《高等数学A(上)》试题答案(A卷)2013

合集下载

高等数学A(一)期末试题及答案

高等数学A(一)期末试题及答案

大学2013~2014学年第一学期课程考试试卷(A 卷) 课 程 考试时间………………注:请将答案全部答在答题纸上,直接答在试卷上无效。

………………一、填空题(每小题2分,共10分) (1) =-∞→x x x )11(lim e1 . (2) 设)tan(2x x y +=,则=dy dx x x x )(sec )21(22++ .(3) 曲线36223+++=x x x y 的拐点是 )6,1(- . (4) =-⎰10211dx x 2π . (5) =⎰∞+121dx x1 . 二、选择题(每小题2分,共10分) (1) =∞→x x x 2sin lim (A) (A) 0. (B) 1. (C) 2. (D)21. (2) 设xx x f tan )(=,则0=x 是函数)(x f 的(A) (A) 可去间断点. (B) 跳跃间断点. (C) 第二类间断点. (D) 连续点.(3) 当0→x 时,下列变量中与x 是等价无穷小的是(B)(A) x 3sin . (B) 1-x e . (C) x cos . (D) x +1.(4) 函数)(x f 在0x 点可导是它在该点连续的(C)(A) 充分必要条件. (B) 必要条件. (C) 充分条件. (D) 以上都不对.(5) 设)(x f 在),(∞+-∞内有连续的导数,则下列等式正确的是(D)(A) ⎰=')()(x f dx x f . (B)C x f dx x f dx d +=⎰)()(. (C) )0()())((0f x f dt t f x-='⎰. (D) )())((0x f dt t f x ='⎰.三、计算下列极限、导数(每小题6分,共18分) (1) 213lim 21-++--→x x x x x .解: )13)(2()13)(13(lim 213lim 2121x x x x x x x x x x x x x x ++--+++-+--=-++--→→ 62)13)(2(1lim 2)13)(2)(1(22lim 11-=++-+-=++-+--=→→x x x x x x x x x x(2) 22)2(sin ln lim x x x -→ππ.解:)2(4sin cos lim )2(sin ln lim 222x x xx x x x --=-→→ππππ 812sin lim 41sin 12cos lim 4122-=---=⋅--=→→x x x x x x πππ (3) 设函数)(x y y =由方程0ln =+-y x y y 所确定,求:dxdy 和22dx y d . 两边对x 求导得:01)1(ln ='+-'+y y y所以得; yy ln 21+=' yy ln 21+='四、计算下列积分(每小题8分,共32分)(1) ⎰-dx x x )2sin(2. 解:C x x d x dx x x +-=---=-⎰⎰)2cos(21)2()2sin(21)2sin(2222 (2) ⎰-dx x 21. 解:令t x sin =,2||π≤t ,则:⎰⎰=-tdt dx x 22cos 1 C t t t C t t dt t ++=++=+=⎰cos sin 2122sin 412)2cos 1(21 C x x x +-+=2121arcsin 21 (3) ⎰10arctan xdx . 解:⎰⎰+-=10210101]arctan [arctan dx x x x x xdx 2ln 214)]1ln(21[4102-=+-=ππx (4) ⎰10dx e x . 解:令x t =,则2t x =,tdt dx 2=,⎰⎰=10102dt te dx e t x 22][22101010=-==⎰⎰dt e te tde t t t 五、综合题(每小题10分,共20分)(1) 设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=⎰22031t u du e y t t x 所确定,求函数)(x y y =的极值. 解:23124t te dx dy t +=,令0=dxdy ,得0=t ,代入得:1=x 。

大学高等数学上习题(附答案)

大学高等数学上习题(附答案)

《高数》习题1(上)一.选择题1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭10.设()f x 为连续函数,则()102f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.()21ln dxx x =+⎰.三.计算 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分xxe dx -⎰四.应用题(每题10分,共20分)1.求曲线22y x =和直线4y x =-所围图形的面积.《高数》习题1参考答案一.选择题1.B 4.C 7.D 10.C 二.填空题 1.2- 2.33- 3.arctan ln x c + 三.计算题 1①2e ②162.11xy x y '=+- 3. ()1x ex C --++四.应用题1. 18S =《高数》习题2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰③2xx e dx ⎰四.应用题(每题10分,共20分)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》习题2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=-3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》习题3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.《高数》习题3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰《高数》习题4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 9、⎰=+101dx e e xx( ). A 、21ln e + B 、22ln e + C 、31ln e + D 、221ln e +二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 四、1、38;《高数》习题5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e xcos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分⎰e edx x 1ln ;四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.参考答案一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 四、1、 29;。

