第5章 土的抗剪强度
土力学第五章
τ σ1
c
σ3
= (σ 1 − σ 3 ) cos θ sin θ =
σ1 − σ 3
2
sin 2θ
b
5-2
强度概念与莫尔——库仑理论 库仑理论 强度概念与莫尔
二、莫尔应力圆
σ
τ
θ
c
σ3
a
σ1
2
b
2 σ1 + σ 3 σ1 − σ 3 σ= + cos 2θ 2 2
2 2
τ=
σ1 − σ 3
sin 2θ
5-2
强度概念与莫尔——库仑理论 库仑理论 强度概念与莫尔
τ f = c +σ tanϕ
三、莫尔—库仑破坏准则 莫尔 库仑破坏准则
(二)土的极限平衡条件
τ
(σ1 −σ3 ) f
2
ϕ
σ
c O
σ3f
σ1f
c ⋅ ctgϕ
(σ1 +σ3 ) f
2
(σ1 −σ3 ) f
sinϕ =
(σ1 +σ3 ) f
2
1. 挡土结构物的破坏
概述
广州京光广场基坑塌方
使基坑旁办公室、 使基坑旁办公室、 民工宿舍和仓库 倒塌, 倒塌,死3人,伤 17人 17人。
5-1
1. 挡土结构物的破坏
概述
滑裂面
挡土墙
基坑支护
5-1
2. 各种类型的滑坡
概述
崩塌
平移滑动
旋转滑动
流滑
5-1
2. 各种类型的滑坡 乌江武隆县兴顺乡 鸡冠岭山体崩塌 1994年4月30日上午 时 年 月 日上午 日上午11时 45分 分 崩塌体积530万m3,30万 崩塌体积 万 万 m3堆入乌江,形成长 堆入乌江,形成长110m、 、 宽100m、高100m的碎石 、 的碎石 坝,阻碍乌江通航达数月 之久。 之久。 死4人,伤5人,失踪 人 人 人 失踪12人
第5章-土的抗剪强度(视频版)
固结不排水试验(CU试验)
Consolidated Undrained Triaxial test (CU) 总应力抗剪强度指标:ccu cu
不固结不排水试验(UU试验)
Unconsolidated Undrained Triaxial test (UU) 总应力抗剪强度指标: cu u ( cuu uu )
总应力f
力f
O
uf 1 1
思索题1:实际破裂面旳方向?
是45 ? 还是45 ?
2
2
思索题2:假如破坏时孔隙水压力u(负孔压),有效应力莫尔圆
在总应力莫尔圆哪边?
§5.5 土旳抗剪强度指标 –超固结粘土旳有效应力与总应力指标
有效应
总应力f
力f
O
u1f<0
u2f>0
§5.5 土旳抗剪强度指标 – 三轴试验指标
2
1
圆心: p ( x z ) / 2
半径:
r
(
x
z
)
/
22
2 xz
大主应力: 1 p r
小主应力: 3 p r
• 莫尔圆:单元旳应力状态 • 圆上点:一种面上旳与 • 莫尔圆转角2:作用面转角
复习——强度包线与极限平衡应力状态
极限平衡应力状态:当一面上旳应力状态到达=f 土旳强度包线:全部到达极限平衡状态旳莫尔圆旳公切
常固结粘土旳强度包线
应变硬化与体积收缩, cd=0 应变软化与剪胀性, cd=0 应变软化与剪胀性, cd与d 折线 →c≠0旳直线 近似
§5.5 土旳抗剪强度指标 – CU试验指标
土力学第五章土的抗剪强度
编辑ppt
本章主要内容
5.1 抗剪强度概述 5.2 土的抗剪强度试验 5.3 土的抗剪强度及破坏理论 5.4 砂类土的抗剪强度特征 5.5 粘性土的抗剪强度特征 5.6 特殊粘性土的抗剪强度特征 5.7 粘性土的流变特性 5.8 土的动力强度特性
编辑ppt
土工结构物或地基
土
▪渗透问题 ▪变形问题 ▪强度问题
随着轴向应变的增 加,松砂的强度逐渐增 加,曲线应变硬化。
体积开始时稍有 减小,继而增加,超 过它的初始体积 体积逐渐减小
编辑ppt
§ 5.5 粘性土的抗剪强度特征
一.不排水试验(UU试验)
在不排水条件下,施加周围压力增量σ3 , 然后在不允许水进出的条件下,逐渐施加附 加轴向压力q,直至试样剪破 工程背景:应用与饱和粘土、软粘土快速
土的破坏主要是由于剪切所引起的,剪切破坏是土体破坏的 主要特点。
与土体强度有关的工程问题:建筑物地基稳定性、填方或挖 方边坡、挡土墙土压力等。
编辑ppt
概述
崩塌
平移滑动
旋转滑动
流滑
编辑ppt
概述
乌江武隆县兴顺乡 鸡冠岭山体崩塌
• 1994年4月30日上午11时 45分
