理论力学公式汇总,复习要点(不可多得的考前复习资料)
高三理论力学知识点归纳
高三理论力学知识点归纳理论力学是高中物理教学中的重要内容之一,也是高考物理必考的一部分。
理解和掌握理论力学的知识点对于提高物理成绩至关重要。
本文将对高三理论力学知识点进行归纳,以帮助学生更好地复习和备考。
1. 力、质量和加速度- 力的定义:力是改变物体运动状态或形状的原因,单位是牛顿(N)。
- 质量的定义:物体固有的惯性特征,单位是千克(kg)。
- 牛顿第二定律:物体的加速度与作用于其上的力成正比,与物体质量成反比。
公式为 F = ma,其中 F 为力,m 为质量,a 为加速度。
2. 质点力学- 质点:质量可以忽略,大小可以集中在一个点上的物体。
- 包括的物理量:位置、速度、加速度、质量等。
- 质点的运动方程:x = x0 + v0t + 1/2at^2,其中 x 为位置,t 为时间,v0 为初始速度,a 为加速度。
3. 牛顿定律- 牛顿第一定律(惯性定律):物体静止或匀速直线运动时,受力为零。
- 牛顿第二定律:物体的加速度与作用于其上的力成正比,与物体质量成反比。
- 牛顿第三定律:两个物体之间的相互作用力大小相等,方向相反。
4. 圆周运动- 圆周运动的力学量:角度、角速度、角加速度、线速度等。
- 圆周运动的加速度:a = ω^2r,其中 a 为加速度,ω 为角速度,r 为半径。
- 车辆转弯问题:车辆在转弯时会受到向心力,向心力的大小为 F = mv^2/r,其中 F 为向心力,m 为车辆质量,v 为车速,r 为转弯半径。
5. 力的合成与分解- 力的合成:若多个力作用在物体上,则合成力是一个能够完全代替这些力的力,使物体产生相同的效果。
- 重力分解:将重力按照某个方向分解为两个分力,一般情况下是垂直于运动方向和平行于运动方向的两个分力。
6. 力的性质- 平行四边形定则:两个力的合力大小等于它们对角线的长度。
- 三角形定则:两个力的合力可以用相等于它们的夹角的邻边的长度表示。
- 牛顿力学中力的叠加性:在力的作用下,物体的运动可以看作是多个力的叠加效果。
理论力学知识点总结
理论力学知识点总结理论力学是研究物体运动规律的一门基础物理学科,它主要研究在力的作用下物体的运动状态。
以下是理论力学的知识点总结:1. 基本概念- 力:物体间的相互作用,可以改变物体的运动状态。
- 质量:物体所含物质的多少,是物体惯性大小的量度。
- 惯性:物体保持其运动状态不变的性质。
- 运动:物体位置随时间的变化。
- 静止:物体相对于参照系位置不发生改变的状态。
2. 牛顿运动定律- 第一定律(惯性定律):物体在没有外力作用下,将保持静止或匀速直线运动。
- 第二定律(加速度定律):物体的加速度与作用力成正比,与物体质量成反比,方向与作用力方向相同。
- 第三定律(作用与反作用定律):对于任何两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。
3. 功和能- 功:力在物体上做功,等于力与位移的乘积,是能量转化的量度。
- 动能:物体由于运动而具有的能量,与物体质量和速度的平方成正比。
- 势能:物体由于位置而具有的能量,与物体位置有关。
- 机械能守恒定律:在没有非保守力做功的情况下,系统的机械能(动能加势能)保持不变。
4. 动量和角动量- 动量:物体运动状态的量度,等于物体质量与速度的乘积。
- 角动量:物体绕某一点旋转运动状态的量度,等于物体质量、速度与该点到物体距离的乘积。
- 动量守恒定律:在没有外力作用的系统中,系统总动量保持不变。
- 角动量守恒定律:在没有外力矩作用的系统中,系统总角动量保持不变。
5. 刚体运动- 平动:刚体上所有点的运动状态相同,即刚体整体移动。
- 转动:刚体绕某一点或某一轴的旋转运动。
- 刚体的转动惯量:衡量刚体对转动的抵抗程度,与刚体的质量分布和旋转轴的位置有关。
6. 振动和波动- 简谐振动:物体在回复力作用下进行的周期性振动,其运动方程为正弦或余弦函数。
- 阻尼振动:在阻尼力作用下的振动,振幅随时间逐渐减小。
- 波动:能量在介质中的传播,包括横波和纵波。
7. 分析力学- 拉格朗日力学:通过拉格朗日量(动能减势能)来描述物体的运动。
理论力学公式知识点总结
理论力学公式知识点总结牛顿第一定律:一个物体如果受力为零,那么它要么静止,要么匀速直线运动。
即物体的运动状态不变,或者说物体维持原来的状态不变。
数学表示为\[ \mathbf{F} = 0 \Longrightarrow \frac{d\mathbf{v}}{dt} = 0 \]牛顿第二定律:一个物体受到的力等于它的质量乘以它的加速度。