《高等数学》A试卷A答案

《高等数学》A试卷A答案

《⾼等数学》A试卷A答案⼀、填空题(每⼩题4分,共20分): 1.设ln(y x =,则1d 2x y dx ==. 2.曲线sin ,1cos x t t y t =-??=-? 在 2t π= 处的切线斜率为1.3.若1lim ()x f x →存在,且111()2lim ()x x f x xf x -→=+,则1()2x f x x e -=-.4.若01()f x '=,则000(2)()lim arctan u f x u f x u u→+--=3.5.若2lim 8xx x a x a →∞+??= ?-??,则a =ln 2.⼆、选择题(每⼩题4分,共20分):1.设()232x x f x =+-,则当0x →时( D ). (A )()f x 与x 是等价⽆穷⼩量(B )()f x 是⽐x 较低阶的⽆穷⼩量(C )()f x 是⽐x 较⾼阶的⽆穷⼩量(D )()f x 与x 是同阶但⾮等价⽆穷⼩量2.若函数()f x 在0x 点存在左、右导数,则()f x 在点0x ( A ).(A )连续(B )可导(C )不可导(D )不连续3.当1x →时,12111x x e x ---的极限( C ). (A )等于2 (B )等于0 (C )不存在但不为∞ (D )为∞4.设函数21()1lim nn xf x x →∞+=+,讨论()f x 的间断点,其结论为( A ).(A )存在间断点1x = (B )存在间断点1x =-(C )存在间断点0x = (D )不存在间断点5.设对任意的x ,总有()()()x f x x ?ψ≤≤,且[]lim ()()0x x x ψ?→∞-=,则lim ()x f x →∞( C ).(A )存在且等于0 (B )存在但不⼀定等于0(C )不⼀定存在(D )⼀定不存在三、计算题(本题共4题,共计24分): 1.(5分)设tan y x y =+,求d y ;解:(tan )()d y d x y =+ 22s c 1e 1sec d ydy dx y d d xyy ==-+2.(6分)求极限:)lim x xx →-∞;解:)lim x xx →-∞limlim 05x x ==-=3.(6分)求极限:lim x +→;解:01lim lim 1()2x x x x ++→→=?22lim lim 212x x x x ++→→===4.(7分)设2(cos )y f x =,且f ⼆阶可导,求22d d yx.解:22(cos )2cos (sin )sin 2(cos )dyf x x x xf x dx''=?-=- (2cos 2)2sin )((cos 2sin )(cos 2cos 2'2''2'2 2xf x x xf x xf dx yd -=---=四、解答题(本题共3⼩题,共计24分): 1.(6分)设1x =1n x +=列{}n x 的极限存在,并求其极限.证明:单调性:当1n =时,1x =,21x x =>,假设当n k =时有1k k x x +>,则当1n k =+时仍然有,21k k x x ++=即,数列}{n x 是单调增加数列。

大学高等数学上考试题库(附答案)

大学高等数学上考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x =(C )()f x x = 和 ()()2g x x =(D )()||x f x x=和 ()g x =1 2.函数()()sin 420ln 10x x f x x a x ⎧+-≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰ ②()220dxa x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A4.C 5.D 6.C 7.D 8.A9.A10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________. 三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12x x x →+②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________.7. 20_______________________.x td e dt dx-=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭ 三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy .3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x < 2.4a = 3.2x = 4.'()x x e f e 5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+=三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰ =221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy eC x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x - 7、⎰=+dx x x ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰104dx x π B 、⎰1ydy π C 、⎰-10)1(dy y π D 、⎰-14)1(dx x π 9、⎰=+101dx e e xx( ).A 、21lne + B 、22ln e + C 、31ln e+ D 、221ln e +10、微分方程 x e y y y 22=+'+'' 的一个特解为( ). A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数x xe y =,则 =''y ;2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 xx x x --+→11lim; 2、求x x y s i n ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分 ⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、x e x )2(+; 2、94; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x c o slim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→ 3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C x xdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰104dx xπ B 、⎰10ydy πC 、⎰-10)1(dy y π D 、⎰-104)1(dx x π 9、设a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 x xe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x e C e C 221+. 三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 6、x e xy 122-= ;四、1、 29; 2、图略。

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。

要求卷面整洁、字迹工整、无错别字。

2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。

3、 考生必须在签到单上签到,若出现遗漏,后果自负。

4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。

4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。

5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。

完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。

1.下列各组函数中,是相同的函数的是()。

A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。

A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。

A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。

A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。

A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。

A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。

A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。

A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。

A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。

A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。

武汉理工大学大一公共课高等数学试卷及答案

武汉理工大学大一公共课高等数学试卷及答案

D y 1 x2
5 设 f (x) 的一个原函数为 e x2 ,则 xf (x)dx =(
A (2x2 1)ex2 C
B (x 1)ex2 C
三 求下列各极限(每小题 7 分,共 14)
) C 1 ex2 C
2
D ex2 C
1 lim( 1 1 ) ; x0 x e x 1
2 设 f (x) 在原点的某邻域内二阶可导,且 f (0) 0, f (0) 1 , f (0) 2;求 lim f (x) x 。
(7 分)
武汉理工大学教务处
试题标准答案及评分标准用纸
|
课程名称
( A 卷)
| 一 1 0 ;2 2 ; 3 (,) ; 4 1 二 D ;A ; A ; C ; A
;5
3 ln 2 。 2
lim( 1 1 ) lim e x 1 x 2 x0 x e x 1 x0 x(e x 1)
y(n) (x2 2nx 2Cn2 )ex 6
|
y(n) (0) n(n 1)7
d2y dx2
dt dx
1 5 f (t)
d 3 y d ( 1 ) dt f (t) 7 dx3 dt f (t) dx [ f (t)]3
3 cost e(xt)2 (x 1) 0 x 1 e(xt)2 cost2 x 2(x t)(x 1)e(xt)2 cost e(xt)2 sin t4
武汉理工大学 20XX 考试试题纸( A 卷)
课程名称 高等数学 A(上)
专业班级
题号 一 二 三 四 五 六 七 八 九 十
题分
备注: 学生不得在试题纸上答题(含填空题、选择题等客观题)
一 填空题(每小题 3 分,共 15 分)

