与名师对话2019届高三数学(文)一轮复习课时跟踪训练:第九章 平面解析几何 课时跟踪训练50
与名师对话 高三文科数学第一轮复习 第九章 解析几何 第一节 直线与方程
B.4
课
后
C.1 或 3
D.1 或 4
跟 踪
训
核
[解析] 因为过点 M(-2,m),N(m,4)的直线的斜率为 1, 练
心
考 点 突 破
所以4m-+m2=1,解得 m=1.故选 A.
第25页
第9章 第1节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
考点二 直线的方程
基
础
【例 2】 根据所给条件求直线的方程:
课 后
跟
数 k=tanα 的单调性,当 α 取值在0,π2,即由 0 增大到π2α≠π2
踪 训 练
核
心 考 点 突
时,k 由 0 增大到+∞,当 α 取值在π2,π时,即由π2α≠π2增
破 大到 π(α≠π)时,k 由-∞增大到 0.
第22页
第9章 第1节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
高考总复习·课标版·数学(文)
基
础
知 识
[解析] (1)直线 xsinα-y+1=0 的斜率是 k=sinα,
回
顾
又∵-1≤sinα≤1,∴-1≤k≤1.
课 后
跟
当 0≤k≤1 时,倾斜角的范围是0,π4,
踪 训 练
核
心 考 点 突
当-1≤k<0 时,倾斜角的范围是34π,π.故选 D.
破
第17页
第9章 第1节
第27页
第9章 第1节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
础 知 识 回
(2)由题设知纵、横截距不为 0,设直线方程为ax+12-y a=
顾 1,
2019年高考数学(文科)一轮分层演练:第9章平面解析几何第3讲(含答案解析)
[学生用书P260(单独成册)]一、选择题1.方程y =1-x 2表示的曲线是( ) A .上半圆 B .下半圆 C .圆D .抛物线解析:选A .由方程可得x 2+y 2=1(y ≥0),即此曲线为圆x 2+y 2=1的上半圆. 2.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是( ) A .(x -1)2+y 2=8 B .(x +1)2+y 2=8 C .(x -1)2+y 2=16D .(x +1)2+y 2=16解析:选A .因为所求圆与直线x -y +3=0相切,所以圆心M (1,0)到直线x -y +3=0的距离即为该圆的半径r ,即r =|1-0+3|2=22.所以所求圆的方程为:(x -1)2+y 2=8.故选A .3.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( ) A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B .圆C 1的圆心坐标为(-1,1),半径为1,设圆C 2的圆心坐标为(a ,b ),由题意得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,所以圆C 2的圆心坐标为(2,-2),又两圆的半径相等,故圆C 2的方程为(x -2)2+(y +2)2=1.4.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( ) A .(x +1)2+(y -1)2=2 B .(x +1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2 D .(x -1)2+(y +1)2=2解析:选D .由题意知x -y =0和x -y -4=0之间的距离为|4|2=22,所以r =2. 又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由y =-x 和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.5.在平面直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足|P A |2-|PB |2=4且在圆x 2+y 2=4上的点P 的个数为( )A .0B .1C .2D .3解析:选C .设P (x ,y ),则由|P A |2-|PB |2=4,得(x +1)2+y 2-x 2-(y -1)2=4,所以x +y -2=0.求满足条件的点P 的个数即为求直线与圆的交点个数,圆心到直线的距离为|0+0-2|2=2<2=r ,所以直线与圆相交,交点个数为2.故满足条件的点P 有2个,选C .6.已知P (x ,y )是圆x 2+(y -3)2=a 2(a >0)上的动点,定点A (2,0),B (-2,0),△P AB 的面积的最大值为8,则a 的值为( )A .1B .2C .3D .4解析:选A .要使△P AB 的面积最大,只要点P 到直线AB 的距离最大. 由于AB 的方程为y =0,圆心(0,3)到直线AB 的距离为d =3, 故P 到直线AB 的距离的最大值为3+a .再根据AB =4,可得△P AB 面积的最大值为12·AB ·(3+a )=2(3+a )=8,所以a =1,故选A .二、填空题7.已知动点M (x ,y )到点O (0,0)与点A (6,0)的距离之比为2,则动点M 的轨迹所围成的区域的面积是________.解析:依题意可知|MO ||MA |=2,即x 2+y 2(x -6)2+y 2=2,化简整理得(x -8)2+y 2=16,即动点M 的轨迹是以(8,0)为圆心,半径为4的圆. 所以其面积为S =πR 2=16π. 答案:16π8.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π49.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.因为△OPQ 为直角三角形,所以圆心为斜边PQ 的中点(2,1), 半径r =|PQ |2=5,因此圆C 的方程为(x -2)2+(y -1)2=5. 答案:(x -2)2+(y -1)2=510.设命题p :⎩⎪⎨⎪⎧4x +3y -12≥0,k -x ≥0,x +3y ≤12(x ,y ,k ∈R 且k >0);命题q :(x -3)2+y 2≤25(x ,y ∈R ).若p 是q 的充分不必要条件,则k 的取值范围是________.解析:如图所示:命题p 表示的范围是图中△ABC 的内部(含边界),命题q 表示的范围是以点(3,0)为圆心,5为半径的圆及圆内部分,p 是q 的充分不必要条件.实际上只需A ,B ,C 三点都在圆内(或圆上)即可.由题知B ⎝⎛⎭⎫k ,4-43k ,则⎩⎪⎨⎪⎧k >0,(k -3)2+169(3-k )2≤25, 解得0<k ≤6. 答案:(0,6] 三、解答题11.已知以点P 为圆心的圆经过A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又因为直径|CD |=410, 所以|P A |=210, 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 12.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点.(1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:将圆C 化为标准方程可得(x -2)2+(y -7)2=8, 所以圆心C (2,7),半径r =22.(1)设m +2n =b ,则b 可看作是直线n =-12m +b2在y 轴上截距的2倍,故当直线m +2n =b 与圆C 相切时,b 有最大或最小值.所以|2+2×7-b |12+22=22,所以b =16+210(b =16-210舍去), 所以m +2n 的最大值为16+210. (2)设n -3m +2=k ,则k 可看作点(m ,n )与点(-2,3)所在直线的斜率, 所以当直线n -3=k (m +2)与圆C 相切时,k 有最大、最小值,所以|2k -7+2k +3|1+k 2=22,解得k =2+3或k =2-3.所以n -3m +2的最大值为2+3,最小值为2-3.1.已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求实数m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值; (3)在(2)的条件下,求以MN 为直径的圆的方程.解:(1)由D 2+E 2-4F >0得(-2)2+(-4)2-4m >0,解得m <5.(2)设M (x 1,y 1),N (x 2,y 2),由x +2y -4=0得x =4-2y ;将x =4-2y 代入x 2+y 2-2x -4y +m =0得5y 2-16y +8+m =0,所以y 1+y 2=165,y 1y 2=8+m 5.因为OM ⊥ON ,所以y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0.因为x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,所以x 1x 2+y 1y 2=16-8(y 1+y 2)+5y 1y 2=0,即(8+m )-8×165+16=0,解得m =85.(3)设圆心C 的坐标为(a ,b ),则a =12(x 1+x 2)=45,b =12(y 1+y 2)=85,半径r =|OC |=455,所以所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 2.在△OAB 中,已知O (0,0),A (8,0),B (0,6),△OAB 的内切圆的方程为(x -2)2+(y -2)2=4,P 是圆上一点.(1)求点P 到直线l :4x +3y +11=0的距离的最大值和最小值;(2)若S =|PO |2+|P A |2+|PB |2,求S 的最大值和最小值.解:(1)由题意得圆心(2,2)到直线l :4x +3y +11=0的距离d =|4×2+3×2+11|42+32=255=5>2,故点P 到直线l 的距离的最大值为5+2=7,最小值为5-2=3.(2)设点P 的坐标为(x ,y ),则S =x 2+y 2+(x -8)2+y 2+x 2+(y -6)2=3(x 2+y 2-4x -4y )-4x +100=-4x +88,而(x -2)2≤4,所以-2≤x -2≤2, 即0≤x ≤4,所以-16≤-4x ≤0, 所以72≤S ≤88, 即当x =4时,S min =72, 当x =0时,S max =88.。
高三数学(文)一轮复习课时跟踪训练:第九章 平面解析几何 课时跟踪训练53 Word版含解析
课时跟踪训练(五十三)[基础巩固]一、选择题1.(2017·广东汕头质检)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35 D .-45[解析] ∵抛物线C :y 2=4x 的焦点为F ,∴点F 的坐标为(1,0).又∵直线y =2x -4与C 交于A ,B 两点,∴A ,B 两点坐标分别为(1,-2),(4,4),则F A →=(0,-2),FB →=(3,4),∴cos ∠AFB =F A →·FB →|F A →||FB →|=-810=-45.故选D.[答案] D2.(2017·北京东城期末)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于3,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在[解析] 过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,若直线AB 的斜率不存在,则横坐标之和等于2,不符合题意.设直线AB 的斜率为k ,则直线AB 的方程为y =k (x -1),代入抛物线方程y 2=4x ,得k 2x 2-2(k 2+2)x +k 2=0.∵A ,B 两点的横坐标之和等于3,∴2(k 2+2)k 2=3.解得k =±2,∴符合题意的直线有且仅有两条.故选B.[答案] B3.(2017·湖南长沙调研)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=4xC .y 2=±8xD .y 2=8x [解析] ∵抛物线y 2=ax (a ≠0)的焦点F 的坐标为⎝ ⎛⎭⎪⎫a 4,0,∴直线l 的方程为y =2⎝⎛⎭⎪⎫x -a 4.∵直线l 与y 轴的交点为A ⎝ ⎛⎭⎪⎫0,-a 2,∴△OAF 的面积为12⎪⎪⎪⎪⎪⎪a 4·⎪⎪⎪⎪⎪⎪a 2=4,解得a =±8.∴抛物线的方程为y 2=±8x ,故选C. [答案] C4.(2017·河南三门峡灵宝期末)已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线交抛物线于A ,B 两点,过点A ,点B 分别作AM ,BN 垂直于抛物线的准线,分别交准线于M ,N 两点,那么∠MFN 必是( )A .锐角B .直角C .钝角D .以上皆有可能[解析] 由题意画出图象,如图.由抛物线的定义,可知|NB |=|BF |.所以△BNF 是等腰三角形.因为BN ∥OF ,所以NF 平分∠OFB .同理MF 平分∠OF A ,所以∠NFM =90°.故选B.[答案] B5.(2017·黑龙江七台河期末)已知抛物线C :y 2=-8x 的焦点为F ,直线l :x =1,点A 是l 上的一动点,直线AF 与抛物线C 的一个交点为B .若F A →=-3FB →,则|AB |=( )A .20B .16C .10D .5[解析] 由抛物线C :y 2=-8x ,得F (-2,0).设A (1,a ),B (m ,n ),且n 2=-8m .∵F A →=-3FB →,∴1+2=-3(m +2),解得m =-3,∴n =±2 6.∵a =-3n ,∴a =±66,∴|AB |=(1+3)2+(26+66)2=20.故选A.[答案] A6.(2017·湖北襄阳月考)已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=()A.2 B.3 C. 2 D. 3[解析]如图,过N作准线的垂线NH,垂足为H.根据抛物线的定义可知|NH|=|NF|,在△NHM中,|NM|=2|NH|,则∠NMH=45°.在△MFK中,∠FMK=45°,所以|MF|=2|FK|.而|FK|=1.所以|MF|= 2.故选C.[答案] C7.已知抛物线y2=2px(p>0)的准线与曲线x2+y2-4x-5=0相切,则p的值为__________.[解析]曲线的标准方程为(x-2)2+y2=9,其表示圆心为(2,0),,∴由抛物线的准线与半径为3的圆,又抛物线的准线方程为x=-p2圆相切得2+p=3,解得p=2.2[答案] 2二、填空题8.(2018·武汉模拟)抛物线y 2=4x 的焦点为F ,倾斜角等于45°的直线过F 交该抛物线于A ,B 两点,则|AB |=__________.[解析] 由抛物线焦点弦的性质,得|AB |=2p sin 2α=2×2sin 245°=8.[答案] 89.(2017·黑龙江绥化期末)设抛物线y 2=16x 的焦点为F ,经过点P ( 1,0)的直线l 与抛物线交于A ,B 两点,且2BP →=P A →,则|AF |+2|BF |=________.[解析] 设A (x 1,y 1),B (x 2,y 2).∵P (1,0),∴BP →=(1-x 2,-y 2),P A →=(x 1-1,y 1).∵2BP →=P A →,∴2(1-x 2,-y 2)=(x 1-1,y 1),∴x 1+2x 2=3,-2y 2=y 1.将A (x 1,y 1),B (x 2,y 2)代入抛物线方程y 2=16x ,得y 21=16x 1,y 22=16x 2.又∵-2y 2=y 1,∴4x 2=x 1.又∵x 1+2x 2=3,解得x 2=12,x 1=2.∴|AF |+2|BF |=x 1+4+2(x 2+4)=2+4+2×⎝ ⎛⎭⎪⎫12+4=15. [答案] 15三、解答题10.(2017·河北沧州百校联盟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线上一点P 的横坐标为2,|PF |=3.(1)求抛物线C 的方程;(2)过点F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,O 为坐标原点,求△OAB 的面积.[解] (1)由抛物线定义可知,|PF |=2+p 2=3,∴p =2,∴抛物线C的方程为y 2=4x .(2)由y 2=4x ,得F (1,0),∴过点F 且倾斜角为30°的直线方程为y =33(x -1).联立y 2=4x ,消去x 得y 2-43y -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=43,y 1y 2=-4.∴S △OAB =S △OAF +S △OFB =12|y 1-y 2|=12×48+16=4.[能力提升]11.(2017·辽宁沈阳二中期中)抛物线C :y 2=4x 的焦点为F ,斜率为k 的直线l 与抛物线C 交于M ,N 两点.若线段MN 的垂直平分线与x 轴交点的横坐标为a (a >0),n =|MF |+|NF |,则2a -n =( )A .2B .3C .4D .5[解析] 由题意得F (1,0),准线方程为x =-1.线段MN 的中点坐标为(x 0,y 0).由抛物线的定义,得n =|MF |+|NF |=x M +1+x N +1=x M +x N +2=2x 0+2.因为线段MN 的垂直平分线方程为y -y 0=-1k (x-x 0),令y =0,得x =ky 0+x 0,即a =ky 0+x 0.由点差法可得ky 0=2,所以x 0=a -2,所以2a -n =2x 0+4-(2x 0+2)=2.故选A.[答案] A12.(2017·北京昌平期末)已知△ABC 的三个顶点均在抛物线y 2=x 上,边AC 的中线BM ∥x 轴,|BM |=2,则△ABC 的面积为________.[解析] 根据题意设A (a 2,a ),B (b 2,b ),C (c 2,c ),不妨设a >c .∵M 为边AC 的中点,∴M ⎝ ⎛⎭⎪⎪⎫a 2+c 22,a +c 2. 又∵BM ∥x 轴,∴b =a +c 2.∴|BM |=⎪⎪⎪⎪⎪⎪⎪⎪a 2+c 22-b 2=⎪⎪⎪⎪⎪⎪⎪⎪a 2+c 22-(a +c )24=2, ∴(a -c )2=8,∴a -c =2 2.作AH ⊥BM 交BM 的延长线于H ,故S △ABC =2S △ABM =2×12|BM |·|AN |=2|a -b |=2⎪⎪⎪⎪⎪⎪⎪⎪a -a +c 2=a -c =2 2. [答案] 2 213.(2017·福建厦门期中)设抛物线C :y 2=4x ,F 为C 的焦点,过点F 的直线l 与C 相交于A ,B 两点.(1)若l 的斜率为1,求|AB |的大小;(2)求证:OA →·OB →是一个定值.[解] (1)∵直线l 的斜率为1且过点F (1,0),∴直线l 的方程为y =x -1.设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧ y =x -1,y 2=4x ,消去y 得x 2-6x +1=0.Δ>0,∴x 1+x 2=6,x 1x 2=1,∴|AB |=x 1+x 2+p =8.(2)证明:设直线l 的方程为x =ky +1,联立⎩⎨⎧ x =ky +1,y 2=4x ,消去x 得y 2-4ky -4=0,Δ>0.设A =(x 1,y 1),B =(x 2,y 2),则y 1+y 2=4k ,y 1y 2=-4,OA →=(x 1,y 1),OB →=(x 2,y 2). ∴OA →·OB →=x 1x 2+y 1y 2=(ky 1+1)(ky 2+1)+y 1y 2=k 2y 1y 2+k (y 1+y 2)+1+y 1y 2=-4k 2+4k 2+1-4=-3.∴OA →·OB →=-3是一个定值.14.已知抛物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A 、B 两点,坐标原点为O ,OA →·OB →=12.(1)求抛物线的方程;(2)当以AB 为直径的圆与y 轴相切时,求直线l 的方程.[解] (1)设l :x =my -2,代入y 2=2px ,得y 2-2pmy +4p =0.(*)设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则x 1x 2=y 21y 224p 2=4.因为OA →·OB →=12,所以x 1x 2+y 1y 2=12,即4+4p =12,得p =2,抛物线的方程为y 2=4x .(2)(1)中(*)式可化为y 2-4my +8=0,y 1+y 2=4m ,y 1y 2=8.设AB 的中点为M ,则|AB |=2x M =x 1+x 2=m (y 1+y 2)-4=4m 2-4,①又|AB |=1+m 2|y 1-y 2|=(1+m 2)(16m 2-32),②由①②得(1+m 2)(16m 2-32)=(4m 2-4)2,解得m 2=3,m =±3.所以直线l 的方程为x +3y +2=0或x -3y +2=0.[延伸拓展]已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.[解] (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =12(x +4),即x =2y -4.由⎩⎨⎧ x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴⎩⎪⎨⎪⎧ y 1y 2=4, ①y 1+y 2=8+p 2. ②又∵AC →=4AB →,∴y 2=4y 1,③由①②③及p >0得:y 1=1,y 2=4,p =2,则抛物线G 的方程为x 2=4y .(2)设l :y =k (x +4),BC 的中点坐标为(x 0,y 0),由⎩⎨⎧ x 2=4y ,y =k (x +4)得x 2-4kx -16k =0,④∴x 0=x C +x B 2=2k ,y 0=k (x 0+4)=2k 2+4k .∴线段BC 的中垂线方程为y -2k 2-4k =-1k (x -2k ),∴线段BC 的中垂线在y 轴上的截距为:b =2k 2+4k +2=2(k +1)2, 对于方程④,由Δ=16k 2+64k >0得:k >0或k <-4. ∴b ∈(2,+∞).。
