MPLS-TP介绍
MPLS-TP的国际标准化和产业进展
-
方 Ser g:: t i en 同运 营 商网
gu r p成 立 o ・・ 演 进 方 案 络 :- 的应用 需求
。p a 1(即 C. t o m.
-
负责 需求
l_ I一
2 o 0 5 2 0 0 8 20 09
接 的多业 务传 送技 术 ,不 仅能 承载 电信 级 以太 网业 务, 而且 还 可 支 持 承 载 T M、T 和 I 务 , 足 D AM P业 满
网络高可靠性 、 完善的 O M、 A 网络扩展性 、 严格 Q S o 等传送网属性。 0 9 , 20 年 我国三大运营商启动 3 G规
Y.7 1 1 3 0AM .
I F 专 家 反 对 T— ET MP S I 标 准 对 MP S I
Pig扩 展 方 案 n
理 由 是 OAM 种 方 案 优
一
协 议的修 改 ,理 由是
MP S协 议 应 由 I T L EF
于两种方案
开 发 . MP S T L OAM 采
~
…
~
点 璺 … 曼 呈
9
技术 专题 … … … … … … … … … .
● q a t ru t  ̄ e s
20 0 9年 7 月 , 年 01
I 1
决 定 O AM 采
用 B D/ S — F L P
月 I F拒 绝 ET 采 纳 GA Ch+
8I31 通 过 1 .)
-
2 1 00
图 1 MP S T L — P的 国 际标 准化 历 程
方 面存 在很 大差 异 , 导致 其协 议 开发 进展 缓慢 , 重 严
MPLS-TP分组传送网的体系架构_光网络规划与优化_[共3页]
第6章 城域分组传送网规划与优化– 255 –图6.39 T-MPLS 到MPLS-TP 的历程6.6.2 MPLS-TP 分组传送网的体系架构MPLS-T 分组传送网采用ASON 的体系结构,因此,MPLS-TP 分组传送网仍将由传送平面(用户/数据平面),管理平面和控制平面这3个平面组成,这3个平面之间相互独立。
传送平面的主要功能是根据MPLS-TP 标签将客户数据和信令数据进行适配和分组转发,此外还包括面向连接的操作维护管理(OAM )和保护恢复功能。
控制平面的主要功能是通过信令机制建立标签转发通道,进行标签的分发。
管理平面执行传送平面,控制平面以及整个系统的管理功能,同时提供这些平面之间的协同操作。
分组传送网的体系架构在MPLS-TP 分组传送网的体系架构中,MPLS-TP 无需重新定义IP/MPLS 已经提供的功能,而是将沿用IETF 已经对MPLS ,PWE (端到端伪线仿真)定义的数据平面的数据处理过程。
所以MPLS-TP 的传送平面将基于MPLS 和PWE ,只是其OAM 能力需要加强。
MPLS-TP 的控制平面将首选IETF 的GMPLS 协议实现其功能,其控制和数据传送耦合性更强。
将数据传送平面从网络资源管理中分离出来,可使MPLS-TP 传送平面完全独立于其业务网络和相关的控制网络(管理平面及控制平面),更加便于网络的建设和扩容。
MPLS-TP 对现有的MPLS 技术进行了裁减,并补充了少量机制,将MPLS 的分组特征与传统传送网络的运维能力相结合,以满足传送网络简单有效地支持分组业务的传送需求。
MPLS-TP 使得SONET/SDH 向基于分组的传送网络的演进成为可能。
标准的开发遵循以下原则:与现有MPLS 保持兼容,满足传送的需求,提供最小的功能集。
采用20bit 的MPLS LSP 标签,是局部标签,在中间节点进行LSP 标签交换。
采用PWE3的电路仿真技术来适配所有类型的客户业务,包括以太网,TDM 和ATM 等,采用VPWS 支持以太网专线业务(包括EP-Line 和EVP-Line ),采用VPLS 支持以太网专网业务(包括EP-LAN 和EVP-LAN )。
mpls-tp技术原理
mpls-tp技术原理MPLS-TP技术原理MPLS-TP(Multiprotocol Label Switching - Transport Profile)是一种基于MPLS技术的传输网络技术。
它在传统MPLS技术的基础上,针对传输网络的特性进行了优化和改进,提供了更高的可靠性、可用性和性能保障。
MPLS-TP技术的核心原理是通过标签交换实现数据的快速转发。
在传统的网络中,数据包在传输过程中需要经过多次的路由查找和解析,导致转发效率低下。
而MPLS-TP技术通过在数据包头部添加标签,将数据包标识为特定的转发路径,从而实现了快速的数据转发。
MPLS-TP技术还引入了专门的OAM(Operations, Administration and Maintenance)机制,用于监测网络的性能和故障管理。
OAM机制包括了各种测试和监测功能,如连通性检测、环路检测、延迟测量等,可以及时发现并定位网络故障,并提供故障定位和恢复的功能。
MPLS-TP技术还提供了多种保护机制,用于提高网络的可靠性。
其中包括了线路保护、节点保护和环保护等机制。
线路保护是指在网络中设置备用路径,当主路径发生故障时,数据可以自动切换到备用路径进行传输。
节点保护是指在网络中设置备用节点,当主节点发生故障时,数据可以自动切换到备用节点进行处理。
环保护是指在网络中设置备用环路,当主环路发生故障时,数据可以自动切换到备用环路进行传输。
MPLS-TP技术还可以支持多种业务类型的传输,如以太网、SDH、ATM等。
通过适配不同的业务类型,MPLS-TP可以实现不同业务的有效传输和管理。
MPLS-TP技术通过引入标签交换、OAM机制和保护机制等技术,提供了高效可靠的传输网络解决方案。
它可以满足不同业务的传输需求,并具有较高的性能和可用性。
MPLS-TP技术在传输网络中的应用前景广阔,将在未来的网络建设中发挥重要作用。
MPLS—TP分组传送网与现有网络互联互通的实现
20 0 8年
第 5期
光 通 信 研 究
S U DY N T O OPT I CA L CO M M U N I CA T I N S O
2 08 0
( 总第 1 9期 ) 4
( um. S No 1 9) .4
MP STP分组传 送网与现有 网络互联互通的实现 L—
MP S的 分 组 传 送 技 术 一 MP ST L L - P。I TF 吸 收 E
e a o si h nt r or n be we n n t o k . T hi a rbrel n r du e hea c ie t r he M PLS- r t r st e i e w kig t e e w r s s p pe i fy i t o c s t r h tc u eoft TP a ke r ns or p c tta p t ne wor t k,a l s st uhia r n t o k sr c u eba e PLS- P c tt a po tne wo k i he c e s e c rous na y e he m lye e w r t u t r s d on M T pa ke r ns r t r n t o xit n e ofva i t e ft a s r n t o k a d o us s n h s u son a out h m p e e a i c me f t n er yp s o r n po t e w r s n f e e o t e dic s i s b t e i l m nt ton s he s or he i t wor ng e w e n ki b t e
问题 。
MPLS-TP OAM 的国际标准之争 - ccsaorgcn
14MPLS-TP OAM 的国际标准之争工信部电信研究院通信标准所 李 芳摘 要:本文首先介绍了MPLS-TP 技术背景和国际标准进展,然后说明了CCSA 在PTN 标准研究方面的工作和我国运营商的网络应用现状,重点分析了MPLS-TP OAM 的国际标准之争,从应用场景、功能要求、技术方案和产业成熟度等方面阐述了基于Y.1731 OAM 方案的可行性和合理性。
关键词:MPLS-TP 操作管理维护(OAM) 分组传送网(PTN) 标签交换路径(LSP)1 MPLS-TP 技术背景和国际标准进展MPLS-TP 是传送和数据技术融合发展的产物,是适应业务IP 化、网络分组化的主流技术,近年来受3G 和LTE 移动回传、三网融合等市场应用需求驱动,成为通信网络技术发展的新兴热点,但其国际标准化却经历了漫长而曲折的历程,具体如图1所示。
MPLS-TP 技术的前身是传送-多协议标签交换(T-MPLS),ITU-T 自2005年开始开发T-MPLS 技术标准,已开发出包括体系架构、设备、保护倒换和操作管理维护(OAM)的一整套标准,但该项工作因受到IETF 的强烈反对而停滞,理由是T-MPLS 修改了IETF 的MPLS 协议——OAM 的标签14而严重影响互联网发展。
图1 MPLS-TP 的国际标准化历程从2008年4月开始,ITU-T 和IETF 正式合作开发MPLS-TP 标准,IETF 主导协议开发,ITU-T 负责传送需求,原定2009年9月完成标准开发,但至今已拖延一年半尚未完成。
主要原因是在传送和数据领域,对MPLS-TP的网络环境2011201020092008200720062005T ‐MPLSIP/MPLSIETF 专家反对T ‐MPLS 标准对MPLS 协议的修改,理由是MPLS 协议应由IETF 开发,T ‐MPLS OAM 采用标签13影响MPLS 协议互通,严重损害互联网;T ‐MPLS 标准逐步受阻停滞。
MPLS-TP在电子政务外网中的应用研究
MPLS_TP_OAM_20101216
芯片/硬件支持MPLS-TP OAM方案MPLS-TP OAM标准发展现状传送多协议标签交换(MPLS-TP)作为一种面向连接的分组传送技术,具有高效的多业务适配能力和灵活的标签转发机制,并且和IP/MPLS兼容,能满足分组业务的简单高效传送需求。
在IETF和ITU-T 成立MPLS-TP标准联合工作组后,MPLS-TP的相关标准逐渐完善,成为全球各大运营商构建分组传送网络(PTN)的事实标准。
MPLS-TP 的相关RFC 和草案可以按照总体需求和框架、数据平面、管理平面、OAM、保护、控制平面、应用和互通等进行分类。
总体来说,MPLS-TP 的数据平面和管理平面相对成熟稳定,OAM、保护和控制平面等方面的草案还处于研究开发之中,尤其是在OAM 和保护方面的分歧最大,这严重影响了MPLS-TP 的国际标准化和产业化进程。
OAM是MPLS-TP最核心的问题,IETF已启动保护架构的讨论,最大的争议就是OAM 具体技术规范,目前主要的方案包括GACH+Y.1731 PDU和BFD(Bi-direction Fault Detection) 扩展两种。
BFD扩展方式主要由Cisco,Juniper等数据通信领域的设备厂商提出,并得到了美国AT&T,Verizon等运营商支持,是IP/MPLS网络中BFD + LSP Ping的扩展。
其问题是无法后向兼容IP/MPLS BFD协议,同时其标准化过程至少还需要2年,严重影响了运营商分组网络的部署。
GACH + Y.1731是由华为,阿尔卡特朗讯等传输领域的设备厂商提出,并得到了包括中国移动通信,中国电信,中国移动,意大利电信在内的运营商支持,是T-MPLS OAM(G.8114) 的自然升级。
采用了在以太网已经成熟应用的Y.1731 OAM 标准,用MPLS-TP协议来封装Y.1731 PDUs。
该方案已经由华为和阿尔卡特朗讯公司提出,成为IETF的草案(draft-bhh-mpls-tp-oam-y1731)。
IP RAN全面支持MPLS-TP支撑全业务综合承载前行
3Co mmunications Wo rld We ekly 企业网在3G、L TE、三网融合、FMC等新形势下,固定通信、增值业务、高清视频及移动互联网等融合业务的规模发展对电信运营商的承载网络提出了全新挑战。
全球电信运营商都意识到承载网络的发展目标必然是全业务的综合承载网。
当前全球运营商已经开始构建融合、高效、可靠的承载网络基础架构,综合承载成为共识。
2012年后MPLS-TP可望完成标准制定MPLS(多协议标签交换)是一种用于快速数据包交换和路由的体系,它具有管理各种不同形式数据流量的机制,是I P和A TM融合的技术。