高等数学(上)期中考试试卷

高等数学(上)期中考试试卷

(A ) 可去间断点 (B ) 跳跃间断点 (C ) 无穷间断点 (D ) 振荡间断点装订线内不要答题自觉遵 守考 试规 则,诚 信 考 试,绝 不 作弊(3)设函数)(x f 二阶可导,且0)(>'x f ,0)(>''x f ,则当0>∆x 时,有( )(A )0>>∆dy y (B )0<<∆dy y (C )0>∆>y dy (D )0<∆<y dy(4)函数q x x x f ++=2)(3的零点的个数为 ( )(A ) 1 (B ) 2 (C ) 3 (D ) 与q 取值有关(5)若函数)(x f 满足)( )()(+∞<<-∞=-x x f x f ,且在)0,(-∞内,0)(>'x f ,0)(<''x f ,则在),0(+∞内 ( )(A ) )(x f 单调增加且其图象是凸的; (B ) )(x f 单调增加且其图象是凹的;(C ) )(x f 单调减少且其图象是凸的; (D ) )(x f 单调减少且其图象是凹的。

(6)设)(x f 在),0(δU 内具有连续的二阶导数,0)0(='f ,)0( 1)(lim 0<=-''→a a e x f x x 则 ( )(A ) 0=x 是函数)(x f 的极小值点; (B ) 0=x 是函数)(x f 的极大值点;(C ) ))0(,0(f 是曲线)(x f y =的拐点; (D ) ))0(,0(f 不是曲线)(x f y =的拐点。

(7)曲线1)3)(2(2)(2-+-=x x x x f ( ) (A ) 没有渐近线; (B ) 仅有水平渐近线;(C ) 仅有铅直渐近线; (D ) 既有水平渐近线又有铅直渐近线。

三、计算下列极限 (每题5分,共20分)(1))||sin 12(lim 410x x e e x x x +++→(2))1ln()cos 1(1cos11lim 230x x x x x x -++-+→(3))tan 11(lim 20xx x x -→(4) x x x )arctan 2(lim π+∞→四、计算下列各题(每题6分,共24分)(1)设x e x x y -=1sin sin x x +,求y '.( 2 )设函数)(x y 由方程组⎪⎩⎪⎨⎧=+-++=01sin 3232y t e t t x y 确定,试求0t 22=dx y d( 3 ) 21)(2-+=x x x f , 试求)()(x f n( 4 ) 已知方程)ln()(2y x y x x y --=-确定y 是x 的函数,求dy .五.(6分)证明:当1<x 时,xe x ≥-11六.(5分)设)(),(x g x f 在],[b a 上二阶可导,且0)(≠''x g ,)()(b f a f ==,0)()(==b g a g 证明:(1)在),(b a 内,0)(≠x g ;(2)至少存在一点),(b a ∈ξ,使得)()()()(ξξξξg f g f ''''=成立.。

高等数学试题(含答案)

高等数学试题(含答案)

高等数学试题(含答案)高等数学试题(含答案)一、选择题1.已知函数f(x)=x^2+3x+2,下列哪个选项是f(x)的导数?A. 2x+3B. 2x+2C. x^2+3D. 3x+22.若函数f(x)=e^x,那么f'(x)等于:A. e^-xB. e^xC. ln(x)D. e^x+13.设函数y=f(x)在点x=2处可导,且f'(2)=3,则曲线y=f(x)在点(2,f(2))处的切线斜率为:A. 2B. 3C. 1D. 6二、计算题1.计算极限lim(x→1) [(x-1)/(x^2-1)]答案:1/22.计算积分∫(0 to 1) (2x+1) dx答案:3/23.设曲线C的方程为y=x^3,计算曲线C的弧长。

答案:∫(0 to 1) √(1+9x^4) dx三、证明题证明:若函数f(x)在区间[a,b]上连续,且在(a,b)可导,那么必然存在c∈(a,b),使得 f'(c) = [f(b)-f(a)] / (b-a)。

证明过程:由于f(x)在区间[a,b]上连续,根据连续函数的介值定理,f(x)在[a,b]上会取到最大值M和最小值m。

设在点x=c处取得最大值M(即f(c)=M)。

根据费马定理,如果f(x)在点x=c处可导,并且f'(c)存在,那么f'(c)=0。

由于f(x)在(a,b)可导,故f'(c)存在。

那么,根据导数的定义,f'(c)=[f(c)-f(a)]/(c-a)。

又因为f(c)=M,将其代入上式得到f'(c)=(M-f(a))/(c-a)。

同理,根据费马定理,如果f(x)在点x=d处取得最小值m(即f(d)=m),那么f'(d)也等于0。

将f(d)=m代入上式得到f'(d)=(m-f(a))/(d-a)。

由于f(x)是连续函数,故在区间[a,b]上必然存在一个点c∈(a,b),使得它处于最大值M和最小值m之间,即m<f(c)<M。

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)姓名:__________ 班级:__________ 学号:__________课程名称:高等数学(上)(A卷) 考试日期:2008年1月10日注意事项:1.本试卷满分100分,要求卷面整洁、字迹工整、无错别字。

2.考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。

3.考生必须在签到单上签到,若出现遗漏,后果自负。

4.如有答题纸,请将答案全部写在答题纸上,否则不给分。

考完请将试卷和答题卷分别一同交回,否则不给分。

一、单选题(每题3分,共15分)1.lim(sin(x^2-1)/(x-1)),x趋近于1,等于()A)1;(B)0;(C)2;(D)不存在。

2.若f(x)的一个原函数为F(x),则∫e^(-x)f(e^x)dx等于()A)F(e^x)+c;(B)-F(e^-x)+c;(C)F(e^-x)+c;(D)F(e^-x^2/2)+c。

