专题(九) 利用旋转证明或计算
沪科版九年级数学下册-解题技巧专题:巧用旋转进行计算或证明
解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为()A.60°B.85°C.75°D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且P A=5,PB=12,PC=13,若将△P AC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.◆类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为() A.2 B.3 C.2 3 D.3 26.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.◆类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.2-1B.2+1C. 2D. 3第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B 解析:∵△ABC 绕点A 逆时针旋转得到△ADE ,∴∠C =∠E =70°,∠BAC =∠DAE .∵AD ⊥BC ,∴∠AFC =90°,∴∠CAF =90°-∠C =90°-70°=20°,∴∠DAE =∠CAF +∠EAC =20°+65°=85°,∴∠BAC =∠DAE =85°.2.B3.90° 解析:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°-120°)=30°.∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′-∠C ′AB ′=120°-30°=90°.4.解:连接PP ′.∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°.∵△P AC 绕点A 逆时针旋转后,得到△P ′AB ,∴∠P ′AP =∠BAC =60°,AP ′=AP ,BP ′=CP =13,∴△AP ′P 为等边三角形,∴PP ′=AP =5,∠APP ′=60°.在△BPP ′中,∵PP ′=5,BP =12,BP ′=13,∴PP ′2+BP 2=BP ′2,∴△BPP ′为直角三角形,∠BPP ′=90°,∴∠APB =∠APP ′+∠BPP ′=60°+90°=150°.即点P 与点P ′之间的距离为5,∠APB 的度数为150°.5.D 解析:在Rt △ABC 中,AB =AC 2+BC 2=62+62=62,则AB ′=AB =6 2.在Rt △B ′AD 中,∠B ′AD =180°-∠BAC -∠BAB ′=180°-45°-75°=60°.则AD =AB ′·cos ∠B ′AD =62×12=3 2. 6.2+6 解析:连接AM ,由题意,得CA =CM ,∠ACM =60°,∴△ACM 为等边三角形,∴AM =CM ,∠MAC =∠MCA =∠AMC =60°.∵∠ABC =90°,AB =BC =2,∴AC =CM =2 2.∵AB =BC ,CM =AM ,∴BM 垂直平分AC ,∴BO =12AC =2,OM =CM ·sin60°=6,∴BM =BO +OM =2+ 6.7.(1)证明:∵△ABC 是等腰三角形,∴AB =BC ,∠A =∠C .∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B =AB =BC ,∠A =∠A 1=∠C ,∠A 1BD =∠CBC 1.在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠A 1=∠C ,A 1B =BC ,∠A 1BD =∠CBF ,∴△BCF ≌△BA 1D ; (2)解:四边形A 1BCE 是菱形.理由如下:∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴∠A 1=∠A .∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α.∵∠C =α,∴∠A 1=α,∴∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α,∴∠A 1=∠C ,∠A 1BC =∠A 1EC ,∴四边形A 1BCE 是平行四边形.∵A 1B =BC ,∴四边形A 1BCE 是菱形.8.A 解析:连接AE ,∵四边形ABCD 为正方形,∴AB =BC =1,且∠B =90°,∠D ′CE =45°,由勾股定理得AC =12+12= 2.由题意,得AD ′=AB =1,∠AD ′E =90°,∴D ′C =2-1,∠D ′EC =∠D ′CE =45°,∴D ′E =D ′C =2-1,∴S △D ′EC =12(2-1)2=32-2,∴S 阴影=S △ABC -S △D ′EC =12×1×1-⎝⎛⎭⎫32-2=2-1. 9.1547 解析:由旋转的性质得△ACE ≌△ABD ,∴AE =AD =5,CE =BD =6,∠DAE =60°,∴DE =5.作EH ⊥CD 垂足为H .设DH =x .由勾股定理得EH 2=CE 2-CH 2=DE 2-DH 2,即62-(4-x )2=52-x 2,解得x =58,∴DH =58.由勾股定理得EH =DE 2-DH 2=52-⎝⎛⎭⎫582=1587,∴△DCE 的面积=12CD ·EH =1547.。
初中数学:利用旋转证明三角形全等综合证明题专题
已知,如图,∠1=∠2,∠C =∠D ,BD=BC ,△ABD ≌△E BC 吗?为什么?如图,已知ΔABC ,BD 、CE 分别是AC 、AB 边上的高,B F=AC , ∠CAG=∠F ,请你判断AG 与AF 是否相等,说明理由。
如图,∠A =∠B ,∠1=∠2,EA =EB ,你能证明AC =BD 吗?∠1=∠2,∠B =∠C ,AB =AC ,D 、A 、E 在一条直线上.求证:AD =AE ,∠D =∠E .已知:∠1=∠2,∠B =∠C ,AB =AC .求证:AD =AE ,∠D =∠E .ABCDE1 2两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90∘,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(2)证明:DC⊥BE.如图,在Rt△ABC中,∠ACB=90∘,点D. F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90∘后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数。