MPLS的出现,无疑促进了I P网络的应用,促使电信业由传统技术向基于IP/MPLS的All-IP网络演进。
为了推广MPLS的应用,业界先后提出了基于MPLS的L2VPN、L3VPN业务,之后,还提出了GMPLS和T-MPLS,再后T-MPLS被MPLS-TP取代,MPLS 相关技术正在逐步促进传输网络与IP承载网络的融合。
T-MPLS/MPLS-TP是I TU-T推荐的分组传送技术,是IP/MPLS的一个子集,去掉了基于I P的转发,增加部分的OAM功能,可以简单的表述为以下等式:T-MPLS/ MPLS-TP=传统的MPLS+OAM-I P。
I TU-T和I ETF在部分关键技术上一直在讨论,当前主要的焦点在于OAM标准方面的讨论,预计2012年以后有可能形成共识。
IP RAN全面支持MPLS-TP路由器采用高端路由芯片,可以完善地支持全部MP LS特性,而MPLS-TP是IP/M PLS的子集,路由器完全具备支持MP LS-TP能力,例如思科、J u nip e r、华为、阿朗、爱立信等业界主流路由器设备厂商都采用了高端路由芯片。
IP RAN是天然具备综合承载能力的产品和解决方案,I P RAN设备采用路由器架构,继承了路由器的历史积累,可以完善支持MPLS全部特性。
MPLS-TP Qos三种管道模式的区别
MPLS-TP QoS三种管道的区别1.前言在MPLS VPN网络上,运营商往往需要在边缘路由器上做出一个选择,就是是否信任上行流量已经携带的优先级信息,此时mpls qos为了解决的问题是如何把CE侧的服务等级拷贝到provider来实现,从而让provider来根据客户的服务等级来实现拆分服务,PTN网络提供了常用的三种不同的MPLS COS(Class of ServiCE,业务类型)处理模式,以备运营商灵活选择。
注:cisco实现了4种方式的mpls qos,分别为:1)Uniform mode2)Pipe mode3)Short Pipe mode4)Long Pipe mode2.MPLS-TP Qos管道模式2.1.Uniform Mode当运营商认为可以完全信任CE侧流量携带过来的QoS参数时,可以采用Uniform模式,这时PE将CE侧携带上来的报文的COS值直接复制到MPLS外层标签的EXP字段中,从而保证在Core中给予同样的QoS保证。
2.2.pipe Mode当运营商完全不关心CE侧用户设置的QoS参数时,就忽略用户携带的QoS参数,在PE上为MPLS外层标签的EXP字段重新赋值,结果是从ingress边缘路由器到egress边缘路由器,都按照运营商的意愿进行Core上的QoS调度,直到将流量送出Core之后,报文再根据其原来携带的COS值转发。
2.3.Short-pipe Mode这是对pipe模式的改进,在进入Core的时候,和pipe做相同的处理,只是在egress 端的倒数第二跳,就完成了QoS参数的恢复,换言之,从ingress边缘路由器到egress的倒数第二跳路由器,全部按照运营商的意愿进行QoS调度,到了egress边缘路由器上,就已经按照用户原来自己携带的QoS参数进行调度了3.模式区别:3.1.uniform模式::1)CE进入mpls域的时候打上两层标签;2)CE给自己的ip PreCEdenCE分别拷贝到标签的EXP位上,即内外层标签都标记的EXP值来源与原报文的优先级,但是只有外层的EXP具有转发意义。
MPLSTP协议解析面向传输的多协议标签交换详解
MPLSTP协议解析面向传输的多协议标签交换详解MPLS(Multi-Protocol Label Switching)是一种用于传输网络的协议,它使用标签交换的方式来进行数据传输和路由控制。
而MPLS-TP (MPLS-Transport Profile)则是基于MPLS协议的传输网络配置和运行的扩展。
本文将对MPLS-TP协议进行解析,并详细介绍其面向传输的多协议标签交换技术。
一、MPLS-TP协议概述MPLS-TP协议是由国际电信联盟(ITU-T)提出的,旨在将MPLS 技术应用于传输网络,以提供更加可靠和灵活的传输服务。
MPLS-TP 协议适用于各种传输网络环境,例如电信运营商的核心网络、无线电接入网、数据中心互联等。
MPLS-TP协议主要有以下特点:1. 传输可靠性:MPLS-TP协议提供了以太网等传输技术所不具备的可靠性,支持端到端的全局恢复、快速保护和恢复等机制,以确保数据传输的稳定性。
2. 简化管理:MPLS-TP采用了简单的体系结构和操作流程,减少了网络管理的复杂性,降低了运营维护成本。
3. 灵活性:MPLS-TP借鉴了MPLS的灵活性,可以支持多种传输技术和服务类型,适应不同的应用场景需求。
4. 可扩展性:MPLS-TP协议能够支持大规模的网络扩展,满足未来业务增长的需求。
二、MPLS-TP协议的基本原理MPLS-TP协议建立在MPLS协议的基础上,采用了类似的标签交换技术来进行数据传输和路由控制。
其基本原理如下:1. 标签交换:MPLS-TP协议使用标签来识别数据包,并进行转发操作。
每个数据包在进入传输网络时都会加上一个标签,传输过程中根据标签进行转发,最终在目的地将标签去除,将数据包发送到目标节点。
2. 保护和恢复:MPLS-TP协议支持多种保护和恢复机制,以应对网络故障和链路中断。
其中包括环路保护、链路保护、路径保护等多种方式,通过备用路径或节点实现快速的数据恢复,提高网络的可靠性。
MPLSTP协议解析传输网络的MPLS技术在电信领域的应用
MPLSTP协议解析传输网络的MPLS技术在电信领域的应用MPLS(Multi-Protocol Label Switching)技术是一种用于将数据封装和转发的网络协议。
它通过将路由决策和数据包标记分离,提高了网络的传输效率和服务质量。
在电信领域,MPLS技术广泛应用于传输网络中,为运营商提供高效可靠的服务。
一、MPLS技术概述MPLS技术通过引入标签(Label)来标示数据包,从而快速地将数据包从源节点传输到目标节点。
它采用了标签交换的方式,避免了传统的IP路由查找和转发,大大提高了数据包的转发速度和网络的吞吐量。
此外,MPLS技术还支持基于标签的服务质量(QoS)和虚拟专用网络(VPN)等功能。
二、MPLSTP协议MPLSTP(MPLS Transport Profile)是基于MPLS的传输网络协议。
它定义了一系列使得MPLS可以在传输网络中应用的机制和规范。
MPLSTP协议包括了对MPLS标签的管理和分配、标签交换的转发规则以及传输网络中的保护和恢复机制等内容。
通过MPLSTP协议,运营商可以搭建出稳定可靠的传输网络。
三、MPLSTP在电信领域的应用1. 提供高带宽传输:电信运营商经常需要传输大量的高清视频、音频和数据等内容。
MPLS技术通过其高效的转发机制和优化的带宽分配,能够满足这些需求,提供高质量的传输服务。
2. 支持多协议传输:MPLS技术支持不同协议的传输,包括IP、以太网、ATM等。
这使得电信运营商可以使用一种统一的技术框架来承载不同类型的流量,简化了网络管理和运维。
3. 保证服务质量:运营商通过在数据包中引入不同的标签,可以为不同的业务流量提供不同的服务质量保证。
MPLS技术支持基于流量工程的路由选择和拥塞控制,使得网络能够更好地应对高负载和网络拥塞的情况。
4. 支持VPN服务:MPLS技术还可以实现虚拟专用网络(VPN),通过在传输网络中建立虚拟的私有网络,为企业客户提供安全可靠的远程接入服务。
T-MPLS&MPLS-TP 基本原理100421
2
© Nokia Siemens Networks-UTStarcom
本章培训内容
• • • • •
T-MPLS/MPLS-TP标准化进程 T-MPLS/MPLS-TP 技术总体架构 T-MPLS/MPLS-TP的全业务提供技术PWE3 概述 基于伪线技术的业务提供 T-MPLS/MPLS-TP关键技术
All copyrights and intellectual property rights for UTStarcom & Nokia Siemens Networks (UTNSN) training documentation, product documentation and slide presentation material, all of which are forthwith known as UT-NSN training material, are the exclusive property of UT-NSN. UT-NSN owns the rights to copying, modification, translation, adaptation or derivatives including any improvements or developments. UT-NSN has the sole right to copy, distribute, amend, modify, develop, license, sublicense, sell, transfer and assign the UT-NSN training material. Individuals can use the UT-NSN training material for their own personal self-development only, those same individuals cannot subsequently pass on that same Intellectual Property to others without the prior written agreement of UT-NSN. The UT-NSN training material cannot be used outside of an agreed UT-NSN training session for development of groups without the prior written agreement of UT-NLS-TP标准化进程 T-MPLS/MPLS-TP 技术总体架构 T-MPLS/MPLS-TP的全业务提供技术PWE3概述 基于伪线技术的业务提供 T-MPLS/MPLS-TP关键技术
详解MPLSTPOAM协议传输网络中的操作管理与维护
详解MPLSTPOAM协议传输网络中的操作管理与维护MPLSTPOAM(Multiprotocol Label Switching Transport Profile Operations, Administration, and Maintenance)协议传输网络是一种基于MPLS(Multiprotocol Label Switching)技术的网络,它通过使用MPLS标签来提供灵活的路由和快速的数据传输服务。
在MPLSTPOAM网络中,操作管理与维护是确保网络稳定运行的关键要素。
本文将详细介绍MPLSTPOAM协议传输网络中的操作管理与维护的相关内容。
一、概述MPLSTPOAM协议传输网络的操作管理与维护是指对网络设备和链路的监控、配置和故障排除等工作。
通过合理的操作管理与维护措施,可以提高网络的可用性和可靠性,保证网络的正常运行。
二、网络设备监控网络设备监控是操作管理与维护的基础。
在MPLSTPOAM协议传输网络中,网络设备监控主要包括以下方面:1. 设备状态监测:通过对网络设备的状态进行实时监测,包括设备的CPU利用率、内存利用率、端口利用率等,可以及时发现设备的异常状态并采取相应的措施进行处理。
2. 设备性能监测:通过对网络设备的性能进行监测,包括设备的吞吐量、时延、丢包率等,可以评估网络设备的性能表现,并根据监测结果进行相应的优化。
3. 设备配置管理:对网络设备的配置进行管理,包括对设备的参数设置、接口配置、路由配置等,可以确保网络设备按照预期的方式进行工作。
三、链路监测与管理链路监测与管理是操作管理与维护的另一个重要方面。
在MPLSTPOAM协议传输网络中,链路监测与管理主要包括以下内容:1. 链路状态监测:通过对链路的状态进行实时监测,包括链路的带宽利用率、丢包率、时延等,可以评估链路的质量,并及时发现链路故障。
