精讲手册 专题六 综合计算题
小学数学几何精讲精析专题六 立体图形-类型二 长方体 附详细解析
专题六立体图形类型二长方体【知识讲解】1. 长方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同,有12条棱,相对的棱平行且相等,有8个顶点。
2. 长,宽,高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3. 长方体的棱长总和=(长+宽+高)×4用字母表示:(a+b+h) ×44. 长方体的表面积:长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示:S=(ab+ac+bc)×25.长方体的体积:长方体的体积=长×宽×高或底面积×高用字母表示:V=abc或Sh【典例精讲】用27米长的钢材焊成一个长方体框架,它的长、宽、高的比是4:3:2,在这个框架外覆盖一层塑料膜,至少要多少平方米的塑料膜?【答案】29.25平方米【解析】本题考查的是有关比例和长方体表面积的问题。
要求长方体的表面积就得根据题中的比例关系先求出它的长、宽、高,然后再根据长方体表面积的计算方法求出最后结果。
长方体的棱长和=4×长+4×宽+4×高,长方体的表面积=(长×宽+长×高+宽×高)×2。
解:设每份为x,那么长、宽、高分别为4x、3x、2x,则16x+12x+8x=2736x=27x=27÷36x=0.75则长=3米,宽=2.25米,高=1.5米需要的塑料膜为:(3×2.25+3×1.5+2.25×1.5)×2=29.25(平方米)答:至少需要29.25平方米的塑料膜。
【巩固练习】一、选择题。
1.一个长方体长是8厘米,宽和高都是5厘米,这个长方体有()个面是长方形。
A.2 B.4 C.62.下列图形中,不能表示长方体平面展开图的是()。
3.一个长方体的长、宽、高都扩大2倍,它的体积扩大()倍。
数学达人的必修课六年级数学下册综合算式专项练习题
数学达人的必修课六年级数学下册综合算式专项练习题一、计算题(共10小题,每小题2分,满分20分)1. 已知 a = 5,b = 7,c = 3,计算 a + b × c 的值。
2. 小明去商店买了3个苹果,每个苹果的价格是4元。
他还买了2个橙子,每个橙子的价格是5元。
请问小明一共花了多少钱?3. 2.7 + ? = 7.8,请把问号处的数填写正确。
4. 已知一根绳子的长度是6米,小明剪掉了他的长度的9分之一。
请问新的绳子长度是多少米?5. 甲、乙、丙三个数的和是17,知甲为9,乙为多少?6. 一个数乘以2再加上3,得到结果11,这个数是多少?7. 如果15 ÷ ? = 3,请把问号处的数填写正确。
8. 甲乘以乙等于30,已知乙等于5,求甲的值。
9. 一个数乘以7得到56,这个数是多少?10. 12 ÷ 3 = ?二、填空题(共5小题,每小题2分,满分10分)11. 18 ÷(? + 3)= 312. 4 × 7 = 28 ÷ ?13. ? − 8 = 9 − 414. (5 + ?) × 6 = 4815. 20 ÷ ? = 2三、应用题(共5小题,每小题4分,满分20分)16. 根据已知条件解方程:12 + x = 2317. 小明有40元,他买了一本书花了15元,还买了一支笔花了5元,还剩下多少钱?18. 一个水池里有14立方米的水,每天放水进去3立方米,经过多少天水池满了?19. 若一个正方形的边长为8厘米,求它的周长和面积各是多少?20. 甲、乙、丙三位同学比赛,甲拿了85分,乙比甲多拿了12分,丙比乙再多拿了8分,丙最后得了多少分?四、解答题(满分50分)21. 小明和小红一起做作业,他们两个人一共用了2小时45分钟完成了作业。
如果小明用的时间是小红的2倍,求小明和小红各自用了多长时间完成作业。
22. 若正方形的面积是36平方米,求它的周长是多长?23. 求解方程:3x + 4 = 1624. 有一包糖果,小明拿走了其中的4颗,小红拿走了剩下的一半,最后还剩下6颗糖果,请问原来这包糖果有多少颗?25. 小明家离学校有8公里,他骑自行车一小时可以到学校。
专题06 自由落体与竖直上抛(知识精讲)(原卷版)
专题六 自由落体与竖直上抛 知识精讲一 知识结构图二 学法指导1.通过对自由落体运动定义的学习,理解物体做自由落体的条件,体会自由落体运动这个“理想模型2.运用分段法和整体法处理竖直上抛运动‘3.根据位移之间的关系解决竖直方向上两个物体相遇的问题’三 知识点贯通考点1 自由落体运动和竖直上抛运动1.自由落体运动(1)定义:物体只在重力作用下从静止开始下落的运动。
(2)特点:v 0=0,a =g 。
①速度公式:v =gt 。
②位移公式:h =12gt 2。
③速度位移关系式:v 2=2gh 。
2.竖直上抛运动(1)定义:将物体以初速度v 0竖直向上抛出后只在重力作用下的运动。
(2)特点:取竖直向上为正方向,则初速度为正值,加速度为负值。
(为方便计算,本书中g 表示重力加速度的大小)①速度公式:v =v 0-gt 。
②位移公式:h =v 0t -12gt 2。
③速度位移关系式:v 2-v 02=-2gh 。
④上升的最大高度:H =v 022g。
⑤上升到最高点所用的时间:t =v 0g。
例题1 一小石块从空中a 点自由落下,先后经过b 点和c 点,不计空气阻力。
经过b 点时速度为v ,经过c 点时速度为3v ,则ab 段与ac 段位移之比为( )A .1∶3B .1∶5C .1∶8D .1∶9例题2 .如图所示,小球从竖直砖墙某位置静止释放,用频闪照相机在同一底片上多次曝光,得到了图中1、2、3、4、5、…所示小球运动过程中每次曝光的位置。
已知连续两次曝光的时间间隔均为T ,每块砖的厚度均为d 。
根据图中的信息,下列判断正确的是( )A .位置“1”是小球释放的初始位置B .小球做匀加速直线运动C .小球下落的加速度为d T 2D .小球在位置“3”的速度为7d 2T考点2 自由落体和竖直上抛运动的研究方法1.竖直上抛运动的两种研究方法2.竖直上抛运动的主要特性例题3 如图所示木杆长5 m ,上端固定在某一点,由静止放开后让它自由落下(不计空气阻力),木杆通过悬点正下方20 m 处圆筒AB ,圆筒AB 长为5 m ,取g =10 m/s 2,求:(1)木杆通过圆筒的上端A 所用的时间t 1;(2)木杆通过圆筒所用的时间t 2。
专题06《数的应用—典型应用题(一)》(解析板)2021年小升初数学总复习专题汇编精讲精练(通用版)
2021年小升初数学总复习专题汇编精讲精练(通用版)专题06 数的应用—典型应用题(一)典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。
数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。
求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。
此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为,汽车从乙地到甲地速度为 60 千米,所用的时间是,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。
又称“单归一。
”两次归一问题,用两步运算就能求出“单一量”的归一问题。
又称“双归一。
”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
(最新)2020年中考数学复习 专题6 四边形与三角形的综合(精讲)试题
专题六四边形与三角形的综合毕节中考备考攻略纵观近4年毕节中考数学试卷,四边形与三角形的综合是每年的必考考点,其中2015年第24题综合考查平行四边形和直角三角形;2016年第25题综合考查菱形和三角形全等;2017年第24题综合考查平行四边形与三角形相似、解直角三角形;2018年第24题综合考查平行四边形、三角形和菱形.预计2019年将继续综合考查四边形与三角形.熟练掌握特殊四边形的性质与判定、特殊三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质,掌握三角形中位线和梯形中位线性质的推导和应用,会画出四边形全等变换后的图形.解决问题时必须充分利用几何图形的性质及在题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用各种数学方法.中考重难点突破四边形与特殊三角形例1 如图,在四边形ABCD 中,AB ∥DC,AB =AD,对角线AC,BD 交于点O,AC 平分∠BAD ,过点C 作CE⊥AB 交AB 的延长线于点E,连接OE.(1)求证:四边形ABCD 是菱形; (2)若AB =5,BD =2,求OE 的长.【解析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DCA ,得出CD =AD =AB,即可得出结论; (2)先判断出OE =OA =OC,再求出OB =1,利用勾股定理求出OA,即可得出结果. 【答案】(1)证明:∵AB∥CD ,∴∠CAB =∠ACD. ∵AC 平分∠BAD ,∴∠CAB =∠CAD , ∴∠CAD =∠ACD ,∴AD =CD. 又∵AD=AB,∴AB =CD.又∵AB∥CD ,∴四边形ABCD 是平行四边形. 