人教版2018-2019学年初二数学上册《第十二章全等三角形》 测试题含答案
人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)
人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)班级_______________姓名_________________分数________________一、选择题(每小题5分,共25分)1.如图,已知AC =BD ,AD =BC ,则△ABC ≌△BAD 的依据是( ) A .SAS B .ASA C .AAS D .SSS2.如图,AC 和BD 相交于点O, AO =CO ,BO =DO ,若∠A =25°,则∠C =( )A.25°B.35°C.45°D.55°3. 如图所示,∠ACB =∠DFE ,BC =EF ,如果要使得△ABC ≌△DEF ,则还须补充的一个条件 可以是( )A .∠ABC =∠DEFB .∠ACE =∠DFBC .BF =ECD .AB =DE4.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与 书上完全重合的三角形,那么这两个三角形完全重合的依据是( ) A.SSS B.SAS C. ASA D. AAS5.如图,已知在△ABC 中,∠A=90°,AB=AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC=18cm , 则△DEB 的周长为( )A.16cmB.17cmC.18cmD.19cm二、填空题(每小题5分,共25分)6.已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则 ∠C ′=_________,A ′B ′=__________。
7.在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形___对.D O CBA 第1题 第4题ACBDO第2题ADBCEF第3题第5题8.如图,△ABC ≌△ADE ,若∠BAE =120°,∠BAD =42°,则∠D AC 的度数为 .9.如图,在Rt △ABC 中,∠C=90°, AD 是△ABC 的角平分线,AB=6cm, CD=2cm,则△ABD 的面积是____. 10. 如图,6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .三、解答题(每小题10分,共50分) 11.如图,AB ,CD 相交于点O ,OA =OC ,OB =OD.求证:∠A=∠C.12.如图,AC ⊥CB ,DB ⊥CB ,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.第10题图CBAED第8题A BCD第9题第7题13.如图,点B,C,D,E在同一直线上,AB∥EF,∠A=∠F, BD=CE.求证:(1)△ABC ≌△FED;(2)AC∥DF14.如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC, 垂足分别为E,F,BE=CF. 求证:AD平分∠BAC.AE F15.如图,已知△ABC中,∠ABC=∠BAC, D是BC边上的一点。
(典型题)人教版八年级上册数学第十二章 全等三角形含答案
人教版八年级上册数学第十二章全等三角形含答案一、单选题(共15题,共计45分)1、如图,平分交于点, 于点,若,, ,则的长为()A. B. C. D.2、如图,已知△ABC≌△ADC,∠B=30°,∠DAC=25°,则∠ACB=()A.55°B.60°C.120°D.125°3、如图,在正方形中,E为边上一点,F为延长线上一点,且,连接.给出下列至个结论:① ;② ;③ ;④ ;⑤ .其中正确结论的个数是()A. B. C. D.4、如图,在△AOB中,∠OAB=∠AOB=15°,OB=8,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则PA+PQ的最小值是()A.3B.4C.4D.35、如图所示,某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.①②③都带去6、请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据图形全等的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SSSB.SASC.ASAD.AAS7、如图,AB=AD,添加下面的一个条件后.仍无法判定△ABC≌△ADC的是 ( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°8、如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心 D.∠ACB=90°9、下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;是真命题的有()个A.1B.2C.3D.410、如图,在CD上求一点P,使它到边OA,OB的距离相等,则点P是( )A.线段CD的中点B.CD与∠AOB的平分线的交点C.CD与过点O作的CD的垂线的交点D.以上均不对11、如图,中,于D,于E,AD交BE于点F,若,则等于A. B. C. D.12、如图,已知:∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AEB.AB=AD,BC=DEC.AC=AE,BC=DED.以上都不对13、如图,一块三角形玻璃不小心摔碎成如图三片,只需带上其中的一片,玻璃店的师傅就能重新配一块与原来相同的三角形玻璃,你知道应带碎玻璃.()A.③B.②C.①D.都不行14、规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:① AB=A1B1, AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;② AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③ AB=A1B1, AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④ AB=A1B1, CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个A.1B.2C.3D.415、如图,已知,添加下列条件后,仍无法判定△ ≌△的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图:△ABE≌△ACD,AB=10cm,∠A=60°,∠B=30°,则AD=________cm,∠ADC=________.17、如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=2,P为AB上一动点,则PD的最小值为________.18、已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=________19、如图,已知∠1=∠2,请添加一个条件________使得△AOC≌△BOC.20、如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为________.21、如图,已知△ABC≌△DCB,若∠ABC=50°,∠ACB=40°,则∠D=________.22、如图,四边形ABCD是正方形,边长为4,点G在边BC上运动,DE⊥AG于E,BF∥DE交AG于点F,在运动过程中存在BF+EF的最小值,则这个最小值是________.23、如图,锐角三角形ABC和锐角三角形A'B'C'中,AD、A'D'分别是边BC、B'C'上的高,且AB=A'B',AD=A'D'.要使△ABC≌△A'B'C',则应补充条件:________(填写一个即可)24、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系、已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处,若在y轴上存在点P,且满足FE=FP,则P点坐标为________.25、如图,将边长都为2 cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方形的中心,则2014个这样的正方形重叠部分的面积和为________.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、已知,,,,证明:.28、如图,CD是线段AB的垂直平分线,则∠CAD= ∠CBD.请说明理由:解:∵CD是线段AB的垂直平分线,∴AC=▲ ,▲ =BD..在△ACD和△BCD中,. ▲ =BC,AD= ▲,CD=CD,∴△ACD≌▲ ( ) .∴∠CAD=∠CBD()29、如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E,试说明DE=DC+BE.30、已知:如图,△ABC中,点D、E分别为BC、AC边中点,连接AD,连接DE,过A 点作AF∥BC,交DE的延长线于F.连接CF,(1)求证:四边形ADCF是平行四边形;(2)对△ABC添加一个条件 ,使得四边形ADCF是矩形,并进行证明;(3)在(2)的基础上对△ABC再添加一个条件 ,使得四边形ADCF是正方形,不必证明.参考答案一、单选题(共15题,共计45分)1、A2、D3、C4、C5、C6、A7、C8、A9、C10、B11、A12、C13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
人教版八年级数学上册第十二章《全等三角形》测试题(含答案)
人教版八年级数学上册第十二章《全等三角形》测试题(含答案)一、选择题:1、如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC2、如图,点C在∠DAB的内部,CD⊥AD于D,CB⊥AB于B,CD=CB那么Rt△ADC ≌Rt△ABC的理由是()A.SSS B. ASA C. SAS D. HL3、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个4、在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠A=∠D D.AB=DE5、如图,D、E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48度,则∠ADP等于()度。
A.42 B.48 C .52 D.586、如图,△AEC≌△BED,点D在AC边上,∠1=∠2,AE和BD相交于点O.下列说法:(1)若∠B=∠A,则BE∥AC;(2)若BE=AC,则BE∥AC;(3)若△ECD≌△EOD,∠1=36°,则BE∥AC.其中正确的有()个.A.3个B.2个C.1个D.0个7、如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.30°8、如图所示,AD、BC相交于点O,已知∠A=∠C,要根据“ASA”证明△AOB≌△COD,还要添加一个条件是()A. AB=CDB. AO=COC.BO=DOD.∠ABO=∠CDO9、如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为()A.15 B.12.5 C.14.5 D.1710、如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°11、如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BGC.AE=CE D. AF=FD12、如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二、填空题:13、点O是△ABC内一点,且点O到三边的距离相等,∠BAC=60°,则∠BOC的度数为 .14、如图:在△ABC中,∠B=∠C=50°,D是BC的中点,DE⊥AB,DF⊥AC,则∠BAD= 。
新人教版八年级上册第12章:全等三角形测试及答案
D B O P A C 第6题图CBD B 八年级数学《全等三角形》测试题班别: 姓名: 评价:一、选择题。
