关于特征值与特征向量的求解方法与技巧
特征值特征向量的计算
特征值特征向量的计算特征值(eigenvalue)和特征向量(eigenvector)是矩阵理论中一个非常重要的概念。
当矩阵作用于一些向量时,特征向量表示这个向量在变换后与原来的方向保持不变,只是长度发生了变化;而特征值则表示这个变化的比例。
特征向量的计算方法:设A为一个n阶矩阵,v为其中一个非零向量,如果满足方程Av=λv,则称v为矩阵A的特征向量,λ为相应的特征值。
解方程(A-λE)v=0,可以发现它是一个齐次线性方程组,对于非零向量v存在非零解的条件是它的系数行列式,A-λE,=0。
具体计算步骤如下:1.对于一个给定的n阶矩阵A,构造一个单位矩阵E,即E=I。
2.定义一个未知变量λ,并计算矩阵A减去变量λ乘以单位矩阵的结果,即(A-λE)。
3.计算(A-λE)的行列式,即,A-λE。
4.解方程,A-λE,=0,找出所有可能的λ,这些λ即为矩阵A的特征值。
5.将每个特征值λ带入方程(A-λE)v=0,解得对应的特征向量v。
特征值和特征向量的性质:1.当λ为A的特征值时,kλ(k为非零实数)也是A的特征值,而对应的特征向量不变。
2. 特征值的和等于矩阵的迹(trace),即A的所有特征值之和等于tr(A)。
3.特征向量可以通过特征值来缩放得到,即一个特征向量可以乘以一个常数得到一个沿着同一方向的新的特征向量。
特征值和特征向量的应用:1.特征值和特征向量常用于解决线性代数中的一系列问题,如解线性方程组、矩阵的对角化等。
2.在求解最优化问题时,特征值和特征向量可以用于求解函数的极值。
3.在机器学习和数据分析中,特征值和特征向量常被用于数据降维、图像处理、聚类分析等任务。
总之,特征值和特征向量是矩阵理论中非常重要的概念,其计算方法可以通过解矩阵方程得到。
它们的性质和应用广泛存在于数学、工程和计算机科学的各个领域,对理解和解决实际问题具有重要意义。
特征值与特征向量的计算方法
特征值与特征向量的计算方法特征值与特征向量是矩阵理论中的重要概念,用于解决矩阵特征与变换特性的相关问题。
在本文中,将介绍特征值与特征向量的定义和计算方法,以及它们在实际问题中的应用。
一、特征值与特征向量的定义在矩阵理论中,对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=kx(k为标量),那么k称为矩阵A的特征值,x称为对应于特征值k的特征向量。
特征向量可以理解为在矩阵变换下保持方向不变的向量,而特征值则表示特征向量在变换中的伸缩比例。
二、要计算特征值和特征向量,可以使用以下步骤:1. 首先,由于特征值和特征向量的定义基于方阵,所以需要确保矩阵A是方阵,即行数等于列数。
2. 接下来,根据特征值和特征向量的定义方程Ax=kx,将其改写为(A-kI)x=0(I为单位矩阵)。
3. 为了求解此方程组的非零解,需要求出(A-kI)的零空间(核)。
4. 将(A-kI)的零空间表示为Ax=0的齐次线性方程组,采用高斯消元法或其它线性方程组求解方法,求得方程的基础解系,即特征向量。
5. 特征向量已找到,接下来通过将每个特征向量代入原方程式Ax=kx中,计算出对应的特征值。
值得注意的是,特征值是一个多重属性,即一个特征值可能对应多个线性无关的特征向量。
此外,方阵A的特征值计算方法存在多种,如幂迭代法、QR迭代法等。
三、特征值与特征向量的应用特征值与特征向量在物理、工程、经济等领域具有广泛的应用。
1. 物理学中,特征值与特征向量可用于解析力学、量子力学等领域中的问题,如研究振动系统的固有频率、粒子的角动量等。
2. 工程学中,特征值与特征向量可用于电力系统的稳定性分析、机械系统的振动模态分析等。
3. 经济学中,特征值与特征向量可用于描述经济模型中的平衡点、稳定性等重要特征。
此外,特征值与特征向量在图像识别、数据降维、网络分析等领域也有重要的应用。
总结:特征值和特征向量在矩阵理论中有着重要的地位和应用价值。
通过计算特征值和特征向量,可以揭示矩阵在变换中的性质和特点,并应用于各个学科领域,为问题求解提供了有效的工具和方法。
特征向量和特征值问题的数学分析方法
特征向量和特征值问题的数学分析方法在数学领域中,特征向量和特征值是矩阵论中非常重要的概念。
它们在线性代数、数值计算和物理学等学科中都有广泛的应用。
本文将重点介绍特征向量和特征值问题的数学分析方法,帮助读者深入理解这一概念并掌握解决相关问题的技巧。
一、特征向量和特征值的定义在矩阵论中,给定一个n阶方阵A,如果存在非零向量x使得Ax = λx成立,其中λ是一个常数,则称向量x为矩阵A的特征向量,常数λ为对应的特征值。
特征向量表示了在矩阵作用下方向不变的向量,特征值则表示了此方向上的伸缩比例。
特征向量和特征值往往以矩阵的形式表示,特征向量矩阵X(包含了每一个特征向量)和特征值矩阵Λ(对角线元素为特征值,其余元素为零)满足AX = XΛ的关系。
由此可见,特征向量是通过矩阵A左乘特征向量矩阵获得的。
二、求解特征向量和特征值的方法1. 特征多项式法通过求解特征多项式可以得到矩阵的特征值。
特征多项式由方阵A 减去λI得到,其中I为单位矩阵。
求解特征多项式的根,即可得到特征值λ。
2. 特征向量分解法对于已知的特征值,我们可以通过代入方程Ax = λx来求解特征向量。
由于特征向量是在一系列相似矩阵中共享的,因此可以通过类似对角化的过程获取一组特征向量。
3. 幂法幂法是一种数值迭代的方法,用于求解最大的特征值和相应的特征向量。
它的基本思想是通过不断迭代一个向量,使其趋近于矩阵A的特征向量。
幂法迭代过程中,向量的模长不断增大,最终收敛到最大特征值所对应的特征向量。
4. QR方法QR方法是一种求解特征值和特征向量的迭代算法。
该方法通过将矩阵A分解成QR的形式,并迭代QR的乘积,得到逼近矩阵的特征值和特征向量。
QR方法相对于幂法更加稳定和快速,是较常用的数值方法之一。
三、特征向量和特征值问题的应用特征向量和特征值在许多学科中都有广泛应用。
在线性代数中,它们用于矩阵相似和矩阵的对角化。
在数值计算中,特征向量和特征值问题与矩阵的谱半径和谱条件数相关联,对于解决线性方程组和最优化问题具有重要意义。
毕业论文矩阵的特征值与特征向量的求法及其关系
