集合典型题型精讲

合集下载

高中数学必修一 讲义 专题1.5 集合的基本运算-重难点题型精讲(学生版)

高中数学必修一 讲义 专题1.5 集合的基本运算-重难点题型精讲(学生版)

专题1.5 集合的基本运算-重难点题型精讲1.并集的概念及表示2.交集的概念及表示温馨提示:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.3.并集、交集的运算性质4.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.5.补集温馨提示:∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.【题型1 并集的运算】【例1】(2022•河南模拟)已知集合A={x|﹣2<x<3},集合B={x|1﹣x>﹣1},则集合A∪B=()A.(2,3)B.(﹣2,2)C.(﹣2,+∞)D.(﹣∞,3)【变式1-1】(2022•东城区校级三模)已知集合A={x|﹣1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|﹣1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}【变式1-2】(2022春•乐清市校级期中)设集合A={2,3},B={x|2<x<4},则A∪B=()A.{3}B.{2,3}C.(2,3)D.[2,4)【变式1-3】(2022春•平罗县校级期中)已知集合M={x|﹣1<x<1},N={x|0<x<2},则M∪N等于()A.(0,1)B.(−1,2)C.(−1,0)D.(1,2)【题型2 交集的运算】【例2】(2022•金东区校级模拟)设集合A={x|x≥2},B={x|﹣1<x<3},则A∩B=()A.{x|x≥2}B.{x|x<2}C.{x|2≤x<3}D.{x|﹣1≤x<2}【变式2-1】(2022•金凤区校级三模)已知集合A={x|1<x﹣1≤3},B={2,3,4},则A∩B=()A.{2,3,4}B.{3,4}C.{2,4}D.{2,3}【变式2-2】(2022•浙江学业考试)已知集合P={0,1,2},Q={1,2,3},则P∩Q=()A.{0}B.{0,3}C.{1,2}D.{0,1,2,3}【变式2-3】(2022•巴宜区校级二模)集合A={x∈Z|x<2},B={﹣1,0,1,2,3},则A∩B=()A.{﹣1,0,1,2}B.{﹣1,0,1}C.{0,1}D.{1}【题型3 由集合的并集、交集求参数】【例3】(2021秋•宜宾期末)已知集合A={x|2<x<4},B={x|a﹣1≤x≤2a+1,a∈R}.(1)若a=1,求A∪B;(2)若A∩B=A,求实数a的取值范围.【变式3-1】(2021秋•资阳期末)已知全集U=R,集合A={x|2a+1<x<2a+6},B={x|﹣4≤x≤2}.(1)若a=﹣1,求A∪B;(2)若A∩B≠∅,求实数a的取值范围.【变式3-2】(2021秋•伊州区校级期末)若集合A={x|2x﹣1⩾3},B={x|3x﹣2<m},C={x|x<5,x∈N}.(1)求A∩C;(2)若A∪B=R,求实数m的取值范围.【变式3-3】(2021秋•黑龙江期末)已知集合A={x|﹣2≤x≤7},B={x|m+1≤x≤2m﹣1}.(1)当用m=5时,求A∩B,A∪B;(2)若A∪B=A,求实数m的取值范围.【题型4 补集的运算】【例4】(2022•沈阳模拟)已知全集U={x∈N|﹣1<x≤3},A={1,2},∁U A=()A.{3}B.{0,3}C.{﹣1,3}D.{﹣1,0,3}【变式4-1】(2022•林州市校级开学)已知全集A={x|1≤x≤6},集合B={x|1<x<5},则∁A B=()A.{x|x≥5}B.{x|5<x≤6或x=1}C.{x|x≤1或x≥5}D.{x|5≤x≤6}∪{1}【变式4-2】(2022•乙卷)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M【变式4-3】(2022•北京)已知全集U={x|﹣3<x<3},集合A={x|﹣2<x≤1},则∁U A=()A.(﹣2,1]B.(﹣3,﹣2)∪[1,3)C.[﹣2,1)D.(﹣3,﹣2]∪(1,3)【题型5 交集、并集、补集的综合运算】【例5】(2022•临沂三模)已知集合A=N,B={x|x≥3},A∩(∁R B)=()A.{﹣1,0}B.{1,2}C.{﹣1,0,1}D.{0,1,2}【变式5-1】(2022•柯桥区模拟)已知集合A={x∈R|x≤0},B={x∈R|﹣1≤x≤1},则∁R(A∪B)=()A.(﹣∞,0)B.[﹣1,0]C.[0,1]D.(1,+∞)【变式5-2】(2022•大通县三模)已知全集U={﹣1,0,1,2,3,4},集合A={x|x≤2,x∈N},B={﹣1,0,1,2},则A∪(∁U B)=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{0,1,2,3,4}【变式5-3】(2022•义乌市模拟)已知全集U=R,集合P={x|﹣2<x<1},Q={x|x⩾0},则P∩(∁U Q)=()A.(﹣2,0)B.(0,1)C.(﹣∞,0)∪(0,1)D.(﹣∞,1)【题型6 利用集合间的关系求参数】【例6】(2021秋•沈阳期末)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},U=R.(1)若A∪∁U B=U,求实数m的取值范围;(2)若A∩B≠∅,求实数m的取值范围.【变式6-1】(2021秋•湖州期末)已知集合A={x|﹣3≤x≤2},B={x|2m﹣1≤x≤m+3}.(1)当m=0时,求∁R(A∩B);(2)若A∪B=A,求实数m的取值范围.【变式6-2】(2021秋•海东市期末)已知集合A={x|a<x<2a},B={x|x≤﹣4或x≥3}.(1)当a=2时,求A∪(∁R B);(2)若A⊆∁R B,求a的取值范围.【变式6-3】(2021秋•玉溪期末)已知集合A={x|a﹣1≤x≤a+1},B={x|x−5x+3≤0}.(1)若a=﹣3,求A∪B;(2)在①A∩B=∅,②B∪(∁R A)=R,③A∪B=B,这三个条件中任选一个作为已知条件,求实数a 的取值范围.。

集合练习题及讲解高中必刷

集合练习题及讲解高中必刷

集合练习题及讲解高中必刷### 高中数学集合练习题及讲解练习题1:已知集合A={x|x<5},B={x|-3≤x<2},求A∩B。

解析:根据集合的交集定义,我们需要找出同时满足A和B条件的元素。

集合A包含所有小于5的实数,而集合B包含所有大于等于-3且小于2的实数。

因此,A∩B将包含所有大于等于-3且小于2的实数。

答案:A∩B={x|-3≤x<2}。

练习题2:集合P={x|x²-1=0},Q={x|x²-4=0},求P∪Q。

解析:首先解方程x²-1=0和x²-4=0。

对于x²-1=0,解得x=±1;对于x²-4=0,解得x=±2。

集合P包含所有解得x²-1=0的实数,即P={-1,1};集合Q包含所有解得x²-4=0的实数,即Q={-2,2}。

根据并集的定义,P∪Q包含P和Q中的所有元素。

答案:P∪Q={-2,-1,1,2}。

练习题3:集合M={x|-2<x<3},N={x|x>1},判断M⊆N。

解析:要判断M是否是N的子集,我们需要验证M中的所有元素是否也属于N。

集合M包含所有大于-2且小于3的实数,而集合N包含所有大于1的实数。

显然,M中的所有元素都大于1,因此M中的元素也属于N。

答案: M⊆N。

练习题4:集合S={x|0<x<10},T={x|x>0},求S∩T。

解析:根据交集的定义,我们需要找出同时满足S和T条件的元素。

集合S包含所有大于0且小于10的实数,而集合T包含所有大于0的实数。

因此,S∩T将包含所有大于0且小于10的实数。

答案:S∩T={x|0<x<10}。

练习题5:集合U={x|x>0},V={x|x<0},求U∩V。

解析:根据交集的定义,我们需要找出同时满足U和V条件的元素。

集合U包含所有大于0的实数,而集合V包含所有小于0的实数。

专题1.1 集合的概念-重难点题型精讲(学生版)

专题1.1 集合的概念-重难点题型精讲(学生版)

专题1.1 集合的概念-重难点题型精讲1.元素与集合的概念及表示(1)元素:一般地,把研究对象统称为元素,元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.2.元素的特性(1)确定性:给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.简记为“确定性”.(2)互异性:一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的.简记为“互异性”.(3)无序性:给定集合中的元素是不分先后,没有顺序的.简记为“无序性”.3.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作a∉A.4.常用的数集及其记法5.列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.注意:(1)元素与元素之间必须用“,”隔开.(2)集合中的元素必须是明确的.(3)集合中的元素不能重复.(4)集合中的元素可以是任何事物.6.描述法(1)定义:一般地,设A表示一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.有时也用冒号或分号代替竖线.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.【题型1 集合的基本概念】【例1】(2021秋•雨花区期末)下列对象不能组成集合的是()A.不超过20的质数B.π的近似值C.方程x2=1的实数根D.函数y=x2,x∈R的最小值【变式1-1】(2021秋•鲤城区校级期中)以下各组对象不能组成集合的是()A.中国古代四大发明B.地球上的小河流C.方程x2﹣7=0的实数解D.周长为10cm的三角形【变式1-2】(2021春•广南县期中)下列各对象可以组成集合的是()A.与1非常接近的全体实数B.北附广南实验学校2020~2021学年度第二学期全体高一学生C.高一年级视力比较好的同学D.中国著名的数学家【变式1-3】(2021秋•大安市校级月考)有下列各组对象:①接近于0的数的全体;②比较小的正整数的全体;③平面上到点O的距离等于1的点的全体;④直角三角形的全体.其中能构成集合的个数是()A.2B.3C.4D.5【题型2 判断元素与集合的关系】【例2】(2021秋•河北区期末)下列关系中正确的个数是()①12∈Q ;②√2∉R ;③0∈N *;④π∈Z . A .1 B .2 C .3 D .4【变式2-1】(2021秋•桂林期末)下列关系中,正确的是( )A .﹣2∈{0,1}B .32∈ZC .π∈RD .5∈∅【变式2-2】(2021秋•岳阳期末)下列元素与集合的关系中,正确的是( )A .﹣1∈NB .0∉N *C .√3∈QD .25∉R 【变式2-3】(2021秋•绿园区校级月考)设集合A ={2,3,5},B ={2,3,6},若x ∈A ,且x ∉B ,则x 的值为( )A .2B .3C .5D .6【题型3 利用集合中元素的特异性求参数】【例3】(2022•渭滨区校级模拟)设集合A ={2,1﹣a ,a 2﹣a +2},若4∈A ,则a =( )A .﹣3或﹣1或2B .﹣3或﹣1C .﹣3或2D .﹣1或2【变式3-1】(2021秋•兴宁区校级月考)若a ∈{1,a 2﹣2a +2},则实数a 的值为( )A .1B .2C .0D .1 或2【变式3-2】(2021秋•大安市校级月考)已知集合A 含有三个元素2,4,6,且当a ∈A ,有6﹣a ∈A ,那么a 为( )A .2B .2或4C .4D .0【变式3-3】(2021春•西湖区期中)已知A 是由0,m ,m 2﹣3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可【题型4 用列举法表示集合】【例4】(2021秋•合肥期末)集合{x ∈N |x ﹣2<2}用列举法表示是( )A .{1,2,3}B .{1,2,3,4}C .{0,1,2,3,4}D .{0,1,2,3}【变式4-1】(2021秋•昌吉州期末)集合A ={x ∈N ∗|63−x ∈N ∗}用列举法可以表示为( )A .{3,6}B .{1,2}C .{0,1,2}D .{﹣2,﹣1,0,1,2}【变式4-2】(2021秋•重庆月考)集合{x ∈N |x ﹣4<1}用列举法表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}【变式4-3】(2021秋•番禺区校级期中)将集合{(x ,y )|{x +y =52x −y =1}表示成列举法,正确的是( ) A .{2,3} B .{(2,3)} C .{x =2,y =3} D .(2,3)【题型5 用描述法表示集合】【例5】(2021秋•金山区校级期中)用描述法表示所有偶数组成的集合 .【变式5-1】(2021秋•浦东新区校级月考)用描述法表示被5整除的整数组成的集合 .【变式5-2】(2021秋•长宁区校级月考)用描述法表示被3除余2的所有自然数组成的集合 .【变式5-3】(2020秋•徐汇区校级月考)平面直角坐标系中坐标轴上所有点的坐标组成的集合可以用描述法表示为 .【题型6 集合中的新定义问题】【例6】(2021秋•长寿区期末)设集合P ={3,4,5},Q ={6,7},定义P ⊗Q ={(a ,b )|a ∈P ,b ∈Q },则P ⊗Q 中元素的个数为( )A.3B.4C.5D.6【变式6-1】(2021秋•秦淮区校级月考)设P={1,2,3,4},Q={4,5,6,7,8},定义P*Q={(a,b)|a∈P,b∈Q,a≠b},则P*Q中元素的个数为()A.4B.5C.19D.20【变式6-2】(2021秋•黄陵县校级期末)设集合A={﹣2,1},B={﹣1,2},定义集合A⊗B={x|x=x1x2,x1∈A,x2∈B},则A⊗B中所有元素之积为()A.﹣8B.﹣16C.8D.16【变式6-3】(2021秋•黄陵县校级月考)定义集合运算:A⊗B={z|z=xy,x∈A,y∈B}.设A={2,0},B={0,8},则集合A⊗B的所有元素之和为()A.16B.18C.20D.22。

【高中数学】《集合》高考常考题型(后附解析)

【高中数学】《集合》高考常考题型(后附解析)

