=在点(1,0)处的切线方程是 . 12.棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=,则SP 的最小值为 .13.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 .14.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = . 15.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是 三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<. (1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 17.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===. (1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小.18.(本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 19.(本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明.20.(本小题满分13分)已知椭圆C :22221x y a b +=(0)a b >>2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 21.(本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+.CCBBDADA 9.4 10.()1,2 11.1y x =- 12.6 13.24 14.-34 15.10,2⎛⎫⎪⎝⎭16.解:(1). 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<.……6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则AB ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x≥4或x≤2},……………10分 则02a <≤,且34a ≥所以实数a 的取值范围是423a ≤≤12分 17.解::方法一:(1)∵11,AC BC AC CC BCCC C ⊥⊥=且∴11AC C CBB ⊥平面,又111BC C CBB ⊂平面∴1111,,AC BC B C BC AC B C C ⊥⊥=且 ∴1111BC AB C AB AB C ⊥⊂平面,又平面 ∴11AB BC ⊥(2)取11A B 的中点为H ,在平面11A ABB 内过H 作1HQ AB ⊥于点Q ,连接1C Q 则111C H A ABB ⊥平面,∴11C H AB ⊥,而1C H HQ H =∴1111AB C HQ AB C Q ⊥∴⊥平面,∴1C QH ∠是二面角111C AB A --的平面角,又1162C H A AB HQ ==,在内,解得∴111tan 3,60C HC QH C QH HQ∠==∠=︒∴二面角111C AB A --为60°.18.解:(1)因为4x =时,21y =, 代入关系式()2462m y x x =+--,得16212m +=, 解得10m =.……………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--,……………5分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦……………………8分从而()()()()2'121122404310626f x x x x x x =-+=--<<.令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,所以当103.33x =≈时,函数)(x f 取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. …………………12分19.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.……………3分当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.……5分 (2)由题设(S n -1)2-a n (S n -1)-a n =0,即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3…. ……………7分下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.……………8分(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立,即S k =kk +1,当n =k +1时,由①得S k +1=12-S k,……………10分 即S k +1=k +1k +2,故n =k +1时结论也成立.……………12分综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.……………13分1CA BC1A1B20.解:(1)设椭圆的焦距为2c,则由题设可知2221a c ca a cb ⎧-=⎪⎪=⎨⎪⎪=+⎩,解此方程组得a =1b =. 所以椭圆C 的方程是2212x y +=. ……………………5分 (2)解法一:假设存在点T (u, v ). 若直线l 的斜率存在,设其方程为13y kx =-, 将它代入椭圆方程,并整理,得22(189)12160k x kx +--=.设点A 、B 的坐标分别为1122(,),(,)A x y B x y ,则 12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为1122(,),(,)TA x u y v TB x u y v =--=--及112211,,33y kx y kx =-=-所以1212()()()()TA TB x u x u y v y v =--+--2221212121(1)()()339v k x x u k kv x x u v =+-+++++++222222(666)4(3325)62u v k ku u v v k +--+++-=+ …………………9分 当且仅当0TA TB =恒成立时,以AB 为直径的圆恒过定点T ,所以2222618180,0,33250.u v u u v v ⎧+-=⎪=⎨⎪++-=⎩解得0, 1.u v ==此时以AB 为直径的圆恒过定点T (0,1). …………………11分 当直线l 的斜率不存在,l 与y 轴重合,以AB 为直径的圆为221x y +=也过点T (0,1). 综上可知,在坐标平面上存在一个定点T (0,1),满足条件. …………………13分解法二:若直线l 与y 轴重合,则以AB 为直径的圆是22 1.x y +=若直线l 垂直于y 轴,则以AB 为直径的圆是22116().39x y ++=……………7分 由22221,116().39x y x y ⎧+=⎪⎨++=⎪⎩解得01x y =⎧⎨=⎩.由此可知所求点T 如果存在,只能是(0,1). ………………8分 事实上点T (0,1)就是所求的点. 证明如下:当直线l 的斜率不存在,即直线l 与y 轴重合时,以AB 为直径的圆为221x y +=,过点T (0,1);当直线l 的斜率存在,设直线方程为13y kx =-,代入椭圆方程,并整理,得22(189)12160.k x kx +--= 设点A 、B 的坐标为1122(,),(,)A x y B x y ,则12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………10分因为1122(,1),(,1)TA x y TB x y =-=-,21212121212416()1(1)()39TA TA x x y y y y k x x k x x =+-++=+-++222216161632160.189k k k k ---++==+所以TA TB ⊥,即以AB 为直径的圆恒过定点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1)满足条件. …………………13分 21.解:(1)设x x x g x f x -+=-=)1ln()()()(ϕ,则.1111)('+-=-+=x x x x ϕ………………….2分当时,)(x 有最大值0 ∴0)(≤x 恒成立。

《高等数学》学年第二学期期末考试试卷(B)卷

《高等数学》学年第二学期期末考试试卷(B)卷

2015-2016 第二学期经管旅游等《高等数学》复习提示本学期《高等数学》使用教材:《高等数学》(经管类)(下)第二版林伟初郭安学主编(使用这套教材的本科各专业学生适用本复习提示)复习范围:第7 章:7.1,7.2,7.3(1-4),7.4(1-3),7.5(1),7.6(1-2);第8 章:8.1,8.2,8.3;第9 章:9.1,9.2,9.3,9.4(1-2);第10 章:10.1,10.2(1-2),10.3,10.4,10.5(1-3).复习典型题举例: P2-7:例 2-例9;P9: 8 、 9; P14: 例 4; P17: 1,2,4; P19: 例1;P20: 例 3- 例 5; P22: 例 9;P27: 1(2)-(5); P30: 例2-例4; P32: 2; P33: 例2-例4;P36: 例7;P45: 例 4; P61: 性质1-6; P62: 2,3;P65: 例1,例2; P66: 例4-例6; P68: 1(1)(2); P71: 例1,例2;P72: 3(1)(4)(5),4; 80: 例2-例4; P83: 定理1 及推论;P87: 例1,例2(记住结论),例3; P90: 例5-例6;P91: 1(1)(2)(5)(8)(10)(11); P93: 例2; P96: 例1(记住结论);P99: 例3;P102: 1(1)(3);P124: 例2,例4;P127: 例7;P131-139: 例1,例3,例5;P142-144: 例2-例4;P148: 3(1)-(6).下面还附上一份往年的考试卷,供同学们参考,可参考其考试方式及题型类型。