又∵AB=AD,∴四边形ABCD 是菱形; (2)解:∵四边形ABCD 是菱形,∴AC ⊥BD,OA =OC =12AC,OB =OD =12BD =1.在Rt △AOB 中,∠AOB =90°,∴OA =AB 2-OB 2=2. ∵CE ⊥AB,∴∠AEC =90°. 在Rt △AEC 中,O 为AC 中点, ∴OE =12AC =OA =2.四边形与三角形全等例2 (2018·张家界中考)在矩形ABCD 中,点E 在BC 上,AE =AD,DF ⊥AE,垂足为点F. (1)求证:DF =AB ;(2)若∠FDC=30°,且AB =4,求AD.【解析】(1)利用“AAS ”证△ADF≌△EAB 即可得证;(2)由∠ADF+∠FDC=90°,∠DAF +∠ADF=90°得∠FDC=∠DAF=30°,据此知AD =2DF,根据DF =AB 可得答案.【答案】(1)证明:在矩形ABCD 中,AD ∥BC, ∴∠AEB =∠DAF.又∵DF⊥AE ,∴∠DFA =90°,∴∠DFA =∠B. 又∵AD=EA,∴△ADF ≌△EAB,∴DF =AB ;(2)解:∵∠ADF+∠FDC =90°,∠DAF +∠ADF=90°,∴∠FDC =∠DAF=30°,∴AD =2DF.∵DF =AB =4,∴AD =2AB =8.四边形与三角形相似例3 (2018·资阳中考)已知:如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC,且MD =CM,DE ⊥AB 于点E,连接AD,CD.(1)求证:△MED∽△BCA; (2)求证:△AMD≌△CMD;(3)设△MDE 的面积为S 1,四边形BCMD 的面积为S 2,当S 2=175S 1时,求cos ∠ABC 的值.【解析】(1)易证∠DME=∠CBA ,∠ACB =∠DE M =90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M 是斜边AB 的中点,可知BM =CM =AM,又由MD∥BC 可证明∠AMD=∠CMD ,从而可利用全等三角形的判定方法证明△AMD≌△CMD;(3)易证DM =12AB,由(1)可知△MED∽△BCA ,所以S 1S △ACB =⎝ ⎛⎭⎪⎫DM AB 2=14,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2-S △MCB -S 1=25S 1,由于S 1S △EBD =ME EB ,从而可知ME BE =52,设ME =5x,EB =2x,从而用x 表示出AB,BC,最后根据锐角三角函数的定义即可求出答案.【答案】(1)证明:∵MD∥BC ,∴∠DME =∠CBA. ∵∠ACB =∠DEM=90°,∴△MED ∽△BCA ; (2)证明:∵∠ACB=90°,点M 是斜边AB 的中点, ∴BM=CM =AM,∴∠MCB =∠MBC. ∵∠DMB =∠MBC , ∴∠MCB =∠DMB=∠MBC. ∵MD ∥BC,∴∠CMD =180°-∠MCB. 又∵∠AMD=180°-∠DMB , ∴∠AMD =∠CMD. 在△AMD 与△CMD 中, ⎩⎪⎨⎪⎧MD =MD ,∠AMD =∠CMD,AM =CM ,∴△AMD ≌△CMD(SAS );(3)解:∵DM=CM,∴AM =CM =DM =BM, ∴DM =12AB.由(1)可知△MED∽△BCA ,∴S 1S △ACB =⎝ ⎛⎭⎪⎫DM AB 2=14,∴S △ACB =4S 1. ∵CM 是△ACB 的中线,∴S △MCB =12S △ACB =2S 1,∴S △EBD =S 2-S △MCB -S 1=25S 1,∴S 1S △EBD =ME EB ,∴S 125S 1=ME EB ,∴ME EB =52. 设ME =5x,EB =2x,则BM =7x, ∴AB =2BM =14x. ∵MD AB =ME BC =12,∴BC =10x, ∴cos ∠ABC=BC AB =10x 14x =57.1.(2018·贺州中考)如图,在△ABC 中,∠ACB =90°,O,D 分别是边AC,AB 的中点,过点C 作CE ∥AB 交DO 的延长线于点E,连接AE.(1)求证:四边形AECD 是菱形;(2)若四边形AECD 的面积为24,tan ∠BAC =34,求BC 的长.(1)证明:∵点O 是AC 的中点,∴OA =OC.∵CE ∥AB,∴∠DAO =∠ECO. 又∵∠AOD=∠COE ,∴△AOD ≌△COE(ASA ),∴AD =CE, ∴四边形AECD 是平行四边形. 又∵CD 是Rt △ABC 斜边AB 上的中线, ∴CD =AD =12AB,∴四边形AECD 是菱形;(2)由(1)知,四边形AECD 是菱形,∴AC ⊥ED.在Rt △AOD 中,tan ∠DAO =OD OA =tan ∠BAC =34,可设OD =3x,OA =4x, 则ED =2OD =6x,AC =2OA =8x.由题意可得12·6x·8x=24,∴x =1,∴OD =3.∵O,D 分别是AC,AB 的中点, ∴OD 是△ABC 的中位线, ∴BC =2OD =6.2.(2018·盐城中考)在正方形ABCD 中,对角线BD 所在的直线上有两点E,F 满足BE =DF,连接AE,AF,CE,CF,如图.(1)求证:△AB E≌△ADF;(2)试判断四边形AECF 的形状,并说明理由. (1)证明:∵四边形ABCD 是正方形,∴AB =AD, ∴∠ABD =∠ADB ,∴∠ABE =∠ADF. 在△ABE 与△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADF,BE =DF ,∴△ABE ≌△ADF(SAS ); (2)解:四边形AECF 是菱形. 理由:连接AC,交BD 于点O. ∵四边形ABCD 是正方形, ∴OA =OC,OB =OD,AC ⊥EF, ∴OB +BE =OD +DF,即OE =OF. ∵OA =OC,OE =OF,∴四边形AECF 是平行四边形, 又∵AC⊥EF ,∴四边形AECF 是菱形.3.(2018·湖州中考) 已知在Rt △ABC 中,∠BAC =90°,AB ≥AC,D,E 分别为AC,BC 边上的点(不包括端点),且DC BE =ACBC=m,连接AE,过点D 作DM ⊥AE,垂足为点M,延长DM 交AB 于点F. (1)如图1,过点E 作EH⊥AB 于点H,连接DH.①求证:四边形DHEC 是平行四边形; ②若m =22,求证:AE =DF ; (2)如图2,若m =35,求DFAE的值.(1)证明:①∵EH⊥AB ,∠BAC =90°, ∴EH ∥CA,∴△BHE ∽△BAC,∴BE BC =HEAC .∵DC BE =AC BC ,∴BE BC =DC AC ,∴HE AC =DC AC, ∴HE =DC.∵EH ∥DC,∴四边形DHEC 是平行四边形; ②∵AC BC =22,∠BAC =90°,∴AC =AB.∵DC BE =22,HE =DC,∴HE BE =22. 又∵∠BHE=90°,∴BH =HE. ∵HE =DC,∴BH =CD,∴AH =AD. ∵DM ⊥AE,EH ⊥AB, ∴∠EHA =∠AMF=90°,∴∠HAE +∠HEA=∠HAE+∠AFM=90°, ∴∠HEA =∠AFD.∵∠EHA =∠FAD=90°,∴△HEA ≌△AFD,∴AE =DF ; (2)解:过点E 作EG⊥AB 于点G.∵CA ⊥AB,∴EG ∥CA,∴△EGB ∽△CAB, ∴EG CA =BE BC ,∴EG BE =CA BC =35. ∵CD BE =35,∴EG =CD. 设EG =CD =3x,AC =3y,则BE =5x,BC =5y, ∴BG =4x,AB =4y. ∵∠EGA =∠AMF=90°, ∴∠GEA +∠EAG=∠EAG+∠AFM ,∴∠AFM=∠AEG.∵∠FAD=∠EGA=90°,∴△FAD∽△EGA,∴DFAE=ADAG=3y-3x4y-4x=34.毕节中考专题过关 1.(2018·乌鲁木齐中考)如图,在四边形ABCD 中,∠BAC =90°,E 是BC 的中点,AD ∥BC,AE ∥DC,EF ⊥CD 于点F.(1)求证:四边形AECD 是菱形;(2)若AB =6,BC =10,求EF 的长.(1)证明:∵AD∥BC ,AE ∥DC,∴四边形AECD 是平行四边形.∵∠BAC =90°,E 是BC 的中点,∴AE =CE =12BC,∴四边形AECD 是菱形;(2)解:过A 作AH⊥BC 于点H.∵∠BAC =90°,AB =6,BC =10,∴AC =102-62=8.∵S △ABC =12BC·AH=12AB·AC ,∴AH =6×810=245.∵点E 是BC 的中点,BC =10,四边形AECD 是菱形,∴CD =CE =5.∵S ▱AECD =CE·A H =CD·EF ,∴EF =AH =245.2.(2018·青岛中考)已知:如图,▱ABCD 的对角线AC 与BD 相交于点E,点G 为AD 的中点,连接CG,CG 的延长线交BA 的延长线于点F,连接FD.(1)求证:AB =AF ;(2)若AG =AB,∠BCD =120°,判断四边形ACDF 的形状,并证明你的结论.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD,AB =CD,∴∠AFG =∠DCG.又∵GA=GD,∠AGF =∠CGD ,∴△AGF ≌△DGC,∴AF =CD.