如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于F. 求证:PM=QM.如图,已知长方形ABCD,过点C引∠A的平分线AM的垂线,垂足为M,AM交BC于E,连接MB,MD. (1)求证:BE=DC;(2)求证:∠MBE=∠MDC如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE 于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.求证:BE=AF.如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:(1)AE=BF;(2)AE⊥BF.如图,在△ABD和△ACE中,有下列四个等式:(1)AB=AC;(2)AD=AE;(3)∠1=∠2;(4)BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题.(要求写出已知,求证及证明过程)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE 的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.正方形ABCD和正方形AEFG有一公共点A,点G.E分别在线段AD、AB上(如图(1)所示),连接DF、BF.(1)求证:DF=BF,(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG、BE(如图(2)所示),在旋转过程中,请猜想线段DG、BE始终有什么数量关系和位置关系并证明你的猜想.(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为_______;∠APB的大小为_______;(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD 间的等量关系式为_______;∠APB的大小为_______.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.△DAC, △EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,求证:(1)AE=BD (2)CM=CN (3) △CMN为等边三角形(4)MN∥BC已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.。
旋转的计算与证明
旋转的计算与证明旋转是几何学中非常重要的一个概念,它可以用来描述物体绕一些中心轴或中心点旋转的过程。
在计算与证明旋转相关的问题时,我们需要使用到一系列的数学工具和方法。
本文将从旋转的定义开始,逐步介绍旋转的计算与证明过程。
旋转的定义旋转可以定义为平面上一个点或一个物体绕一些中心点或中心轴旋转的过程。
旋转可以使点或物体的位置、形状或方向发生变化。
旋转可以分为顺时针旋转和逆时针旋转两种。
旋转的中心旋转的中心可以是平面上的一个点或一个物体。
以点为中心进行旋转时,可以通过计算旋转中心与待旋转点之间的距离和角度来确定旋转后的新位置。
以物体为中心进行旋转时,可以通过计算物体自身的几何信息(例如边界点、顶点等)和旋转角度来确定旋转后的新形状。
旋转的角度旋转的角度通常用弧度来表示。
弧度是一种角度的计量单位,定义为角度所对应的弧长与半径的比值。
旋转的角度可以是正值、负值或零。
旋转的方向旋转的方向可以是顺时针或逆时针。
顺时针旋转是指从从正方向看旋转的物体顺时针方向旋转;逆时针旋转是指从从正方向看旋转的物体逆时针方向旋转。
在计算旋转时,需要根据具体的问题条件确定旋转的方向。
点的旋转是指一个点绕旋转中心进行旋转。
点的旋转可以通过以下公式进行计算:x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)其中,(x,y)为原始点的坐标,(x',y')为旋转后点的坐标,θ为旋转角度。
物体的旋转是指一个物体绕旋转中心进行旋转。
物体的旋转可以通过以下步骤进行计算:1.将物体的每个点(顶点或边界点)的坐标通过点的旋转公式计算旋转后的位置。
2.根据计算得到的新位置,重新构建物体的形状。
旋转的证明旋转的证明可以通过使用向量和矩阵的方法进行推导。
以下是旋转的一般证明方法:1.定义旋转矩阵旋转矩阵是一个正交矩阵,用于描述旋转的变换。
旋转矩阵可以通过旋转角度来确定,其中旋转角度可以是弧度或角度。
旋转的证明与计算(等边三角形)
旋转的证明与计算模块一:旋转应用之等边旋转类型二:正方形中的旋转 例题1.正方形ABCD 内一点到三顶点距离分别是1,2,3,则正方形的面积等于考点:旋转的性质;正方形的性质分析:把△PAB 绕A 点逆时针旋转90°得△EAD ,把△CPB 绕C 点顺时针旋转90°得△CFD ,连PE ,PF ,则∠1=∠2,∠3=∠4,得到∠2+∠4=90°,∠EDF=180°,即E ,D ,F 共线,且ED=PB=2,DF=PB=2,△APE ,△CPF 均为等腰直角三角形,所以211121=⨯⨯=∆APE S ;293321=⨯⨯=∆CPF S ,再在△PEF 中,PE=2,PF=23,EF=4,利用勾股定理的逆定理得到△PEF 为直角三角形,∠PEF=90°,则22422121=⨯⨯=⨯⨯=∆EF EP S PEF 最后利用S 正方形A B C D =S 五边形A P C F E =S △P E F +S △A P E +S △C P F ,即可得到答案.跟踪训练:2,PC=4,则∠APC的大小是多1、如图点P是等边三角形ABC内部一点,且PA=2,PB=3少度?考点:旋转的性质;勾股定理的逆定理分析:由于△ABC为等边三角形,所以将△ABP绕A点逆时针旋转60°得△ACP′,根据旋转的性质得到AB与AC重合,∠PAP′=60°,2AP′=AP=2,P′C=PB=3,则△APP′是等边三角形,得到PP′=2;在△PPC中,利用勾股定理的逆定理可得到∠PP′C=90°,同时得到∠P′CP=30°,因此∠P′PC=60°,即可得APC=∠APP′+∠P′PC.2、把两块边长为4的等边三角板ABC和DEF先如图1放置,使三角板DEF的顶点D与三角板ABC的AC边的中点重合,DF经过点B,射线DE与射线AB相交于点M,接着把三角形板ABC 固定不动,将三角形板DEF由图11-1所示的位置绕点D按逆时针方向旋转,设旋转角为α.