今年的考试题目肯定与往年这份卷子的考试题目不同!特别强调:请同学们按复习范围进行复习!全面复习!复习典型题举例以及下面的往年考试卷都只是供同学们复习时参考的,切记切记!韶关学院20**-20**学年第二学期《高等数学》期末考试试卷(B 卷)系专业 20** 级本科班学号姓名注:1、考试时间120 分钟,总分100 分;2、适用于20**级本科:经、管、旅游等本科各专业.2015-2016 第二学期《高等数学》期末复习提示第1 页共4 页。

2015-2016学年福建省厦门市海沧中学高二(下)期末数学试卷(理科)(解析版)

2015-2016学年福建省厦门市海沧中学高二(下)期末数学试卷(理科)(解析版)

2015-2016学年福建省厦门市海沧中学高二(下)期末数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)下列求导运算正确的是()A.(x+)′=1+B.(log2x)′=C.(3x)′=3x log3e D.(x2cos x)′=﹣2x sin x2.(5分)若曲线y=x2+ax+b在点(0,b)处的切线方程x﹣y+1=0,则()A.a=1,b=1B.a=﹣1,b=1C.a=1,b=﹣1D.a=﹣1,b=﹣1 3.(5分)北京某大学为第十八届四中全会招募了30名志愿者(编号分别是1,2,…30号),现从中任意选取6人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一厅的选取种数是()A.25B.32C.60D.1004.(5分)设复数z满足关系式z+|z|=2+i,那么z等于()A.﹣+i B.﹣i C.﹣﹣i D.+i5.(5分)在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是()A.﹣56B.﹣35C.35D.566.(5分)已知f(x)=x3+3x2﹣mx+1在[﹣2,2]上为单调增函数,则实数m的取值范围为()A.m≤﹣3B.m≤0C.m≥﹣24D.m≥﹣17.(5分)将5名志愿者分配到3个不同的奥运场馆参加接等工作,每个场馆至少分配一名志愿者的方案种数为()A.240B.300C.150D.1808.(5分)(﹣x)dx等于()A.B.C.D.9.(5分)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.﹣x0是f(﹣x)的极小值点C.﹣x0是﹣f(x)的极小值点D.﹣x0是﹣f(﹣x)的极小值点10.(5分)定义在R上的函数f(x)满足f(4)=1.f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是()A.B.C.D.(﹣∞,﹣3)11.(5分)已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B.C.D.12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(共4小题,每小题5分,满分20分)13.(5分)由直线y=2x及曲线y=4﹣2x2围成的封闭图形的面积为.14.(5分)设a=(sin x﹣1+2cos2)dx,则(a﹣)6•(x2+2)的展开式中常数项是.15.(5分)已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x)恒成立,则不等式x2f()﹣f(x)>0的解集为.16.(5分)函数f(x)=alnx+x,对任意的x∈[,e]时,f(x)≥0恒成立,则a的范围为.三、解答题(共6小题,满分70分)17.(10分)已知z为复数,z+2i为实数,且(1﹣2i)z为纯虚数,其中i是虚数单位.(1)求复数z;(2)若复数z满足,求|ω|的最小值.18.(12分)六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙按自左至右顺序排队(可以不相邻);(5)甲、乙站在两端.19.(12分)已知函数f(x)=x3+x﹣16.(1)求曲线y=f(x)在点(2,﹣6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.20.(12分)已知(﹣)n二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3(1)求n的值;(2)求展开式中x3项的系数(3)计算式子﹣+﹣+…+的值.21.(12分)已知函数f(x)=x3+ax.(Ⅰ)若f(x)在x=1处的切线平行于x轴,求a的值和f(x)的极值;(Ⅱ)若过点A(1,0)可作曲线y=f(x)的三条切线,求a的取值范围.22.(12分)设f(x)=(x2﹣x+)e mx,其中m≠0.(1)讨论f(x)的单调性;(2)若g(x)=f(x)﹣x﹣5恰有两个零点,求m的取值范围.2015-2016学年福建省厦门市海沧中学高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.【解答】解:选项A,(x+)′=1﹣,故错误;选项B,(log2x)′=,故正确;选项C,(3x)′=3x ln3,故错误;选项D,(x2cos x)′=2x cos x﹣x2sin x,故错误.故选:B.2.【解答】解:y=x2+ax+b的导数为y′=2x+a,可得在点(0,b)处的切线斜率为a,由点(0,b)处的切线方程为x﹣y+1=0,可得a=1,b=1,故选:A.3.【解答】解:根据题意,要“确保6号、15号与24号同时入选并被分配到同一厅”,则除6、15、24号之外的另外一组三人的编号必须都大于25或都小于6号,则分2种情况讨论选出的情况:①、如果另外三人的编号都大于等于25,则需要在编号为25、26、27、28、29、30的6人中,任取3人即可,有C63=20种情况,②、如果另外三人的编号都小于6,则需要在编号为1、2、3、4、5的5人中,任取3人即可,有C53=10种情况,选出剩下3人有20+10=30种情况,再将选出的2组进行全排列,对应江西厅、广电厅,有A22=2种情况,则“确保6号、15号与24号同时入选并被分配到同一厅”的选取种数为30×2=60种;故选:C.4.【解答】解:设z=a+bi(a,b∈R),∵z+|z|=2+i,∴a+bi+=2+i,∴,解得,∴z=+i.故选:D.5.【解答】解:∵在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,∴n=8,展开式的通项公式为T r+1==•(﹣1)r•x8﹣2r,令8﹣2r=2,则r=3,∴展开式中含x2项的系数是﹣=﹣56.故选:A.6.【解答】解:f(x)=x3+3x2﹣mx+1在[﹣2,2]上为单调增函数,f′(x)=3x2+6x﹣m≥0在[﹣2,2]上恒成立,即:m≤3x2+6x在[﹣2,2]上恒成立,即m≤(3x2+6x)min,∵当x=﹣1时,(3x2+6x)min=﹣3,故m的取值范围是:m≤﹣3,故选:A.7.【解答】解:将5个人分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C53•A33种分法,分成2、2、1时,有•A33种分法,所以共有C53•A33+•A33=150种方案,故选:C.8.【解答】解:dx表示以原点为圆心以1为半径的圆的面积的四分之一,故dx=,xdx==,∴=dx﹣xdx=﹣=,故选:D.9.【解答】解:对于A项,x0(x0≠0)是f(x)的极大值点,不一定是最大值点,因此不能满足在整个定义域上值最大,故A错误;对于B项,f(﹣x)是把f(x)的图象关于y轴对称,因此,﹣x0是f(﹣x)的极大值点,故B错误;对于C项,﹣f(x)是把f(x)的图象关于x轴对称,因此,x0是﹣f(x)的极小值点,故C错误;对于D项,﹣f(﹣x)是把f(x)的图象分别关于x轴、y轴做对称,因此﹣x0是﹣f(﹣x)的极小值点,故D正确.