(每小题5分,共30分)1、下列说法正确的是 ( )A 、全等三角形是指面积相等的两个三角形B 、全等三角形是指形状相同的两个三角形C 、全等三角形的周长和面积分别相等D 、所有等边三角形都是全等三角形2、已知图中的两个三角形全等,则α∠的度数是( )A .72°B .60°C .58°D .50° 3、如图,已知AB=AC ,BE=CE ,则全等三角形有(A 、1对B 、2对C 、3对D 、4对4、如图,已知AB=CD ,BC=DA ,AC=CA , 则下列写法正确的是 ( )A 、ΔABC ≌ΔACDB 、ΔABC ≌ΔADCC 、ΔABC ≌ΔCDAD 、ΔABC ≌ΔDAC 5、下列说法不正确的是 ( )A 、有两边和一角对应相等的两个三角形全等B 、有两角和它们的夹边对应相等的两个三角形全等C 、有两边和它们的夹角对应相等的两个三角形全等D 、有三边对应相等的两个三角形全等6、尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于21CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是 ( )A . SASB .ASAC .AASD .SSSa c c ab α 50° 58° 72°DA ADBB CB 二、填空题。
(每小题5分,共30分)7、如图,把Rt ΔABC 绕直角边BC 翻折180°,得到Δ则全等三角形是____________________。
8、如图,ΔABC ≌ΔBAD ,A 和B 、C 和D 分别是对应若AB=3cm ,AD=2cm ,BD=3cm ,则BC=______cm 。
2018年秋人教版八年级上册数学《第12章全等三角形》单元测试题含答案
2018年秋人教版八年级上册数学《第12章全等三角形》单元测试题含答案一.选择题(共10小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形2.如图,两个三角形全等,则∠α的度数是()A.50°B.58°C.72°D.60°3.如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC4.如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A.SAS B.ASA C.AAS D.HL5.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3m,则BD 等于()A.6cm B.8cm C.10cm D.4cm6.如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E,下列说法错误的是()A.AD=BC B.∠DAB=∠CBA C.△ACE≌△BDED.AC=CE7.如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A.SSS B.SAS C.ASA D.AAS8.如图,在△ABC中,点O到三边的距离相等,∠BAC=60°,则∠BOC=()A.120°B.125°C.130°D.140°9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED 的面积分别为40和28,则△EDF的面积为()A.12 B.6 C.7 D.810.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.①②③④B.①②④C.①②③D.②③④二.填空题(共8小题)11.已知△ADF≌△CBE,∠A=20°,∠B=120°,则∠BCE=.12.如图,△ABC≌△CDA,则AB与CD的位置关系是.13.如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且△ABD与△ABC全等,点D的坐标是.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若加条件∠B=∠C,则可用判定.15.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③DA=DC;④△ABC≌△ADC,其中正确结论的序号是.16.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是15cm2,AB=9cm,BC=6cm,则DE=cm.17.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于.18.三个全等三角形按如图的形式摆放,若∠1=88°,则∠2+∠3=°.三.解答题(共7小题)19.如图,AD平分∠BAC,点E在AD上,连接BE、CE.若AB=AC,BE=CE.求证:∠1=∠2.20.如图,△ADF≌△CBE,点E、B、D、F在同一条直线上.(1)线段AD与BC之间的数量关系是,其数学根据是.(2)判断AD与BC之间的位置关系,并说明理由.21.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED =105°,∠CAD=10°,∠B=∠D=25°,求∠DFB、∠DGB的度数.22.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.23.如图,△ABC中,点O是∠ABC、∠ACB角平分线的交点,AB+BC+AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.24.如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.25.如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA 的平分线,AD、CE相交于点F.(1)直接写出∠AFC的度数:;(2)请你判断并写出FE与FD之间的数量关系;(3)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.参考答案与试题解析一.选择题(共10小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形【分析】根据全等图形的定义进行判断即可.【解答】解:A:两个面积相等的图形不一定是全等图形,故A错误;B:长方形不一定是全等图形,故B错误;C:两个全等图形形状一定相同,故C正确;D:两个正方形不一定是全等图形,故D错误;故选:C.【点评】本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.2.如图,两个三角形全等,则∠α的度数是()A.50°B.58°C.72°D.60°【分析】根据全等三角形的对应角相等解答.【解答】解:∵两个三角形全等,∴∠α=50°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.3.如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【分析】依据全等三角形的判定定理解答即可.【解答】解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.【点评】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.4.如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A.SAS B.ASA C.AAS D.HL【分析】根据直角三角形的判定定理进行选择.【解答】解:∵在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3m,则BD 等于()A.6cm B.8cm C.10cm D.4cm【分析】由题意可证△ABC≌△CDE,即可得CD=AB=5cm,DE=BC=3cm,可求BD的长.【解答】解:∵AB⊥BD,∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠DCE=90°∴∠DCE=∠BAC且∠B=∠D=90°,且AC=CE∴△ABC≌△CDE(AAS)∴CD=AB=5cm,DE=BC=3cm∴BD=BC+CD=8cm故选:B.【点评】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定和性质解决问题是本题的关键.6.如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E,下列说法错误的是()A.AD=BC B.∠DAB=∠CBA C.△ACE≌△BDED.AC=CE【分析】可证明Rt△ABC≌Rt△BAD,可得出∠BAD=∠ABC,根据等角对等边得出AE=BE,进而得出△ACE≌△BDE.【解答】证明:在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL),∴∠BAD=∠ABC,AD=BC,∴AE=BE,又∵∠C=∠D=90°,∠AEC=∠BED,∴△ACE≌△BDE.故选:D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件.7.如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A.SSS B.SAS C.ASA D.AAS【分析】图形中隐含对顶角的条件,利用两边且夹角相等容易得到两个三角形全等.【解答】证明:在△ABC和△DEC中,,∴△ABC≌△DCE,(SAS)故选:B.【点评】此题主要考查了全等三角形的应用,解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等解决实际问题.8.如图,在△ABC中,点O到三边的距离相等,∠BAC=60°,则∠BOC=()A.120°B.125°C.130°D.140°【分析】根据三角形内角和定理得到∠ABC+∠ACB=120°,根据角平分线的判定定理得到OB,OC分别是∠ABC和∠ACB的平分线,根据角平分线的定义,三角形内角和定理计算.【解答】解:∵∠ABC+∠ACB+∠A=180°,∴∠ABC+∠ACB=180°﹣∠A=120°,∵点O到三边的距离相等,∴OB,OC分别是∠ABC和∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:A.【点评】本题考查的是角平分线的判定,三角形内角和定理,角平分线的定义,掌握三角形内角和等于180°是解题的关键.9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED 的面积分别为40和28,则△EDF的面积为()A.12 B.6 C.7 D.8【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH(HL)∴S△ADF=S△ADH,即28+S=40﹣S,解得S=6.故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键.10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.①②③④B.①②④C.①②③D.②③④【分析】本题通过证明Rt△CDE≌Rt△BDF(AAS)和△ABC为等腰三角形即可求解.【解答】解:∵BC恰好平分∠ABF,∴∠FBC=∠ABC∵BF∥AC,∴∠FBC=∠ACB,∴∠ACB=∠ABC=∠CBF,在△ABC中,AD是△ABC的角平分线,∠ACB=∠ABC,∴△ABC为等腰三角形,∴CD=BD,(故②正确),CA=AB,AD⊥BC(故③正确),∵∠ACB=∠CBF,CD=BD,∴Rt△CDE≌Rt△BDF(AAS),∴DE=DF,(故①正确),BF=CE,CA=AB=AE+CE=2BF+BF=3BF,(故④正确),故选:A.【点评】本题利用了等腰三角形的判定和性质,全等三角形的判定和性质求解,是一道综合性的题目.二.填空题(共8小题)11.已知△ADF≌△CBE,∠A=20°,∠B=120°,则∠BCE=20°.【分析】依据全等三角形的对应角相等,即可得出结论.【解答】解:∵△ADF≌△CBE,∠A=20°,∴∠BCE=∠A=20°,故答案为:20°.【点评】本题主要考查了全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等.12.如图,△ABC≌△CDA,则AB与CD的位置关系是AB∥CD.【分析】根据全等三角形的性质和平行线的判定定理即可得到结论.【解答】解:AB∥CD,理由:∵△ABC≌△CDA,∴∠BAC=∠DCA,∴AB∥CD.【点评】本题考查了全等三角形的性质,平行线的判定,熟练掌握全等三角形的性质是解题的关键.13.如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且△ABD与△ABC全等,点D的坐标是(﹣4,3)或(﹣4,2).【分析】分△ABD≌△ABC,△ABD≌△BAC两种情况,根据全等三角形的性质,坐标与图形的性质解答.【解答】解:当△ABD≌△ABC时,△ABD和△ABC关于y轴对称,∴点D的坐标是(﹣4,3),当△ABD′≌△BAC时,△ABD′的高D′G=△BAC的高CH=4,AG=BH=1,∴OG=2,∴点D′的坐标是(﹣4,2),故答案为:(﹣4,3)或(﹣4,2).【点评】本题考查的是全等三角形的性质,坐标与图形的性质,掌握全等三角形的对应边相等是解题的关键.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若加条件∠B=∠C,则可用AAS判定.