毕业论文矩阵的特征值与特征向量的求法及其关系矩阵的特征值和特征向量是矩阵理论中的重要概念,广泛应用于数学、物理、工程等领域。
在毕业论文中,研究矩阵的特征值和特征向量是非常具有意义的。
一、特征值与特征向量的定义给定一个n阶方阵A,如果存在数值λ和非零向量x,使得下式成立:Ax=λx其中,λ称为矩阵A的特征值,x称为矩阵A的特征向量。
二、求解特征值与特征向量的方法1.特征值的求解:要求解矩阵A的特征值,可以通过以下步骤进行:(1) 解特征方程 det(A-λI) = 0,其中I为单位矩阵。
(2)求解得到的特征方程所对应的λ的值,即为矩阵A的特征值。
2.特征向量的求解:已知矩阵A的特征值λ后,可以通过以下步骤求解矩阵A的特征向量:(1)将特征值λ代入到方程(A-λI)x=0中,并求解该齐次线性方程组。
(2)求得的非零解即为矩阵A的特征向量。
三、特征值与特征向量的关系1.特征向量之间的关系:若x1和x2分别是矩阵A相应于特征值λ1和λ2的特征向量,则对于任意实数k1和k2,k1x1+k2x2也是矩阵A相应于特征值λ1和λ2的特征向量。
2.特征值的性质:(1)矩阵A与其转置矩阵AT具有相同的特征值。
(2)对于方阵A和B,若AB=BA,则矩阵A和B具有相同的特征值。
3.特征向量的性质:(1)对于方阵A的任意特征值λ,与其对应的特征向量构成的集合形成一个向量子空间,称为A的特征子空间。
(2)若特征值λ的重数为m,则与λ相关联的特征向量的个数至少为m个。
四、应用举例特征值和特征向量在实际问题中具有广泛的应用,包括:(1)矩阵的对角化:通过矩阵的特征值和特征向量,可以将矩阵对角化,简化问题的求解。
(2)矩阵的谱分解:将矩阵表示为特征值和特征向量的线性组合形式,用于求解矩阵的高次幂和逆。
(3)矩阵的奇异值分解:奇异值分解是特征值分解的推广,能够对非方阵进行分解,用于降维和数据压缩等问题。
总结:矩阵的特征值和特征向量是矩阵理论中的重要概念。
特征值与特征向量矩阵特征值与特征向量的求解方法
特征值与特征向量矩阵特征值与特征向量的求解方法特征值和特征向量是线性代数中重要的概念,广泛应用于许多领域,如物理学、工程学和计算机科学等。
在本文中,我们将探讨特征值和特征向量的定义、求解方法及其在实际问题中的应用。
一、特征值与特征向量的定义特征值是一个矩阵所具有的与矩阵的线性变换性质有关的一个数值,特征向量是对应于特征值的非零向量。
对于一个n阶矩阵A,如果存在一个非零向量x和一个数λ,使得满足Ax=λx,那么λ就是矩阵A的一个特征值,x是对应于特征值λ的特征向量。
二、求解特征值与特征向量的方法有几种方法可以求解特征值和特征向量,其中比较常用的是特征多项式法和迭代法。
1. 特征多项式法特征多项式法是通过求解特征方程的根来得到特征值。
对于一个n阶矩阵A,其特征多项式定义为det(A-λI)=0,其中I是n阶单位矩阵,det表示行列式运算。
将特征多项式置为零,可以得到n个特征值λ1,λ2,...,λn。
将每个特征值代入原矩阵A-λI,解线性方程组(A-λI)x=0,就可以得到对应的特征向量。
2. 迭代法迭代法是通过不断迭代矩阵的特征向量逼近实际的特征向量。
常用的迭代方法包括幂法、反幂法和Rayleigh商迭代法。
幂法是通过不断迭代向量Ax的归一化来逼近特征向量,其基本原理是向量Ax趋近于特征向量。
反幂法是幂法的反向操作,通过求解(A-λI)y=x逼近特征向量y。
Rayleigh商迭代法是通过求解Rayleigh商的最大值来逼近特征向量,其中Rayleigh商定义为R(x)=x^T Ax/(x^T x),迭代公式为x(k+1)=(A-λ(k)I)^(-1)x(k),其中λ(k)为Rayleigh商的最大值。
三、特征值与特征向量的应用特征值与特征向量在实际问题中有广泛的应用。
其中,特征值可以用于判断矩阵是否可逆,当且仅当矩阵的所有特征值均不为零时,矩阵可逆。
特征向量可用于描述矩阵的稳定性和振动状态,如在结构工程中可以通过求解特征值和特征向量来分析物体的固有频率和振动模态。
特征值与特征向量的求法总结
特征值与特征向量的求法总结特征值与特征向量是线性代数中的重要概念,广泛应用于各个领域的数学和工程问题中。
在本文中,我们将总结特征值与特征向量的求法,并介绍它们的应用。
一、特征值与特征向量的定义在矩阵理论中,给定一个n阶方阵A,如果存在一个非零向量x,使得Ax与x的线性关系为Ax=λx,其中λ为常数,则称λ为矩阵A的特征值,x为对应于特征值λ的特征向量。
二、特征值与特征向量的求法要求解矩阵A的特征值和特征向量,需要解决以下问题:1. 求解特征值:设特征值为λ,需要解决方程|A-λI|=0,其中I为单位矩阵。
这个方程称为特征方程,其解即为矩阵A的特征值。
2. 求解特征向量:已知特征值λ后,需要求解方程(A-λI)x=0的非零解,其中x为特征向量。
这个方程组称为特征方程组,其解即为矩阵A的特征向量。
特征值和特征向量的求解可以通过以下步骤进行:1. 求解特征值:解特征方程|A-λI|=0,得到特征值λ1, λ2, ..., λn。
2. 求解特征向量:将每个特征值代入方程组(A-λI)x=0,解得对应的特征向量x1, x2, ..., xn。
三、特征值与特征向量的应用特征值与特征向量在许多领域中都有重要的应用,下面我们介绍几个常见的应用场景:1. 特征值分解:特征值分解是将一个矩阵分解为特征值和特征向量的乘积的形式,常用于矩阵的对角化和求解矩阵的幂等问题。
2. 主成分分析:主成分分析是一种常用的数据降维技术,通过计算协方差矩阵的特征值和特征向量,将原始数据转换为新的特征空间,以实现数据的降维和特征提取。
3. 图像处理:特征值与特征向量在图像处理中有着广泛的应用,如图像压缩、图像去噪、图像特征提取等。
4. 控制系统分析:在控制系统中,特征值与特征向量可以用于分析系统的稳定性和响应特性,如振荡频率、阻尼比等。
5. 网络分析:特征值与特征向量在网络分析中有着重要的作用,例如用于社交网络中节点的中心性分析、网络的连通性分析等。
矩阵特征值与特征向量的求法
矩阵特征值与特征向量的求法一、矩阵特征值与特征向量的定义矩阵特征值(eigenvalue)是指一个矩阵在某个非零向量上的线性变换结果等于该向量的常数倍,这个常数就是该矩阵的特征值。
而对应于每个特征值,都有一个非零向量与之对应,这个向量就是该矩阵的特征向量(eigenvector)。