即\[ \mathbf{F} = m\mathbf{a} \]其中,\(\mathbf{F}\)表示物体受到的合力,\(m\)表示物体的质量,\(\mathbf{a}\)表示物体的加速度。
牛顿第三定律:作用力与反作用力大小相等,方向相反,且作用于不同的物体上。
即\[ \mathbf{F}_{12} = -\mathbf{F}_{21} \]其中,\(\mathbf{F}_{12}\)表示物体1对物体2的作用力,\(\mathbf{F}_{21}\)表示物体2对物体1的反作用力。
力的合成与分解:当一个物体受到多个力的作用时,这些力可合成为一个合力,合力的方向和大小可以通过几何法或者三角法计算得出。
反之,一个力可以分解为多个分力,分力的方向和大小也可以通过几何法或者三角法计算得出。
动量定理:当一个物体受到外力时,它的动量会发生变化。
动量定理可以表示为\[ \mathbf{F} = \frac{d\mathbf{p}}{dt} \]其中,\(\mathbf{F}\)表示外力,\(\mathbf{p}\)表示物体的动量。
冲量:当外力作用时间很短,物体的动量变化可以用冲量来表示。
冲量的大小等于外力在时间上的积分,即\[ \mathbf{I} = \int \mathbf{F} dt \]其中,\(\mathbf{I}\)表示冲量。
角动量:一个物体绕着轴线运动时,它具有角动量。
角动量的大小等于物体的质量乘以它的速度和距离轴线的距离的乘积,即\[ L = r \times p \]其中,\(L\)表示角动量,\(r\)表示物体距离轴线的距离,\(p\)表示物体的动量。
理论力学公式
理论力学公式理论力学是物理学中重要的分支之一,它研究的是物质运动的规律以及力对物体运动的影响。
在理论力学中有很多重要的公式,下面将介绍一些较为常用的公式。
1.速度与位移的关系:速度(v)是一个物体在单位时间内所经过的位移(s)的变化率。
速度的公式可以表示为:v = ds/dt其中,v代表速度,s代表位移,t代表时间。
这个公式表明,速度等于位移的导数。
2.加速度和速度的关系:加速度(a)是一个物体在单位时间内速度(v)的变化率。
加速度的公式可以表示为:a = dv/dt其中,a代表加速度,v代表速度,t代表时间。
这个公式表明,加速度等于速度的导数。
3.牛顿第二定律:牛顿第二定律描述了力对物体运动的影响。
牛顿第二定律可以表示为:F = ma其中,F代表力,m代表物体的质量,a代表物体的加速度。
这个公式表明,物体受到的力等于其质量乘以加速度。
4.动能和功的关系:动能(K)是物体运动时所具有的能量。
根据定义,动能等于物体的质量乘以速度的平方的一半,即:K = (1/2)mv^2其中,K代表动能,m代表物体的质量,v代表物体的速度。
功(W)则描述了力对物体运动所做的功。
功的公式可以表示为:W = F·s·cosθ其中,W代表功,F代表力,s代表位移,θ代表力在位移方向上与位移的夹角。
这个公式表明,功等于力乘以位移乘以力在位移方向上的投影。
5.势能和力的关系:势能(U)是力学系统中保持的一种能量形式。
势能的公式可以表示为:U = -∫F·ds其中,U代表势能,F代表力,s代表位移。
这个公式表明,势能等于力对位移的负积分。
6.角动量和力矩的关系:角动量(L)是一个物体围绕一些点旋转时所具有的动量。
L=r×p其中,L代表角动量,r代表与旋转点的矢量距离,p代表物体的动量。
这个公式表明,角动量等于与旋转点的矢量距离与动量的叉乘。
力矩(τ)则描述了力对物体旋转的影响。
力矩的公式可以表示为:τ=r×F其中,τ代表力矩,r代表与旋转点的矢量距离,F代表力。
理论力学快速知识点总结
理论力学快速知识点总结一、牛顿运动定律牛顿三定律是经典力学的基石,它包括三个定律:1. 牛顿第一定律:当物体处于静止或匀速直线运动时,它会保持这种状态,除非受到外力的作用。
2. 牛顿第二定律:物体的加速度与作用力成正比,且与物体的质量成反比。
它的数学表达式为F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。
3. 牛顿第三定律:任何两个物体之间的相互作用力都是相等的,方向相反。
二、运动的描述在力学中,需要描述物体的运动状态。
常用的描述方法包括:1. 位移和速度:位移是指物体从一个位置到另一个位置的变化,速度是位移随时间的变化率。
速度的数学定义为v=Δx/Δt,其中Δx表示位移的变化量,Δt表示时间的变化量。
2. 加速度:加速度是速度随时间的变化率。