其中0°<α<90°,射线DF与线段BC相交于点N(如图2示).(1)当0°<α<60°时,求AM•CN的值;(2)当0°<α<60°时,设AM=x,两块三角形板重叠部分的面积为y,求y与x的函数解析式并求定义域;(3)当BM=2时,求两块三角形板重叠部分的面积.考点:相似三角形的判定与性质;三角形的面积;等边三角形的性质;旋转的性质分析:(1)根据等边三角形的性质得到∠A=∠C=∠EDF=60°,则∠AMD+∠ADM=120°,∠ADM+∠NDC=120°,可得∠AMD=∠NDC ,根据相似三角形的判定定理得到△AMD ∽△CDN ,有相似的性质得到AM :DC=AD :CN ,即AM •CN=DC •AD ,然后把DC=AD=2代入计算即可;(2)分别过D 点作DP ⊥AB 于P ,DQ ⊥BC 于Q ,连DB ,根据等边三角形的性质得∠A=∠C=60°,而DA=DC=2,根据含30°的直角三角形三边的关系得到AP=CQ=1,DP=DQ=3,由AM=x ,得CN=x 4,MB=4-x ,BN=x44 ,两块三角形板重叠部分为四边形DMBN ,则y=S △D B M +S △D B N ,然后根据三角形的面积公式计算即可,易得到当0°<α<60°时,x 的取值范围为1<x <4;(3)当M 在线段AB 上,BM=2时,x=4-2=2,把x=2代入(2)的关系式中计算即可.当M 点在线段AB 的延长线上,过D 作DH ∥BC 交AB 于H ,BP=21DH=1,由△AMD ∽△CDN ,则AM :DC=AD :CN ,即AM •CN=DC •AD ,可计算出CN ,然后根据三角形的面积公式可计算出S △D P N ,即两块三角形板重叠部分的面积.3、如图,已知△ABC为等边三角形,M为三角形外任意一点.(1)请你借助旋转知识说明AM≤BM+CM;(2)线段AM是否存在最大值?若存在,请指出存在的条件;若不存在,请说明理由.考点:旋转的性质;三角形三边关系;等边三角形的性质.分析:(1)应把AM和BM所在的三角形旋转,与AM组成三角形,将△BMC绕B点逆时针方向旋转,使C点与A点重合,得△BM′A,易得△BMM′为正三角形,根据三角形三边关系即可证明.(2)由(1)得线段AM存在最大值,M′在AM上时4、如图,P是正△ABC内一点,PA=3,PB=4,PC=5,将线段PA以点A为旋转中心逆时针旋转60°得到线段AP1,连结P1C.(1)判断△APB与△AP1C是否全等,请说明理由;(2)求∠APB的度数;(3)求△APB 与△APC的面积之和;(4)直接写出△BPC的面积,不需要说理.考点:旋转的性质;全等三角形的判定与性质;等边三角形的性质;勾股定理.分析:(1)根据正三角形的性质求出AB=AC,∠BAC=60°,再根据旋转的性质可得AP1=AP,然后求出∠CAP1=∠BAP,再利用“边角边”证明△APB与△AP1C全等即可;(2)连结PP1,求出△PAP1是等边三角形,根据等边三角形的性质可得PP1=AP=3,∠AP1P=60°,再利用勾股定理逆定理求出∠CP1P=90°,然后计算即可得解;(3)根据全等三角形的面积相等求出△APB与△APC的面积之和等于四边形APCP1的面积,然后根据等边三角形的面积与直角三角形的面积列式计算即可得解;(4)同理求出△ABP和△BPC的面积的和,△APC和△BPC的面积的和,从而求出△ABC的面积,然后根据△BPC的面积=△ABC的面积-△APB与△APC的面积的和计算即可得解.参考答案:1、解:四边形ABCD为正方形,PA=1,PB=2,PC=3,把△PAB绕A点逆时针旋转90°得△EAD,把△CPB绕C点顺时针旋转90°得△CFD,连PE,PF,如图,∴∠1=∠2,∠3=∠4,而∠1+∠3=90°,∴∠2+∠4=90°,而∠ADC=90°,∴∠EDF=180°,即E,D,F共线;由旋转的性质得到△APE,△CPF均为等腰直角三角形,并且ED=PB=2,DF=PB=2,2、3、解答:(1)∵△ABC和△DEF都是边长为4的等边三角形,∴∠A=∠C=∠EDF=60°,∴∠AMD+∠ADM=120°,∠ADM+∠NDC=120°,∴∠AMD=∠NDC,∴△AMD∽△CDN,∴AM:DC=AD:CN,即AM•CN=DC•AD,而D点为AC的中点,∴DC=AD=2,∴AM•CN=4;(2)分别过D点作DP⊥AB于P,DQ⊥BC于Q,连DB,如图∵∠A=∠C=60°,DA=DC=2,∴AP=CQ=1,∴DP=DQ=3,∵BD为等边三角形的高,∴点D到EF的距离为DB,∴两块三角形板重叠部分为四边形DMBN,在图(1)中,AM=1,∴当0°<α<60°时,x的取值范围为1<x<4;(3)当M 在线段AB 上,BM=2时,x=4-2=2,当M 点在线段AB 的延长线上,如图(备用图),过D 作DH ∥BC 交AB 于H ,∴DH=21BC=2,BH=2, ∵BM=2,∴BP=21DH=1,与①一样可证得△AMD ∽△CDN , ∴AM :DC=AD :CN ,即AM •CN=DC •AD ,4、解答:(1)将△BMC 绕B 点逆时针方向旋转,使C 点与A 点重合,得△BM ′A , ∵∠MBM ′=60°,BM=BM ′,AM ′=MC .∴△BMM ′为正三角形.∴MM ′=BM .①若M ′在AM 上,则AM=AM ′+MM ′=BM+MC ,②若M ′不在AM 上,连接AM ′、MM ′,在△AMM ′中,根据三角形三边关系可知:AM <AM ′+MM ′,∴AM <BM+MC ,综上所述:AM ≤BM+CM ;(2)线段AM 有最大值.当且仅当M ′在AM 上时,AM=BM+MC ;存在的条件是:∠BMC=120°.5、解答:解:(1)∵△ABC 是正三角形,∴AB=AC ,∠BAC=60°,∵线段AP 以点A 为旋转中心逆时针旋转60°得到线段AP 1,∴AP=AP 1,∠PAP 1=60°,∵∠BAP+∠PAC=∠BAC=60°,∠CAP 1+∠PAC=∠PAP 1=60°,∴∠BAP=∠CAP 1,∵在△APB 与△AP 1C 中,∴△APB≌△AP1C(SAS);(2)连结PP1,∴AP=AP1,∠PAP1=60°,∴△PAP1是等边三角形,∴PP1=AP=3,∠AP1P=60°,∵△APB≌△AP1C,∴CP1=BP=4,∵CP=5,∴PP12+CP12=CP2,∴△CP1P是直角三角形,∠CP1P=90°,∴∠APB=∠AP1P+∠CP1P=60°+90°=150°;。