• 崩塌体积530万m3,30万 m3堆入乌江,形成长110m、 宽100m、高100m的碎石 坝,阻碍乌江通航达数月 之久。
剪应力τ= (σ1- σ3 )/2=130kPa 由于τ< τf,说明土单元中此编点辑p尚pt 未达到破坏状态。
§ 5.3 抗剪强度实验
按常用的试验仪器可将剪切试验分:
直接剪切试验 三轴压缩试验 无侧限抗压强度试验 十字板剪切试验四种
编辑ppt
一、直接剪切试验
土的抗剪强度
第5章土的抗剪强度5.1概述土的抗剪强度是指土体对于外荷载所产生的剪应力的极限抵抗能力。
当土中某点由外力所产生的剪应力达到土的抗剪强度时,土体就会发生一部分相对于另一部分的移动,该点便发生了剪切破坏。
工程实践和室内试验都验证了建筑物地基和土工建筑物的破坏绝大多数属于剪切破。
例如堤坝、路堤边坡的坍滑(图5.1a),挡土墙墙后填土失稳(图5.1b)建筑物地基的失稳(图 5.1c),都是由于沿某一些面上的剪应力超过土的抗剪强度所造成。
因此土的抗剪强度是决定地基或土工建筑物稳定性的关键因素。
所以研究土的抗剪强度的规律对于工程设计、施工和管理都具有非常重要的理论和实际意义。
由于土的抗剪强度是岩土的重要力学性质之一,本章主要讲述叙述土抗剪强度的基本概念、土地抗剪强度的基本理论、土的抗剪强度的试验方法及土的抗剪强度指标的应用。
5.2土的抗剪强度的基本理论5.2.1直剪试验土的抗剪强度可以通过室内试验与现场试验测定。
直剪试验是其中最基本的室内试验方法。
直剪试验使用的仪器称直剪仪。
按加荷方式分为应变式和应力式两类。
前者是以等速推动剪切盒使土样受剪,后者则是分级施加水平剪力于剪力盒使土样受剪。
目前我国普遍应用的是应变式直剪仪如图5.2所示。
试验开始前将金属上盒和下盒的内圆腔对正,把试样置于上下盒之间。
通过传压板和滚珠对土样先施加垂直法向应力σ=p/F(F-土样的截面积),然后再施加水平剪力T,使土样沿上下盒水平接触面发生剪切位移直至破坏。
在剪切过程中,隔固定时间间隔,测读相应的剪变形,求出施加于试样截面的剪应力值。
于是即可绘制在一定法应力条件下,土样剪变形λ与剪应力τ的对应关系(图5.3a)。
τf。
同一种土的几个不同土样分别施加不同的垂直法向应力σ做直剪试验都可得到相应的剪应力-剪切位移曲线(图5.3a),根据这些曲线求出相应于不同的法向应力σ试样剪坏时剪切面上的剪应力τf。
在直角坐标σ-τ关系图中可以作出破坏剪应力的连线(图5.3b)。
工程地质及土力学第5章土的抗剪强度
一、不固结不排水抗剪强度
1. 三轴仪不排水强度UU
土 的 抗 剪 强 度
u 0 f
1 c u 1 3 2
1 u f 3 u f 1 3 1 3 3 ) f ( 1 3 ) fA ( 1 3 ) fB ( 1 在不排水条件下,饱和土体孔隙水压力系数B 1,改变周围 压力增量只会引起孔隙水压力的变化,而不会引起土体中的 有效应力的变化,各试样在剪切破坏前的有效应力相等,所 以抗剪强度不变。
(二)摩尔库伦极限平衡条件
土 的 抗 剪 强 度
根 据 Mohr-Coulomb 破坏理论,破坏时 的 Mohr 应力圆必定 与破坏包线相切。 切点所代表的平面 满足τ=τf的条件,该 点处于极限平衡状 态。
f 45
2
AD RD sin
即:
1 1 ( 1 3) [c ctg ( 1 3 )]sin 2 2 2 1 3tg 45 2c tg 45 2 2
• 砂土: τf=σtg • 粘性土: τf=c+σtg • 式中:c 和为抗剪强度指标(抗剪强度参数) • c-土的粘聚力 -土的内摩擦角
土的抗剪强度机理
土 的 抗 剪 强 度
1、摩擦强度(摩擦力)包括滑动摩擦和咬合摩擦 滑动摩擦由颗粒间接触面粗糙不平所引起。 咬合摩擦是指相邻颗粒对于相对移动的约束作用。 • 摩擦强度的影响因素有: • 颗粒形状、矿物成分、 粒径级配、密度等。 2、粘聚强度(粘聚力) • 取决于土粒间的各种 胶结作用和静电引力。 •用有效应力表达
土 的 抗 剪 强 度
土力学第五章土的抗剪强度
1 2
1
3
1 2
1
3 cos 2
1 2
1
3 sin 2
2
1
3
2
2
sin2
2
1
3
2
2
1
3
2
2
cos2
2
1
3