加速度的数学定义为a=Δv/Δt,其中Δv表示速度的变化量,Δt表示时间的变化量。
3. 动量:动量是描述物体运动状态的物理量,它与物体的质量和速度有关。
动量的数学定义为p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。
三、牛顿运动定律的应用牛顿运动定律是力学中最基本的规律,它可以应用于各种不同的情况,包括:1. 自由落体运动:自由落体是指物体只受重力作用,不受其他力的影响。
根据牛顿第二定律,自由落体的加速度为g≈9.8m/s^2。
2. 斜抛运动:斜抛运动是指物体同时具有水平和竖直方向的运动。
根据牛顿第二定律,斜抛运动可以分解为水平和竖直方向的分量运动。
3. 圆周运动:圆周运动是指物体沿着圆形轨道运动。
根据牛顿第二定律,圆周运动的向心力由向心加速度和物体质量决定。
四、能量和动量守恒定律能量和动量是物体运动的重要物理量,它们遵循守恒定律。
1. 能量守恒定律:能量守恒定律表明,在一个封闭系统中,能量的总量是不变的。
这意味着能量可以在不同形式之间转化,但总量保持不变。
2. 动量守恒定律:动量守恒定律表明,在一个封闭系统中,动量的总量是不变的。
(完整版)理论力学复习总结(知识点)
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
理论力学复习资料资料
理论力学复习资料资料理论力学是物理学的基础学科之一,它研究物体运动的规律和力的作用。
对于理论力学的学习和掌握,复习资料是必不可少的。
本文将为大家提供一些理论力学复习资料的内容和方法,帮助大家更好地理解和应用这门学科。
一、基础知识回顾理论力学的基础知识包括牛顿三定律、质点运动学、质点动力学等内容。
在复习资料中,可以通过总结和归纳这些知识点,形成一个清晰的知识框架。
例如,可以将牛顿三定律分别列出,并给出具体的例子进行说明。
对于质点运动学和动力学,可以总结各种运动的基本公式和求解方法,如匀速直线运动、匀加速直线运动、曲线运动等。
二、力的研究力是理论力学中一个重要的概念,它描述了物体之间相互作用的效果。
在复习资料中,可以对力的性质、分类和计算方法进行详细的介绍。
例如,可以介绍重力、弹力、摩擦力等常见的力,并说明它们的特点和作用。
此外,还可以介绍力的合成和分解的方法,以及力的叠加原理和平衡条件的应用。
三、动量和能量动量和能量是理论力学中的两个重要概念,它们描述了物体运动的特征和变化。
在复习资料中,可以详细介绍动量和能量的定义、计算方法和守恒定律。
例如,可以介绍动量的定义为质量乘以速度,能量的定义为物体具有的做功能力。
此外,还可以介绍动量守恒定律和能量守恒定律的应用,如碰撞问题、弹性势能和动能的转化等。
四、刚体力学刚体力学是理论力学中的一个重要分支,它研究刚体的平衡和运动规律。
在复习资料中,可以对刚体的定义、性质和运动学描述进行详细的介绍。
例如,可以介绍刚体的几何性质,如质心、转动轴等。
此外,还可以介绍刚体的运动学描述,如平面运动和空间运动的公式和方法。
五、弹性力学弹性力学是理论力学中研究物体弹性变形和弹性力学性质的学科。
在复习资料中,可以对弹性力学的基本概念和公式进行介绍。
例如,可以介绍应力、应变和弹性模量等概念,并给出具体的计算方法和实例。
此外,还可以介绍弹性力学的应用,如弹簧的伸长、弹性体的变形等。
六、力学问题的求解方法理论力学中有许多复杂的问题需要用数学方法进行求解。
理论力学知识点总结
理论力学知识点总结理论力学是物理学中的一个重要分支,研究物体的运动规律和受力情况。
其基础在于牛顿力学,也称为经典力学。
本文将总结理论力学领域中的一些重要知识点,包括牛顿定律、动量、能量等概念。
1. 牛顿定律牛顿定律是理论力学的基石,共分为三个定律。
第一定律也称为惯性定律,描述了物体的运动状态。
它指出,任何物体都保持静止或匀速直线运动,除非有外力作用于它。
第二定律是物体的运动状态与作用在其上的力成正比的关系。
其公式为F = ma,其中F为物体所受力,m为物体的质量,a为物体的加速度。
第三定律是作用力和反作用力总是成对存在的。
这些定律对于解释物体的运动行为和相互作用提供了基础。
2. 动量动量是物体运动的重要物理量,定义为物体质量与速度的乘积。
动量为矢量量,方向与速度方向一致。
动量的变化率等于作用在物体上的力。
这一关系可以表示为F = dp/dt,其中F为物体的受力,p为物体的动量,t为时间。
动量在碰撞、运动和相互作用等情况下起着重要的作用,也是守恒定律的基础之一。