几何旋转证明技巧
几何旋转证明技巧引言:在几何学中,证明一个定理的方法有很多种。
旋转法是一种经典的证明技巧,它通过将几何图形围绕一个旋转中心旋转,以展示图形的对称性和相似性。
本文将介绍几何旋转证明的基本原理,并通过多个例子展示其应用。
一、基本原理1.旋转中心:旋转中心是围绕其进行旋转的一个点。
通常情况下,旋转中心是所研究图形的一个顶点。
选择合适的旋转中心可以简化证明过程。
2.旋转角度:旋转角度指的是图形绕旋转中心旋转的角度。
一般情况下,我们选择90度、180度或360度等整数角作为旋转角度,以便于计算和观察。
3.旋转对称性:旋转对称性是指在旋转一个图形后,旋转前后的图形具有相似性质。
例如,在平面上围绕某一点旋转90度后,图形的边长和角度大小不变,但顶点位置进行了变换。
二、应用举例1.证明两条平行线的夹角相等:原理:通过将平行线旋转,使其变成相交直线,然后利用相交直线的性质证明两条平行线的夹角相等。
步骤:(1)选择两条平行线的一个交点作为旋转中心。
(2)以旋转中心为顶点,将一条平行线顺时针旋转90度,将另一条平行线逆时针旋转90度。
(3)旋转后的图形形成一个新的图形,其中两条旋转后的线段为相交直线,原来的两条平行线变成了相交直线的两条延长线。
(4)通过相交直线的性质,可以证明两条平行线的夹角相等。
2.证明一个四边形是正方形:原理:通过将四边形旋转,使其变成正方形,然后利用正方形的性质证明该四边形是一个正方形。
步骤:(1)选择四边形的一个顶点作为旋转中心。
(2)将顶点对顶的两条边顺时针旋转90度,将另外两条边逆时针旋转90度。
(3)旋转后的图形形成一个新的图形,其中旋转后的四条边都是相等的。
(4)通过正方形的性质,如四个角相等,对角线相等等,可以证明该四边形是一个正方形。
三、总结与展望旋转法作为几何证明的一种重要方法,具有简单直观且易于理解的特点。
通过选择合适的旋转中心和旋转角度,可以大大简化证明过程,并降低证明的难度。
解题技巧专题:巧用旋转进行计算或证明
解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为()A.60°B.85°C.75°D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且P A=5,PB=12,PC=13,若将△P AC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.◆类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为() A.2 B.3 C.2 3 D.3 26.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.◆类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.2-1B.2+1C. 2D. 3第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B 解析:∵△ABC 绕点A 逆时针旋转得到△ADE ,∴∠C =∠E =70°,∠BAC =∠DAE .∵AD ⊥BC ,∴∠AFC =90°,∴∠CAF =90°-∠C =90°-70°=20°,∴∠DAE =∠CAF +∠EAC =20°+65°=85°,∴∠BAC =∠DAE =85°.2.B3.90° 解析:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°-120°)=30°.∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′-∠C ′AB ′=120°-30°=90°.4.解:连接PP ′.∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°.∵△P AC 绕点A 逆时针旋转后,得到△P ′AB ,∴∠P ′AP =∠BAC =60°,AP ′=AP ,BP ′=CP =13,∴△AP ′P 为等边三角形,∴PP ′=AP =5,∠APP ′=60°.在△BPP ′中,∵PP ′=5,BP =12,BP ′=13,∴PP ′2+BP 2=BP ′2,∴△BPP ′为直角三角形,∠BPP ′=90°,∴∠APB =∠APP ′+∠BPP ′=60°+90°=150°.即点P 与点P ′之间的距离为5,∠APB 的度数为150°.5.D 解析:在Rt △ABC 中,AB =AC 2+BC 2=62+62=62,则AB ′=AB =6 2.在Rt △B ′AD 中,∠B ′AD =180°-∠BAC -∠BAB ′=180°-45°-75°=60°.则AD =AB ′·cos ∠B ′AD =62×12=3 2. 6.2+6 解析:连接AM ,由题意,得CA =CM ,∠ACM =60°,∴△ACM 为等边三角形,∴AM =CM ,∠MAC =∠MCA =∠AMC =60°.∵∠ABC =90°,AB =BC =2,∴AC =CM =2 2.∵AB =BC ,CM =AM ,∴BM 垂直平分AC ,∴BO =12AC =2,OM =CM ·sin60°=6,∴BM =BO +OM =2+ 6.7.(1)证明:∵△ABC 是等腰三角形,∴AB =BC ,∠A =∠C .∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B =AB =BC ,∠A =∠A 1=∠C ,∠A 1BD =∠CBC 1.在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠A 1=∠C ,A 1B =BC ,∠A 1BD =∠CBF ,∴△BCF ≌△BA 1D ; (2)解:四边形A 1BCE 是菱形.理由如下:∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴∠A 1=∠A .∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α.∵∠C =α,∴∠A 1=α,∴∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α,∴∠A 1=∠C ,∠A 1BC =∠A 1EC ,∴四边形A 1BCE 是平行四边形.