《集合》常考题型题型一.通过集合的关系求参数范围1.已知集合2{|320}A x x x =−+=,22{|2(1)(5)0}B x x a x a =−++−=,A B A =,实数a 的取值范围是 . 2.已知全集U R =,集合{|25}A x x =−,{|121}B x a x a =+−,且U A B ⊆,实数a 的取值范围是 . 3.已知集合2{|10}A x R x ax =∈++=和{1B =,2},且A B ⊆,则实数a 的取值范围是 . 题型二.子集个数问题4.用d (A )表示集合A 中的元素个数,若集合22{|()(1)0}A x x ax x ax =−−+=,{0B =,1},且|d (A )d−(B )|1=.设实数a 的所有可能取值构成集合M ,则()(d M = )A .3B .2C .1D .4 题型三.集合与元素的关系5.设A 是非空数集,0A ∉,1A ∉,且满足条件:若a A ∈,则11A a∈−. 证明:(1)若2A ∈,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集;(3)集合A 中至少有三个不同的元素.参考答案1.已知集合2{|320}A x x x =−+=,22{|2(1)(5)0}B x x a x a =−++−=,AB A =,求实数a 的取值范围.【解答】解:由2320x x −+=解得1x =,2.{1A ∴=,2}.A B A =,B A ∴⊆. 1B ︒=∅,△8240a =+<,解得3a <−.2︒若{1}B =或{2},则△0=,解得3a =−,此时{2}B =−,不符合题意.3︒若{1B =,2},∴2122(1)125a a +=+⎧⎨⨯=−⎩,此方程组无解. 综上:3a <−.∴实数a 的取值范围是(,3)−∞−.2.已知全集U R =,集合{|25}A x x =−,{|121}B x a x a =+−,且U A B ⊆,求实数a 的取值范围. 【解答】解:{|121}B x a x a =+−,且U A B ⊆,B ∴=∅,或211a a −>+,解得2a >, ①{|1U B x x a =<+,或21}x a >−,∴251a a ⎧⎨<+⎩或2212a a ⎧⎨−<−⎩, 解得4a >或a ∈∅.此时实数a 的取值范围为4a >.②当B =∅,U B R =,满足U A B ⊆,121a a ∴+>−,解得2a <.综上可得:实数a 的取值范围为4a >或2a <.3.已知集合2{|10}A x R x ax =∈++=和{1B =,2},且A B ⊆,则实数a 的取值范围是[2−,2). 【解答】解:因为A B ⊆,所以A =∅或{1}A =,{2}A =或{1A =,2}. 若A =∅,则△240a =−<,解得22a −<<.若{1}A =应有△240a =−=且110a ++=,解得2a =−.若{2}A =时,应有△240a =−=且4210a ++=,此时无解. 若{1A =,2},则1,2是方程210x ax ++=的两个根,所以由根与系数的关系得121⨯=,显然不成立.综上满足条件的实数a 的取值范围是22a −<.故答案为:[2−,2).4.用d (A )表示集合A 中的元素个数,若集合22{|()(1)0}A x x ax x ax =−−+=,{0B =,1},且|d (A )d−(B )|1=.设实数a 的所有可能取值构成集合M ,则()(d M = )A .3B .2C .1D .4【解答】解:由题意,d (B )2=,|d (A )d −(B )|1=,d ∴(A )1=或3, 方程22()(1)0x ax x ax −−+=可化为20x ax −=或210x ax −+=, 即0x =或x a =或210x ax −+=,①若d (A )1=,则方程22()(1)0x ax x ax −−+=有且只有一个解,故0a =,此时方程22(1)0x x +=有且只有一个解;②若d (A )3=,则方程22()(1)0x ax x ax −−+=有三个不同的解,则2040a a ≠⎧⎨−=⎩,解得,2a =±, 经检验,2a =±时,方程22()(1)0x ax x ax −−+=有三个不同的解,综上所述,{0M =,2−,2},故()3d M =, 故选:A .5.设A 是非空数集,0A ∉,1A ∉,且满足条件:若a A ∈,则11A a ∈−. 证明:(1)若2A ∈,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集;(3)集合A 中至少有三个不同的元素.【解答】解:(1)若2A ∈,则1112A =−∈−,于是()11112A =∈−−, 故集合A 中还含有1−,12两个元素. (2)若A 为单元素集,则11a a =−,即210a a −+=,此方程无实数解,∴11a a≠−, ∴a 与11a−都为集合A 的元素,则A 不可能是单元素集. (3)由A 是非空集合知存在1111111a a A A A a a a−∈⇒∈⇒=∈−−−−. 现只需证明a 、11a −、1a a−−三个数互不相等. ①若21101a a a a =⇒−+=−,方程无解,∴11a a≠−; ②若2110a a a a a −=⇒−+=−,方程无解;∴1a a a−≠−; ③若211101a a a a a −=⇒−+=−−,方程无解,∴111a a a −≠−−, 故集合A 中至少有三个不同的元素.。

1.3 集合的基本运算(精讲)(解析版)

1.3 集合的基本运算(精讲)(解析版)

1.3 集合的基本运算(精讲)考点一交集【例1】(1)(2020·上海高一开学考试)设集合A {}3,5,6,8=,集合B {}4,5,7,8=,则A B 等于( )A .{}5,8B .{}3,,6C .{}4,7D .{}3,5,6,8(2)(2020·安徽省庐江金牛中学)已知集合{}|12M x x =-<<,{}|13N x x =≤≤,则M N =( )A .(]1,3-B .(]1,2-C .[)1,2D .(]2,3 【答案】(1)A (2)C【解析】(1)集合A {}3,5,6,8=,集合B {}4,5,7,8=,又集合A 与集合B 中的公共元素为5,8,{}5,8A B ∴⋂=,故选A.(2)集合{}|12M x x =-<<,{}|13N x x =≤≤∴{}[)|121,2M N x x ⋂=≤<=.故选:C.【一隅三反】1.(2020·全国高一课时练习)设集合2{|430}A x x x =-+<,{|230}B x x =->,则AB =( )A .3(3,)2-- B .3(3,)2-C .3(1,)2D .3(,3)2【答案】D【解析】集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.2(2020·浙江省兰溪市第三中学高三开学考试)已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则A B =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】2560(2)(3)023x x x x x -+≤⇒--≤⇒≤≤,{}23A x x ∴=≤≤,又{}{|15}2,3,4B x Z x =∈<<=,所以{}2,3A B ⋂=,故本题选C.3.(2020·湖南怀化高二期末)设集合{}2|340A x Z x x =∈--≤,{}|21B x x =-<,则AB =( )A .{1,0,1,2}-B .[1,2)-C .{1,0,1}-D .[1,2]-【答案】A【解析】由题意得,{}{}{}2|340|141,0,1,2,3,4A x Z x x x Z x =∈--≤=∈-≤≤=-,{}{}|21|3B x x x x =-<=<,则{}{}{}1,0,1,2,3,4|31,0,1,2A B x x =-<=-,故选:A .考法二 并集【例2】(2020·甘肃城关.兰大附中高三月考(理))若集合{}22A x x =-<≤,{}13B x x =-≤<,则A B =( )A .[)2,3-B .(]1,2-C .(]2,2-D .()2,3-【答案】D【解析】因为{}22A x x =-<≤,{}13B x x =-≤<,所以AB =()2,3-.故选:D .【一隅三反】1.(2020·贵州南明贵阳一中高三其他(理))已知集合{22}A x x =-<<∣,若A B A ⋃=,则B 可能是( )A .{}1,1-B .{}2,3C .[)1,3-D .[]2,1--【答案】A【解析】因为A B A ⋃=,所以B A ⊆,四个选项中只有{}1,1-是集合A 的子集. 故选:A2(2020·上海高一课时练习)满足条件{}{}1,31,3,5A ⋃=的所有集合A 的个数是 ( ) A .1 B .2 C .3 D .4【答案】D【解析】因为{}{}1,31,3,5A ⋃=,所以,集合A 可能为{}{}{}{}5,1,5,5,3,1,3,5, 即所有集合A 的个数是4,故选D.3.(2019·浙江高一期中)已知集合2{|1}P x x ==, 2{|0}Q x x x =-=,那么PQ =( )A .{1,1}-B .{1}C .{1,0,1}-D .{0,1}【答案】C【解析】因为2{|1}{1,1}===-P x x ,2{|0}{0,1}=-==Q x x x , 所以{}1,0,1P Q ⋃=-,故选:C考法三 补集与全集【例3】(2020·上海高一课时练习)已知全集U={1,3,5,7,9},集合A={1,|a -5|,9}, ∁U A={5,7},则a 的值是( ) A .2 B .8C .-2或8D .2或8【答案】D【解析】由由已知得5382a a -=⇒=或;故选D【一隅三反】1.(2020·全国高一)设集合{}0,1,2,3U =,集合{}2|0A x U x mx =∈+=,若{}1,2U C A =,则实数m =_____. 【答案】-3【解析】因为集合{}0,1,2,3U =, {}1,2U C A =,A={0,3},故m= -3.2.(2020·全国高一专题练习)已知全集{}{}2{2,3,23},1,2,3U U a a A a C A a =+-=+=+,则a 的值为__________ 【答案】2【解析】由补集概念及集合中元素互异性知a 应满足()()()()22222233(1)323|1|23(2)|1|3232(3)232233(4)2123433a a a a a a a a A a a B a a a a a a ⎧+=+=+-⎪+=+-⎧⎪⎪⎨+=⎪⎨+-≠⎪⎪+-≠⎪⎪+-≠+-≠⎩⎩或 分两种情况进行讨论:在A 中,由(1)得a=0依次代入(2)、(3)、(4)检验,不合②,故舍去.在B 中,由(1)得a=-3,a=2,分别代入(2、(3)、(4)检验,a=-3不合②,故舍去,a=2能满足②③④,故a=2符合题意.答案为:23.(2019·上海虹口.上外附中高一期中)设全集{}22,3,3U a a =+-,集合{},3A a =,{}2U C A =,则a =___________. 【解析】由{}2U C A =,{}22,3,3U a a =+-可知{}23,3A a a =+-,即{}{}23,3,3a a a +-=.故232,3a a aa ⎧+-=⎪⎨≠⎪⎩ .当0a ≥时,23a a a a +-=⇒=当0a <时,23a a a +-=-即 ()()2230130a a a a +-=⇒-+=,故3a =-.不满足2,3a ≠.故a =考法四 集合运算综合运用【例4】(2020·全国高一课时练习)已知集合{}3|0|31x M x N x x x +⎧⎫=<=≤-⎨⎬-⎩⎭,,则集合 {}|1x x ≥=( ) A .M N ⋂ B .M N ⋃C .()RM N ⋂D .()RM N ⋃【答案】D 【解析】3x +<,解之得,31x -<<,则(,1)M N ⋃=-∞.故选:D. 【一隅三反】1.(2019·浙江高三月考)已知集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖,则()R C A B ⋂=( ) A .[1,0)(2,3]-B .(2,3]C .(,0)(2,)-∞+∞D .(1,0)(2,3)-【答案】A【解析】因为集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖, 所以{|3A x x =>或1}x <-,{|2B x x =>或0}x <,所以{|13}R C A x x =-≤≤,所以()R C A B ⋂={|23x x <≤或10}x -≤<,故选A .2.(2020·浙江高三月考)已知全集{}1,0,1,2,3,4U =-,集合{}|1,=≤∈A x x x N ,{}1,3B =,则()UB A =( )A .{}4B .{}2,4C .{}1,2,4-D .{}1,0,2,4-【答案】C【解析】因为{}|1,=≤∈A x x x N ,{}1,3B =,所以{}0,1,3A B =,则(){}1,2,4UA B =-. 故选:C.3.(2019·浙江高三月考)已知全集{}0,1,2,3,4,5,6U =,集合{}0,1,3,5A =,{}2,3,6B =,则()UA B ⋃=( ) A .{}3 B .{}0,1,3,4 C .{}0,1,3,4,5 D .{}0,1,2,3,5,6【答案】C 【解析】全集{}0,1,2,3,4,5,6U =,集合{}2,3,6B =,则{}0,1,4,5UB =,又集合{}0,1,3,5A =,因此,(){}0,1,3,4,5UA B =.故选:C.考法五 求参数【例5】2.(2020·黑龙江萨尔图.大庆实验中学高二月考(理))已知集合{}2|3210A x x x =--≤,{}|23B x a x a =<<+,若A B =∅,则实数a 的取值范围是( )A .101,,32⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭ B .101,,32⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ C .()1,2,6⎛⎫-∞-⋃+∞ ⎪⎝⎭D .[)1,2,6⎛⎤-∞-⋃+∞ ⎥⎝⎦【答案】B【解析】{}21|321013A x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭,当B =∅时,32a a +≤,解得3a ≥,符合题意;当B ≠∅时,2123a a a ≥⎧⎨<+⎩ 或13323a a a ⎧+≤-⎪⎨⎪<+⎩,解得132a ≤<或103a ≤-,综上所述,实数a 的取值范围是101,,32⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭.故选:B【一隅三反】1.(2020·安徽金安六安一中高一期末(理))若不等式组2142x a x a ⎧->⎨-<⎩的解集非空,则实数a 的取值范围是( )A .()1,3-B .(,1)(3,)-∞-+∞C .()3,1-D .(,3)(1,)-∞-⋃+∞【答案】A【解析】由题意2124x a x a ⎧>+⎨<+⎩,∴2124a a +<+,即2230a a --<,解得13a -<<.故选:A .2(2020·湖北高一期末)设全集U =R ,已知集合{3A x x =<或}9x ≥,集合{}B x x a =≥.若()U C A B ≠∅,则a 的取值范围为( )A .3a >B .3a ≤C .9a <D .9a ≤【答案】C【解析】∵{3A x x =<或}9x ≥,∴{}9|3U C A x x =≤<,若()U C A B ≠∅,则9a <,故选:C .3.(2020·浙江高一课时练习)设集合{}2320A x x x =-+=,(){}222150B x x a x a =+++-=.(1)若{}2A B ⋂=,求实数a 的值; (2)若A B A ⋃=,求实数a 的取值范围; (3)若全集U =R ,()UAB A =,求实数a 的取值范围.【答案】(1)1-或3-(2){}3a a ≤-(3){1,3,11a a a a a ≠-≠-≠-≠-- 【解析】(1)由2320x x -+=得{}1,2A =,因为{}2A B ⋂=,所以2B ∈, 所以()244150a a +++-=,整理得2430a a ++=,解得1a =-或3-.当1a =-时,{}{}2402,2B x x =-==-,满足{}2A B ⋂=;当3a =-时,{}{}24402B x xx =-+==,满足{}2A B ⋂=;故a 的值为1-或3-.(2)由题意,知{}1,2A =. 由A B A ⋃=,得B A ⊆.当集合B =∅时,关于x 的方程()222150x a x a +++-=没有实数根,所以()()2241450a a ∆=+--<,即30a +<,解得3a <-.当集合B ≠∅时,若集合B 中只有一个元素,则()()2241450a a ∆=+--=,整理得30a +=,解得3a =-,此时{}{}24402B x x x =-+==,符合题意;若集合B 中有两个元素,则{}1,2B =,所以22220430a a a a ⎧+-=⎨++=⎩,无解.综上,可知实数a 的取值范围为{}3a a ≤-. (3)由()UAB A =,可知A B =∅,所以()()221215044150a a a a ⎧+++-≠⎪⎨+++-≠⎪⎩,所以1113a a a a ⎧≠-≠-⎪⎨≠-≠-⎪⎩且 综上,实数a的取值范围为{1,3,11a a a a a ≠-≠-≠-≠-.故得解.。