故选:D.10.【解答】解:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增,∵两正数a,b满足f(2a+b)<1,又由f(4)=1,即f(2a+b)<4,即2a+b<4,又由a>0.b>0;点(a,b)的区域为图中阴影部分,不包括边界,的几何意义是区域的点与A(﹣2,﹣2)连线的斜率,直线AB,AC的斜率分别是,3;则;故选:C.11.【解答】解:函数f(x)的导数为f'(x)=x+2a,函数g(x)的导数为,由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则,由于x0>0,a>0则x0=a,因此构造函数,由h'(t)=2t(1﹣3lnt),当时,h'(t)>0即h(t)单调递增;当时,h'(t)<0即h(t)单调递减,则即为实数b的最大值.故选:D.12.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D.二、填空题(共4小题,每小题5分,满分20分)13.【解答】解:由,得:或,所以直线y=2x及曲线y=4﹣2x2围成的封闭图形的面积为S==(4x﹣)=9故答案为:9.14.【解答】解:设==(﹣cos x+sin x)=1+1=2,则多项式(a﹣)6•(x2+2)=(2﹣)6•(x2+2)=[••+++…+](x2+2),故展开式的常数项为﹣×2×1﹣×2=﹣12﹣320=﹣332,故答案为:﹣332.15.【解答】解:令F(x)=,则F′(x)=,∵f(x)>xf′(x),∴F′(x)<0,∴F(x)=为定义域上的减函数,由不等式x2f()﹣f(x)>0,得:>,∴<x,∴x>1,故答案为:{x|x>1}.16.【解答】解:∵f(x)=alnx+x,∴x>0,=,要使f(x)≥0恒成立,则只需当x∈[,e]时,求函数f(x)的最小值,让最小值满足大于0,即可.若a≥0,f'(x)>0,此时函数在[,e]单调递增,最小值为f()=aln+=﹣a,此时由﹣a≥0,解得0≤a≤.若a<0,由f'(x)=0,得x=﹣a,函数f(x)在x=﹣a处取得极小值.若﹣a<,在函数在[,e]单调递增,∴最小值为f()=aln+=﹣a,此时﹣a≥0恒成立,此时﹣<a<0.若<﹣a<e,此时函数在x=﹣a处取得最小值,此时f(﹣a)=aln(﹣a)﹣a≥0,解得﹣e≤a.若﹣a≥e,此时函数在[,e]单调递递减,此时最小值为f(e)=alne+e≥0,解得a≥﹣e.综上:a的范围为[﹣e,].故答案为:.三、解答题(共6小题,满分70分)17.【解答】解:(1)设z=a+bi(a,b∈R),则z+2i=a+(b+2)i,因为z+2i为实数,所以有b+2=0①…2分(1﹣2i)z(1﹣2i)(a+bi)=a+2b+(b﹣2a)i,因为(1﹣2i)z为纯虚数,所以a+2b=0,b﹣2a≠0,②…4分由①②解得a=4,b=﹣2.…6分故z=4﹣2i.…7分(2)因为z=4﹣2i,则=4+2i,…8分设ω=x+yi,(x,y∈R),因为,即(x﹣4)2+(y﹣2)2=1…10分又|ω|=,故|ω|最小值即为原点到圆(x﹣4)2+(y﹣2)2=1上的点距离的最小值,因为原点到点(4,2)的距离为=,又因为圆的半径r=1,原点在圆外,所以|ω|的最小值即为2﹣1.…14分.18.【解答】解:(1)方法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A41种站法,然后其余5人在另外5个位置上作全排列有A55种站法,根据分步计数原理,共有站A41A55=480(种).方法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A52种站法,然后中间4人有A44种站法,根据分步计数原理,共有站法A52A44=480(种).方法三:若对甲没有限制条件共有A66种法,甲在两端共有2A55种站法,从总数中减去这两种情况的排列数,即得所求的站法数,共有A66﹣2A55=480(种).(2)先把甲、乙作为一个“整体”,看作一个人,有A55种站法,再把甲、乙进行全排列,有A22种站法,根椐分步计数原理,共有A55A22=240(种)站法.(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A44种;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有A52种,故共有站法为A44A52=480(种).(4)先将甲、乙以外的4人从6个位置中挑选4个位置进行排列共有A64种,剩下的两个位置,左边的就是甲,右边的就是乙,全部排完,故共有A64=360种.(5)方法一:首先考虑特殊元素,甲、乙先站两端,有A22种,再让其他4人在中间位置作全排列,有A44种,根据分步计数原理,共有A22A44=48(种).方法二:首先考虑两端两个特殊位置,甲、乙去站有A22种站法,然后考虑中间4个位置,由剩下的4人去站,有A44种站法,由分步计数原理共有A22A44=48种站法.19.【解答】解:(1)∵f'(x)=(x3+x﹣16)'=3x2+1,∴在点(2,﹣6)处的切线的斜率k=f′(2)=3×22+1=13,∴切线的方程为y=13x﹣32.(2)设切点为(x0,y0),则直线l的斜率为f'(x0)=3x02+1,∴直线l的方程为y=(3x02+1)(x﹣x0)+x03+x0﹣16.又∵直线l过点(0,0),∴0=(3x02+1)(﹣x0)+x03+x0﹣16,整理,得x03=﹣8,∴x0=﹣2,∴y0=(﹣2)3+(﹣2)﹣16=﹣26,直线l的斜率k=3×(﹣2)2+1=13,∴直线l的方程为y=13x,切点坐标为(﹣2,﹣26).20.【解答】解:(1)由第4项的二项式系数与第3项的二项式系数的比为8:3,可得=,化简可得=,求得n=10.(2)由于(﹣)n二项展开式的通项公式为T r+1=(﹣2)r ••x5﹣r,令5﹣r=3,求得r=2,可得展开式中x3项的系数为(﹣2)2•=180.(III )由二项式定理可得,所以令x=1得=(1﹣2)10=1.21.【解答】解:(Ⅰ)f′(x)=3x2+a,∵f(x)在x=1处的切线平行于x轴,∴f′(1)=3+a=0,即a=﹣3.∴f(x)=x3﹣3x.令f′(x)=3x2﹣3=0,得x=±1.∴f(x)极大值=f(﹣1)=2,f(x)极小值=f(1)=﹣2;(Ⅱ)设切点为(t,t3+at),则切线斜率为f′(t)=3t2+a,∴切线方程为y﹣t3﹣at=(3t2+a)(x﹣t),∵点A(1,0)在切线上,∴﹣t3﹣at=(3t2+a)(1﹣t),即2t3﹣3t2﹣a=0.(*)于是,若过点A可作曲线y=f(x)的三条切线,则方程(*)有三个相异的实根根.记g(t)=2t3﹣3t2﹣a,则g′(t)=6t2﹣6t.当t∈(﹣∞,0)时,g′(t)>0,g(t)是增函数,当t∈(0,1)时,g′(t)<0,g(t)是减函数,当t∈(1,+∞)时,g′(t)>0,g(t)是增函数,∴g(t)极大值=g(0)=﹣a,g(t)极小值=g(1)=﹣1﹣a.要使方程(*)有三个相异实根,则,即﹣1<a<0.22.【解答】解:(1)f′(x)=(2x﹣)e mx+m(x2﹣+)e mx=e mx(mx2﹣x+).设h(x)=mx2﹣x+,则△=1﹣8=﹣7<0,∴当m>0时,h(x)>0,当m<0时,h(x)<0.∵e mx>0,∴当m>0时,f′(x)>0,当m<0时,f′(x)<0.∴当m>0时,f(x)为增函数,当m<0时,f(x)为减函数.(2)令g(x)=0得f(x)=,设F(x)=,则F(x)过点(0,5),又f(0)=,∵g(x)有两个零点,∴f(x)与F(x)的函数图象有两个交点,∴,解得m>1或m<﹣1.。