2. 链路故障排除:当链路出现故障时,应根据链路故障的具体情况进行相应的排除工作。
mpls面试中会提到的问题
mpls面试中会提到的问题MPLS面试中常见的问题MPLS(Multiprotocol Label Switching)是一种基于标签的转发技术,广泛应用于现代网络中。
在MPLS面试中,面试官往往会针对这一技术提出一系列问题,以评估面试者的理解和掌握程度。
本文将介绍一些常见的MPLS面试问题,并提供相应的回答。
1. 什么是MPLS?请简要解释其工作原理。
MPLS是一种基于标签的转发技术,它将数据包添加一个标签,然后在网络中进行转发。
MPLS通过将数据包的转发决策从IP头移动到标签中,提高了数据包的转发效率和灵活性。
2. 请解释MPLS标签的作用和结构。
MPLS标签是一个固定长度的字段,通常为32位,包含了路由器对数据包进行转发所需的信息。
它由标签值、实验位、S位、TTL等字段组成。
标签值用于标识特定的转发路径,实验位用于不同服务质量的区分,S位用于指示是否是栈顶标签,TTL用于控制数据包的生存时间。
3. 请解释MPLS的前缀匹配和标签交换的过程。
在MPLS网络中,路由器根据数据包的目的IP地址进行前缀匹配,以确定转发路径。
然后,路由器将匹配到的前缀与相应的标签进行绑定,并将标签添加到数据包的标签栈中。
当数据包到达下一跳路由器时,路由器根据标签进行转发决策,并将标签交换为下一跳路由器对应的标签。
4. 请解释MPLS的VPN技术。
MPLS VPN是一种虚拟专用网络技术,它通过在MPLS网络中使用标签来实现不同VPN之间的隔离。
MPLS VPN将不同的VPN用户的数据包封装在不同的标签中,以确保数据的安全性和隔离性。
5. 请解释MPLS的TE(Traffic Engineering)技术。
MPLS TE是一种用于优化网络资源利用和流量工程的技术。
它通过在MPLS网络中预先设置路径和带宽限制,实现对流量的控制和管理。
MPLS TE可以通过选择最佳路径、避免拥塞、提供服务质量保证等手段,优化网络性能。
6. 请解释MPLS的QoS(Quality of Service)技术。
mpls-tp技术原理
mpls-tp技术原理MPLS-TP技术原理MPLS-TP(Multiprotocol Label Switching – Transport Profile)是一种基于MPLS(Multiprotocol Label Switching)的传输技术,专门用于支持电信传输网络。
它结合了MPLS的灵活性和传输网络的可靠性,为电信运营商提供了一种可扩展、高效、可管理的传输解决方案。
MPLS-TP技术原理基于标签交换的思想,通过在数据包中引入标签来实现数据包的转发。
每个数据包都会被添加一个标签,这个标签被用于路由的决策和转发操作。
MPLS-TP网络中的每个节点都有一个交换引擎,用于处理数据包的标签。
当数据包进入到一个节点时,交换引擎会根据标签来决定数据包的下一跳,并将数据包送往目的地。
MPLS-TP技术的主要特点是可靠性和性能保证。
为了提高可靠性,MPLS-TP引入了一系列的保护机制,包括线路保护、环路检测和恢复、以及多路径备份等。
这些机制使得传输网络具有更好的容错性,能够在故障发生时快速恢复。
同时,MPLS-TP还支持严格的服务质量(QoS)要求,可以为不同的业务流提供不同的带宽和时延保证。
MPLS-TP技术的实现依赖于两个主要的协议:MPLS-TP控制平面协议(MPLS-TP Control Plane Protocol)和MPLS-TP数据平面协议(MPLS-TP Data Plane Protocol)。
控制平面协议用于网络中的节点之间的通信和协调,包括路径计算、标签分配和故障管理等功能。
数据平面协议用于数据包的转发和交换,确保数据包按照预定的路径和保护策略进行传输。
MPLS-TP技术的应用领域广泛,特别适用于电信运营商的传输网络。
它可以用于构建高速、高可靠的广域网(WAN),支持各种不同类型的业务,包括语音、数据和视频等。
MPLS-TP还可以用于构建数据中心互连网络,提供可靠的数据传输和互联互通。
mpls-tp技术原理
mpls-tp技术原理MPLS-TP技术原理MPLS-TP(Multiprotocol Label Switching - Transport Profile)是一种基于MPLS的传输技术,旨在提供高效可靠的数据传输和服务。
本文将介绍MPLS-TP技术的原理和工作机制。
MPLS-TP技术利用标签交换技术来实现数据的转发和路由。
它将数据包分割成不同的标签,每个标签对应一个特定的路径。
这些标签被添加到数据包的首部,以帮助网络设备在转发过程中快速识别和处理数据包。
MPLS-TP技术的原理可以概括为以下几个步骤:1. 标签分发:当数据包进入MPLS-TP网络时,网络设备根据预先配置的路由表,为数据包分配一个唯一的标签。
这个标签用于在网络中识别和定位数据包。
2. 标签交换:一旦数据包被分配了标签,网络设备会根据标签进行转发。
在每个节点,设备根据标签查找对应的下一跳节点,并将数据包转发给该节点。
3. 标签剥离:当数据包到达目的节点时,该节点会将最后一个标签从数据包中剥离,并将数据包传递给上层应用。
MPLS-TP技术的工作机制可以进一步细分为两个方面:控制平面和数据平面。
控制平面主要负责路由的计算和标签的分发。
它使用MPLS-TP控制协议来交换路由信息,并根据这些信息计算最优路径。
控制平面还负责管理标签的分发和维护标签映射表。
数据平面主要负责标签的交换和数据包的转发。
它使用标签交换协议来实现标签的查找和转发。
数据平面的设备根据标签查找下一跳节点,并将数据包转发给目的节点。
MPLS-TP技术的优点在于提供了灵活性和可靠性。
由于数据包使用标签进行转发,因此可以轻松改变数据包的路径和流量分布。
同时,MPLS-TP技术还提供了强大的保护机制,如快速恢复和路径保护,以确保数据传输的可靠性和稳定性。
MPLS-TP技术是一种基于MPLS的传输技术,它利用标签交换来实现数据包的转发和路由。
通过控制平面和数据平面的协同工作,MPLS-TP技术提供了高效可靠的数据传输和服务,为网络通信提供了更好的性能和灵活性。
PTN分组转发技术
MPLS网络模型
Ingress LERa
LERb
LERc
LSP
LSRy
LSRx
LDP LSRz
MPLS Domain
LERd Egress
LDP
LERe
LERf
IP数据包通过MPLS域的传播过程如下:
1. 入口边界LER接收数据包,为数据包分配相应的标签, 用标签来标识该数据包;
2. 主干LSR接收到被标识的数据包,查找标签转发表,使 用新的出站标签代替输入数据包中的标签;
3. 出口边界LER接收到该标签数据包,它删除标签,对IP 数据包执行传统的第三层查找
MPLS-TP
➢ 随着技术发展,T-MPLS在OAM等 方面改进后,演进成为MPLS-TP。
➢ 目前,MPLS-TP作为PTN的关键 技术而广泛应用。
课程内容
PTN技术发展历程 MPLS技术 MPLS-TP技术
MPLS技术产生背景
传统IP技术特点:
IP通讯是基于逐跳的方式 转发报文时依照最长匹配原则 网络设备需要知道全网路由,没有则无法转发该网段报文 QoS无法得到有力保障:由于IP协议是无连接协议,所以Internet网
MPLS的标签(label)
MPLS Label是0~1048575之间的一个20比特的整数,用于 识别某个特定的FEC;
该标记被封装在分组的第二层信头和第三层数据之间,标签 仅具有本地意义。
标签堆栈
两个戒更多的MPLS标签,戒称标签堆栈,理论上支持无限制的标签嵌 套,从而提供无限的业务支持能力;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MPLS-TP basedPacket Transport NetworksDelivering new value through next-generation transport networksContentsIntroduction (3)Challenges of Legacy Technologies in the New Era (4)The Growing Packet Transport Service Requirement (4)Characteristics of Next-Generation Transport Network (5)Evolution of Transport Networks (7)SDH/NG-SDH Approach (7)IP/MPLS Approach (9)T-MPLS Approach (10)Differences of T-MPLS from MPLS (12)MPLS-TP based Packet Transport Networks (13)Introduction to MPLS-TP (13)Benefits of MPLS-TP based PTN (14)Bi-directional Congruent LSP (15)No LSP Merge (15)No Penultimate Hop Popping (PHP) (16)No Load Balancing (16)Business case for MPLS-TP (17)Summary (18)IntroductionIn today’s challenging economic times, consumers are trying to minimize their expenses by spending money on the right products and services. For service providers, meeting these customer requirements on their existing infrastructure is a major challenge, especially at suitable profit margins.With the fierce competition that is occurring, service providers need to defend their existing service revenues and stimulate demand growth with new services. Competition is dictating attractive prices, faster service creation and delivery, and an enhanced user experience. Service providers have realized that a customer taking multiple services is far more lucrative than a customer taking a single service. It is even more lucrative if the same infrastructure can be used to offer these multiple services. This type of service convergence is changing telecom business models. However, responding to changing business models adds new challenges on network infrastructures:⇒Enterprises demand advanced business solutions to drive improved customer value and efficiency⇒Consumers demand rich content and bundled services⇒End users want access to their services anytime, anywhere, on any device⇒Multimedia and converged