【分析】根据垂直定义可得∠ADB=∠ADC=90°,再加上条件∠B=∠C,公共边AD =AD可利用AAS进行判定.【解答】解:∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,,∴△ABD≌△ACD(AAS).故答案为:AAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.15.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③DA=DC;④△ABC≌△ADC,其中正确结论的序号是①②④.【分析】由全等三角形的性质可得∠AOB=∠AOD=90°,可判断①;由条件可得出AC 垂直平分BD,可判断②;若DA=DC,则四边形ABCD为菱形,由条件无法判断,则可判断③;利用SSS可证明△ABC≌△ADC,可判断④,从而得出答案.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD,且∠AOB+∠AOD=180°,∴∠AOB=∠AOD=90°,∴AC⊥BD,故①正确;∵BO=OD,∴AC垂直平分BD,∴CB=DC,故②正确;若AD=DC,则可知AB=AD=DC=BC,∴四边形ABCD为菱形时才有AD=DC成立,故③不正确;在△ABC和△ADC中,∴△ABC≌△ADC(SSS),故④正确;综上可知正确的结论为①②④,故答案为①②④.【点评】本题考查了全等三角形的判定和性质,线段垂直平分线的性质.掌握各性质与定理是解题的关键.16.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是15cm2,AB=9cm,BC=6cm,则DE=2cm.【分析】作DF⊥BC于F,设DE为x,根据角平分线的性质得到DE=DF=x,根据三角形的面积公式列出方程,解方程即可.【解答】解:作DF⊥BC于F,设DE为x,∵BD是∠ABC的角平分线,DE⊥AB,DF⊥BC,∴DE=DF=x,∴×AB×DE+×BC×DF=15,即4.5x+3x=15,解得,x=2cm,故答案为:2.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于9.【分析】作EH⊥BC于H,根据角平分线的性质得到EH=DE=3,根据三角形的面积公式计算即可.【解答】解:作EH⊥BC于H,∵BE平分∠ABC,CD是AB边上的高线,EH⊥BC,∴EH=DE=3,∴△BCE的面积=×BC×EH=9,故答案为:9.【点评】本题考查的是角平分线的性质,三角形的面积,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.三个全等三角形按如图的形式摆放,若∠1=88°,则∠2+∠3=92°.【分析】根据全等三角形的性质得到∠4+∠9+∠8=180°,根据三角形内角和定理得到∠5+∠7+∠6=180°,计算即可.【解答】解:由图形可得:∠1+∠4+∠5+∠3+∠6+∠9+∠2+∠8+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠8=180°,∵∠5+∠7+∠6=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°,∴∠2+∠3=180°﹣88°=92°.故答案为:92.【点评】本题考查了全等三角形的性质,三角形内角和定理,正确掌握全等三角形的对应角相等是解题关键.三.解答题(共7小题)19.如图,AD平分∠BAC,点E在AD上,连接BE、CE.若AB=AC,BE=CE.求证:∠1=∠2.【分析】由题意可证△ABE≌△ACE,可得∠AEB=∠AEC,则可得∠1=∠2.【解答】证明:∵AB=AC,BE=CE,AE=AE∴△ABE≌△ACE(SSS)∴∠AEB=∠AEC∴∠1=∠2【点评】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定是本题的关键.20.如图,△ADF≌△CBE,点E、B、D、F在同一条直线上.(1)线段AD与BC之间的数量关系是AD=BC,其数学根据是全等三角形的对应边相等.(2)判断AD与BC之间的位置关系,并说明理由.【分析】(1)利用全等三角形的性质即可判断;(2)结论:AD=BC.只要证明∠ADB=∠CBD即可;【解答】解:(1)∵△ADF≌△CBE,∴AD=BC(全等三角形的对应边相等),故答案为AD=BC,全等三角形的对应边相等;(2)结论:AD∥BC.理由:∵△ADF≌△CBE,∴∠ADF=CBE,∴∠ADB=∠CBD,∴AD∥BC.【点评】本题考查全等三角形的性质、平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED =105°,∠CAD=10°,∠B=∠D=25°,求∠DFB、∠DGB的度数.【分析】根据三角形的内角和定理求出∠BAC,再求出∠BAF,然后根据三角形的一个外角等于与它不相邻的两个内角的和分别求解即可.【解答】解:∵∠ACB=105°,∠B=25°,∴∠BAC=180°﹣∠ACB﹣∠B=180°﹣105°﹣25°=50°,∵∠CAD=10°,∴∠BAF=∠BAC+∠CAD=50°+10°=60°,在△ABF中,∠DFB=∠B+∠BAF=25°+60°=85°;∵∠D=25°,∴在△DGF中,∠DGB=∠DFB﹣∠D=85°﹣25°=60°.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.22.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.【分析】因为∠C=90°,DE⊥AB,所以∠C=∠DEB,又因为AD平分∠BAC,所以CD=DE,已知BD=DF,则可根据HL判定△CDF≌△EDB,根据全等三角形的性质即可得到结论.【解答】证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.23.如图,△ABC中,点O是∠ABC、∠ACB角平分线的交点,AB+BC+AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.【分析】作OE⊥AB于E,OF⊥AC于F,连结OA,如图,根据角平分线的性质得OE =OF=OD=2,然后根据三角形面积公式和S△ABC=S△ABO+S△BCO+S△ACO 进行计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,连结OA,如图,∵点O是∠ABC、∠ACB角平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD=2,∴S△ABC=S△ABO+S△BCO+S△ACO=AB•OE+BC•OD+AC•OF=×2×(AB+BC+AC)=×2×12=12.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形面积公式.24.如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.【分析】(1)由题意可证△ADF≌△BCE,可得∠E=∠F=28°,即可求∠1的度数;(2)由△ADF≌△BCE可得AD=BC,即可求AC的长.【解答】解:(1)∵AC=BD∴AD=BC且AF=BE,∠A=∠B∴△ADF≌△BCE(SAS)∴∠E=∠F=28°,∴∠1=∠B+∠E=32°+28°=60°;(2)∵△ADF≌△BCE∴AD=BC=5cm,且CD=1cm,∴AC=AD+CD=6cm.【点评】本题考查了全等三角形的判定与性质,熟练运用全等三角形的性质解决问题是本题的关键.25.如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA 的平分线,AD、CE相交于点F.(1)直接写出∠AFC的度数:60°;(2)请你判断并写出FE与FD之间的数量关系;(3)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.【分析】(1)根据三角形的外角的性质只要求出∠FAC,∠ACF即可解决问题;(2)根据图(1)的作法,在AC上截取CG=CD,证得△CFG≌△CFD(SAS),得出DF=GF;再根据ASA证明△AFG≌△AFE,得EF=FG,故得出EF=FD;(3)根据图(1)的作法,在AC上截取AG=AE,证得△EAF≌△GAF(SAS),得出∠EFA=∠GFA;再根据ASA证明△FDC≌△FGC,得CD=CG即可解决问题;【解答】(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°﹣60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°﹣(∠FAC+∠ACF)=120°(2)解:FE与FD之间的数量关系为:DF=EF.理由:如图2,在AC上截取CG=CD,∵CE是∠BCA的平分线,∴∠DCF=∠GCF,在△CFG和△CFD中,,∴△CFG≌△CFD(SAS),∴DF=GF.∵∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=∠BAC,∠FCA=∠ACB,且∠EAF=∠GAF,∴∠FAC+∠FCA=(∠BAC+∠ACB)=(180°﹣∠B)=60°,∴∠AFC=120°,∴∠CFD=60°=∠CFG,∴∠AFG=60°,又∵∠AFE=∠CFD=60°,∴∠AFE=∠AFG,在△AFG和△AFE中,,∴△AFG≌△AFE(ASA),∴EF=GF,∴DF=EF;(3)结论:AC=AE+CD.理由:如图3,在AC上截取AG=AE,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA=∠GFA.又由题可知,∠FAC=∠BAC,∠FCA=∠ACB,∴∠FAC+∠FCA=(∠BAC+∠ACB)=(180°﹣∠B)=60°,∴∠AFC=180°﹣(∠FAC+∠FCA)=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.【点评】本题考查了全等三角形的判定和性质的运用,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.。
2018年人教版八年级数学上册《第12章全等三角形》同步测试含答案
全等三角形测试题时间:90分钟分数:100分题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列说法中,不正确的是全等形的面积相等;形状相同的两个三角形是全等三角形;全等三角形的对应边,对应角相等;若两个三角形全等,则其中一个三角形一定是由另一个三角形旋转得到的.A. 与B. 与C. 与D. 与2.如图,≌ ,如果,,,那么DE的长是A. 6cmB. 5cmC. 7cmD. 无法确定3.已知图中的两个三角形全等,则度数是A. B. C. D.4.下列说法正确的是A. 全等三角形是指形状相同的两个三角形B. 全等三角形是指面积相等的两个三角形C. 两个等边三角形是全等三角形D. 全等三角形是指两个能完全重合的三角形5.中,厘米,,厘米,点D为AB的中点如果点P在线段BC上以v厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度为3厘米秒,则当与全等时,v的值为A. B. 3 C. 或3 D. 1或56.如图,已知≌ ,其中,那么下列结论中,不正确的是A.B.C.D.7.如图,≌ ,,,则的度数是A. B. C. D.8.有下列说法:形状相同的图形是全等形;全等形的大小相同,形状也相同;全等三角形的面积相等;面积相等的两个三角形全等;若≌ ,≌ ,则≌ 其中正确的说法有A. 2个B. 3个C. 4个D. 5个9.下列说法中:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的周长相等;周长相等的两个三角形全等;全等三角形的面积相等;面积相等的两个三角形全等,正确的A. B. C. D.10.如图,与是全等三角形,则图中相等的线段有A. 1对B. 2对C. 3对D. 4对二、填空题(本大题共10小题,共30.0分)11.在如图所示的方格中,连接AB、AC,则______ 度12.如图,≌ ,,,则______ cm.13.如图,≌ ,点B和点C是对应顶点,,,,则______ cm.14.若≌ ,且,,则______ .15.如图,≌ ,,,,则的度数为______ .16.如图,若≌ ,且,,则______ 度17.如图,点E是正方形ABCD内的一点,点在BC边的下方,连接AE,BE,CE,,若,,,且≌ ,则______18.已知:如图,≌ ,且,,则______ 度19.如图,在中,D、E分别是边AC、BC上的点,若≌ ≌ ,,则______ cm.20.如图,中,,,≌ ,若恰好经过点B,交AB于D,则的度数为______。
人教版2018年八年级上册数学:第十二章《全等三角形》达标检测卷含答案