厦门市下高二期末质检卷理

厦门市下高二期末质检卷理

福建省厦门2016-2017学年度下学期期末考试高二数学(理科)试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题所给出的四个备选项中,只有一项是符合题目要求的. 1.复数ii+1(i 为复数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.抛物线y x 42=上一点()1,a P 到焦点的距离是( )A .1B .2C .3D .43.甲乙丙丁四人站成一排,要求甲乙相邻,则不同的排法是( ) A .6 B .12C .18D .244.在一次投篮训练中,甲乙各投一次,设p :“甲投中”,q :“乙投中”,则至少一人没有投中可表示为( ) A .q p ⌝∨⌝B .q p ⌝∨C .q p ⌝∧⌝D .q p ∨5.正方体1111D C B A ABCD -中,N 为1BB 中点,则直线AN 与C B 1所成角的余弦值为( )A .105B .55 C .10103 D .10106.已知正态分布密度函数()()()222,,x x x μσϕ--=∈-∞+∞ ,以下关于正态曲线的说法错误的是( )A .曲线与x 轴之间的面积为1B .曲线在u x =处达到峰值σπ21C .当σ的值一定时,曲线的位置由u 确定,曲线随着u 的变化而沿x 轴平移D .当u 的值一定时,曲线的形状由σ确定,σ越小,曲线越矮胖7.若()nx -1的二项展开式中仅有第五项的二项式系数最大,则展开式中所有项的系数的绝对值之和是( )A .1B .256C .512D .10248.现有红、黄、蓝三种颜色供选择,在如图所示的五个空格里涂上颜色,,要求相邻空格不同色,则涂色方法种数是( )A .24B .36C .48D .1089.我国古代数学明珠《九章算术》中记录割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。

”其体现的是一种无限与有限的转化过程,比如在⋯---21212中…即代表无限次重复,但原式是个定值x ,这可以通过方程x x=-12解的1=x ,类比之,⋯+++222=( ) A .2 B .-1或2C .2D .410.已知函数()1)(2+++=xe b ax x xf 的大致图像如图所示,则b a 、的值可能是( ) A .2,1=-=b a B .2,3-==b aC .4,4==b aD .2,1-=-=b a11.抛物线()022>=p px y C :与椭圆()012222>>=+b a by a x E :有相同的焦点F ,两条曲线在第一象限的交点为A ,若直线OA 的斜率为2,则椭圆的离心率为( )A .22B .226- C .12-D .426+12.已知函数)(x f 满足)1()1(x f x f -=+,且1≥x 时,x x x f ln )(=,若不等式)1()1(+≥+ax f e f x对任意的[]3,0∈x 恒成立,则实数a 的取值范围是( )A .[]e e ,-B .⎥⎦⎤⎢⎣⎡-3,322e eC .⎥⎦⎤⎢⎣⎡-3,2e eD .(]e ,∞-二、填空题:本大题4小题,每小题5分,共20分.把答案填在答题卡相应位置.13.5221⎪⎭⎫⎝⎛+x x 展开式中的常数项是 .14.计算()=+⎰-dx x x 22cos ππ .15.已知p :m a ≤,q :函数ax x x f -=2sin )(在⎥⎦⎤⎢⎣⎡60π,上单调递减,若p 是q 的充分不必要条件,则实数m 的取值范围是 .16.已知双曲线()0,012222>>=-b a by a x C :的右焦点()0,c F ,双曲线C 上一点N 满足c ON =||,若双曲线的一条渐近线平分FON ∠,则双曲线两条渐近线方程是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)教育部考试中心在对高考试卷难度与区分性能分析的研究中,在2007至2016十年间对每年理科数学的高考试卷随机抽取了若干样本,统计得到解答题得分率x 以及整卷得分率y 的数据,如下表:(1)利用最小二乘法求出y 关于x 的线性回归方程;(精确到0.01)(2)若以函数01.085.0-=x y 来拟合y 与x 之间的关系,计算得到相关指数87.02=R .对比(1)中模型,哪一个模型拟合效果更好?参考公式:∑∑==∧-⋅-=ni ini ii xn xy x n yx b 1221,.x b y a ∧∧-=∑∑==∧---=n i ini i iy yy yR 12122)()(1,参考数据:,036.0)(,006.0)(,429.1,89.1,5,7.321011011012101101101≈-≈-≈≈≈≈∑∑∑∑∑∑=∧=====y y y y x y x y xi iii ii i i i i i i i i.其中∧i y 表示(1)中拟合直线对应的估计值.18.(本小题满分12分)已知函数)0(6)(23>+-+=b b x ax x x f 在2=x 处取得极值.(1)求)(x f 的单调区间;(2)若)(x f 有两个零点,求)(x f 在1=x 处的切线方程.19.(本小题满分12分)某商场周年庆,准备提供一笔资金,对消费满一定金额的顾客以参与活动的方式进行奖励,顾客从一个装有大小相同的2个红球和4个黄球的袋中按指定规划取出2个球,根据取到的红球数确定奖励金额,具体金额设置如下表:现有两种取球规则的方案: 方案一:一次性随机取出2个球; 方案二:依次有放回取出2个球.(1)比较两种方案下,一次抽奖获得50元奖金概率的大小;(2)为使得尽可能多的人参与活动,作为公司负责人,你会选择哪种方案?请说明理由.20.(本小题满分12分)如图,四边形ABCD 为菱形,将CBD ∆沿BD 翻折到EBD ∆的位置. (1)求证:直线⊥BD 平面ACE ;(2)若二面角C BD E --的大小为︒60,︒=∠60DBE ,求直线CE 与平面ABE 所成角的正弦值.21.(本小题满分12分)已知圆427)23(:22=-+y x C 经过椭圆)0(1:2222>>=+b a by a x E 的左、右焦点21F F 、,点N 为圆C 与椭圆E 的一个交点,且直线N F 1过圆心C . (1)求椭圆E 的方程;(2)直线l 与椭圆E 交于B A 、两点,点M 的坐标为()0,3.若3-=⋅MB MA ,求证:直线l 过定点.22.(本小题满分12分)已知函数R a ax x x f ∈-+=,)1ln()(. (1)讨论)(x f 的极值;EDCBA(2)若ax e axx f x≤+)(对任意[)+∞∈,0x 恒成立,求实数a 的取值范围.(其中e 为自然对数的底数)。