services require improved service provider billing capabilities ⇒With multiple technologies, services and devices, communications is becoming increasingly complex; building customer loyalty requires a simple, end-to-end experience, regardless of technology.The overall trend towards convergence of services offers significant opportunities; however, legacy telecom networks are ill equipped to support these offerings. At the same time, multiple technology developments, including packet-based networking have sparked a wave of changes with network implications. Application of these new technologies enables key business and technology benefits, including new service revenues, improved customer management, and operating expense savings.Migration towards packet-based networks has been a dominant trend in the industry. The changeover has been evolutionary with the access network to the subscribers receiving the bulk of the initial attention. Now attention is being focused on optimization of transport networks for multiservice delivery. These transport networks have historically consisted of Synchronous Digital Hierarchical (SDH) Networks and Metro Area Networks (MAN).This paper discusses the limitations of the legacy transport technologies in responding to the emerging service requirements. The concept of a Packet Transport Network (PTN) is introduced along with a description of how a PTN could help service providers respond to its growing challenges and to seize the convergence opportunity.Challenges of Legacy Technologies in the New EraThe Growing Packet Transport Service RequirementDue to improved price and performance and improved ease of use and management, the telecommunications industry has witnessed a surge in the deployment of packet based optical transport systems (P-OTS) or Packet Transport Networks (PTN). Other driving forces include:⇒Overall lure and momentum of Ethernet adoption. Ethernet has become the access technology of choice⇒Rapid recent growth in enterprise wide-area network (WAN) traffic which is driven by bandwidth intensive activities like video conferencing, data center expansion, server centralization, and virtualization⇒Triple play or “blended services” with high quality of experience⇒New applications with new requirements – bandwidth intensive, high performance/ Quality of Service (QoS), scalability, reliability, and security⇒Operator network migrations and convergence for improved Operating Expenses (OPEX), service delivery and managementThe PTN market will continue to grow in the foreseeable future as shown in the figure below.Figure 1: PTN Market (Source: Heavy Reading)Characteristics of Next-Generation Transport NetworkAs Carrier-class Ethernet services are reaching wide spread deployment, a consensus is being reached that transport networks need an evolution towards packet-based networking. However, with a confusing number of solutions in the marketplace deployment has been slow. These solutions include NG-SDH with GFP/VCAT/LCAS, IP Routers with MPLS, T-MPLS and MPLS-TP.Before we evaluate different approaches, let’s check what makes an Ethernet service “Carrier-class” and the necessary requirements of a next-generation transport network.A Carrier-class Ethernet service should have the following characteristics:⇒End-to-End QoSCarrier Ethernet enables service providers to deliver CIR (Committed Information Rate) and PIR (Peak Information Rate) to each traffic flow that is classified physically (based on interface) or logically (based on customer VLAN or application type) and guarantees the lowest latency and jitter for delay-sensitive traffic. This level of QoS is close to that of an SDH private line and has better support for data traffic because of a PIR which allows subscribers to burst their traffic at the rate as high as wire speed. Carrier Ethernet also has an effective way of handling congestion in the network in order to maintain CIR for traffic flow under congestion. Finally, Carrier Ethernet uses Multiprotocol Label Switching (MPLS) to achieve better traffic engineering.⇒Sub-50ms ProtectionOne of the key advantages of SDH is its strong protection mechanism. Carrier Ethernet achieves sub-50ms protection by implementing MPLS Fast Reroute in hardware and it does not use software mechanisms for the convergence of the network. Another advantage of this protection mechanism is that it works in any topology, not just on a ring. Spanning Tree Protocol or routing protocols, such as OSPF, involve software implementations and their convergence time is far more than 50ms and is not deterministic.⇒Ethernet Operations Administration and Management (OAM)Originally, Ethernet had no OAM capabilities. This was acceptable for a LAN but not fora MAN that spans a large area and supports a large number of users. In a MAN,troubleshooting is more difficult and OAM becomes a necessity. There has been significant progress made towards defining Ethernet OAM in the IEEE 802.3 Working Group and Metro Ethernet Forum. Some vendors have already implemented pre-standard OAM functions into their products such as Ethernet loop-back, Bit Error detection, Service Level measurements, and alarms for critical problems.