二、求解矩阵特征值与特征向量的方法1. 特征多项式法通过求解矩阵A减去λI(其中λ为待求解的特征值,I为单位矩阵)的行列式det(A-λI)=0来求解其特征值。
然后将每个特征值代入到(A-λI)x=0中,即可求得对应的特征向量x。
2. 幂法幂法是一种迭代方法,通过不断地将A作用于一个初始向量x上,并将结果归一化,最终得到收敛到最大(或最小)特征值所对应的特征向量。
具体步骤如下:(1) 选取任意一个非零初始向量x;(2) 将Ax除以x中最大元素得到新的向量y=A*x/max(x);(3) 将y归一化得到新的向量x=y/||y||;(4) 重复步骤2-3,直到收敛。
3. QR分解法QR分解是将矩阵A分解为Q和R两个矩阵的乘积,其中Q是正交矩阵(即Q^T*Q=I),R是上三角矩阵。
通过不断地对A进行QR分解,并将得到的Q和R相乘,最终得到一个上三角矩阵T。
T的对角线元素就是A的特征值,而对应于每个特征值,都可以通过反推出来QR分解中的Q所对应的特征向量。
4. Jacobi方法Jacobi方法也是一种迭代方法,通过不断地施加相似变换将A转化为对角矩阵D。
具体步骤如下:(1) 选取任意一个非零初始矩阵B=A;(2) 找到B中绝对值最大的非对角元素b(i,j),记其位置为(i,j);(3) 构造Givens旋转矩阵G(i,j,k),使其作用于B上可以消去b(i,j),即B=G^T*B*G;(4) 重复步骤2-3,直到所有非对角元素均趋近于0。
三、总结以上介绍了求解矩阵特征值与特征向量的四种方法:特征多项式法、幂法、QR分解法和Jacobi方法。
特征值和特征向量
特征值和特征向量特征值和特征向量是线性代数中重要的概念,广泛应用于各个领域的数学和科学问题中。
特征值和特征向量的理解和运用对于解决线性代数中的矩阵方程、特征分解以及一些实际问题有着重要的意义。
一、特征值与特征向量的定义在线性代数中,对于一个n阶方阵A,如果存在一个非零向量x,使得下式成立:A·x=λ·x其中,λ为一个复数,称为矩阵A的特征值,x称为对应于特征值的特征向量。
对于方阵A,可能存在多个特征值和对应的特征向量。
二、特征值和特征向量的性质1. 特征向量的长度无关紧要:特征向量的长度没有具体的要求,只要方向相同即可。
2. 特征向量是线性的:如果v是一个A的特征向量,那么对于任意标量k都有kv仍是A的特征向量。
3. 不同特征值对应的特征向量是线性无关的:如果λ1≠λ2,则对应的特征向量v1和v2线性无关。
三、求解特征值和特征向量的方法针对不同的方阵A,求解特征值和特征向量的方法也有所不同,常用的方法有以下几种:1. 特征方程法:令A-λI=0,其中I是单位矩阵,解方程A-λI=0可以得到方阵A的特征值λ。
然后将特征值带入方程(A-λI)x=0,求解得到方阵A对应特征值的特征向量。
2. 幂法:通过迭代的方法求解矩阵的特征值和特征向量。
先随机选择一个向量x0,然后通过迭代运算得到序列x0,Ax0,A^2x0,...,A^nx0,其中n为迭代次数。
当n足够大时,序列将收敛到A的特征向量。
3. Jacobi方法:通过迭代矩阵的相似变换,将矩阵对角化。
该方法通过交换矩阵的不同行和列来逐步减小非对角元素,最终得到对角矩阵,对角线上的元素即为特征值。
四、特征值和特征向量的应用特征值和特征向量在很多领域中都有广泛的应用,包括以下几个方面:1. 图像处理:特征值和特征向量可用于图像的降维和特征提取,通过对图像的特征向量进行分析,可以获得图像的主要特征。
2. 特征分析:特征值和特征向量可用于分析复杂系统的稳定性、动态响应和振动特性,如机械系统、电路系统等。
矩阵特征值与特征向量
矩阵特征值与特征向量在线性代数中,矩阵的特征值和特征向量是非常重要的概念。
它们在很多数学和工程领域都有广泛的应用。
本文将详细介绍矩阵特征值和特征向量的定义、性质以及计算方法。
一、特征值与特征向量的定义1. 特征值:对于一个n阶方阵A,如果存在一个非零向量X使得AX=kX,其中k为一个常数,那么k就是矩阵A的特征值。
我们可以把这个等式改写为(A-kI)X=0,其中I是单位矩阵。
这样,求解特征值就等价于求解矩阵(A-kI)的零空间。
2. 特征向量:特征向量是与特征值相对应的非零向量。
对于一个特征值k,其对应的特征向量X满足AX=kX。
二、特征值与特征向量的性质1. 特征值与特征向量是成对出现的,一个特征值对应一个特征向量。
2. 特征值的个数等于矩阵A的阶数。
特征值可以是实数或复数。
3. 特征向量可以乘以一个非零常数得到一个新的特征向量。
4. 如果矩阵A是实对称矩阵,那么其特征值一定是实数。
如果矩阵A是正定或负定矩阵,那么其特征值一定大于0或小于0。
5. 特征向量相互之间线性无关。
三、特征值与特征向量的计算方法1. 求特征值:求解特征值的常用方法是求解矩阵A的特征多项式的根。
特征多项式的形式为|A-kI|=0,其中|A-kI|表示矩阵A-kI的行列式。
2. 求特征向量:已知特征值k后,将k代入(A-kI)X=0即可得到特征向量。
可以使用高斯-约当消元法或者迭代法来求解。
四、矩阵特征值与特征向量的应用1. 特征值与特征向量广泛应用于机器学习和数据分析领域。
在主成分分析(PCA)中,我们可以通过计算数据的协方差矩阵的特征向量来实现数据降维和特征提取。
2. 特征值与特征向量也在图像处理和信号处理中有许多应用。
例如,在图像压缩算法中,我们可以利用矩阵的特征值和特征向量来实现图像的降噪和压缩。
3. 特征值和特征向量还可以应用于动力系统的稳定性分析。
通过求解动力系统的雅可比矩阵的特征值,我们可以判断系统的稳定性和临界点的类型。
特征值与特征向量的求解
特征值与特征向量的求解特征值和特征向量是线性代数中一对重要的概念,广泛应用于物理学、工程学和计算机科学等领域。
在本篇文章中,我们将深入探讨特征值和特征向量的定义、性质以及求解方法。
一、特征值与特征向量的定义在介绍特征值与特征向量的求解方法之前,我们先来了解它们的定义。
在一个n维向量空间V中,若存在一个n阶方阵A和一个非零向量X,使得下式成立:AX = λX其中,λ为标量,称为矩阵A的特征值;X为矩阵A的特征向量。
特征值与特征向量的求解方法有多种,下面将介绍其中两种常用的方法。
二、特征值与特征向量的求解方法1. 特征方程法特征方程法是求解特征值和特征向量的一种常用方法。