∴AB =AF ;(2)解:四边形ACDF 是矩形.证明:∵AF=CD,AF ∥CD,∴四边形ACDF 是平行四边形.∵四边形ABCD 是平行四边形,∴∠BAD =∠BCD=120°.∴∠FAG =60°.∵AB =AG =AF,∴△AFG 是等边三角形,∴AG =GF.∵四边形ACDF 是平行四边形,∴FG =CG,AG =DG.∴AD=CF.∴四边形ACDF 是矩形.3.已知:如图,四边形ABCD 中,AD ∥BC,AD =CD,E 是对角线BD 上一点,且EA =EC.(1)求证:四边形ABCD 是菱形;(2)如果BE =BC,且∠CBE∶∠BCE=2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE,∴∠ADE =∠CDE.∵AD ∥BC,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD.∵AD =CD,∴BC =AD,∴四边形ABCD 为平行四边形.∵AD =CD,∴四边形ABCD 是菱形;(2)∵BE=BC,∴∠BCE =∠BEC.∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°. ∵四边形ABCD 是菱形,∴∠ABE =∠CBE=45°,∴∠ABC =90°,∴四边形ABCD 是正方形.4.(2018·眉山中考)如图①,在四边形ABCD 中,AC ⊥BD 于点E,AB =AC =BD,点M 为BC 的中点,N 为线段AM 上的点,且MB =MN.(1)求证:BN 平分∠ABE;(2)若BD =1,连接DN,当四边形DNBC 为平行四边形时,求线段BC 的长;(3)如图②,若点F 为AB 的中点,连接FN,FM,求证:△MFN∽△BDC.(1)证明:∵AB=AC,∴∠ABC =∠ACB.∵M 为BC 的中点,∴AM ⊥BC.在Rt △ABM 中,∠MAB +∠ABC=90°.在Rt △CBE 中,∠EBC +∠ACB=90°,∴∠MAB =∠EBC.又∵MB =MN,∴△MBN 为等腰直角三角形,∴∠MNB =∠MBN=45°,∴∠EBC +∠NBE=45°,∠MAB +∠ABN=∠MNB=45°,∴∠NBE =∠ABN ,即BN 平分∠ABE;(2)解:设BM =CM =MN =a.当四边形DNBC 是平行四边形时,DN =BC =2a.在△ABN 和△DBN 中,⎩⎪⎨⎪⎧AB =DB ,∠NBD =∠NBA,BN =BN ,∴△ABN ≌△DBN(SAS ),∴AN =DN =2a.在Rt △ABM 中,由AM 2+BM 2=AB 2,得(2a +a)2+a 2=1,解得a =±1010(负值舍去),∴BC =2a =105;(3)证明:在Rt △MAB 中,F 是AB 的中点,∴MF =AF =BF,∴∠MAB =∠FMN.又∵∠MAB=∠CBD ,∴∠FMN =∠DBC. ∵MFAB =MNBC =12,∴MF BD =MN BC =12,∴△MFN ∽△BDC.5.(2018·枣庄中考)如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G,连接DG.(1)求证:四边形EFDG 是菱形;(2)探究线段EG,GF,AF 之间的数量关系,并说明理由;(3)若AG =6,EG =25,求BE 的长.(1)证明:∵GE∥DF ,∴∠EGF =∠DFG.由翻折的性质可知DG =EG,DF =EF,∠DGF =∠EGF ,∴∠DGF =∠DFG ,∴DG =DF,∴DG =EG =DF =EF,∴四边形EFDG 是菱形;(2)解:EG 2=12GF·AF.理由:连接DE,交AF 于点O.∵四边形EFDG 是菱形,∴GF ⊥DE,OG =OF =12GF.∵∠DOF =∠ADF=90°,∠OFD =∠DFA , ∴△DOF ∽△ADF,∴DF AF =OF DF ,即DF 2=OF·AF.∵OF =12GF,DF =EG,∴EG 2=12GF·AF;(3)解:过点G 作GH⊥DC ,垂足为点H. ∵EG 2=12GF·AF ,AG =6,EG =25,即GF 2+6GF -40=0,解得GF =4,GF =-10(舍去).∵DF =EG =25,AF =AG +GF =10, ∴AD =AF 2-DF 2=4 5.∵GH ⊥DC,AD ⊥DC,∴GH ∥AD, ∴△FGH ∽△FAD,∴GH AD =GF AF ,即GH 45=410,∴GH =855.∴BE =AD -GH =45-855=1255.。
专题六选择题专攻1.电离平衡、水解平衡及沉淀溶解平衡的分析应用-2025届高考化学二轮复习课件
4.25 ℃时,不同溶液中水电离出的c(H+)或c(OH-)与溶液中c(H+)或c(OH-)的关系
举例
由水电离出的 c(H+)/ ( mol·L-1)
说明
pH=3的HCl、 CH3COOH溶液 pH=12的NaOH、 NH3·H2O溶液 pH=3的AlCl3、FeCl3 溶液
pH=11的CH3COONa、 Na2CO3、NaHCO3溶液
pH=a+n a<pH<a+n pH=b-n
b-n<pH<b
误区三:不能正确掌握混合溶液的定性规律 常温下,pH=n(n<7)的强酸和pH=14-n的强碱溶液等体积混合,混合 溶液pH=7;pH=n(n<7)的醋酸和pH=14-n的氢氧化钠溶液等体积混合, 混合溶液pH<7;pH=n(n<7)的盐酸和pH=14-n的氨水等体积混合,混 合溶液pH>7。
溶液Ⅱ中,由B项解析可知c总(HA)=1.01 c(HA),未电离的HA可自
由穿过隔膜,故溶液Ⅰ和Ⅱ中的c(HA)相等,溶液Ⅰ和Ⅱ中c总(HA)
之比为[(104+1)c(HA)]∶[1.01c(HA)]=(104+1)∶1.01≈104,D错误。
123456
2.(2023·浙江1月选考,13)甲酸(HCOOH)是重要的化工原料。工业废水中的甲 酸及其盐,通过离子交换树脂(含固体活性成分R3N,R为烷基)因静电作用被 吸附回收,其回收率(被吸附在树脂上甲酸根离子的物质的量分数)与废水初始 pH关系如图(已知甲酸Ka=1.8×10-4),下列说法不正确的是 A.活性成分R3N在水中存在平衡:
02 真题演练
1.(2022·全国乙卷,13)常温下,一元酸HA的Ka(HA)=1.0×10-3。在某体 系中,H+与A-不能穿过隔膜,未电离的HA可自由穿过该膜(如图所示)。 设溶液中c总(HA)=c(HA)+c(A-),当达到平衡时,下列叙述正确的是 A.溶液Ⅰ中c(H+)=c(OH-)+c(A-)
15.【精品】小学数学几何精讲精析专题六 立体图形-类型一 正方体
专题六立体图形类型一正方体【知识讲解】一、正方体的认识:1. 特征:正方体有6个面,每个面都是正方形,所有的面都完全相同,有12条棱,所有的棱都相等,有8个顶点。
2. 正方体的棱长总和=棱长×12用字母表示:12a二、正方体表面积的计算1. 表面积:正方体6个面的总面积叫做它的表面积。
2. 正方体的表面积=棱长×棱长×6用字母表示:S=6a2三、正方体体积的计算1. 物体所占空间的大小叫做物体的体积。
2. 正方体的体积=棱长×棱长×棱长或底面积×高用字母表示: V= a3 或Sh【典例精讲】计算下面图形的表面积和体积。
【答案】表面积是54平方分米,体积是27立方分米.【解析】根据正方体的体积=棱长×棱长×棱长,表面积=棱长×棱长×6,列式计算即可。
解:3×3×6=54(平方分米);3×3×3=27(立方分米);答:正方体的表面积是54平方分米,体积是27立方分米。
【点评】此题主要考查正方体的表面积和体积公式及其计算。
【巩固练习】一、选择题。
1.下列图形中,()是正方体的展开图。
2.正方体的棱长扩大3倍,则体积扩大()倍。
A.2B.4C.27D.83.一个正方体每个面的面积都是9cm2,它的棱长是()cm。
A.9 B.54 C.34.一个正方体的棱长总和是96dm,它的表面积是()dm2。
A.384 B.1536 C.9516 D.5125.一个正方体的棱长是6dm,它的表面积和体积相比较,()A.体积大 B.表面积大 C.同样大 D.无法比较6.用棱长2厘米的正方体木块拼成一个较大的正方体,至少需要()块。
A.4B.8C.9D.647.把一个棱长为6分米的正方体切成棱长为2分米的小正方体,可以得到()小正方体。
A.27个 B.81个 C.9个8.如图是几个相同小正方体拼成的大正方体,由AB向C点斜切,没被切掉的小正方体有()个。
初中毕业道德与法治总复习精讲 第三篇 时事热点 直击考场 专题六 传承中华文化 弘扬建党、奥运精神
统 化 中华民族共同创造的精神家园
文
中华文化积淀着中华民族最深层的精神追求,代表着中华民族独
化 特的精神标识,为中华民族伟大复兴提供了精神动力
中国精神:以爱国主义为核心的民族精神和以改革创新
弘扬
为核心的时代精神
优秀 传统
中国精神
民族精神:以爱国主义为核心的团结统一、爱好和平、 勤劳勇敢、自强不息的精神
材料五:眼部有彩绘的铜头像、华丽的金面具、精美的牙雕、青铜 神树……2021 年 3 月 20 日“考古中国”重大项目工作进展会通报了四川 广汉三星堆遗址重要考古发现与研究成果。2019 年 11 月至 2020 年 5 月, 三星堆遗址新发现 6 座“祭祀坑”,现已出土重要文物 500 余件,在社 会上掀起了新一波“考古热”“文保热”。
4.(意义类)革命传统进教材,对革命文物保护利用、“考古热”“文 保热”有何意义?