集合典型例题(含解析)

集合典型例题(含解析)

第一章集合一、选择题1.(2012·湖南高考理科·T1)设集合M={-1,0,1},N={x|x2≤x},则M∩N=( )(A){0} (B){0,1} (C){-1,1} (D){-1,0,1}【解题指南】求出集合N中所含有的元素,再与集合M求交集.【解析】选B. 由…2x x,得…2x x0-,…x(x1)0-,剟0x1,所以N=剟{x0x1},所以M I N={0,1},故选B.2.(2012·浙江高考理科·T1)设集合A={x|1<x<4},集合B ={x|x2-2x-3≤0}, 则A∩(C R B)=()(A)(1,4) (B)(3,4) (C)(1,3) (D)(1,2)∪(3,4)【解题指南】考查集合的基本运算.【解析】选B.集合B ={x|x2-2x-3≤0}={}13x x-≤≤,{}1,3RB x x x=<->或ð,∴A∩(C R B)=(3,4)3.(2012·江西高考理科·T1)若集合{}{}1,1,0,2A B=-=,则集合{}|,,z z x y x A y B=+∈∈中的元素的个数为()(A)5 (B)4 (C)3 (D)2【解题指南】将x y+的可能取值一一列出,根据元素的互异性重复元素只计一次,可得元素个数.【解析】选C.由已知得,{}|,,z z x y x A y B=+∈∈{}1,1,3=-,所以集合{}|,,z z x y x A y B=+∈∈中的元素的个数为3.4.(2012·新课标全国高考理科·T1)已知集合{}1,2,3,4,5A=,(){},|,,,B x y x A y A x y A =∈∈-∈则B 中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10【解题指南】将x y -可能取的值列举出来,然后与集合A 合到一起,根据元素的互异性确定元素的个数.【解析】选D.由,x A y A ∈∈得0x y -=或1x y -=±或2x y -=±或3x y -=±或4x y -=±,故集合B 中所含元素的个数为10个.5. (2012·广东高考理科·T2)设集合U={1,2,3,4,5,6},M={1,2,4 },则=ðU M ( )(A)U (B){1,3,5} (C){3,5,6} (D){2,4,6}【解题指南】掌握补集的定义:{|,}U M x x U x M =∈∉且ð,本题易解.【解析】选C. {3,5,6}U M =ð.6.(2012·山东高考文科·T2)与(2012·山东高考理科·T2)相同 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U (A)B ð为( ) (A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【解题指南】 先求集合A 关于全集U 的补集,再求它与集合B 的并集即可.【解析】选C.{}{}{}U (A)B 0,42,40,2,4==ð. 7.(2012·广东高考文科·T2)设集合U={1,2,3,4,5,6},M={1,3,5},则U M ð=( )(A){2,4,6} (B){1,3,5} (C){1,2,4} (D)U【解题指南】根据补集的定义:{|,}U M x x U x M =∈∉且ð求解即可.【解析】选A. {2,4,6}U M =ð.8.(2012·辽宁高考文科·T2)与(2012·辽宁高考理科·T1)相同 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U A B ⋂=痧(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【解题指南】据集合的补集概念,分别求出,痧U U A B ,然后求交集.【解析】选B. 由已知C U A={2,4,6,7,9},U B ð={0,1,3,7,9},则(U A ð)⋂(U B ð)={2,4,6,7,9}⋂{0,1,3,7,9}={7,9}.9.(2012·新课标全国高考文科·T1)已知集合A={x|x 2-x -2<0},B={x|-1<x<1},则( )(A )A B Ü (B )B A Ü (C )A=B (D )A ∩B=∅【解题指南】解不等式x 2-x -2<0得集合A ,借助数轴理清集合A 与集合B 的关系.【解析】选B. 本题考查了简单的一元二次不等式的解法和集合之间的关系,由题意可得{}|12A x x =-<<,而{}|11B x x =-<<,故B A Ü.10.(2012·安徽高考文科·T2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( )(A )(1,2) (B )[1,2] (C )[ 1,2) (D )(1,2 ]【解题指南】先求出集合,A B ,再求交集.【解析】选D .∵{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]=+∞=B A B ,∴.11.(2012·福建高考文科·T2)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( )(A)N M ⊆ (B)M N M = (C)M N N = (D){2}M N =【解题指南】通过观察找出公共元素,即得交集,结合子集,交、并、补各种概念进行判断和计算.【解析】选D .N 中元素-2不在M 中,因此,A 错,B 错; {2}M N N =≠,因此C错,故选D .12.(2012·浙江高考文科·T1)设全集U={1,2,3,4,5,6} ,集合P={1,2,3,4} ,Q={3,4,5},则P∩(ðU Q)=()(A){1,2,3,4,6} (B){1,2,3,4,5}(C){1,2,5} (D){1,2}【解题指南】考查集合的基本运算.【解析】选D. C U Q={}1,2,6,则P∩(CU Q)={}1,2.13.(2012·北京高考文科·T1)与(2012·北京高考理科·T1)相同已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=()(A)(-∞,-1)(B)(-1,-23)(C)(-23,3)(D)(3,+∞)【解题指南】通过解不等式先求出A,B两个集合,再取交集.【解析】选D.集合A=2{|}3x x>-,{|13}B x x x=<->或,所以{|3}A B x x=>.14.(2012·湖南高考文科·T1)设集合M={-1,0,1},N={x|x2=x},则M∩N=()(A){-1,0,1} (B){0,1} (C){1} (D){0}【解题指南】先求出集合N中的元素,再求集合M,N的交集.【解析】选B. N={0,1},∴M∩N={0,1},故选B.15. (2012·江西高考文科·T2)若全集U={x∈R|x2≤4},则集合 A={x∈R||x+1|≤1}的补集C u A为( )(A){x∈R |0<x<2} (B){x∈R |0≤x<2}(C){x∈R |0<x≤2} (D){x∈R |0≤x≤2}【解题指南】解不等式得集合U和A,在U中对A取补集.【解析】选C.{|22}U x x =-≤≤,{|20}A x x =-≤≤,则ðU A={|02}U C A x x =<≤. 16.(2012·湖北高考文科·T1)已知集合A={x|2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为(A) 1 (B)2 (C) 3 (D)4【解题指南】根据集合的性质,先化简集合A,B.再结合集合之间的关系求解.【解析】选D. 由题意知:A= {1,2} ,B={1,2,3,4}.又A C B ⊆⊆,则集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 二、填空题17.(2012·上海高考理科·T2)若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .【解题指南】本题考查集合的交集运算知识,此类题的易错点是临界点的大小比较. 【解析】集合1{2+10}{|}2A x x x x =>=>-,集合{}{12}{|212}13B x x x x x x =-<=-<-<=-<<,所以1{|3}2A B x x =-<<. 【答案】1{|3}2x x -<< 18.(2012·江苏高考·T1)已知集合{}{}1,2,4,2,4,6A B ==,则A B = .【解题指南】从集合的并集的概念角度处理.【解析】{1,2,4,6}=A B .【答案】{1,2,4,6}。

高中数学人教版必修1集合重点题型

高中数学人教版必修1集合重点题型

高中数学人教版必修1集合重点题型一、集合的表示方法1. 列举法:把集合中的元素一一列举出来,用大括号括起来。

例如:{1,2,3,4,5},{a,b,c}。

2. 描述法:用集合所含元素的共同特征表示集合。

例如:{x|x 是三角形},{x|x是非负数}。

二、集合的运算1. 并集:两个或多个集合的所有元素组成的集合称为并集。

记作A∪B,读作A并B。

例题:已知集合A={1,2,3},集合B={4,5,6},求A∪B。

解:A∪B={1,2,3,4,5,6}。

2. 交集:两个或多个集合的共有元素组成的集合称为交集。

记作A∩B,读作A交B。

例题:已知集合A={1,2,3},集合B={2,3,4},求A∩B。

解:A∩B={2,3}。

3. 补集:在全集中去掉一个集合的所有元素组成的集合称为该集合的补集。

记作CuA,读作A的补集。

例题:已知全集U={1,2,3,4},集合A={1,2},求CuA。

解:CuA={3,4}。

三、集合的重点题型1. 元素与集合的关系元素与集合的关系有三种:属于、不属于、等于。

判断元素与集合的关系是解题的基础。

例题:判断以下关系是否正确?(1)3∈{x|x<5};(2){3}⊆{x|x<5};(3){{4}}={{3}};(4){x|x<5}={y|y<5}。

解:(1)正确,因为3是小于5的数,所以3属于{x|x<5}。

(2)正确,因为集合{3}中的元素都是集合{x|x<5}中的元素,所以{3}是{x|x<5}的子集。

(3)错误,因为{{4}}表示一个集合包含一个集合{4},而{{3}}表示一个集合包含一个集合{3},所以{{4}}≠{{3}}。

(4)正确,因为{x|x<5}和{y|y<5}都表示所有小于5的元素的集合,所以它们是相等的。

高中数学集合练习题及讲解

高中数学集合练习题及讲解

高中数学集合练习题及讲解## 高中数学集合练习题及讲解集合是数学中描述对象集合的一种基本工具,它在高中数学中占有重要地位。

以下是一些集合的练习题和相应的讲解,帮助学生更好地理解和应用集合的概念。

### 练习题一:集合的基本运算题目:已知集合 A = {1, 2, 3} 和 B = {2, 3, 4},求A ∪ B 和A ∩ B。

解答:- A ∪ B 表示 A 和 B 的并集,即 A 和 B 中所有的元素,不重复地放在一起。

因此,A ∪ B = {1, 2, 3, 4}。

- A ∩ B 表示 A 和 B 的交集,即同时属于 A 和 B 的元素。

因此,A ∩ B = {2, 3}。

### 练习题二:子集与真子集题目:若集合 C = {1, 2},判断 C 是否是 A 的子集。

解答:- 子集的定义是,如果集合 C 中的每一个元素都是集合 A 的元素,那么 C 是 A 的子集。

- 在这个例子中,C 中的所有元素 1 和 2 都在 A = {1, 2, 3} 中,所以 C 是 A 的子集。

### 练习题三:幂集题目:集合 D = {a, b},求 D 的幂集。

解答:- 幂集是包含所有可能子集的集合,包括空集和集合本身。

- 对于 D = {a, b},其幂集 P(D) 包括:- 空集:{}- 只包含 a 的集合:{a}- 只包含 b 的集合:{b}- 包含 a 和 b 的集合:{a, b}- 集合 D 本身:{a, b}### 练习题四:集合的补集题目:已知全集 U = {1, 2, 3, 4, 5},求 A 的补集。

解答:- 补集的定义是全集 U 中不属于集合 A 的所有元素组成的集合。

- 集合 A = {1, 2, 3},所以 A 的补集是 U 中不属于 A 的元素,即A' = {4, 5}。

### 练习题五:集合的笛卡尔积题目:集合 E = {1, 2} 和 F = {x, y},求E × F。

集合问题常见题型及求解方法

集合问题常见题型及求解方法

集合问题常见题型及求解方法一、概念辨析型此类问题主要考察元素与集合、集合与集合的关系及有关运算,往往可通过观察元素的结构特征或借助图形寻求集合之间的关系,使问题直观准确地得到解决。

例1、 设Φ=B A ,{}A P P M ⊆=,{}B Q Q N ⊆=,则有A. Φ=N M ,B.{}Φ=N M ,C.B A N M ⊂,D.B A N M = 解: ∵Φ=B A ,∴B A ⊆Φ⊆Φ, ∴{}Φ=N M . 例 2.函数⎩⎨⎧∈-∈=M x x P x x x f ,,)(,其中P 、M 为实数集R 的两个非空子集,又规定{}P x x f y y P f ∈==),()(,{}M x x f y y M f ∈==),()(给出下列四个判断:(1)若Φ=P M ,则Φ=)()(M f P f ,(2)若Φ≠P M ,则Φ≠)()(M f P f(3)若R P M = ,则R M f P f =)()( ,(4)若R P M ≠ ,则R M f P f ≠)()( 其中正确的判定有 :A.1个 B.2个 C.3个 D.4个解:由函数定义知{}0=P M 或Φ=P M 。

若Φ≠P M 则{}0=P M 此时{}0)()(=M f P f 非空,∴(2)真;若R P M ≠ ,则必有R M f P f ≠)()( ,∴(4)真;若Φ=P M ,则)()(M f P f 不一定为空,∴(1)假;若R P M = ,则)()(M f P f 一定不等于R,∴(3)假.例3.集合A={直线},B={圆} 则B A 中有( )元素A.2个B.1个C.0个D.0或1或2个。

解:A 、B 中元素分别是直线和圆,不是直线上的点和圆上的点,B A 中元素是“既是直线又是圆的图形”。

二、基本运算型此类题型主要考察集合的基本概念和基本运算,常用解法有定义法、列举法、图示法及语言转换法等。

例4.设全集U=R,M={}132≤-x x ,N={}12-+=x y y x ,则=)(N C M R A.[- 2,2] B.[-2,2] C.[-2,-]2,2[]2 D.[ 2,2] 。

集合知识点及题型归纳总结(含答案)

集合知识点及题型归纳总结(含答案)