⇒ScalabilityEnterprise-class Ethernet has inherent limitations on scalability when used as a public network. These limitations include: the number of VLANs per network, the number of MAC addresses that can be learned and stored in the device, and the long and non-deterministic convergence time of the Spanning Tree Protocol (STP). The use of MPLS in Carrier Ethernet applications enables carriers to address the scalability of the network and to address the addition of the services such as Enterprise LANs.⇒SecuritySurveys show that security is the top consideration for enterprise users when they choose network service providers. The cost effectiveness of an Ethernet service cannot be at the cost of security. Enterprise users are expecting the same security level as in SDH, Asynchronous Transfer Mode (ATM) or Frame Relay networks.To provide a Carrier-class Ethernet service, as well as other revenue-generating services, the Next-generation transport network should have the following characteristics:⇒Packet Based & Connection Oriented – Relentless transition to packet based networks⇒High Scalability – The network is expected to last decades and serve an ever increasing number of users⇒Strong security – Customers must be confident about the security of their data⇒Transparent Multi-service Support - Time Division Multiplexing (TDM) services are still the bread and butter for many service providers and must be supported transparently on the network. The advantage is that the new network will be able to carry other applications to lower the costs for these legacy applications.⇒High availability & Sub-50ms Protection - The convergence time is considered as a crucial factor in a carrier-class network⇒End to End QoS – Predictable latency, low error rate and deterministic service delivery.In addition service providers want to maintain the same QoS level as in the traditional TDM/ATM networks while gaining the simplicity and the lower costs of Carrier Ethernet⇒Simple Management & Low Total Cost of Ownership (TCO) – Reuse as much as possible the existing network facilities and the supporting personnel skills/expertise⇒Enhanced OAM - A transport network can guarantee high quality traffic transmission only if it has an efficient OAM mechanism⇒Standards-based and Interoperability – Enabling an effective multi-vendor and multi-operator environment.With the understanding of the definition for “Carrier-class” and “Next-generation transport”, we can move to a discussion of the various approaches to a next-gen transport network. Evolution of Transport NetworksFigure 2: Evolution of the Transport NetworksSDH/NG-SDH ApproachSDH technology has been an essential part of transport networks for the past decade. Today, most transport networks are SDH-based. One approach to implementing carrier-class Ethernet is to take advantage of the existing SDH infrastructure and add new access devices or interface cards that can encapsulate Ethernet frames in appropriate SDH payloads and transmit the Ethernet traffic to the other end. This solution is called Next Generation SDH (NG-SDH). The three essential building blocks of an NG-SDH system are Generic Framing Procedure (GFP), Virtual Concatenation (VCAT), and Link Capacity Adjustment Scheme (LCAS).GFP is an ITU-T standard that provides a framing procedure for packet services (GFP-F or framed based GFP) and storage services (GFP-T or transparent GFP). This permits transmission of non-native payloads over the SDH network.Using VCAT, data traffic is carried in a number of parallel small-payload containers that are individually transported through the network and reassembled at their destination. Each channel within a Virtual Concatenation Group (VCG) may be on different paths. Flexible bandwidth allocation is achieved by choosing the appropriate number and size of payload containers. VCAT improves the efficiency of transporting data service compared to a fixed bandwidth SDH virtual container.LCAS is an ITU-standard signaling scheme that allows two endpoints of a VC channel to dynamically tune the bandwidth at the request of the network management system without disturbing traffic. One common misconception is that LCAS allows SDH to tune a VCAT channel automatically according to the traffic rate. But in fact the network management system needs to send a command to the source node to add/delete a sub-channel to/from the existing VCAT channel. The source node uses LCAS commands to notify the destination node of the addition/deletion of the sub-channel.Many service providers with a large installed base of SDH believe that they can offer Ethernet services whenever and wherever the demand originates. This service is simply an SDH channel with Ethernet access interfaces to subscribers using GFP mapping. With VCAT, service providers can allocate the “right sized” bandwidth according to customer’s requirements. Plus, LCAS provides protection to VCAT groups on top of the native SDH protection. All of this sounds very promising, but service providers need to understand the lack of efficiency of NG-SDH in providing data services.The inefficiency of NG-SDH in supporting data services lies in two areas:⇒Inflexible bandwidth allocationThe bandwidth allocation for an Ethernet service in a NG-SDH network must be an integral factor of VC-12/VC-3/VC-4. A further restriction is that the members in the VCG must be the same size.For example, if a customer starts with 100Mbps service using a VC-12-46v container, but later wants to upgrade bandwidth to 1000Mbps (by using VC-4-7v) , service would be disturbed because the operator of that network would be required to recreate the route. This results in service interruption since the low order circuit must be deleted and the high order circuit must added.