2018 年人教版初二八年级上册数学第十二章达标检测卷(120 分, 90 分钟 )题号一二三总分得分一、选择题 (每题 3 分,共 30 分 )1.以下判断不正确的选项是()A.形状相同的图形是全等图形B.能够完整重合的两个三角形全等C.全等图形的形状和大小都相同 D .全等三角形的对应角相等2.如图,已知两个三角形,则∠α等于()A. 66° B. 25° C. 79° D. 89°(第 2 题 )(第 3 题 )(第 4 题 )(第 5 题 )3.如图,小敏做了一个角均分仪ABCD ,此中 AB = AD , BC =DC ,将仪器上的点A 与∠ PRQ 的极点 R 重合,调整AB 和 A D ,使它们分别落在角的两边上,过点A,C画一条射线AE ,AE就是∠ PRQ的均分线.此角均分仪的绘图原理是:依据仪器构造,可得△ABC ≌△ ADC ,这样就有∠ QAE =∠ PAE.则说明这两个三角形全等的依照是() A. SAS B. ASA C. AAS D. SSS4.如图,在Rt△ ABC 中,∠ C= 90°, AD 是∠ BAC 的均分线, DE ⊥AB ,垂足为 E.若 AB = 10 cm, AC =6 cm,则 BE 的长度为 ()A. 10 cm B. 6 cm C. 4 cm D. 2 cm5.如下图,AB =CD,∠ ABD =∠ CDB ,则图中全等三角形共有()A. 5 对B.4 对C. 3 对 D .2 对6.点P在∠AOB的均分线上,点P 到 OA 边的距离等于5,点 Q 是 OB 边上的随意一点,则以下选项正确的选项是()A.PQ>5 B.PQ≥5 C. PQ< 5D. PQ≤ 57.在△ABC中,∠ B=∠ C,与△ ABC全等的△ DEF中有一个角是100 °,那么在△ABC 中与这 100°角对应相等的角是()A.∠ A B.∠ B C.∠ C D .∠ B 或∠ C8.如下图,已知△ABE ≌△ ACD ,∠ 1=∠ 2,∠ B=∠ C,则不正确的选项是() A.AB = AC B.∠ BAE =∠ CAD C. BE= DC D. AD = DE(第 8 题 )(第 9 题 )(第 10 题 )9.如图,直线a, b, c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地点有()A.一处B.两处C.三处D.四周10.已知:如图,在△ABC和△ ADE中,∠ BAC=∠ DAE=90°,AB=AC,AD=AE ,连结CD , C, D , E 三点在同一条直线上,连结BD , BE.以下四个结论:①BD =CE;②∠ ACE +∠ DBC = 45°;③ BD⊥ CE ;④∠ BAE +∠ DAC = 180 °.此中结论正确的个数是 ()A. 1 B. 2 C.3D. 4二、填空题 (每题 3 分,共 30 分 )11.如图,∠1=∠2,要使△ABE≌△ACE,还需增添一个条件是:________. (填上你以为适合的一个条件即可)12.如图,点O 在△ ABC内,且到三边的距离相等.若∠ A = 60°,则∠ BOC =________ °.13.在△ABC中,AB=4,AC=3,AD是△ABC的角均分线,则△ABD 与△ ACD 的面积之比是 ________.[根源学&科&网](第 11 题 )(第 12 题 )(第 15 题 )(第 16 题 )14.已知等腰△ABC 的周长为18 cm, BC= 8 cm,若△ ABC ≌△ A′ B′,C则′△ A′ B′ C′的腰长等于 ________.15.如图,BE⊥AC,垂足为 D ,且AD = CD , BD = ED. 若∠ ABC = 54°,则∠ E=________ °.16.如图,△ABC≌△DCB,AC与BD订交于点E,若∠ A =∠ D = 80°,∠ ABC =60°,则∠ BEC 等于 ________.[根源:]17.如图,OP均分∠MON,PE⊥OM于E,PF⊥ ON于F,OA=OB,则图中共有________对全等三角形.18.如图,已知P(3, 3),点 B、 A 分别在 x 轴正半轴和y 轴正半轴上,∠APB = 90°,则OA + OB=________ .(第 17 题)(第 18 题)(第 19 题 )(第 20 题 )19.如图,AE⊥AB,且AE = AB , BC ⊥ CD ,且B C = CD ,请依照图中所标明的数据,计算图中实线所围成的图形的面积S 是 ________.20.如图,已知点P 到 BE , BD , AC 的距离恰巧相等,则点P 的地点:①在∠DBC 的均分线上;②在∠DAC的均分线上;③在∠ECA 的均分线上;④正是∠DBC ,∠ DAC ,∠ECA 的均分线的交点,上述结论中,正确的有________. (填序号 )三、解答题 (21、 22 题每题 7 分, 23、 24 题每题 8 分, 25~ 27 题每题 10 分,共 60 分)21.如图,按以下要求作图:(1)作出△ ABC 的角均分线CD ;(2)作出△ ABC 的中线 BE;(3)作出△ ABC 的高 AF.(不写作法 )(第 21 题 )[根源:]22.如图,已知△EFG≌△ NMH ,∠ F 与∠ M 是对应角.(1)写出全部相等的线段与相等的角;(2)若 EF= 2.1 cm, FH = 1.1 cm, HM = 3.3 cm,求 MN 和 HG 的长度.(第 22 题 )23.如图,AD⊥AE,AB⊥AC,AD=AE,AB=AC.求证:△ABD≌△ACE.(第 23 题 )24.如图,AC∥BE,点D在BC上,AB=DE,∠ABE=∠CDE.求证: DC = BE- AC.(第 24 题 )25.如下图,在△ABC 中,∠ C= 90°, AD 是∠ BAC 的均分线, DE⊥AB 交 AB 于E, F 在 AC 上, BD =DF.求证: (1)CF= EB ; (2)AB = AF + 2EB.(第 25 题 )26.如图,A,B两建筑物位于河的两岸,要测得它们之间的距离,能够从 B 点出发在河岸上画一条射线 BF,在 BF 上截取 BC= CD,过 D 作 DE ∥ AB ,使 E, C,A 在同向来线上,则 DE 的长就是 A , B 之间的距离,请你说明道理.(第 26 题 )27.如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一点,连结AD,以AD为一边且在 AD 的右边作正方形 ADEF ,连结 CF.(1)假如 AB =AC ,∠ BAC = 90°,①当点 D 在线段 BC 上时 (与点 B 不重合 ),如图 (2),线段 CF, BD 所在直线的地点关系为______,线段 CF,BD 的数目关系为 ________;②当点 D 在线段BC 的延伸线上时,如图(3),①中的结论能否仍旧建立,并说明理由;(2)假如 AB ≠ AC ,∠ BAC 是锐角,点 D 在线段 BC 上,当∠ ACB 知足什么条件时,CF⊥BC( 点 C、 F 不重合 ),并说明原因.(第 27 题 )答案一、 1.A 2.D 3.D 4.C 5.C 6.B7. A 8.D9. D点拨: 如图,在△ ABC 内部,找一点到三边距离相等,依据到角的两边距离相等的点在角的均分线上,可知,此点在各内角的均分线上,作∠ ABC ,∠ BCA 的角均分线,交于点 O 1,由角均分线的性质可知,O 1 到 AB , BC , AC 的距离相等.同理,作∠ACD ,∠ CAE 的角均分线,交于点 O 2,则 O 2 到 AC , BC ,AB 的距离相等,相同作法得 到点 O 3,O 4.故可供选择的地点有四周.应选D .(第 9 题 )10. D二、 11.∠ B =∠ C( 答案不独一 )12. 120 13.4∶ 3 14.8 cm 或 5 cm15. 27 16.100 °17. 3 点拨: △OPE ≌△ OPF ,△ OPA ≌△ OPB ,△ AEP ≌△ BFP ,因此共有 3 对全等三角形.18. 6 点拨: 过点 P 作 PC ⊥ OB 于 C , PD ⊥ OA 于 D ,则 PD = PC = DO = OC =3,可证△ APD ≌△ BPC ,∴ DA = CB ,∴ OA + OB = OA + OC + CB = OA + OC + DA = OC + OD= 6.19. 50 点拨: 由题意易知,△ AFE ≌△ BGA ,△ BGC ≌△ CHD. ∴ FA = BG = 3 , AG1=EF =6, CG = HD = 4, CH = BG = 3.∴ S =S 梯形 EFHD -S △ EFA - S △ AGB - S △ BGC - S △CHD = 2(4+ 6)×(3+ 6+ 4+3) - 1× 3× 6×2- 1× 3×4× 2= 80- 18- 12=50.2 220.①②③④三、 21.解: (1)角均分线 CD 如图①所示.(2) 中线 BE 如图②所示. (3) 高 AF 如图③所示.(第 21 题 )22.解:(1)EF=MN,EG=HN,FG=MH,FH=GM,∠F=∠M,∠E=∠N,∠EGF =∠ MHN ,∠ FHN =∠ EGM.(2)∵△ EFG≌△ NMH ,∴ MN = EF= 2.1 cm, GF=HM = 3.3 cm,∵FH= 1.1 cm,∴ HG= GF- FH = 3.3- 1.1=2.2 (cm).23.证明:∵AD⊥AE,AB⊥AC,∴∠CAB=∠DAE=90°.∴∠ CAB +∠ CAD =∠ DAE +∠ CAD ,即∠ BAD =∠ CAE.在△ ABD 和△ ACE 中,AB =AC ,∠BAD =∠ CAE ,[根源学科网]AD =AE ,∴△ ABD ≌△ ACE.24.证明:∵AC∥BE,∴∠DBE=∠C.∵∠CDE=∠DBE+∠E,∠ABE=∠ABC+∠ C=∠ DBE ,∠DBE ,∠ABE =∠ CDE ,∴∠ E =∠ ABC. 在△ ABC与△DEB中,∠ ABC=∠ E,AB =DE,∴△ ABC ≌△ DEB( AAS).∴ BC=BE ,AC = BD. ∴ DC= BC- BD = BE- AC.25.证明:(1)∵AD是∠BAC的均分线,DE⊥AB,DC⊥AC,∴DE= DC.又∵ BD= DF,∴Rt△ CDF≌ Rt△ EDB( HL ).∴CF= EB.(2)由 (1) 可知 DE = DC,又∵ AD = AD ,∴Rt△ ADC ≌ Rt△ADE.∴AC =AE.∴AB =AE +BE = AC + EB= AF + CF+EB =AF + 2EB.2018 年人教版初二八年级上册数学点拨: (1)依据角均分线的性质“角均分线上的点到角的两边的距离相等”,可得点D 到AB 的距离=点 D 到 AC 的距离,即 CD = DE. 再依据 Rt△ CDF≌ Rt△ EDB ,得 CF= EB.(2)利用角均分线的性质证明Rt△ADC ≌Rt△ ADE ,∴ AC = AE ,再将线段AB 进行转化.26.解:∵DE∥AB,∴∠A=∠E.∵ E, C,A 在同向来线上,B, C,D 在同向来线上,∴∠ACB =∠ ECD.∠ A =∠ E,在△ ABC 与△ EDC 中,∠ ACB=∠ ECD,BC = CD ,∴△ ABC ≌△ EDC( AAS).∴ AB =DE.27.解:(1)①CF⊥BD;CF=BD②当点 D 在线段 BC 的延伸线上时,①中的结论仍旧建立.原因:由正方形ADEF 得AD = AF ,∠ DAF = 90°.∵∠ BAC = 90°,∴∠ DAF =∠ BAC.∴∠ DAB =∠ FAC.又∵ AB = AC ,∴△ DAB ≌△ FAC.∴ CF= BD ,∠ ACF =∠ ABD.∵∠ BAC = 90°, AB =AC ,∴△ ABC 是等腰直角三角形.∴∠ABC =∠ ACB =45°.∴∠ ACF = 45°.∴∠ BCF =∠ ACB +∠ ACF = 90°.即 CF⊥BD. 来[源:Z_xx_](第 27 题)(2)当∠ ACB = 45°时, CF⊥ BC( 如图 ).原因:过点 A 作 AG ⊥ AC 交 CB 的延伸线于点G,则∠ GAC =90°,∵∠ ACB = 45°,∠AGC = 90°-∠ ACB ,∴∠ AGC = 90°- 45°= 45°,∴∠ ACB =∠ AGC = 45°,∴△ AGC 是等腰直角三角形,∴AC = AG. 又∵∠ DAG =∠ FAC( 同角的余角相等) , AD = AF ,∴△ GAD ≌△ CAF ,∴∠ ACF =∠ AGC = 45°,∴∠ BCF =∠ ACB +∠ ACF = 45°+ 45°=90°,即 CF⊥ BC.。
人教版八年级数学上册 第12章 《全等三角形》 综合测试卷(含答案)