3.下列广义积分中()是收敛的。

A)∫sinxdx,从负无穷到正无穷;(B)∫1/|x|dx,从-1到1;(C)∫x/(1+x^2)dx,从负无穷到正无穷;(D)∫e^x dx,从负无穷到0.4.f(x)为定义在[a,b]上的函数,则下列结论错误的是()A)f(x)可导,则f(x)一定连续;(B)f(x)可微,则f(x)不一定可导;(C)f(x)可积(常义),则f(x)一定有界;(D)函数f(x)连续,则∫f(x)dx在[a,b]上一定有定义。

5.设函数f(x)=lim(n→∞)(1+x^2n)^2,则下列结论正确的是()A)不存在间断点;(B)存在间断点x=1;(C)存在间断点x=0;(D)存在间断点x=-1.二、填空题(每题3分,共18分)1.极限lim(x→∞)(x^2+1-1)/x=______。

2.曲线y=3t在t=2处的切线方程为y=______。

3.已知方程y''-5y'+6y=xe^(2x)的一个特解为-1/2(x+2x)e^(2x),则该方程的通解为______。

高等数学a试卷及答案

高等数学a试卷及答案

高等数学a试卷及答案【篇一:《高等数学a(上)》试题答案(b卷)2013】class=txt>科目:《高等数学a(上)》试题(b卷)学院:专业班级:姓名:学号:阅卷教师: 2013年月日考试说明:本课程为闭卷考试,可携带。

一、选择题(每题3分,共15分)(选择正确答案的编号,填在各题前的括号内)1.设f(x)?xsinx,则f(x)在(??,??)内为( b). a.周期函数 b.偶函数 c.单调函数 d.有界函数 2、下列正确的是(d )a.极大值一定大于极小值b. 拐点是函数单调性转变的点 c. 最值一定是极值 d. 拐点是凹凸性的转变的点 3、下列各式中,正确的是( d )1xa.lim(1?)?e x?0?xb.lim(1?x?01x)xec.lim(1?)x??ex??1x1d.lim(1?)x?e?1 x??x4、关于函数连续的说法中,哪一个正确d a.函数f(x)在点x?x0处有定义,则在该点连续; b.若limf(x)存在,则函数f(x)在x0处连续;x?x0c.若f(x)在x?x0处有定义,且limf(x)存在,则函数在x0处连续; x?x0d.若f(x0?0)?f(x0?0)?f(x0),则函数在x0处连续。

5、若?f(x)dx?f(x)?c,则?f(sinx)cosxdx=( a ) a . f(sinx)?cb. ?f(sinx)?cc. xf(sinx)?cd. f(sinx)sinx?c二、填空题(每题3分,共15分)1. 设曲线方程为y?x2?sinx,该曲线在点(0,0)处的切线方程__y=-x_________1sinxdx=___0______ 2.??11?x2sinx____0___ 3. limx??xx4. 函数f(x)?x?2的斜渐近线方程为___ y=x ___ x?15.函数xy?1在点(1,1)处的曲率为___ 2_____.三、计算题(每题8分,共56分)1求极限:lim(x?0x?1?1sinxx?1?11)lim1x?0x2xx(x?1?1)22.设f(x)?x(x?1)(x?2)?(x?100),求f?(0).limx?0f(x)?f(0)x(x?1()x?2)?(x?100)lim100! x0x0x1x3. 已知y?x,求dy.dy?d(x)?d(e1xlnxx)?elnxx1lnx1?lnx?d()?xx?dx 2xx4.5.112tdtdt?2?2arctant?c?c 22?1?tt1?tx0cos2xdx 111x120cos2xdx0xsecxdxxtanx00tanxdxtan1lncosx0tan1lncos1.6. 求由曲线y?x2与y?2x围成的平面图形的面积。

安徽财经大学大学《高等数学A》2023-2024学年第一学期期末试卷

安徽财经大学大学《高等数学A》2023-2024学年第一学期期末试卷

一、选择题:(每小题3分,共18分安徽财经大学试卷安徽财经大学2023-2024学年度第1学期试卷《高等数学A 》(上)试题(A 卷)参考答案和评分标准)1、已知,2)3('=f 则h f h f h 2)3()3(lim 0--→=(D )1-)(1)(2/3-)(2/3A D C B )(2、当0→x 时,下列无穷小中与2x 为同阶无穷小的是(C )11)()3arcsin()()1ln()(1A 423-+--x D x C x B e x )(3、如果)(x f 的导数为x cos ,则)(x f 的一个原函数为(D )x D x C x B x cos 1)(cos 1)(sin 1)(sin 1A -+-+)(4、设函数⎪⎪⎩⎪⎪⎨⎧>+=<---=0,1sin 0,0,1cos 1)(x b x x x a x x e x x f x 在0=x 处连续,则常数b a,的值为(A )1,0)(0,1)(1,0)(1,1A -========b a D b a C b a B b a )(5、曲线32122---=x x x y 有(A )铅直渐近线没有水平渐进线,两条铅直渐近线两条水平渐进线,一条铅直渐近线一条水平渐进线,两条条铅直渐近线)一条水平渐进线,一()()()(A D C B 6、设)(x f 在0=x 点附近有二阶连续导数,且1cos 1)(''lim 0=-→x x xf x ,则(C )专业班级姓名学号----------------------密------------------------------封-----------------------线-----------------------------的极小值。