3. 动能和势能动能是物体运动时具有的能量形式,定义为物体质量与速度平方的乘积的一半。
动能可以表示为K = 1/2 mv^2,其中m为物体质量,v为物体速度。
动能与物体的质量和速度平方成正比,是运动状态的指示器。
势能是与物体位置有关的能量,通常体现为引力和弹性力。
势能是因物体在某一位置而具有的能量,可以转化为动能,也可以从动能转化为势能,满足能量守恒定律。
4. 转动理论力学不仅研究物体的直线运动,还涉及到了转动的问题。
刚体的转动是指刚体绕固定轴线旋转的运动。
转动的物理量包括角位移、角速度和角加速度。
角位移表示物体绕轴线旋转的角度,角速度是单位时间内角位移的变化率,角加速度是单位时间内角速度的变化率。
转动存在着转动惯量、角动量、角动量守恒和角动量定理等重要概念。
5. 平衡在理论力学中,平衡是指物体处于静止或匀速直线运动的状态。
平衡可以分为静平衡和动平衡。
理论力学教材知识点总结
理论力学教材知识点总结1. 牛顿运动定律牛顿运动定律是理论力学的基础,它包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律:一个物体如果受到合外力作用,将保持静止状态或匀速直线运动状态。
这一定律反映出了物体的运动状态与外力的关系。
牛顿第二定律:物体的加速度与作用在其上的合外力成正比,与物体的质量成反比。
即F=ma,其中F为合外力,m为物体的质量,a为物体的加速度。
牛顿第三定律:任何两个物体之间的相互作用都是相等的,方向相反。
即作用力等于反作用力,它们的方向相反,大小相等。
这三条定律是理论力学的基石,它们为我们理解物体的运动提供了基本的规律。
在学习理论力学的过程中,我们要深刻理解这些定律,并能够灵活运用它们来解决实际问题。
2. 力的概念力是物体之间相互作用的表现,它是导致物体产生加速度的原因。
力的大小可以用牛顿(N)作为单位来表示,力的方向对物体的运动状态有着重要的影响。
在学习力的概念时,我们要了解各种不同类型的力,例如重力、弹力、摩擦力、弦力等,以及它们的性质和作用规律。
3. 动力学动力学是研究物体运动状态变化规律的学科,它包括物体的运动参数、牛顿第二定律、动量定理、动量守恒定律等内容。
动量是描述物体运动状态的物理量,它等于物体质量乘以速度。
动量定理指出,当合外力作用于物体时,物体的动量将发生改变,这个变化率等于作用力的大小与方向。
动量守恒定律说明了在某些特定条件下,物体的总动量是守恒的,即在某个过程中总动量保持不变。
通过学习动力学,我们可以更好地理解物体的运动状态变化规律,掌握物体的动量和动能等重要概念。
4. 静力学静力学是研究物体静止状态和平衡的学科,它包括物体受力平衡条件、力的分解、受力分析等内容。
物体受力平衡条件是指物体受到的各个力的合力和合力矩均为零时,物体处于平衡状态。
通过受力平衡条件,我们可以分析物体受力的情况,判断物体的平衡状态。
力的分解是指将一个斜面上的力分解为平行于斜面和垂直于斜面的两个分力,这样可以更好地分析斜面上物体的运动状态。
理论力学复习总结(知识点)
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
理论力学知识点总结
理论力学知识点总结理论力学是研究物体运动规律和力的作用规律的学科,它是物理学的基础和核心内容之一、理论力学是以牛顿力学为基础的,通过描述和解决物体运动的数学模型来研究系统的行为。
本文将对理论力学的几个重要知识点进行总结。
1.牛顿运动定律:牛顿运动定律是理论力学的基石,包括三个定律:(1)第一定律:也称为惯性定律,物体在没有外力作用时将保持静止或匀速直线运动的状态。
(2) 第二定律:物体的加速度与作用在物体上的合力成正比,与物体的质量成反比,可以用公式F=ma表示,其中F为合力,m为质量,a为加速度。
(3)第三定律:也称为作用-反作用定律,任何作用力都有一个等大相反方向的反作用力。
2.动量和动量守恒定律:动量是物体运动的物理量,是质量和速度的乘积。
动量守恒定律是指在一个封闭系统中,系统总动量在时间上保持不变。
对于两个物体的弹性碰撞,可以用动量守恒定律来描述。
3.力学能的转化和守恒:力学能包括动能和势能。
动能是物体由于运动而具有的能量,可以用公式K = 1/2mv^2表示,其中m为质量,v为速度。
势能是物体由于其位置而具有的能量,例如重力势能和弹性势能。
力学能转化和守恒定律描述了力学能在物体运动过程中的转化和守恒。
4.圆周运动和万有引力:圆周运动是物体在向心力作用下绕固定轴作匀速圆周运动。
对于向心力和离心力的大小可以用公式F = mv^2 / R来计算,其中m为质量,v为速度,R为半径。