2
2
2
1
3
2
2
1 3
2 2
3
1 3
2
1
三、摩尔-库仑强度理论
土的强度破坏是剪切破坏,当土体中任意一点在某一平面上的剪应力达到土的抗剪 强度时,就发生剪切破坏,该点即处于极限平衡状态。相应的应力圆为摩尔极限应 力圆。 土体处于极限平衡状态时土的应力状态和土的抗剪强度指标之间的关系式,即为土 的极限平衡条件。
式中 S—代表抗剪强度; —c土的粘聚力; —土的内摩擦角; —作用在剪切面上的有效法向应力。
上式称为抗剪强度的库仑定律(强度理论), S 间的关系如下图所示。
k
k
图5.1.1 土的强度线
由库伦公式可以看出:无粘性土的抗剪强度与剪切面上的法向应力 成正比,其本质是由于颗粒之间的滑动摩擦以及凹凸面间的镶嵌 作用所产生的摩阻力,其大小决定于颗粒表面的粗糙度、密实度、 土颗粒的大小以及颗粒级配等因素。粘性土的抗剪强度由两部分 组成:一部分是摩擦力,另一部分是土粒之间的粘结力,它是由 于粘性土颗粒之间的胶结作用和静电引力效应等因素引起的。 式中两个常数 c和 , 取决于土的性质(与土中应力状态无关), 称为土的强度指标,可由室内或现场试验确定。 讨 论:
1 —试样轴向应变值, %;
Aa —试样校正断面积,cm2; A0 -试样的初始断面积,cm2;
第5章土的抗剪强度
第5章土的抗剪强度第五章土的抗剪强度名词解释1、抗剪强度:指土体抵抗剪切破坏的极限能力。
2、库仑定律:将土的抗剪强度ιf 表示为剪切面上法向应力σ的函数,即φστtan +=c f ,式中c 、Ф分别为土粘聚力和内摩擦角,该关系式即为库仑定律。
3、莫尔一库仑强度理论:由库仑公式表示莫尔包线的强度理论。
填空:1.根据莫尔一库仑破坏准则,土的抗剪强度指标包括和。
2.莫尔抗剪强度包线的函数表达式是。
3.土的抗剪强度有两种表达方法:一种是以表示的抗剪强度总应力法,另一种是以表示的抗剪强度有效应力法。
4.应力历史相同的一种土,密度变大时,抗剪强度的变化是;有效应力增大时,抗剪强度的变化是。
5.直接剪切仪分为控制式和控制式两种,前者是等速推动试样产生位移,测定相应的剪应力,后者则是对试件分级施加水平剪应力测定相应的位移。
6.排水条件对土的抗剪强度有很大影响,实验中模拟土体在现场受到的排水条件,通过控制加荷和剪坏的速度,将直接剪切试验分为快剪、和。
7.对于孔隙中充满水的完全饱和土,各向等压条件下的孔隙压力系数等于,表明施加的各向等压等于;对于干土,各向等压条件下的孔隙压力系数等于。
8.对于非饱和土,土的饱和度越大,各向等压条件下的孔隙压力系数越。
参考答案1.粘聚力,内摩擦角;2.φστtan +=c f ;3.总应力,有效应力; 4.增大,增大;5.应变,应力;6.固结快剪,慢剪;7.1,孔隙水压力,o ;8.大选择题1、建立土的极限平衡条件依据的是( 1 )。
(1)极限应力圆与抗剪强度包线相切的几何关系;(2)极限应力圆与抗剪强度包线相割的几何关系;(3)整个莫尔圆位于抗剪强度包线的下方的几何关系(4)静力平衡条件2、根据有效应力原理,只要( 2 )发生变化,土体强度就发生变化(1)总应力;(2)有效应力;(3)附加应力;(4)自重应力。
3.无侧限抗压强度试验可用来测定土的( 4 )。
(1)有效应力抗剪强度指标; (2)固结度; (3)压缩系数; (4)灵敏度。
第5章土的抗剪强度理论
②摩尔圆与抗剪强度包线相切(圆II) 表明剪应力正好等于相应面上的抗剪强度,因此该点处于极限平衡状态。
③抗剪强度包线是摩尔圆的一条割线(圆III) 表明该点某些平面上的剪应力已经超过了相应面的抗剪强度,故该点早 就破坏,实际上这种情况是不可能出现的,因为该点任何方向上的剪应 力都不可能超过土的抗剪强度。
§5 土的抗剪强度 §5.2土的强度理论
3、有效应力的库伦定律与有效应力抗剪强度指标
由于有效应力原理的发展,人们认识到只有有效应力的 变化才能引起强度的变化,因此上述库伦公式改写成:
f ' tan ' c ' c ' ( u) tan '
其中:c′—土的有效粘聚力(kPa)
′—土的有效内摩擦角(°) τ f —剪切破裂面上的剪应力,即土的剪切强度(kPa)
§5 土的抗剪强度 5.2土的强度理论