人教版数学八年级上册第12章全等三角形综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分)1.如图,BE⊥AC于点D,且AD=CD,BD=ED,则∠ABC=54°,则∠E=() A.25°B.27°C.30°D.45°2.如图,在△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法中正确的有() ①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A.1个B.2个C.3个D.4个3.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点4.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQC.MO D.MQ5.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )A.AC=BD B.∠CAB=∠DBAC.∠C=∠D D.BC=AD6.如图,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A.27° A.30° C.45°D.60°7.如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC8.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=ECC.BF=DF=CD D.FD∥BCA.3对B.4对C.5对D.6对10.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.不相等C.互余或相等D.互补或相等第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.如图,△ABD≌△AEC,且AB=8,BD=7,AD=6,则BC=________.12.如图,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件________,使△ABC≌△DBE.(只需添加一个即可)13.如图,把一长一短两根细木棍的一端用螺钉铰合在一起,使长木棍的另一端与射线BC的端点B 重合,固定住长木棍,摆动短木棍,当端点落在射线BC上的点C,D两位置时,形成△OBD和△OBC.此时有OB=OB,OC=OD,∠OBD=∠OBC,则△OBD与△OCB_________(填“全等”或“不全等”),这说明__________________________________________________________________.14.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是______________.15.如图,已知△ABC的面积等于20 cm2,周长等于10 cm,△ABC两条内角平分线相交于点O,则点O到BC边的距离为___________.16.如图,已知△ABC中,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC于D,OH ⊥BC于H,若∠BAC=60°,OH=5 cm,则∠BAD=________,点O到AB的距离为_________ cm.17.如图,Rt△ABE≌Rt△ECD,点B,E,C在同一直线上,则下列结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC.其中成立的是______________.(填上序号即可)18. 如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=__ ___ _.三.解答题(共7小题,66分)19.(8分) 如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一把刻度尺,他是这样操作的:(1)分别在BA,CA上取BE=CG;(2)在BC上取BD=CF;(3)量出DE的长为a米,FG的长为b米,如果a=b,则说明∠B和∠C是相等的.他的这种做法合理吗?为什么?20.(8分) 已知:BE⊥CD,BE=DE,BC=DA.求证:AD⊥BC.21.(8分) 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,已知EH=EB=3,AE=4,求CH的长.22.(10分) 如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),求点B的坐标.23.(10分) 如图,已知∠1=∠2,∠3=∠4,点E在BD上,连接AE,CE,求证:AE=CE.24.(10分) 两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图形,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明;(说明:结论中不得含有未标识的字母)(2)求证:DC⊥BE.25.(12分) 如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E 三点在同一直线上,连接BD交AC于点F.(1)求证:△BAD≌△CAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.参考答案:1-5BDDBA 6-10ACDDD11. 212. ∠C =∠E(不唯一)13. 不全等,若两边及其一边的对角对应相等,则这两个三角形不一定全等14. 1<AD <715. 4cm16. 30°,517. ①②③④18. 55°19. 解:合理,理由如下:由已知条件可知:如果a =b ,那么DE=FG在△EFG 和△NMH 中,⎩⎪⎨⎪⎧BE =CG , BD =CF , DE=FG ,△BED ≌△CGF(SSS),∴∠B =∠C20. 解:∵BE ⊥CD ,∴∠BEC=∠BED =90°,在Rt △CEB 和Rt △AED 中,∵BE =DE ,BC =DA ,∴Rt △CEB ≌Rt △AED(HL),∴∠CBE =∠ADE ,又∵∠ADE +∠EAD =90°,∠EAD =∠FAB ,∴∠FAB +∠ABF =90°,∴∠AFB =90°,∴AD ⊥BC21. 解:∵AD ⊥BC ,CE ⊥AB ,∴∠BEC =∠AEC=∠BDA =∠ADC=90°,∵∠B+∠BCE=∠DHC+∠BCE=90°,且∠DHC+∠AHE ,∴∠B =∠AHE ,在△AEH 和△CEB 中,⎩⎪⎨⎪⎧∠B =∠AHE , EH =EB , ∠BEC =∠AEC ,∴△AEH ≌△CEB (ASA),∴AE =CE.∵EH =EB =3,AE =4,∴CH =CE -EH =4-3=122. 解:过点A ,B 分别作AD ⊥OC 于点D ,BE ⊥OC 于点E ,∴∠ACD +∠CAD =90°, ∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE.在△ADC 和△CEB 中,∠ADC =∠CEB =90°,∠CAD =∠BCE ,AC =BC ,∴△ADC ≌△CEB(AAS),∴DC =BE ,AD =CE ,∵点C 的坐标为(-2,0),点A 的坐标为(-6,3),∴OC =2,AD =CE =3,OD =6,∴CD =OD -OC =4,OE =CE -OC =3-2=1,∴BE =4,∴B 点的坐标是(1,4)23. 证明:在△ABD 和△CBD 中,⎩⎪⎨⎪⎧∠1=∠2,BD =BD ,∠3=∠4,∴△ABD ≌△CBD(ASA),∴AD =CD ;在△AED 和△CED 中,⎩⎪⎨⎪⎧AD =CD ,∠3=∠4,ED =ED ,∴△AED ≌△CED(SAS),∴AE =CE.24. 解:(1)△ABE ≌△ACD.证明:∵AB =AC ,AE =AD ,∠BAC =∠EAD =90°,∴∠BAC +∠CAE =∠EAD +∠CAE ,即∠BAE =∠CAD ,(2)由△ABE≌△ACD得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE25. 解:(1)∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS)(2)BD⊥CE.理由如下:由(1)可知△BAD≌△CAE,∴∠ABD=∠ACE.∵∠BAC=90°,∴∠ABD+∠AFB=90°.又∵∠AFB=∠DFC,∴∠ACE+∠DFC=90°,∴∠BDC=90°,即BD⊥CE。
第十二章 全等三角形单元测试题(含答案)
2018-2019学年八年级数学上学期同步单元测试:第十二章 全等三角形―、选择题(每题3分,共30分) 1.下列说法中不正确的是( )A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等2.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出了一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSSB.SASC.AASD.ASA3.如图,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点.若PA= 2,则PQ 的最小值为( )A.1B.2C.3D.44.在△ABC 和△'''A B C 中,''AB A B =, 'A A ∠=∠,若要证△ABC ≅△'''A B C ,则还需从下列条件中选取一个,错误的选法是( )A.'B B ∠=∠B.'C C ∠=∠C.''BC B C =D.''AC A C =5.如图,在四边形ABCD 中,,AD CB DE AC =⊥于点E ,BF AC ⊥于点F ,且DE BF =,则图中全等三角形有( )A.1对B.2对C.3对D.4对6.如图,在MON ∠的两边上截取,OA OB OC OD ==,连接,AD BC 交于点P ,则下列结论:①△AOD ≅△BOC ;②△APC ≅△BPD ③点P 在AOB ∠的平分线上.其中正确的是( )A.只有①B.只有②C.只有①②D.①②③7.如图,在△ABC 和△BDE 从中,点C 在边BD 上,边AC 交边BE 于点F .若,,AC BD AB ED BC BE ===,则ACB ∠等于( )A.EDB ∠B.BED ∠C.12AFB ∠ D.2ABF ∠ 8.如图,直线,,a b c 表示三条公路,现要建一个货物中转站,要求它到三条路的距离相等,则可供选择的地址有( )A.一处B.两处C.三处D.四处9.如图,等腰直角三角形ABC 中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于点E,交BA 的延长线于点F.若BF=12,则△FBC 的面积为( )A.40B.46C.48D.5010.如图,点,A B 分别是,NOP MOP ∠∠平分线上的点,AB OP ⊥于点E, BC MN ⊥于点C,AD MN ⊥于点D,下列结论错误的是( )A.AD BC AB +=B.90AOB ∠=︒C.与CBO ∠互余的角有两个D.点O 是CD 的中点二、填空题(每题3分,共18分)11.如图,,AC BD 即相交于点O ,A D ∠=∠补充一个条件,使△AOB ≅△DOC ,你补充的条件是___________.(填出一个即可)12.若△ABC ≅△'''A B C ,A 与'A ,B 与'B ,C 与'C 为对应顶点,且60,'C'56B A ∠=︒∠-∠=︒,则A ∠=___________,'C ∠__________.13.如图,已知AB//CF,E 为DF 的中点.若AB=11cm,CF=5cm,则BD=__________cm.14.如图,在△ABC 中,,AD BC BE AC ⊥⊥,垂足分别为D,E,AD 与BE 相交于点 F.若BF=AC,则ABC ∠的度数为__________.15.如图,△ABC 中,AB=12,BC=10,AC=6,其三条角平分线交于点O ,则::ABO BCO ACO S S S ∆∆∆=__________.16.如图,线段AB=8,射线AN AB ⊥于点A ,点C 是射线上一动点,分别以,AC BC 为直角边作等腰直角三角形,得△ACD 与△BCE ,连接DE 交射线AN 于点M ,则CM 的长为__________.三、解答题(共72分)17.(6分)如图,在CD 上求作一点P,使它到,OA OB 的距离相等.(尺规作图,保留作图痕迹)18.(6分)如图,,,ABC DCB BD CA ∠=∠分别是,ABC DCB ∠∠的平分线.求证: AB DC =.19.(8分)“三月三,放风筝”,这天,妈妈让小明自己动手制作一个如图所示的小风筝,它是由两个三角形拼成的,而且满足△ABC ≅△ADE 才符合要求.小明想了想,仿图制作了一个小风筝后,通过测量得到,AB AD BAE DAC =∠=∠,为了保证符合要求,他还需要哪一对相等的量?说出你的理由.20.(8分)杨阳同学沿一段笔直的人行道行走,在从A 处步行到达B 处的过程中,通过隔离带的空隙O ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下:如图,AB //OH //CD ,相邻两平行线间的距离相等. ,AC BD 相交于点,O OD CD ⊥,垂足为D .已知AB=20米,请根据上述信息求标语 CD 的长度.21.(10分)如图,,,,AB AE BC ED B E AF CD ==∠=∠⊥于点F .求证:CF=DF.22.(10分)如图,在四边形ABCD 中,AC 平分BAD ∠,过点C 作CE AB ⊥于点E,且180B ADC ∠+∠=︒.求证:()12AE AB AD =+.23.