(1)有利于继承中华优秀传统文化和社会主义先进文化。(2)有利于 继承中华民族传统美德和民族精神。(3)有利于坚定文化自信,增强人们 对中华文化的认同感。(4)有利于推动中华优秀传统文化创造性转化、创 新性发展。(5)有利于培养青少年爱党爱国情感。(6)有利于为实现中华 民族伟大复兴提供精神动力。
6.(做法类)树立文化自信,我们青少年可以做些什么? (1)继承和弘扬中华民族优秀传统文化。(2)通过课文阅读、艺术欣 赏和社会调查等方式深入了解民族文化的精粹。(3)自觉保护文化遗产。 (4)积极保护、宣传、弘扬中华民族文化。(5)学习、借鉴外来优秀文化。
角度四 加强文化交流 深化文明互鉴 【材料展示】
专题六 传承中华文化 弘扬建党、 奥运精神
弘 中华文化源远流长、博大精深
扬
中华文化具有应对挑战、与时俱进的创造力和海纳百川、有容乃
专题六:动量冲量(学生卷)
金榜题名学校2018年暑假德阳校区个性化教学名师培优精讲学科年级学生姓名授课教师上课时间课次物理高一古老师第讲动量冲量专题〖知识梳理〗动量冲量高考要求:碰撞与动量守恒动量、动量守恒定律及其应用Ⅱ动量包括用动量概念表示牛顿第二定律(含动量定理)动量定理和动量守恒定律的应用只限于一维情况动量定理Ⅱ弹性碰撞和非弹性碰撞Ⅰ知识梳理:功与冲量的比较过程量对象定义式意义性质单位说明功单个物体W F=Flcosα功是力与物体对地移动的位移的乘积标量J 都是物体运动的过程量功是能量改变的量度冲量I F=F·t冲量是力与物体运动的时间的乘积矢量N·S冲量是动量改变的量度动能、动量与速度的比较动能变化、动量变化的比较动量定理、动能定理与功能关系的比较状态量研究对象定义式单位方向性注意换算关系动能单个物体221mv E k =J 标量都是物体运动的状态量mP E mE P k k 222==动量P=mv Kg m/s 矢量速度t ∆∆=χυm /s 矢量221mv E k =状态量研究对象定义式 单位 标矢性 速度发生变化 相互关系动能变化单个物体202k 2121E υυm m t -=∆J 标量 定不为零k 2E 2p ∆≠∆m动量变化p υυm m t -=∆Kg m/s矢量可能为零三定理 对象 表达式 意义 说明 注意动量定理单个物体I 合=△P合力的冲量等于物体动量的变化冲量≠动量 状态量都是 末减初I 合>0 ,P ↑式中的位移、速度都以地球为参照系矢量式动能定理 W 总=△E k外力对物体做的总功等于物体动能的变化功≠ 能量 W 总>0,E k ↑ W 总<0,E k ↓标量式功能关系W 非=△E 机除重力和弹簧弹力做的总功等于物体机械能的变化W 非>0,E 机↑W 非<0,E 机↓守恒定律的比较〖例题解析〗1、如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止自由滑下,到达斜面底端的过程中,两个物体具有的物理量相同的是: ( ) A .重力的冲量 B .合力的冲量 C .重力的功 D .合力的功守恒定律对象条件表达式含义标矢量动量守恒系统1)F 合=0;2)F 内>>F 外 3)F x =0p 初=p 末 (从守恒角度) Δp 系=0 (从变化角度)Δp B 减=Δp A 增 (从转移角度)所有守恒定律都是能量转化过程中的守恒;时时刻刻都守恒矢量式机能守恒1)只有重力做功; 2)只有弹力做功;3)只有重力和弹簧的弹力做功;E 初=E 末 (选零势面)标量式ΔE P 减=ΔE K 增 (不选零势面)ΔE B 减=ΔE A 增 (不选零势面)能量守恒无条件E=常量,E 为各种形式的能量的总和β2、以速率v 1飞来的网球,被球拍击中后以速率v 2(v 2>v 1)反向飞出,这时网球的动能变化了△E ,则网球动量变化的大小为:( )A .122v v E +∆ B.122v v E-∆ C.21222vv E +∆ D.21222vv E -∆扩展:方向如何?方向与网球初速度方向相反3、有两个物体m 1=2kg ,m 2=3kg ,它们开始具有相同的动量,当受到阻力作用逐渐停下来,设两物体与地面间的动摩擦因数相同,则此过程中它们通过的位移之比x l ∶x 2=____________,运动时间之比为t l ∶t 2=___________。
高中数学选择性必修三 精讲精炼 6 排列与组合综合运用(精练)(含答案)
6.2.3 排列与组合的综合运用(精练)【题组一 排队型】1.(2021·湖南长沙 )一次表彰大会上,计划安排这5名优秀学生代表上台发言,这5名优秀学生分别来自高一、高二和高三三个年级,其中高一、高二年级各2名,高三年级1名.发言时若要求来自同一年级的学生不相邻,则不同的排法共有( )种. A .36 B .48 C .72 D .120【答案】B【解析】先排高一年级学生,有22A 种排法,①若高一年级学生中间有高三学生,有24A 种排法;②若高一学生中间无高三学生,有111223C C C ⋅⋅种排法,所以共有()221112422348A A C C C ⋅+=种排法.故选:B .2.(2021·全国)2021年1月18日,国家航天局探月与航天工程中心组织完成了我国首辆火星车全球征名活动的初次评审.初次环节遴选出弘毅、麒麟、哪吒、赤兔、祝融、求索、风火轮、追梦、天行、火星共10个名称,作为我国首辆火星车的命名范围.某同学为了研究这些初选名称的内含,计划从中随机选取4个名称依次进行分析,若选中赤兔,则赤兔不是第一个被分析的情况有( ) A .2016种 B .1512种 C .1426种 D .1362种【答案】B【解析】由题可知,选取的4个名称中含有赤兔,则从中选取4个名称共有39C 种不同的组合. 选出的4个名称的不同分析顺序有44A 种,其中赤兔是第一个被分析的顺序有33A 种,故赤兔不是第一个被分析的情况共有()343943 1 512C A A ⋅-=(种),故选:B3.(2021·北京通州 )中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学.某校国学社团开展“六艺”讲座活动,每周安排一次讲座,共讲六次.讲座次序要求“射”不在第一次,“数”和“乐”两次不相邻,则“六艺”讲座不同的次序共有( ) A .408种 B .240种 C .192种 D .120种【答案】A【解析】将六艺全排列,有66A 种,当“射”排在第一次有55A 种, “数”和“乐”两次相邻的情况有2525A A 种,“射”排在第一次且“数”和“乐”两次相邻的情况有2424A A 种,所以“射”不在第一次,“数”和“乐”两次不相邻的排法有652524652524A A A A A A 408--+=种,故选:A .4.(2021·湖南永州 )永州是一座有着两千多年悠久历史的湘南古邑,民俗文化资源丰富.在一次民俗文化表演中,某部门安排了《东安武术》、《零陵渔鼓》、《瑶族伞舞》、《祁阳小调》、《道州调子戏》、《女书表演》六个节目,其中《祁阳小调》与《道州调子戏》不相邻,则不同的安排种数为( ) A .480 B .240 C .384 D .1440【答案】A【解析】第一步,将《东安武术》、《零陵渔鼓》、《瑶族伞舞》、《女书表演》四个节目排列,有4424A =种排法;第二步,将《祁阳小调》、《道州调子戏》插入前面的4个节目的间隙或者两端,有2520A =种插法;所以共有2420480⨯=种不同的安排方法.故选:A5.(2021·河北省唐县第一中学 )7个人站成一排准备照一张合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有( ) A .400种 B .720种 C .960种 D .1200种【答案】C【解析】根据题意,可知甲、乙要求相邻的排法有6621440A ⨯=种, 而甲、乙要求相邻且丙、丁也相邻的排法有5522480A ⨯⨯=种, 故甲、乙要求相邻,丙、丁分开的排法有1440480960-=种.故选:C.6.(2021·江西临川 )2021年某地电视台春晚的戏曲节目,准备了经典京剧、豫剧、越剧、粤剧、黄梅戏、评剧6个剧种的各一个片段.对这6个剧种的演出顺序有如下要求:京剧必须排在前三,且越剧、粤剧必须排在一起,则该戏曲节目演出顺序共有( )种. A .120 B .156 C .188 D .240【答案】A【解析】完成排戏曲节目演出顺序这件事,可以有两类办法:京剧排第一,越剧、粤剧排在一起作一个元素与余下三个作全排列有44A ,越剧、粤剧有前后22A ,共有:2424A A 种;京剧排二三之一有12C ,越剧、粤剧排在一起只有三个位置并且它们有先后,有1232C A ,余下三个有33A ,共有:12231332A C C A 种;由分类计数原理知,所有演出顺序有:411242323223A A C C A A 120=+(种)故选:A7.