万有引力是质点之间的引力,可以用公式F = Gm1m2/ r^2来计算,其中G为万有引力常数,m1和m2为质量,r为两个质点之间的距离。
5.刚体力学:刚体是指形状保持不变的物体。
刚体力学研究刚体的运动和力学性质。
刚体的运动可以分为平动和转动两种。
平动是指刚体的所有点都以相同的速度和方向运动,转动是指刚体以一个固定轴为圆心绕轴进行旋转。
刚体力学还研究了刚体的稳定性和平衡条件。
6.振动和波动:振动是物体围绕平衡位置往复运动的现象。
理论力学公式集锦
第一章 静力学力对点之矩 力对轴之矩 力偶对空间任意点O 主矢 主矩 平行力系中心物体的重心连续物体,比重为γ =γ (x ,y ,z )力系平衡的充分必要条件:R = ∑F i = 0 M O = ∑m O (F i ) =0 第二章 运动学基础 1、自然法(弧坐标法)运动方程 速度 加速度2、 极坐标法运动方程 速度 加速度角速度矢量、角加速度矢量定轴转动刚体内点的速度与加速度泊松(Poisson)公式()F r F m ⨯=O ()kF r F ⋅⨯=)(xy xy z m ()()()F m F m F F m '+='o o o ,()F r F r r ⨯=⨯-=B A ∑=i F R ()∑=i O O F m M 0≡⋅R M O WW x x iiC ∑∆=WW y y iiC∑∆=WW z z iiC∑∆=⎰⎰=vvC dvxdvx γγ⎰⎰=vvC dvydvy γγ⎰⎰=vvC dvzdvz γγ)(t s s =d d d d d d r rv s s t t s ==⋅=τn τn τa n a a v s +=+=τρ2()t ρρ=()t ϕϕ=()ϕρρϕρρρe e e dtd dt r d v+===()()22a e eρϕρρϕρϕρϕ=-++d d ωk k tϕω==k k ωεεϕ===22d d d d t t 22ωεωτR Rv a R R v a n ===== b ωb⨯=第三章 刚体复杂运动运动学 基点法速度投影定理 加速度分析第四章 点的合成运动 矢量的绝对导数与相对导数 速度合成定理 加速度合成定理第五章 质点动力学质点动力学基本方程(牛顿第二定律)非惯性系的动力学基本方程 相对静止与相对平衡 相对运动动能定理第六章 动力学普遍定理 质点系的动量质点系的动量定理 质心运动定理变质量质点的动力学基本方程 动量矩 定轴转动刚体 平面运动刚体质点的动量矩定理 r ωv v '⨯+=A B BAA v v +=βαcos cosB A v v =()r ωωr εa a '⨯⨯+'⨯+=A M nMAMA A M a a a a ++=τA dtAd dt A d ⨯+=ω~er v v v+=a a a a r e K=++2K ra ωv =⨯r e km =++a F Q Q 0=+e Q F 0=++k e Q Q F QeF r r A A T T +=-0r Q r F '⋅+'⋅=d d dT e r Ci i m m v v K ==∑()e i r d dm mdt dtv F v ()o cr o c m L L L v ()z z i i L M m v =∑z I ω∑=2i i z r m I )(c c c c c z o x y yx m I L L -+==ωc c c o v m r v m L⨯=)(()()o o dm m dt=⨯+⨯=L v v v r F M F ()()i e z z I M εF ()()e Ar A A e d dtL M M Q =+质点系相对动点的动量矩定理 力的功质点系的动能 平面运动刚体的动能 质点系的动能定理势 能机械能守恒定律第七章 转动惯量与惯量张量 转动惯量转动惯量的平行轴定理2112F r M i iM A d =⋅⎰∑=+=n i ir i c v m mv T 1222121222121ωc c I mv T +=2Md I Ιz z+='2d L MI r m=⎰()⎰⎰ + + = ⋅ = 0M M z y x M M dz F dy F dx F d U r F 22 1 1 U T U T + = +。
《理论力学》知识点复习总结
《理论力学》知识点复习总结1.物体的力学性质:力、质量、惯性、受力分析方法等。
-力是物体之间相互作用的结果,具有大小和方向。
-质量是物体所固有的特性,是描述物体所具有惯性的物理量。
-惯性是物体保持运动状态的性质。
-受力分析方法包括自由体图、受力分解和力的合成等。
2.静力学:物体在平衡状态下的力学性质。