综上所述,摩尔—库伦关于土的抗剪强度理论归纳为一下几点,如下图所示: ① 土的抗剪强度随剪切面上法向应力的大小而变化 ② 土的剪切破坏只有在土的摩尔园与库伦定律所表达的抗剪强 度线相切是方能发生 ③ 土的剪切破坏面的方向与大主应力作用面的夹角为45°+φ/2 ④ 按摩尔—库伦理论,未考虑中主应力σ2 对抗剪强度影响
4
+
τ2 xz
θ
=
1 tan-1 2
2τxz σz - σx
§5 土的抗剪强度 5.2土的强度理论
三、摩尔-库伦破坏准则—土的极限平衡条件
取微元体的上三角为隔离体,如下图所示:
根据静力平衡条件得:
第五章土的抗剪强度
第五章土的抗剪强度第一节概述土是固相、液相和气相组成的散体材料。
一般而言,在外部荷载作用下,土体中的应力将发生变化。
当土体中的剪应力超过土体本身的抗剪强度时,土体将产生沿着其中某一滑裂面的滑动,而使土体丧失整体稳定性。
所以,土体的破坏通常都是剪切破坏。
在工程建设实践中,道路的边坡、路基、土石坝、建筑物的地基等丧失稳定性的例子是很多的(图5-1)。
为了保证土木工程建设中建(构)筑物的安全和稳定,就必须详细研究土的抗剪强度和土的极限平衡等问题。
图5-1 土坝、基槽和建筑物地基失稳示意图(a)土坝(b)基槽(c)建筑物地基土的抗剪强度是指土体抵抗剪切破坏的能力,其数值等于土体产生剪切破坏时滑动面上的剪应力。
抗剪强度是土的主要力学性质之一,也是土力学的重要组成部分。
土体是否达到剪切破坏状态,除了取决于其本身的性质之外,还与它所受到的应力组合密切相关。
不同的应力组合会使土体产生不同的力学性质。
土体破坏时的应力组合关系称为土体破坏准则。
土体的破坏准则是一个十分复杂的问题。
到目前为止,还没有一个被人们普遍认为能完全适用于土体的理想的破坏准则。
本章主要介绍目前被认为比较能拟合试验结果,因而为生产实践所广泛采用的土体破坏准则,即摩尔—库伦破坏准则。
土的抗剪强度,首先取决于其自身的性质,即土的物质组成、土的结构和土所处于的状态等。
土的性质又与它所形成的环境和应力历史等因素有关。
其次,土的性质还取决于土当前所受的应力状态。
因此,只有深入进行对土的微观结构的详细研究,才能认识到土的抗剪强度的实质。
目前,人们已能通过采用电子显微镜、X射线的透视和衍射、差热分析等等新技术和新方法来研究土的物质成分、颗粒形状、排列、接触和连结方式等,以便阐明土的抗剪强度的实质。
这是近代土力学研究的新领域之一。
有关这方面的研究,可参132133 见相关的资料和文献。
土的抗剪强度主要由粘聚力c 和内摩擦角ϕ来表示,土的粘聚力c 和内摩擦角ϕ称为土的抗剪强度指标。
《土力学》5 土的抗剪强度
土力学5土的抗剪强度《土力学》第五章 土的抗剪强度 第一节 土的抗剪强度及其破坏准则一、土的强度与破坏形式概念:土的抗剪强度指土对剪切破坏的极限抵抗能力,土体的强度问题实质是土的抗剪能力问题。
二、土的抗剪强度规律——库仑定律(Coulomb ) (二)库仑定律表达式:C f +=φστtan式中各项含义:f τ-------------土的抗剪强度,KPaσ-------------剪切面上的法向应力,KPa ; φ--------------土的内摩擦角, C--------------土的粘聚力,KP(三)土的抗剪强度指标——φ、C φ——土的内摩擦角(°)C ——土的粘聚力(KPa ) C=0 Cφ、C 与土的性质有关,还与实验方法、实验条件有关。
因此,谈及强度指标时,应注明它的试验条件。
三、受剪面的破坏准则1、f ττ<时,土体受剪面是稳定的,处于弹性平衡状态;2、f ττ>时,土体受剪面已经破坏;3、f ττ=时,受剪面正好处于将要破坏的临界状态,称受剪面为极限平衡状态直剪试验的理论依据:土体受剪面在破坏时测得的τ和δ应在库仑直线上,测定若干个τ 和δ ,可绘制直线求出 φ和 C 值。
第二节 土的极限平衡条件一、土中一点的应力状态:与第一应力平面成α角的任一平面上,其应力ασ 、ατ 分别为:ασσσσσα2cos 223131-++=ασστα2sin 231-=摩尔应力圆:以231σσ+ 为圆心,以231σσ-为半径的圆的方程,即单位体上个截面的应力可绘成一应力圆。
单位体与摩尔应力圆关系:圆上一点,单元体上一面,转角2倍,转向相同。