与名师对话2019届高三数学(文)一轮复习课时跟踪训练:第九章 平面解析几何 课时跟踪训练53
课时跟踪训练(五十三)[基础巩固]一、选择题1.(2017·广东汕头质检)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35 D .-45[解析] ∵抛物线C :y 2=4x 的焦点为F ,∴点F 的坐标为(1,0).又∵直线y =2x -4与C 交于A ,B 两点,∴A ,B 两点坐标分别为(1,-2),(4,4),则F A →=(0,-2),FB →=(3,4),∴cos ∠AFB =F A →·FB →|F A →||FB →|=-810=-45.故选D.[答案] D2.(2017·北京东城期末)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于3,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在[解析] 过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,若直线AB 的斜率不存在,则横坐标之和等于2,不符合题意.设直线AB 的斜率为k ,则直线AB 的方程为y =k (x -1),代入抛物线方程y 2=4x ,得k 2x 2-2(k 2+2)x +k 2=0.∵A ,B 两点的横坐标之和等于3,∴2(k 2+2)k 2=3.解得k =±2,∴符合题意的直线有且仅有两条.故选B.[答案] B3.(2017·湖南长沙调研)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=4xC .y 2=±8xD .y 2=8x[解析] ∵抛物线y 2=ax (a ≠0)的焦点F 的坐标为⎝ ⎛⎭⎪⎫a 4,0,∴直线l 的方程为y =2⎝ ⎛⎭⎪⎫x -a 4.∵直线l 与y 轴的交点为A ⎝ ⎛⎭⎪⎫0,-a 2,∴△OAF的面积为12⎪⎪⎪⎪⎪⎪a 4·⎪⎪⎪⎪⎪⎪a 2=4,解得a =±8.∴抛物线的方程为y 2=±8x ,故选C.[答案] C4.(2017·河南三门峡灵宝期末)已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线交抛物线于A ,B 两点,过点A ,点B 分别作AM ,BN 垂直于抛物线的准线,分别交准线于M ,N 两点,那么∠MFN 必是( )A .锐角B .直角C .钝角D .以上皆有可能[解析] 由题意画出图象,如图.由抛物线的定义,可知|NB |=|BF |.所以△BNF 是等腰三角形.因为BN ∥OF ,所以NF 平分∠OFB .同理MF 平分∠OF A ,所以∠NFM =90°.故选B.[答案] B5.(2017·黑龙江七台河期末)已知抛物线C :y 2=-8x 的焦点为F ,直线l :x =1,点A 是l 上的一动点,直线AF 与抛物线C 的一个交点为B .若F A →=-3FB →,则|AB |=( )A .20B .16C .10D .5[解析] 由抛物线C :y 2=-8x ,得F (-2,0).设A (1,a ),B (m ,n ),且n 2=-8m .∵F A →=-3FB →,∴1+2=-3(m +2),解得m =-3,∴n =±2 6.∵a =-3n ,∴a =±66,∴|AB |=(1+3)2+(26+66)2=20.故选A. [答案] A6.(2017·湖北襄阳月考)已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=( )A .2B .3 C. 2 D. 3 [解析]如图,过N 作准线的垂线NH ,垂足为H . 根据抛物线的定义可知|NH |=|NF |,在△NHM 中,|NM |=2|NH |,则 ∠NMH =45°.在△MFK 中,∠FMK =45°, 所以|MF |=2|FK |.而|FK |=1. 所以|MF |= 2.故选C. [答案] C7.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为__________.[解析] 曲线的标准方程为(x -2)2+y 2=9,其表示圆心为(2,0),半径为3的圆,又抛物线的准线方程为x =-p2,∴由抛物线的准线与圆相切得2+p2=3,解得p =2.[答案] 2 二、填空题8.(2018·武汉模拟)抛物线y 2=4x 的焦点为F ,倾斜角等于45°的直线过F 交该抛物线于A ,B 两点,则|AB |=__________.[解析] 由抛物线焦点弦的性质,得|AB |=2psin 2α=2×2sin 245°=8. [答案] 89.(2017·黑龙江绥化期末)设抛物线y 2=16x 的焦点为F ,经过点P ( 1,0)的直线l 与抛物线交于A ,B 两点,且2BP →=P A →,则|AF |+2|BF |=________.[解析] 设A (x 1,y 1),B (x 2,y 2).∵P (1,0), ∴BP →=(1-x 2,-y 2),P A →=(x 1-1,y 1).∵2BP →=P A →,∴2(1-x 2,-y 2)=(x 1-1,y 1), ∴x 1+2x 2=3,-2y 2=y 1.将A (x 1,y 1),B (x 2,y 2)代入抛物线方程y 2=16x ,得y 21=16x 1,y 22=16x 2.又∵-2y 2=y 1,∴4x 2=x 1.又∵x 1+2x 2=3,解得x 2=12,x 1=2.∴|AF |+2|BF |=x 1+4+2(x 2+4)=2+4+2×⎝⎛⎭⎪⎫12+4=15.[答案] 15 三、解答题10.(2017·河北沧州百校联盟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线上一点P 的横坐标为2,|PF |=3.(1)求抛物线C 的方程;(2)过点F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,O 为坐标原点,求△OAB 的面积.[解] (1)由抛物线定义可知,|PF |=2+p2=3,∴p =2,∴抛物线C 的方程为y 2=4x .(2)由y 2=4x ,得F (1,0),∴过点F 且倾斜角为30°的直线方程为y =33(x -1).联立y 2=4x ,消去x 得y 2-43y -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=43,y 1y 2=-4. ∴S △OAB =S △OAF +S △OFB =12|y 1-y 2|=12×48+16=4.[能力提升]11.(2017·辽宁沈阳二中期中)抛物线C :y 2=4x 的焦点为F ,斜率为k 的直线l 与抛物线C 交于M ,N 两点.若线段MN 的垂直平分线与x 轴交点的横坐标为a (a >0),n =|MF |+|NF |,则2a -n =( )A .2B .3C .4D .5[解析] 由题意得F (1,0),准线方程为x =-1.线段MN 的中点坐标为(x 0,y 0).由抛物线的定义,得n =|MF |+|NF |=x M +1+x N +1=x M +x N +2=2x 0+2.因为线段MN 的垂直平分线方程为y -y 0=-1k (x -x 0),令y =0,得x =ky 0+x 0,即a =ky 0+x 0.由点差法可得ky 0=2,所以x 0=a -2,所以2a -n =2x 0+4-(2x 0+2)=2.故选A.[答案] A12.(2017·北京昌平期末)已知△ABC 的三个顶点均在抛物线y 2=x 上,边AC 的中线BM ∥x 轴,|BM |=2,则△ABC 的面积为________.[解析] 根据题意设A (a 2,a ),B (b 2,b ),C (c 2,c ),不妨设a >c .∵M 为边AC 的中点,∴M ⎝ ⎛⎭⎪⎫a 2+c 22,a +c 2. 又∵BM ∥x 轴,∴b =a +c2.∴|BM |=⎪⎪⎪⎪⎪⎪a 2+c 22-b 2=⎪⎪⎪⎪⎪⎪a 2+c 22-(a +c )24=2,∴(a -c )2=8,∴a -c =2 2.作AH ⊥BM 交BM 的延长线于H ,故S △ABC =2S △ABM =2×12|BM |·|AN |=2|a -b |=2⎪⎪⎪⎪⎪⎪a -a +c 2=a -c =2 2. [答案] 2 213.(2017·福建厦门期中)设抛物线C :y 2=4x ,F 为C 的焦点,过点F 的直线l 与C 相交于A ,B 两点.(1)若l 的斜率为1,求|AB |的大小;(2)求证:OA →·OB →是一个定值.[解] (1)∵直线l 的斜率为1且过点F (1,0), ∴直线l 的方程为y =x -1.设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,消去y 得x 2-6x +1=0.Δ>0,∴x 1+x 2=6,x 1x 2=1,∴|AB |=x 1+x 2+p =8.(2)证明:设直线l 的方程为x =ky +1,联立⎩⎪⎨⎪⎧x =ky +1,y 2=4x ,消去x得y 2-4ky -4=0,Δ>0.设A =(x 1,y 1),B =(x 2,y 2),则y 1+y 2=4k ,y 1y 2=-4, OA →=(x 1,y 1),OB →=(x 2,y 2).∴OA →·OB →=x 1x 2+y 1y 2=(ky 1+1)(ky 2+1)+y 1y 2=k 2y 1y 2+k (y 1+y 2)+1+y 1y 2=-4k 2+4k 2+1-4=-3.∴OA →·OB →=-3是一个定值.14.已知抛物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A 、B 两点,坐标原点为O ,OA →·OB →=12.(1)求抛物线的方程;(2)当以AB 为直径的圆与y 轴相切时,求直线l 的方程. [解] (1)设l :x =my -2,代入y 2=2px , 得y 2-2pmy +4p =0.(*) 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则x 1x 2=y 21y 224p 2=4.因为OA →·OB →=12,所以x 1x 2+y 1y 2=12,即4+4p =12, 得p =2,抛物线的方程为y 2=4x . (2)(1)中(*)式可化为y 2-4my +8=0, y 1+y 2=4m ,y 1y 2=8. 设AB 的中点为M ,则|AB |=2x M =x 1+x 2=m (y 1+y 2)-4=4m 2-4,① 又|AB |=1+m 2|y 1-y 2|=(1+m 2)(16m 2-32),② 由①②得(1+m 2)(16m 2-32)=(4m 2-4)2, 解得m 2=3,m =±3.所以直线l 的方程为x +3y +2=0或x -3y +2=0.[延伸拓展]已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围. [解] (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时, l 的方程为y =12(x +4),即x =2y -4.由⎩⎪⎨⎪⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0, ∴⎩⎨⎧y 1y 2=4, ①y 1+y 2=8+p2. ②又∵AC →=4AB →,∴y 2=4y 1,③由①②③及p >0得:y 1=1,y 2=4,p =2,则抛物线G 的方程为x 2=4y .(2)设l :y =k (x +4),BC 的中点坐标为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k (x +4)得x 2-4kx -16k =0,④ ∴x 0=x C +x B2=2k ,y 0=k (x 0+4)=2k 2+4k .∴线段BC 的中垂线方程为y -2k 2-4k =-1k (x -2k ),∴线段BC 的中垂线在y 轴上的截距为:b =2k 2+4k +2=2(k +1)2,对于方程④,由Δ=16k 2+64k >0得:k >0或k <-4. ∴b ∈(2,+∞).。
2019届高三数学(文)一轮复习课时跟踪训练:第九章 平面解析几何 课时跟踪训练50 Word版含解析
课时跟踪训练(五十)[基础巩固]一、选择题1.(2017·辽宁师大附中期中)过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2 C.12 D .-12[解析] 由过点M (-2,0)的直线m 的方程为y -0=k 1(x +2),代入椭圆的方程,化简得(2k 21+1)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),∴x 1+x 2=-8k 212k 21+1,∴P 的横坐标为-4k 212k 21+1,P 的纵坐标为k 1⎝ ⎛⎭⎪⎫-4k 212k 21+1+2=2k 12k 21+1,即点P ⎝ ⎛⎭⎪⎫-4k 212k 21+1,2k 12k 21+1,∴直线OP 的斜率k 2=-12k 1,∴k 1k 2=-12.故选D.[答案] D2.如图,F (c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,A ,B 为椭圆的上、下顶点,P 为直线AF 与椭圆的交点,则直线PB 的斜率k PB =( )A.c a 2B.b a 2C.b +c a 2D.bca 2[解析] 直线AF 的方程为x c +y b =1,把y =-b c x +b 代入x 2a 2+y 2b 2=1,得a 2+c 2a 2c 2x 2-2c x =0,∴x P =2a 2ca 2+c 2,y P =c 2b -a 2b a 2+c2,∴k PB =c 2b -a 2ba 2+c 2+b 2a 2ca 2+c 2=bca 2. [答案] D3.(2017·河北唐山统考)平行四边形ABCD 内接于椭圆x 24+y 22=1,直线AB 的斜率k 1=1,则直线AD 的斜率k 2=( )A.12 B .-12 C .-14 D .-2[解析] 解法一:设AB 的中点为G ,由椭圆与平行四边形的对称性知O 为平行四边形ABCD 的对角线的交点,则GO ∥AD .设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214+y 212=1,x 224+y 222=1,两式相减是(x 1-x 2)(x 1+x 2)4=-(y 1-y 2)(y 1+y 2)2,整理得x 1+x 22(y 1+y 2)=-y 1-y 2x 1-x 2=-k 1=-1,即y 1+y 2x 1+x 2=-12.又G ⎝ ⎛⎭⎪⎪⎫x 1+x 22,y 1+y 22,所以k OG =y 1+y 22-0x 1+x 22-0=-12, 即k 2=-12,故选B.解法二:设直线AB 的方程为y =x +t ,A (x 1,y 1),B (x 2,y 2),利用椭圆与平行四边形的对称性可得D (-x 2,-y 2).则直线AD 的斜率k 2=y 1+y 2x 1+x 2=x 1+x 2+2t x 1+x 2=1+2tx 1+x 2.联立⎩⎨⎧y =x +t ,x 2+2y 2-4=0,消去y 得3x 2+4tx +2t 2-4=0,则x 1+x 2=-4t3,∴k 2=1+2t -43t =-12.故选B.[答案] B 二、解答题4.(2017·河北涞水波峰中学、高碑店三中联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且椭圆C 与圆M :x 2+(y -3)2=4的公共弦长为4.(1)求椭圆C 的方程;(2)已知O 为坐标原点,过椭圆C 的右顶点A 作直线l 与圆x 2+y 2=85相切并交椭圆C 于另一点B ,求OA →·OB →的值.[解] (1)∵椭圆C 与圆M 的公共弦长为4,∴椭圆C 经过点(±2,3),∴4a 2+9b 2=1,又c a =12,a 2=b 2+c 2,解得a 2=16,b 2=12,∴椭圆C 的方程为x 216+y 212=1.(2)已知右顶点A (4,0),∵直线l 与圆x 2+y 2=85相切,设直线l 的方程为y =k (x -4),∴|4k |1+k2=85,∴9k 2=1,∴k =±13.联立y =±13(x-4)与x 216+y 212=1,消去y ,得31x 2-32x -368=0.设B (x 0,y 0),则由根与系数的关系得4x 0=-36831,∴OA →·OB →=4x 0=-36831.5.(2017·吉林长春外国语学校期中)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上任意一点,且|PF 1|+|PF 2|=22,它的焦距为2.(1)求椭圆C 的方程.(2)是否存在正实数t ,使直线x -y +t =0与椭圆C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=56上?若存在,求出t 的值;若不存在,请说明理由.[解] (1)∵F 1,F 2为椭圆的左、右焦点,P 是椭圆上任意一点,且|PF 1|+|PF 2|=22,∴a = 2.∵2c =2,∴c =1,∴b =a 2-c 2=1,∴椭圆C 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x -y +t =0,x 22+y 2=1,化简得3x 2+4tx +2t 2-2=0.①由①知x 1+x 2=-4t 3,∴y 1+y 2=x 1+x 2+2t =2t3. ∵线段AB 的中点在圆x 2+y 2=56上,∴⎝ ⎛⎭⎪⎫-2t 32+⎝ ⎛⎭⎪⎫t 32=56,解得t =62(负值舍去), 故存在t =62满足题意.6.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.[解] (1)设椭圆方程为x 2a 2+y 2b 2=1(a >0,b >0),因为c =1,c a =12,所以a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)由题意可知直线l 的斜率存在,设直线l 的方程为y =kx +1,则由⎩⎪⎨⎪⎧y =kx +1,x 24+y 23=1得(3+4k 2)x 2+8kx -8=0,且Δ=192k 2+96>0.设A (x 1,y 1),B (x 2,y 2),则由AM →=2MB →得x 1=-2x 2.又⎩⎪⎨⎪⎧x 1+x 2=-8k 3+4k 2,x 1·x 2=-83+4k 2,所以⎩⎪⎨⎪⎧-x 2=-8k 3+4k 2,-2x 22=-83+4k 2,消去x 2,得⎝ ⎛⎭⎪⎪⎫8k 3+4k 22=43+4k 2,解得k 2=14,k =±12. 所以直线l 的方程为y =±12x +1,即x -2y +2=0或x +2y -2=0.[能力提升]7.(2017·河南考前预测)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点是F 1,F 2,且|F 1F 2|=2,离心率为12.(1)求椭圆C 的方程;(2)若过椭圆右焦点F 2的直线l 交椭圆于A ,B 两点,求|AF 2|·|F 2B |的取值范围.[解] (1)因为椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =12,2c =2,解得a =2,b = 3.所以椭圆C 的标准方程为x 24+y 23=1.