-质点和刚体的平衡条件:质点处于平衡状态的条件是合外力为零;刚体处于平衡状态的条件包括合外力为零和合力矩为零。
-平衡条件的应用:包括静力平衡、摩擦力和弹簧力的分析。
3.动力学:物体在运动状态下的力学性质。
- 牛顿第二定律:力的大小与物体的加速度成正比,与物体的质量成反比。
F=ma。
-牛顿第三定律:相互作用的两个物体对彼此施加的力大小相等、方向相反且作用线共面。
-看似相矛盾的运动:如撞击问题、弹性碰撞和非弹性碰撞等。
-应用:包括运动学方程、加速度分析和力学功与功率。
4.系统动力学:多个物体组成的力学系统的运动性质。
-质心和运动质量:质心是体系质点整体运动的简化描述,质点与质心之间的相对运动。
-惯性张量:描述刚体旋转运动的物理量,与刚体的形状和质量分布有关。
- 牛顿第二运动定理的推广:F=ma,扩展到系统的质心运动和转动运动。
-平面运动:考虑力矩与角动量的关系,通过角动量守恒定律解决问题。
-空间运动:考虑转动动力学和刚体旋转平衡。
5.两体问题:描述两个物体之间的相互作用。
-地球质点模型:解析化描述地球和物体之间的万有引力相互作用。
-地球表面近似:解析化描述地球表面物体之间的重力相互作用。
-行星运动:描述行星围绕太阳轨道运动和轨道素描和轨道周期的计算。
-卫星运动:描述人造卫星的轨道运动和发射速度的计算。
以上是对《理论力学》知识点的复习总结,需要注意的是理论力学是一个复杂的学科,其中涉及了静力学、动力学和系统动力学等多个方面的知识,所以复习时需要对每个知识点进行深入理解和掌握,并进行相关的计算和应用。
通过理论力学的学习,可以更好地理解和应用力学原理,提高分析和解决实际问题的能力。
理论力学知识点总结公式
理论力学知识点总结公式理论力学是物理学的一个重要分支,研究物体的运动和受力情况。
它是物理学的基础,对于理解自然界的运动规律和分析物体的运动状态具有重要的意义。
本文将介绍理论力学的基本概念、重要定律和公式,并对其应用进行探讨。
一、基本概念1. 物体的质点和刚体质点是指质量可以集中于一个点的物体,它没有大小和形状,仅有质量和位置。
刚体是指即使受到外力也能保持形状不变的物体,它具有质量、大小和形状。
2. 位矢和位移位矢是指从参考点到物体的位置的矢量,通常用r表示。
位移是指物体在运动过程中位置的变化,通常用Δr表示。
3. 速度和加速度速度是指单位时间内物体位置的变化率,通常用v表示。
加速度是指单位时间内速度的变化率,通常用a表示。
4. 动量和力动量是指物体运动的特性,通常用p表示。
力是导致物体加速的原因,通常用F表示。
5. 动力学方程动力学方程描述了物体运动的规律,它由牛顿的第二定律得出:F=ma。
二、重要定律1. 牛顿三定律牛顿第一定律:物体静止或匀速运动的状态会保持下去,直到受到外力的作用改变为止。
牛顿第二定律:物体的加速度与受到的力成正比,与物体的质量成反比。
牛顿第三定律:对于任何施加力的物体,它都会受到一个与之大小相等、方向相反的反作用力。
2. 质点系和刚体系质点系的基本原理是质点的加速度等于所有作用在其上的力之和。
刚体系的基本原理是刚体上每一点的加速度相等。
三、运动方程1. 直线运动对于直线运动的质点,其运动方程可以由牛顿第二定律得出:F=ma,从而得出质点位置的变化规律。
2. 曲线运动对于曲线运动的质点,需要考虑外力对其产生的速度和加速度的影响,从而得出质点运动的轨迹和位移。
3. 刚体运动对于刚体的运动,需要考虑刚体上各部分的相对运动关系,从而得出刚体的整体运动规律。
四、能量和功1. 功功是力在物体运动过程中对物体产生的影响,它等于力与位移的乘积。
通常用W表示。
2. 功率功率是指单位时间内做功的速率,它等于功与时间的比值。
理论力学常用公式
理论力学常用公式第1章、静力学部分1-1力沿直角坐标轴的解析表达式F=F x i+F y j+F z k;F x、F y、F z为力F相对于各坐标轴的投影;力与坐标轴x、y、z夹角为θ1、θ2、θ3,则力在x、y、z上的投影分别为F x=F cosθ1,F y=F cosθ2,F z=F cosθ3。
F=F x+F y+F z;F x、F y、F z为力 F在x、y、z轴上的分力。
1-2力对点的矩M o(F)=r×F;M o(F)=|i j kx y zF x F y F z|。
1-3力对轴的矩力F对某一轴的矩等于这个力在垂直于该轴的平面上的投影对于该轴与该平面的交点的矩,为代数量。
当力与矩轴在同一平面时,力对该轴的矩为零。
1-4基本约束与约束力1)柔索。
约束力作用在接触点,方向沿着柔索,指向背离物体,使物体受拉。