∵A 1B =BC ,∴四边形A 1BCE 是菱形.8.A 解析:连接AE ,∵四边形ABCD 为正方形,∴AB =BC =1,且∠B =90°,∠D ′CE =45°,由勾股定理得AC =12+12= 2.由题意,得AD ′=AB =1,∠AD ′E =90°,∴D ′C =2-1,∠D ′EC =∠D ′CE =45°,∴D ′E =D ′C =2-1,∴S △D ′EC =12(2-1)2=32-2,∴S 阴影=S △ABC -S △D ′EC =12×1×1-⎝⎛⎭⎫32-2=2-1. 9.1547 解析:由旋转的性质得△ACE ≌△ABD ,∴AE =AD =5,CE =BD =6,∠DAE =60°,∴DE =5.作EH ⊥CD 垂足为H .设DH =x .由勾股定理得EH 2=CE 2-CH 2=DE 2-DH 2,即62-(4-x )2=52-x 2,解得x =58,∴DH =58.由勾股定理得EH =DE 2-DH 2=52-⎝⎛⎭⎫582=1587,∴△DCE 的面积=12CD ·EH =1547.。
旋转变换在几何证明中的运用
旋转变换在几何证明中的运用-----------数学研究性学习教案闽侯县实验中学 程文清将平面图形绕某一点旋转一定角度,到另一个新位置,这种图形变换称之为旋转变换。
它能使某些线段或角相对集中,为解决问题带来极大的方便。
下面略举几例说明它在几何中的运用。
例1、如图:E 为等边三角形ABD 的BD 边上一点,是AE 延长线上一动点,问∠BCD 等于多少度时,有CD+BC=A C ?分析:若将△ABC 绕点A 逆时针旋转60o,到△ADF ,则∠3=∠1,AF=AC,DF=BC,故只需C,D,F 三点共线,就有CF=AC CD+BC=AC,此时,∠3=∠2=∠1=60o , 故当∠BCD=120o 时结论成立。
例2、如图:∠ABC=30O ,∠ADC=600,AD=CD 。
求证:222BC AB BD +=分析:连接AC ,由条件可知,△ADC 是等边三角形,将△BCD 绕点C 顺时针旋转600,恰好是△ECA 的位置。
再连接BE ,则△BCE 是等边三角形,又∠ABC=300,所以∠ABE=900,故有222222BC AB BD BE AB AE +=→+=例3、在等腰直角三角形ABC 中,∠ACB=900,P 为形内一点,且PB=1,PC=2,PA=3,求:∠BPC 的度数。
分析:若将ACP 绕点C 逆时针旋转900,到BCE ,则BE=PA=3,PCE 为等腰直角三角形,PE=222=PC ,又PB=1,所以, 2229BEPE PB ==+ ,故∠BPE=900,即∠BPC=1350。
FBADEBACFG例4、已知点E,F 在正方形ABCD 的边BC 、CD 上,且∠DAF=∠EAF, 求证:DF+BE=AE 。
分析:将△ADF 绕点A 顺时针旋转900,到△ABG 的位置,则∠1=∠4=∠2,GB=DF, ∠G=∠AFD,而∠AFD=∠2+∠3=∠4+∠3,即∠G=∠GAE,AE=GE=GB+BE=DF+BE 。
九年级数学旋转几何证明与计算
旋转几何证明与计算(汉阳期中)已知在△ABC 中,∠BAC =60O ,点P 为边BC 的中点,分别以AB 和AC 为斜边向外作Rt △ABD 和Rt △ACE ,且∠DAB =∠EAC =α,连结PD ,PE ,DE 。
(1)如图1,若α=45O ,则 DP DE________; (2)如图2,若α为任意角度,求证:∠PDE =α;(3)如图3,若α=15O ,AB =8,AC =6,则△PDE 的面积为 。
思考:初中阶段我们学过的平面几何有哪些定理?(青山期中)2、已知,在△ABC 中,BC=4。
(1)如图1,将边AC 、AB 同时绕着点A 分别按逆时针、顺时针方向旋转0a ,得AD 、AE 、连接BD 、CE,求证:BD=CE ;(2)如图2,若∠ABC=600,AB=1,将边AC 绕着点A 逆时针旋转1200,得到AD ,连接BD,求BD 的长; (3)如图3,O 为BC 上一点,OB=1,以O 为圆心,OB 的半径作⊙O,点M 是⊙O 上动点,连接MC ,以MC 为腰作等腰Rt △MCF ,使∠MCF=900,其中M 、C 、F 三点为逆时针顺序,连接BF ,则BF 的取值范围是 。
图1A DCFB EMEFA BDC图2(硚口元调模拟二)3、如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG、DE。
(1) 求证:DE⊥AG;(2) 正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由。
(1)∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,∴△AOG≌△DOE;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA =OD =12OG =12OG′, 取OG′中点M 连接AM ,∴OA =OM =AM =12OG′∴△AOM 为等边三角形∴∠A O G′=60°∴∠AG′O =30°,∵OA ⊥OD ,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O =30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°. 综上所述,当∠OAG′=90°时,α=30°或150°.②若正方形ABCD 的边长为1,在旋转过程中, AF ′长的最大值是22+2和α=315°【课堂练习】(武汉元调)1、如图,点C 为线段AB 上一点,分别以AB 、AC 、CB 为底作顶角为120°的等腰三角形,顶角顶点分别为D 、E 、F (点E 、F 在AB 的同侧,点D 在另一侧)。
旋转几何证明
巧用旋转解题温州市实验中学 周利明传统几何中,有许多旋转的例子,尤其是正方形和等腰三角形中。
因此旋转的方法是几何学习中必备的技巧,本文将介绍旋转方法的几种典型用法,与广大读者共同学习、交流。
1.利用旋转求角度的大小例1:在等腰直角△ABC 中, ∠ACB=90°,AC=BC, P 是△ABC 内一点,满足PA=6、PB=2、PC=1求∠BPC 的度数.分析:本题借助常规方法的入手是比较困难的,虽然三条线段的 长度是已知的,但是这三条线段不是三角形的三条边长,因此 要得到角度的大小是不太容易的,因此我们可以借助 旋转来分析问题,因为AC=BC ,这就给我们利用旋转创造了条件,因此可以考虑将APC ∆绕点C 逆时针旋转090,得C P B '∆,连接P P ',通过三角形的边与角的关系分别求得P CP '∠和PB P '∠,就可得到BPC ∠的大小。