⇒Bandwidth overbooking for QoSThe Service-Level-Agreement (SLA) usually defines the bandwidth, delay, delay variation, and packet drop rules. To guarantee the bandwidth, a service provider would have to provision an Ethernet over SDH circuit, virtually concatenated or not, taking into account the peak rates of the bursty services it sells to its customers. Data traffic is inherently bursty and peak rates of multiple traffic flows usually do not occur at the same time. Therefore, the actual average utilization on each of these SDH circuits is usually a fraction of that peak rate, which makes the overall utilization of the network low.For example, a STM-16 ring can support up to two Gigabit Ethernet (GE) connections using VCAT. By contrast, Ethernet service providers feel very comfortable using a single GE ring to support two GE customers because they know that the heaviest traffic from both customers is rarely simultaneous, and both customers will perceive a maximum rate of 1Gbps. Even when bursty traffic does occur simultaneously, Ethernet can use flow control and traffic shaping functions to avoid packet loss. Finally the cost of a GE ring is substantially cheaper than an STM-16 ring.IP/MPLS ApproachMPLS was originally developed by the Internet Engineering Task Force (IETF) in order to address core IP router performance issues. However MPLS has since found strong application in service providers' converged core networks, and as a platform for data services such as IP-VPN.MPLS is essentially a labeling system designed to accommodate multiple protocols. Label Switch Paths (LSPs) are used to define the paths of packets in the network so that a connection-oriented mode is introduced into a connectionless network. The use of MPLS labels enables routers to avoid the processing overhead of delving deeply into each data packet and performing complex route lookup operations based upon IP addresses.MPLS technology provides customers with a versatile solution that significantly helps address the problems faced by present networks:⇒Speed⇒Scalability⇒Quality of Service and Class of Service management⇒Traffic engineering⇒Convergence of voice, video and dataMPLS has emerged as an elegant solution to meet the bandwidth and service management requirements for next generation IP based backbone networks. MPLS tackles the issues related to scalability and routing and it can be layered over a customer’s existing ATM and Frame Relay networks.MPLS enhances a customer’s network by providing:⇒High speed data forwarding between customer sites⇒The ability to create a partially- or fully-meshed network, often described as any-to-any, with only a single physical and logical connection per site⇒Reservation of bandwidth for applications, and prioritization capabilitiesMPLS allows the network to transmit data packets using standard IP routing protocols from any location to any location via a short predetermined path across the network. MPLS combines the most desirable features of Layer 2 and Layer 3 networks by providing the speed and efficiency of a Layer 3 network coupled with the security and reliability of a Layer 2 network.A key capability provided by an MPLS network is Class of Service (CoS). CoS allows the optional definition of bandwidth requirements and traffic prioritization by application. By making the network aware of the applications traversing it, the traffic can be managed in a way that is appropriate for each traffic (application) type. CoS for each traffic type can be indicated in several ways at the time the traffic enters the network.With the MPLS Fast ReRoute (FRR) function, an MPLS network can implement protection switching within 50ms.IP/MPLS technology is mature enough for various application scenarios. What prevents it from being the perfect candidate technology in building a next-generation transport network?⇒IP/MPLS technology is quite complicated, and IP/MPLS routers are quite expensive.⇒For some transport network applications, such as mobile backhaul, all services are transported from base stations (Node B) to a central (RNC), so no complicated routing is needed. Since traffic patterns are relatively static, the powerful routing functions of IP/MPLS are wasted.⇒Since most transport networks have been SDH-based, maintenance staffs are quite accustomed to SDH operation and maintenance procedures. IP/MPLS network planning, operating and maintenance represent a major learning curve for the service provider’s staff increasing the total cost of ownership.