假设A是一个n阶方阵,我们的目标是求解它的特征值和特征向量。
首先,我们将上述特征方程AX = λX两边同时左乘一个单位矩阵I,得到:(A-λI)X = 0其中,I为n阶单位矩阵,0为n维零向量。
由于X为非零向量,所以矩阵(A-λI)必须是奇异矩阵,即其行列式为0:|A-λI| = 0这就是特征方程。
接下来,我们需要求解特征方程|A-λI| = 0的根λ,即矩阵A的特征值。
求解得到的特征值λ可以有重根。
然后,将每个特征值λ带入原特征方程(A-λI)X = 0,解得对应的特征向量X。
注意,对于每个不同的特征值,我们都可以对应多个特征向量。
通过特征方程法,我们可以求解出矩阵A的所有特征值和对应的特征向量。
2. 幂法幂法是求解矩阵特征值和特征向量的一种迭代方法,适用于大规模稀疏矩阵。
幂法的基本思想是:通过迭代将初始向量不断与矩阵A进行乘法运算,使得向量的模不断增大,趋向于对应最大特征值的特征向量。
具体做法是:1) 先选择一个非零向量X0作为初始向量。
2) 迭代计算X(k+1) = AX(k),其中k表示迭代次数。
3) 归一化向量X(k+1),即X(k+1) = X(k+1) / ||X(k+1)||,其中||X(k+1)||表示向量X(k+1)的模。
矩阵的特征值和特征向量的计算
矩阵的特征值和特征向量的计算在线性代数中,矩阵的特征值和特征向量是一对重要的概念。
它们可以帮助我们了解矩阵的性质和特点,对于很多问题的求解具有重要的意义。
本文将详细介绍矩阵特征值和特征向量的计算方法。
一、特征值和特征向量的定义对于 n 阶方阵 A,如果存在非零向量 v 使得Av = λv,其中λ 是一个常数,则称λ 为矩阵 A 的特征值,v 称为对应于特征值λ 的特征向量。
特征值和特征向量的计算可以帮助我们理解矩阵的线性变换效果,以及在某些问题中起到重要的作用。
二、特征值和特征向量的计算方法要计算一个矩阵的特征值和特征向量,我们可以按照以下步骤进行:1. 首先,我们需要求解特征方程 det(A - λI) = 0,其中 A 是待求矩阵,λ 是一个待定常数,I 是单位矩阵。
这个方程是由特征向量的定义出发得到的。
2. 解特征方程可以得到一组特征值λ1, λ2, ... , λn。
这些特征值就是矩阵的特征值,它们可以是实数或复数。
3. 对于每一个特征值λi,我们需要求解方程组 (A - λiI)v = 0,其中 v 是待求特征向量。
这个方程组的解空间就是对应于特征值λi 的特征向量的集合。
4. 对于每一个特征值λi,我们需要求解出它对应的特征向量 vi。
特征向量的计算需要利用高斯消元法或其他适用的方法。
这样,我们就可以计算出矩阵的所有特征值和对应的特征向量。
三、特征值和特征向量的应用矩阵的特征值和特征向量在很多领域有着广泛的应用,以下是其中一些常见的应用:1. 特征值和特征向量可以帮助我们理解矩阵的性质。
例如,特征值的数量可以告诉我们矩阵的维度,而特征向量可以描述矩阵的线性变换效果。
2. 特征值和特征向量在图像处理和模式识别领域有着重要的应用。
通过矩阵的特征向量,我们可以提取图像的特征,进而进行分类和识别。
3. 特征值和特征向量在物理学中也有着广泛的应用。
它们可以用于描述量子力学中的粒子运动,电路中的振动模式等。
线性代数中的特征值与特征向量求解方法
线性代数中的特征值与特征向量求解方法线性代数是数学中的一个重要分支,广泛应用于各个领域,包括物理学、工程学、计算机科学等。
在线性代数中,特征值与特征向量是非常重要的概念,它们在矩阵的变换和矩阵的性质研究中起到了关键的作用。
一、特征值与特征向量的定义在矩阵A中,如果存在一个非零向量x,使得Ax=kx成立,其中k为一个常数,则称k为矩阵A的特征值,x为对应于特征值k的特征向量。
特征值与特征向量是矩阵在线性变换下的重要性质,它们描述了矩阵变换的规律和特点。
二、特征值与特征向量的求解方法1. 特征值与特征向量的几何解释特征值与特征向量的求解方法有很多种,其中一种直观的方法是通过几何解释来理解。
对于一个二维矩阵A,特征向量可以看作是矩阵A对应的线性变换下的不变方向,而特征值则表示了在这个不变方向上的缩放因子。
通过对特征向量进行缩放,就可以得到相应的特征值。
2. 特征值与特征向量的代数解法除了几何解释外,还有一种常用的方法是通过代数的方式求解特征值与特征向量。
这种方法基于矩阵的特征方程,即|A-kI|=0,其中I为单位矩阵,k为特征值。
通过解特征方程,可以得到矩阵A的特征值。
然后,将特征值代入到方程(A-kI)x=0中,解得特征向量。
3. 特征值与特征向量的数值解法除了代数解法外,还有一种常用的数值解法是通过数值计算的方式求解特征值与特征向量。
这种方法基于矩阵的特征值分解,即将矩阵A分解为A=QΛQ^-1的形式,其中Q为正交矩阵,Λ为对角矩阵。
通过对矩阵A进行相似变换,可以得到特征值与特征向量的数值近似解。
三、特征值与特征向量的应用特征值与特征向量在线性代数中有着广泛的应用。
其中一种应用是在矩阵的对角化中,通过特征值与特征向量的求解,可以将矩阵对角化,从而简化矩阵的计算和分析。
另外,特征值与特征向量还可以用于求解线性方程组的特解和齐次解,以及矩阵的幂运算和矩阵的指数函数等。
总结:特征值与特征向量是线性代数中的重要概念,它们描述了矩阵在线性变换下的重要性质。
求矩阵的特征值和特征向量技巧
求矩阵的特征值和特征向量技巧求矩阵的特征值和特征向量是线性代数中的一个重要课题,它在许多科学和工程领域中都有广泛的应用。
特征值和特征向量可以帮助我们揭示矩阵的性质,解决许多实际问题。
在本文中,我们将一步一步了解如何计算矩阵的特征值和特征向量以及相关的技巧和应用。
什么是特征值和特征向量?在介绍如何计算特征值和特征向量之前,我们先来了解一下它们的定义。
给定一个n×n的方阵A,如果存在一个非零向量v,使得满足下面的等式: AV = λV其中,λ为常数,称为矩阵A的特征值,有时也用符号λ表示。
而V称为A 对应于特征值λ的特征向量。
特征值和特征向量反映了矩阵A在某个方向上的变换结果不变,即只会进行伸缩。
特征向量是伸缩方向,特征值是伸缩的比例。
计算特征值和特征向量的步骤下面我们将一步一步来计算矩阵的特征值和特征向量,具体步骤如下:Step 1: 计算特征值对于给定的矩阵A,我们首先需要求解它的特征值。