集合知识点及题型归纳总结知识点精讲一、集合的有关概念 1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =. 3.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法. 4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 空集:不含有任何元素的集合,记作∅. 2.集合与集合之间的关系 (1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB 或B A .空集是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算集合的基本运算包括集合的交集、并集和补集运算,如表11-所示.IA{|IA x x =1.交集由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂,即{}|A B x x A x B ⋂=∈∈且.2.并集由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,即{}|A B x x A x B ⋃=∈∈或.3.补集已知全集I ,集合A I ⊆,由I 中所有不属于A 的元素组成的集合,叫做集合A 相对于全集I 的补集,记作IA ,即{}|I A x x I x A =∈∉且.四、集合运算中常用的结论 1.集合中的逻辑关系 (1)交集的运算性质.A B B A ⋂=⋂,A B A ⋂⊆,A B B ⋂⊆ A I A ⋂=,A A A ⋂=,A ⋂∅=∅. (2)并集的运算性质.A B B A ⋃=⋃,A A B ⊆⋃,B A B ⊆⋃ A I I ⋃=,A A A ⋃=,A A ⋃∅=. (3)补集的运算性质.()II A A =,I I ∅=,I I =∅ ()I A A ⋂=∅,()I A A I ⋃.补充性质:II I A B A A B B A B B A A B ⋂=⇔⋃=⇔⊆⇔⊆⇔⋂=∅.(4)结合律与分配律.结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C ⋂⋂=⋂⋂. 分配律:()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃. (5)反演律(德摩根定律).()()()II I A B A B ⋂=⋃()()()II I A B A B ⋃=⋂.即“交的补=补的并”,“并的补=补的交”. 2.由*(N )n n ∈个元素组成的集合A 的子集个数A 的子集有2n 个,非空子集有21n -个,真子集有21n -个,非空真子集有22n -个.3.容斥原理()()()()Card A B Card A Card B Card A B ⋃=+-⋂.题型归纳及思路提示I AA题型1 集合的基本概念思路提示:利用集合元素的特征:确定性、无序性、互异性. 例1.1 设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2-解析:由题意知{}01,,a b a ∈+,又0a ≠,故0a b +=,得1ba=-,则集合{}{}1,0,0,1,a b =-,可得1,1,2a b b a =-=-=,故选C 。

1-3 集合的基本运算(精讲)(解析版)

1-3 集合的基本运算(精讲)(解析版)

1.3 集合的基本运算(精讲)考点一数集之间的基本运算【例1】(1)(2021·辽宁高三其他模拟)已知集合{}{}|3,,1,0,1,2,3A x x x N B =≤∈=-,则A B =( )A .{0,1,2,3}B .{1,2,3}C .{2,3}D .{}0,1,3(2)(2021·北京高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B =( )A .()1,2-B .(1,2]-C .[0,1)D .[0,1](3)(2021·浙江宁波市)设全集U =R ,集合{}1A x x =≥-,{}23B x x =-≤<,则集合()UA B⋂是( ) A .{}21x x -<<-B .{}21x x -≤<-C .21}x x -<≤- D .{}21x x -≤≤-【答案】(1)A (2)B (3)B【解析】(1)由题得{}{}|3,0,1,2,3A x x x N =≤∈=,{}1,0,1,2,3B =-,所以A B ={0,1,2,3}故选:A(2)由题意可得:{}|12AB x x =-<≤,即(]1,2A B =-.故选:B.(3)由{}1A x x =≥-,则{}U|1A x x =<-又{}23B x x =-≤<,所以(){}U |21A B x x ⋂=-≤<-故选:B 【一隅三反】1.(2021·黑龙江哈尔滨市)已知集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B =( ) A .{﹣1,0,1} B .{0,1} C .{﹣1,1,2} D .{1,2}【答案】D【解析】集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B ={1,2},故选:D 2.(2021·河南焦作市)已知集合{}1,3,5,7,9=U ,{}1,5,7A =,{}1,3B =,则()UA B =( )A .{}3,5,7,9B .{}3,5,7C .{}1,9D .{}9【答案】D 【解析】题意,{}{}{}1,1,5,731,3,5,7AB ==,又∵{}1,3,5,7,9=U ,∴(){}9U AB =.选:D.3.(2021·全国高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.4.(2021·全国)已知全集(){}(){}{N08},{1,2},()5,6,4,7UU U U x x A B A B B A =∈<<⋂=⋃=⋂=∣,则A 集合为( ) A .{1,2,4} B .{1,2,7}C .{1,2,3}D .{1,2,4,7}【答案】C【解析】由题意{1,2,3,4,5,6,7}U =,用Venn 图表示集合,A B ,依次填写()U AB ,()UA B ,()U B A ⋂,最后剩下的数字3只有填写在A B 中,所以{1,2,3}A =.故选:C .5.(2021·辽宁)若集合{{2}A x y B x x ===<∣∣,则A ∩B =( )A .{}12x x << B .{}1x x ≥C .{}2x x <D .{}12x x ≤<【答案】D【解析】由题意,得{}1A x x =≥,所以{}12A B x x ⋂=≤<.故选:D 6.(2021·四川自贡市)设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .考点二 点集之间的基本运算【例2】(2021·河北高三其他模拟)已知集合{}{}3(,)0,(,)M x y x y N x y y x =-===,则M N ⋂中元素的个数为( )A .0B .1C .2D .3【答案】D【解析】因为集合{}{}3(,)0,(,)M x y x y N x y y x=-===,所以{}3(,)(0,0),(1,1),(1,1)y x M N x y y x ⎧⎫=⎧⎪⎪⋂==--⎨⎨⎬=⎩⎪⎪⎩⎭,所以A B 中元素的个数为3,故选:D 【一隅三反】1.(2021·山东济南市)已知集合M ={(x ,y )|y =21x -,xy ≤0},N ={(x ,y )|y =x 24-},则M N ⋂中的元素个数为( ) A .0 B .1C .2D .1或2【答案】A【解析】∵集合M ={(x ,y )|y =2x ﹣1,xy ≤0},N ={(x ,y )|y =x 2﹣4},∴M ∩N ={(x ,y )|22104y x xy y x =-⎧⎨=-⎩,}=∅.∴M ∩N 中的元素个数为0.故选:A . 2.(2021·全国高三其他模拟)已知集合(){}()22,|1,,,{,|2M x y x y x y N x y x y +≤∈∈+≤==Z Z },则集合M ⋂N 中元素的个数是( ) A .6 B .7 C .8 D .9【答案】C【解析】由222x y +≤可得,222,2x y ≤≤,即x y ≤≤N 中的满足,x Z y Z ∈∈的整点有:()()()()()()()()()0,0,0,1,0,1,1,0,1,0,1,1,1,1,1,1,1,1------,共9个点,其中只有(1,1)这一个点不满足1x y +≤,故M N ⋂中的元素个数为8个,故选:C.3.(2021·江苏南通市)若集合{(,)30}M x y x y =-=∣,()22,}0{|N x y x y =+=,则( ) A .M N M ⋂= B .M N M ⋃= C .M N N ⋃= D .M N ⋂=∅【答案】B【解析】∵集合(),30{|}M x y x y =-=,(){}(){}22,00|,0N x y xy =+==,因为2230000x y x x y y -==⎧⎧⇒⎨⎨+==⎩⎩∴(){}0,0M N N ⋂==,所以M N M ⋃=,故选:B.考点三 韦恩图求交并补【例3】(1)(2021·北京101中学高三其他模拟)已知集合{}0,1A =,集合{}1,0,1,2,3B =-,则图中阴影部分表示的集合是( )A .[]1,3B .(]1,3C .{}1,2,3-D .{}1,0,2,3-(2)(2021·山东烟台市)已知集合M ,N 都是R 的子集,且RM N ⋂=∅,则M N =( )A .MB .NC .∅D .R(3)(2021·珠海市)下图中矩形表示集合U ,A ,B 是U 的两个子集,则不能表示阴影部分的是( )A .()UA B ⋂B .()BABC .()()UUA B ⋂D .A BA ⋃【答案】(1)C (2)A (3)C【解析】(1)依题意,由补集的韦恩图表示知,图中阴影部分表示的集合是BA ,因集合{}0,1A =,集合{}1,0,1,2,3B =-,则有{1,2,3}BA =-,所以图中阴影部分表示的集合是{}1,2,3-.故选:C (2)由题知:RM N ⋂=∅,所以M N ⊆,即M N M ⋂=.故选:A(3)由图知:当U 为全集时,阴影部分表示集合A 的补集与集合B 的交集, 当B 为全集时,阴影部分表示A B 的补集,当AB 为全集时,阴影部分表示A 的补集,故选:C.【一隅三反】1.(2021·浙江温州市)设全集U 为实数集R ,集合{A x R x =∈>,集合{0,1,2,3}B =,则图中阴影部分表示的集合为( )A .{}0B .{0,1}C .{3,4}D .{1,2,3,4}【答案】B【解析】图中的阴影部分表示集合B 中不满足集合A 的元素,所以阴影部分所表示的集合为{}0,1. 故选:B.2.(2021·沈阳市)已知非空集合A 、B 、C 满足:A B C ⊆,A C B ⋂⊆.则( ).A .BC = B .()A B C ⊆⋃ C .()B C A ⋂⊆D .A B A C ⋂=⋂【答案】C【解析】因为非空集合A 、B 、C 满足:AB C ⊆,A C B ⋂⊆,作出符合题意的三个集合之间关系的venn 图,如图所示,所以A B A C ⋂=⋂. 故选:D .3.(2021·江苏苏州市)已知U 为全集,非空集合A 、B 满足()UA B =∅,则( )A .AB ⊆ B .B A ⊆C .()()UU A B ⋂=∅ D .()()UU A B U ⋃=【答案】A【解析】如下图所示:()UAB =∅,由图可知,A B ⊆,()()U U U A B B ⋂=,故选:A.4.(2021·全国高三专题练习(文))若集合A ,B ,U 满足:A BU ,则U =( )A .UAB B .UBA C .UAB D .UBA【答案】B【解析】由集合A ,B ,U 满足:ABU ,U UBA ∴,如图所示:UAA U ∴=,UBA U =,UBB U = 故选:B考点四 利用集合运算求参数【例4】(1)(2021·山东泰安市)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1B .2±C .3±D .4±(2)(2021·全国高三专题练习)设集合5,,b A a b a ⎧⎫=-⎨⎬⎩⎭,{},,1B b a b =+-,若{}2,1A B =-,则a =____,b =____.(3)(2021·重庆八中)已知集合{}12A x x =<<,集合{}B x x m =>,若()A B =∅R,则m 的取值范围为( )A .(],1-∞B .(],2-∞C .[)1,+∞D .[)2,+∞(4)(2021·河南安阳市)已知集合{}2230A x N x x *=∈--<,{}20B x ax =+=,若A B B =,则实数a 的取值集合为( ) A .{}1,2--B .{}1,0-C .2,0,1D .{}2,1,0--(5)(2021·全国高三月考(理))设集合{}2|20A x x mx =+-<,{}|13B x x =-≤≤,且{}23A B x x =|-<≤,则A B =( )A .{}|11x x -≤<B .{}|21x x -<<C .{}|21x x -<≤-D .{}|13x x <≤【答案】(1)B (2)1 2 (3)A (4)D (5)A【解析】(1)由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B(2)由{}2,1A B =-,得21b a a b ⎧=⎪⎨⎪-=-⎩或12ba ab ⎧=-⎪⎨⎪-=⎩.①当21ba ab ⎧=⎪⎨⎪-=-⎩时,解得12a b =⎧⎨=⎩,此时{}5,2,1A =-,{}2,3,1B =-,符合题意;②当12ba ab ⎧=-⎪⎨⎪-=⎩时,解得11a b =⎧⎨=-⎩,此时{}5,2,1A =-,集合B 中的元素不满足互异性,不符合题意.综上所述,1a =,2b =.故答案为:1;2. (3)由题知()AB =∅R,得A B ⊆,则1m ,故选:A .(4){}{}22301,2A x N x x *=∈--<=,因为AB B =,所以B A ⊆,当0a =时,集合{}20B x ax φ=+==,满足B A ⊆; 当0a ≠时,集合{}220B x ax x a ⎧⎫=+===-⎨⎬⎩⎭,由B A ⊆,{}1,2A =得21a -=或22a-=,解得2a =-或1a =-, 综上,实数a 的取值集合为{}2,1,0--.故选:D . (5)由题意,集合{|13}B x x =-≤≤,且{|23}AB x x =-<≤,可得2-是方程220x mx +-=的根,即2(2)(2)20m -+⨯--=,解得1m =, 所以{}{}2|20|21A x x x x x =+-<=-<<,则{|11}A B x x ⋂=-≤<.故选:A. 【一隅三反】1.(2021·全国高三)已知集合{}20,1,,{1,0,23}==+A a B a ,若AB A B =,则实数a 等于( )A .1-或3B .0或1-C .3D .1-【答案】C 【解析】由AB A B =可知A B =,故223a a =+,解得1a =-或3a =.当1a =-时,21a =,与集合元素互异性矛盾,故1a =-不正确. 经检验可知3a =符合题意.故选:C .2.(2021·辽宁沈阳市)已知集合{}{}21,0,1,,A B x x =-=,若AB B =,则实数x =( )A .1-B .1C .±1D .0或±1【答案】A 【解析】由AB B =得B A ⊆,0x =时,20x x ==不合题意,1x =时,21x x ==也不合题意, 1x =-时,21x =,满足题意.故选:A .3.(2021·安徽宣城市){}{}36,72A x x B x a x a =-≤<=-<≤ (1)A B B ⋃=,求a 的取值范围; (2)UA B ,求a 的取值范围.【答案】(1)[)3,4;(2)(],7-∞-.【解析】(1)A B B =,A B ∴⊆,7326a a -<-⎧∴⎨≥⎩,解得34a ≤<,即a 的取值范围为[)3,4;(2)可得{3U A x x =<-或}6x ≥, U A B,若B =∅,则72a a -≥,解得7a ≤-,满足题意; 若B ≠∅,则727326a a a a -<⎧⎪-≥-⎨⎪<⎩,不等式无解,综上,a 的取值范围为(],7-∞-.4.(2021·浙江高一期末)在“①A B =∅,②A B ⋂≠∅”这两个条件中任选一个,补充在下列横线中,求解下列问题:已知集合{|231}A x a x a =-<<+,{|01}B x x =<≤.(Ⅰ)若0a =,求A B ;(Ⅱ)若________(在①,②这两个条件中任选一个),求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答记分.【答案】(1){|31}x x -<≤;(2)若选①,(,1][2,)-∞-+∞;若选②,()1,2-【解析】(1)当0a =时,{|31}A x x =-<<,{|01}B x x =<≤;所以{|31}A B x x =-<≤(2)若选①,A B =∅,当A =∅时,231a a -≥+,解得4a ≥,当A ≠∅时,4231a a <⎧⎨-≥⎩或410a a <⎧⎨+≤⎩,解得:24a ≤<或1a ≤-, 综上:实数a 的取值范围(,1][2,)-∞-+∞.若选②,A B ⋂≠∅,则23123110a a a a -<+⎧⎪-<⎨⎪+>⎩,即421a a a <⎧⎪<⎨⎪>-⎩,解得:1a 2-<<,所以实数a 的取值范围()1,2-.考点五 实际生活中集合间的运算【例5】(2021·山东高三专题练习)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了了解在校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《三国演义》的学生共有80位,阅读过《西游记》的学生共有60位,阅读过《西游记》且阅读过《三国演义》的学生共有40位,则在调查的100位同学中阅读过《三国演义》的学生人数为( )A.60 B.50 C.40 D.20【答案】A【解析】因为阅读过《西游记》或《三国演义》的学生共有80位,阅读过《西游记》的学生共有60位,-=位,所以只阅读了《三国演义》的学生有806020又因为阅读过《西游记》且阅读过《三国演义》的学生共有40位,=位,故选:A.所以只阅读过《三国演义》的学生共有20+4060【一隅三反】1.(2021·云南省云天化中学高一期末)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,六盘水市第七中学为了解我校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则在调查的100位同学中阅读过《西游记》的学生人数为()A.80 B.70 C.60 D.50【答案】B【解析】因为阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,-=位,所以《西游记》与《红楼梦》两本书中只阅读了一本的学生共有906030因为阅读过《红楼梦》的学生共有80位,-=位,所以只阅读过《红楼梦》的学生共有806020所以只阅读过《西游记》的学生共有302010位,+=位,故选:B.故阅读过《西游记》的学生人数为1060702.(2021·全国高三专题练习)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.3.(2021·吴县中学高一月考)某中学的学生积极参加体育锻炼,其中有95%的学生喜欢篮球或羽毛球,60%的学生喜欢篮球,82%的学生喜欢羽毛球,则该中学既喜欢篮球又喜欢羽毛球的学生数占该校学生总数的比例是( )A .63%B .47%C .55%D .42%【答案】B【解析】设只喜欢篮球的百分比为x ,只喜欢羽毛球的百分比为y ,两个项目都喜欢的百分比为z ,由题意,可得60x z +=,95x y z ++=,82y z +=,解得47z =.∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是47%.故选:B .4.(2021·广东清远市·高一期末)某幼儿园满天星班开设“小小科学家”、“小小演说家”兴趣小组,假设每位学员最少参加一个小组,其中有13位学员参加了“小小科学家”兴趣小组,有16位学员参加了“小小演说家”兴趣小组,有8位学员既参加了“小小科学家”兴趣小组,又参加了“小小演说家”兴趣小组,则该幼儿园满天星班学员人数为( )A .19B .20C .21D .37 【答案】C【解析】由条件可知该幼儿园满天星班学员人数为1316821+-=.故选:C。