解:由已知AC=BC ,将APC ∆绕点C 逆时针旋转090,得C P B '∆,连接P P ';由旋转可知:ACP CB P ∠='∠,P C CP '=,AP BP '=;∴090=∠=∠+'∠ACB PCB CB P ,∴CP P '∆是等腰直角三角形 , ∴045='∠='∠P P C P CP 且2='P P ,在PB P '∆中,∵222222226PB PP AP BP ''+=+====,∴PB P '∆是直角三角形,且090='∠PB P , ∴01359045=+='∠+'∠=∠PB P P CP BPC .例2:如图所示,正方形ABCD 的边长为1,P 、Q 分别为边AB 、AD 上的点,APQ ∆的周长为2,求PCQ ∠的大小.分析:本题在已知三角形的周长和正方形的边长的条件下求角度的大小是比较困难的,因为正方形的边长BC=DC,所以可以考虑将PBC ∆绕点C 顺时针旋转90°,易证E 、D 、Q 三PABC P ’点共线,通过证明ECQ ∆和PCQ ∆全等即可求得PCQ ∠的大小.解:∵ BC=DC ,∴ 将PBC ∆绕点C 顺时针旋转90°得EDC ∆;∴ 090=∠=∠CBP EDC ,PCB ECD ∠=∠,PB ED =,CP CE =;∴ 090=∠+∠+∠=∠+∠+∠PCQ DCQ PCB PCQ DCQ ECD且 0180=∠+∠CDA EDC , ∴ E 、D 、Q 三点共线,∵ APQ ∆的周长为2,即2=++PQ AP AQ , 又 ∵2=+=+++AD AB QD PB AP AQ , ∴ EQ DQ ED DQ PB PQ =+=+=,在ECQ ∆和PCQ ∆中:⎪⎩⎪⎨⎧===CQ CQ PQ EQ CP CE ,∴≅∆ECQ PCQ ∆;∴045=∠=∠ECQ PCQ .练习1:P 为正方形内一点,且PA=1,BP=2,PC=3,求∠APB 的大小.2.利用旋转求线段的长度例3:如图,P 是等边△ABC 内一点,PA=2,32=PB ,PC=4,求BC 的长。
九年级数学上人教版《 旋转的应用》课堂笔记
《旋转的应用》课堂笔记
一、旋转对称图形的概念
1.旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重
合,这种图形叫做旋转对称图形。
2.旋转对称图形的性质:旋转对称图形具有旋转不变性和对称性,即旋转前
后图形的形状和大小保持不变,只改变位置和方向。
二、如何判断一个图形是否为旋转对称图形
1.观察图形的形状和大小是否在旋转前后保持不变。
2.观察旋转前后图形的位置和方向是否发生变化。
3.判断旋转中心是否存在,以及旋转角度是否为360°的整数倍。
三、旋转对称图形的应用
1.在几何中,可以利用旋转对称图形的性质证明一些几何定理和性质。
2.在生活中,很多机械零件和建筑物都是利用旋转对称设计的,如螺旋桨、
圆形屋顶等。
3.在艺术中,旋转对称可以创造出很多美丽的图案和造型,如旋转对称的花
朵、旋转对称的舞蹈动作等。
四、注意事项
1.要注意区分旋转对称图形与其他图形变换的不同之处,如平移、翻折等。
2.在进行旋转对称图形的判断时,要注意观察图形是否具有旋转不变性和对
称性,并确定旋转中心和旋转角度。
3.在实际应用中,要注意选择合适的旋转中心和旋转角度,以达到预期的效
果。
利用旋转的基本性质进行几何证明
利用旋转的基本性质进行几何证明Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT正方形滚动一周,就是滚动四个90°角。
如图:滚动第一个90°时,A点所经过的路线长是以点C为圆心、AC长为半径的-圆周长,此时A点滚动到了A1点(D点滚动到了D1点);滚动第二个90°时,其路线长是以点D1为圆心、A1D1长为半径的-圆周长,此时A1点滚动到了A2点的位置;滚动第三个90°时,由于以点A2为圆心,此时A2点的位置未变(B2点滚动到了B3点);滚动第四个90°时其长是以点B3为圆心、B3C3长为半径的-圆周长,此时A3点滚动到了A4点的位置。
∴A点滚动一周经过的路线长为:-×2π×8-+-×2π×8+0+-×2π×8=(4-+8)π,当正方形滚动两周时,正方形顶点A所经过的路线的长等于(8-+16)π。
[思维延伸2]:如图2,将边长为1的正方形OAPB沿x轴正方向连续翻转2008次,点P依次落在P1、P2、P3、P4…P2008的位置,则P2008的横坐标为_______。
[解析]∵正方形沿x轴正方向连续翻转4次正好翻转了一周∴翻转2008次就是翻转了502周。
从P点经过的路线可以看出,在每个周期内,P点相应的沿着x轴的正方向移动了4个单位长度∴正方形OAPB沿x轴正方向连续翻转2008次后P点向前移动了4×502=2008个单位长度∴P点的横坐标为-1+2008=2007。
例6.如图6所示,已知在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数。
[解析]可先将△APC绕点C按逆时针方向旋转90°到△BEC的位置,由旋转的性质知,此时△CPE是等腰直角三角形,∠CPE=45°,在△BPE中,由勾股定理逆定理可证出∠BPE=90°,由此可求出∠BPC的度数。
利用旋转解决几何问题
利用旋转解决几何问题在几何学中,旋转是一种常见的解决问题的方法。
通过将形状绕着某一点或某一轴旋转,可以得到新的形状,从而解决一些原本复杂的几何问题。
本文将通过几个例子,介绍如何利用旋转来解决几何问题。
一、旋转体的体积计算旋转体的体积计算是旋转解决几何问题的经典应用之一。
考虑一个曲线y=f(x),如果将该曲线绕x轴旋转一周,就可以得到一个旋转体。
我们可以利用旋转体的性质来计算其体积。
例如,我们要计算曲线y=x^2在x=0到x=1之间的旋转体体积。
首先,我们将曲线绕x轴旋转,得到一个旋转体。
然后,我们将该旋转体切割成许多薄片,每个薄片的厚度为Δx。
每个薄片在x轴上的宽度为Δx,高度为f(x)。
因此,该薄片的体积可以用V=π(f(x))^2Δx来表示。
最后,将所有薄片的体积相加,即可得到旋转体的体积。
二、旋转体的表面积计算除了计算旋转体的体积,我们还可以计算旋转体的表面积。
同样,我们可以将旋转体切割成薄片,每个薄片在x轴上的宽度为Δx。