(2)因为F 2(1,0),所以①当直线l 的斜率不存在时,A ⎝ ⎛⎭⎪⎫1,32,B ⎝ ⎛⎭⎪⎫1,-32,则|AF 2|·|F 2B |=94. ②当直线l 的斜率存在时,直线l 的方程可设为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1消去y ,得(3+4k 2)x 2-8k 2x +4k 2-12=0.(*)设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程(*)的两个根,所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2. 所以|AF 2|=(x 1-1)2+y 21=1+k 2·|x 1-1|,所以|AF 2|·|F 2B |=(1+k 2)·|x 1x 2-(x 1+x 2)+1|=(1+k 2)·⎪⎪⎪⎪⎪⎪4k 2-123+4k 2-8k 23+4k 2+1 =(1+k 2)·⎪⎪⎪⎪⎪⎪-93+4k 2=(1+k 2)·93+4k2=94⎝⎛⎭⎪⎪⎫1+13+4k 2. 当k 2=0时,|AF 2|·|F 2B |取最大值3,所以|AF 2|·|F 2B |的取值范围为⎝ ⎛⎦⎥⎤94,3.由①②知|AF 2|·|F 2B |的取值范围为⎣⎢⎡⎦⎥⎤94,3.8.(2018·河北百校联盟期中)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.[解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1.由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1解得⎩⎨⎧x =433,y =-33或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1,得3x 2+4nx +2n 2-6=0.于是x 3+x 4=-4n3,x 3·x 4=2n 2-63.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2.由已知,四边形ACBD 的面积 S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863. 所以四边形ACBD 面积的最大值为863.9.设焦点在x 轴上的椭圆M 的方程为x 24+y 2b 2=1(b >0),其离心率为22.(1)求椭圆M 的方程;(2)若直线l 过点P (0,4),则直线l 何时与椭圆M 相交? [解] (1)因为椭圆M 的离心率为22, 所以4-b 24=⎝ ⎛⎭⎪⎫222,得b 2=2.所以椭圆M 的方程为x 24+y 22=1.(2)①过点P (0,4)的直线l 垂直于x 轴时,直线l 与椭圆M 相交. ②过点P (0,4)的直线l 与x 轴不垂直时,可设直线l 的方程为y =kx +4.由⎩⎪⎨⎪⎧y =kx +4,x 24+y 22=1,消去y ,得(1+2k 2)x 2+16kx +28=0.因为直线l 与椭圆M 相交,所以Δ=(16k )2-4(1+2k 2)×28=16(2k 2-7)>0, 解得k <-142或k >142.综上,当直线l 垂直于x 轴或直线l 的斜率的取值范围为⎝ ⎛⎭⎪⎫-∞,-142∪⎝ ⎛⎭⎪⎫142,+∞时,直线l 与椭圆M 相交. 10.(2017·广东惠州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,椭圆短轴的一个端点与两个焦点构成的三角形的面积为523.(1)求椭圆C 的方程;(2)已知动直线y =k (x +1)与椭圆C 相交于A ,B 两点. ①若线段AB 中点的横坐标为-12,求斜率k 的值;②已知点M ⎝ ⎛⎭⎪⎫-73,0,求证:MA →·MB →为定值. [解] (1)x 2a 2+y 2b 2=1(a >b >0)满足a 2=b 2+c 2,又c a =63,12×b ×2c =523,解得a 2=5,b 2=53,则椭圆方程为x 25+3y 25=1. (2)设A (x 1,y 1),B (x 2,y 2).①将y =k (x +1)代入x 25+3y25=1, 得(1+3k 2)x 2+6k 2x +3k 2-5=0,∴Δ=48k 2+20>0,x 1+x 2=-6k 23k 2+1,∵AB 中点的横坐标为-12, ∴-3k 23k 2+1=-1,解得k =±33.②证明:由①知x 1+x 2=-6k23k 2+1,x 1x 2=3k 2-53k 2+1,∴MA →·MB →=⎝ ⎛⎭⎪⎫x 1+73,y 1·⎝ ⎛⎭⎪⎫x 2+73,y 2 =⎝ ⎛⎭⎪⎫x 1+73⎝ ⎛⎭⎪⎫x 2+73+y 1y 2 =⎝ ⎛⎭⎪⎫x 1+73⎝ ⎛⎭⎪⎫x 2+73+k 2(x 1+1)(x 2+1) =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫73+k 2(x 1+x 2)+499+k 2=(1+k 2)3k 2-53k 2+1+⎝ ⎛⎭⎪⎫73+k 2⎝ ⎛⎭⎪⎪⎫-6k 23k 2+1+499+k 2=-3k 4-16k 2-53k 2+1+499+k 2=49(定值).。
高三数学(文)一轮复习课时跟踪训练:第九章 平面解析几何 课时跟踪训练48
课时跟踪训练(四十八)[基础巩固]一、选择题1.(2017·东北三省四市二模)直线x -3y +3=0与圆(x -1)2+(y -3)2=10相交所得弦长为( ) A.30 B.532 C .4 2 D .3 3[解析] 由题知,题中圆的圆心坐标为(1,3),半径r =10,则圆心到直线的距离d =|1-9+3|12+(-3)2=102,所以弦长为2r 2-d 2=210-104=30.[答案] A2.(2017·沈阳市高三质量监测)已知直线l :y =k (x +3)和圆C :x 2+(y -1)2=1,若直线l 与圆C 相切,则k =( )A .0 B. 3 C.33或0 D.3或0[解析] 因为直线l 与圆C 相切,所以圆心C 到直线l 的距离d =|-1+3k |1+k 2=1,|-1+3k |=1+k 2,解得k =0或k =3,故选D.[答案] D3.(2017·河南省洛阳市高三第一次统考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析]依题意,注意到|AB|=2=|OA|2+|OB|2等价于圆心O到直线l的距离等于22,即有1k2+1=22,k=±1.因此,“k=1”是“|AB|=2”的充分不必要条件,选A.[答案] A4.(2017·陕西省高三质检)已知直线y=ax与圆C:x2+y2-2ax -2y+2=0相交于A,B两点,且△ABC为等边三角形,则圆C的面积为()A.49π B.36π C.7π D.6π[解析]圆C的标准方程为(x-a)2+(y-1)2=a2-1,因此圆心C(a,1)到直线y=ax的距离为|a2-1|a2+1=32a2-1,解得a2=7,所以圆C的面积为π(a2-1)2=6π,选D.[答案] D5.(2018·河北省定兴三中月考)圆O:x2+y2=50与圆x2+y2-12x -6y+40=0的公共弦长为()A. 5B. 6 C.2 5 D.2 6[解析]由题意得,两圆公共弦所在直线的方程为2x+y-15=0.又圆心O(0,0)到公共弦所在直线2x+y-15=0的距离为|-15| 22+12=35,则两圆的公共弦长为250-(35)2=2 5.故选C.[答案] C6.(2017·宁夏银川九中五模)直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()。
与名师对话2019届高三数学(文)一轮复习课时跟踪训练:第九章 平面解析几何 课时跟踪训练48
课时跟踪训练(四十八)[基础巩固]一、选择题1.(2017·东北三省四市二模)直线x -3y +3=0与圆(x -1)2+(y -3)2=10相交所得弦长为( )A. B. C .4 D .33053223[解析] 由题知,题中圆的圆心坐标为(1,3),半径r =,则10圆心到直线的距离d ==,所以弦长为2=2|1-9+3|12+(-3)2102r 2-d 2=.10-10430[答案] A2.(2017·沈阳市高三质量监测)已知直线l :y =k (x +)和圆3C :x 2+(y -1)2=1,若直线l 与圆C 相切,则k =( )A .0 B. C.或0 D.或03333[解析] 因为直线l 与圆C 相切,所以圆心C 到直线l 的距离d ==1,|-1+k |=,解得k =0或k =,故选|-1+3k |1+k 231+k 23D.[答案] D3.(2017·河南省洛阳市高三第一次统考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=”的( )2A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 依题意,注意到|AB |==|OA |2+|OB |2等价于圆心O2到直线l 的距离等于,即有=,k =±1.因此,“k =1”是221k 2+122“|AB |=”的充分不必要条件,选A.2[答案] A4.(2017·陕西省高三质检)已知直线y =ax 与圆C :x 2+y 2-2ax -2y +2=0相交于A ,B 两点,且△ABC 为等边三角形,则圆C 的面积为( )A .49πB .36πC .7πD .6π[解析] 圆C 的标准方程为(x -a )2+(y -1)2=a 2-1,因此圆心C (a,1)到直线y =ax 的距离为=,解得a 2=7,所以|a 2-1|a 2+132a 2-1圆C 的面积为π()2=6π,选D.a 2-1[答案] D5.(2018·河北省定兴三中月考)圆O :x 2+y 2=50与圆x 2+y 2-12x -6y +40=0的公共弦长为( )A. B. C .2 D .25656[解析] 由题意得,两圆公共弦所在直线的方程为2x +y -15=0.又圆心O (0,0)到公共弦所在直线2x +y -15=0的距离为=3,则两圆的公共弦长为2=2.故选C.|-15|22+12550-(35)25[答案] C6.(2017·宁夏银川九中五模)直线l :kx +y +4=0(k ∈R )是圆C :x 2+y 2+4x -4y +6=0的一条对称轴,过点A (0,k )作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为( )A. B. C. D .222266[解析] 圆C :x 2+y 2+4x -4y +6=0,即(x +2)2+(y -2)2=2,表示以C (-2,2)为圆心,为半径的圆.由题意可得,直线2l :kx +y +4=0经过圆心C (-2,2),所以-2k +2+4=0,解得k =3,所以点A (0,3),故直线m 的方程为y =x +3,即x -y +3=0,则圆心C 到直线m 的距离d ==,所以|-2-2+3|212直线m 被圆C 所截得的弦长为2=.故选C.2-126[答案] C二、填空题7.(2017·四川新津中学月考)若点P (1,1)为圆C :(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线的方程为__________.[解析] 圆心为C (3,0),直线PC 的斜率k PC =-,则弦MN 所12在直线的斜率k =2,则弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.[答案] 2x -y -1=08.已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0与圆C 2:x 2+y 2+2x -2my +m 2-3=0,若圆C 1与圆C 2相外切,则实数m =__________.[解析] 圆C 1和圆C 2的标准方程分别为(x -m )2+(y +2)2=9,(x +1)2+(y -m )2=4,圆心分别为C 1(m ,-2),C 2(-1,m ),半径分别为3和2.=5,解得(m +1)2+(m +2)2m =2或m =-5.[答案] 2或-59.(2015·江苏卷)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为__________.[解析] 直线mx -y -2m -1=0(m ∈R )恒过定点(2,-1),当点(2,-1)为圆和直线的切点时,圆的半径最大,此时r ==,圆的标准方程为(x -1)2+y 2=2.(1-2)2+(0+1)22[答案] (x -1)2+y 2=2三、解答题10.直线l 的方程为mx -y +m +2=0(m ∈R ),圆O 的方程为x 2+y 2=9.(1)证明:不论m 取何值,l 与圆都相交;(2)求l 被圆截得的线段长的最小值.[解] (1)证明:证法一:圆心O 到l 的距离为d =,圆|m +2|1+m 2O 的半径长为3.若l 与圆相交,则有<3⇔(m +2)2<9(1+m 2)|m +2|1+m 2⇔8m 2-4m +5>0⇔82+>0,(m -14)92显然82+>0(对任意的m )总成立,(m -14)92<3总成立,|m +2|1+m 2∴不论m 取何值,l 与圆都相交.证法二:把l 的方程变为y -2=m (x +1),∴不论m 取何值l 总过点A (-1,2).∵A 在圆O 的内部,∴不论m 取何值,l与圆都相交.(2)结合图形易见,当l ⊥OA 时,l 被圆截得的线段长最小,∵OA ==,∴l 被圆截得的线段长的最小值为212+225=4.9-(5)2[能力提升]11.(2017·福建宁德市一模)已知圆C :x 2+y 2-2x +4y =0关于直线3x -ay -11=0对称,则圆C 中以为中点的弦的长为( )(a 4,-a4)A .1 B .2 C .3 D .4[解析] 因为圆C :x 2+y 2-2x +4y =0关于直线3x -ay -11=0对称,所以直线3x -ay -11=0过圆心C (1,-2),所以3+2a -11=0,解得a =4,所以=(1,-1).又点(1,-1)(a 4,-a4)与圆心C (1,-2)之间的距离d ==1,圆(1-1)2+(-1+2)2C :x 2+y 2-2x +4y =0的半径r =,5所以圆C 中以为中点的弦的长为(a 4,-a 4)2=2×=4.故选D.r 2-d 25-112.(2017·安徽黄山二模)已知圆O :x 2+y 2=1,点P 为直线+x 4=1上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,y 2则直线AB 经过定点( )A. B.(12,14)(14,12)C.D.(34,0)(0,34)[解析] 因为点P 是直线+=1上的一动点,所以设x 4y 2P (4-2m ,m ).因为PA ,PB 是圆x 2+y 2=1的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,所以点A ,B 在以OP 为直径的圆C 上,即弦AB 是圆O 和圆C 的公共弦.因为圆心C 的坐标是,且半径的平方r 2=(2-m ,m 2),所以圆C 的方程为(x -2+m )2+2=(4-2m )2+m 24(y -m 2),①(4-2m )2+m 24又x 2+y 2=1,②所以②-①得,(2m -4)x -my +1=0,即公共弦AB 所在的直线方程为(2x -y )m +(-4x +1)=0,所以由Error!得Error!所以直线AB 过定点.故选B.(14,12)13.(2017·苏州高三调研)在平面直角坐标系xOy 中,已知过点M (1,1)的直线l 与圆(x +1)2+(y -2)2=5相切,且与直线ax +y -1=0垂直,则实数a =________.[解析] 由题意,直线l 的斜率存在,设过点M (1,1)的直线l 的方程为y -1=k (x -1),即kx -y +1-k =0.因为直线l 与圆(x +1)2+(y -2)2=5相切,所以圆心(-1,2)到直线l 的距离d ==,整理得k 2-4k +4=0,解得k =2.又直线l 与直|-k -2+1-k |k 2+15线ax +y -1=0垂直,所以-2a =-1,解得a =.12[答案] 1214.(2017·江苏四市联考)在平面直角坐标系xOy 中,过点M (1,0)的直线l 与圆x 2+y 2=5交于A ,B 两点,其中点A 在第一象限,且=2,则直线l 的方程为____________________.BM → MA → [解析] 解法一:由题意,设直线l 的方程为x =my +1(m ≠0),与x 2+y 2=5联立,消去x 并整理可得(m 2+1)y 2+2my -4=0.设A (x 1,y 1),B (x 2,y 2),则=(1-x 2,-y 2),=(x 1-1,y 1),BM → MA → y 1+y 2=-,①2mm 2+1y 1y 2=-.②4m 2+1因为=2,所以-y 2=2y 1,③BM → MA →联立①②③,可得m 2=1,又点A 在第一象限,所以y 1>0,则m =1,所以直线l 的方程为x -y -1=0.解法二:由题意,设直线l 的方程为x =my +1(m ≠0),即x -my -1=0,所以圆心O 到直线l 的距离d =.11+m 2又=2,且|OM |=1,圆x 2+y 2=5的半径r =,BM → MA → 5+=2(-),即3r 2-d 2|OM |2-d 2r 2-d 2|OM |2-d 2=,|OM |2-d 2r 2-d 2所以9=5-,解得m 2=1,(1-11+m 2)11+m 2又点A 在第一象限,所以m =1,故直线l 的方程为x -y -1=0.[答案] x -y -1=015.(2015·全国卷Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若·=12,其中O 为坐标原点,求|MN |.OM → ON → [解] (1)由题设,可知直线l 的方程为y =kx +1.因为直线l 与圆C 交于两点,所以<1.|2k -3+1|1+k 2解得<k <.4-734+73所以k 的取值范围为.(4-73,4+73)(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入圆C 的方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=,x 1x 2=.4(1+k )1+k 271+k 2·=x 1x 2+y 1y 2OM → ON → =(1+k 2)x 1x 2+k (x 1+x 2)+1=+8.4k (1+k )1+k 2由题设可得+8=12,解得k =1,所以l 的方程为4k (1+k )1+k 2y =x +1.故圆C 的圆心(2,3)在l 上,所以|MN |=2.16.(2018·河北衡水中学五调)已知圆C :(x -3)2+(y -4)2=4,直线l 过定点A (1,0).(1)若l 与圆C 相切,求l 的方程;(2)若l 与圆C 相交于P ,Q 两点,求△CPQ 的面积的最大值,并求此时直线l 的方程.[解] (1)若直线l 的斜率不存在,则直线l 的方程为x =1,符合题意;若直线l 的斜率存在,设直线l 的方程为y =k (x -1),即kx -y -k =0.∵直线l 与圆C 相切,∴圆心(3,4)到直线l 的距离等于半径,即=2,解得k =,|3k -4-k |k 2+134故直线l 的方程为y =(x -1),即3x -4y -3=0.34综上,所求直线l 的方程为x =1或3x -4y -3=0.(2)∵直线与圆相交于两点,∴直线的斜率一定存在且不为0.设直线方程为kx -y -k =0,则圆心到直线l 的距离为d =.∵S △CPQ =d ×2=d ·==|2k -4|1+k 2124-d 24-d 24d 2-d 4,∴当d =时,S △CPQ 取得最大值2.-(d 2-2)2+42∴d ==,解得k =1或k =7.|2k -4|1+k 22故所求直线l 的方程为x -y -1=0或7x -y -7=0.[延伸拓展](2017·江苏南京三模)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆M :(x +a +3)2+(y -2a )2=1(a 为实数).若圆O 和圆M 上分别存在点P ,Q ,使得∠OQP =30°,则a 的取值范围为________.[解析] 由题意知,圆心M (-a -3,2a ).因为圆O 和圆M 上分别存在点P ,Q ,使得∠OQP =30°,易知当Q 为线段OM 与圆M 的交点,PQ 与圆O 相切于点P 时,∠OQP 最大,且|OP |=1,所以|OM |=|OQ |+|MQ |≤3,所以(a +3)2+4a 2≤9,解得-≤a ≤0.65[答案] [-65,0]。
高三数学(文)一轮复习(课件+课时跟踪训练)第九章 平面解析几何 (5)
师
基
引
领
考 点 突
拓 视 野
破
提 能 力
第16页
第九章 第五节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
[解析] 由已知可得△F1AB 的周长为|AF1|+|AF2|+|BF1|+
吃 |BF2|=4a=8.