集合的基本运算(精讲)(原卷版)--2023届初升高数学衔接专题讲义

集合的基本运算(精讲)(原卷版)--2023届初升高数学衔接专题讲义

2023年初高中衔接素养提升专题讲义第八讲集合的基本运算(精讲)(原卷版)【知识点透析】一、交集1、文字语言:对于两个给定的集合A ,B ,由属于A 又属于B 的所有元素构成的集合,叫做A ,B 的交集,记作A ∩B ,读作“A 交B ”2、符号语言:A ∩B ={x |x ∈A 且x ∈B }3、图形语言:阴影部分为A ∩B4、性质:A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅∩A =∅,如果A ⊆B ,则A ∩B =A5、解题思路:单个数字交集找相同,不等式的交集画数轴,不同集合高度画不同。

二、并集1、文字语言:对于两个给定的集合A ,B ,由两个集合的所有的元素组成的集合,叫做A 与B 的并集,记作A ∪B ,读作“A 并B ”2、符号语言:A ∪B ={x |x ∈A 或x ∈B }3、符号语言:阴影部分为A ∪B4、性质:A ∪B =B ∪A ,A ∪A =A ,A ∪∅=∅∪A =A ,如果A ⊆B ,则A ∪B =B .5、解题思路:两个集合所有元素集中在一起,但是重复元素只写一次,要满足集合中的互异性三、补集1、全集:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集.记法:全集通常记作U .2、补集(1)文字语言:如果给定集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合,叫做A 在U 中的补集,记作A C U .(2)符号语言:}|{A x U x x A C U ∉∈=且(3)符号语言:(4)性质:A ∪∁U A =U ;A ∩∁U A =∅;∁U (∁U A )=A .【注意】并不是所有的全集都是用字母U 表示,也不是都是R,要看题目的。

四、利用交并补求参数范围的解题思路1、根据并集求参数范围:=⇒⊆ A B B A B ,若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 2、根据交集求参数范围:=⇒⊆ A B A A B若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 【知识点精讲】题型一并集、交集、补集的运算【例题1】(2022·浙江·杭十四中高一期中)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4,5S T ==,则S T ⋃=()A .{}3,5B .{}2,4C .{}1,2,3,4,5D .{}1,2,3,4,5,6【例题2】(2021春•山西大同期中)设集合{|1}A x x =<,{|22}B x x =-<<,则(A B = )A .{|21}x x -<<B .{|2}x x <C .{|22}x x -<<D .{|1}x x <【例题3】.(2022·江苏·高二期末)已知集合{}1,2A =,{}21,2B a a =-+,若{}1A B ⋂=,则实数a 的值为()A .0B .1C .2D .3【例题4】.(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))已知集合{}21A x x =-<≤,{}0B x x a =<≤,若{|23}A B x x =-<≤ ,A B = ()A .{|20}x x -<<B .{|01}x x <≤C .{|13}x x <≤D .{|23}x x -<≤【例题5】.(2021·北京昌平区·高二期末)已知全集{0,1,2,3,4,5}U =,集合{0,1,2,3}A =,{3,4}B =,则()U A B = ð___________.【例题6】.(2022·四川南充高一课时检测)已知全集{}16A x x =≤≤,集合{}15B x x =<<,则A B =ð().A .{}5x x ≥B .{1x x ≤或}5x ≥C .{1x x =或}56x <≤D .{1x x =或}56x ≤≤【例题7】.41.(2021·陕西商洛市·镇安中学高一期中)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.(1)若4m =,求A B ;(2)若A B =∅ ,求实数m 的取值范围.【变式1】.(2022·河北邢台高二期末)若集合{}|24M x x =-<≤,{}|46N x x =≤≤,则A .M N ⊆B .{}4M N =C .M N ⊇D .{}26|M N x x =-<< 【变式2】.(2022·江苏常州高三开学考试)设集合{}11A x x =-<<,{}220B x x x =-≤,则A B ⋃=()A .(]1,2-B .()1,2-C .[)0,1D .(]0,1【变式3】(2022·青海·海东市第一中学模拟预测(文))已知集合{}1,1,2M =-,{}2N x x x =∈=R ,则M N ⋃=()A .{}1B .{}1,0-C .{}1,0,1,2-D .{}1,0,2-【变式4】.(2022·浙江·三模)已知集合{}{}25,36P x x Q x x =≤<=≤<,则P Q = ()A .{}25x x ≤<B .{}26x x ≤<C .{}35x x ≤<D .{}36x x ≤<题型二并集、交集、补集综合运算及性质的应用【例题8】.(2022·河南洛阳高一课时检测)已知全集U ,集合{}1,3,5,7,9A =,{}2,4,6,8U C A =,{}1,4,6,8,9U C B =,则集合B =()A .{}1,5,7B .{}3,5,7,9C .{}2,3,5,7,9D .{}2,3,5,7【例题9】.(2022·重庆·西南大学附中模拟预测)已知集合{}|10A x ax =-=,{}*|14B x x =∈≤<N ,且A B B ⋃=,则实数a 的所有值构成的集合是()A .11,2⎧⎫⎨⎬⎩⎭B .11,23⎧⎫⎨⎬⎩⎭C .111,,23⎧⎫⎬⎭D .110,1,,23⎧⎫⎨⎬⎩⎭【例题10】.(湖北省“宜荆荆恩”2022-2023学年高三上学期起点考试)已知集合(,1][2,)A =-∞⋃+∞,{|11}B x a x a =-<<+,若A B =R ,则实数a 的取值范围为()A .(1,2)B .[1,2)C .(1,2]D .[1,2]【例题11】.(2022·云南昆明一中高一检测)已知A ,B 都是非空集合,(){}&A B x x A B =∈⋃且()x A B ∉ .若{}02A x x =<<,{}0B x x =≥,则&A B =()A .{}0x x ≥B .{}02x x <<C .{0x x =或}2x <-D .{0x x =或}2x ≥【例题12】.(2021·江苏高一专题练习)已知集合{}42A x x =-<<,{}110B x m x m m =--<<->,.(1)若A B B ⋃=,求实数m 的取值范围;(2)若A B ⋂≠∅,求实数m 的取值范围.【变式1】(2022·辽宁沈阳高一课前预习)集合{}2320A x x x =-+=,{}2220B x x ax =-+=,若A B A ⋃=,求实数a 的取值范围.【变式2】.(2023·浙江高二开学考试)已知R a ∈,设集合{}22210A x x ax a =-+-<,{}2B x x =>,(1)当2a =时,求集合A .(2)若R A B ⊆ð,求实数a 的取值范围.【变式3】.(2022·四川乐山市高一单元测试)已知集合{}211A x a x a =-<<+,{}01B x x =≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中任选一个作为已知条件,求A B ;(2)若R A B A ⋂=ð,求实数a 的取值范围.题型三Venn 图的应用【例题13】.(2021·贵州省思南中学高三月考(理))已知全集U =R ,集合{}23,A y y x x R ==+∈,{}24B x x =-<<,则图中阴影部分表示的集合为()A .[]2,3-B .()2,3-C .(]2,3-D .[)2,3-【例题14】.(2021·全国高三其他模拟)已知全集U x y ⎧⎫=∈=⎨⎩Z ,集合{}13M x x =∈-<Z ,{}4,2,0,1,5N =--,则下列Venn 图中阴影部分表示的集合为()A .{}0,1B .{}3,1,4-C .{}1,2,3-D .{}1,0,2,3-【例题15】.(2021·山东济南·高一期中)国庆期间,高一某班35名学生去电影院观看了《长津湖》、《我和我的父辈》这两部电影中的一部或两部.其中有23人观看了《长津湖》,有20人观看了《我和我的父辈》则同时观看了这两部电影的人数为()A .8B .10C .12D .15【变式】.(2021·广东·广州外国语学校高一检测)某公司共有50人,此次组织参加社会公益活动,其中参加A 项公益活动的有28人,参加B 项公益活动的有33人,且A ,B 两项公益活动都不参加的人数比都参加的人数的三分之一多1人,则只参加A 项不参加B 项的有()A .7人B .8人C .9人D .10人。

专题1.1 集合(精讲精析篇)(解析版)

专题1.1 集合(精讲精析篇)(解析版)