特征值是通过求解矩阵的特征值方程来获得的。
特征值方程可以表示为:det(A - λI) = 0其中,det表示矩阵的行列式,I为单位矩阵,λ为特征值。
根据上述方程,我们需要计算矩阵A减去λ乘以单位矩阵I的行列式,并使其等于0。
这将得到一个关于λ的多项式方程,解该方程即可得到矩阵A 的特征值。
Step 2: 计算特征向量在得到特征值λ后,我们需要计算对应于每个特征值的特征向量。
对于每个特征值λ,我们将其代入特征值方程,并求解该方程得到特征向量。
特征向量是通过将λ带入齐次线性方程组(A - λI)v = 0来获得的。
在这里,齐次线性方程组的解空间是一个向量空间,我们需要找到一个非零向量v,使得(A - λI)v = 0成立。
这样的向量v就是对应于特征值λ的特征向量。
特征向量的计算可以使用高斯消元法或矩阵求逆来完成。
我们需要求解一个线性方程组,将(A - λI)表示为增广矩阵形式并进行行变换,最终得到矩阵A对应于特征值λ的特征向量。
特征值与特征向量的概念性质及其求法
特征值与特征向量的概念性质及其求法特征值与特征向量是矩阵的一个重要特性,它们描述了矩阵在一些方向上的特殊性质。
特征值是一个标量,特征向量是一个向量。
特征值与特征向量的关系可以用方程表示:A*v=λ*v,其中A是一个矩阵,v是这个矩阵的特征向量,λ是对应的特征值。
换句话说,一个矩阵A作用在它的特征向量v上,结果是一个与v方向相同但大小为λ倍的新向量。
1.特征向量可以是零向量,但非零向量的特征向量被称为非零特征向量。
2.矩阵的特征值与特征向量是成对出现的,一个特征向量可以对应多个特征值,但一个特征值只能对应一个特征向量。
3.如果一个矩阵A的特征向量v对应的特征值λ,那么任意与v成比例的向量都是A的特征向量,且对应的特征值也是λ。
4.一个n×n的矩阵最多有n个特征值,即使重复的特征值,在进行特征值分解的时候也有对应的不同特征向量。
求解特征值与特征向量的方法有很多种,以下介绍两种常用的方法:1. 特征方程法:对于一个n×n的矩阵A,它的特征值可以通过求解特征方程 det(A−λI) = 0 来获得。
其中,λ表示特征值,I表示单位矩阵。
解特征方程得到的根即为特征值。
2. 幂迭代法:该方法适用于大型矩阵的求解。
假设矩阵A的最大特征值为λ1,对应的特征向量为x1、选取一个初始向量x0,通过迭代xk = A*xk−1,可以逼近特征向量x1、最终,通过归一化得到单位特征向量。
1.数据降维:在主成分分析(PCA)中,特征向量被用来定义新的特征空间,从而实现数据降维。
2.图像处理:特征值与特征向量被用来表示图像的特征,例如人脸识别中的特征向量。
3.振动分析:特征向量被用来描述物体的固有振动模式,通过求解特征值和特征向量,可以预测物体在不同频率下的振动表现。
总结来说,特征值和特征向量是矩阵的一个重要特性,它们描述了矩阵在一些方向上的特殊性质。
特征值与特征向量可以通过特征方程法和幂迭代法来求解。
在实际应用中,特征值与特征向量被广泛应用于数据降维、图像处理、振动分析等领域。
特征向量和特征值的求法
特征向量和特征值的求法在线性代数中,特征向量和特征值是非常重要的概念。
它们在矩阵的分析和应用中有着广泛的应用。
本文将介绍特征向量和特征值的定义、求法以及它们的应用。
特征向量和特征值的定义对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=kx,其中k为一个常数,那么x就是A的一个特征向量,k就是A的对应的特征值。
特征向量和特征值是成对出现的,一个特征向量对应一个特征值。
特征向量和特征值的求法求解特征向量和特征值的方法有很多种,下面介绍两种常用的方法。
方法一:特征多项式法对于一个n阶方阵A,其特征多项式为f(λ)=|A-λI|,其中I为n阶单位矩阵。
求解特征值就是求解f(λ)=0的根。
求解特征向量就是将特征值代入(A-λI)x=0中,解出x。
方法二:幂法幂法是一种迭代方法,用于求解矩阵的最大特征值和对应的特征向量。
具体步骤如下:1. 任意选择一个非零向量x0作为初始向量。
2. 迭代计算xk+1=Axk/||Axk||,其中||Axk||为Axk的模长。
3. 当xk+1与xk的差距小于某个阈值时,停止迭代。
此时xk+1就是A的最大特征值对应的特征向量。
特征向量和特征值的应用特征向量和特征值在矩阵的分析和应用中有着广泛的应用。
下面介绍几个常见的应用。
1. 矩阵的对角化对于一个n阶方阵A,如果存在n个线性无关的特征向量,那么A 可以对角化,即存在一个对角矩阵D和一个可逆矩阵P,使得A=PDP^-1。
对角化后的矩阵D的对角线上的元素就是A的特征值。
2. 矩阵的相似性如果存在一个可逆矩阵P,使得A=PBP^-1,那么A和B是相似的。
相似的矩阵具有相同的特征值,但不一定具有相同的特征向量。
3. 矩阵的谱半径矩阵的谱半径是指矩阵的所有特征值的模长的最大值。
谱半径在控制论、信号处理等领域有着广泛的应用。
总结本文介绍了特征向量和特征值的定义、求法以及应用。
特征向量和特征值在矩阵的分析和应用中有着广泛的应用,掌握它们的求法和应用可以帮助我们更好地理解和应用线性代数的知识。
矩阵特征值与特征向量的求解方法
矩阵特征值与特征向量的求解方法矩阵特征值与特征向量是线性代数中的重要概念,广泛应用于科学和工程领域。
特征值和特征向量可以帮助我们理解矩阵的性质和变换过程。
在本文中,我们将探讨矩阵特征值与特征向量的求解方法。
一、特征值与特征向量的定义在矩阵A的情况下,如果存在一个非零向量v,使得Av=λv,其中λ是一个标量,那么v称为A的特征向量,λ称为A的特征值。
特征向量表示了在矩阵变换下不变的方向,特征值则表示了特征向量的缩放比例。
二、特征值与特征向量的求解方法1. 特征值与特征向量的几何意义特征向量表示了线性变换下不变的方向,而特征值则表示了这个方向的缩放比例。
例如,对于一个二维平面上的矩阵A,如果存在一个特征向量v,使得Av=2v,那么这个特征向量表示了一个在线性变换下不变的方向,并且这个方向的缩放比例为2。
2. 特征值与特征向量的求解方法求解矩阵的特征值与特征向量有多种方法,其中最常用的方法是特征值分解和幂迭代法。
特征值分解是一种将矩阵分解为特征向量和特征值的形式的方法。