2015-2016学年高二下学期期中考试数学(理)试题含答案

2015-2016学年高二下学期期中考试数学(理)试题含答案

白云中学2015—2016学年第二学期期中测试高二理科数学试卷一、选择题(每题5分,共60分)1.函数),1)(1()(-+=x x x f 则=')2(f ( )A. 3B. 2C. 4D. 0 2.已知函数,2)(2+-=x x x f 则⎰=10)(dx x f ( )A.613 B. 611 C. 2 D. 33.已知a 为实数,若2321>++i a i ,则=a ( ) A .1 B .2- C . 31 D .214.“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于( )A .演绎推理B .类比推理C .合情推理D .归纳推理5.已知抛物线2y ax bx c =++通过点(11)P ,,且在点(21)Q -,处的切线平行于直线3y x =-,则抛物线方程为( )A.23119y x x =-+ B.23119y x x =++C.23119y x x =-+D.23119y x x =--+6.命题p :∃x ∈R ,使得3x >x ;命题q :若函数y=f (x ﹣1)为偶函数,则函数y=f (x )关于直线x=1对称,则( )A .p ∨q 真B .p ∧q 真C .¬p 真D .¬q 假7.在复平面内,复数2(13)1iz i i =+++对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限8.如图,阴影部分的面积是( )A.23B.23-C.323D.3539.函数2()sin f x x =的导数是( )A.2sin xB.22sin xC.2cos x D.sin 2x10.下列说法正确的是()A.函数y x =有极大值,但无极小值 B.函数y x =有极小值,但无极大值 C.函数y x =既有极大值又有极小值 D.函数y x =无极值11.下列函数在点0x =处没有切线的是( )A.23cos y x x =+ B.sin y x x =· C.12y x x=+D.1cos y x=12.已知抛物线C 的方程为x 2=y ,过点A (0,﹣1)和点B (t ,3)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(﹣∞,﹣1)∪(1,+∞)B .(﹣∞,﹣)∪(,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣∞,﹣)∪(,+∞)二、填空题(每小题5分 ,共20分)13.函数23)(x x x f +=单调递减区间是14.若复数22(2)(2)z a a a a i =-+--为纯虚数,则实数a 的值等于 . 15.已知函数32()39f x x x x m =-+++在区间[22]-,上的最大值是20,则实数m 的值等于 .16.通过观察下面两等式的规律,请你写出一般性的命题:23150sin 90sin 30sin 222=++23125sin 65sin 5sin 222=++________________________________________________高二理科数学试卷答题卡1 2 3 4 5 6 7 8 9 10 11 12二、填空题(每小题5分 ,共20分)13.___________, 14.____________,15.____________,16.______________________________.三、解答题(共70分)17.(本小题满分12分)已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.18.(本小题满分12分)求函数5224+-=x x y 在区间[-2,2]上的最大值与最小值19.(本小题满分10分)求曲线2xy 过点P(1,-1)的切线方程。

2015-2016厦门市高二下质检化学试卷

2015-2016厦门市高二下质检化学试卷

2015-2016厦门市高二下质检化学试卷D选项①②③实验结论A 浓氨水CaO滴有酚酞的水氨气显碱性B 浓盐酸MnO2淀粉碘化钾溶液氧化性:Cl2>I2C 稀盐酸Na2SO3Ba(NO3)2溶液SO2与可溶性钡盐均能反应生成白色沉淀D 硫酸Na2CO3Na2SiO3溶液非金属性:硫>碳>硅12.实验室常用MnO2与浓盐酸反应制备Cl2,制备反应会因盐酸浓度下降而停止。

为测定反应残余液中盐酸的浓度,下列实验方案不可行的是A.采用酸碱中和滴定法测定B.与足量Zn反应,测量生成的H2体积C.与足量AgNO3溶液反应,称量生成的AgCl质量D.与足量CaCO3反应,测量生成的CO2质量13.钠硫电池是一种新型二次电源,电池总反应为2Na + x S Na 2S x。

该电池以熔融金属钠、熔融硫和多硫化钠(Na2S x)分别作为两个电极的反应物,固体Al2O3陶瓷可传导Na+,电池装置如右图所示,下列说法正确的是A.放电时,Na2S x被还原B.放电时,电极B为负极C.充电时,Na+从左向右移动D.充电时,阳极的电极反应为:S x2- - 2e- == x S14.向20 mL 0.1 mol·L-1的CH3COOH溶液逐滴加入0.1mol·L-1 NaOH溶液,pH变化曲线如右图所示,下列说法错误的A.在a点,溶液pH>1B.在b点,CH3COOH的Ka≈c(H+)C.在c点,c(CH3COO-) = c(Na+)=0.1 mol·L-1D.在d点,c(CH3COO-) + c(CH3COOH) = c(Na+)15.某探究小组利用反应CH3COCH3+ I2 CH3COCH2I + HI,研究反应物浓度与反应速率的关系,通过测定I2颜色消失所需的时间来确定v(I2)。