但是,不同于计算体积时使用薄片的高度f(x),计算表面积时,我们使用薄片的周长。
例如,考虑一个曲线y=√x在x=1到x=4之间的旋转体。
我们可以将该旋转体切割成许多薄片,每个薄片的厚度为Δx。
每个薄片在x轴上的宽度为Δx,周长为2πf(x)。
因此,该薄片的表面积可以用S=2πf(x)Δx来表示。
最后,将所有薄片的表面积相加,即可得到旋转体的表面积。
三、旋转体的质心计算旋转体的质心是指旋转体的重心或质量中心,即旋转体的几何中心。
我们可以利用旋转解决几何问题的方法来计算旋转体的质心。
以曲线y=x为例,我们要计算其在x=0到x=1之间的旋转体的质心。
首先,我们将曲线绕x轴旋转,得到一个旋转体。
然后,根据物理学的原理,质心可以通过计算各个薄片的质心位置得到。
每个薄片的宽度为Δx,高度为f(x)。
根据几何学中的平均值定理,每个薄片的质心位置x可以用公式x=∫xf(x)Δx/∫f(x)Δx来表示。
沪科版九级数学下册练习:解题技巧专题:巧用旋转进行计算或证明
沪科版九级数学下册练习:解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为() A.60° B.85° C.75° D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50° B.60° C.70° D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC 绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.◆类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为()A.2 B.3 C.2D.326.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.◆类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.-1B.+1C.D.3第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B 解析:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=70°,∠BAC =∠DAE.∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°-∠C=90°-70°=20°,∴∠DAE=∠CAF+∠EAC=20°+65°=85°,∴∠BAC=∠DAE=85°.2.B3.90°解析:∵将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=(180°-120°)=30°.∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.4.解:连接PP′.∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.∵△PAC绕。
利用旋转的基本性质进行几何证明
利用旋转的基本性质进行几何证明利用旋转的基本性质进行几何证明正方形滚动一周,就是滚动四个90°角。
如滚动第一个90°时,A点所经过的路线长是以点C为圆心、AC长为半径的-圆周长,此时A点滚动到了A1点(D点滚动到了D1点);滚动第二个90°时,其路线长是以点D1为圆心、A1D1长为半径的-圆周长,此时A1点滚动到了A2点的位置;滚动第三个90°时,由于以点A2为圆心,此时A2点的位置未变(B2点滚动到了B3点);滚动第四个90°时其长是以点B3为圆心、B3C3长为半径的-圆周长,此时A3点滚动到了A4点的位置。
∴A点滚动一周经过的路线长为:-2π8-+-2π8+0+-2π8=(4-+8)π,当正方形滚动两周时,正方形顶点A所经过的路线的长等于(8-+16)π。
[思维延伸2]:如图2,将边长为1的正方形OAPB沿x轴正方向连续翻转20XX次,点P依次落在P1、P2、P3、P4…P20XX的位置,则P20XX的横坐标为_______。
[解析]∵正方形沿x轴正方向连续翻转4次正好翻转了一周∴翻转20XX次就是翻转了502周。
从P点经过的路线可以看出,在每个周期内,P点相应的沿着x轴的正方向移动了4个单位长度∴正方形OAPB沿x 轴正方向连续翻转20XX次后P点向前移动了4502=20XX个单位长度∴P点的横坐标为-1+20XX=20XX。
例6.如图6所示,已知在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数。
[解析]可先将△APC绕点C按逆时针方向旋转90°到△BEC的位置,由旋转的性质知,此时△CPE是等腰直角三角形,∠CPE=45°,在△BPE中,由勾股定理逆定理可证出∠BPE=90°,由此可求出∠BPC的度数。
[全解]将△APC绕点C按逆时针方向旋转90°到△CBE的位置,连结PE∴△APC≌△BEC ∴EC=PC=2,EB=PA=3,△CPE 是等腰直角三角形∵PC=2,∠CPE=45°∴PE=2-,在△BPE中∵(2-)2+12=32,即PE2+PB2=BE2 ∴△BPE 为Rt△,∠BPE=90°∴∠BPC=∠CPE+∠BPE=45°+90°=135°[思维延伸1]如图已知,在等边三角形ABC内有一点M,且MA=3,MB=4,MC=5,求等边三角形ABC的面积。
旋转在几何计算、证明中的运用
旋转在几何计算、证明中的运用一、旋转在解三角形中的应用(一)正三角形类型在正ΔABC 中,P 为ΔABC 内一点,将ΔABP 绕A 点按逆时针方向旋转600,使得AB 与AC 重合。
经过这样旋转变化,将图(1-1-a )中的PA 、PB 、PC 三条线段集中于图(1-1-b )中的一个ΔP'CP 中,此时ΔP'AP也为正三角形。
例.1. ..如图:(....1.-.1.):设...P .是等边...Δ.ABC ...内的一点,.....PA=3....,. PB=4....,.PC=5....,∠..APB ...的度数是....________........... 练习,二等腰直角三角形类型在等腰直角三角形ΔABC 中, ∠C=Rt ∠ , P 为ΔABC 内一点,将ΔAPC 绕C 点按逆时针方向旋转900,使得AC 与BC 重合。
经过这样旋转变化,在图(3-1-b )中的一个ΔP' CP 为等腰直角三角形。
1.如图1所示,P 是等边三角形ABC 内的一个点,PA=2,PB=32,PC=4,求△ABC 的边长。