通过特征值分解,我们可以将一个矩阵表示为一个对角矩阵和一个特征向量矩阵的乘积。
特征值分解可以帮助我们简化矩阵的计算和分析。
幂迭代法是一种通过迭代矩阵的幂次来逼近特征值和特征向量的方法。
幂迭代法的基本思想是通过不断迭代矩阵的乘法,使得矩阵的幂次逼近于一个特定的特征向量。
通过幂迭代法,我们可以求解矩阵的特征值和特征向量的近似解。
除了特征值分解和幂迭代法之外,还有其他一些求解特征值和特征向量的方法,如QR分解法、雅可比迭代法等。
这些方法在不同的情况下具有不同的适用性和效率。
三、应用举例矩阵特征值与特征向量的求解方法在科学和工程领域有广泛的应用。
例如,在图像处理中,特征值与特征向量可以用来描述图像的纹理和形状信息。
在量子力学中,特征值与特征向量可以用来描述量子系统的能量和波函数。
在金融领域中,特征值与特征向量可以用来分析股票市场的波动和相关性。
毕业论文矩阵的特征值与特征向量的求法及其关系
毕业论文矩阵的特征值与特征向量的求法及其关系特征值与特征向量是矩阵理论中的重要概念,用于描述矩阵的性质和特征。
在毕业论文中,了解特征值和特征向量的求法及其关系是十分重要的。
下面将对特征值与特征向量的求法及其关系进行详细介绍。
1.特征值的求法:特征值是方阵对应的线性变换在一些向量上的缩放因子。
求解特征值的方法可以通过求解矩阵的特征方程得到,特征方程为:,A-λI,=0,其中A是方阵,λ是未知数,I是单位矩阵。
特征方程的解即为特征值。
通过求解特征方程,可以得到矩阵的特征值。
2.特征向量的求法:与特征值对应的是特征向量,特征向量是矩阵在特定方向上的变换结果。
特征向量的求法需要结合特征值一起考虑。
先求得特征值后,代入特征方程,得到(A-λI)X=0,其中X为未知向量。
求解此线性方程组即可得到特征向量。
特征向量是非零的向量,一般也可以进行标准化处理,使其模长为1,方便研究特征向量的几何性质。
3.特征值与特征向量的关系:特征值与特征向量之间存在重要的关系。
对于方阵A和其特征向量X,满足AX=λX,即特征向量经矩阵A的变换后等于特征值的倍数。
特征值与特征向量之间的关系可以帮助我们理解矩阵的性质和行为。
通过求解矩阵的特征值与特征向量,我们可以得到矩阵的谱分解,即将矩阵分解为特征值和特征向量的乘积。
通过谱分解,我们可以得到矩阵的对角化形式,即将矩阵表示为对角矩阵的形式,其中对角线元素为特征值。
对角化可以简化矩阵的计算,也可以更好地描述矩阵的性质。
此外,特征向量之间可能存在线性相关性。
特征向量之间的线性组合仍然是矩阵的特征向量。
这也意味着,如果矩阵存在一个特征值对应多个线性无关的特征向量,那么矩阵是可对角化的。
总结起来,特征值与特征向量是矩阵理论中非常重要的概念。
求解特征值和特征向量可以帮助我们理解矩阵的性质和行为。
特征值与特征向量之间存在紧密的关系,通过求解特征值和特征向量,我们可以得到矩阵的对角化形式,为矩阵的进一步计算和分析提供了便利。
特征值与特征向量的计算
特征值与特征向量的计算特征值和特征向量是线性代数中的重要概念,广泛应用于各个领域的数学和工程问题中。
它们的计算方法也是学习线性代数的基础知识之一。
本文将介绍特征值与特征向量的概念以及计算方法。
一、特征值与特征向量的定义在矩阵的运算中,特征值和特征向量是由方阵产生的重要结果。
对于一个方阵A,当存在一个非零向量v使得满足以下等式时:Av = λv其中,λ为标量,称为特征值,而v称为矩阵A对应于λ的特征向量。
特征值和特征向量的计算可以帮助我们理解矩阵的性质,比如矩阵的对角化、矩阵的相似性等。
二、特征值与特征向量的计算方法1. 通过特征方程求解要计算一个矩阵的特征值和特征向量,最常见的方法是通过特征方程求解。
对于一个n阶方阵A,其特征值求解的步骤如下:a) 计算矩阵A与单位矩阵的差值A-λI,其中λ为待求的特征值,I 为n阶单位矩阵。
b) 解特征方程|A-λI|=0,求得特征值λ。
c) 将求得的特征值代入方程A-λI=0,解出特征向量v。
2. 使用特征值分解方法特征值分解是另一种计算特征值和特征向量的方法,适用于对角化矩阵。
对于对角化矩阵A,其特征值分解的步骤如下:a) 求解A的特征值λ和对应的特征向量v。
b) 将特征向量v按列组成矩阵P。
c) 求解对角矩阵D,其中D的对角线元素为特征值。
d) 根据A=PDP^-1,将计算得到的矩阵P和D代入,求解出矩阵A。
三、特征值与特征向量的应用特征值与特征向量的计算方法在实际应用中具有广泛的应用,以下是几个常见的应用场景:1. 机器学习中的主成分分析(PCA)主成分分析是一种常用的降维技术,通过特征值与特征向量的计算可以实现数据降维和分析。
2. 物理学中的量子力学量子力学中,量子态可由特征向量表示,相应的能量则为特征值,通过求解特征值和特征向量,可以揭示微观粒子的性质。
3. 图像处理中的特征提取在图像处理的过程中,通过计算图像的特征值和特征向量,可以提取出图像的关键信息,用于图像识别、分类等任务。
求特征值和特征向量
求特征值和特征向量求特征值和特征向量是线性代数中的重要概念和操作。
在很多数学和工程问题中,需要通过求解特征值和特征向量来解决一系列相关的问题。
本文将详细介绍特征值和特征向量的定义、性质以及求解方法。
首先,我们来定义特征值和特征向量。
设A是一个n阶方阵。
如果存在一个非零向量x,使得Ax等于x的常数倍,即Ax=λx,其中λ是一个常数,那么我们称λ为矩阵A的一个特征值,x称为对应于特征值λ的特征向量。
特别地,如果λ是A的特征值,那么满足(A-λI)x=0的非零向量x称为属于特征值λ的零空间。
特征值和特征向量是矩阵A的一个固有性质,对于不同的特征值,对应的特征向量也是不同的。
接下来,我们来讨论特征值和特征向量的性质。
首先,特征值和特征向量一般是成对出现的,即对于矩阵A的一个特征值λ,一定存在对应的特征向量x。
特征向量的长度不影响其特征性质,即如果x 是特征向量,那么kx也是特征向量,其中k是一个非零常数。
特征值和特征向量具有重要的几何意义,特征向量决定了矩阵A的变换方向,特征值表示特定方向上的伸缩比例。
然后,我们来介绍求解特征值和特征向量的方法。
求解特征值和特征向量的常用方法有直接解特征方程和迭代法。
对于一个n阶矩阵A,要求解其特征值和特征向量,可以通过解特征方程det(A-λI)=0来得到特征值λ的值,其中I是n阶单位矩阵。