是且的拐点。

)是曲线,且(的极小值。

是且的拐点。

)是曲线,但()()()0(,0)0('')()()0(0,0)0('')()()0(,0)0('')()()0(0,0)0(''A x f f f D x f f f C x f f f B x f y f f ≠===≠二、填空题(每小题3分,共18分)在以下各小题中画有_______处填上答案。

(高等数学A)函授大专试卷(A卷)

(高等数学A)函授大专试卷(A卷)

《课程名称A 卷》 第 1 页 共 1 页浙江交通职业技术学院(函授)专业年级: 课 程: 高等数学(A 卷) 学 号: 姓 名:一、填空题:(每小题4分,共32分)1、函数xe y arctan =由函数__________与函数___________复合而成。

2、若f(x)的一个原函数为2x, 则)(x f '=___________。

3、设函数y 12+=x ,则函数的增量y ∆=____________。

4、4232++=x x y 的二阶导数_________。

5、设函数32)(2++=ax x x f 在x=1处取得极小值,则a=__________。

6、dx x x ⎰2= 。

7、12-=x e y 的一阶导数_________。

8、01.1ln 的近似值为____________。

二、选择题(每小题3分,共24分) 1、)12(lim 2+→x x = ( )A.2B.3C.4D.52、设f(x)=cos2x,则=π')4(f ( )A.-2B.0C.-1D.23、曲线)1ln(2x y += 向上凹的区间是 ( )A.),(1-∞- B. ),∞+-1[ C. ]1,1[- D. ),(∞+∞- 4、设x x x f -=331)(,则x=1为)(x f 在]2,2[-上的 ( ) A.极小值点,但不是最小值点 B.极大值点,但不是最大值点 C.极小值点,也是最小值点 D.极大值点,也是是最大值点5、⎰+=c x dx x f 2cos )(,则)(x f = ( )A. x 2cosB. x 2sinC. x 2cos 2-D. x 2sin 2-6、函数23)(23++=x ax x f ,若3)1(=-'f ,则a 的值 ( )A.0B.3C.2D.-27、332lim 23---→x x x x = ( )A.4B.2C.0D.无8、函数13)(23+-=x x x f 在]0,2[-上的最大值、最小值分别是 ( )A.1,-1B.1,-17C.3,-17D.1,-19三、简答题:1、计算下列导数(12分)(1)100)12(+=x y (2)x x y sin =2、计算下列积分(12分)(1)dx x ⎰-5)21( (3)dx xex⎰-23、求曲线13-=x y 在x=1处的切线的斜率和法线方程。

《高等数学》2019-2020学年第一学期期末考试A卷

《高等数学》2019-2020学年第一学期期末考试A卷

河海大学2019-2020学年第一学期期末考试《高等数学》试题(A)卷姓名:学号:班级:成绩:一、选择题(每题3分,共12分)1.若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为().(A)1(B)2(C)3(D)-12.已知(3)2,f '=则0(3)(3)lim 2h f h f h→--的值为().(A)1(B)3(C)-1(D)123.定积分22ππ-⎰的值为().(A)0(B)-2(C)1(D)24.若()f x 在0x x =处不连续,则()f x 在该点处().(A)必不可导(B)一定可导(C)可能可导(D)必无极限二、填空题(每题3分,共12分)1.平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为.2.1241(sin )x x x dx -+=⎰.3.201lim sinx x x→=.4.3223y x x =-的极大值为.三、计算题(每题6分,共42分)1.求2ln(15)lim.sin 3x x x x→+2.设2,1y x =+求.y '3.求不定积分2ln(1).x x dx +⎰4.求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x xe x ⎧≤⎪=+⎨⎪+>⎩5.设函数()y f x =由方程0cos 0yxte dt tdt +=⎰⎰所确定,求.dy 6.设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7.求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(每题6分,共24分)1.设(ln )1,f x x '=+且(0)1,f =求().f x 2.求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3.求曲线3232419y x x x =-+-在拐点处的切线方程.4.求函数y x =+在[5,1]-上的最小值和最大值.五、证明题(10分)设()f x ''在区间[,]a b 上连续,证明:1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰标准答案一、1B;2C;3D;4 A.二、131;y x =+22;330;40.三、1解原式25lim3x x x x →⋅=5分53=1分2解22ln ln ln(1),12xy x x ==-++ 2分2212[121xy x x '∴=-++4分3解原式221ln(1)(1)2x d x =++⎰3分222212[(1)ln(1)(1)]21x x x x dx x =++-+⋅+⎰2分2221[(1)ln(1)]2x x x C =++-+1分4解令1,x t -=则2分321()()f x dx f t dt-=⎰⎰1分1211(1)1cos t tdt e dtt -=+++⎰⎰1分210[]t e t =++1分21e e =-+1分5两边求导得cos 0,yey x '⋅+=2分cos yx y e '=- 1分cos sin 1x x =-1分cos sin 1xdy dxx ∴=-2分6解1(23)(23)(22)2f x dx f x d x +=++⎰⎰2分21sin(23)2x C =++4分7解原式=23323lim 12n n n ⋅→∞⎛⎫+ ⎪⎝⎭4分=32e2分四、1解令ln ,xt =则,()1,t t x e f t e '==+3分()(1)t f t e dt =+⎰=.t t e C ++2分(0)1,0,f C =∴= 2分().x f x x e ∴=+1分2解222cos x V xdx πππ-=⎰3分2202cos xdxππ=⎰2分2.2π=2分3解23624,66,y x x y x '''=-+=-1分令0,y ''=得 1.x =1分当1x -∞<<时,0;y ''<当1x <<+∞时,0,y ''>2分(1,3)∴为拐点,1分该点处的切线为321(1).y x =+-2分4解1y '=-=2分令0,y '=得3.4x=1分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭2分∴最小值为(5)5y -=-+最大值为35.44y ⎛⎫= ⎪⎝⎭2分五、证明()()()()()()bbaax a x b f x x a x b df x '''--=--⎰⎰1分[()()()]()[2()bb a a x a x b f x f x x a b dx ''=----+⎰1分[2()()ba x ab df x =--+⎰1分{}[2()]()2()bba a x ab f x f x dx =--++⎰1分()[()()]2(),ba b a f a f b f x dx =--++⎰1分移项即得所证.1分。