在一定温度下,测得反应物不同起始浓度下的v(I2)如下表:实验编号 1 2 3 4c(CH3COCH3) /mol·L-12.5002.5001.2502.500c(HCl)/mol·L-10.500 1.0001.0001.000c(I2)/mol·L-10.010 0.0100.0100.020v(I2)/10-6 mol·L-1·s-11.5003.0001.4983.000下列说法正确的是A.I2的起始浓度越大,反应速率越大B.该反应中HCl是催化剂,c(HCl)的改变不会影响反应速率C.实验2与实验4两组实验的实验时间相等D.v(I2)/[c(CH3COCH3)·c(HCl)]为常数二、填空题(40分)16.(20分)化学与生产、生活关系密切,请填空。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年福建省厦门市高二(下)期末数学试卷(理科)一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于()A.﹣2 B.﹣1 C.0 D.22.双曲线x2﹣=1的一个顶点到一条渐近线的距离是()A.B.C.D.3.已知随机变量X服从正态分布N(1,4),P(﹣1<X<3)=0.6826,则下列结论正确的是()A.P(X<﹣1)=0.6587 B.P(X>3)=0.1587C.P(﹣1<X<1)=0.3174 D.P(1<X<3)=0.18264.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)﹣lnx,则f′(e)等于()A.1 B.﹣1 C.e D.5.由曲线y=,直线y=x及x=3所围成的图形的面积是()A.4﹣ln3 B.8﹣ln3 C.4+ln3 D.8+ln36.三棱柱ABC﹣A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=,则异面直线AC1与B1C所成的角的大小是()A.30° B.60° C.90° D.120°7.假设有两个分类变量X和Y的2×2列联表为:对同一样本,以下数据能说明X与Y有关系的可能性最大的一组是()A.a=10,c=30 B.a=15,c=25 C.a=20,c=20 D.a=30,c=108.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是()A.54 B.36 C.27 D.249.“m<1”是“函数y=x2+在[1,+∞)单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则()A.甲一定在画画 B.甲一定在听音乐C.乙一定不看书 D.丙一定不画画11.函数f(x)=e|x|cosx的图象大致是()A. B.C.D.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值范围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)二、填空题:每小题5分,共20分.13.(2x+)n的二项式系数的和是32,则该二项展开式中x3的系数是(用数字填写答案).14.已知m∈R,p:方程+=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m ﹣3)i对应的点在第四象限.若p∧q为真,则m的取值范围是.15.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2,则线段NB的长度是.16.设函数f(x)在R上的导函数是f′(x),对∀x∈R,f′(x)<x.若f(1﹣a)﹣f(a)≤﹣a,则实数a的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:由散点图知可以用回归直线=x+来近似刻画它们之间的关系.(Ⅰ)求回归直线方程=x+;(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?参考公式: =, =﹣;R2=1﹣.18.函数f(x)=x3+ax2+bx﹣在x=2处的切线方程为x+y﹣2=0.(Ⅰ)求实数a,b的值;(Ⅱ)求函数f(x)的极值.19.如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.20.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生故障的概率分别为,,.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.(Ⅰ)求乙车间每天机器发生故障的台数的分布列;(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.21.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为﹣.(Ⅰ)求点D的轨迹C2方程;(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q 两点.求△POA1与△QOA2的面积之和的最大值.22.已知函数f(x)=lnx﹣cx2(c∈R).(Ⅰ)讨论函数f(x)的零点个数;(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.2015-2016学年福建省厦门市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于()A.﹣2 B.﹣1 C.0 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘法运算化简复数z,又已知复数z是纯虚数,得到,求解即可得答案.【解答】解:复数z=(1+i)(a+2i)=(a﹣2)+(a+2)i,又∵复数z是纯虚数,∴,解得a=2.故选:D.2.双曲线x2﹣=1的一个顶点到一条渐近线的距离是()A.B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线的方程求出一个顶点和渐近线,利用点到直线的距离公式进行求解即可.【解答】解:由双曲线的方程得a=1,b=,双曲线的渐近线为y=x,设双曲线的一个顶点为A(1,0),渐近线为y=x,即x﹣y=0,则顶点到一条渐近线的距离d==,故选:C.3.已知随机变量X服从正态分布N(1,4),P(﹣1<X<3)=0.6826,则下列结论正确的是()A.P(X<﹣1)=0.6587 B.P(X>3)=0.1587C.P(﹣1<X<1)=0.3174 D.P(1<X<3)=0.1826【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,由P(﹣1<X<3)可求出P(X>3).【解答】解:∵随机变量X服从正态分布N(1,4),∴曲线关于x=1对称,∵P(﹣1<X<3)=0.6826,∴P(X>3)=0.5﹣0.3413=0.1587.故选:B.4.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)﹣lnx,则f′(e)等于()A.1 B.﹣1 C.e D.【考点】导数的运算.【分析】求函数的导数,直接令x=e进行求解即可.【解答】解:∵f(x)=2xf′(e)﹣lnx,∴函数的导数f′(x)=2f′(e)﹣,令x=e,则f′(e)=2f′(e)﹣,即f′(e)=,故选:D5.由曲线y=,直线y=x及x=3所围成的图形的面积是()A.4﹣ln3 B.8﹣ln3 C.4+ln3 D.8+ln3【考点】定积分在求面积中的应用.【分析】作出对应的图象,确定积分的上限和下限,利用积分的应用求面积即可.【解答】解:作出对应的图象,由得x=1,则阴影部分的面积S=∫(x﹣)dx=(x2﹣lnx)|=(﹣ln3)﹣(﹣ln1)=4﹣ln3,故选:A6.