通过特征值,我们可以求出对应的特征向量。
特征向量的求解可以通过向量空间的方法,即解方程组(A-λI)x=0。
在实际计算中,我们可以利用数值计算软件来求解特征值和特征向量。
另外,对于特征值和特征向量的求解也可以通过迭代法来实现。
迭代法是一种基于数值计算的方法,通过迭代计算逼近矩阵的特征值和特征向量。
常见的迭代法有幂法、反幂法和QR方法。
幂法是一种基于逼近特征值和特征向量的迭代过程,通过不断迭代计算可以得到特征值和特征向量的逼近值。
反幂法和幂法类似,只是在每次迭代中求解矩阵的逆。
QR方法是一种通过矩阵的QR分解来求解特征值和特征向量的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于特征值与特征向量的求解方法与技巧摘 要:矩阵的初等变换是高等代数中运用最广泛的运算工具,对矩阵的特征值与特征向量的求解研究具有一定意义。
本文对矩阵特征值与特征向量相关问题进行了系统的归纳,得出了通过对矩阵进行行列互逆变换就可同时求出特征值及特征向量的结论。
文章给出求解矩阵特征值与特征向量的两种简易方法: 列行互逆变换方法与列初等变换方法。
关键词: 特征值,特征向量; 互逆变换; 初等变换。
1引言物理、力学、工程技术的许多问题在数学上都归结为求矩阵的特征值与特征向量问题,直接由特征方程求特征值是比较困难的,而在现有的教材和参考资料上由特征方程求特征值总要解带参数的行列式,且只有先求出特征值才可由方程组求特征向量。
一些文章给出了只需通过行变换即可同步求出特征值及特征向量的新方法,但仍未摆脱带参数行列式的计算问题。
本文对此问题进行 了系统的归纳,给出了两种简易方法。
一般教科书介绍的求矩阵的特征值和特征向量的方法是先求矩阵A 的特征方程()0A f I A λλ=-=的全部特征根(互异) ,而求相应的特征向量的方法则是对每个i λ 求齐次线性方程组()0i I A X λ-=的基础解系,两者的计算是分离的,一个是计算行列式,另一个是解齐次线性方程组, 求解过程比较繁琐,计算量都较大。
本文介绍求矩阵的特征值与特征向量的两种简易方法, 只用一种运算 ——矩阵运算, 其中的列行互逆变换法是一种可同步求出特征值与特征向量的方法, 而且不需要考虑带参数的特征矩阵。
而矩阵的列初等变换法, 在求出特征值的同时, 已经进行了大部分求相应特征向量的运算, 有时碰巧已完成了求特征向量的全部运算。
两种方法计算量少, 且运算规范,不易出错。
2 方法之一: 列行互逆变换法定义1 把矩阵的下列三种变换称为列行互逆变换: 1. 互换i 、j 两列()i j c c ↔,同时互换j 、i 两行()j i r r ↔ ;2. 第i 列乘以非零数()i k kc , 同时第i 行乘11i c k k⎛⎫ ⎪⎝⎭; 3. 第i 列k 倍加到第j 列()j i c kc +, 同时第j 行- k 倍加到第i 行()ijr kr -。
定理1 复数域C 上任一n 阶矩阵A 都与一个Jordan 标准形矩阵1212,,....r k k kr J diag J J J λλλ⎧⎫⎪⎪⎛⎫⎛⎫⎛⎫ ⎪⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭=相似, 其中111110...0001...00..................000...1000...0ki kiJ λλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦称为Jordan 块, 12r k k k n +++=并且这个Jordan 标准形矩阵除去其中Jordan 块的排列次序外被矩阵A 唯一确定, J 称为A 的Jordan 标准形。
定理2 A 为任意n 阶方阵, 若T A J I P ⎛⎫⎛⎫−−−−−−→ ⎪ ⎪⎝⎭⎝⎭一系列列行互逆变换其中1212,,....r k k kr J diag J J J λλλ⎧⎫⎪⎪⎛⎫⎛⎫⎛⎫ ⎪⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭=是Jordan 标准形矩阵,()()1r P P P =,()()11,,iii iki r P ββ== ,12r k k k n +++=。
则i λ为A 的特征值, ik αβ=为A 的对应特征值i λ的特征向量。
证: 由定理1可知, 任一矩阵必相似于一约当阵, 按定理2中化简方法, 有矩阵A 的转置矩阵T A 相似于一约当矩阵J , 即存在可逆矩阵P , 使()T T T P A P J=, 故T AP PJ =其中1111r rP βαβα⎛⎫ ⎪⎝⎭=111110...0001...00..................000...1000...0ki kiJ λλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦111110...0001...00..................000 (1)000...0Tki kiJ λλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 所以()()111111111Tk r r r r T kr J J A βαβαβαβα⎡⎤=⎢⎥⎣⎦故有()1,,i i i i r A λαα== 所以i λ 为A 的特征值, i i ik βα=为A 的对应特征值i λ 的特征向量。
为了运算的方便,约定:(1)i i r kr+−−−−→表示矩阵第j行k倍加到第i行; (2)i i c kc-−−−−→表示矩阵第j列-k倍加到第i列。
例1 求矩阵211031213A -⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦=的特征值与特征向量。