⇒IP/MPLS lacks the OAM functions necessary for managing carrier class services.T-MPLS ApproachWith packet networking on the rise, the ITU-T became interested in adapting MPLS to make it a “carrier class”, according to recognized ITU-T architectural principles. The result is Transport MPLS (T-MPLS), a connection-oriented packet transport network based on MPLS that provides managed point-to-point connections to different client layer networks (such as Ethernet).T-MPLS, as a new formulation of MPLS, was designed specifically for application in transport networks. It builds upon well-known and widely deployed IP/MPLS technology and standards, but offered a simpler implementation, where features not relevant to connection-oriented applications are removed and critical transport functionality gaps are addressed.T-MPLS has been under development by the ITU-T since February 2006. T-MPLS uses the same architectural principles of layered networking that are used in other technologies like SDH and Optical Transport Network (OTN). Service providers have already developed management processes and work procedures based on these principles.In this way T-MPLS provides a reliable packet-based technology that is familiar and also aligned with circuit-based transport networking. Thus it supports current organizational processes and large-scale work procedures.In addition, the key enhancements to MPLS provided by T-MPLS, such as engineered point-to-point bi-directional LSPs, end-to-end LSP protection, and advanced OAM support allow optimal control of transport network resources leading to lower operational expenses.However, unlike MPLS, T-MPLS does not support a connectionless mode and is intended to be simpler in scope, less complex in operation and easily managed. Layer 3 features have been eliminated and the control plane uses a minimum of IP mechanisms leading to equipment implementations that support service providers’ needs for lower-cost, high-volume packet networking in their next-generation architectures.T-MPLS is formulated in conjunction with today's circuit-based transport networks, following the same architectural, management and operational models. It is thus intended to provide an optimum evolution path for many service providers in their metro and access networks, as they transition to a packet-based future.T-MPLS = MPLS + OAM – L3 ComplexityAnother way to view T-MPLS is to think of it as a strictly connection-oriented subset of MPLS:⇒Survivability is specific to the transport network. T-MPLS defines its protection capability using ITU-T's Recommendations G.8131/Y.1382 (T-MPLS linear protection switching with 1+1, 1:1 and 1:N options) and G.8132/Y.1383 (T-MPLS ring protection switching).MPLS Fast ReRoute (FRR) capability requires the use of LSP Merge that is excluded from T-MPLS. Since no control plane is involved, protection switching performance can be very fast.⇒OAM is specific to the transport network and functionality is referenced from ITU-T's Y.1711 (OAM mechanism for MPLS networks). This provides the same OAM concepts and methods (e.g. connectivity verification, alarm suppression, remote defect indication) already available in other transport networks, without requiring complex IP data plane capabilities.⇒The T-MPLS control plane (specific for the transport network) is currently null. In other words, the management plane will be used for manual/automated provisioning, in the same way as SDH and OTN networks are provisioned today. However, as is the case for other transport network technologies, the control plane for T-MPLS is envisaged to be ASON/GMPLS and will thus enable more dynamic and intelligent operation.⇒No label reservation. T-MPLS will not reserve labels for its own use independently of MPLS. Any requirements for special label assignment will be handled by the IETF and coordinated with the MPLS standards. This helps to ensure that interoperability and interworking will be readily achievable.Differences of T-MPLS from MPLSIn order to define a subset of MPLS that is connection-oriented and that lends itself to the established transport OAM model, several MPLS protocol features have been excluded from T-MPLS. Key differences of T-MPLS compared with MPLS include:⇒Use of bi-directional LSPs. While MPLS LSPs are uni-directional, transport networks traditionally provision bi-directional connections. T-MPLS therefore pairs the forward and backward LSPs to follow the same nodes and links.⇒No PHP (Penultimate Hop Popping) option. PHP, by removing the MPLS label one node before the egress node, simplifies the egress processing required. Indeed, it comes froma historical legacy of wanting to minimize router processing requirements. However, theinterface now has a mix of IP and MPLS packets and the final node must perform an IP (or other payload) look-up instead. More importantly, OAM is more complex or even impossible since the MPLS label context is lost.⇒No LSP Merging option. LSP Merge means that all traffic forwarded along the same path to the same destination may use the same MPLS label. While this may promote scalability, in fact it makes effective OAM and Performance Monitoring (PM) difficult or even impossible, since the traffic source becomes ambiguous and unknown. It is thus not a connection-oriented concept.