专题1.1集合(精讲精析篇)提纲挈领点点突破热门考点01 集合的基本概念元素与集合(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a A ∈;若b 不属于集合A ,记作b A ∉. (3)集合的表示方法:列举法、描述法、区间法、图示法. (4)常见数集及其符号表示数集 自然数集正整数集 整数集 有理数集实数集 符号NN *或N +ZQR【典例1】集合M 是由大于2-且小于1的实数构成的,则下列关系式正确的是( ). 5M B.0M ∉C.1M ∈D.π2M -∈ 【答案】D 【解析】由题意,集合M 是由大于2-且小于1的实数构成的,即{|21}M x x =-<<,由51>,故5M ∉;由201-<<,故0M ∈;由1不小于1,故1M ∉; 由π212-<-<,故π2M -∈. 故选D .【典例2】(全国高考真题(文))已知集合,则集合中的元素个数为( ) A .5 B .4C .3D .2【答案】D 【解析】 由已知得中的元素均为偶数,应为取偶数,故,故选D.【特别提醒】1.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.2.集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.热门考点02 集合间的基本关系集合间的基本关系(1)子集:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,也说集合A 是集合B 的子集.记为A B ⊆或B A ⊇.(2)真子集:对于两个集合A 与B ,如果A B ⊆,且集合B 中至少有一个元素不属于集合A ,则称集合A 是集合B 的真子集.记为A B ⊂≠.(3)空集是任何集合的子集, 空集是任何非空集合的真子集.(4)若一个集合含有n 个元素,则子集个数为2n 个,真子集个数为21n -. A .1 B .2C .3D .4【答案】B 【解析】化简{}1,2A =,{}{}2,41,2,4B A B =⇒⋃=,{}()3,5UA B ⋃=,集合()UA B 中元素的个数为2个,故选B .【答案】0,2,2- 【解析】{}{}24,2,2A x x x R ==∈=-.因为B A ⊆,所以{}{}{},2,2,2,2B B B B =∅==-=-.当B =∅时,这时说明方程4kx =无实根,所以0k =;当{}2B =时,这时说明2是方程4kx =的实根,故242k k =⇒=; 当{}2B =-时,这时说明2-是方程4kx =的实根,故242k k -=⇒=-; 因为方程4kx =最多有一个实数根,故2,2B 不可能成立.故答案为:0,2,2- 【特别提醒】(1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.(2)要确定非空集合A 的子集的个数,需先确定集合A 中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、图示法来解决这类问题.提醒:空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.热门考点03 集合的基本运算(1)三种基本运算的概念及表示运算自然语言符号语言Venn 图交集 由属于集合A 且属于集合B 的所有元素组成的集合 A ∩B ={x |x ∈A 且x ∈B }并集 由所有属于集合A 或属于集合B 的元素组成的集合 A ∪B ={x |x ∈A 或x ∈B }补集由全集U 中不属于集合A 的所有元素组成的集合∁U A ={x |x ∈U 且x ∉A }(2)三种运算的常见性质A A A =, A ∅=∅ , AB BA = , A A A =, A A ∅=, AB B A =.(C A)A U U C =,U C U =∅,U C U ∅=.A B A A B =⇔⊆, A B A B A =⇔⊆, ()U U U C A B C A C B =, ()U U U C A B C A C B =.A .{}12x x -<< B .{}12x x -≤≤C .}{}{|12x x x x <-⋃ D .}{}{|1|2x x x x ≤-⋃≥【答案】B 【解析】解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.A.(–1,1)B.(1,2)C.(–1,+∞)D.(1,+∞)【答案】C 【解析】 ∵ ,∴ ,故选C.【典例7】(2020届浙江省嘉兴市高三5月模拟)已知全集{1,2,3,4,5,6,7,8}U =,{}1,2,3A =,B ={4,5,6},则()()U U A B ⋂等于( )A .{}1,2,3B .{}4,5,6C .{1,2,3,4,5,6}D .{}7,8【答案】D 【解析】{1,2,3,4,5,6,7,8}U =,{}1,2,3A =,{4,5,6}B =, ∴{}4,5,6,7,8UA =,{}1,2,3,7,8UB =, ∴()(){}=7,8UU A B ∩.故选:D.【典例8】已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2) B .[-1,3] C .[2,+∞) D .[-1,+∞)【答案】D【解析】A ={x |-3≤x ≤4}. 又A ∩B =B ,所以B ⊆A . ①当B =∅时,有m +1≤2m -1, 解得m ≥2;②当B ≠∅时,有32114211m m m m -≤-⎧⎪+≤⎨⎪-<+⎩,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 【总结提升】1.解决集合的基本运算问题一般应注意以下几点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)对集合化简.有些集合是可以化简的,如果先化简再研究其关系并进行运算,可使问题变得简单明了,易于解决.(3)注意数形结合思想的应用.集合运算常用的数形结合形式有数轴和Venn 图. 2.根据集合运算结果求参数,主要有以下两种形式:(1)用列举法表示的集合,直接依据交、并、补的定义求解,重点注意公共元素;(2)由描述法表示的集合,一般先要对集合化简,再依据数轴确定集合的运算情况,用区间法要注意端点值A.77 B.49 C.45 D.30【答案】C【解析】因为集合,所以集合中有9个元素(即9个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.【总结提升】解决集合新定义问题的着手点(1)正确理解新定义:耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质:运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.(3)对于选择题,可结合选项,通过验证、排除、对比、特值法等进行求解或排除错误选项,当不满足新定义的要求时,只需通过举反例来说明,以达到快速判断结果的目的.巩固提升A.3 B.2 C.1 D.0【解析】集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22⎛ ⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B. A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C 【解析】{}{}1,3,5,7,2,3,4,5A B ==, {}3,5A B ∴⋂=,故选C A .{0} B .{1}C .{1,2}D .{0,1,2}【答案】C 【解析】 由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C.4.(2020届浙江省嘉兴市3月模拟)已知全集{}2,1,0,1,2U =--,集合{}0,1,2A =,{}1,0B =-,则()U AC B =( )A .{}0B .{}1,2C .{}0,1,2D .2,0,1,2【答案】B 【解析】由题可知,{}2,1,2U C B =-,所以(){}1,2U A C B =故选:B A.1 B.2 C.4 D.8【答案】C 【解析】 因为{0,1}A =,所以其子集个数是224=. 故选:C.A .(2,2)-B .(,2)(2,)-∞-+∞C .[2,2]-D .(,2][2,)-∞-+∞【答案】C 【解析】因为{2A x x =<-或2}x >,所以{}22UA x x =-≤≤,故选:C .A.4B.5C.6D.7【答案】C 【解析】39{|}{1,0,1,2,3,4}22A Z x x Z ⋂=-≤≤⋂=-,共6个元素.故选:C.8.(全国高考真题(理))已知集合{A =,{}1,B m =,若A B A ⋃=,则m =( )A.0B.0或3C.1D.1或3【答案】B 【解析】因为A B A ⋃=,所以B A ⊆,所以3m =或m =若3m =,则{{1,3}A B ==,满足A B A ⋃=.若m m =,解得0m =或1m =.若0m =,则{1,3,0},{1,3,0}A B ==,满足A B A ⋃=.若1m =,{1,3,1},{1,1}A B ==显然不成立,综上0m =或3m =,选B.9.(上海高考真题)设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A.(﹣∞,2) B.(﹣∞,2] C.(2,+∞) D.[2,+∞)【答案】B 【解析】 当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.A .7B .8C .255D .256【答案】C 【解析】因为集合{|{1,A a a =⊆2,3}},所以集合A 的元素是集合{1,2,3}的子集,共有8个, 所以集合A 的真子集个数为821255-=个, 故选:C .【答案】{1,6}. 【解析】由题知,{1,6}A B ⋂=.【答案】1,12⎛⎫ ⎪⎝⎭【解析】1,2A ⎛⎫=+∞ ⎪⎝⎭,(1,1)B =-,A∩B=1,12⎛⎫ ⎪⎝⎭.【答案】7 【解析】用列举法可知M ={1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}共7个. 故答案为:7.【答案】{|35x x <<或2}x【解析】 如图所示:{}{}5,23A B x x A B x x ⋃=<⋂=-<≤,因为{}A B x x A B x A B ⨯=∈⋃∉⋂且, 所以{}352A B x x x ⨯=<<≤-或. 故答案为:{}352x x x <<≤-或.【答案】1 【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.16.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉,1k A +∉,那么k 是A 的一个“孤立元”,给定{}1,2,3,4,5A =,则A 的所有子集中,只有一个“孤立元”的集合共有______个. 【答案】13 【解析】由题意可知,含有一个“孤立元”的集合有以下几种情形:①只有一个元素,即{}1,{}2,{}3,{}4,{}5,符合题意;②有2个元素,则有两个“孤立元”,不符合题意;③有3个元素时,有{}1,2,4,{}1,2,5,{}1,3,4,{}1,4,5,{}2,3,5,{}2,4,5, ④有4个元素时,有{}1,2,3,5,{}1,3,4,5,综上,共13个. 故答案为:13。