二、摩尔——库仑准则( 准则) (一) 应力圆与库仑直线的关系(1)应力圆与库仑直线相离, f ττ< ,稳定状态(2)应力圆与库仑直线相切,单位体上有一个截面的剪应力刚好等于抗剪强度,处于极限平衡状态。
其余截面 f ττ<(3)应力圆与库仑直线相割:该单元体面剪切破坏。
5第五章-土的抗剪强度
或继续剪切至剪切位移为4mm时停机,记下破坏值;
当剪切过程中测力计读数无峰值时,应剪切至剪切位 移为6mm时停机,该试验所得的强度称为快剪强度, 相应的指标称为快剪强度指标,以cQ,φQ表示
(二)固结快剪(R) 试验时对试样施加垂直压力后,每小时测读垂
直变形一次,直至变形稳定。变形稳定标准为
变形量每小时不大于0.005mm,在拔去固定销,
下面将根据莫尔-库仑破坏准则来研究某一土 体单元处于极限平衡状态时的应力条件及其大 、小主应力之间的关系,该关系称为土的极限 平衡条件。 根据莫尔-库仑破坏准则,当单元土体达到极 限平衡状态时,莫尔应力圆恰好与库仑抗剪强 度线相切。
根据图中的几何关系并经过三角公式的变换 ,可得
上式即为土的极限平衡条件。当土的强度指标c ,υ 为已知,若土中某点的大小主应力σ1和σ3满 足上列关系式时,则该土体正好处于极限平衡或 破坏状态。
上述三种方法的试验结果如图5-10所示。从
图中可以看出, cQ > cR >cS ,而υQ <υR < υS。 直剪试验的设备简单 ,试样的制备和安装 方便,且操作容易掌
握,至今仍为工程单
位广泛采用。
二、三轴压缩试验
三轴压缩试验直接量测的是试样在不同恒定周围压 力下的抗压强度,然后利用莫尔-库仑准则间接推 求土的抗剪强度。 三轴压缩仪主要由压力室、加压系统和量测系统三 大部分组成。 三轴是指一个竖向和两个侧向而言,由于压力室和 试样均为圆柱形,因此,两个侧向(或称周围)的 应力相等并为小主应力σ3 ,而竖向(或轴向)的应 力为大主应力σ1。在增加σ1时保持σ3 不变,这样条 件下的试验称为常规三轴压缩试验。
从图中还可以看出,按照莫尔-库仑破坏准则 ,当土处于极限平衡状态时,其极限应力圆与
第五章 土的抗剪强度
②土中天然胶结物质对土粒的胶结作用。 3.抗剪强度的影响因素 ①土的物理化学性质的影响(土的矿物成分、颗粒形状与级配;土
的原始密度;土的含水量;土的结构等);
②孔隙水压力的影响(工程上,根据实际地质情况和孔隙水压力消 散的程度,采用不同的排水方法测定土的抗剪强度)
达到极限平衡状态时,土体的应力与抗剪强度指标之 间的关系,称为土的极限平衡条件.
1、土中某点的应力状态
下面仅研究平面问题,在土体中取一微单元体[下图 (a)],取微棱柱体abc为隔离体 [下图(b)],将各力分别在 水平和垂直方向投影,根据静力平衡条件可得:
sds sin ds sin ds cos 0 1ds cos ds cos ds sin 0
1.试验仪器:直剪仪 直接剪切仪分为应变控制式和应力控制式两种.
对同一种土至少取4个试样,分别在不同垂直压 力下剪切破坏,一般可取垂直压力为100、200、300、 400kPa.
2.试验结果 垂直压力σ~百分表读数~剪应力τ,将试验结果
绘制成抗剪强度τf和垂直压力σ之间关系线。
试验结果表明: 对于粘性土基本上呈与y轴有一截距的直线,该直 线与横轴的夹角为内摩擦角φ,在纵轴上的截距为粘 聚力c;
三、土的极限平衡理论(莫尔—库伦强度理论)
1910年,莫尔(Mohr)提出材料的破坏是剪切破坏, 当任一平面上的剪应力等于材料的抗剪强度时该点就发生 破坏,并提出在破坏面上的剪应力,是该面上法向应力的
函数,即: f f
土的强度破坏通常是指剪切破坏,当土体中任意一点 在某一平面上的剪应力达到土的抗剪强度时,该点即处于 极限平衡状态;
应力圆画在同一坐标系里。它们之间的关系有以下三种情 况:
第5章土的抗剪强度
A
如果 σ1 <σ1f :不破坏; 如果 σ1 ≥σ1f :破坏。
f c tan
A
3 3f 3
1 1
3 1
1f
1
【例题1】已知某土体单元的大主应力σ1=480kPa,小主应力σ3= 210kPa。通过试验测得土的抗剪强度指标c=20kPa,φ=18°,问该 单元土体处于什么状态?