例2.如图,在ΔABC 中,∠ ACB =900,BC=AC ,P 为ΔABC 内一点,且PA=3,PB=1,PC=2。
求∠ BPC 的度数。
11.如图,在△ABC中,∠C=90°,AC=BC ,M 、N 是斜边AB 上的点,且∠MCN=45°,AM=3,BN=5,则MN= .三、旋转在正方形中的运用类比练习:如图,在△ABC 中,∠BAC=90°,AB=AC ,D 是BC 上的任意一点,求证:BD 2+CD 2=2AD 2.D CBA例.如图4,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与'CBP 重合,若PB=3,求'PP 的长。
如图5, P 是正方形ABCD 内一点,且满足PA :PD :PC=1:2:3,则∠APD= .图5、家庭作业1(青岛市)如图,P 是正三角形 ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后,得到△P'AB ,则点P 与点P' 之间的距离为多少,∠APB ?2、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .3如图,E 、F 分别是正方形ABCD 的边BC 、CD 上一点,且BE +DF =EF ,求∠EAF 、4、如图,有边长为1的等边三角形ABC 和顶角为120°的等腰△DBC ,•以D 为顶点作∠MDN=60°角,两边分别交AB 、AC 于M 、N 的三角形,连结MN ,(1)、求证MN=BM+CN ;(2)、试说明△AMN 的周长为2.(3)、若M,N 分别在AB,CA 的延长线上,则(1)中结论还成立吗?如果不成立,MN,BM,CN 又满足什么关系?A B C D 图9CA5如图,已知正方形ABCD ,点E 、F 分别在BC 、CD 上,且AE=BE+FD ,请说出AF 平分∠DAE 的理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)连接 AH,依题意,得正方形 ABCD 与正方形 AEFG 全等,∴AB=AG,∠B=∠G=90°,可证 Rt△ABH≌Rt △AGH,∴BH=GH (2)∵∠1=30°,△ABH≌△AGH, ∴∠2=∠3=30°,设 BH=x,AH=2x,在 Rt△ABH 中, BH2+AB2=AH2, 即 x2+62=(2x)2, ∴x=2 3, ∴BH=2 3
二、利用旋转进行证明
3.某校九年级学习小组在学习探究过程中,用两块完全相
同的且含60°角的直角三角板ABC与AFE按如图①所示位置 放置.现将 Rt△AEF 绕 A 点按逆时针方向旋转角 α(0°< α < 90°), 如图②, AE与BC交于点M,AC 与 EF 交于点 N,BC 与EF交于点P.
2.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线 段BC绕点B逆时针旋转60°得到线段BD.
(1)如图①,直接写出∠ABD的大小;(用含α的式子表示)
(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形
状并加以证明;
(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.
α 解:(1)∠ABD=30°- (2)△ABE 是等边三角形.证明:连 2 接 AD,CD,∠DBC=60°,BD=BC,∴△BDC 是等边三角 形,∠BDC=60°,BD=DC,又∵AB=AC,AD=AD,∴△ ABD≌△ ACD,∴∠ ADB=∠ADC,∴∠ ADB=150° ,∵∠ ABE=∠DBC=60°, ∴∠ABD=∠EBC, 又∵BD=BC, ∠ADB =∠ECB=150°,∴△ABD≌△EBC,∴AB=EB,∴△ABE 是等边三角形 (3)∵BDC 是等边三角形,∴∠BCD=60°,∴ ∠DCE=∠BCE-∠BCD=90°,又∵∠DEC=45°,∴CE= α CD=BC,∴∠EBC=15°.∵∠EBC=∠ABD=30°-2,∴α ,BA =BC,D ,E 是 AC 边上的两 1 1 点,且满足∠DBE = ∠ ABC(0°<∠CBE< ∠ABC).以点 B 2 2 为 旋 转 中 心 , 将 △BEC 按 逆 时 针 方 向 旋 转 ∠ABC 得 到 △BE ′A( 点 C 与点 A 重合 , 点 E 到点 E′处 ), 连接 DE ′.求证: DE′= DE. (2)如图②, 在△ABC 中, BA =BC,∠ ABC=90°, D,E 是 1 AC 边 上 的 两 点 , 且 满 足 ∠DBE = ∠ABC(0 ° < ∠CBE < 2 45° ).求证: DE2= AD2+EC2.
(1)求证:AM=AN;
(2)当旋转角α=30°时,判断四边形
ABPF的形状.并说明理由.
解:(1)由旋转可知,AB=AF,∠BAM=∠FAN,∠B=∠F= 60°,∴△ABM≌△AFN(ASA),∴AM=AN (2)当旋转角α= 30°时,四边形ABPF是菱形.理由:连接AP,∵∠α=30°, ∴ ∠ FAN = 30° , ∴ ∠ FAB = 120° , ∵ ∠ B = 60° , ∴ AF∥BP , ∴∠ F =∠ FPC = 60° , ∴∠ FPC =∠ B = 60° , ∴ AB∥FP , ∴四边形 ABPF 是平行四边形 , ∵ AB = AF , ∴平 行四边形ABPF是菱形
解:(1)∵△BE′A 是由△BEC 以点 B 为旋转中心,按逆时针 方向旋转而得到 , ∴ BE= BE′, ∠ CBE=∠ABE′, ∠ E′ BE 1 =∠ABC.∵∠DBE= ∠ABC,∴∠DBE=∠DBE′,又∵BD 2 =BD,BE=BE′,∴△DBE≌△DBE′,∴DE′=DE (2) 将△CBE 以点 B 为旋转中心按逆时针方向旋转 90°,得到 △ABF,连接 DF,则 AF=CE,∠FAB=∠C.∵BA=BC,∠ ABC=90°, ∴∠BAC=∠C=45°, ∴∠FAD=90°, ∴DF2 =AD2+AF2=AD2+CE2.由(1)知 DF=DE,故 DE2=AD2+ EC2
九年级上册人教版数学 第二十三章 旋转
专题(九) 利用旋转证明或计算
一、利用旋转进行计算
常用旋转的性质构造两个三角形全等进行相关计算
1 . 如图 , 正方形 ABCD 的边长为 6 , 将其绕点 A 顺时针旋转
30°得到正方形AEFG,FG与BC相交于点H.
(1)求证:BH=GH; (2)求BH的长.