三棱柱ABC﹣A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=,则异面直线AC1与B1C所成的角的大小是()A.30° B.60° C.90° D.120°【考点】异面直线及其所成的角.【分析】取中点连接,由异面直线所成角的概念得到异面直线AC1与B1C所成的角,求解直角三角形得到三角形边长,再由余弦定理得答案.【解答】解:如图,分别取AC、B1C1、CC1、BC的中点E、F、G、K,连接EF、EG、FG、EK、FK,EK=,FK=,则EF=,EG=,.在△EFG中,cos∠EGF=.∴异面直线AC1与B1C所成的角的大小是90°.故选:C.7.假设有两个分类变量X和Y的2×2列联表为:对同一样本,以下数据能说明X与Y有关系的可能性最大的一组是()A.a=10,c=30 B.a=15,c=25 C.a=20,c=20 D.a=30,c=10【考点】独立性检验的应用.【分析】当ad与bc差距越大,两个变量有关的可能性就越大,检验四个选项中所给的ad与bc的差距,前三个选项都一样,只有第四个选项差距大,得到结果.【解答】解:根据观测值求解的公式可以知道,当ad与bc差距越大,两个变量有关的可能性就越大,选项A,|ad﹣bc|=200,选项B,|ad﹣bc|=500,选项C,|ad﹣bc|=800,选项D,|ad﹣bc|=1400,故选D8.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是()A.54 B.36 C.27 D.24【考点】排列、组合及简单计数问题.【分析】间接法:先求所有可能分派方法,先求所有可能的分派方法,甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,共有34=81种情况,甲、乙同去一个景点有33=27种情况,相减可得结论.【解答】解:间接法:先求所有可能的分派方法,甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,共有34=81种情况,甲、乙同去一个景点有33=27种情况,∴不同的选择方案的种数是81﹣27=54.故选:A9.“m<1”是“函数y=x2+在[1,+∞)单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】充要条件;函数的单调性与导数的关系.【分析】若函数y=x2+在[1,+∞)单调递增,则y′=2x﹣≥0在[1,+∞)上恒成立,求出m的范围,进而根据充要条件的定义,可得答案.【解答】解:∵函数y=x2+在[1,+∞)单调递增,∴y′=2x﹣≥0在[1,+∞)上恒成立,即m≤2,故“m<1”是“函数y=x2+在[1,+∞)单调递增”的充分不必要条件,故选:A.10.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则()A.甲一定在画画 B.甲一定在听音乐C.乙一定不看书 D.丙一定不画画【考点】进行简单的合情推理.【分析】由①开始,进行逐个判断,采用排除法,即可得到答案.【解答】解:由①可知:甲可能在画画或在听音乐,由③可知,乙在看书,丙在画画,甲只能在听音乐,由②丙可以听音乐或看书,乙只能看书或画画,结合①③可知:甲听音乐,乙画画,丙看书,所以甲一定在听音乐,故选:B.11.函数f(x)=e|x|cosx的图象大致是()A.B.C.D.【考点】函数的图象.【分析】根据函数的奇偶性,排除B;根据函数在(0,)上,为增函数,在(,)上,为减函数,排除A;再根据在(,)上,为增函数,f()>f(),排除C,可得结论.【解答】解:由于函数函数f(x)=e|x|cosx为偶函数,它的图象关于y轴对称,故排除B.当x>0时,f(x)=e x•cosx,f′(x)=e x•cosx﹣e x•sinx=2x(cosx﹣sinx),故函数在(0,)上,f′(x)>0,f(x)为增函数;在(,)上,f′(x)<0,f(x)为减函数,故排除A.在(,)上,f′(x)>0,f(x)为增函数,且f()>f(),故排除C,只有D满足条件,故选:D.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值范围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)【考点】双曲线的简单性质.【分析】利用待定系数法设出双曲线和椭圆的方程,根据双曲线和椭圆的定义得到a1=4+c,a2=4﹣c,然后利用离心率的公式进行转化求解即可.【解答】解:设椭圆与双曲线的标准方程分别为:,.(a1,a2,b1,b2>0,a1>b1)∵△PF1F2是以PF1为底边的等腰三角形,|PF1|=8,∴8+2c=2a1,8﹣2c=2a2,即有a1=4+c,a2=4﹣c,(c<4),再由三角形的两边之和大于第三边,可得2c+2c>8,可得c>2,即有2<c<4.由离心率公式可得+====,∵2<c<4,∴<<,则2<<4,即2<+<4,故+的取值范围是(2,4),故选:C二、填空题:每小题5分,共20分.13.(2x+)n的二项式系数的和是32,则该二项展开式中x3的系数是80 (用数字填写答案).【考点】二项式系数的性质.【分析】由题意可得:2n=32,解得n.再利用其通项公式即可得出.【解答】解:由题意可得:2n=32,解得n=5.∴的通项公式T r+1=(2x)5﹣r=25﹣r x5﹣2r,令5﹣2r=3,解得r=1.∴该二项展开式中x3的系数=24=80.故答案为:80.14.已知m∈R,p:方程+=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m﹣3)i对应的点在第四象限.若p∧q为真,则m的取值范围是(2,3).【考点】复合命题的真假.【分析】利用椭圆的标准方程、复数的几何意义、复合命题的真假的判定方法即可得出.【解答】解:p:方程+=1表示焦点在y轴上的椭圆,则m>2;q:在复平面内,复数z=1+(m﹣3)i对应的点在第四象限,∴m﹣3<0,解得m<3.∵p∧q为真,∴p与q都为真命题.∴2<m<3.则m的取值范围是(2,3).故答案为:(2,3).15.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2,则线段NB的长度是 3 .【考点】抛物线的简单性质.【分析】求出N,B的坐标,利用两点间的距离公式,即可得出结论.【解答】解:由题意,A(3,2),N(0,2),以点F为圆心,1为半径的圆的方程为(x﹣1)2+y2=1,直线AF的方程为y=(x﹣1)联立直线与圆的方程可得(x﹣1)2=,∴x=或,∴B(,),∴|NB|==3故答案为:3.16.设函数f(x)在R上的导函数是f′(x),对∀x∈R,f′(x)<x.若f(1﹣a)﹣f(a)≤﹣a,则实数a的取值范围是a≤.【考点】利用导数研究函数的单调性.【分析】令g(x)=f(x)﹣x2,求出g(x)的单调性,问题等价于f(1﹣a)﹣(1﹣a)2≤f(a)﹣a2,根据函数的单调性得到关于a的不等式,解出即可.【解答】解:令g(x)=f(x)﹣x2,则g′(x)=f′(x)﹣x,而f′(x)<x,∴g′(x)=f′(x)﹣x<0,故函数g(x)在R递减,∴f(1﹣a)﹣f(a)≤﹣a等价于f(1﹣a)﹣(1﹣a)2≤f(a)﹣a2,即g(1﹣a)≤g(a),∴1﹣a≥a,解得a≤,故答案为:a≤.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:由散点图知可以用回归直线=x+来近似刻画它们之间的关系.(Ⅰ)求回归直线方程=x+;(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?参考公式: =, =﹣;R2=1﹣.【考点】线性回归方程.【分析】(Ⅰ)由数据求得样本中心点,利用最小二乘法求得系数,由线性回归方程过样本中心点,代入即可求得,即可求得回归直线方程;(Ⅱ)分别求得1, 2…,5,根据相关指数公式求得相关指数R2,即可求得广告费用解释了百分之多少的销售量变化.