现场试验:十字板剪切试验、现场大型直剪试验
影响土抗剪强度指标的因素 土的种类 土样的天然结构是否被扰动 应力状态和应力历史 排水条件(室内试验时的一个需要考虑的最重要影响因 素)
室内直剪仪
室内直剪仪
三轴仪
三轴仪
无恻限压缩仪
抗剪强度理论的发展
本科只介绍的部分
(1)经典强度理论(Mohr- Coulomb强度理论)
n 1
3
m
1 (ds cos ) ( cos ) ds ( sin ) ds 0
求得
1 2
(1
3)
1 2
(1
3) cos 2
1 2
(1
3)sin 2
1
2
2
2
2
1
3
2
2
ds
3 ds sin
1 ds cos
2、莫尔应力圆
正应力:压为正,拉为负; 剪应力:逆时针为正,顺时针为负。
1、不能用于反映土体的抗拉强度及破坏特性; 2、不能反映高压下土体的强度及破坏特性; 3、不能反映土体强度及破坏的中间主应力效应。
(a) 红砂岩
(b) 花岗岩
(c)破坏面方向
现代强度理论(考虑了中间主应力效应的强度理论)
Lade-Duncan强度准则 Matsuoka-Nakai(SMP)强度准则 俞茂宏双剪应力强度准则 Drucker-Prager强度准则 其它
第五章土的抗剪强度及其参数确定
第五章土的抗剪强度及其参数确定土的抗剪强度是土体在受到剪切力作用下抵抗破坏的能力。
土的抗剪强度是土力学中的重要参数,用于设计土体的承载力及稳定性。
土的抗剪强度与土体的力学性质有关,主要包括土粒间的摩擦力和粘聚力。
土粒间的摩擦力是由于土粒之间的接触而产生的阻力,而粘聚力是吸附在土粒表面的水膜力量。
土的抗剪强度可通过劈裂强度和摩擦强度来表示,即抗剪强度=粘聚力+摩擦力。
土体的抗剪强度可通过室内试验测定。
常见的试验方法有直剪试验、三轴剪切试验和扭转试验等。
其中,直剪试验是最简单的一种试验方法,适用于研究土体的剪切特性及其参数的确定。
直剪试验是将土样切割成一定形状的试件,然后施加垂直于剪切面的正压力和平行于剪切面的剪切力,观察土样的破坏模式及其抗剪强度。
试验可以得到剪切应力-剪切应变曲线,从而确定土体的抗剪强度及其参数。
直剪试验中,土样的形状和尺寸对试验结果有一定影响。
常见的土样形状有圆形、方形、矩形等。
土样尺寸的选择要符合土体的工程实际,并考虑统计性。
在试验过程中,还需控制剪切速率、正压力等试验条件。
直剪试验得到的剪切应力-剪切应变曲线常表现为线性段和非线性段。
线性段表征土体的弹性特性,非线性段表征土体的塑性特性。
通过拟合这两个段的曲线,可以确定土体的抗剪强度及其参数。
土体的抗剪强度参数主要包括内摩擦角和粘聚力。
内摩擦角是土体摩擦力大小的一种表征,可通过试验结果计算得到。
粘聚力是土体粘聚力大小的一种表征,需要通过试验得到。
根据试验结果,可以进一步确定土体的抗剪强度参数。
土的抗剪强度及其参数对土体的工程设计和稳定性分析具有重要的意义。
确定准确的抗剪强度参数可以保证土体工程的安全可靠性,也有助于优化土体的设计和施工方案。
因此,在土力学和岩土工程中,研究土的抗剪强度及其参数的确定是一个重要的课题。
第五章 土的抗剪强度
土的抗剪强度
5.1 概述
土的抗剪强度
是指土体对外荷载所产生的剪应力的 极限抵抗能力。剪切破坏是土体破坏的重 要特征。 砂土:其抗剪强度由内摩擦阻力构成, 其大小取决于土粒表面的粗糙度、密实度、 凸颗粒大小及级配等因素。 粘性土:其抗剪强度由粘结力和内摩 擦阻力两部分组成。
与土的抗剪强度有关的工程问题
u B 3 A( 1 3 )
式中:A、B-分别为不同应力条件下的孔隙压力系数。