(12分)如图,在△ABC 中,,90,AB CB ABC D =∠=︒为AB 延长线上一点,点E 在BC 边上,且BE BD =,连接,,AE DE DC .(1)求证:△ABE ≅△CBD ;(2)若30CAE ∠=︒,求BDC ∠的度数. (3)判断直线AE 与CD 的位置关系,并说明理由.24.(12分)【问题提出】学习了三角形全等的判定方法(即“SAS ”“ASA ”“AAS ”“SSS ”)和直角三角形全等的判定方法(“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究. 【初步思考】我们不妨将问题用符号语言来表示:在△ABC 和△DEF 中,此,,AC DF BC EF B E ==∠=∠,然后,对B ∠进行分类,可分为“B ∠是直角、钝角、锐角”三种情况进行探究. 【深入探究】第一种情况:当B ∠是直角时,△ABC ≅△DEF .(1)如图1,在△ABC 和△DEF 中,,,90AC DF BC EF B E ==∠=∠=︒,根据__________,可以知道Rt △ABC ≅△DEF .第二种情况:当B ∠是钝角时,△ABC ≅△DEF .(2)如图2,在△ABC 和△DEF 中,,,AC DF BC EF B E ==∠=∠,且,B E ∠∠都是钝角.求证:△ABC ≅△DEF .第三种情况:当B ∠是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,,,AC DF BC EF B E ==∠=∠,且,B E ∠∠都是锐角.请你用尺规在图3中作出△DEF ,使△ABC 和△DEF 不全等.(不写作法,保留作图痕迹)(4)对于(3),B ∠还要满足什么条件,就可以使△ABC ≅△DEF ?请直接填写结论:在△ABC 和△DEF 中,,,AC DF BC EF B E ==∠=∠,且,B E ∠∠都是锐角,若______________,则△ABC ≅△DEF.参考答案1. D 【解析】根据全等三角形的概念,可知全等三角形的对应高相等,面积相等,周长相等,但周长相等的两个三角形不一定全等.故选D.2. D 【解析】因为没有被墨迹污染的一部分为原三角形的两角及夹边,所以他根据“ASA ”画出了一个与书上完全一样的三角形.故选D.3. B 【解析】当PQ ⊥OM 时,PQ 有最小值.OP 平分MON ∠,PA ⊥ON,∴当PQ ⊥OM 时,PQ=PA=2.故选 B.4. C 【解析】A 项,根据“ASA ”可以证明两个三角形全等;B 项,根据“AAS ”可以证明两个三角形全等;D 项,根据“SAS ”可以证明两个三角形全等;C 项,不能证明两个三角形全等.故选C.5. C 【解析】因为DE ⊥AC ,BF ⊥AC ,所以90,,AED CFB AD CB DE BF ∠=∠=︒==又,所以Rt △ADE ≅Rt △CBF ,所以AE=CF,EAD FCB ∠=∠.因为AD=CB ,CAD ACB ∠=∠,AC=CA 所以△ADE ≅△CBF,所以DC=BA.在Rt △CDE 和Rt △ABF 中,DC=BA,DE=BF,所以Rt △CDE ≅Rt △ABF 综上,共有3对全等三角形.故选C.6. D 【解析】因为OA=OB ,AOD BOC ∠=∠,OD=OC ,所以△AOD ≅△BOC(SAS),因此①正确;由△AOD ≅△BOC ,得CAP DBP ∠=∠,因为OA=OB,OC=OD,所以AC=BD ,又APC BPD ∠=∠,所以△APC ≅△BPD(AAS),因此②正确;连接OP ,因为△APC ≅△BPD ,所以AP=BP ,又OA=OB ,OP=OP,所以△OAP ≅△OBP(SSS),所以AOP BOP ∠=∠,因此③正确.故选D.7. C 【解析】AC=DB ,AB=DE ,BC=EB ,∴△ABC ≅△DEB(SSS ),∴.ACB DBE AFB ∠=∠∠是△BFC 的外角,,AFB ACB DBE ∠=∠+∠12,2AFB ACB ACB AFB ∴∠=∠∴=∠.故选C.8.D 【解析】可以在三条公路围成的三角形的内角的角平分线的交点或外角的角平分线的交点处,共有四处.故选D.9.C 【解析】EC BD ⊥,90,90,90,BEF BAC CAF ∴∠=︒∠=︒∠=︒90,90,90,.CAF BAD ABD F ACF F ABD ACF ∠=∠=︒∠+∠=︒∠+∠=︒∠=∠在△ABD 和△ACF 中,BAD CAF AB AC ABD ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD ≅△ACF (ASA).,,AD AF AB AC ∴==22.3D AC AB AC AD AF BF AB AF AF ∴====+=为的中点,12,4,28,AF AB AC AF =∴=∴===∴△FBC 的面积为12BF AC ⋅112848.2=⨯⨯=故选C. 10.C 【解析】如图,,,,AB OP BC MN AD MN OA ⊥⊥⊥平分,,,.,NOP OB MOP AE AD BC BE AB AE BE AD BC ∠∠∴==∴=+=+∴平分A 正确.在Rt △BOC 和Rt △BOE 中,BC=BE,BO=BO,∴Rt △BOC ≅Rt △BOE,∴OC=OE,12,56∠=∠∠=∠.同理得∴Rt △AOD≅Rt△AOE,∴OD=OE, 34,78,∠=∠∠=∠∴OC=OE=OD,∴D 正确.1+2+3+4=1802+3=90∠∠∠∠︒∴∠∠︒∴,,B 正确.∴CBD ∠的余角有12,78∠∠∠∠,,,共4个,∴C 错误.故选C.11.AO DO =(或BO CO =或AB DC =,答案不唯一)【解析】添加条件AO DO =,可根据“ASA ”证明△AOB ≅△DOC ;添加条件BO CO =,可根据“AAS ”证明△AOB ≅△DOC ;添加条件AB=DC,可根据“AAS ”证明△AOB ≅△DOC .(答案不唯一)12.88︒ 32︒【解析】由题意,得',','A A B B C C ∠=∠∠=∠∠=∠. 因为'C'56A ∠-∠=︒,所以C 56A ∠-∠=︒,又60B ∠=︒, 所以C 120A ∠-∠=︒,所以88,'32A C C ∠=︒∠=∠=︒. 13.6【解析】AB//CF,,ADE CFE A ECF ∴∠=∠∠=∠.E 为DF 的中点,ED=EF,∴△ADE ≅△CFE .AD=CF=5cm,BD=AB-AD=11-5=6(cm). 14.45°【解析】,,,AD BC BE AC ADC BDF ⊥⊥∠=∠90,90,.CAD C FBD C CAD FBD ∠+∠=︒∠+∠=︒∠=∠在△ADC 和△BDF 中,CAD FBDADC BDF AC BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≅△BDF (AAS). ∴AD=BD,∴△ABD 是等腰直角三角形,∴45ABC ∠=︒. 15.6:5:3【解析】过点O 作OD AB ⊥于点C,OE BC ⊥于点E,OF AC ⊥于点F.O 是△ABC 三条角平分线的交点,,OD OE OF ∴==111::::222ABO BCO ACO S S S AB OD BC OE AC OF ∆∆∆∴=⋅⋅⋅ ::12:10:66:5:3AB BC AC ===.16.4【解析】如图,过点E 作EH ⊥AN 于点H.BA ⊥AN,EH ⊥AN,90.90,90,.BAC EHC ABC ACB ACB HCE ABC HCE ∴∠=∠=∠+∠=∠+∠=∠=∠ △BCE 和△ACD 都是等腰直角三角形,∴BC=CE,AC=DC,90.BCE ACD ∠=∠=︒在△ABC 和△HCE 中,BAC CHE ABC HCE BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≅△HCE (AAS),∴ AC=HE,AB=CH,∴CD=AC=HE. 在△DCM 和△EHM 中,DCM EHM CMD HME CD HE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DCM ≅△EHM (AAS),∴CM=HM,∴CM=12CH=12AB=4.17.【解析】如图,作AOB ∠的平分线,交CD 于点P ,则P 即所求.18.【解析】11,,,.22BD CA ABC DCB DBC ABC ACB DCB ∴∠=∠∠=∠分别是的平分线,,.ABC DCB DBC ACB ∠=∠∴∠=∠在△ABC 和△DCB 中,ABC DCBBC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≅△DCB (ASA),∴AB=DC.19.【解析】AC=AE(或=C E B D ∠=∠∠∠或,答案不唯一).需要AC=AE.理由如下:,,.BAE DAC BAE EAC DAC EAC BAC DAE ∠=∠∠+∠=∠+∠∠=∠在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≅△ADE (SAS).需要C E ∠=∠.理由如下:,,.BAE DAC BAE EAC DAC EAC BAC DAE ∠=∠∴∠+∠=∠+∠∴∠=∠在△ABC 和△ADE 中,B D AB AD BAC DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≅△ADE (ASA). 20.【解析】//,.,AB DC ABO CDO DO CD ∴∠=∠⊥90,90,.CDO ABO BO AB ∴∠=︒∴∠=︒∴⊥ .BO DO ∴=相邻两平行线间的距离相等,在△BOA 和△DOC 中,AOB CDOBO DO AOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOA ≅△DOC ,∴CD=AB=20米. 21.【解析】如图,连接AC,AD. 在△ABC 和△AED 中,,,,AB AE B E BC ED =∠=∠= ∴△BOA ≅△DOC ,∴AC=AD.,90,,AF CD AFC AFD AF AF ⊥∴∠=∠=︒=∴又Rt △ACF ≅Rt △ADF (HL)∴CF=DF.22.【解析】如图,过点C 作CF ⊥AD 交AD 的延长线于点F.,,,,90.AC BAD CE AB CF AD CF CE F CEB ∠⊥⊥=∠=∠=︒平分180,180,CDF ADC B ADC +=︒+=︒.CDF B ∴∠=∠在△CDF 和△CBE 中,,,,CDF B F CEB CF CE ∠=∠∠=∠=∴△CDF ≅△CBE (AAS),∴DF=BE.,.AC BAD CAF CAE ∠∴∠=∠平分在△CDF 和△CBE 中,,,,CAF CAE F CEA AC AC ∠=∠∠=∠=∴△ACF ≅△ACE (AAS),∴AF=AE.()12,.2AB AD AE BE AD AE DF AD AE AF AE AE AB AD ∴+=++=++=+=∴=+23.【解析】(1)90,ABC ∠=︒1801809090,.DBE ABC ABE CBD ∠=︒-∠=︒-︒=︒∠=∠在△ABE 和△CBD 中,AB CB ABE CBD AOBEB DB =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≅△CBD (SAS).(2),90,AB CB ABC =∠=︒45.30,453075.ECA CAE BEA ECA EAC ∴∠=︒∠=︒∠=∠+∠=︒+︒=︒易证△ABE ≅△,,CBD BDC BEA ∴∠=∠75.BDC ∴∠=︒(3).AE CD ⊥理由如下: 延长AE 交CD 于点F .△ABE ≅△,.CBD BAE BCD ∴∠=∠90,ABC BCD BDC ∠=∠+∠=︒ 90,BAE BDC ∴∠+∠=︒AE CD ∴⊥.24.【解析】(1)HL在△ABC 和△DEF 中,因为AC=DF,BC=EF,90,B E ∠=∠=︒ 所以Rt △ABC ≅△DEF (HL).(2)如图,分别过点C,F 作CG AB ⊥交的延长线于点G,FH DE ⊥交DE 的延长线于点H.,,,DE ,,ABC DEF G H AB CG AG FH DH ∠∠∴⊥⊥都是钝角,分别是的延长线上.90.180,180,CBG FEH CBG ABC FEH DEF ∴∠=∠=︒∠=︒-∠∠=︒-∠,.ABC DEF CBG FEH ∠=∠∴∠=∠在△BCG 和△EFH 中,,,,CGB FHE CBG FEH BC EF ∠=∠∠=∠= ∴△BCG ≅△EFH (AAS), .CG FH =又AC=DF, ∴Rt △ACG ≅Rt △DFH (HL)..A D ∴∠=∠在△ABC 和△DEF 中,,,,ABC DEF A D AC DF ∠=∠∠=∠=∴△ABC ≅△DEF (AAS).(3)如图,△DEF 现就是所求的三角形,△DEF 和△ABC 不全等.(4)B A ∠≥∠(答案不唯一)由(3)知以C 为圆心,AC 为半径画弧时,当弧与边AB 交于点A,B 之间时,△DEF 和△ABC 不全等,当弧与边AB 交于点B 或没有交点时,△ABC ≅△DEF .则当B A ∠≥∠时,△ABC ≅△DEF ,故答案为B A ∠≥∠.。