2024年高考数学 高三大一轮复习专题01 集合

2024年高考数学 高三大一轮复习专题01 集合

专题01 集合【知识精讲】一、集合的基本概念 1.元素与集合的关系:a A a A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:即一个集合一旦3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作∅.4.常用数集及其记法:注意:实数集R 不能表示为{x |x 为所有实数}或{R },因为“{ }”包含“所有”“全体”的含义.5.集合的表示方法:自然语言、列举法、描述法、图示法. 二、集合间的基本关系或集合A ∅⊆,必记结论:(1)若集合A 中含有n 个元素,则有2n 个子集,有21n −个非空子集,有21n −个真子集,有22n −个非空真子集.(2)子集关系的传递性,即,A B B C A C ⊆⊆⇒⊆. 注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 三、集合的基本运算 1.集合的基本运算{|B x x =|{B x x ={|UA x =2.集合运算的相关结论B A ⊆ B B ⊆ A A A = ∅=∅B A ⊇B B ⊇A A =A ∅=()UU A A =UU =∅ UU ∅=()U A A =∅()U A A U =3.必记结论(.)UUU A B A B A A B B A B A B ⊆⇔=⇔=⇔⊇=⇔∅【题型精讲】题型一 集合的基本概念【例1-1】设集合{}22,2,1A a a a =−+−,若4A ∈,则a 的值为( ).A .1−,2B .3−C .1−,3−,2D .3−,2【答案】D 【解析】 【分析】由集合中元素确定性得到:1a =−,2a =或3a =−,通过检验,排除掉1a =−. 【详解】由集合中元素的确定性知224a a −+=或14a −=.当224a a −+=时,1a =−或2a =;当14a −=时,3a =−.当1a =−时,{}2,4,2A =不满足集合中元素的互异性,故1a =−舍去; 当2a =时,{}2,4,1A =−满足集合中元素的互异性,故2a =满足要求; 当3a =−时,{}2,14,4A =满足集合中元素的互异性,故3a =−满足要求. 综上,2a =或3a =−. 故选:D .【例1-2】(多选题)设集合{}22,,Z M a a x y x y ==−∈,则下列是集合M 中的元素的有( ) A .4n ,Z n ∈ B .41n +,Z n ∈ C .42n +,Z n ∈ D .43n +,Z n ∈【答案】ABD 【解析】 【分析】分别对x ,y 取整数,1x n =+,1y n =−可判断A ;由21x n =+,2y n =可判断B ;令()()42n x y x y +=+−,通过验证不成立可判断C ;由22x n =+,21y n =+可判断D ,进而可得正确选项. 【详解】对于A :因为()()22411n n n =+−−,Z n ∈,1Z n +∈,1Z n −∈,所以4n M ,故选项A正确;对于B :因为()()2241212n n n +=+−,Z n ∈,21Z n +∈,2Z n ∈,所以41n M ,故选项B 正确;对于C :若()42Z n n M +∈∈,则存在x ,Z y ∈使得2242x y n ,则()()42n x y x y +=+−,易知x y +和x y −同奇或同偶,若x y +和x y −都是奇数,则()()x y x y +−为奇数,而42n +是偶数,矛盾;若x y +和x y −都是偶数,则()()x y x y +−能被4整除,而42n +不能被4整除,矛盾,所以42nM ,故选项C 不正确;对于D :()()22432221n n n +=+−+,22Z n +∈,21Z n +∈,所以43n M ,故选项D正确; 故选:ABD.【例1-3】集合*83A x NN x ⎧⎫=∈∈⎨⎬−⎩⎭,用列举法可以表示为A =_________. 【答案】{1,2}、{2,1} 【解析】【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈−,所以31,2,4,8−=x ,可得2,1,1,5=−−x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}【练习1-1】已知集合 {}20,,32A m m m =−+,且 2A ∈,则实数m 的值为( )A .3B .2C .0或3D .0或2或3【答案】A 【解析】 【分析】依题意可得2m =或2322m m −+=,求出方程的根,再代入集合中检验即可; 【详解】解:因为{}20,,32A m m m =−+,且2A ∈,所以2m =或2322m m −+=,解得2m =或0m =或3m =,当2m =时2320m m −+=,即集合A 不满足集合元素的互异性,故2m ≠,当0m =时集合A 不满足集合元素的互异性,故0m ≠,当3m =时{}0,3,2A =满足条件; 故选:A【练习1-2】已知集合{}220A x x x a =−+>,且1A ∉,则实数a 的所有取值构成的集合是________. 【答案】(],1−∞ 【解析】 【分析】根据集合与元素见的关系直接列不等式,进而得解. 【详解】由1A ∉,得21210a −⨯+≤, 解得1a ≤,故答案为:(],1−∞.【练习1-3】已知,x y 均为非零实数,则代数式xy x yx y xy++的值所组成的集合的元素个数是______. 【答案】2 【解析】 【分析】 分析题意知代数式xy x yx y xy++的值与,x y 的符号有关,按其符号的不同分3种情况讨论,分别求出代数式的值,即可得解. 【详解】根据题意分2种情况讨论: 当,x y 全部为负数时,xy 为正数,则1111xyx y x y xy++=−−+=−; 当,x y 全部为正数时,xy 为正数,则1113xy x y x y xy++=++=; 当,x y 一正一负时,xy 为负数,则1111xy x y x y xy++=−−=−; 综上可知,xy x yx y xy++的值为1−或3,即代数式的值所组成的集合的元素个数是2 故答案为:2题型二 集合的基本关系【例2-1】若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .A B B .B A C .A B = D .A B ≠【答案】C 【解析】【分析】根据子集的定义证得A B ⊆和B A ⊆,即可得出结论. 【详解】设任意1x A ∈,则1111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+, 所以1x B ∈;当121,k n n Z =−∈时,1141(41)999x n n =−=−,所以1x B ∈.所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈ 因为22412(2)1k k +=+,22412(21)1k k −=−+, 且22k 表示所有的偶数,221k −表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数.所以2x A ∈. 所以B A ⊆故A B =. 故选:C.【例2-2】已知集合{}2230A x x x =−−=,{}20B x ax =−=,且B A ⊆,则实数a 的值为___________. 【答案】2a =−或23a =或0 【解析】 【分析】先求得集合A ,分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a =,解出即可.【详解】解:已知集合{}{}22301,3A x x x =−−==−,{}20B x ax =−=,当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a=,解得2a =−或23a =;故答案为:2a =−或23a =或0.【例2-3】已知{}(){}22240,2110A xx x B x x a x a =+==+++−=∣∣. (1)若A 是B 的子集,求实数a 的值; (2)若B 是A 的子集,求实数a 的取值范围. 【答案】(1)1a =; (2)1a −或1a =. 【解析】 【分析】(1)由题得{}4,0B A ==−,解2Δ0402(1)401a a >⎧⎪−+=−+⎨⎪−⨯=−⎩即得解;(2)由题得B A ⊆,再对集合B 分三种情况讨论得解. (1)解:由题得{}4,0A =−.若A 是B 的子集,则{}4,0B A ==−,所以2Δ0402(1),1401a a a >⎧⎪−+=−+∴=⎨⎪−⨯=−⎩.(2)解:若B 是A 的子集,则B A ⊆.①若B 为空集,则()22Δ4(1)41880a a a =+−−=+<,解得1a <−; ②若B 为单元素集合,则()22Δ4(1)41880a a a =+−−=+=,解得1a =−. 将1a =−代入方程()222110x a x a +++−=,得20x =,即{}0,0x B ==,符合要求; ③若B 为双元素集合,{}4,0B A ==−,则1a =. 综上所述,1a −或1a =.【练习2-1】设集合18045,Z 2k M x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,18045,Z 4kN x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,则两集合间的关系是( ) A .MNB .M NC .N MD .M N ⋂=∅【答案】B 【解析】 【分析】变形(){}2145,Z M x x k k ==+⨯︒∈,(){}145,Z N x x k k =+⨯︒∈,分析比较即可得解. 【详解】由题意可(){}18045,Z 2145,Z 2kM x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭即M 为45︒的奇数倍构成的集合,又(){}18045,Z 145,Z 4kN x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭,即N 为45︒的整数倍构成的集合,M N ∴⊆,即M N 故选:B【练习2-2】已知集合{|4A x x =≥或}5x <−,{}|13B x a x a =+≤≤+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <−或}3a ≥ 【解析】 【分析】根据B A ⊆,利用数轴,列出不等式组,即可求出实数a 的取值范围. 【详解】用数轴表示两集合的位置关系,如上图所示,或要使B A ⊆,只需35a +<−或14a +≥,解得8a <−或3a ≥. 所以实数a 的取值范围{|8a a <−或}3a ≥. 故答案为:{|8a a <−或}3a ≥【练习2-3】满足{}1A ⊆ {1,2,3}的所有集合A 是___________. 【答案】{1}或{1,2}或{1,3} 【解析】 【分析】由题意可得集合A 中至少有一个元素1,且为集合{1,2,3}的真子集,从而可求出集合A 【详解】因为{}1A ⊆ {1,2,3},所以集合A 中至少有一个元素1,且为集合{1,2,3}的真子集, 所以集合A 是{1}或{1,2}或{1,3}, 故答案为:{1}或{1,2}或{1,3}题型三 集合的基本运算【例3-1】已知集合{}21A x x =−≤≤,集合{}2log 1B x x =<,则A B =( ) A .∅ B .(0,1] C .[2,1]− D .(0,2)【答案】B 【解析】 【分析】先求解集合B ,再利用交集运算即可. 【详解】解:由题得集合{|02}B x x =<<,所以{|01}A B x x =<≤. 故选:B .【例3-2】已知U=R 是实数集,21M x x ⎧⎫=>⎨⎬⎩⎭,{N x y ==,则()N M =R ( )A .(),0∞−B .(),1−∞C .(]0,1D .()0,1【答案】D【解析】【分析】 先求得集合M 、N ,再运用集合的交集、补集运算求得答案.【详解】解:∵{}221002x M x x x x x x ⎧⎫⎧⎫−=>=<=<<⎨⎬⎨⎬⎩⎭⎩⎭,{{}1N x y x x ===≥, ∴(){}{}{}10201R N M x x x x x x ⋂=<⋂<<=<<,故选:D.【例3-3】已知集合{2}A xa x a =<<∣,{4B x x =≤−或}3x ≥. (1)当2a =时,求()R A B ⋃;(2)若R A B ⊆,求a 的取值范围.【答案】(1){44}xx −<<∣ (2)3,2⎛⎤−∞ ⎥⎝⎦ 【解析】【分析】(1)由补集和并集的定义可运算求得结果;(2)分别在A =∅和A ≠∅两种情况下,根据交集为空集可构造不等式求得结果.(1) 由题意得{}24A x x =<<,{4B x x =≤−或}3x ≥, {}R 43B x x ∴=−<<,故(){}R 44A B x x ⋃=−<<.(2)当0a ≤时,A =∅,符合题意,当0a >时,由23a ≤,得302<≤a , 故a 的取值范围为3,2⎛⎤−∞ ⎥⎝⎦.【练习3-1】已知集合{}1,0,1,2A =−,集合{}lg 0B x x =>,则() AB =R ( ) A .{}1,0,1−B .{}1,0−C .{}0,1D .(],1−∞ 【答案】A【解析】【分析】解不等式后由补集与交集的概念运算【详解】 因为集合{}{}lg 01B x x x x =>=>,所以{}1R B x x =≤,又集合{}1,0,1,2A =−,所以(){} 1,0,1A B =−R ,故选:A 【练习3-2】设全集为R ,{|1A x x =<−或}4x >,{}123B x a x a =−≤≤+.(1)若1a =,求A B ,()R A B .(2)已知A B =∅,求实数a 的取值范围.【答案】(1){}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣; (2)12a ≤. 【解析】【分析】(1)当1a =时求出集合B ,再进行交集,补集,并集运算即可求解;(2)讨论B =∅和B ≠∅两种情况,列不等式解不等式即可求解.(1)因为1a =,所以{}05B x x =≤≤∣,{}R |14A x x =−≤≤,所以{}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣. (2)因为A B =∅,当B =∅时,满足A B =∅,所以123a a −>+,得23a <−;当B ≠∅时,因为A B =∅,所以23111234a a a a +≥−⎧⎪−≥−⎨⎪+≤⎩,解得2132a −≤≤, 综上实数a 的取值范围为:12a ≤. 题型四 Venn 图及其应用【例4-1】如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .ABC ⋂⋂B .()I AC B ⋂⋂ C .()I A B C ⋂⋂D .()I B C A ⋂⋂【答案】B【解析】【分析】找到每一个选项对应的区域即得解.【详解】解:如图所示,A. A B C ⋂⋂对应的是区域1;B. ()I A C B ⋂⋂对应的是区域2;C. ()I A B C ⋂⋂对应的是区域3;D. ()I B C A ⋂⋂对应的是区域4.故选:B【例4-2】已知全集R U =,集合{}|2,1x A y y x ==>,{}|24B x x =−<<,则图中阴影部分表示的集合为( )A .[2,2]−B .(2,2)−C .(2,2]−D .[2,2)−【答案】C【解析】【分析】求出集合A ,阴影部分表示为:()U B A ⋂,再分析求解即可.【详解】因为{}|2,1x A y y x ==>,所以()2,A =+∞,又{}|24B x x =−<<,全集R U =, 所以图中阴影部分表示的集合为()(2,2]U B A =−.故选:C.【练习4-1】已知M ,N 为R 的两个不相等的非空子集,若M N M ⋂=,则( )A .M N =RB .M N ⋃=R RC .N M ⋃=R RD .M N ⋃=R R R【答案】C【解析】【分析】依题意可得M N ,结合韦恩图即可判断;【详解】解:依题意M N M ⋂=,所以M N ,则集合M ,N 与R 的关系如下图所示:所以N M ⋃=R R ;故选:C【练习4-2】已知全集U =R ,集合{}290A x x =−>,122x B x ⎧⎫⎪⎪⎛⎫=≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则图中阴影部分所表示的集合为( )A .{}3x x <B .{}13x x −<<C .{}1x x >−D .{}11x x −<≤【答案】B【解析】【分析】根据不等式的解法和指数函数的性质,分别求得集合,A B ,结合题意和集合的运算法则,即可求解.【详解】由不等式290−>x ,解得33x −<<,即集合{}33A x x =−<<, 又由122x ⎛⎫≥ ⎪⎝⎭,解得1x ≤−,即集合{}1B x x =≤−,则{}|1U B x x =>−, 又因为图中阴影部分表示的集合为()U A B ∩,所以(){}|13U AB x x =−<<.故选:B.题型五 集合中的创新型问题【例5-1】定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==−∈∈,若{}1,0A =−,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==−∈∈,{}1,0A =−,{}1,2B =,所以{0,1,2}A B ⊗=−−,故集合A B ⊗中的元素个数为3,故选:C.【例5-2】(多选题)设P 是一个数集,且至少含有两个元素.若对任意的a b P ∈,,都有a ab a b ab P b+−∈,,,(除数0b ≠),则称P 是一个数域.则关于数域的理解正确的是( )A .有理数集Q 是一个数域B .整数集是数域C .若有理数集Q M ⊆,则数集M 必为数域D .数域必为无限集【答案】AD【解析】【分析】根据数域的定义逐项进行分析即可求解.【详解】对于A ,若Q a b ∈,,则()Q Q Q Q 0aa b a b ab b b+∈−∈∈∈≠,,,,所以有理数集Q 是一个数域,故A 正确;对于B ,因为1Z Z,∈∈,2所以1Z 2∉,所以整数集不是数域,故B 不正确;对于C,令数集}{Q 2M =,则1,M M ∈但1M ,故C 不正确;对于D ,根据定义,如果()0a b b ≠,在数域中,那么,2,,a b a b a kb +++(k 为整数),都在数域中,故数域必为无限集,故D 正确.故选:AD.【例5-3】已知有限集合{}123,,,,n A a a a a =⋅⋅⋅,定义集合{}1,,i j B a a i j n i j *=+≤<≤∈N 中的元素的个数为集合A 的“容量”,记为()L A .若集合{}13A x x *=∈≤≤N ,则()L A =______;若集合{}1A x x n *=∈≤≤N ,且()4041L A =,则正整数n 的值是______. 【答案】 3 2022【解析】【分析】化简A ,可得()L A ;根据“容量”定义可得{}1A x x n *=∈≤≤N 的()4041L A =,解方程即可.【详解】{}{}131,2,3A x x *=∈≤≤=N ,则集合{}3,4,5B =,所以()3L A =.若集合{}1A x x n *=∈≤≤N , 则集合(){}{}3,4,,13,4,,21B n n n =⋅⋅⋅−+=⋅⋅⋅−,故()212234041L A n n =−−=−=,解得2022n =.故答案为:3;2022【练习5-1】设集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,则P Q ⊗中元素的个数为( )A .3B .4C .5D .6【答案】D【解析】【分析】用列举法表示出集合,即可得到结论.【详解】因为集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,所以(){}()()()()()(){},|,3,6,3,7,4,6,4,7,5,6,5,7P Q a b a P b Q ⊗=∈∈=.一共6个元素.故选:D【练习5-2】若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合1,2A ,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____. 【答案】10,,22⎧⎫⎨⎬⎩⎭ 【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=−时,解得2a =,当,A B 2=时,解得12a =, 故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭. 故答案为:10,,22⎧⎫⎨⎬⎩⎭。

集合题型归纳讲义高三数学一轮复习(原卷版)

集合题型归纳讲义高三数学一轮复习(原卷版)

专题二《集合》讲义知识梳理.集合1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性(2)集合的三种表示方法:列举法、描述法、图示法.(3)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(4)五个特定的集合及其关系图:N*或N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,则称A是B的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A是集合B的子集,但集合B中至少有一个元素不属于A,则称A是B的真子集.(3)集合相等:如果A⊆B,并且B⊆A,则A=B.(4)空集:不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集.记作∅.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.1.设集合A={2,1﹣a,a2﹣a+2},若4∈A,则a=()A.﹣3或﹣1或2B.﹣3或﹣1C.﹣3或2D.﹣1或22.设a,b∈R,集合{1,a+b,a}={0,ba,b},则b﹣a=()A.1B.﹣1C.2D.﹣23.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.44.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.65.已知集合A={1,2,3},B={1,m},若3﹣m∈A,则非零实数m的数值是.6.若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A.4B.2C.0D.0或4题型二.集合的基本关系——子集个数1.已知集合A={0,1,a2},B={1,0,3a﹣2},若A=B,则a等于()A.1或2B.﹣1或﹣2C.2D.12.设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥1}B.{a|a≤1}C.{a|a≥2}D.{a|a>2}3.已知集合M={x|x2=1},N={x|ax=1},若N⊆M,则实数a的取值集合为()A.{1}B.{﹣1,1}C.{1,0}D.{1,﹣1,0} 4.已知集合A={x|x2﹣3ax﹣4a2>0,(a>0)},B={x|x>2},若B⊆A,则实数a的取值范围是.5.已知集合A={x∈Z|x2+3x<0},则满足条件B⊆A的集合B的个数为()A.2B.3C.4D.86.设集合A={1,0},集合B={2,3},集合M={x|x=b(a+b),a∈A,b∈B},则集合M 的真子集的个数为()A.7个B.12个C.16个D.151.设集合A={1,2,4},B={x|x2﹣4x+m﹣1=0},若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}2.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=﹣x},则A∩B中元素的个数为()A.3B.2C.1D.03.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]4.满足M⊆{a1,a2,a3},且M∩{a1,a2,a3}={a3}的集合M的子集个数是()A.1B.2C.3D.45.设集合A={x∈Z||x|≤2},B={x|32x≤1},则A∩B=()A.{1,2} B.{﹣1,﹣2} C.{﹣2,﹣1,2} D.{﹣2,﹣1,0,2}6.已知集合A={1,2,3},B={x|x2﹣3x+a=0,a∈A},若A∩B≠∅,则a的值为()A.1B.2C.3D.1或27.设集合A={x|x2﹣2x≤0,x∈R},B={y|y=﹣x2,﹣1≤x≤2},则∁R(A∩B)等于()A.R B.{x|x∈R,x≠0}C.{0}D.φ8.设集合A={x|x(4﹣x)>3},B={x|x|≥a},若A∩B=A,则a的取值范围是()A.a≤1B.a<1C.a≤3D.a<3题型四.用韦恩图解决集合问题——新定义问题1.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|y=lg(x﹣3)},则图中阴影部分表示的集合为()A.{1,2,3,4,5}B.{1,2,3}C.{1,2}D.{3,4,5} 2.设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩∁U B={1,5,7},∁U A∩∁U B={9},则A=,B=.3.(2021•全国模拟)已知M,N均为R的子集,且∁R M⊆N,则M∪(∁R N)=()A.∅B.M C.N D.R4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%5.已知集合M={1,2,3,4},集合A、B为集合M的非空子集,若∀x∈A、y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个.6.任意两个正整数x、y,定义某种运算⊗:x⊗y={x+y(x与y奇偶相同)x×y(x与y奇偶不同),则集合M={(x,y)|x⊗y=6,x,y∈N*}中元素的个数是.。