(2021·江苏海安 )甲、乙、丙、丁、戊5名党员参加“党史知识竞赛”,决出第一名到第五名的名次(无并列名次),已知甲排第三,乙不是第一,丙不是第五.据此推测5人的名次排列情况共有( )种 A .5 B .8 C .14 D .21【答案】C【解析】乙排在第五的情况有:33A ,乙不在第五的方法有112222C C A ,共有3112322214A C C A +=,故选:C .8.(2021·湖北)“你是什么垃圾?”这句流行语火爆全网,垃圾分类也成为时下热议的话题.某居民小区有如下六种垃圾桶:一天,张三提着六袋属于不同垃圾桶的垃圾进行投放,发现每个垃圾箱再各投一袋垃圾就满了,作为一名法外狂徒,张三要随机投放垃圾,则法外狂徒张三只投对一袋垃圾或两袋垃圾的概率为( ) A .12 B .59C .67120D .133240【答案】D【解析】根据题意,六袋垃圾随机投入六个垃圾桶共有66720A =种方法,当只投对一袋时,其他五袋与对应垃圾桶全错位排列,则5个元素全错位544=D (常用数据知识),当投对两袋时,其他4个元素全错位49D =,所以概率为126666449399133=720240⨯+⨯==C C P A .故选:D. 9(2021·重庆市杨家坪中学)某海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E 、F 必须排在一起,则这六项任务的不同安排方案共有( ) A .240种 B .188种 C .156种 D .120种【答案】D【解析】当E ,F 排在前三位时,有()22322324A A A =种安排方案;当E ,F 排在后三位时,有()()1222332272C A A A =种安排方案:当E ,F 排中间两位时,有()1122232224C A A A =种安排方案.综上,不同的安排方案共有247224120++=(种),故选:D.10.(2021·全国·专题练习)“女排精神”是中国女子排球队顽强战斗、勇敢拼搏精神的总概括,她们在世界杯排球赛中凭着顽强战斗、勇敢拼搏的精神,五次获得世界冠军,为国争光.2019年女排世界杯于9月14日至9月29日在日本举行,中国队以上届冠军的身份出战,最终以11战全胜且只丢3局的成绩成功卫冕世界杯冠军,为中华人民共和国70华诞献上最及时的贺礼.朱婷连续两届当选女排世界杯MVP ,她和颜妮、丁霞、王梦洁共同入选最佳阵容,赛后4人和主教练郎平站一排合影留念,已知郎平站在最中间,她们4人随机站于两侧,则朱婷和王梦洁站于郎平同一侧的概率为( ) A .12 B .13C .14D .16【答案】B【解析】4人和主教练郎平站一排合影留念,郎平站在最中间,她们4人随机站于两侧,则不同的排法有222422C A A 24=种,若要使朱婷和王梦洁站于郎平同一侧,则不同的排法有22222A A 8=种,所以所求概率81243P ==故选:B 11.(2021·全国·高三专题练习)某学校实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求理、化必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( ). A .444种 B .1776种 C .1440种 D .1560种【答案】B【解析】理、化、生、史、地、政六选三,且理、化必选,所以只需在生、史、地、政中四选一,有14C 4=(种).对语文、外语排课进行分类,第1类:语文、外语有一科在下午第一节,则另一科可以安排在上午四节课中的任意一节,剩下的四科可全排列,有114244192C C A =(种);第2类:语文、外语都不在下午第一节,则下午第一节可在除语、数、外三科的另三科中选择,有133C =(种),语文和外语可都安排在上午,即上午第一、三节,上午第一、四节,上午第二、四节3种,也可一科在上午任一节,一科在下午第二节,有14C 4=(种),其他三科可以全排列,有()12332334252C A A +=(种).综上,共有()41922521776⨯+=(种).故选:B12.(2021·重庆市江津中学校高二月考)2021年4月29日是江津中学艺术节总汇演之日,当晚要进行隆重的文艺演出,已知初中,高一,高二分别选送了7,5,3个节目,现回答以下问题:(用排列组合数表示,不需要合并化简)(1)若初中的节目彼此都不相邻,共计有多少种出场顺序;(2)由于一些特殊原因,高一的12345,,,,A A A A A ,5个节目,1A 必须在其余4个节目前面演出;高二的123,,B B B ,3个节目,1B 必须在其余2个节目前面演出;初中没限制,共有多少种出场顺序;(3)为了活跃气氛,高二年级决定将2000根荧光棒发给1600名台下的高二学生,每个学生至少一根,共计有多少种分配方案;(4)演出结束后,学校安排高二年级的24个班去打扫A ,B ,C 三个区域的卫生,24个班被平均分成3组,每组8个班,每个区域安排一组,若11,12班必须打扫同一个区域,13,14班必须打扫同一个区域,则共有多少种安排方式.【答案】(1)8789A A ;(2)15421542535s A A A A A ⨯⨯⨯;(3)15991999C ;(4)4883668320168320128322C C C A C C C A A ⨯+⨯. 【解析】(1)先对高一、高二的节目进行全排列,有88A 种不同的排法, 再将初中的7个节目插入8个节目构成的9个空隙中的7个,有79A 种方法, 由分步计数原理可得,共有8789A A 种不同的出场顺序.(2)高一的5个节目全排列,有55A 不同的排法,其中1A 必须在其余4个节目前面有44A 种, 高二的3个节目全排列有33A 不同的排法,其中1B 必须在其余2个节目前面有22A 种, 初中、高一和高二的15个节目全排列有1515A 种不同的排法,所以1A 在其余4个节目前面演出;1B 在其余2个节目前面演出,共有15421542535sA A A A A ⨯⨯⨯种. (3)由2000根荧光棒为2000个相同的元素,分给1600名台下的高二学生, 可利用隔板法,在2000根荧光棒构成的1999个空隙中插入1599个板, 把2000根荧光棒分为1600份,共有15991999C 种不同的分法.(4)由题意,可分为两类:①若11,12和13,14在同一组中,共有488320168322C C C A A ⨯种不同的安排方式; ②若11,12和13,14不在同一组中,共有6683201283C C C A ⨯488320168322C C C A A ⨯种不同的安排方式, 由分类计数原理,可得共有4883668320168320128322C C C A C C C A A ⨯+⨯不同的安排方式. 13.(2021·福建·厦门海沧实验中学高二期中)现有6名学生,按下列要求回答问题(列出算式,并计算出结果):(Ⅰ)6人站成一排,甲站在乙的前面(甲、乙可以不相邻)的不同站法种数; (Ⅱ)6人站成一排,甲、乙相邻,且丙与乙不相邻的不同站法种数;(Ⅲ)把这6名学生全部分到4个不同的班级,每个班级至少1人的不同分配方法种数; (Ⅳ)6人站成一排,求在甲、乙相邻条件下,丙、丁不相邻的概率. 【答案】(Ⅰ)360;(Ⅱ)192;(Ⅲ)1560;(Ⅳ)35【解析】(Ⅰ)6个人全排列共有种不同排法,由于甲站在乙的前面与乙站在甲的前面各占一半,故甲站在乙的前面(甲、乙可以不相邻)的不同站法种数为6613602A =; (Ⅱ)甲乙捆绑到一起与剩下3人共4人共有种不同排法,由于丙与乙不相邻,丙只需从甲乙这个整体与剩余3人产生的4个空中任选一个进行排放,根据分步计数原理,共421424192A A C ⋅⋅=种不同排法;(Ⅲ)6名学生全部分到4个不同的班级,每个班级至少1人有两类,第一类是3个班级各1人,1个班级有3人,这种情况共有,第二类是2个班级2人,2个班级1人,这种情况共有,根据分类计数原理知每个班级至少1人的不同分配方法种数为221131114464216321442232231560C C C C C C C C A A A A A ⋅⋅⋅⋅⋅⋅⋅+⋅=⋅; (Ⅳ)记A :甲乙相邻共有种不同排法,记B:甲、乙相邻且丙、丁不相邻共有种不同排法,根据条件概率的计算公式232432252535A A A A A ⋅⋅=⋅ 【题组二 数字型】1.(2021·重庆市凤鸣山中学高二月考)现有0、1、2、3、4、5、6、7、8、9共十个数字.(1)可以组成多少个无重复数字的三位数?(2)组成无重复数字的三位数中,315是从小到大排列的第几个数?(3)可以组成多少个无重复数字的四位偶数?(4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数共有多少个?