透
教
材 夯
[答案] 8
名
双
师
基
引
领
考 点 突
拓 视 野
破
提 能 力
第17页
第九章 第五节
)
吃
透
13
525
教 材
A. 3 B. 3 C.3 D.9
夯
名
双
师
基
引
领
考 点 突
拓 视 野
破
提 能 力
第14页
第九章 第五节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
[解析] 根据题意知,a=3,b=2,则 c= a2-b2= 5,
吃 透 教
∴椭圆的离心率 e=ac= 35,故选 B.
材
夯 双
高考概览
吃
1.掌握椭圆的定义、几何图形、标准方程及简单性质;2.了解
透
教 材
圆锥曲线的简单应用;3.理解数形结合的思想.
夯
名
双
师
基
引
领
考 点 突
拓 视 野
破
提 能 力
第3页
第九章 第五节
与名师对话·系列丛书
吃 透 教 材 夯 双 基 考 点 突 破 提 能 力
第4页
高考总复习·课标版·数学(文)
吃透教材 夯双基
与名师对话2019届高三数学(文)一轮复习:第九章 平面解析几何 9-4
(2)由圆的方程,得(x-1)2+(y-1)2=1,即此圆的圆心为(1,1),
半径为 1,
-6ysinα+1=0 与圆(x-cosβ)2+(y+sinβ)2=1 的位置关系是
()
A.相交且不过圆心 B.相交且过圆心
C.相切
D.相离
(2)若直线 x+my=2+m 与圆 x2+y2-2x-2y+1=0 相交,则
实数 m 的取值范围为( )
A.(-∞,+∞) B.(-∞,0)
C.(0,+∞)
[答案] A
2.(2018·宁夏银川一中检测)直线 x+y-2=0 与圆(x-1)2+ (y-2)2=1 相交于 A,B 两点,则弦|AB|=( )
23 A. 2 B. 2 C. 3 D. 2 [解析] ∵圆心(1,2)到直线 x+y-2=0 的距离 d= 22,∴|AB| =2 12- 222= 2.
所 以 圆 心 到 直 线 x + my - 2 - m = 0 的 距 离 为 d =
|1+m1-+2m+2 m|=
1 1+m2.
因为直线与圆相交,所以 1+1 m2<1,
解得 m2>0,即实数 m 的取值范围为(-∞,0)∪(0,+∞).
[答案] (1)A (2)D
判断直线与圆的位置关系时,若两方程已知或圆心到直线的 距离易表达,则用几何法;若方程为含有参数,或圆心到直线的 距离的表达式较烦琐,则用代数法.能用几何法,尽量不用代数 法.
⇒
利用平面几何知识, 在梯形ABCD中求|CD|
与名师对话2019届高三数学(文)一轮复习课时跟踪训练:第九章 平面解析几何 课时跟踪训练49
课时跟踪训练(四十九)[基础巩固]一、选择题1.中心在坐标原点的椭圆,焦点在x 轴上,焦距为4,离心率为22,则该椭圆的方程为( )A.x 216+y 212=1 B.x 212+y 28=1 C.x 212+y 24=1D.x 28+y 24=1[解析] 因为焦距为4,所以c =2,离心率e =c a =2a =22,∴a =22,b 2=a 2-c 2=4,故选D.[答案] D2.曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等[解析] c 2=25-k -(9-k )=16,所以c =4,所以两条曲线的焦距相等.[答案] D3.(2018·河南开封开学考试)若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)[解析] ∵方程x 2+ky 2=2,即x 22+y 22k=1表示焦点在y 轴上的椭圆,∴2k >2,故0<k <1,故选D.[答案] D4.(2017·吉林长春外国语学校期末)椭圆x 22+y 2=1的两个焦点分别是F 1,F 2,点P 是椭圆上任意一点,则PF 1→·PF 2→的取值范围是( )A .[-1,1]B .[-1,0]C .[0,1]D .[-1,2][解析] 由椭圆方程得F 1(-1,0),F 2(1,0),设P (x ,y ),∴PF 1→=(-1-x ,-y ),PF 2→=(1-x ,-y ),则PF 1→·PF 2→=x 2+y 2-1=x 22∈[0,1],故选C.[答案] C5.(2017·湖北孝感七校联盟期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67[解析] 如图,设|AF |=x ,则cos ∠ABF =82+102-x 22×8×10=45.解得x=6,∴∠AFB =90°,由椭圆及直线关于原点对称可知|AF 1|=8,∠F AF 1=∠F AB +∠FBA =90°,△F AF 1是直角三角形,所以|F 1F |=10,故2a =8+6=14,2c =10,∴c a =57. [答案] B6.(2017·上海崇明一模)如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 230+y 210=1 C.x 236+y 216=1D.x 245+y 225=1[解析] 依题意,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F ′,连接PF ′.由已知,半焦距c =2 5.又由|OP |=|OF |=|OF ′|,知∠FPF ′=90°.在Rt △PFF ′中,|PF ′|=|FF ′|2-|PF |2=(45)2-42=8.由椭圆的定义可知2a =|PF |+|PF ′|=4+8=12,所以a =6,于是b 2=a 2-c 2=62-(25)2=16,故所求椭圆方程为x 236+y 216=1,故选C.[答案] C 二、填空题7.(2018·北京朝阳模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是F (1,0),若椭圆短轴的两个三等分点M ,N 与F 构成正三角形,则此椭圆的方程为__________.[解析] 由△FMN 为正三角形,得c =|OF |=32|MN |=32×23b =1.解得b =3,∴a 2=b 2+c 2=4.故椭圆的方程为x 24+y 23=1.[答案] x 24+y 23=18.(2018·湖北武汉十六中月考)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴上,则该圆的标准方程为__________.[解析] 由x 216+y 24=1可知椭圆的右顶点坐标为(4,0),上、下顶点坐标为(0,±2).∵圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴上, ∴①当圆经过椭圆右顶点及短轴两端点时,设圆的圆心为(x,0),则x 2+4=4-x ,解得x =32,∴圆的半径为52,所求圆的方程为⎝ ⎛⎭⎪⎫x -322+y 2=254. ②当圆经过椭圆左顶点及短轴两端点时,同理可得圆的方程为⎝ ⎛⎭⎪⎫x +322+y 2=254. [答案] ⎝ ⎛⎭⎪⎫x ±322+y 2=254 9.从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.[解析] 由已知,点P (-c ,y ) 在椭圆上,代入椭圆方程,得P ⎝⎛⎭⎪⎫-c ,b 2a .∵AB ∥OP ,∴k AB =k OP ,即-b a =-b 2ac ,则b =c ,∴a 2=b 2+c 2=2c 2,则c a =22,即该椭圆的离心率是22.[答案] 22 三、解答题10.(2017·湖南长沙望城一中第三次调研)P 为圆A :(x +1)2+y 2=8上的动点,点B (1,0).线段PB 的垂直平分线与半径P A 相交于点M ,记点M 的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P 在第一象限,且cos ∠BAP =223时,求点M 的坐标. [解] (1)圆A 的圆心为A (-1,0),半径等于2 2.由已知得|MB |=|MP |,所以|MA |+|MB |=|MA |+|MP |=22, 故曲线Γ是以A ,B 为焦点,以22为长轴长的椭圆,设Γ的方程为x 2a 2+y 2b 2=1(a >b >0),a =2,c =1,b =1,所以曲线Γ的方程为x 22+y 2=1.(2)由点P 在第一象限,cos ∠BAP =223,|AP |=22,得P ⎝ ⎛⎭⎪⎫53,223. 于是直线AP 的方程为y =24(x +1). 代入椭圆方程,消去y ,可得 5x 2+2x -7=0,即(5x +7)(x -1)=0.所以x 1=1,x 2=-75.因为点M 在线段AP 上,所以点M 的坐标为⎝⎛⎭⎪⎫1,22.[能力提升]11.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A.⎣⎢⎡⎭⎪⎫23,1 B.⎣⎢⎡⎦⎥⎤13,22C.⎣⎢⎡⎭⎪⎫13,1 D.⎝ ⎛⎦⎥⎤0,13[解析] 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=F 1F 2=2c ,即椭圆上存在一点P ,使得PF 2=2c . ∴a -c ≤2c ≤a +c .∴e =c a ∈⎣⎢⎡⎭⎪⎫13,1.故选C.[答案] C12.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为()A.⎝ ⎛⎭⎪⎫0,5+14 B.⎝ ⎛⎭⎪⎫5+14,1 C.⎝ ⎛⎭⎪⎫0,5-12 D.⎝ ⎛⎭⎪⎫5-12,1 [解析] 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),∠B 1P A 2为钝角可转化为B 2A 2→,F 2B 1→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a -1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,∴5-12<e <1.[答案] D13.(2017·江苏镇江期末)已知椭圆x 2m +y 2n =1(m ,n 为常数,m >n >0)的左、右焦点分别为F 1,F 2,P 是以椭圆短轴为直径的圆上任意一点,则PF 1→·PF 2→=________.[解析] 由题知F 1(-c,0),F 2(c,0),设P (x 0,y 0),则x 20+y 20=b 2,∴PF 1→·PF 2→=(-c -x 0,-y 0)·(c -x 0,-y 0)=x 20+y 20-c 2=b 2-c 2=n -(m -n )=2n -m .[答案] 2n -m14.(2018·云南保山期末)椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F 1,若椭圆上存在一个点P ,满足以椭圆短轴为直径的圆与线段PF 1相切于该线段的中点,则椭圆的离心率为________.[解析] 设⊙O 与PF 1切于点M ,连接PF 2,OM .因为M 为PF 1的中点,所以OM 綊12PF 2,得|PF 2|=2b ,又|PF 1|+|PF 2|=2a ,所以|PF 1|=2a -2b ,|MF 1|=a -b .在Rt △OMF 1中,由|OM |2+|MF 1|2=|OF 1|2,得b 2+(a -b )2=c 2.所以b 2+(a -b )2=a 2-b 2,得a =32b ,c =52b ,所以e =c a =53.[答案] 5315.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率.(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.[解] (1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c .所以a =2c ,e =c a =22.(2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中c =a 2-b 2,设B (x ,y ).由AF 2→=2F 2B →,得(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2, 即B ⎝ ⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1,解得a 2=3c 2①.又由AF 1→·AB →=(-c ,-b )·⎝⎛⎭⎪⎫3c2,-3b 2=32,得b 2-c 2=1,即有a 2-2c 2=1② 由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.16.(2017·贵州遵义模拟)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . [解] (1)∵M 是C 上一点且MF 2与x 轴垂直,∴M 的横坐标为c .当x =c 时,y =±b 2a ,由直线MN 的斜率为34,得M ⎝ ⎛⎭⎪⎫c ,b 2a ,即tan∠MF 1F 2=b 2a 2c =b 22ac =34,即b 2=32ac =a 2-c 2,即c 2+32ac -a 2=0,则e 2+32e -1=0,即2e 2+3e -2=0,解得e =12或e =-2(舍去),即e=12.(2)由题意,原点O 是F 1F 2的中点,则直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,设M (c ,y 0)(y 0>0),则c 2a 2+y 20b 2=1,即y 20=b4a2,解得y 0=b 2a .∵OD 是△MF 1F 2的中位线,∴b 2a =4,即b 2=4a , 由|MN |=5|F 1N |,得|MF 1|=4|F 1N |,解得|DF 1|=2|F 1N |,即DF 1→=2F 1N →. 设N (x 1,y 1),由题意知y 1<0,则(-c ,-2)=2(x 1+c ,y 1).即⎩⎪⎨⎪⎧2(x 1+c )=-c ,2y 1=-2,解得⎩⎨⎧x 1=-32c ,y 1=-1,代入椭圆方程得9c 24a 2+1b 2=1,将b 2=4a 代入得9(a 2-4a )4a 2+14a =1,解得a =7,b =27.[延伸拓展]1.(2017·石家庄质检)已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( ) A.2613 B.22613 C.21313 D.41313[解析] 设点A 关于直线l 的对称点为A 1(x 1,y 1),则有⎩⎨⎧ y 1x 1+2=-1,y 12=x 1-22+3,解得x 1=-3,y 1=1,易知|P A |+|PB |的最小值等于|A 1B |=26,因此椭圆C 的离心率e =|AB ||P A |+|PB |=4|P A |+|PB |的最大值为22613. [答案] B2.(2017·上海虹口一模)一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面得一个椭圆,则该椭圆的焦距等于________.[解析] ∵底面半径为2的圆柱被与底面成60°的平面所截,其截面是一个椭圆,∴这个椭圆的短半轴长为2,长半轴长为2cos60°=4.∵a 2=b 2+c 2,∴c =42-22=23,∴椭圆的焦距为4 3. [答案] 43。
2019届高考数学一轮复习第九章平面解析几何课时跟踪训练49椭圆(一)文20180724388
课时跟踪训练(四十九) 椭圆(一)[基础巩固]一、选择题1.中心在坐标原点的椭圆,焦点在x 轴上,焦距为4,离心率为22,则该椭圆的方程为( )A.x 216+y 212=1 B.x 212+y 28=1 C.x 212+y 24=1 D.x 28+y 24=1 [解析] 因为焦距为4,所以c =2,离心率e =c a =2a =22,∴a =22,b 2=a 2-c 2=4,故选D.[答案] D2.曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等[解析] c 2=25-k -(9-k )=16,所以c =4,所以两条曲线的焦距相等. [答案] D3.(2018·河南开封开学考试)若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(0,+∞) B.(0,2) C .(1,+∞) D.(0,1)[解析] ∵方程x 2+ky 2=2,即x 22+y 22k=1表示焦点在y 轴上的椭圆,∴2k>2,故0<k <1,故选D.[答案] D4.(2017·吉林长春外国语学校期末)椭圆x 22+y 2=1的两个焦点分别是F 1,F 2,点P 是椭圆上任意一点,则PF 1→·PF 2→的取值范围是( )A .[-1,1]B .[-1,0]C .[0,1]D .[-1,2][解析] 由椭圆方程得F 1(-1,0),F 2(1,0),设P (x ,y ),∴PF 1→=(-1-x ,-y ),PF 2→=(1-x ,-y ),则PF 1→·PF 2→=x 2+y 2-1=x 22∈[0,1],故选C.[答案] C5.(2017·湖北孝感七校联盟期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C的离心率为( )A.35B.57C.45D.67[解析] 如图,设|AF |=x ,则cos ∠ABF =82+102-x 22×8×10=45.解得x =6,∴∠AFB =90°,由椭圆及直线关于原点对称可知|AF 1|=8,∠FAF 1=∠FAB +∠FBA =90°,△FAF 1是直角三角形,所以|F 1F |=10,故2a =8+6=14,2c =10,∴c a =57. [答案] B6.(2017·上海崇明一模)如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 230+y 210=1 C.x 236+y 216=1 D.x 245+y 225=1[解析] 依题意,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F ′,连接PF ′.由已知,半焦距c =2 5.又由|OP |=|OF |=|OF ′|,知∠FPF ′=90°. 在Rt △PFF ′中,|PF ′|=|FF ′|2-|PF |2=452-42=8.由椭圆的定义可知2a =|PF |+|PF ′|=4+8=12,所以a =6,于是b 2=a 2-c 2=62-(25)2=16,故所求椭圆方程为x 236+y 216=1,故选C.[答案] C 二、填空题7.(2018·北京朝阳模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是F (1,0),若椭圆短轴的两个三等分点M ,N 与F 构成正三角形,则此椭圆的方程为__________.[解析] 由△FMN 为正三角形,得c =|OF |=32|MN |=32×23b =1.解得b =3,∴a 2=b 2+c 2=4.故椭圆的方程为x 24+y 23=1.[答案]x 24+y 23=18.(2018·湖北武汉十六中月考)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴上,则该圆的标准方程为__________.[解析] 由x 216+y 24=1可知椭圆的右顶点坐标为(4,0),上、下顶点坐标为(0,±2).∵圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴上,∴①当圆经过椭圆右顶点及短轴两端点时,设圆的圆心为(x,0),则x 2+4=4-x ,解得x =32,∴圆的半径为52,所求圆的方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.②当圆经过椭圆左顶点及短轴两端点时,同理可得圆的方程为⎝ ⎛⎭⎪⎫x +322+y 2=254.[答案] ⎝ ⎛⎭⎪⎫x ±322+y 2=2549.从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.[解析] 由已知,点P (-c ,y ) 在椭圆上,代入椭圆方程,得P ⎝ ⎛⎭⎪⎫-c ,b 2a .∵AB ∥OP ,∴k AB =k OP ,即-b a =-b 2ac ,则b =c ,∴a 2=b 2+c 2=2c 2,则c a =22,即该椭圆的离心率是22.[答案]22三、解答题10.(2017·湖南长沙望城一中第三次调研)P 为圆A :(x +1)2+y 2=8上的动点,点B (1,0).线段PB 的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P 在第一象限,且cos ∠BAP =223时,求点M 的坐标.[解] (1)圆A 的圆心为A (-1,0),半径等于2 2.