集合中的题型归类解析

集合中的题型归类解析

集合中的题型归类解析江苏 李洪洋集合问题为每年必考题型之一,特别是近几年高考试卷中出现了一些以集合为背景的试题,这些试题涉及的知识面广,灵活性较强.实际上,这方面问题的本质是以集合为载体,将一些数学问题的已知条件“嵌入”集合之中,只不过是在语言形式方面做了些变通罢了,而解决问题的理论依据、方法等仍类似于其他问题的求解.因此,在集合题型上应引起我们的足够重视.集合中的题型题型1:集合相等问题集合相等问题,主要是利用集合中元素的互异性,集合中元素的互异性是集合的重要属性,在解题中集合中元素的互异性常常被我们忽略,从而导致解题的失败,所以在解题中应引起足够的重视.例1已知集合{,,2}A a a b a b =++,2{,,}B a ac ac =,若A B =,求c 的值分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的各个集合的元素完全相同,及集合中元素的确定性、互异性、无序性建立关系式解:根据题意,分两种情况进行讨论: (1)若2,2,a b ac a b ac +=⎧⎨+=⎩,消去b ,得220a ac ac +-= 当0a =时,集合B 中的三个元素均为零,与元素的互异性相矛盾,故0a ≠∴2210c c -+=,即1c =,此时B 中的三个元素又相同,∴1c ≠∴此时无解. (2)若2,2,a b ac a b ac ⎧+=⎨+=⎩消去b ,得220ac ac a --= ∵0a ≠,∴2210c c --=,即(1)(21)0c c -+=又1c ≠,∴12c =- 评注:(1)解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验和修正.(2)有些数学问题很难从整体着手解决,需从分解入手,把整体科学合理地划分为若干个局部独立的问题,通过逐一判断来解决这些问题,从而达到整体问题的解决,这种重要的数学方法 就是分类讨论的方法 ,要学会这种思维方法.题型2:证明、判断两集合的关系集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此要予以重视。

集合经典大题及解析 -回复

集合经典大题及解析 -回复

集合经典大题及解析一、集合的基本概念1.1 集合与元素问题:什么是集合?什么是元素?它们之间的关系是什么?解析:集合是由一组具有共同特征的元素组成的整体。

这个整体称为集合,而组成这个整体的每一个元素称为元素。

元素是集合的一部分,且必须满足集合的定义。

1.2 集合的子集问题:什么是子集?如何判断一个集合是否为另一个集合的子集?解析:如果一个集合中的所有元素都是另一个集合中的元素,那么这个集合称为另一个集合的子集。

判断一个集合是否为另一个集合的子集,可以通过将两个集合进行比较,检查前者是否包含在后者中。

1.3 集合的并集与交集问题:什么是并集和交集?如何计算两个集合的并集和交集?解析:并集是将两个集合的所有元素合并在一起,形成一个新的集合。

交集则是从两个集合中选出共同的元素组成一个新的集合。

计算并集和交集可以通过简单的数学运算来实现。

1.4 集合的补集问题:什么是补集?如何计算一个集合的补集?解析:补集是指在一个集合中去掉所有属于另一个集合的元素后剩下的元素组成的集合。

计算补集可以通过先找出不属于另一个集合的元素,然后将这些元素组成一个新的集合。

二、集合的关系2.1 子集与真子集问题:什么是真子集?如何判断一个集合是否为另一个集合的真子集?解析:真子集是指在一个集合中去掉所有不属于另一个集合的元素后剩下的元素组成的集合。

判断一个集合是否为另一个集合的真子集,可以通过比较两个集合的大小来确定。

2.2 集合相等问题:什么是集合相等?如何判断两个集合是否相等解析:如果两个集合中的元素完全相同,那么这两个集合相等。

判断两个集合是否相等,可以通过比较两个集合中的每一个元素来确定。

2.3 空集问题:什么是空集?空集有哪些性质?解析:空集是指没有任何元素的集合。

空集具有以下性质:(1) 空集是任何非空集合的真子集;(2) 任何元素都属于空集;(3) 空集的补集也是空集。

三、集合的运算性质3.1 集合的并运算问题:什么是并运算?如何计算两个集合的并运算?解析:并运算是指将两个或多个集合合并成一个新集合的操作。

专题1.3 集合间的基本关系-重难点题型精讲(学生版)

专题1.3 集合间的基本关系-重难点题型精讲(学生版)

专题1.3 集合间的基本关系-重难点题型精讲1.子集的概念2.真子集的概念3.集合相等的概念如果集合A的任何一个元素是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么,集合A与集合B相等,记作A=B.也就是说,若A⊆B且B⊆A,则A=B.4.空集的概念【题型1 子集、真子集的概念】【例1】(2022•新疆模拟)已知集合A={x|﹣1<x<3,x∈N},则A的子集共有()A.3个B.4个C.8个D.16个【变式1-1】(2022•新疆模拟)已知集合A={x|x2<3,x∈N},则A的真子集共有()A.1个B.2个C.3个D.7个【变式1-2】(2022春•兖州区期中)设集合A={1,2,3,4,5,6},则在集合A的子集中,有2个元素的子集个数为()A.A62B.C62C.62D.26【变式1-3】(2021秋•尚志市校级月考)已知集合A={x∈N|86−x∈N},则集合A的所有非空子集.的个数为()A.5个B.6个C.7个D.8个【题型2 集合的相等与空集】【例2】(2021秋•新余期末)下列集合与集合A={2022,1}相等的是()A.(1,2022)B.{(x,y)|x=2022,y=1} C.{x|x2﹣2023x+2022=0}D.{(2022,1)}【变式2-1】(2021秋•大姚县校级期中)下列四个集合中,是空集的是()A.{0}B.{x|x>8,且x<5}C.{x∈N|x2﹣1=0}D.{x|x>4}【变式2-2】(2021秋•西宁期末)设a,b∈R,P={1,a},Q={﹣1,﹣b},若P=Q,则a﹣b=()A.﹣2B.﹣1C.0D.1【变式2-3】(2021秋•海安市期中)设a,b∈R,集合P={0,1,a},Q={﹣1,0,﹣b},若P=Q,则a+b=()A.﹣2B.﹣1C.0D.2【题型3 集合间关系的判断】【例3】(2022春•麒麟区校级期中)已知集合M={y|y=2x+13,x∈Z},N={y|y=23x−1,x∈Z},则集合M,N的关系是()A.M=N B.M⊂N C.M⊃N D.M∩N=ϕ【变式3-1】(2022•河南模拟)已知集合M={x|x=kπ4+π2,k∈Z},N={x|x=kπ2+π4,k∈Z},则()A.N⊆M B.M⊆N C.M=N D.M∩N=∅【变式3-2】(2022•广西模拟)已知集合A={x|x≥﹣2},B={x|﹣2≤x≤1},则下列关系正确的是()A.A=B B.A⊆B C.B⊆A D.A∩B=∅【变式3-3】(2022•兴庆区校级三模)下面五个式子中:①a⊆{a};②∅⊆{a};③{a}∈{a,b};④{a}⊆{a};⑤a∈{b,c,a}.正确的有()A.②④⑤B.②③④⑤C.②④D.①⑤【题型4 有限集合子集、真子集的确定】【例4】(2021秋•兰山区校级期中)满足∅⫋M ⊆{1,2,3}的集合M 共有( )A .6个B .7个C .8个D .15个【变式4-1】(2021秋•渝中区校级月考)已知{1,3}⊆A ⫋{1,2,3,4,5},则满足条件的集合A 的个数是( )A .5B .6C .7D .8【变式4-2】(2021秋•开福区校级期中)已知集合S ={x |ax =1}是集合T ={x |x 2﹣1=0}的子集,则符合条件的实数a 的值共( )A .1个B .2个C .3个D .无数个【变式4-3】(2021•青岛开学)已知集合A ={a 1,a 2,a 3}的所有非空真子集的元素之和等于9,则a 1+a 2+a 3=( )A .1B .2C .3D .6【题型5 利用集合间的关系求参数】【例5】(2021•葫芦岛二模)已知集合A ={﹣2,3,1},集合B ={3,m 2},若B ⊆A ,则实数m 的取值集合为( )A .{1}B .{√3}C .{1,﹣1}D .{√3,−√3}【变式5-1】(2021秋•舒城县校级期中)已知集合A ={x ∈R |x 2+x ﹣6=0},B ={x ∈R |ax ﹣1=0},若B ⊆A ,则实数a 的值为( )A .13或−12B .−13或12C .13或−12或0D .−13或12或0 【变式5-2】(2021•佛山模拟)已知集合A ={x |x 2﹣4x +3>0},B ={x |x ﹣a <0},若B ⊆A ,则实数a 的取值范围为( )A .(3,+∞)B .[3,+∞)C .(﹣∞,1)D .(﹣∞,1]【变式5-3】(2021秋•眉山期末)设集合A={x|0<x<2019},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|a≤0}B.{a|0<a≤2019}C.{a|a≥2019}D.{a|0<a<2019}【题型6 集合间关系中的新定义问题】【例6】(2021•衡水模拟)定义集合A★B={x|x=ab,a∈A,b∈B},设A={2,3},B={1,2},则集合A ★B的非空真子集的个数为()A.12B.14C.15D.16【变式6-1】(2021秋•和平区校级月考)集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的真子集个数为()A.31B.63C.32D.64【变式6-2】(2021秋•西乡塘区校级月考)定义集合中的一种运算“*”,A*B={ω|ω=xy(x+y),x∈A,y∈B},若集合A={0,1},B={2,3},则A*B的非空子集个数是()A.7B.8C.15D.16【变式6-3】(2021秋•同安区校级月考)对于任意两个正整数m,n,定义某种运算“※”,法则如下:当m,n都是正奇数时,m※n=m+n;当m,n不全为正奇数时,m※n=mn,则在此定义下,集合M={(a,b)|a※b=16,a∈N*,b∈N*}的真子集的个数是()A.27﹣1B.211﹣1C.213﹣1D.214﹣1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合典型题型
一集合的性质:确定性,无序性,互异性
例1 下列命题正确的有哪几个?
⑴很小的实数可以构成集合;⑵集合{1,5}与集合{5,1}是不同的集合;⑶集合{(1,
5)}与集合{(5,1)}是同一个集合;⑷由1,23,46,∣-2
1∣,0.5 这些数组成的集合有5个元素.(注意3表示的是点)
例2 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值.
例3 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和.(注意相同解时的互异性)
例4 已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2a +4a -2,2-a },且A ⋂B={3,7},求a 值.(注意检验互异性)
二集合的表示方式(列举法和描述法)
1.方程组⎩⎨⎧-=-=+1
1y x y x 的解集是 ( )(注意点集和数集区别)
A {}0,1x y ==
B {}1,0
C {})1,0(
D {}(,)|01x y x y ==或
二集合之间的关系(元素与集合关系符号,集合与集合,区别子集与真子集,注意空集是任何集合的真子集,学会使用韦恩图)
1、写出集合{a }的所有的子集及真子集。

2、写出集合{a ,b }的所有的子集及真子集。

3、写出集合{a ,b ,c }的所有的子集及真子集。

4、写出不等式x-3>2的解集并进行化简。

(即化简成直接表示未知数本身的取值范围的解集,注意集合的表达方式)
例2 用适当的符号填空:
(1)2 ____ 2{440}x x x -+=;(2){34}x x ≤< ____ {628}x x ≤≤;
(3)∅ ____ {03}x Z x ∈<< ; (4) {(1)(2)0}x x x --=____ {33}y y x x Z x =∈-<<,,且.
5.若集合{}
0|2≤=x x A ,则下列结论中正确的是( ) A 、A=0 B 、0A ⊆ C 、∅=A D 、A ∅⊆
6已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ⊆B ,求实数m 的取值范围.(主要空集的情况,要分类讨论)
7、已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 ;若至少有一个元素,则a 的取值范围 。

8若a <0, 则关于x 的不等式05422>--a ax x 的解集是
9、A ={x |x <-2或x >10},B ={x |x <1-m 或x >1+m }且B ⊆A ,求m 的范围.(注意边界值-2和10的分析)
10 若},13|{Z n n a a A ∈+==,},23|{Z n n a b B ∈-==, },16|{Z n n a c C ∈+==,则A 、
B 、
C 的关系是
( ) (A )A B C ; (B )A B=C ; (C )A=B C ; (D )A=B=C 。

11 若{}2|10,A x x x x R =+-=∈,{}2|10,B x x x x R =-+=∈,则集合,A B 的关系是 .
10、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数
为…………………………………………………………………………( )
(A ) 1 (B )0 (C )1或0 (D ) 1或2
【分析】:集合的代表元,决定集合的意义,这是集合语言的特征.事实上,{}()x y f x =、
{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥分别表示函数)(x f y =定义域,值域,图象上的点的坐标,和不等式()()g x f x ≥的解集. 本题中集合的含义是两个图象的交点的个数.从函数值的唯一性可知,两个集合的交中至多有一个交点.即本题选C . 三集合之间的运算
1.设集合A ={-1,0,1,2},B ={x|-3≤x<1},则A ∩B =( )
A .{-1,0,1}
B .{-1,0}
C .{x|-1<x<0}
D .{x|-1≤x ≤0}
2、设}32{<<-=x x A ,}0{>-=a x x B ,当a 为何值时,分别满足:
(1)B A ⊆ (2)∅=⋂B A (3)}2{->=⋃x x B A
3.表示图形中的阴影部分( )
A .)()(C
B
C A ⋃⋂⋃ B .)()(C A B A ⋃⋂⋃
C .)()(C B B A ⋃⋂⋃
D .C B A ⋂⋃)(
4设2{211}{244}{17}A x x B y x C =--+=-+=-,,,,,,,,且C B A =⋂求x 与y 的值.
5已知27
{9}{0}{24}1x A x x B x C x x x -=≥=≤=-<+,,. 求B A ⋂及A C ;
6 ,求实数a 的值。

(AYB 即是B A ⋃)
7已知集合M 和N 间的关系为M N M =⋂,那么下列必定成立的是 ( )
(A )Φ=⋂M N C U ; (B )Φ=⋂N M C U ;
(C )Φ=⋂N C M C U U ; (D )Φ=⋃N C M C U U 。

8 若U={(x,y)∣x,y ∈R}, M={(x,y)∣13
=-y }, N={(x,y)∣y-3=x-2 },则C U M ⋂N 是
( ) (A )φ; (B ){2,3}; (C ){(2,3)};(D ){(x,y)∣y-3≠x-2 }。

A B
C
9.设{}22,4,1U a a =-+,{}2,|1|A a =+,{}7A = ðU ,则a = .
10 若已知{}2|220A x x x a =-+-=,{}
2|20B x x a =-++=,A B =∅ ,则实数a 的取值范围是 .
11. 设集合},12|{2R x x x y y A ∈+-==,集合},1|{2R x x y y B ∈+-==,则=⋂B A 。

12. }|),({22y x y x A ==,}|),({2x y y x B ==,则=⋂B A 。

13.设集合}043|{2=-+=x x x A ,
}01|{=-=ax x B ,若B B A =⋂, 则实数a= 。

相关文档
最新文档