1、试样在各向均等的初始应力作用下固结完毕
u0 0
2、试样受到各向均等的周围压力作用,试样体积变化主 要是孔隙空间的压缩所致(固体颗粒和水体积视为不可压 缩)。 孔隙体积 VV VV 压缩系数 CV u1
f
2M
D 2 ( H
D ) 3
5.3 孔隙压力系数A、B
英国斯肯普顿(Skempton) 等于1954年根据三轴压缩试验的 结果,首先提出孔隙压力系数的 概念,并用以表示土中孔隙压力 (饱和土体的孔隙压力即为孔隙 水压力)的大小。他们在三轴试 验的基础上提出了复杂压力状态 下的孔隙压力表达式为:
原理:土体剪切破坏时所施加的扭矩,与剪切破坏圆柱 面(侧面和上下面)上土的抗剪强度所产生的抵抗力矩相 等。即:
M M1 2M 2
(1)圆柱体侧面上的抗扭力矩: D M 1 DH f 2 (2)圆柱体上、下表面上的抗扭力矩: D D 2 M2 ( ) f 3 4 (3)土的抗剪强度:
中灵敏度土:2 < St ≤4
高灵敏度土: St > 4 土的灵敏度越高,其结构性越强,受扰动后土的强度降低就越多。粘 性土受扰动而强度降低的性质,一般而言对工程建设是不利的。
四、十字板剪切验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
σ3 = 100KPa
ε1
23
§5 土的抗剪强度 §5.1
二、莫尔—库伦强度理论 1、直剪试验(库仑 1776)
试验方法 施加 σ(=P/A) 施加 (=T/A) 量测 S
P
土体破坏与强度理论
σ = 300KPa σ = 200KPa σ = 100KPa
S
上盒
A
S
下盒
T
24
§5 土的抗剪强度 §5.1
P
§5.2 土的抗剪强度和破坏理论
A
库仑公式
S
T
f c tan
固定滑裂面
一般应力状态如何判断是否破坏? 借助于莫尔圆
30
土体破坏与强度理论 四、莫尔-库仑强度理论与极限平衡条件 1、土中一点的应力状态
三维应力状态
§5 土的抗剪强度 §5.1
z
二维应力状态
zx
y yz
1
σ3>σ3f 安全状态 σ3=σ3f 极限平衡状态 σ3<σ3f 不可能状态
c: 粘聚力, kPa :内摩擦角,
○
c O
抗剪强度指标
26
§5 土的抗剪强度 §5.1
二、莫尔—库伦强度理论
抗剪强度指标分析
土体破坏与强度理论 1. 直剪试验 c: 粘聚力, kPa :内摩擦角,
○
库仑公式
f c tan
对砂土: c =0,φ≠0 所以砂土又称为无粘性土 对粘性土: c ≠ 0, φ可能为0
§5 土的抗剪强度 §5.1
二、莫尔—库伦强度理论
粘性土试验结果
土体破坏与强度理论 1. 直剪试验
σ = 300KPa σ = 200KPa σ = 100KPa
f :
土的抗剪强度, kPa
tg:
摩擦强度-正比于压力
S
c:
粘聚强度, kPa
库仑公式
f c tan
2
1 3
2
f c tan
c O
3
1
c ctg
1 3
2
38
§5 土的抗剪强度
§5.2 土的抗剪强度和破坏理论
二、莫尔-库仑强度理论 4. 破坏判断方法 判别对象:土体微小单元(一点)
(1)3= 常数:
1,3
x z
2
z 2 x xz 2
莫 尔 圆:代表一个土单元的应力状态; 圆上一点:代表一个面上的两个应力与
p (1 3 ) / 2
q (1 3 ) / 2 r
32
§5 土的抗剪强度 §5.1
四、莫尔-库仑强度理论
土体破坏与强度理论 1. 应力状态与莫尔圆
f
直剪试验的莫尔圆与库仑抗剪强 度线的关系如何?为什么?
c
f
(c、 )三轴= (c、 )直剪 巧合吗?