2)光滑接触面。
约束力作用在接触点,方向沿接触面在该点的公法线,并为压力(指向物体内部)。
3)固定铰支座。
约束力垂直于销钉轴线,通过销钉中心,方向不定。
通常用两个相互垂直的力表示。
4)铰链接。
约束力通常表示为两个相互垂直的力。
5)活动铰支座或辊轴支座。
约束力通过销钉中心,垂直于支撑面,指向不定(即可能是压力或拉力)。
6)链杆。
约束力沿着链杆中心线,指向不定。
7)滑移支座。
约束力可表示为垂直于支撑面方向的一个力和一个力偶。
8)球铰支座。
约束力通过球心,通常用三个相互垂直的分力来表示。
9)径向轴承。
约束力可用垂直于轴线的两个相互垂直的分力表示。
10)止推轴承。
与径向轴承相比,其约束力增加了沿轴线方向的分力。
11)固定支座或固定端。
平面固定端的约束力为一个方向未定的力和一个力偶;空间固定端的约束力为空间内一个方向未定的力和方向未定的力偶矩矢。
1-5物体的受力分析方法1)取研究对象。
将所研究部分的周围约束去掉,并从整体中分离出来;2)受力分析。
根据外加载荷和约束性质判断并确定作用在物体上有几个力,哪些是主动力,哪些是约束力,并判断各力的作用线、方向、大小;3)画受力图。
理论力学公式汇总.pdf
解题思路上的要点�一、解题要点:�(1)求约束反力:�a 、一般用动量定理、质心运动定理;�b 、若约束反力对转轴之矩不为零,也可用动量矩定理;�c 、但不能用动能定理,因为它不能求不做功的约束反力。
�(2)求位移(或角位移):用动能定理。
�(3)求速度(或角速度):a 、约束反力不做功,做工的力可计算,多用动能定理;b 、系统内力复杂、做功情况不明确,多用动量定理、质心运动定理;c 、如有转动问题,可用动量矩定理。
(4)求加速度(或角加速度):a 、对质点系,可用动量定理,质心运动定理;b 、定轴转动刚体,可用动量矩定理、刚体定轴转动微分方程;c 、平面运动刚体,可用平面运动微分方程;d 、有两个以上转轴的质点系,或既有转动刚体、又有平动、平面运动的复杂问题,可用积分形式的动能定理,建立方程后求导求解。
(5)补充方程:运动学补充方程,力的补充方程。
�二、几个关节点:�(1)求运动量,特别是速度问题,优先考虑用动能定理.�(整体分析)�(2)求约束反力,必须用动量定理或质心运动定理.也�涉及到动量矩定理(转动,曲线运动)�(3)初瞬时问题,鲜用动能定理.�(4)注意约束的位置和性质及是否系统的动量或动量�矩守恒(某一方向).�(5)根据题意寻找运动学方程或约束方程往往是解动�力学问题的关键.动量定理:(守恒)▲:在什么情况下用动量定理?(1)求刚体尤其刚体系统或质点系统的约束反力及线加速度问题.(2)守恒条件下的速度、位移和运动轨迹问题.动量矩定理:(1)对定点O:())1(F )v m (dt d e i n 1i n1i i i ∑∑===())2(F a m e in1i i n 1i i ∑∑===()())4(F a M )3(F )v M (dt de in1i c e i n 1i c ∑∑====())5(F dt p d e i n1i ∑==())F (M dt L d e i n 1i o O∑==(2)对质心:平动钢体:定轴转动刚体:⎟⎠⎞⎜⎝⎛=∑F M J Z Z v α平面运动刚体:())2()(e iCC FMJ ∑=α动能定理:主动力做功,理想约束不做功∑=−AW T T 12平动刚体:定轴转动刚体:平面运动刚体机械能守恒:势能零势面达朗伯原理(动静法):(惯性力)惯性力系的简化:平动刚体:定轴转动刚体:平面运动刚体:注意:有质量对称面且转轴垂直此面的刚体的定轴转动是刚体平面运动的特例,故刚体平面运动的惯性力系的简化方法也适合于这样的定轴转动的刚体.▲:达朗伯原理的应用(1)动载荷下求约束反力及加速度问题.(2)多自由度系统或多约束系统下求加速度及约束反力问题.虚位移原理:(静止平衡系统)在完整,定常,理想约束下的质点系静止平衡的充分必要条件是:作用于质点系上的主动力在任何虚位移中的元功之和为零.(静力学普遍方程)r Fi i=⋅∑δ)F (M dt L d n 1i )e (i C C∑==CC C O L V M r L +×=()e in1i c F a M ∑==()e in1i c F a M ∑==2CMv 21T =2Z J 21T ω=2C 2C2P J 21Mv 21J 21T ωω+==()()()0F M F M 0F F i i g O e i O g e i=+⎟⎠⎞⎜⎝⎛=+∑∑∑∑非惯性系中质点动力学的基本方程()A F F F dtV d m Ce g g r ++=~()5121212212−′+′=−e g Fr r W W mV mV 分析力学基础:广义力与广义坐标:广义力是质点系中一群力和力偶的组合.