由已知得|MB |=|MP |,所以|MA |+|MB |=|MA |+|MP |=22,故曲线Γ是以A ,B 为焦点,以22为长轴长的椭圆,设Γ的方程为x 2a 2+y 2b 2=1(a >b >0),a =2,c =1,b =1,所以曲线Γ的方程为x 22+y 2=1.(2)由点P 在第一象限,cos ∠BAP =223,|AP |=22,得P ⎝ ⎛⎭⎪⎫53,223.于是直线AP 的方程为y =24(x +1). 代入椭圆方程,消去y ,可得 5x 2+2x -7=0,即(5x +7)(x -1)=0. 所以x 1=1,x 2=-75.因为点M 在线段AP 上,所以点M 的坐标为⎝ ⎛⎭⎪⎫1,22.[能力提升]11.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A.⎣⎢⎡⎭⎪⎫23,1B.⎣⎢⎡⎦⎥⎤13,22 C.⎣⎢⎡⎭⎪⎫13,1 D.⎝ ⎛⎦⎥⎤0,13[解析] 如图所示, ∵线段PF 1的中垂线经过F 2,∴PF 2=F 1F 2=2c ,即椭圆上存在一点P ,使得PF 2=2c .∴a -c ≤2c ≤a +c .∴e =c a ∈⎣⎢⎡⎭⎪⎫13,1.故选C.[答案] C12.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为( )A.⎝ ⎛⎭⎪⎫0,5+14 B.⎝⎛⎭⎪⎫5+14,1C.⎝⎛⎭⎪⎫0,5-12D.⎝⎛⎭⎪⎫5-12,1[解析] 设椭圆的方程为x2a2+y2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2→,F 2B 1→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a-1>0,即e 2+e-1>0,e >5-12或e <-5-12,又0<e <1,∴5-12<e <1. [答案] D13.(2017·江苏镇江期末)已知椭圆x 2m +y 2n=1(m ,n 为常数,m >n >0)的左、右焦点分别为F 1,F 2,P 是以椭圆短轴为直径的圆上任意一点,则PF 1→·PF 2→=________.[解析] 由题知F 1(-c,0),F 2(c,0),设P (x 0,y 0),则x 20+y 20=b 2,∴PF 1→·PF 2→=(-c -x 0,-y 0)·(c -x 0,-y 0)=x 20+y 20-c 2=b 2-c 2=n -(m -n )=2n -m .[答案] 2n -m14.(2018·云南保山期末)椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点为F 1,若椭圆上存在一个点P ,满足以椭圆短轴为直径的圆与线段PF 1相切于该线段的中点,则椭圆的离心率为________.[解析] 设⊙O 与PF 1切于点M ,连接PF 2,OM .因为M 为PF 1的中点,所以OM 綊12PF 2,得|PF 2|=2b ,又|PF 1|+|PF 2|=2a ,所以|PF 1|=2a -2b ,|MF 1|=a -b .在Rt △OMF 1中,由|OM |2+|MF 1|2=|OF 1|2,得b 2+(a -b )2=c 2.所以b 2+(a -b )2=a 2-b 2,得a =32b ,c =52b ,所以e =c a =53. [答案]5315.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率. (2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.[解] (1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c . 所以a =2c ,e =c a =22. (2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中c =a 2-b 2,设B (x ,y ). 由AF 2→=2F 2B →,得(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2,即B ⎝ ⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b24b 2=1,即9c 24a 2+14=1,解得a 2=3c 2①.又由AF 1→·AB →=(-c ,-b )·⎝ ⎛⎭⎪⎫3c2,-3b 2=32,得b 2-c 2=1,即有a 2-2c 2=1② 由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.16.(2017·贵州遵义模拟)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . [解] (1)∵M 是C 上一点且MF 2与x 轴垂直,∴M 的横坐标为c .当x =c 时,y =±b 2a ,由直线MN 的斜率为34,得M ⎝ ⎛⎭⎪⎫c ,b 2a ,即tan ∠MF 1F 2=b 2a 2c =b 22ac =34,即b 2=32ac =a 2-c 2,即c 2+32ac -a 2=0,则e 2+32e -1=0,即2e 2+3e -2=0,解得e =12或e =-2(舍去),即e =12.(2)由题意,原点O 是F 1F 2的中点,则直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,设M (c ,y 0)(y 0>0),则c 2a 2+y 20b 2=1,即y 20=b 4a 2,解得y 0=b 2a.∵OD 是△MF 1F 2的中位线,∴b 2a=4,即b 2=4a ,由|MN |=5|F 1N |,得|MF 1|=4|F 1N |,解得|DF 1|=2|F 1N |,即DF 1→=2F 1N →.设N (x 1,y 1),由题意知y 1<0,则(-c ,-2)=2(x 1+c ,y 1).即⎩⎪⎨⎪⎧2x 1+c =-c ,2y 1=-2,解得⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1,代入椭圆方程得9c 24a 2+1b2=1,将b 2=4a 代入得9a 2-4a 4a 2+14a=1,解得a =7,b =27. [延伸拓展]1.(2017·石家庄质检)已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A.2613 B.22613 C.21313 D.41313[解析] 设点A 关于直线l 的对称点为A 1(x 1,y 1),则有⎩⎪⎨⎪⎧y1x 1+2=-1,y 12=x 1-22+3,解得x 1=-3,y 1=1,易知|PA |+|PB |的最小值等于|A 1B |=26,因此椭圆C 的离心率e =|AB ||PA |+|PB |=4|PA |+|PB |的最大值为22613.[答案] B2.(2017·上海虹口一模)一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面得一个椭圆,则该椭圆的焦距等于________.[解析]∵底面半径为2的圆柱被与底面成60°的平面所截,其截面是一个椭圆,∴这个椭圆的短半轴长为2,长半轴长为2cos60°=4.∵a2=b2+c2,∴c=42-22=23,∴椭圆的焦距为4 3.[答案]4 3附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
与名师对话2019届高三数学(文)一轮课时跟踪训练:第九章 平面解析几何 课时跟踪训练52含解析
课时跟踪训练(五十二)[基础巩固]一、选择题1.若抛物线y 2=2px 的焦点与双曲线x 23-y 2=1的右焦点重合,则p 的值为( )A .-4B .4C .-2D .2[解析] 抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0, 由双曲线的方程可知a 2=3,b 2=1,所以c 2=a 2+b 2=4,即c =2,所以右焦点为(2,0),所以p 2=2,p =4.[答案] B2.(2018·广东湛江一中等四校第二次联考)抛物线y 2=2px 上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为( )A .4B .9C .10D .18[解析] 抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0,准线为x =-p 2.由题意可得4+p 2=9,解得p =10,所以该抛物线的焦点到准线的距离为p =10.[答案] C3.(2016·全国卷Ⅱ)设F 为抛物线C :y 2=4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12 B .1 C.32 D .2[解析] 抛物线C 的焦点坐标为F (1,0),PF ⊥x 轴,∴x P =x F =1.又∵y 2P =4x P ,∴y 2P =4.∵y P =kx P (k >0),∴y P =2,∴k =x P y P =2.故选D.[答案] D4.(2017·全国卷Ⅱ)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( ) A. 5 B .2 2 C .2 3 D .3 3[解析] 解法一:依题意,得F (1,0),则直线FM 的方程是y =3(x -1).由⎩⎪⎨⎪⎧y =3(x -1),y 2=4x ,得x =13或x =3.由M 在x 轴的上方,得M (3,23),由MN ⊥l ,得|MN |=|MF |=3+1=4,又∠NMF 等于直线FM 的倾斜角,即∠NMF =60°,因此△MNF 是边长为4的等边三角形,点M 到直线NF 的距离为4×32=23,选C.解法二:依题意,得直线FM 的倾斜角为60°,则|MN |=|MF |=21-cos60°=4,又∠NMF 等于直线FM 的倾斜角,即∠NMF =60°,因此△MNF 是边长为4的等边三角形,点M 到直线NF 的距离为4×32=23,选C.[答案] C5.已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,P A ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于( )A.7π12B.2π3C.3π4D.5π6[解析] 由抛物线定义知|PF |=|P A |,∴P 点坐标为(3,23),所以A 点坐标为(-1,23),AF 与x 轴夹角为π3,所以直线AF 的倾斜角为23π,选B.[答案] B6.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x[解析] 由已知得抛物线的焦点F ⎝ ⎛⎭⎪⎫p 2,0,设点A (0,2),抛物线上点M (x 0,y 0),则AF →=⎝ ⎛⎭⎪⎫p 2,-2,AM →=⎝ ⎛⎭⎪⎫y 202p ,y 0-2.由已知得,AF →·AM →=0,即y 20-8y 0+16=0,因而y 0=4,M ⎝ ⎛⎭⎪⎫8p ,4.由|MF |=5得,⎝ ⎛⎭⎪⎫8p -p 22+16=5,又p >0,解得p =2或p =8,故选C.[答案] C二、填空题7.已知抛物线y2=4x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴垂线,垂足分别为C,D,则|AC|+|BD|的最小值为__________.[解析]由题意知F(1,0),|AC|+|BD|=|AF|+|FB|-2=|AB|-2,即|AC|+|BD|取得最小值时,当且仅当|AB|取得最小值.由抛物线定义知,当|AB|为通径,即|AB|=2p=4时,取得最小值,所以|AC|+|BD|的最小值为2.[答案] 28.(2017·武汉市武昌区高三三调)已知抛物线Γ:y2=8x的焦点为F,准线与x轴的交点为K,点P在Γ上且|PK|=2|PF|,则△PKF 的面积为________.[解析]由已知得,F(2,0),K(-2,0),过P作PM垂直于准线,则|PM|=|PF|,又|PK|=2|PF|,∴|PM|=|MK|=|PF|,∴PF⊥x轴,△PFK的高等于|PF|,不妨设P(m2,22m)(m>0),则m2+2=4,解得m=2,故△PFK的面积S=4×22×2×12=8.[答案]89.(2016·沈阳质量监测)已知抛物线x2=4y的焦点为F,准线为l,P为抛物线上一点,过P作P A⊥l于点A,当∠AFO=30°(O为坐标原点)时,|PF|=________.[解析]设l与y轴的交点为B,在Rt△ABF中,∠AFB=30°,|BF|=2,所以|AB|=233,设P(x0,y0),则x0=±233,代入x2=4y中,得y0=13,从而|PF|=|P A|=y0+1=43.[答案]4 3三、解答题10.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.[解] (1)抛物线y 2=2px 的准线为x =-p 2,于是4+p 2=5,∴p =2,∴抛物线方程为y 2=4x .(2)∵点A 的坐标是(4,4),由题意得B (0,4),M (0,2).又∵F (1,0),∴k F A =43.∵MN ⊥F A ,∴k MN =-34.又F A 的方程为y =43(x -1),故MN 的方程为y -2=-34x ,解方程组得x =85,y =45,∴N 的坐标为⎝ ⎛⎭⎪⎫85,45. [能力提升]11.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( )A.34B.32 C .1 D .2[解析] 由题意知,抛物线的准线l :y =-1,过点A 作AA 1⊥l 交l 于点A 1,过点B 作BB 1⊥l 交l 于点B 1,设弦AB 的中点为M ,过点M 作MM 1⊥l 交l 于点M 1,则|MM 1|=|AA 1|+|BB 1|2.因为|AB |≤|AF |+|BF |(F 为抛物线的焦点),即|AF |+|BF |≥6,当直线AB 过点F 时,等号成立,所以|AA 1|+|BB 1|≥6,2|MM 1|≥6,|MM 1|≥3,故点M 到x 轴的距离d ≥2,选D.[答案] D12.(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8[解析] 如图,设圆的方程为x 2+y 2=R 2(R >0),抛物线方程为y 2=2px (p >0),A (m ,n ),∵抛物线y 2=2px 关于x 轴对称,圆关于x 轴对称,且|AB |=42,∴|y A |=22,∴x A =y 2A 2p =4p .∵A 在圆上,∴16p 2+8=R 2.①由抛物线y 2=2px 知,它的准线方程为x =-p 2, ∵|DE |=25,∴R 2=p 24+5.②联立①②可解得p =4,∴C 的焦点到准线的距离为4.故选B.[答案] B13.(2017·全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.[解析] 解法一:依题意,抛物线C :y 2=8x 的焦点F (2,0),准线x =-2,因为M 是C 上一点,FM 的延长线交y 轴于点N ,M 为FN 的中点,设M (a ,b )(b >0),所以a =1,b =22,所以N (0,42),|FN |=4+32=6.解法二:依题意,抛物线C :y 2=8x 的焦点F (2,0),准线x =-2,因为M 是C 上一点,FM 的延长线交y 轴于点N ,M 为FN 的中点,则点M 的横坐标为1,所以|MF |=1-(-2)=3,|FN |=2|MF |=6.[答案] 614.(2017·山东潍坊期末)已知点A 为抛物线M :x 2=2py (p >0)与圆N :(x +2)2+y 2=r 2在第二象限的一个公共点,满足点A 到抛物线M 准线的距离为r .若抛物线M 上动点到其准线的距离与到点N 的距离之和的最小上值为2r ,则p =________.[解析] 圆N :(x +2)2+y 2=r 2的圆心N (-2,0),半径为r .设抛物线x 2=2py 的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,则|AN |+|AF |=2r . 由抛物线M 上一动点到其准线与到点N 的距离之和的最小值为2r ,即动点到焦点F 与到点N 的距离之和的最小值为2r ,可得A ,N ,F 三点共线,且A 为NF 的中点.由N (-2,0),F ⎝ ⎛⎭⎪⎫0,p 2,可得A ⎝ ⎛⎭⎪⎫-1,p 4,代入抛物线M 的方程可得,1=2p ·p 4,解得p = 2.[答案] 215.(2017·河北廊坊期末质量监测)我国唐代诗人王维诗云:“明月松间照,清泉石上流”,这里的明月和清泉都是自然景物,没有变,形容词“明”对“清”,名词“月”对“泉”,词性不变,其余各词均如此.变化中的不变性质,在文学和数学中都广泛存在.比如我们利用几何画板软件作出抛物线C :x 2=y 的图象(如图),过焦点F 作直线l 交C 于A ,B 两点,过A ,B 分别作C 的切线,两切线交于点P ,过点P 作x 轴的垂线交C 于点N ,拖动点B 在C 上运动,会发现|NP ||NF |是一个定值,试求出该定值.[解] 由题意,得线段AB 是过抛物线x 2=y 焦点F 的弦.过A ,B 两点分别作抛物线的切线,两切线相交于P 点,则P 点在抛物线的准线上.下面给出证明:由抛物线C :x 2=y ,得其焦点坐标为F ⎝ ⎛⎭⎪⎫0,14. 设A (x 1,x 21),B (x 2,x 22),直线l :y =kx +14.将直线l 的方程代入抛物线C 的方程x 2=y ,得x 2-kx -14=0.∴x 1x 2=-14.①又∵抛物线C 的方程为y =x 2,求导得y ′=2x ,∴抛物线C 在点A 处的切线的斜率为2x 1,切线方程为y -x 21=2x 1(x -x 1);②抛物线C 在点B 处的切线的斜率为2x 2,切线方程为y -x 22=2x 2(x -x 2).③由①②③得y =-14.∴点P 的轨迹方程得y =-14,即点P 在抛物线的准线上.根据抛物线的定义知|NF |=|NP |,∴|NP ||NF |是一个定值1.16.设A ,B 为抛物线y 2=x 上相异两点,其纵坐标分别为1,-2,分别以A ,B 为切点作抛物线的切线l 1,l 2,设l 1,l 2相交于点P .(1)求点P 的坐标;(2)M 为A ,B 间抛物线段上任意一点,设PM →=λP A →+μPB →,试判断λ+μ是否为定值?如果为定值,求出该定值,如果不是定值,请说明理由.[解] (1)由题知A (1,1),B (4,-2),设点P 的坐标为(x P ,y P ),切线l 1:y -1=k (x -1),联立⎩⎪⎨⎪⎧y -1=k (x -1),y 2=x ,由抛物线与直线l 1相切,解得k =12,即l 1:y =12x +12,同理,l 2:y =-14x -1.联立l 1,l 2的方程,可解得⎩⎨⎧x P =-2,y P =-12,即点P 的坐标为⎝⎛⎭⎪⎫-2,-12. (2)设M (y 20,y 0),且-2≤y 0≤1. 由PM →=λP A →+μPB →得⎝ ⎛⎭⎪⎫y 20+2,y 0+12=λ⎝ ⎛⎭⎪⎫3,32+μ⎝ ⎛⎭⎪⎫6,-32,即⎩⎨⎧ y 20+2=3λ+6μ,y 0+12=32(λ-μ),解得⎩⎨⎧ λ=(y 0+2)29,μ=(y 0-1)29, 则λ+μ=y 0+23+1-y 03=1,即λ+μ为定值1.[延伸拓展](2017·广西玉林陆川中学期末)从抛物线y 2=4x 的准线l 上一点P 引抛物线的两条切线P A ,PB ,A ,B 为切点.若直线AB 的倾斜角为π3,则P 点的纵坐标为( ) A.33 B.233 C.433 D .2 3[解析] 设A (x 1,y 1),B (x 2,y 2),P (-1,y ),则k AB =y 1-y 2x 1-x 2=4y 1+y 2. ∵直线AB 的倾斜角为π3,∴4y 1+y 2=3,∴y 1+y 2=433. 切线P A 的方程为y -y 1=2y 1(x -x 1),切线PB 的方程为y -y 2=2y 2(x -x 2),即切线P A 的方程为y =2y 1x +12y 1,切线PB 的方程为y =2y 2x +12y 2.∴y 1,y 2是方程t 2-2yt +4x =0两个根,∴y 1+y 2=2y =433.∴y =233.故选B.[答案] B。
与名师对话2019届高三数学(文)一轮复习:第九章 平面解析几何 9-6
[小题速练]
1.直线 y=2x-1 与椭圆x92+y42=1 的位置关系是(
)
A.相交 B.相切 C.相离 D.不确定
y=2x-1 [解析] x92+y42=1 得 4x2+9(2x-1)2=36,即 40x2-36x- 27=0,Δ=362+4×40×27>0,故直线与椭圆相交,选 A.