【答案】(1)648个;(2)156个;(3)2296个;(4)1140个.【解析】()1由题意,无重复的三位数共有1299972648A A=⨯=个;()2当百位为1时,共有299872A=⨯=个数;当百位为2时,共有299872A=⨯=个数;当百位为3时,共有118412A A+=个数,所以315是第727212156++=个数;()3无重复的四位偶数,所以个位必须为0,2,4,6,8,千位上不能为0,当个位上为0时,共有39504A=个数;当个位上是2,4,6,8中的一个时,共有1218841792A A A=个数,所以无重复的四位偶数共有50417922296+=个数;()4当选出的偶数为0时,共有1335180A A=个数,当选出的偶数不为0时,共有134454960C C A=个数,所以这样的四位数共有9601801140+=个数;2.(2021·江苏·仪征中学高二期中)由1,2,3,4,5组成的五位数中,分别求解下列问题.(应写出必要的排列数或组合数,结果用数字表示)(1)没有重复数字且为奇数的五位数的个数;(2)没有重复数字且2和4不相邻的五位数的个数;(3)恰有两个数字重复的五位数的个数.【答案】(1)72个;(2)72个;(3)1200个.【解析】(1)由题知,该五位数个位数为奇数,然后余下的四个数全排列即可.14 3472C A⋅=个.(2)先对1,3,5三个数全排列,然后利用插空法排列2和4,即323472A A=个(3)从5个数中挑选出重复的数字,从剩下的4个数中挑选3个数字,先对重复数字排列,然后余下的三个数全排列即132354531200C C C A=个【题组三分组分配型】1.(2021·北京·中国人民大学附属中学朝阳学校)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A.60种B.120种C.240种D.480种【答案】C【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.2.(2021·江苏常州)CES是世界上最大的消费电子技术展,也是全球最大的消费技术产业盛会.2020CES消费电子展于2020年1月7日—10日在美国拉斯维加斯举办.在这次CES消费电子展上,我国某企业发布了全球首款彩色水墨屏阅读手机,惊艳了全场.若该公司从7名员工中选出3名员工负责接待工作(这.3名员..工的工作视为相同的工作...........),再选出2名员工分别在上午、下午讲解该款手机性能,若其中甲和乙至多有1人负责接待工作,则不同的安排方案共有__________种.【答案】360【解析】先安排接待工作,分两类,一类是没安排甲乙有35C种,一类是甲乙安排1人有1225C C种,再从余下的4人中选2人分别在上午、下午讲解该款手机性能,共24A种,故不同的安排方案共有()12322554360C C C A +⋅=种.故答案为:360.3.(2021·河北石家庄·高二期末)某学校安排甲、乙,丙、丁、戊五位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲不参加数学竞赛,则不同的安排方法有( ) A .86种 B .100种 C .112种 D .134种【答案】B【解析】若只有1人参加数学竞赛,有221124244222()(44325)6C C C C A A +=⨯+⨯=种安排方法,若恰有2人参加数学竞赛,有21243263236C C A =⨯⨯=种安排方法,若有3人参加数学竞赛,有3242428C A =⨯=种安排方法,所以共有56368100++=种安排方法. 故选:B4(2021·全国·高二单元测试)有6本不同的书按下列分配方式分配,问共有多少种不同的分配方法? (1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一个人1本,一个人2本,一个人3本; (3)分成每组都是2本的三组; (4)分给甲、乙、丙三人,每个人2本.【答案】(1)60(种).(2)360(种).(3)15(种).(4)90(种).【解析】(1)根据分步计算原理可知,1236535461602C C C ⨯⋅⋅=⨯⨯=, 所以分成1本、2本、3本三组共有60种方法;(2)由(1)可知:分成1本、2本、3本三组,共有60种方法,再分给甲、乙、丙三人,所以有336060321360A ⋅=⨯⨯⨯=种方法;(3)先分三步,则应是222642C C C ⋅⋅种方法,但是这里面出现了重复,不妨记六本书为A 、B 、C 、D 、E 、F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则222642C C C ⋅⋅种分法中还有(AB ,EF ,CD )、(CD 、AB 、EF )、(CD 、EF ,AB )、(EF ,CD ,AB )、(EF ,AB ,CD ),共33A 种情况,而且这33A 种情况仅是AB ,CD ,EF 的顺序不同,因此,只能作为一种分法,故分配方法有22264233C C C A ⋅⋅=15(种).(4)在问题(3)的基础上再分配即可,共有分配方法2223642333C C C A A ⋅⋅⋅=90(种). 【题组四 涂色型】1.(2021·江西·横峰中学高二期中(理))如图所示的几何体由三棱锥P ABC -与三棱柱111ABC A B C -组合而成,现用3种不同颜色对这个几何体的表面涂色(底面111A B C 不涂色),要求相邻的面均不同色,则不同的涂色方案共有( )A .36种B .24种C .12种D .9种\【答案】C【解析】第一步:涂三棱锥P -ABC 的三个侧面,因为要求相邻的面均不同色,所以共有3216⨯⨯=种不同的涂法, 第二步:涂三棱柱ABC -111A B C 的三个侧面,先涂侧面11AA B B 有122C =种涂法,再涂11BB C C 和11CC A A 只有1种涂法, 所以涂三棱柱的三个侧面共有212⨯=种涂法,所以对几何体的表面不同的涂色方案共有6212⨯=种涂法,故选:C2.(2021·陕西·韩城市西庄中学高二期中(理))在一个正六边形的六个区域涂色(如图),要求同一区域同一种颜色,相邻的两块区域(有公共边)涂不同的颜色,现有5种不同的颜色可供选择,则不同涂色方案有( )A .720种B .2160种C .4100种D .4400种【答案】C【解析】考虑A 、C 、E 三个区域用同一种颜色,共有方法数为354320⨯=种; 考虑A 、C 、E 三个区域用2种颜色,共有方法数为()5434332160⨯⨯⨯⨯⨯=种;考虑A 、C 、E 三个区域用3种颜色,共有方法数为33531620A ⨯=种.所以共有方法数为320216016204100++=种. 故选:C .3.(2021·全国·高二课时练习)如图,用四种不同的颜色给图中的A ,B ,C ,D ,E ,F ,G 七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( )A .192种B .336种C .600种D .624种【答案】C【解析】由题意,点E ,F ,G 分别有4,3,2种涂法,(1)当A 与F 相同时,A 有1种涂色方法,此时B 有2种涂色方法, ①若C 与F 相同,则C 有1种涂色方法,此时D 有3种涂色方法; ②若C 与F 不同,则D 有2种涂色方法.故此时共有()432121312240⨯⨯⨯⨯⨯⨯+⨯=种涂色方法. (2)当A 与G 相同时,A 有1种涂色方法,①若C 与F 相同,则C 有1种涂色方法,此时B 有2种涂色方法,D 有2种涂色方法; ②若C 与F 不同,则C 有2种涂色方法,此时B 有2种涂色方法,D 有1种涂色方法. 故此时共有()4321122221192⨯⨯⨯⨯⨯⨯+⨯⨯=种涂色方法. (3)当A 既不同于F 又不同于G 时,A 有1种涂色方法.①若B 与F 相同,则C 与A 相同时,D 有2种涂色方法,C 与A 不同时,C 和D 均只有1种涂色方法; ②若B 与F 不同,则B 有1种涂色方法,(i )若C 与F 相同,则C 有1种涂色方法,此时D 有2种涂色方法;(ii )若C 与F 不同,则必与A 相同,C 有1种涂色方法,此时D 有2种涂色方法. 故此时共有()()43211121111212168⨯⨯⨯⨯⨯⨯+⨯+⨯⨯+⨯=⎡⎤⎣⎦种涂色方法. 综上,共有240192168600++=种涂色方法. 