2018年秋人教版八年级上第12章《全等三角形》单元测试题含答案
人教版数学八年级上册单元测试题第十二章《全等三角形》一、选择题(每小题3分,总计30分。
请将唯一正确答案的字母填写在表格内)1.下列说法:①全等三角形的形状相同、大小相等 ②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等 ④全等三角形的周长相等 其中正确的说法为( ) A .①②③④ B .①②③C .②③④D .①②④2.如图所示,△ABC ≌△AEF ,AB=AE ,有以下结论:①AC=AE ;②∠FAB=∠EAB ;③EF=BC ;④∠EAB=∠FAC ,其中正确的个数是( )A .1B .2C .3D .43.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙4.如图,如果AD ∥BC ,AD=BC ,AC与BD 相交于O 点,则图中的全等三角形一共有()A .3对 B .4对 C .5对 D .6对 5.下列说法中,正确的是( )A .两边及其中一边的对角分别相等的两个三角形全等B .两边及其中一边上的高分别相等的两个三角形全等C .有一直角边和一锐角分别相等的两个直角三角形全等D .面积相等的两个三角形全等6.在平面直角坐标系中,第一个正方形ABCD 的位置如图所示,点A 的坐标为(2,0),点D 的坐标为(0,4),延长CB 交x 轴于点A 1,作第二个正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作第三个正方形A 2B 2C 2C 1…按这样的规律进行下去,第2018个正方形的面积为( )A .20×()2017B .20×()2018C .20×()4036D .20×()40347.如图,两棵大树间相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E ,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90°,且EA=ED .已知大树AB 的高为5m ,小华行走的速度为lm/s ,小华走的时间是( )A .13B .8C .6D .58.如图,把两根钢条AB ,CD 的中点O 连在一起,可以做成一个测量工件内槽宽的工具(卡钳).只要量得AC 之间的距离,就可知工件的内径BD .其数学原理是利用△AOC ≌△BOD ,判断△AOC≌△BOD 的依据是( ) A .SAS B .SSS C .ASA D .AAS9.观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是∠AOB 的平分线 B .OC=OD姓名 学号 班级---------------------------------------------------装-----------------------------------订----------------------------------线--------------------------------------------------C .点C 、D 到OE 的距离不相等 D .∠AOE=∠BOE10.如图,OP 平分∠BOA ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是( ) A .PC=PDB .OC=ODC .OC=OPD .∠CPO=∠DPO二、 填空题(每空3分,总计30分)11.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2= .12.如图①,已知△ABC 的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC 全等的图形是 .13.如图是5×5的正方形网格,△ABC 的顶点都在小正方形的顶点上,像△ABC 这样的三角形叫格点三角形.画与△ABC 有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出 个.14.如图,点D 、E 分别在AB 、AC 上,CD 、BE 相交于点F ,若△ABE ≌△ACD ,∠A=50°,∠B=35°,则∠EFC 的度数为 .15.如图,在△ABC 和△DEF 中,点B ,F ,C ,E 在同一直线上,BF=CE ,AB ∥DE ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 (只需写一个,不添加辅助线).16.如图,AB=12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC=4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动 分钟后△CAP 与△PQB 全等.17.如图,若AB=AC ,BD=CD ,∠B=20°,∠BDC=120°,则∠A 等于 度.18.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有①,②,③,④的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 块. 19.如图,要测量池塘的宽度AB ,在池塘外选取一点P ,连接AP 、BP 并各自延长,使PC=PA ,PD=PB ,连接CD ,测得CD 长为25m ,则池塘宽AB 为 m ,依据是 .20.如图,点O 在△ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC= .三.解答题(共6小题60分)21.如图,AB=AE ,∠B=∠AED ,∠1=∠2,求证:△ABC ≌△AED .22.阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.已知:如图,AM,BN,CP是△ABC的三条角平分线.求证:AM、BN、CP交于一点.证明:如图,设AM,BN交于点O,过点O分别作OD⊥BC,OF⊥AB,垂足分别为点D,E,F.∵O是∠BAC角平分线AM上的一点(),∴OE=OF().同理,OD=OF.∴OD=OE().∵CP是∠ACB的平分线(),∴O在CP上().因此,AM,BN,CP交于一点.23.如图,两根旗杆AC与BD相距12m,某人从B点沿AB走向A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为0、5m/s,求这个人走了多长时间?24.小明家所在的小区有一个池塘,如图,A、B两点分别位于一个池塘的两侧,池塘西边有一座假山D,在BD的中点C处有一个雕塑,小明从A出发,沿直线AC一直向前经过点C走到点E,并使CE=CA,然后他测量点E到假山D的距离,则DE的长度就是A、B两点之间的距离.(1)你能说明小明这样做的根据吗?(2)如果小明未带测量工具,但是知道A和假山、雕塑分别相距200米、120米,你能帮助他确定AB的长度范围吗?25.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.26.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.参考答案一、选择题(每小题3分,总计30分。
人教版2018-2019学年初二数学上册《第十二章全等三角形》测试卷含答案
第十二章全等三角形综合测试一、选择题(每小题3分,共30分)1.如图2所示的图形中与图1中图形全等的是( )图1图22.如图3,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )图3A.3 B.-3 C.2 D.-23.如图4,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是( )图4A.5 B.8 C.10 D.154.如图5,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店?( )图5A.① B.② C.③ D.④5.如图6所示,在△ABC和△ABD中,∠C=∠D=90°,要利用“HL”判定△ABC≌△ABD成立,还需要添加的条件是( )图6A.∠BAC=∠BAD B.BC=BD或AC=ADC.∠ABC=∠ABD D.AB为公共边6.已知图7中的两个三角形全等,则∠α的度数为( )图7A.105° B.75°C.60° D.45°7.如图8,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是( )图8A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠A=∠DEF,BC=FD8.如图9,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论正确的是( )图9A.∠1=∠EFD B.BE=EC C.BF=CD D.FD∥BC9.现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是( )A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误10.如图10,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是( )图10A.5 B.4 C.3 D.2请将选择题答案填入下表:。
2018-2019学年人教版八年级数学上册第十二章《全等三角形》单元检测题(附答案解析)
《全等三角形》单元检测题
一、单选题
1.下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的
是()
A.①②B.②③C.①③D.①②③
2.在△ABC和△DEF中,∠A=50°,∠B=70°,AB=3cm,∠D=50°,∠E=70°,EF=3cm.则△ABC与△DEF()A.一定全等B.不一定全等C.一定不全等D.不确定
3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()
A.甲和乙B.乙和丙C.甲和丙D.只有丙
4.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()
A.115B.120C.125D.130
5.某同学不小心把一块玻璃打碎了,变成了如图所示的三块,现在要到玻璃店配一块完全一样的玻璃,那
么应带哪块去才能配好()
A.①B.②C.③D.任意一块
6.如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC相交于点E,那么图中全等的三角形。
2018-2019学年八年级数学上册第十二章全等三角形测评新版新人教版
第十二章测评(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分)1.下列说法正确的是().A.有三个角对应相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.有两个角与其中一个角的对边对应相等的两个三角形全等D.有两个角对应相等,还有一条边也相等的两个三角形全等2.如图,△ABC≌△AEF,AC与AF是对应边,则∠EAC等于().A.∠ACBB.∠CAFC.∠BAFD.∠BAC3.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有().A.1组B.2组C.3组D.4组4.如图,将两根钢条AA',BB'的中点O连在一起,使AA',BB'能绕着点O自由转动,就做成了一个测量工具,则A'B'的长等于内槽宽AB,其中判定△OAB≌△OA'B'的理由是().A.SASB.ASAC.SSSD.HL5.如图,AC=BD,AB=CD,图中全等的三角形共有().A.2对B.3对C.4对D.5对(第5题图)(第6题图)6.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是().A.3B.4C.6D.57.要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,如图,可以证明△EDC≌△ABC,得到DE=AB,因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是().A.SASB.ASAC.SSSD.HL(第7题图)(第8题图)8.如图,在△ABC中,已知AD⊥BC,CE⊥AB,垂足分别为点D,E,AD,CE交于点H.若EH=EB=3,AE=4,则CH的长是().A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分)9.如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1的度数是.10.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.(第10题图)。
人教版数学八年级上册 第12章 全等三角形单元练习题(配套练习附答案)
∴CF= = =
故选A.