⇒No ECMP (Equal Cost Multiple Path) option. ECMP allows traffic within one LSP to be routed along multiple network paths. Not only does this require additional IP header processing, as well as MPLS label processing, but it makes OAM more complex since Continuity Check (CC) and PM flows may follow different paths. This concept is not needed in a connection-oriented network.MPLS-TP based Packet Transport NetworksAfter IETF raised concerns over T-MPLS technology, mainly about incompatibility with the already established IP/MPLS, the ITU-T and the IETF started a joint activity to solve potential issues. The decision was to transfer control to IETF to develop an MPLS Transport Profile (MPLS-TP) with input from ITU recommendations. A new activity was added to the charter of the MPLS working group of IETF.Introduction to MPLS-TPMPLS-TP is a profile of MPLS whose definition has been turned over to the IETF. It will be designed for use as a network layer technology in transport networks. Its design will be a continuation of the work started by the transport network experts of the ITU-T, specifically SG15, as T-MPLS with the required protocol extensions to MPLS being specified by the IETF. It will be a connection-oriented packet-switched application. It will offer a dedicated MPLS implementation by removing features that are not relevant to connection-oriented applications and adding mechanisms that provide support of critical transport functionality.MPLS-TP is based on the same architectural principles of layered networking that are used in longstanding transport network technologies like SDH and OTN. Service providers have already developed management processes and work procedures based on these principles.MPLS-TP will provide service providers with a reliable packet-based technology that is based upon circuit-based transport networking, and thus is expected to align with current organizational processes and large-scale work procedures similar to other packet transport technologies.MPLS-TP is expected to be a low cost L2 technology that will provide QoS, end-to-end OAM and protection switching.In February 2008 the ITU-T and IETF agreed to work jointly on the design of MPLS-TP. Based on this agreement MPLS-TP will be specified in a number of RFCs. The ITU-T recommendations will refer to these RFCs.The following IETF RFC drafts exist for MPLS-TP:⇒draft-jenkins-mpls-mplstp-requirements - MPLS-TP Requirements⇒draft-sprecher-mpls-tp-oam-analysis - MPLS-TP OAM Analysis⇒draft-vigoureux-mpls-tp-oam-requirements - Requirements for OAM in MPLS Transport Networks⇒draft-vigoureux-mpls-tp-gal - Assignment of the Generic Associated Channel Header Label (GAL)⇒draft-blb-mpls-tp-framework - A Framework for MPLS in Transport Networks⇒draft-andersson-mpls-tp-oam-def - "The OAM Acronym Soup"⇒draft-bocci-pwe3-mpls-tp-ge-ach - MPLS Generic Associated Channel⇒draft-gray-mpls-tp-nm-req - MPLS TP Network Management Requirements⇒draft-sprecher-mpls-tp-survive-fwk - MPLS TP Survivability FrameworkBenefits of MPLS-TP based PTNThe MPLS-TP technology uses the data plane of MPLS and has simplified the complicated application scenarios of MPLS. It decreases equipment, operation, and maintenance cost. The data plane is separated from the control plane. This leads to higher network stability, reliability and flexibility. With a strong OAM and protection switching function, the MPLS-TP based PTN could achieve the same reliability and resilience level as SDH/NG-SDH.Compared with the widely deployed SDH/NG-SDH based networks, the MPLS-TP based PTN is an evolutionary step.⇒Operational methodology is similar, if not the same, as an SDH network. This is particularly important for large service providers who may have an extensive automated provisioning and control system developed over many years. A large impact on staff training and skill set can also be avoided.⇒The management network utilizes the familiar transport style processes:−Provision what you want−Retrieve performance reports periodically or instantly−Retrieve alert from alarms if a fault occurs−Easily locate faults using determined, cleared Defect-Alarm relationships⇒The extension to packet networking complements the existing transport plane.⇒The GMPLS control plane is similar to SDH and OTN and is also aligned with existing management models.⇒Packet based networking provides higher bandwidth efficiency over circuit based networking. This is especially true with data traffic growing and becoming dominant. Compared with IP/MPLS based networks, the MPLS-TP based PTN provides the following advantages:⇒By focusing on the transport domain, rather than attempting to also cover routing applications, MPLS-TP is a simpler approach than an equivalent IP/MPLS-based approach. Once again, this should avoid a large impact on staff training, skill set and network complexity⇒TCO that is lower than IP/MPLS since it omits IP-oriented routing and control complexity ⇒MPLS-TP supports OAM & protection/redundancy in each layer⇒Connection-oriented approach with traditional protection schemes and transport-centric OAM tools that line up with established architectures⇒Guaranteed transport performance and QoS for every kind of supported client service⇒Designed from the start for transport network, MPLS-TP based equipment provide a complete synchronization solution, guaranteeing 3G timing accuracy。