2013级高等数学I(1)试卷(A)评分标准

2013级高等数学I(1)试卷(A)评分标准

B〖〗考试形式开卷()、闭卷(√),在选项上打(√)开课教研室大学数学部命题教师命题组命题时间2013-12-12使用学期 2013-2014-1总张数 3 教研室主任审核签字d6()[0,1],(0,1),(0)(1)0,120131.(0,1),().220142013()(),(2)()[0,1],20141120152013(0)0,0,(1)0,(3)2220142014f x f f f f x f x x f x ξξϕϕϕϕ==⎛⎫'== ⎪⎝⎭'=-⎛⎫'==⋅>=-< ⎪⎝⎭七、(本题满分分)设函数在上连续在内可导且本题得分证明:在内至少存在一点使〖证〗设则在上连续且由零点定()1,,1,0.(4)22013()(0,1),()().(5)2014Rolle ,(0,)(0,1),()0,2013().(6)2014f x x f x f ηϕηϕξηϕξξ⎛⎫'∃∈= ⎪⎝⎭'''=-'∃∈⊂=''=理使又在内可导且由定理使即212012201032,[0,1]0.,,,,11,0.(1)(32)d (2)(3)1,1.(4)(32)d y ax bx c x y a b c x x x c ax bx x a b b a V ax bx x π=++∈≥='=''+=+='=-=+⎰⎰六、(本题满分分)设有抛物线当时试确定本题得分的值使该抛物线过原点与直线及轴所围区域的面积为且上述区域绕轴旋转而成的旋转体的体积最小.〖解〗由抛物线过原点得由第二个条件得即从而旋转体体积2222294214(5)3(6),(7)531533d 4159(8)0,,(9)d 15344d 40,(10)d 1559,,0.44a ab b a a V a a b a V V a a bc ππππ⎛⎫⎛⎫'''=++=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫''=+==-= ⎪⎝⎭'=>=-==由得从而此时故旋转体体积最小.所以所求值为。

浙江师范大学 高等数学(上) 期末试题 A卷答案(理科1)

浙江师范大学 高等数学(上)  期末试题  A卷答案(理科1)

浙江师范大学《 高等数学(上) 》 A 卷答案(理科1)一、 选择题(每小题2分,共12分)1、C2、C3、D4、D5、B6、A二、 填空题(每小题2分,共16分)①e -3 ② 0 ③[1,1]- ④ln cos sin 2x x x C --++⑤ 5ln 6⑥ 2 ⑦ ⑻ x xy 224+'=() 三、问答题(5分) 221()x f x x x x-=-指出sin 的间断点,并判别其类型. 解 (1)(1)()01()(1)x x x f x x x f x x x +-===-sin ,与是的间断点 00(1)lim ()lim 2x x x x f x x →→+==sin 因,11(1)sin lim ()lim 2sin1x x x x f x x→→+==, 1()f x 所以0和都是的可去间断点。

四、 计算题(每小题7分,共49分)1、1lim xx x →+∞求极限 11ln lim ln lim lim 0.1xx x x x x y x y x →+∞→+∞→+∞====解设,则 01e ==原式2、44411ln ,d 4(1)41x y y x x=+++设 求. 解d ()d y y x x '=33324442141441d d 4(1)41(1)x x x x x x x x x x ⎡⎤⎛⎫-=+-=⎢⎥ ⎪+++⎝⎭⎣⎦ 3、.d )1(3x e e x x ⎰+求 解x e e x x ⎰+d )1(3)1d()1(3++=⎰x x e e 41(1).4x e C =++ 4、.)1)(1(d 2⎰++x x x 求 22d 111:()d (1)(1)211x x x x x x x -=-++++⎰⎰解2221d 1d(1)1d 214121x x x x x x +=-++++⎰⎰⎰ 2111l n 1l n 1a r c t a n .242x x x C =+-+++() 1200d ()d ln(1)d d y t y y x xy e t t t x -=+⎰⎰5、设是由方程所确定的隐函数,求. 解 y xy e y y +'-'=0,'=-y y e xy6、求232sec ,d sec tan d sec tan d 1d cos d sin cos sec tan sec 22x t x t t tt t t t t t t t t C t t t ==⋅⋅====++⋅⎰⎰⎰解 令 原式11arccos .2C x = 7、求微分方程d 1d e yy x x =+的通解。