【点睛】本题考查1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质,作出辅助线构造全等三角形是解题的关键.
9.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=____.
【答案】30°
【解析】
【分析】由△ABC≌△ADE可得∠BAC=∠DAE=60°,由D是∠BAC的平分线上一点可得∠BAD=∠DAC= ∠BAC=30°,即可得∠CAE的度数.
∴△BAO≌△DAO(SAS),△BCO≌△DCO(SAS).
∴全等三角形共有3对.故选C.
3.如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=( )
A.∠BB.∠AC.∠EMFD.∠AFB
【答案】A
【解析】
【详解】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,
则AD=CE=2,AE=BD=3,
则DE=AD+AE=5.
【点睛】运用AAS证明两三角形全等是能解决该问题的前提条件,根据全等三角形的对应边相等,从而得解.
12.如图,在平行四边形 中,连接 ,在 的延长线上取一点 ,在 的延长线上取一点 ,使 ,连接 , ,求证: .
【答案】详见解析
【解析】
【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.
4.小明用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的函数关系式是()
A. B. C. D.
5.下列关系式中,一定能称y是x的函数的是()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章全等三角形综合测试一、选择题(每小题3分,共30分)1.如图2所示的图形中与图1中图形全等的是( )图1图22.如图3,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )图3A.3 B.-3 C.2 D.-23.如图4,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是( )图4A.5 B.8 C.10 D.154.如图5,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店?( )图5A.① B.② C.③ D.④5.如图6所示,在△ABC和△ABD中,∠C=∠D=90°,要利用“HL”判定△ABC≌△ABD成立,还需要添加的条件是( )图6A.∠BAC=∠BAD B.BC=BD或AC=ADC.∠ABC=∠ABD D.AB为公共边6.已知图7中的两个三角形全等,则∠α的度数为( )图7A.105° B.75°C.60° D.45°7.如图8,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是( )图8A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠A=∠DEF,BC=FD8.如图9,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论正确的是( )图9A.∠1=∠EFD B.BE=EC C.BF=CD D.FD∥BC9.现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是( )A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误10.如图10,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是( )图10A.5 B.4 C.3 D.2请将选择题答案填入下表:第Ⅱ卷 (非选择题 共70分)二、填空题(每小题3分,共18分)11.如图11,△ABC ≌△ADE ,BC 的延长线交DE 于点G.若∠B =24°,∠CAB =54°,∠DAC =16°,则∠DGB =________°.图1112.如图12,在Rt △ABC 中,∠C =90°,∠B =20°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧相交于点P ,连接AP 并延长交BC 于点D ,则∠ADB =________°.图1213.如图13,D 为Rt △ABC 中斜边BC 上的一点,且BD =AB ,过点D 作BC 的垂线,交AC 于点E ,若AE =12 cm ,则DE 的长为________cm .1314.如图14,四边形ABCD 的对角线AC ,BD 相交于点O ,△ABO ≌△ADO.有下列结论:①AC ⊥BD ;②CB =CD ;③△ABC ≌△ADC ;④DA =DC.其中所有正确结论的序号是________.图1415.如图15,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC=2,则S△ABC=________.1516.如图16,在Rt△ABC中,∠C=90°.E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是________.图16三、解答题(共52分)17.(6分)如图17,已知△ABC.求作:直线MN,使MN经过点A,且MN∥BC.(尺规作图,保留作图痕迹,不写作法)图1718.(6分)如图18,△ABC≌△ADE,∠BAD=40°,∠D=50°,AD与BC相交于点O.探索线段AD与BC的位置关系,并说明理由.图1819.(6分)如图19,△ACF≌△ADE,AD=9,AE=4,求DF的长.图1920.(6分)如图20,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.图2021.(6分)如图21所示,海岛上有A,B两个观测点,点B在点A的正东方,海岛C在观测点A的正北方,海岛D在观测点B的正北方,从观测点A看海岛C,D的视角∠CAD与从观测点B看海岛C,D的视角∠CBD相等,那么海岛C,D到观测点A,B所在海岸的距离相等吗?为什么?图2122.(7分)如图22,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.图2223.(7分)在Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.(1)当点D在线段AB上时(点D不与点A,B重合),如图23(a).①请你将图形补充完整;②线段BF,AD所在直线的位置关系为________,线段BF,AD的数量关系为________.(2)当点D在线段AB的延长线上时,如图23(b).在(1)中②问的结论是否仍然成立?如果成立,请进行证明;如果不成立,请说明理由.图2324.(8分)如图24①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.图24答案1.B2.A3.A4.D5.B6.B7.C8.D9.A10.B11.7012.12513.1214.①②③15.716.1617.解:如图所示,作∠MAB=∠B,则直线MN即为所求.18.解:AD⊥BC.理由如下:∵△ABC≌△ADE,∠D=50°,∴∠B=∠D=50°.在△AOB中,∠AOB=180°-∠BAD-∠B=180°-40°-50°=90°,∴AD⊥BC.19.解:∵△ACF≌△ADE,∴AF=AE,∴DF=AD-AF=AD-AE=9-4=5.20.证明:∵C是AB的中点,∴AC=CB.在△ACD和△CBE中,AC=CB,AD=CE,CD=BE,∴△ACD≌△CBE(SSS),∴∠A=∠ECB,∴AD∥CE,∴∠A+∠ECA=180°.21.解:相等.理由:设AD,BC相交于点O.∵∠CAD=∠CBD,∠COA=∠DOB,∴由三角形内角和定理,得∠C=∠D.由已知得∠CAB=∠DBA=90°.在△CAB和△DBA中,∠C=∠D,∠CAB=∠DBA,AB=BA,∴△CAB≌△DBA(AAS),∴CA=DB,∴海岛C,D到观测点A,B所在海岸的距离相等.22.证明:过点C分别作CG⊥OA于点G,CF⊥OB于点F,如图.在△MOE和△NOD中,OM=ON,∠MOE=∠NOD,OE=OD,∴△MOE≌△NOD(SAS),∴S △MOE =S △NOD ,∴S △MOE -S 四边形ODCE =S △NOD -S 四边形ODCE ,即S △MDC =S △NEC .由三角形面积公式得12DM ·CG =12EN ·CF. ∵OM =ON ,OD =OE ,∴DM =EN ,∴CG =CF.又∵CG ⊥OA ,CF ⊥OB ,∴点C 在∠AOB 的平分线上.23.解:(1)①如图所示.②∵CD ⊥EF ,∴∠DCF =90°.∵∠ACB =90°,∴∠ACB =∠DCF ,∴∠ACD =∠BCF.又∵AC =BC ,CD =CF ,∴△ACD ≌△BCF ,∴AD =BF ,∠BAC =∠FBC ,∴∠ABF =∠ABC +∠FBC =∠ABC +∠BAC =90°,即BF ⊥AD.故答案为:垂直,相等.(2)成立.证明:∵CD ⊥EF ,∴∠DCF =90°.∵∠ACB =90°,∴∠DCF =∠ACB ,∴∠DCF +∠BCD =∠ACB +∠BCD ,∴∠BCF =∠ACD.又∵AC=BC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.24.解:(1)证明:∵EC⊥AD,FB⊥AD,∴∠ACE=∠DBF=90°.∵AB=CD,∴AB+BC=BC+CD,即AC=DB.在Rt△ACE和Rt△DBF中,AE=DF,AC=DB,∴Rt△ACE≌Rt△DBF(HL),∴EC=FB.在△CEG和△BFG中,∠ECG=∠FBG=90°,∠EGC=∠FGB,EC=FB,∴△CEG≌△BFG(AAS),∴CG=BG,即EF平分线段BC.(2)EF平分线段BC仍成立.理由:∵EC⊥AD,FB⊥AD,∴∠ACE=∠DBF=90°.∵AB=CD,∴AB-BC=CD-BC,即AC=DB.在Rt△ACE和Rt△DBF中,AE=DF,AC=DB,∴Rt△ACE≌Rt△DBF(HL),∴EC=FB.在△CEG和△BFG中,∠ECG=∠FBG=90°,∠EGC=∠FGB,EC=FB,∴△CEG≌△BFG(AAS),∴CG=BG,即EF平分线段BC.。