故选:C.4(2021·全国·高二课时练习)现有6种不同的颜色,给图中的6个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A .720种B .1440种C .2880种D .4320种【答案】D【解析】根据题意分步完成任务:第一步:完成3号区域:从6种颜色中选1种涂色,有6种不同方法;第二步:完成1号区域:从除去3号区域的1种颜色后剩下的5种颜色中选1种涂色,有5种不同方法; 第三步:完成4号区域:从除去3、1号区域的2种颜色后剩下的4种颜色中选1种涂色,有4种不同方法; 第四步:完成2号区域:从除去3、1、4号区域的3种颜色后剩下的3种颜色中选1种涂色,有3种不同方法;第五步:完成5号区域:从除去1、2号区域的2种颜色后剩下的4种颜色中选1种涂色,有4种不同方法; 第六步:完成6号区域:从除去1、2、5号区域的3种颜色后剩下的3种颜色中选1种涂色,有3种不同方法;所以不同的涂色方法:6543434320⨯⨯⨯⨯⨯=种. 故选:D.5.(2020·全国·高二课时练习(理))如图,图案共分9个区域,有6中不同颜色的涂料可供涂色,每个区域只能涂一种颜色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相邻区域的颜色不相同,则涂色方法有A .360种B .720种C .780种D .840种【答案】B【解析】由图可知,区域2,3,5,7不能同色,所以2和9同色、3和6同色、4和7同色、5和8同色,且各区域的颜色均不相同,所以涂色方法有种,故应选.6.(2021·全国·高二课时练习)如图,用四种不同的颜色给三棱柱ABC A B C '''-的六个顶点涂色,要求每个点涂一种颜色.若每个底面的顶点涂色所使用的颜色不相同,则不同的涂色方法共有________种;若每条棱的两个端点涂不同的颜色,则不同的涂色方法共有________种.【答案】576 264【解析】(1)由题得每个底面的顶点涂色所使用的颜色不相同,则不同的涂色方法共有3344576A A =;(2)若B ',A ',A ,C 用四种颜色,则有4424A =;若B ',A ',A ,C 用三种颜色,则有33442222192A A ⨯⨯+⨯⨯=;若B ',A ',A ,C 用两种颜色,则有242248A ⨯⨯=.所以共有2419248++=264种. 故答案为:①576;②264.7.(2021·江苏·)现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法种数为__________.【答案】48【解析】根据题意,设需要涂色的四个部分依次分A、B、C、D,对于区域A,有4种颜色可选,有4种涂色方法,对于区域B,与区域A相邻,有3种颜色可选,有3种涂色方法,对于区域C,与区域A,B相邻,有2种颜色可选,有2种涂色方法,对于区域D,与区域B,C相邻,有2种颜色可选,有2种涂色方法,则不同的涂色方法有432248⨯⨯⨯=种.故答案为:48.8.(2021·吉林·乾安县第七中学(理))如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有________种.(以数字作答)【答案】72【解析】当使用四种颜色时,先着色第一区域,有4种方法,剩下3种颜色涂四个区域,则第2、4和第3、5区域需一组涂上同一种颜色,另外一组涂上不同颜色,所以共有1112423248C C C A=种着色方法;当仅使用三种颜色时:从4种颜色中选取3种有34C种方法,先着色第一区域,有3种方法,剩下2种颜色涂四个区域,只能是一种颜色涂第2、4区域,另一种颜色涂第3、5区域,有2种着色方法,由乘法原理有343224C⨯⨯=种.综上共有:482472+=种.故答案为:729.(2021·重庆市实验中学高)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案种数为_______.【答案】420【解析】将区域标注数字序号如下图:当1,2,3号区间共用2种颜色,即1,3同色且与2异色时共有涂色方法:211533180A C C =种当1,2,3共用3种颜色时,共有涂色方法:311522240A C C =种则不同的涂色方案总数为:180240420+=种 本题正确结果:42010.(2021·江西·宁冈中学 )用五种不同颜色给三棱台ABC DEF -的六个顶点染色,要求每个点染一种颜色,且每条棱的两个端点染不同颜色.则不同的染色方法有___________种. 【答案】1920.【解析】分两步来进行,先涂,,A B C ,再涂,,D E F .第一类:若5种颜色都用上,先涂,,A B C ,方法有35A 种,再涂,,D E F 中的两个点,方法有23A 种,最后剩余的一个点只有2种涂法,故此时方法共有32532720A A ⋅⋅=种;第二类:若5种颜色只用4种,首先选出4种颜色,方法有45C 种;先涂,,A B C ,方法有34A 种,再涂,,D E F 中的一个点,方法有3种,最后剩余的两个点只有3种涂法,故此时方法共有4354331080C A ⋅⋅⋅=种;第三类:若5种颜色只用3种,首先选出3种颜色,方法有35C 种;先涂,,A B C ,方法有33A 种,再涂,,D E F ,方法有2种,故此时方法共有33532120C A ⋅⨯=种; 综上可得,不同涂色方案共有72010801201920++=种, 故答案是1920.11.(2021·江西·进贤县第一中学高二月考(理))用红、黄、蓝、绿、橙五种不同颜色给如图所示的5块区域A 、B 、C 、D 、E 涂色,要求同一区域用同一种颜色,有公共边的区域使用不同颜色,则共有涂色方法____.【答案】960【解析】因为区域D和各个区域都相邻,所以首先给区域D染色有5种方法,区域C、E各有4种方法, 区⨯⨯⨯⨯=.域A、B一个4种,一个3种,根据分步乘法计数原理可知, 共有涂色方法54443960故答案为:960.12.(2021·新疆·阜康市第一中学高二期中(理))现有红、黄、蓝三种颜色,对如图所示的正五角星的内部涂色(分割成六个不同部分),要求每个区域涂一种颜色且相邻部分(有公共边的两个区域)的颜色不同,则不同的涂色方案有________种.(用数字作答).【答案】96【解析】根据题意,假设正五角星的区域依此为A、B、C、D、E、F,如图所示:要将每个区域都涂色才做完这件事,由分步计数原理,先对A区域涂色有3种方法,B、C、D、E、F这5个区域都与A相邻,每个区域都有2种涂色方法,⨯⨯⨯⨯⨯=种涂色方案.所以共有32222296故答案为:9613.(2020·江苏常熟·高二期中)用红、黄、蓝、绿四种颜色给图中五个区域进行涂色,要求相邻区域所涂颜色不同,共有______种不同的涂色方法.(用数字回答)【答案】240【解析】从A 开始涂色,A 有4种方法,B 有3种方法, ①若E 与B 涂色相同,则,C D 共有23A 种涂色方法; ②若E 与B 涂色不相同,则E 有2种涂色方法,当,C E 涂色相同时,D 有3种涂色方法;当,C E 涂色不相同时,C 有2种涂法,D 有2种涂色方法.共有()2343432322240A ⨯⨯+⨯⨯⨯+⨯=种涂色方法.故答案为:240.14(2021·全国·高二课时练习)现用4种不同的颜色对如图所示的正方形的6个区域进行涂色,要求相邻的区域不能涂同一种颜色,则不同的涂色方案有______种.【答案】192【解析】第一步,对区域1进行涂色,有4种颜色可供选择,即有4种不同的涂色方法;第二步,对区域2进行涂色,区域2与区域1相邻,有3种颜色可供选择,即有3种不同的涂色方法; 第三步,对区域3进行涂色,区域3与区域1、区域2相邻,有2种颜色可供选择,即有2种不同的涂色方法;第四步,对于区域4进行涂色,区域4与区域2、区域3相邻,有2种颜色可供选择,即有2种不同的涂色方法;第五步,对区域5进行涂色,若其颜色与区域4相同,则区域6有2种涂色方法,若其颜色与区域4不同,。
人教版小学数学小升初思维拓展(知识梳理+典题精讲+专项训练)专题6-方阵问题
专题6-方阵问题小升初数学思维拓展典型应用题专项训练(知识梳理+典题精讲+专项训练)1、方阵问题。
将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题.2、数量关系。
(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=(外边人数)2-(内边人数)2内边人数=外边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4.【典例一】为庆祝“六一”儿童节,城东小学四年级同学举行队列表演,他们排成2个“77⨯”的方阵。
每个方阵中,外两圈同学穿黄色运动服,其余同学穿红色运动服。
最少需要准备套黄色运动服,套红色运动服。
【答案】80;18。
【分析】每个方阵的最外层一共有4个边,每边有7人,共4层,然后根据总点数=每边点数⨯每边点数求出总方阵的人数和内2层的人数,再进一步解答即可。