高数(A卷)+答案+评分标准

高数(A卷)+答案+评分标准

武夷学院期末考试试卷( 2012 级 建设 专业2012~2013 学 年 第 一 学 期) 课程名称 高等数学 A 卷 考试形式 闭卷 考核类型 考试 本试卷共 四 大题,卷面满分100分,答题时间120分钟。

一、选择题:(本大题共10小题,每小题2分,共20分。

)(注:请将选项填在下面表格里。

)1、dx x)11(⎰-=A .21x C x -+ B .21x C x++ C .ln ||x x C -+ D .ln ||x x C ++ 2、以下函数奇偶性不同于其他三项的是( )A .33)(x x x f +=;B . )1)(1()(+-=x x x x f ;C .35)(x x x f -=;D . x x e e x f -+=)(。

3、若'F (x)=f(x),则⎰=)(x dF ( )A .f(x);B .F(x); C. f(x)+C ;D .F(x)+C 。

4、3232lim x x x +∞→= ( )A .∞;B .0;C .31; D .-1。

5、设函数)(x f 在),(+∞-∞内二阶可导,且)()(x f x f -=如果当0>x 时,,0)('>x f 且,0)(">x f 则当0<x 时,曲线)(x f y =( )。

A .递减,凸的; B.递减,凹的;C. 递增,凹的;D. 递增,凸的。

6、下列命题正确的是( )A. 驻点一定是极值点;B.驻点不是极值点;C. 驻点不一定是极值点;D. 驻点是函数的零点。

7、设22z x y xy =+,则zx ∂=∂A .22xy y +B .22x xy +C .4xyD .22x y +8、下面函数相同的一组是( ) A.x y x y 2cos 1,sin -==; B. 2ln ,ln 2x y x y ==; C.x y x y lg 4,lg 4==; D.x x y y 23,3==。

高等数学上、下册考试试卷及答案6套[1]

高等数学上、下册考试试卷及答案6套[1]

高等数学上册试卷A 卷一 填空题(每题2分,共10分) 1. 2()d f x dx ⎰= ;2. 设f (x )=e -x ,则(ln )f x dx x'⎰= ; 3.比较积分的大小:11_________(1)x e dx x dx +⎰⎰;4.函数1()2(0)x F x dtx ⎛=> ⎝⎰的单调减少区间为 ;5. 级数()(0)nn n a x b b ∞=->∑,当x =0时收敛,当x =2b 时发散,则该级数的收敛半径是 ;二、求不定积分(每小题4分,共16分)1.; 2.sin x xdx ⎰;3.;4. 已知sin xx是f (x )的一个原函数,求()xf x dx '⎰. 三、求定积分(每小题4分,共12分)1.520cos sin 2x xdx π⎰; 2.121(x dx -⎰;3.设1,当0时1()1,当0时1xx xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰四、应用题(每小题5分,共15分)1.计算由曲线y =x 2,x =y 2所围图形的面积;2.由y =x 3、x =2、y =0所围成的图形绕x 轴旋转,计算所得旋转体的体积.3. 有一矩形截面面积为20米2,深为5米的水池,盛满了水,若用抽水泵把这水池中的水全部抽到10米高的水塔上去,则要作多少功?(水的比重1000g 牛顿/米3 )五、求下列极限(每题5分,共10分)1.222222lim 12n n n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭;2. 设函数f (x )在(0,+∞)内可微,且f (x )满足方程11()1()xf x f t dt x=+⎰,求f (x )。

六、判断下列级数的敛散性(每题5分,共15分)1. 21sin32n n n n π∞=∑; 2. 2111n n n ∞=⎛⎫- ⎪⎝⎭∑; 3.()1ln 1nn nn∞=-∑; 七、求解下列各题(每题5分,共10分)1. 求幂级数111n n x n +∞=+∑的收敛域及和函数;2. 将函数21()32f x x x =++展开成(x +4)的幂级数。

高等数学A(上)复习题

高等数学A(上)复习题
2 3
29、在区间 [-1,1] 上满足罗尔定理条件的函数是 (
sin x (A) f ( x ) x
30、使函数
(B) f (x) (x 1)
2
(C) f ( x ) x
(D) f (x) x
2
1
f ( x ) 3 x 2 (1 x 2 ) 满足罗尔定理条件的区间是(

(A) 4cos2x
24、
(B) 4cos2x

(C) 4sin4x
(D)
2sin4x
d ( ln x ) d
(A)
x

2 x
(B)
2 x
(C)
2 x x
(D)
1 x x
25、 y
e 2 x 在 x 0 处的切线方程为 (
(A) y
) (C) y 2 x 1 (D) y 2 x 1
(D)不能确定是否取得极值 )
f ' ( x 0 ) 0 , f ' ( x1 ) 不存在,则(
(B)只有 x (D) x
x 0 及 x x1 都是极值点
x1 是极值点
x 0 是极值点
(C)只有 x
x 0 与 x x1 都有可能不是极值点
) (D)
35、设 f ( x ) a sin x (A) 2
2
(B) x
) (B) y= x cos ( x (D) y=
2
(C) sin x
) 4
(D) 不存在
2 x 2 x