[答案] D
本类型题目常见问题有:(1)过定点被定点平分的弦所在直线 的方程;(2)平行弦中点轨迹;(3)过定点的弦的中点的轨迹.解决 有关弦及弦中点问题常用方法是“韦达定理”和“点差法”.这 两种方法的前提都必须保证直线和椭圆有两个不同的公共点.
[跟踪演练] 1.(2018·合肥质检)已知椭圆 E:x42+y22=1,直线 l 交椭圆于
B.3x62 +2y72 =1
C.2x72 +1y82 =1
D.1x82 +y92=1
[思路引导] 由题意可知 AB 的中点(1,-1)及直线 AB 的斜
率,可考虑“点差法”求解.
[ 解 析 ] 设 A(x1 , y1) , B(x2 , y2) , 代 入 椭 圆 方 程 得
ax212+by212=1, ax222+by222=1,
=33+k44+k2k2=3 7 2,
∴17k4+k2-18=0,
∴k2=1,∴k=±1.
考点三 中点弦问题——常考点 已知椭圆 E:ax22+by22=1(a>b>0)的右焦点为 F(3,0),
过点 F 的直线交椭圆于 A,B 两点.若 AB 的中点坐标为(1,-1),
则 E 的方程为( )
A.4x52 +3y62 =1
(3)当 Δ<0,即 m<-3 2或 m>3 2时,方程③没有实数根, 可知原方程组没有实数解.这时直线 l 与椭圆 C 没有公共点.
与名师对话2019届高三数学(文)一轮复习课时跟踪训练:第九章 平面解析几何 课时跟踪训练51
课时跟踪训练(五十一)[基础巩固]一、选择题1.(2017·江西九江一模)若双曲线mx 2+2y 2=2的虚轴长为4,则该双曲线的焦距为( )A .2 5 B. 5 C .2 3 D. 3[解析] 双曲线方程为y 2-x 2-2m=1,∴-2m =4,∴m =-12,双曲线的焦距为25,故选A.[答案] A2.(2017·全国卷Ⅱ)若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)[解析] 依题意得,双曲线的离心率e =1+1a 2,因为a >1,所以e ∈(1,2),选C.[答案] C3.(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y23=1的右焦点,P是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32[解析] 解法一:由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP ∥x 轴;又PF ⊥x 轴,所以AP ⊥PF ,所以S △APF =12|PF |·|AP |=12×3×1=32.故选D. 解法二:由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP →=(1,0),PF →=(0,-3),所以AP →·PF →=0,所以AP ⊥PF ,所以S △APF =12|PF ||AP |=12×3×1=32.故选D.[答案] D4.(2017·天津卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 2=1D .x 2-y 23=1[解析] 由△OAF 是边长为2的等边三角形可知,c =2,ba =tan60°=3,又c 2=a 2+b 2,联立可得a =1,b =3,∴双曲线的方程为x 2-y 23=1.[答案] D5.(2018·广东六校联盟联考)设F 1,F 2是双曲线x 2-y224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .4 2B .8 3C .24D .48[解析] 依题意,得F 1(-5,0),F 2(5,0),|F 1F 2|=10. ∵3|PF 1|=4|PF 2|,设|PF 2|=x ,则|PF 1|=43x . 由双曲线的性质知43x -x =2,解得x =6. ∴|PF 1|=8,|PF 2|=6,∴∠F 1PF 2=90°, ∴△PF 1F 2的面积=12×8×6=24.故选C. [答案] C6.(2016·天津卷)已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1D.x 24-y 212=1[解析] 根据对称性,不妨设点A 在第一象限,其坐标为(x ,y ),于是有⎩⎨⎧x 2+y 2=4,y =b2x⇒⎩⎪⎨⎪⎧x =4b 2+4,y =4b 2+4·b2,则xy =16b 2+4·b 2=b 2⇒b 2=12.故所求双曲线的方程为x 24-y 212=1,故选D.[答案] D 二、填空题7.若双曲线的渐近线方程为x ±2y =0,焦距为10,则该双曲线的方程为__________.[解析] 设双曲线的方程为x 2-4y 2=λ(λ≠0),焦距2c =10,c 2=25,当λ>0时,x 2λ-y 2λ4=1,λ+λ4=25,∴λ=20;当λ<0时,y 2-λ4-x 2-λ=1,-λ+⎝ ⎛⎭⎪⎫-λ4=25,∴λ=-20.故该双曲线的方程为x 220-y 25=1或y 25-x 220=1. [答案] x 220-y 25=1或y 25-x 220=18.(2018·银川第二中学月考)若以双曲线x 22-y 2b 2=1(b >0)的左、右焦点和点P (1,2)为顶点的三角形为直角三角形,则b 等于__________.[解析] 设双曲线x 22-y 2b 2=1(b >0)的左、右焦点为F 1(-c,0),F 2(c,0),依题意,k PF 1·k PF 2=21+c ·21-c=-1,∴c 2=3,b 2=1,∴b =1.[答案] 19.(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.[解析] 双曲线的右顶点为A (a,0),一条渐近线的方程为y =b a x ,即bx -ay =0,圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=abc ,因为∠MAN =60°,圆的半径为b ,所以b ·sin60°=ab c ,即3b 2=abc ,所以e =23=233. [答案]233三、解答题10.如图,已知F 1、F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求:(1)双曲线的离心率; (2)双曲线的渐近线方程.[解] (1)∵∠PF 2F 1=90°,∠PF 1F 2=30°.在Rt △PF 2F 1中,|PF 1|=|F 1F 2|cos ∠PF 1F 2=2c cos30°=43c 3,|PF 2|=12|PF 1|=23c 3,又|PF 1|-|PF 2|=2a ,即233c =2a ,ca =3, ∴e =ca = 3.(2)对于双曲线,有c 2=a 2+b 2,∴b =c 2-a 2.∴ba =c 2-a 2a =⎝ ⎛⎭⎪⎫c a 2-1=3-1= 2. ∴双曲线的渐近线方程为y =±2x .[能力提升]11.(2017·广东佛山一中段考)已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1,F 2,过点F 1作圆x 2+y 2=a 2的一条切线分别交双曲线的左、右两支于点B ,C ,与双曲线的渐近线在第二象限内交于点D ,且|CD |=|CF 2|,则双曲线的离心率为( )A. 6B. 5C. 3D. 2[解析] ∵过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B ,C ,且|CD |=|CF 2|,∴|DF 1|=2a ,由题意,切线的斜率为a b ,切线方程为y =ab (x +c ),与y =-b a x 垂直,∴2a =b ,∴c =a 2+b 2=5a ,∴e =ca =5,故选B.[答案] B12.(2017·吉林长春市二模)已知双曲线C 1:x 24-y 2=1,双曲线C 2:x 2a 2-y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 2的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,且双曲线C 1,C 2的离心率相同,则双曲线C 2的实轴长是( )A .32B .16C .8D .4[解析] 双曲线C 1:x 24-y 2=1的离心率为52,设F 2(c,0),双曲线C 2一条渐近线方程为y =ba x ,可得|F 2M |=bca 2+b 2=b ,即有|OM |=c 2-b 2=a , 由S △OMF 2=16,可得12ab =16, 即ab =32,又a 2+b 2=c 2, 且c a =52,解得a =8,b =4,c =45, 即有双曲线的实轴长为16,故选B. [答案] B13.(2017·江西上饶一模)已知双曲线方程为x 2m 2+4-y 2b 2=1,若其过焦点的最短弦长为2,则该双曲线的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤1,62B.⎣⎢⎡⎭⎪⎫62,+∞ C.⎝⎛⎭⎪⎫1,62D.⎝ ⎛⎭⎪⎫62,+∞ [解析] 由题意,2b 2a =2,a ≥2, ∴b =a , ∴e = 1+b 2a 2=1+1a ≤62,∵e >1, ∴1<e ≤62. [答案] A14.(2018·山东日照模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),其右顶点是A ,若双曲线C 右支上存在两点B ,D ,使△ABD 为正三角形,则双曲线C 的离心率e 的取值范围是________.[解析] 双曲线C 的渐近线方程为y =±ba x ,要使△ABD 为正三角形,则只需过右顶点A ,且斜率为33的直线与双曲线有两个不同的交点,即只需该直线的斜率大于渐近线y =b a x 的斜率.∴33>b a ,∴b <33a .即b 2<13a 2,则c 2<a 2+13a 2,即c <233a ,则e <233,又e >1,所以1<e <233. [答案] 1<e <23315.(2017·云南省高三统一检测)已知双曲线M :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,过点F 且垂直于x 轴的直线与双曲线M 交于A ,B 两点,与双曲线M 的两条渐近线交于C ,D 两点.若|AB |=35|CD |,则双曲线M 的离心率是________.[解析] 设双曲线的右焦点为F (c,0),易知,|AB |=2b 2a .该双曲线的渐近线方程为y =±b a x ,当x =c 时,y =±bc a ,所以|CD |=2bca .由|AB |=35|CD |,得2b 2a =35×2bc a ,即b =35c ,所以a =c 2-b 2=45c ,所以e =c a =54.[答案] 5416.设A ,B 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,O 为坐标原点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标.[解] (1)由题意知a =2 3.∵一条渐近线为y =ba x ,即bx -ay =0,右焦点的坐标为(c,0), ∴由焦点到渐近线的距离为3,得|bc |b 2+a2= 3. ∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线的方程y =33x -2代入双曲线的方程x 212-y 23=1,得x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12,∴⎩⎨⎧x 0y 0=433,x 2012-y203=1,∴⎩⎪⎨⎪⎧x 0=43,y 0=3,∴t =4,点D 的坐标为(43,3).[延伸拓展]1.(2017·福州市高三质量检测)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=6,P 是双曲线E 右支上一点,PF 1与y 轴交于点A ,△P AF 2的内切圆与AF 2相切于点Q .若|AQ |=3,则双曲线E 的离心率是( )A .2 3 B. 5 C. 3 D. 2 [解析]如图所示,设△P AF 2的内切圆与PF 2相切于点M .依题意知,|AF 1|=|AF 2|,根据双曲线的定义,以及P 是双曲线E 右支上一点,得2a =|PF 1|-|PF 2|,根据三角形内切圆的性质,得|PF 1|=|AF 1|+|P A |=|AF 1|+(|PM |+|AQ |),|PF 2|=|PM |+|MF 2|=|PM |+|QF 2|=|PM |+(|AF 2|-|AQ |).所以2a =2|AQ |=23,即a = 3.因为|F 1F 2|=6,所以c =3,所以双曲线E 的离心率是e =c a =33=3,故选C.[答案] C2.(2017·武汉武昌区高三三调)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF →与FB →反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52[解析]设实轴长为2a,虚轴长为2b,令∠AOF=α,则由题意知tanα=ba,在△AOB中,∠AOB=180°-2α,tan∠AOB=-tan2α=ABOA,∵|OA|,|AB|,|OB|成等差数列,∴设|OA|=m-d,|AB|=m,|OB|=m+d,∵OA⊥BF,∴(m-d)2+m2=(m+d)2,整理,得d=14m,∴-tan2α=-2tanα1-tan2α=ABOA=m34m=43,解得ba=2或ba=-12(舍去),∴b=2a,c=4a2+a2=5a,∴e=ca= 5.故选C.[答案] C。
高三数学(文)一轮复习课时跟踪训练:第九章 平面解析几何 课时跟踪训练49
课时跟踪训练(四十九)[基础巩固]一、选择题1.中心在坐标原点的椭圆,焦点在x轴上,焦距为4,离心率为22,则该椭圆的方程为()A.x216+y212=1 B.x212+y28=1C.x212+y24=1 D.x28+y24=1[解析]因为焦距为4,所以c=2,离心率e=ca=2a=22,∴a=22,b2=a2-c2=4,故选D.[答案] D2.曲线x225+y29=1与曲线x225-k+y29-k=1(k<9)的()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等[解析]c2=25-k-(9-k)=16,所以c=4,所以两条曲线的焦距相等.[答案] D3.(2018·河南开封开学考试)若方程x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围是()A.(0,+∞) B.(0,2)C.(1,+∞) D.(0,1)[解析] ∵方程x 2+ky 2=2,即x 22+y22k=1表示焦点在y 轴上的椭圆,∴2k >2,故0<k <1,故选D.[答案] D4.(2017·吉林长春外国语学校期末)椭圆x 22+y 2=1的两个焦点分别是F 1,F 2,点P 是椭圆上任意一点,则PF 1→·PF 2→的取值范围是( )A .[-1,1]B .[-1,0]C .[0,1]D .[-1,2][解析] 由椭圆方程得F 1(-1,0),F 2(1,0),设P (x ,y ),∴PF 1→=(-1-x ,-y ),PF 2→=(1-x ,-y ),则PF 1→·PF 2→=x 2+y 2-1=x22∈[0,1],故选C.[答案] C5.(2017·湖北孝感七校联盟期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67[解析] 如图,设|AF |=x ,则cos ∠ABF =82+102-x 22×8×10=45.解得x=6,∴∠AFB =90°,由椭圆及直线关于原点对称可知|AF 1|=8,∠F AF 1=∠F AB +∠FBA =90°,△F AF 1是直角三角形,所以|F 1F |=10,故2a =8+6=14,2c =10,∴c a =57. [答案] B6.(2017·上海崇明一模)如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 230+y 210=1 C.x 236+y 216=1D.x 245+y 225=1[解析] 依题意,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F ′,连接PF ′.由已知,半焦距c =2 5.又由|OP |=|OF |=|OF ′|,知∠FPF ′=90°.在Rt △PFF ′中,|PF ′|=|FF ′|2-|PF |2=(45)2-42=8.由椭圆的定义可知2a =|PF |+|PF ′|=4+8=12,所以a =6,于是b 2=a 2-c 2=62-(25)2=16,故所求椭圆方程为x 236+y 216=1,故选C.[答案] C 二、填空题7.(2018·北京朝阳模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是F (1,0),若椭圆短轴的两个三等分点M ,N 与F 构成正三角形,则此椭圆的方程为__________.[解析] 由△FMN 为正三角形,得c =|OF |=32|MN |=32×23b =1.解得b =3,∴a 2=b 2+c 2=4.故椭圆的方程为x 24+y23=1.[答案] x 24+y 23=18.(2018·湖北武汉十六中月考)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴上,则该圆的标准方程为__________.[解析] 由x 216+y 24=1可知椭圆的右顶点坐标为(4,0),上、下顶点坐标为(0,±2).∵圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴上, ∴①当圆经过椭圆右顶点及短轴两端点时,设圆的圆心为(x,0),则x 2+4=4-x ,解得x =32,∴圆的半径为52,所求圆的方程为⎝ ⎛⎭⎪⎫x -322+y 2=254. ②当圆经过椭圆左顶点及短轴两端点时, 同理可得圆的方程为⎝⎛⎭⎪⎫x +322+y 2=254. [答案] ⎝ ⎛⎭⎪⎫x ±322+y 2=2549.从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.[解析] 由已知,点P (-c ,y ) 在椭圆上,代入椭圆方程,得P ⎝ ⎛⎭⎪⎫-c ,b 2a .∵AB ∥OP ,∴k AB =k OP ,即-b a =-b 2ac ,则b =c ,∴a 2=b 2+c 2=2c 2,则c a =22,即该椭圆的离心率是22.[答案] 22 三、解答题10.(2017·湖南长沙望城一中第三次调研)P 为圆A :(x +1)2+y 2=8上的动点,点B (1,0).线段PB 的垂直平分线与半径P A 相交于点M ,记点M 的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P 在第一象限,且cos ∠BAP =223时,求点M 的坐标. [解] (1)圆A 的圆心为A (-1,0),半径等于2 2.由已知得|MB |=|MP |,所以|MA |+|MB |=|MA |+|MP |=22, 故曲线Γ是以A ,B 为焦点,以22为长轴长的椭圆,设Γ的方程为x 2a 2+y 2b 2=1(a >b >0),a =2,c =1,b =1,所以曲线Γ的方程为x 22+y 2=1.(2)由点P 在第一象限,cos ∠BAP =223,|AP |=22,得P ⎝ ⎛⎭⎪⎫53,223. 于是直线AP 的方程为y =24(x +1). 代入椭圆方程,消去y ,可得 5x 2+2x -7=0,即(5x +7)(x -1)=0.所以x 1=1,x 2=-75.因为点M 在线段AP 上,所以点M 的坐标为⎝⎛⎭⎪⎫1,22.[能力提升]11.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A.⎣⎢⎡⎭⎪⎫23,1 B.⎣⎢⎡⎦⎥⎤13,22C.⎣⎢⎡⎭⎪⎫13,1D.