【解答】解:(1)7749⨯=(人)(722)(722)--⨯--=⨯339=(人)9218⨯=(人)-=(人)49940⨯=(人)40280答:最少需要准备80套黄色运动服,18套红色运动服。
故答案为:80;18。
【点评】此题考查了方阵问题中:总点数=每边点数⨯每边点数的灵活应用。
【典例二】运动会上,四年级同学组成了四个表演方阵,每个方阵排成6行,每行6人。
每个方阵最外面一圈的同学穿黄色表演服,其余同学穿红色表演服,这两种颜色的表演服各多少件?【答案】黄色表演服80件,红色表演服64件。
【分析】用6乘6求出每个方队的总人数,然后用64⨯减去4求出最外圈穿黄色表演服的人数;再和每个方队的总人数相减求出穿红色表演服的人数。
最后再用每个方队中红、黄的衣服人数分别乘4,求出4个方队中两种颜色的表演服的件数即可。
2014年秋浙教版八年级数学上同步习题精讲课件(专题六_一次函数的图象与性质的应用)(共12张PPT)
一次函数的图像与性质的应用
习 题 精 讲
数 学 八年级上册 (浙教版)
教材母题►(教送水泥.已知甲仓库
可运出100吨水泥,乙仓库可运出80吨水泥;A工地需70吨 水泥,B工地需110吨水泥.两仓库到A,B两地的路程和每
吨每千米的运费如下表:
(1)设甲仓库运进A地水泥x吨,求总运费y关于x的 函数表达式,并画出图象. (2)当甲、乙两仓库各运往A,B两工地多少吨水泥 时,总运费最省?最省的总运费是多少? 见教材P159例3 【思想方法】 费用最少问题或产量最大问题,一般是根据 题意找出数量间的不等关系,列出相应的不等式或不等式组, 利用不等式,确定取值范围,运用一次函数的性质即可解决
运往甲地(单位:吨) A B x 15-x 运往乙地(单位:吨) 14-x x-1
(2)设总运费为w,请写出w关于x的函数表达式. (3)怎样调运蔬菜才能使运费最少? (2)w=5x+1 275 (3)当从A市场向甲地运送蔬菜1吨,向乙地运送蔬菜13吨 ;从B市场向甲地运送蔬菜14吨时,总费用最少
购共用了7 000元,然后再以马蹄莲每株4.5元、康乃馨每株
7元的价格卖出.问:该鲜花店应如何采购这两种鲜花才能 使获得的利润最大?(注:800~1 200株表示株数大于或等 于800株,且小于或等于1 200株;利润=销售所得金额-进 货所需金额) 采购马蹄莲1 200株,康乃馨680株,利润最大,为3 160元
(1)请填写下表,并写出y与x之间的函数表达式;
运出地运往地 A B 总计 甲 x台 (15-x) 台 15台 乙 (16-x) 台 (x-3) 台 13台 总计 16台 12台 28台
y=500x+400(16-x)+300(15-x)+600(x-3)=400x+9 100
专题六选择题专攻3.中和滴定反应“突跃”曲线的分析应用-2025届高考化学二轮复习课件
滴定突跃 ΔpH=7.4 ΔpH=5.4 ΔpH=3.4
2.强碱滴定弱酸曲线 由图可知:酸性越弱,Ka越小,滴定突跃范围就越小。
3.巧抓“四点”,突破溶液中的粒子浓度关系
(1)抓反应“一半”点,判断是什么溶质的等量混合。 (2)抓“恰好”反应点,生成的溶质是什么?判断溶液的酸碱性。 (3)抓溶液的“中性”点,生成什么溶质,哪种物质过量或不足。 (4)抓反应的“过量”点,溶液中的溶质是什么?判断哪种物质过量。
1234
2.(2023·广州第二中学高三模拟)常温下,在20.00 mL 0.100 0 mol·L-1 NH3·H2O溶液中逐滴滴加0.100 0 mol·L-1 HCl溶液,溶液pH随滴入HCl溶 液体积的变化曲线如图所示。下列说法正确的是 A.①点溶液:c(Cl-)>c(NH+ 4 )>c(OH-)>c(H+)
4.30 滴定突 0.00 7.00 跃ΔpH 0.02 9.70 =5.4
NaOH溶液从19.98 mL到20.02 mL,只增加 了0.04 mL(约1滴),就使得溶液的pH改变了 5.4个单位。这种在化学计量点±0.1%范围 内,pH的急剧变化就称为滴定突跃。滴定 突跃范围是选择指示剂的重要依据,凡是 在滴定突跃范围内能发生颜色变化的指示 剂都可以用来指示滴定终点。实际分析时,为了更好地判断终点,氢氧 化钠溶液滴定盐酸通常选用酚酞作指示剂的原因:终点的颜色由无色变 为浅红色,更容易辨别。
1234
CH3COOH完全反应后,加入的NaOH越 多,OH-对水的电离抑制程度越大,故 N点水的电离程度比Q点大,C项正确; N点所示溶液中醋酸与NaOH恰好中和, 溶液为CH3COONa溶液,CH3COO-发生 水解反应而消耗,所以c(Na+)>c(CH3COO-),CH3COO-发生水解 反应消耗水电离产生的H+,最终达到平衡时,溶液中c(OH-)>c(H+), 但盐水解程度是微弱的,水解产生的离子浓度远小于盐电离产生的 离子浓度,因此c(CH3COO-)>c(OH-),故该溶液中离子浓度关系为 c(Na+)>c(CH3COO-)>c(OH-)>c(H+),D项错误。
【精品】小学数学几何精讲精析专题六 立体图形-类型一 正方体
专题六立体图形类型一正方体【知识讲解】一、正方体的认识:1. 特征:正方体有6个面,每个面都是正方形,所有的面都完全相同,有12条棱,所有的棱都相等,有8个顶点。
2. 正方体的棱长总和=棱长×12用字母表示:12a二、正方体表面积的计算1. 表面积:正方体6个面的总面积叫做它的表面积。
2. 正方体的表面积=棱长×棱长×6用字母表示:S=6a2三、正方体体积的计算1. 物体所占空间的大小叫做物体的体积。
2. 正方体的体积=棱长×棱长×棱长或底面积×高用字母表示: V= a3 或Sh【典例精讲】计算下面图形的表面积和体积。
【答案】表面积是54平方分米,体积是27立方分米.【解析】根据正方体的体积=棱长×棱长×棱长,表面积=棱长×棱长×6,列式计算即可。
解:3×3×6=54(平方分米);3×3×3=27(立方分米);答:正方体的表面积是54平方分米,体积是27立方分米。
【点评】此题主要考查正方体的表面积和体积公式及其计算。
【巩固练习】一、选择题。
1.下列图形中,()是正方体的展开图。
2.正方体的棱长扩大3倍,则体积扩大()倍。
A.2B.4C.27D.83.一个正方体每个面的面积都是9cm2,它的棱长是()cm。
A.9 B.54 C.34.一个正方体的棱长总和是96dm,它的表面积是()dm2。
A.384 B.1536 C.9516 D.5125.一个正方体的棱长是6dm,它的表面积和体积相比较,()A.体积大 B.表面积大 C.同样大 D.无法比较6.用棱长2厘米的正方体木块拼成一个较大的正方体,至少需要()块。
A.4B.8C.9D.647.把一个棱长为6分米的正方体切成棱长为2分米的小正方体,可以得到()小正方体。
A.27个 B.81个 C.9个8.如图是几个相同小正方体拼成的大正方体,由AB向C点斜切,没被切掉的小正方体有()个。
高考历史 专题精讲:专题六 近代中国民主革命的新发展——新民主主义革命时期(104张ppt)
Байду номын сангаас
主力是工人阶级 (2011新课标全 ②6月5日起,中心在上海,
国文综:甲午战争后的“公车上书”与巴黎和会时的五四运动 都是爱国救亡运动,但两者的规模与影响差别甚大,其主要原
博 学
因在于民族觉醒程度与群众基础不同)。
提 能 专 训
第二部分 专题六
第 9页
(4)性质:是一次彻底地不妥协地反帝反封建的爱国运动。 (5)划时代的意义:促进了马克思主义的传播,中国无产阶
第 4页
五四运动后,中国共产党成立并逐渐走向成熟,与国民党 合作开展了国民革命运动,并领导中国人民开辟了农村包围城
整 合 对 话
市的正确革命道路,取得了抗日战争和解放战争的胜利,基本 上完成了反帝反封建的革命任务。国民政府统治前期,中国的 民族工业获得一定的发展,但随后渐渐陷入困境。马克思主义 逐渐成为中国革命的指导思想。
整 合 对 话
级登上历史舞台并发挥主力军作用,是中国新民主主义革命的 开端。
博 学
提 能 专 训
第二部分 专题六
第10页
2.中国共产党的成立 (1)标志:1921年7月中共一大召开。
整 合 对 话
(2)意义:中国出现了以马列主义为指导的工人阶级政党, 标志着中国民主革命有了全新的革命政党领导。 (3)中共二大
整 合
(1)探索期:中国共产党成立至国民革命失败。 ①从中国的国情认识到民主革命纲领的重要性。中共二大 民主革命纲领的提出,标志着中国共产党开始认识到中国的社 会现实。
对 话
博 学
②从第一次工人运动高潮受挫认识到统一战线的重要性。 中国共产党在斗争中认识到必须联合农民阶级和其他阶级,组 成最广泛的统一战线才能取得革命的胜利。