解:()()1321311212211111200031131121213004004............... (1)00100110010010010001101111c c c c r r r r A I --++--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢--⎣⎦⎣⎦⎣⎦()()322333121232124200200120120004004............ (1112111011201)11112111c cr r c r -+−−−→⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦所以特征值1232,4λλλ===, 对应特征值122λλ==的特征向量1111α-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=,对应34λ=的特征向量3111α⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦=。
注: 解答过程中(1)处的k= - 1是由方程2+ 3k+ ( 2+ k) ( - k)=0确定的,(2)处的k= - 1是由方程k= - 1+ k+ ( 3+ k) ( - k) = 0确定的,(3)处的k= -1|2是由方程- 1k+ 2k+ 4( - k) = 0确定的。
3. 方法之二:列初等变换法定理3 设A 是n 阶方阵, I 为n 阶单位阵, λ为待求特征值。
若对矩阵I A λ- 施行一系列列初等变换, 可得到下三角矩阵M(λ), 则令M (λ)的主对角线上元素乘积为零, 求得λ值即为矩阵A 的特征值。
证明: 设111212122212-n n n n nn a a a a a a a a a I A λλλλ--⎡⎤⎢⎥---⎢⎥⎢⎥⎢⎥---⎣⎦-=考察I A λ-的第一行元素: 若1i a 不全为零(2,,i n =), 任取其一,记为()1b λ,通过列初等变换化为()()110*b c λλ⎡⎤⎢⎥⎣⎦;若()102,,i a i n ==, 则I A λ- 就具有这种形式, 再对()1c λ进行相应的列初等变换,化为()()220*b c λλ⎡⎤⎢⎥⎣⎦,再对()2c λ 进行类似的计算, 直至I A λ- 化为三角矩阵()()()()()121000=*0Mn n b b b b γλλλλ-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 由以上运算可知, I A λ-与M (λ)等价, 则I A λ- 与M (λ)有相同的初等因子,定理得证。
由定理3求出λi ( i= 2, …, n) , 将每个特征值λi 代入M(λ)得M (λ1 ) , 再由定理4求出相应的特征向量。
定理4对矩阵λI- A 施行一系列列初等变换,化为列阶梯形, 同时对单位阵也施行相应的列初等变换, 即存在n 阶可逆阵Qn, n ,使22n r n n n n n r n n I A C Q Q QQ I λ---⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦其中()R I A λ-=r , n r C 为满秩矩阵,()n n n r n n r Q Q Q -= ,则分块矩阵n n r Q -的n-r 个n 维列向量即为矩阵A 的特征值1λ对应的特征向量。
证明: 对矩阵()I A λ-, 经过有限次初等变换化为标准形,即存在n阶可逆阵n n P 及n n Q 使()n n n n PI A Q λ- =r r r n r n r rn r n r I Q Q Q ----⎡⎤⎢⎥⎢⎥⎣⎦, 于是1()n n n nI A Q P λ--=r rr n r n r r n r n r I Q Q Q ----⎡⎤⎢⎥⎢⎥⎣⎦, 根据分块矩阵的运算()n r n n rI A Q Q λ--11n r n n rP P ---=r r r n r n r r n r n r I Q Q Q ----⎡⎤⎢⎥⎢⎥⎣⎦(()())n r n n r n r n n r I A Q I A Q C Q λλ----=()0n n r I A Q λ--=()n n r n n r I A Q IQ λλ---=故Qn, n- r 的n- r 个n 维列向量即为矩阵A 的特征值λi 对应的特征向量, 又因为Qn, n 可逆, 知这些特向量线性无关。
证毕。
由定理3、定理4可知计算特征值与特征向量的步骤:( 1)计算I A I λ-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦一系列初等变化()()C Q λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 其中C(λ)为含λ的下三角矩阵, Q (λ)为I 经过初等列变换得到的矩阵;( 2)令C(λ)主对角线元素之积为零,求出根即为特征值λi ( i= 1, 2, ……, n) ;( 3)将求出的λi ( i= 1, 2, …, n)代入()()C Q λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦中为()()i i C Q λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 再进行列初等变换, 当C (λ)化为列阶梯形, 当非零列向量个数为r 时, Q (λ)中后的n- r 个列向量即为λi 对应的特征向量。
例2 重做例1解:()213113222111120311302133121000010100100011001001223454001010112c c c c c c I A I λλλλλλλλλλλλλλλ++-⇔----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-------⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎢⎥--⎢⎢---+⎢⎢⎢⎢⎢⎢-⎣⎦()()()()311001203442001011113c c C Q λλλλλλλλ--⎡⎤⎢⎥-⎥⎢⎥⎥⎢⎥⎡⎤----⎥⎢⎥⎢⎥−−−→=⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎣⎦⎥⎢⎥-⎥⎢⎥⎥⎢⎥-⎣⎦令C (λ)主对角线元素之积为零, 即()()242λλ---= 0, 特征值λ1 =λ2 = 2, λ3 = 4。