c
与的组合满足库仑公式才破坏
三轴试验结果
33
§5 土的抗剪强度
二、莫尔-库仑强度理论 2. 极限平衡应力状态
极限平衡应力状态:
§5.2 土的抗剪强度和破坏理论
有一对面上的应力状态达到 = f
土的强度包线:
所有达到极限平衡状态的莫尔园的公切线。
3330 m 约2500m 约3亿方
2200
0
2000
4000 滑距(m)
6000
8000
12
§5 土的抗剪强度
§5.1 概述 二、工程中土体的破坏类型 2. 各种类型的滑坡
2000年西藏易贡巨型滑坡
平面示意图
5520m
2210m
2264m
滑坡堆积体 滑坡堆积区
2340m 2165m
13
§5 土的抗剪强度
抗剪强度: 峰值应力或应变达到15~20%时的应力 1- 3
b ② c a
①
③
d
b
a
o
1 =15%
1 22
§5 土的抗剪强度
二、莫尔—库伦强度理论
§ 5.2 土的抗剪强度和破坏理论
σ1—σ3
常规三轴试验应力—应变关系曲线
σ3 = 300KPa σ3 = 200KPa
对应不同的σ3,有不 同的抗剪强度值。 土的抗剪强度与土的应 力状态有关。
二、莫尔—库伦强度理论
砂土试验结果
土体破坏与强度理论 1. 直剪试验
σ = 300KPa σ = 200KPa σ = 100KPa
指土体抵抗剪切破坏的极限能力
f :
土的抗剪强度, kPa
tg:
摩擦强度-正比于压力
S
库仑公式
f tan
:内摩擦角, ( )
○
O
25
抗剪强度指标
z
1
+zx
r 2
ห้องสมุดไป่ตู้
x
O -xz
3 x
z 1
xz
-
p 圆心: p ( x z ) / 2 半径: r
2 ( x z ) / 2 xz 2
大主应力:
1 p r
σz按顺时针方向旋转α 小主应力: 3 p r σx按顺时针方向旋转α
1 1f 1
39
§5 土的抗剪强度
(2)1= 常数:
§5.2 土的抗剪强度和破坏理论 4. 破坏判断方法 二、莫尔-库仑强度理论
1,3
x z
2
x z 2
2 2 xz
根据应力状态计算出 大小主应力σ1、σ3
判断破坏可能性
由σ1计算σ3f 比较σ3与σ3f
2
根据应力状态计算出 大小主应力σ1、σ3
判断破坏可能性 σ1<σ1f 安全状态 σ1=σ1f 极限平衡状态 σ1>σ1f 不可能状态
1 f 3tg 45 2c tg 45 2 2
2
由σ3计算σ1f 比较σ1与σ1f
c
O
3
土压力 边坡稳定 地基承载力
挡土结构物破坏 各种类型的滑坡
地基的破坏
核心 强度理论
19
§5 土的抗剪强度
5.1 概述
5.2 土的抗剪强度和破坏理论
?5.3 土的抗剪强度测定试验
?5.4 土的抗剪强度机理和影响因素
?5.5 抗剪强度指标
20
§5 土的抗剪强度
§5.2 土的抗剪强度和破坏理论
§5 土的抗剪强度
土工结构物或地基
渗透问题 变形问题 强度问题
土 渗透特性 变形特性 强度特性
3
§5 土的抗剪强度
5.1 概述
?5.2 土的抗剪强度和破坏理论
?5.3 土的抗剪强度测定试验
?5.4 土的抗剪强度机理和影响因素
?5.5 抗剪强度指标
4
§5 土的抗剪强度 §5.1
一、土的强度特点
10
§5 土的抗剪强度
§5.1 概述 二、工程中土体的破坏类型 2. 各种类型的滑坡
2000年西藏易贡巨型滑坡
龙观嘴 黄崖沟
乌江
11
§5 土的抗剪强度
§5.1 概述 二、工程中土体的破坏类型 2. 各种类型的滑坡
2000年西藏易贡巨型滑坡
立面示意图
5530 高程(m)
坡高 堆积体宽 总方量
4000
一、土的屈服与破坏 二、莫尔-库仑强度理论
21
§5 土的抗剪强度 §5.2 土的抗剪强度和破坏理论
一、土的屈服与破坏 曲线(1)理想的弹塑性材料:c点屈服点和破坏点 曲线(2)超固结土或密砂的应力—应变关系
oa段—弹性段 ab段—应变硬化段:峰值强度 bd段—应变软化段:残余强度
曲线(3)正常固结土或松砂的应力—应变关系
zx
z x
xy
x
xz
x xz ij = zx z
31
x xy xz ij = yx y yz zx zy z
土体破坏与强度理论 四、莫尔-库仑强度理论与极限平衡条件 1. 土中一点的应力状态
§5 土的抗剪强度 §5.1
+ zx
f f ( )
由库伦公式表示莫尔
包线的强度理论称为 莫尔-库伦强度理论。
28
§5 土的抗剪强度
§5.2 土的抗剪强度和破坏理论
二、莫尔-库仑强度理论
1. 应力状态与莫尔圆 2. 极限平衡应力状态
3. 莫尔-库仑强度理论
4. 破坏判断方法 5. 滑裂面的位置
29
§5 土的抗剪强度
二、莫尔-库仑强度理论
35
§5 土的抗剪强度
二、莫尔-库仑强度理论 3. 莫尔—库仑强度理论
§5.2 土的抗剪强度和破坏理论
(1)土单元的破坏面上的抗剪强度f是该面上作用的法 向应力的单值函数, f =f() (莫尔:1910年)
(2)在一定的应力范围内,可以用线性函数近似:
f = c +tg
(3)某土单元的任一个平面上 = f ,该单元就达到了 极限平衡应力状态
粘土地基上的某谷仓地基破坏
16
§5 土的抗剪强度
§5.1 概述 二、工程中土体的破坏类型 3. 地基的破坏
日本新泻1964年地震引起大面积液化
17
§5.1 概述 二、工程中土体的破坏类型 3. 地基的破坏