⎝ ⎛⎦⎥⎤0,13[解析] 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=F 1F 2=2c ,即椭圆上存在一点P ,使得PF 2=2c . ∴a -c ≤2c ≤a +c .∴e =c a ∈⎣⎢⎡⎭⎪⎫13,1.故选C.[答案] C12.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为( )A.⎝ ⎛⎭⎪⎫0,5+14 B.⎝ ⎛⎭⎪⎫5+14,1 C.⎝⎛⎭⎪⎫0,5-12D.⎝ ⎛⎭⎪⎫5-12,1[解析] 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),∠B 1P A 2为钝角可转化为B 2A 2→,F 2B 1→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a -1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,∴5-12<e <1.[答案] D13.(2017·江苏镇江期末)已知椭圆x 2m +y 2n =1(m ,n 为常数,m >n >0)的左、右焦点分别为F 1,F 2,P 是以椭圆短轴为直径的圆上任意一点,则PF 1→·PF 2→=________.[解析] 由题知F 1(-c,0),F 2(c,0),设P (x 0,y 0),则x 20+y 20=b 2,∴PF 1→·PF 2→=(-c -x 0,-y 0)·(c -x 0,-y 0)=x 20+y 20-c 2=b 2-c 2=n -(m -n )=2n -m .[答案] 2n -m14.(2018·云南保山期末)椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F 1,若椭圆上存在一个点P ,满足以椭圆短轴为直径的圆与线段PF 1相切于该线段的中点,则椭圆的离心率为________.[解析] 设⊙O 与PF 1切于点M ,连接PF 2,OM .因为M 为PF 1的中点,所以OM 綊12PF 2,得|PF 2|=2b ,又|PF 1|+|PF 2|=2a ,所以|PF 1|=2a -2b ,|MF 1|=a -b .在Rt △OMF 1中,由|OM |2+|MF 1|2=|OF 1|2,得b 2+(a -b )2=c 2.所以b 2+(a -b )2=a 2-b 2,得a =32b ,c =52b ,所以e =c a =53.[答案] 5315.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率. (2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.[解] (1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c .所以a =2c ,e =c a =22.(2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中c =a 2-b 2,设B (x ,y ).由AF 2→=2F 2B →,得(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2, 即B ⎝⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1,解得a 2=3c 2①.又由AF 1→·AB →=(-c ,-b )·⎝⎛⎭⎪⎫3c2,-3b 2=32,得b 2-c 2=1,即有a 2-2c 2=1② 由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.16.(2017·贵州遵义模拟)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . [解] (1)∵M 是C 上一点且MF 2与x 轴垂直,∴M 的横坐标为c . 当x =c 时,y =±b 2a ,由直线MN 的斜率为34,得M ⎝ ⎛⎭⎪⎫c ,b 2a ,即tan∠MF 1F 2=b 2a 2c =b 22ac =34,即b 2=32ac =a 2-c 2,即c 2+32ac -a 2=0,则e 2+32e -1=0,即2e 2+3e -2=0,解得e =12或e =-2(舍去),即e =12.(2)由题意,原点O 是F 1F 2的中点,则直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,设M (c ,y 0)(y 0>0),则c 2a 2+y 20b 2=1,即y 20=b 4a 2,解得y 0=b 2a .∵OD 是△MF 1F 2的中位线,∴b 2a =4,即b 2=4a ,由|MN |=5|F 1N |,得|MF 1|=4|F 1N |,解得|DF 1|=2|F 1N |,即DF 1→=2F 1N →.设N (x 1,y 1),由题意知y 1<0,则(-c ,-2)=2(x 1+c ,y 1).即⎩⎨⎧ 2(x 1+c )=-c ,2y 1=-2,解得⎩⎪⎨⎪⎧ x 1=-32c ,y 1=-1,代入椭圆方程得9c 24a 2+1b 2=1, 将b 2=4a 代入得9(a 2-4a )4a 2+14a =1,解得a =7,b =27.[延伸拓展]1.(2017·石家庄质检)已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C的离心率的最大值为()A.2613 B.22613 C.21313 D.41313[解析]设点A关于直线l的对称点为A1(x1,y1),则有⎩⎪⎨⎪⎧y1x1+2=-1,y12=x1-22+3,解得x1=-3,y1=1,易知|P A|+|PB|的最小值等于|A1B|=26,因此椭圆C的离心率e=|AB||P A|+|PB|=4|P A|+|PB|的最大值为22613.[答案] B2.(2017·上海虹口一模)一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面得一个椭圆,则该椭圆的焦距等于________.[解析]∵底面半径为2的圆柱被与底面成60°的平面所截,其截面是一个椭圆,∴这个椭圆的短半轴长为2,长半轴长为2cos60°=4.∵a2=b2+c2,∴c=42-22=23,∴椭圆的焦距为4 3.[答案]43。
高三数学(文)一轮复习课时跟踪训练:第九章 平面解析几何 课时跟踪训练50 Word版含解析
课时跟踪训练(五十)【基础巩固]一、选择题1、(2017·辽宁师大附中期中)过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为( )A 、2B 、-2 C.12 D 、-12【解析] 由过点M (-2,0)的直线m 的方程为y -0=k 1(x +2),代入椭圆的方程,化简得(2k 21+1)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),∴x 1+x 2=-8k 212k 21+1,∴P 的横坐标为-4k 212k 21+1,P 的纵坐标为k 1⎝ ⎛⎭⎪⎫-4k 212k 21+1+2=2k 12k 21+1,即点P ⎝ ⎛⎭⎪⎫-4k 212k 21+1,2k 12k 21+1,∴直线OP 的斜率k 2=-12k 1,∴k 1k 2=-12.故选D.【答案] D2、如图,F (c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,A ,B 为椭圆的上、下顶点,P 为直线AF 与椭圆的交点,则直线PB 的斜率k PB =( )A.c a 2B.b a 2C.b +c a 2D.bca 2【解析] 直线AF 的方程为x c +y b =1,把y =-b c x +b 代入x 2a 2+y 2b 2=1,得a 2+c 2a 2c 2x 2-2c x =0,∴x P =2a 2ca 2+c 2,y P =c 2b -a 2b a 2+c2,∴k PB =c 2b -a 2ba 2+c 2+b 2a 2ca 2+c 2=bca 2. 【答案] D3、(2017·河北唐山统考)平行四边形ABCD 内接于椭圆x 24+y 22=1,直线AB 的斜率k 1=1,则直线AD 的斜率k 2=( )A.12 B 、-12 C 、-14 D 、-2【解析] 解法一:设AB 的中点为G ,由椭圆与平行四边形的对称性知O 为平行四边形ABCD 的对角线的交点,则GO ∥AD .设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214+y 212=1,x 224+y 222=1,两式相减是(x 1-x 2)(x 1+x 2)4=-(y 1-y 2)(y 1+y 2)2,整理得x 1+x 22(y 1+y 2)=-y 1-y 2x 1-x 2=-k 1=-1,即y 1+y 2x 1+x 2=-12.又G ⎝ ⎛⎭⎪⎪⎫x 1+x 22,y 1+y 22,所以k OG =y 1+y 22-0x 1+x 22-0=-12, 即k 2=-12,故选B.解法二:设直线AB 的方程为y =x +t ,A (x 1,y 1),B (x 2,y 2),利用椭圆与平行四边形的对称性可得D (-x 2,-y 2)、则直线AD 的斜率k 2=y 1+y 2x 1+x 2=x 1+x 2+2t x 1+x 2=1+2t x 1+x 2.联立⎩⎨⎧y =x +t ,x 2+2y 2-4=0,消去y 得3x 2+4tx +2t 2-4=0,则x 1+x 2=-4t3,∴k 2=1+2t -43t =-12.故选B.【答案] B 二、解答题4、(2017·河北涞水波峰中学、高碑店三中联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且椭圆C 与圆M :x 2+(y -3)2=4的公共弦长为4.(1)求椭圆C 的方程;(2)已知O 为坐标原点,过椭圆C 的右顶点A 作直线l 与圆x 2+y 2=85相切并交椭圆C 于另一点B ,求OA →·OB →的值、【解] (1)∵椭圆C 与圆M 的公共弦长为4,∴椭圆C 经过点(±2,3),∴4a 2+9b 2=1,又c a =12,a 2=b 2+c 2,解得a 2=16,b 2=12,∴椭圆C 的方程为x 216+y 212=1.(2)已知右顶点A (4,0),∵直线l 与圆x 2+y 2=85相切,设直线l 的方程为y =k (x -4),∴|4k |1+k2=85,∴9k 2=1,∴k =±13.联立y =±13(x -4)与x 216+y 212=1,消去y ,得31x 2-32x -368=0.设B (x 0,y 0),则由根与系数的关系得4x 0=-36831,∴OA →·OB →=4x 0=-36831.5、(2017·吉林长春外国语学校期中)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上任意一点,且|PF 1|+|PF 2|=22,它的焦距为2.(1)求椭圆C 的方程、(2)是否存在正实数t ,使直线x -y +t =0与椭圆C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=56上?若存在,求出t 的值;若不存在,请说明理由、【解] (1)∵F 1,F 2为椭圆的左、右焦点,P 是椭圆上任意一点,且|PF 1|+|PF 2|=22,∴a = 2.∵2c =2,∴c =1,∴b =a 2-c 2=1,∴椭圆C 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x -y +t =0,x 22+y 2=1,化简得3x 2+4tx +2t 2-2=0.①由①知x 1+x 2=-4t 3,∴y 1+y 2=x 1+x 2+2t =2t3. ∵线段AB 的中点在圆x 2+y 2=56上,∴⎝ ⎛⎭⎪⎫-2t 32+⎝ ⎛⎭⎪⎫t 32=56,解得t =62(负值舍去), 故存在t =62满足题意、6、已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12. (1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程、【解] (1)设椭圆方程为x 2a 2+y 2b 2=1(a >0,b >0),因为c =1,c a =12,所以a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)由题意可知直线l 的斜率存在,设直线l 的方程为y =kx +1,则由⎩⎪⎨⎪⎧y =kx +1,x 24+y 23=1得(3+4k 2)x 2+8kx -8=0,且Δ=192k 2+96>0.设A (x 1,y 1),B (x 2,y 2),则由AM →=2MB →得x 1=-2x 2.又⎩⎪⎨⎪⎧x 1+x 2=-8k 3+4k 2,x 1·x 2=-83+4k 2,所以⎩⎪⎨⎪⎧-x 2=-8k 3+4k 2,-2x 22=-83+4k 2,消去x 2,得⎝ ⎛⎭⎪⎪⎫8k 3+4k 22=43+4k 2,解得k 2=14,k =±12. 所以直线l 的方程为y =±12x +1,即x -2y +2=0或x +2y -2=0.【能力提升]7、(2017·河南考前预测)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点是F 1,F 2,且|F 1F 2|=2,离心率为12.(1)求椭圆C 的方程;(2)若过椭圆右焦点F 2的直线l 交椭圆于A ,B 两点,求|AF 2|·|F 2B |的取值范围、【解] (1)因为椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =12,2c =2,解得a =2,b = 3.所以椭圆C 的标准方程为x 24+y 23=1.(2)因为F 2(1,0),所以①当直线l 的斜率不存在时,A ⎝ ⎛⎭⎪⎫1,32,B ⎝ ⎛⎭⎪⎫1,-32,则|AF 2|·|F 2B |=94. ②当直线l 的斜率存在时,直线l 的方程可设为y =k (x -1)、由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1消去y ,得(3+4k 2)x 2-8k 2x +4k 2-12=0.(*)设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程(*)的两个根,所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2. 所以|AF 2|=(x 1-1)2+y 21=1+k 2·|x 1-1|, |F 2B |=(x 2-1)2+y 22=1+k 2·|x 2-1|,所以|AF 2|·|F 2B |=(1+k 2)·|x 1x 2-(x 1+x 2)+1|=(1+k 2)·⎪⎪⎪⎪⎪⎪4k 2-123+4k 2-8k 23+4k 2+1 =(1+k 2)·⎪⎪⎪⎪⎪⎪-93+4k 2=(1+k 2)·93+4k2=94⎝⎛⎭⎪⎪⎫1+13+4k 2. 当k 2=0时,|AF 2|·|F 2B |取最大值3,所以|AF 2|·|F 2B |的取值范围为⎝⎛⎦⎥⎤94,3.由①②知|AF 2|·|F 2B |的取值范围为⎣⎢⎡⎦⎥⎤94,3.8、(2018·河北百校联盟期中)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值、【解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1.由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1解得⎩⎨⎧x =433,y =-33或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4)、由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1,得3x 2+4nx +2n 2-6=0. 于是x 3+x 4=-4n3,x 3·x 4=2n 2-63. 因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2.由已知,四边形ACBD 的面积 S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863. 所以四边形ACBD 面积的最大值为863.9、设焦点在x 轴上的椭圆M 的方程为x 24+y 2b 2=1(b >0),其离心率为22.(1)求椭圆M 的方程;(2)若直线l 过点P (0,4),则直线l 何时与椭圆M 相交? 【解] (1)因为椭圆M 的离心率为22, 所以4-b 24=⎝ ⎛⎭⎪⎫222,得b 2=2.所以椭圆M 的方程为x 24+y 22=1.(2)①过点P (0,4)的直线l 垂直于x 轴时,直线l 与椭圆M 相交、 ②过点P (0,4)的直线l 与x 轴不垂直时,可设直线l 的方程为y =kx +4.由⎩⎪⎨⎪⎧y =kx +4,x 24+y 22=1,消去y ,得(1+2k 2)x 2+16kx +28=0.因为直线l 与椭圆M 相交,所以Δ=(16k )2-4(1+2k 2)×28=16(2k 2-7)>0, 解得k <-142或k >142.综上,当直线l 垂直于x 轴或直线l 的斜率的取值范围为⎝ ⎛⎭⎪⎫-∞,-142∪⎝ ⎛⎭⎪⎫142,+∞时,直线l 与椭圆M 相交、10、(2017·广东惠州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,椭圆短轴的一个端点与两个焦点构成的三角形的面积为523.(1)求椭圆C 的方程;(2)已知动直线y =k (x +1)与椭圆C 相交于A ,B 两点、①若线段AB 中点的横坐标为-12,求斜率k 的值;②已知点M ⎝ ⎛⎭⎪⎫-73,0,求证:MA →·MB →为定值、 【解] (1)x 2a 2+y 2b 2=1(a >b >0)满足a 2=b 2+c 2,又c a =63,12×b ×2c =523,解得a 2=5,b 2=53,则椭圆方程为x 25+3y 25=1.(2)设A (x 1,y 1),B (x 2,y 2)、①将y =k (x +1)代入x 25+3y 25=1,得(1+3k 2)x 2+6k 2x +3k 2-5=0,∴Δ=48k 2+20>0,x 1+x 2=-6k 23k 2+1, ∵AB 中点的横坐标为-12,∴-3k 23k 2+1=-1,解得k =±33. ②证明:由①知x 1+x 2=-6k 23k 2+1,x 1x 2=3k 2-53k 2+1,∴MA →·MB →=⎝ ⎛⎭⎪⎫x 1+73,y 1·⎝ ⎛⎭⎪⎫x 2+73,y 2 =⎝ ⎛⎭⎪⎫x 1+73⎝ ⎛⎭⎪⎫x 2+73+y 1y 2 =⎝ ⎛⎭⎪⎫x 1+73⎝ ⎛⎭⎪⎫x 2+73+k 2(x 1+1)(x 2+1) =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫73+k 2(x 1+x 2)+499+k 2 =(1+k 2)3k 2-53k 2+1+⎝ ⎛⎭⎪⎫73+k 2⎝ ⎛⎭⎪⎪⎫-6k 23k 2+1+499+k 2 =-3k 4-16k 2-53k 2+1+499+k 2 =49(定值)、。
与名师对话2019届高三数学(文)一轮复习:第九章 平面解析几何 课时跟踪训练46 Word版含解析