【解答】解:(Ⅰ) =×(2+3+4+5+6)=5, =×(5+7+8+9+11)=11,==1.4,=﹣=8﹣1.4×4=2.4,∴回归直线方程=1.4x+2.4;(Ⅱ)由(Ⅰ)可知:=1.4×2+2.4=5.2;1=1.4×3+2.4=6.6;2=1.4×4+2.4=8;3=1.4×5+2.4=9.4;4=1.4×6+2.4=10.8;5R2=1﹣=0.98,∴广告费用解释了98%的销售量变化.18.函数f(x)=x3+ax2+bx﹣在x=2处的切线方程为x+y﹣2=0.(Ⅰ)求实数a,b的值;(Ⅱ)求函数f(x)的极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求导数得到f′(x)=x2+2ax+b,这样根据函数在切点处导数和切线斜率的关系以及切点在函数图象上便可得出关于a,b的方程组,解出a,b即可;(Ⅱ)上面已求出a,b,从而可以得出导函数f′(x),这样判断导数的符号,从而便可得出函数f(x)的极值.【解答】解:(Ⅰ)f′(x)=x2+2ax+b;由题意可得,切点为(2,0),切线斜率为k=﹣1;∴;解得;(Ⅱ)由上面得,f′(x)=x2﹣4x+3=(x﹣1)(x﹣3);∴x<1时,f′(x)>0,1<x<3时,f′(x)<0,x>3时,f′(x)>0;∴x=1时,f(x)取极大值,x=3时,f(x)取极小值.19.如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【分析】(I)取AB中点E,连PE、CE,由等腰三角形的性质可得PE⊥AB.再利用勾股定理的逆定理可得PE⊥CE.利用线面垂直的判定定理可得PE⊥平面ABCD.再利用面面垂直的判定定理即可证明.(II)建立如图所示的空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.【解答】(Ⅰ)证明:如图1所示,取AB中点E,连PE、CE.则PE是等腰△PAB的底边上的中线,∴PE⊥AB.∵PE=1,CE=,PC=2,即PE2+CE2=PC2.由勾股定理的逆定理可得,PE⊥CE.又∵AB⊂平面ABCD,CE⊂平面ABCD,且AB∩CE=E,∴PE⊥平面ABCD.而PE⊂平面PAB,∴平面PAB⊥平面ABCD.(Ⅱ)以AB中点E为坐标原点,EC所在直线为x轴,EB所在直线为y轴,EP所在直线为z 轴,建立如图所示的空间直角坐标系.则A(0,﹣1,0),C(,0,0),D(,﹣2,0),P(0,0,1),=(,1,0),=(,0,﹣1),=(0,2,0).设是平面PAC的一个法向量,则,即.取x1=1,可得,.设是平面PCD的一个法向量,则,即.取x2=1,可得,.故,即二面角A﹣PC﹣D的平面角的余弦值是.20.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生故障的概率分别为,,.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元. (Ⅰ)求乙车间每天机器发生故障的台数的分布列;(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)乙车间每天机器发生故障的台数ξ,可以取0,1,2,3,求出相应的概率,即可求乙车间每天机器发生故障的台数的分布列;(Ⅱ)设甲车间每台机器每天发生故障的台数η,获得的利润为X ,则η~B (3,),求出甲乙的期望,比较,即可得出结论.【解答】解:(Ⅰ)乙车间每天机器发生故障的台数ξ,可以取0,1,2,3,P (ξ=0)=(1﹣)×(1﹣)×(1﹣)=,P (ξ=1)=C 21××((1﹣)×(1﹣)2+(1﹣)×=,P (ξ=2)=C 21××((1﹣)×+()2×(1﹣)=,P (ξ=3)=××=,∴乙车间每天机器发生故障的台数ξ的分布列;(Ⅱ)设甲车间每台机器每天发生故障的台数η,获得的利润为X ,则η~B (3,),P (η=k )=(k=0,1,2,3),∴EX=2P (η=0)+1×P (η=1)+0×P (η=2)﹣3×P (η=3)=,由(Ⅰ)得EY=2P (ξ=0)+1×P (ξ=1)+0×P (ξ=2)﹣3×P (ξ=3)=,∵EX <EY ,∴甲车间停产比较合理.21.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为﹣.(Ⅰ)求点D的轨迹C2方程;(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q 两点.求△POA1与△QOA2的面积之和的最大值.【考点】直线与圆的位置关系.【分析】(Ⅰ)设点D的坐标为(x,y),求出A1、A2的坐标,由题意和斜率公式列出方程化简,可得点D的轨迹C2的方程;(Ⅱ)设P(x1,y1),Q(x2,y2),联立直线方程和C2的方程消去y,由条件可得△=0并化简,联立直线l与圆C1的方程消去x,利用韦达定理写出表达式,由图象和三角形的面积公式表示出,化简后利用基本不等式求出△POA1与△QOA2的面积之和的最大值.【解答】解:(Ⅰ)设点D的坐标为(x,y),∵圆C1:x2+y2=4与x轴左右交点分别为点A1(﹣2,0),A2(2,0),且l1与l2斜率的乘积为﹣,∴,化简得,∴点D的轨迹C2方程是;(Ⅱ)设P(x1,y1),Q(x2,y2),联立得,(1+4k2)x2+8kmx+4m2﹣4=0,由题意得,△=64k2+16﹣16m2=0,化简得,m2=4k2+1,联立消去x得,(1+k2)y2﹣2my+1=0,∴△=4m2﹣4(1+k2)=12k2>0,y1+y2=,>0,则y1,y2同号,由r=2得,+=+====≤=,当且仅当3=1+4k2,即k=时取等号,∴的最大值是.22.已知函数f(x)=lnx﹣cx2(c∈R).(Ⅰ)讨论函数f(x)的零点个数;(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】(Ⅰ)求出函数的定义域,函数的导数,通过a≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增;a>0时,求出极值点,然后通过导数的符号,判断函数的单调性,从而求出函数的零点的个数;(Ⅱ)设x1>x2,求出关于c的表达式,利用分析法证明x1x2>e,转化为证明ln>(x1>x2>0),令=t,则t>1,设g(t)=lnt﹣=lnt+﹣1(t>1),利用函数的导数求解函数的最小值利用单调性证明即可.【解答】解:(Ⅰ)定义域为(0,+∞),f′(x)=﹣2cx=,当c≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增,x→0时,f(x)→﹣∞,x→+∞时,f(x)→+∞,f(x)有且只有1个零点;当c>0时,由f'(x)=0,得x=,当0<x<时,f'(x)>0,f(x)单调递增,当x>时,f'(x)<0,f(x)单调递减,∴f(x)最大值=f()=ln﹣,令ln﹣>0,解得:c>,∴c>时,f(x)有2个零点,c=时,f(x)有1个零点,0<c<时,f(x)没有零点,综上:c≤0或c=时,f(x)有1个零点,0<c<时,f(x)没有零点,c>时,f(x)有2个零点.(Ⅱ)证明:设x1>x2,∵lnx1﹣cx12=0,lnx2﹣cx22=0,∴lnx1+lnx2=cx12+cx22,lnx1﹣lnx2=cx12﹣cx22,则c=,欲证明x1x2>e,即证lnx1+lnx2>1,因为lnx1+lnx2=c(x12+x22),∴即证c>,∴原命题等价于证明>,即证:ln>(x1>x2>0),令=t,则t>1,设g(t)=lnt﹣=lnt+﹣1(t>1),∴g′(t)=≥0,∴g(t)在(1,+∞)单调递增,又因为g(1)=0,∴g(t)>g(1)=0,∴lnt>,所以x1x2>e.2016年8月10日。

相关文档
最新文档