3 sin x , x 0 3、设 f(x)= ,则此函数是( 3 sin x , 0 x

高等数学(A)上复习资料

高等数学(A)上复习资料

f ( x) x2
36 。
方法二,利用条件转化,再用 L’Hospital 法则 。
6 f ( x)
6x xf ( x)
sin 6x xf (x)
6x
lim
x0
x2
lim
x0
x3
lim
x0
x3
lim
x0
6 x sin 6x L 'H 6
0 lim x0
x3
lim
x0
L'H 36sin 6 x lim
n
【例 6】设 f ( x) 在 x 0 处连续 ,下列命题错误的是【
】。
(A)若 lim f (x) 存在,则 f (0) 0 ;
x0 x
(B)若 lim f (x) f ( x) 存在,则 f (0) 0;
x0
x
(C)若 lim f (x) 存在,则 f '(0) 存在;
x0 x
(D)若 lim f (x) f ( x) 存在,则 f '(0) 存在。
x0
2x
2. 连续性、可导性和可微性的关系:可导 可微 连续。
【例】函数 f ( x) 在 x0 处可导是 f ( x) 在 x0 处可微的【 C
考题)
( A)充分;
(B)必要;
( C)充分必要;
1)ex 2
2 2。 1
【例】

lim
x0
sin ex
x a
(cos
x
b)
3 ,求 a, b的值。
解:首先, 必然有 e0 a lim ex a x0
0,若不然, 函数
sin x
x
(cos x
b) 在
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南大学2013-2014学年度第1学期试卷
科目:《高等数学A (上)》试题(A 卷)
学院: 专业班级: 姓名: 学 号:
阅卷教师: 2013年 月 日
考试说明:本课程为闭卷考试,可携带 。

一、 选择题(每题3分,共15分)
(选择正确答案的编号,填在各题前的括号内)
1.设x x x f sin )(=,则f (x )在),(+∞-∞内为( D ). A .周期函数 B .奇函数 C .单调函数 D .无界函数 2、符号函数sgn(x)在x=0处是(D )
A . 连续点 B. 无穷间断点 C. 可去间断点 D. 跳越间断点 3、下列各式中,正确的是( D )
A.e )x
11(lim x 0x =++→ B.e )x 1(lim x
1
x =-

C.e )x
11(lim x x -=-∞

D.1)1
1(lim -∞→=-e x
x x 4、曲线2
23()1()--=x x y 的拐点个数为( C )
A .0
B .1
C .2
D .3 5、若()()f x dx F x C =+⎰,则dx x x f ⎰cos )(sin =( A )
A .C x F +)(sin B. C x F +-)(sin C. C x xF +)(sin D. C x x F +sin )(sin
二、 填空题(每题3分,共15分)
1. 设曲线方程为x x y sin 2+=,该曲线在点)0,0(处的法线方程
__y=x_________
2.已知=⎰dx x xf x x x f )(',ln )(则的一个原函数为 __c x
x
+-ln 21______. 3. ⎰=-x
dt t x dx d 0
2)sin(____2sin x __.
4. 函数1)(2-+=x x
x x f 的斜渐近线方程为___ y=x ___
5.函数1xy =在点(1,1)处的曲率为___2
2_____.
三、 计算题(每题8分,共56分)
1.求极限:x x
x x x x x x x x x x x x x x x x 20200
sin sin lim
21)
cos 1sin (cos 1sin lim cos 1sin lim
+=-+-+=-+→→→ =0
2.).0(),100()2)(1()(f x x x x x f '---=求设
!100)
100()2)1(lim 0)0()(lim
00
=---=--→→x
x x x x x f x f x x ( 3. 已知.,1dy x y x
求=
1ln ln 1
2
ln 1ln ()()()x x x
x
x
x x x dy d x d e
e
d x dx x x -===⋅=⋅
4.
2212211t dt dt t t t
=⋅
=++⎰⎰2arctan t C C =+= 5.
1
20cos x
dx x ⎰
1
1112
20000sec tan tan cos x dx x xdx x x xdx x ==-⎰⎰⎰ 1
0tan1ln cos tan1ln cos1.x =+=+
6. 求由曲线2x y =与2y x =围成的平面图形的面积。

解:由2(0,0),(2,2)2y x A B y x
⎧=⇒⎨
=⎩ ()2
322
2004233x S x x dx x ⎛⎫=-=-= ⎪⎝⎭⎰ 7. 若()f x
的一个原函数是ln(x +,求()xf x dx ''⎰
解 ()xf x dx ''⎰()xdf x '=
⎰ 1分
()()xf x f x dx ''=-⎰ 2分
()()xf x f x C '=-+ 3分
()ln(f x x '
⎡=+=
⎣分
()f x '=
7分
()xf x dx ''
⎰2C = 8分
2C =
四、 应用题(每题7分,共14分)
1.求由曲线2
3x y =与直线x=4,x 轴所围图形绕y 轴旋转而成的旋转体的体积。

解: 80
3
7
8
3
48
2
2
7
3
128128
8*4*y dy y dy x V ππππππ-=-=-=⎰⎰
=
π7
512
)(),3,0(.1)3(,3)2()1()0(,)3,0(,]3,0[)(.2='∈==++ξξf f f f f x f 使试证必存在内可导在上连续在设函数于是和最小值上必有最大值在且上连续在所以上连续在因为证,]2,0[)(,]2,0[)(,]3,0[)(m M x f x f x f
.
)2(,)1(,
)0(M f m M f m M f m ≤≤≤≤≤≤M f f f m ≤++≤
3
)
2()1()0(故 .13
)
2()1()0()(],2,0[,=++=
∈f f f c f c 使至少存在一点由介值定理知
,)3,(,]3,[)(,1)3()(上可导在上连续在且因为c c x f f c f == .0)(),3,0()3,(,='⊂∈ξξf c 使必存在一点所以由罗尔定理。

相关文档
最新文档