它是分析力学中的一个基本概念.它与广义坐标直接相关,不同的的广义坐标对应着不同的广义力.kN1k kii q q r r δδ⋅∂∂=∑=ki n1i i k q r F Q ∂∂⋅=∑=广义力的求解:坐标法,虚功法以广义坐标表示的质点系的平衡条件:如果质点系统平衡,则各广义坐标对应的广义力分别为零.11=δ⋅=δ⋅∑∑==Nk k k ni i iq Q r FQ Q Q Q N 321==⋅⋅⋅===动力学普遍方程:(虚位移原理与达朗伯的结合):理想约束下,质点系任一瞬时主动力与惯性力在虚位移上的功之和为零。
(完整版)理论力学公式
师兄的建议:考试不仅仅是知识的积累,更重要的是会学,重点考试内容必须掌握,所以我们要好好复习静力学静力学是研究物体在力系作用下平衡的科学。
第一章、静力学公理和物体的受力分析1、基本概念:力、刚体、约束和约束力的概念。
2、静力学公理:(1)力的平行四边形法则;(三角形法则、多边形法则)注意:与力偶的区别(2)二力平衡公理;(二力构件)(3)加减平衡力系公理;(推论:力的可传性、三力平衡汇交定理)(4)作用与反作用定律;(5)刚化原理。
3、常见约束类型与其约束力:(1)光滑接触约束——约束力沿接触处的公法线;(2)柔性约束——对被约束物体与柔性体本身约束力为拉力;(3)铰链约束——约束力一般画为正交两个力,也可画为一个力;(4)活动铰支座——约束力为一个力也画为一个力;(5)球铰链——约束力一般画为正交三个力,也可画为一个力;(6)止推轴承——约束力一般画为正交三个力;(7)固定端约束——两个正交约束力,一个约束力偶。
4、物体受力分析和受力图:(1)画出所要研究的物体的草图;(2)对所要研究的物体进行受力分析;(3)严格按约束的性质画出物体的受力。
意点:(1)画全主动力和约束力;注(2)画简图时,不要把各个构件混在一起画受力图;(3)灵活利用二力平衡公理(二力构件)和三力平衡汇交定理;(4)作用力与反作用力。
第二章、平面汇交力系与平面力偶系1、平面汇交力系:(1)几何法(合成:力多边形法则;平衡:力多边形自行封闭)(2)解析法(合成:合力大小与方向用解析式;平衡:平衡方程0xF=∑,0y F =∑)意点:(1)投影轴尽量与未知力垂直;(投影轴不一定相互垂直)(2)对于二力构件,一般先设为拉力,若求出负值,说明受压。
2、平面力对点之矩——()O M Fh =±F ,逆时针正,反之负 意点:灵活利用合力矩定理 3、平面力偶系: (1)力偶:由两个等值、反向、平行不共线的力组成的力系。
(2)力偶矩:M Fh =±,逆时针正,反之负。
新疆维吾尔自治区考研力学复习资料理论力学重点公式总结
新疆维吾尔自治区考研力学复习资料理论力学重点公式总结力学是物理学的基础学科,研究物体的运动和受力情况。
在考研复习中,掌握理论力学的基本概念和关键公式是非常重要的。
本文将为大家总结新疆维吾尔自治区考研力学复习资料中理论力学的重点公式,以助大家更好地备考。
一、牛顿第一、二、三定律1. 牛顿第一定律(惯性定律):物体静止或匀速直线运动的状态将保持不变,除非有外力作用。
2. 牛顿第二定律(运动定律):物体所受合外力等于该物体质量乘以加速度。
F = m·a (F为合外力,m为质量,a为加速度)3. 牛顿第三定律(作用-反作用定律):任何两个物体之间的相互作用力,大小相等、方向相反。
二、重要公式1. 动量与冲量:动量(p)定义为物体质量(m)与速度(v)的乘积,即p = m·v。
冲量(J)定义为力(F)作用在物体上的时间(Δt),J = F·Δt。
冲量等于质量的变化率,J = Δp。
2. 动能与功:动能(K)定义为物体的质量(m)与速度(v)的平方的一半,即K = (1/2)·m·v²。
功(W)定义为力(F)对物体作用的距离(d),W = F·d·cosθ。
3. 动力学能量定理:物体受合外力作用发生加速度时,外力对物体所做的功等于物体动能的增量。
W = ΔK = (1/2)·m·v² - (1/2)·m·v₀²。
4. 弹性碰撞:在完全弹性碰撞中,动量守恒和动能守恒成立。
m₁·v₁₀ + m₂·v₂₀ = m₁·v₁ + m₂·v₂(1/2)·m₁·v₁₀² + (1/2)·m₂·v₂₀² = (1/2)·m₁·v₁² + (1/2)·m₂·v₂²5. 力的合成与分解:若有两个力F₁和F₂,可以使用平行四边形法则求得它们的合力F。