课时跟踪训练(四十六)[基础巩固]一、选择题1、(2017·安徽安师大附中、马鞍山二中高三测试)设a ∈R ,则“a =4”是“直线l 1:ax +8y -8=0与直线l 2:2x +ay -a =0平行”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件[解析] ∵当a ≠0时,a 2=8a =-8-a ⇒直线l 1与直线l 2重合,∴无论a取何值,直线l 1与直线l 2均不可能平行,当a =4时,l 1与l 2重合、故选D 、[答案] D2、(2017·江西南昌检测)直线3x -4y +5=0关于x 轴对称的直线的方程是( )A 、3x +4y +5=0B 、3x +4y -5=0C 、-3x +4y -5=0D 、-3x +4y +5=0[解析] 在所求直线上任取一点P (x ,y ),则点P 关于x 轴的对称点P ′(x ,-y )在已知的直线3x -4y +5=0上,所以3x -4(-y )+5=0,即3x +4y +5=0,故选A 、[答案] A3、(2017·山西忻州检测)在平面直角坐标系中,点(0,2)与点(4,0)关于直线l 对称,则直线l 的方程为( )A 、x +2y -4=0B 、x -2y =0C 、2x -y -3=0D 、2x -y +3=0[解析] 因为点(0,2)与点(4,0)关于直线l 对称,所以直线l 的斜率为2,且直线l 过点(2,1),故选C 、[答案] C4、(2018·河北师大附中)三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0围成一个三角形,则k 的取值范围为( )A 、{k |k ≠±5且k ≠1}B 、{k |k ≠±5且k ≠-10}C 、{k |k ≠±1且k ≠0}D 、{k |k ≠±5}[解析] 三条直线围成一个三角形,则三条直线互不平行,且不过同一点,∴-k ±5≠0,且5×1-k -15≠0,∴k ≠±5且k ≠-10、故选B 、[答案] B5、若直线5x +4y =2m +1与直线2x +3y =m 的交点在第四象限,则m 的取值范围是( )A 、{m |m <2}B 、⎩⎨⎧m ⎪⎪⎪⎭⎬⎫m >32 C 、⎩⎨⎧ m ⎪⎪⎪⎭⎬⎫m <-32 D 、⎩⎨⎧m ⎪⎪⎪⎭⎬⎫-32<m <2 [解析]解方程组⎩⎨⎧5x +4y =2m +1,2x +3y =m ,得x =2m +37,y =3m -621=m -27、∵其交点在第四象限,∴2m +37>0,且m -27<0、 解得-32<m <2、[答案] D6、两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A 、4B 、21313 C 、52613D 、72010[解析] 由题意知,m =2,把3x +y -3=0化为6x +2y -6=0,则两平行线间的距离为d =|1-(-6)|62+22=72010、[答案] D 二、填空题7、直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为________、[解析] 直线l 1:3x -3y +23=0,直线l 2:3x +y -23=0,联立方程组可求得x =1,y =3、[答案] (1,3)8、直线2x -y -4=0绕它与y 轴的交点逆时针旋转π4所得直线的方程是________、[解析] 由已知得所求直线过点(0,-4),且斜率k =2+tan45°1-2tan45°=-3,故所求直线的方程为y +4=-3x ,即3x +y +4=0、[答案] 3x +y +4=09、过点P (-4,2),且到点(1,1)的距离为5的直线方程为__________________、[解析] 当直线的斜率存在时,设直线的斜率为k ,则其方程为y -2=k (x +4),即kx -y +4k +2=0,由点到直线的距离公式得|k -1+4k +2|k 2+1=5,解得k =125,此时直线方程为12x -5y +58=0、当直线的斜率不存在时,x =-4也满足条件、综上可知所求直线方程为12x -5y +58=0或x =-4、[答案] 12x -5y +58=0或x =-4 三、解答题10、已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值、(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等、 [解] (1)∵l 1⊥l 2,∴a (a -1)-b =0、又∵直线l 1过点(-3,-1),∴-3a +b +4=0、 故a =2,b =2、(2)∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在、 ∴k 1=k 2,即ab =1-a 、又∵坐标原点到这两条直线的距离相等, ∴l 1,l 2在y 轴上的截距互为相反数,即4b =b 、故a =2,b =-2或a =23,b =2、[能力提升]11、(2017·武汉调研)在直角坐标系中,过点P (-1,2)且与原点O 距离最大的直线方程为( )A 、x -2y +5=0B 、2x +y +4=0C 、x -3y +7=0D 、3x -y -5=0[解析] 所求直线过点P 且与OP 垂直时满足条件,因为直线OP 的斜率为k OP =-2,故所求直线的斜率为12,所以所求直线方程为y -2=12(x +1),即x -2y +5=0,选A 、[答案] A12、(2017·湖北孝感五校4月联考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A 、(-2,4)B 、(-2,-4)C 、(2,4)D 、(2,-4)[解析] 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎨⎧x =4,y =-2,∴BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0、同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线方程为y -2=3-2-1-(-4)·(x +4),即x -3y +10=0、联立得⎩⎨⎧3x +y -10=0,x -3y +10=0,解得⎩⎨⎧x =2,y =4,则C (2,4)、故选C 、[答案] C13、(2017·湖南岳阳二模)已知动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m )且 Q (4,0)到动直线l 的最大距离为3,则12a +2c 的最小值为( )A 、92B 、94 C 、1 D 、9[解析] 因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0,又Q (4,0)到动直线l 的最大距离为3,∴(4-1)2+(-m )2=3,解得m =0、∴a +c =2,则12a +2c =12(a +c )·⎝ ⎛⎭⎪⎫12a +2c =12·⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥ 12⎝⎛⎭⎪⎫52+2c 2a ·2a c =94,当且仅当c =2a =43时取等号,故选B 、 [答案] B14、过点P (1,2)的直线l 被两平行线l 1:4x +3y +1=0与l 2:4x +3y +6=0截得的线段长|AB |=2,求直线l 的方程、[解] 设直线l 的方程为y -2=k (x -1),由⎩⎨⎧ y =kx +2-k ,4x +3y +1=0,解得A ⎝ ⎛⎭⎪⎫3k -73k +4,-5k +83k +4; 由⎩⎨⎧y =kx +2-k ,4x +3y +6=0,解得B ⎝ ⎛⎭⎪⎫3k -123k +4,8-10k 3k +4、∵|AB |=2, ∴⎝ ⎛⎭⎪⎪⎫53k +42+⎝ ⎛⎭⎪⎪⎫5k 3k +42=2,整理,得7k 2-48k -7=0,解得k 1=7或k 2=-17、因此,所求直线l 的方程为x +7y -15=0或7x -y -5=0、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪训练(五十)[基础巩固]一、选择题1.(2017·辽宁师大附中期中)过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2 C.12 D .-12[解析] 由过点M (-2,0)的直线m 的方程为y -0=k 1(x +2),代入椭圆的方程,化简得(2k 21+1)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),∴x 1+x 2=-8k 212k 21+1,∴P 的横坐标为-4k 212k 21+1,P 的纵坐标为k 1⎝ ⎛⎭⎪⎪⎫-4k 212k 21+1+2=2k 12k 21+1,即点P ⎝⎛⎭⎪⎪⎫-4k 212k 21+1,2k 12k 21+1,∴直线OP 的斜率k 2=-12k 1,∴k 1k 2=-12.故选D.[答案] D2.如图,F (c,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,A ,B 为椭圆的上、下顶点,P 为直线AF 与椭圆的交点,则直线PB 的斜率k PB =( )A.c a 2B.b a 2C.b +c a 2D.bc a2 [解析] 直线AF 的方程为x c +y b =1,把y =-b c x +b 代入x 2a 2+y 2b 2=1,得a 2+c 2a 2c 2x 2-2cx =0, ∴x P =2a 2c a 2+c 2,y P =c 2b -a 2b a 2+c2,∴k PB =c 2b -a 2ba 2+c 2+b 2a 2c a 2+c 2=bca 2.[答案] D3.(2017·河北唐山统考)平行四边形ABCD 内接于椭圆x 24+y 22=1,直线AB 的斜率k 1=1,则直线AD 的斜率k 2=( )A.12 B .-12 C .-14D .-2 [解析] 解法一:设AB 的中点为G ,由椭圆与平行四边形的对称性知O 为平行四边形ABCD 的对角线的交点,则GO ∥AD .设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214+y 212=1,x 224+y222=1,两式相减是x 1-x 2x 1+x 24=-y 1-y 2y 1+y 22,整理得x 1+x 2y 1+y 2=-y 1-y 2x 1-x 2=-k 1=-1,即y 1+y 2x 1+x 2=-12. 又G ⎝ ⎛⎭⎪⎪⎫x 1+x 22,y 1+y 22,所以k OG =y 1+y 22-0x 1+x 22-0=-12,即k 2=-12,故选B.解法二:设直线AB 的方程为y =x +t ,A (x 1,y 1),B (x 2,y 2),利用椭圆与平行四边形的对称性可得D (-x 2,-y 2).则直线AD 的斜率k 2=y 1+y 2x 1+x 2=x 1+x 2+2t x 1+x 2=1+2t x 1+x 2.联立⎩⎪⎨⎪⎧y =x +t ,x 2+2y 2-4=0,消去y 得3x 2+4tx +2t 2-4=0,则x 1+x 2=-4t 3,∴k 2=1+2t -43t =-12.故选B.[答案] B 二、解答题4.(2017·河北涞水波峰中学、高碑店三中联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且椭圆C 与圆M :x 2+(y -3)2=4的公共弦长为4.(1)求椭圆C 的方程;(2)已知O 为坐标原点,过椭圆C 的右顶点A 作直线l 与圆x 2+y 2=85相切并交椭圆C 于另一点B ,求OA →·OB →的值.[解] (1)∵椭圆C 与圆M 的公共弦长为4,∴椭圆C 经过点(±2,3),∴4a 2+9b 2=1,又c a =12,a 2=b 2+c 2,解得a 2=16,b 2=12,∴椭圆C 的方程为x 216+y 212=1.(2)已知右顶点A (4,0),∵直线l 与圆x 2+y 2=85相切,设直线l 的方程为y =k (x -4),∴|4k |1+k2=85,∴9k 2=1,∴k =±13.联立y =±13(x -4)与x 216+y 212=1,消去y ,得31x 2-32x -368=0.设B (x 0,y 0),则由根与系数的关系得4x 0=-36831,∴OA →·OB →=4x 0=-36831.5.(2017·吉林长春外国语学校期中)已知椭圆C :x 22+y 22=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上任意一点,且|PF 1|+|PF 2|=22,它的焦距为2.(1)求椭圆C 的方程.(2)是否存在正实数t ,使直线x -y +t =0与椭圆C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=56上?若存在,求出t 的值;若不存在,请说明理由.[解] (1)∵F 1,F 2为椭圆的左、右焦点,P 是椭圆上任意一点,且|PF 1|+|PF 2|=22,∴a = 2.∵2c =2,∴c =1,∴b =a 2-c 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x -y +t =0,x 22+y 2=1,化简得3x 2+4tx +2t 2-2=0.①由①知x 1+x 2=-4t 3,∴y 1+y 2=x 1+x 2+2t =2t3.∵线段AB 的中点在圆x 2+y 2=56上,∴⎝ ⎛⎭⎪⎪⎫-2t 32+⎝ ⎛⎭⎪⎪⎫t 32=56,解得t =62(负值舍去), 故存在t =62满足题意.6.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程. [解] (1)设椭圆方程为x 2a 2+y 2b 2=1(a >0,b >0),因为c =1,c a =12,所以a =2,b =3,所以椭圆C 的方程为x 24+y 23=1. (2)由题意可知直线l 的斜率存在,设直线l 的方程为y =kx +1,则由⎩⎪⎨⎪⎧y =kx +1,x 24+y23=1得(3+4k 2)x 2+8kx -8=0,且Δ=192k 2+96>0.设A (x 1,y 1),B (x 2,y 2),则由AM →=2MB →得x 1=-2x 2.又⎩⎪⎨⎪⎧x 1+x 2=-8k 3+4k2,x 1·x 2=-83+4k 2,所以⎩⎪⎨⎪⎧-x 2=-8k 3+4k2,-2x 22=-83+4k 2,消去x 2,得⎝ ⎛⎭⎪⎪⎫8k 3+422=43+4k 2,解得k 2=14,k =±12.所以直线l 的方程为y =±12x +1,即x -2y +2=0或x +2y -2=0.[能力提升]7.(2017·河南考前预测)已知椭圆x 2a 2+y 2b2=1(a >b >0)的焦点是F 1,F 2,且|F 1F 2|=2,离心率为12.(1)求椭圆C 的方程;(2)若过椭圆右焦点F 2的直线l 交椭圆于A ,B 两点,求|AF 2|·|F 2B |的取值范围.[解] (1)因为椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =12,2c =2,解得a =2,b = 3.所以椭圆C 的标准方程为x 24+y 23=1.(2)因为F 2(1,0),所以①当直线l的斜率不存在时,A ⎝ ⎛⎭⎪⎪⎫1,32,B ⎝⎛⎭⎪⎪⎫1,-32,则|AF 2|·|F 2B |=94. ②当直线l 的斜率存在时,直线l 的方程可设为y =k (x -1).由⎩⎪⎨⎪⎧y =k x -,x 24+y23=1消去y ,得(3+4k 2)x 2-8k 2x +4k 2-12=0.(*)设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程(*)的两个根,所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.所以|AF 2|=x 1-2+y 21=1+k 2·|x 1-1|,|F 2B |=x 2-2+y 22=1+k 2·|x 2-1|,所以|AF 2|·|F 2B |=(1+k 2)·|x 1x 2-(x 1+x 2)+1|=(1+k 2)·⎪⎪⎪⎪⎪⎪⎪⎪4k 2-123+4k 2-8k 23+4k 2+1 =(1+k 2)·⎪⎪⎪⎪⎪⎪⎪⎪-93+4k 2=(1+k 2)·93+4k 2=94⎝ ⎛⎭⎪⎪⎫1+13+4k 2. 当k 2=0时,|AF 2|·|F 2B |取最大值3,所以|AF 2|·|F 2B |的取值范围为⎝ ⎛⎦⎥⎥⎤94,3. 由①②知|AF 2|·|F 2B |的取值范围为⎣⎢⎢⎡⎦⎥⎥⎤94,3. 8.(2018·河北百校联盟期中)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.[解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1. 由此可得b 2x 2+x 1a 2y 2+y 1=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y23=1解得⎩⎪⎨⎪⎧x =433,y =-33或⎩⎪⎨⎪⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎪⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y23=1,得3x 2+4nx +2n 2-6=0.于是x 3+x 4=-4n 3,x 3·x 4=2n 2-63.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2.由已知,四边形ACBD 的面积 S =12|CD |·|AB |=8699-n 2. 当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.9.设焦点在x 轴上的椭圆M 的方程为x 24+y 2b2=1(b >0),其离心率为22. (1)求椭圆M 的方程;(2)若直线l 过点P (0,4),则直线l 何时与椭圆M 相交?[解] (1)因为椭圆M 的离心率为22, 所以4-b 24=⎝ ⎛⎭⎪⎪⎫222,得b 2=2. 所以椭圆M 的方程为x 24+y 22=1. (2)①过点P (0,4)的直线l 垂直于x 轴时,直线l 与椭圆M 相交. ②过点P (0,4)的直线l 与x 轴不垂直时,可设直线l 的方程为y =kx +4.由⎩⎪⎨⎪⎧ y =kx +4,x 24+y 22=1,消去y ,得(1+2k 2)x 2+16kx +28=0.因为直线l 与椭圆M 相交,所以Δ=(16k )2-4(1+2k 2)×28=16(2k 2-7)>0,解得k <-142或k >142. 综上,当直线l 垂直于x 轴或直线l 的斜率的取值范围为⎝ ⎛⎭⎪⎪⎫-∞,-142∪⎝ ⎛⎭⎪⎪⎫142,+∞时,直线l 与椭圆M 相交. 10.(2017·广东惠州调研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为63,椭圆短轴的一个端点与两个焦点构成的三角形的面积为523.(1)求椭圆C 的方程;(2)已知动直线y =k (x +1)与椭圆C 相交于A ,B 两点.①若线段AB 中点的横坐标为-12,求斜率k 的值; ②已知点M ⎝ ⎛⎭⎪⎪⎫-73,0,求证:MA →·MB →为定值. [解] (1)x 2a 2+y 2b 2=1(a >b >0)满足a 2=b 2+c 2,又c a =63,12×b ×2c =523,解得a 2=5,b 2=53, 则椭圆方程为x 25+3y 25=1. (2)设A (x 1,y 1),B (x 2,y 2).①将y =k (x +1)代入x 25+3y 25=1, 得(1+3k 2)x 2+6k 2x +3k 2-5=0,∴Δ=48k 2+20>0,x 1+x 2=-6k 23k 2+1, ∵AB 中点的横坐标为-12, ∴-3k 23k 2+1=-1,解得k =±33. ②证明:由①知x 1+x 2=-6k 23k 2+1,x 1x 2=3k 2-53k 2+1, ∴MA →·MB →=⎝ ⎛⎭⎪⎪⎫x 1+73,y 1·⎝ ⎛⎭⎪⎪⎫x 2+73,y 2=⎝ ⎛⎭⎪⎪⎫x 1+73⎝⎛⎭⎪⎪⎫x 2+73+y 1y 2=⎝ ⎛⎭⎪⎪⎫x 1+73⎝⎛⎭⎪⎪⎫x 2+73+k 2(x 1+1)(x 2+1)=(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎪⎫73+k 2(x 1+x 2)+499+k 2=(1+k 2)3k 2-53k 2+1+⎝ ⎛⎭⎪⎪⎫73+k 2⎝ ⎛⎭⎪⎪⎫-6k 23k 2+1+499+k 2=-3k 4-16k 2-53k 2+1+499+k 2=49(定值).。