最新华师大版七年级数学下册各章检测试卷(共5章 有期末试卷 附答案)

合集下载

华师大版七年级数学下册期末检测卷及答案.docx

华师大版七年级数学下册期末检测卷及答案.docx

华师⼤版七年级数学下册期末检测卷及答案.docx【本⽂档由书林⼯作坊整理发布,谢谢你的下载和关注!】期末检测卷时间:120分钟满分:120分班级:__________ 姓名:__________ 得分:__________⼀、选择题(每⼩题3分,共30分)1.下列图形中,既是轴对称图形⼜是中⼼对称图形的是( )A. B. C. D.2.若⼀个多边形的每个内⾓都为135°,则它的边数为( ) A .9 B .8 C .10 D .12 3.在解⽅程x -12-2x +13=1时,去分母正确的是( )A .3(x -1)-2(2x +3)=6B .3x -3-4x +3=1C .3(x -1)-2(2x +3)=1D .3x -3-4x -2=64.如图,将直⾓△ABC 绕直⾓顶点C 顺时针旋转90°,得到△A ′B ′C ,连接AA ′,若∠1=25°,则∠B 的度数是( )A .70°B .65°C .60°D .55°第4题图5.不等式组{2x +1≥3,2-x >-1的解集在数轴上表⽰正确的是( )6.如图,把⼀直尺放置在⼀个三⾓形纸⽚上,则下列结论正确的是( ) A .∠1+∠6>180° B .∠2+∠5<180° C .∠3+∠4<180° D .∠3+∠7>180°第6题图7.某车间有26名⼯⼈,每⼈每天可以⽣产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天⽣产的螺钉和螺母刚好配套.设安排x 名⼯⼈⽣产螺钉,则下⾯所列⽅程正确的是( )A .2×1000(26-x )=800xB .1000(13-x )=800xC .1000(26-x )=2×800xD .1000(26-x )=800x8.已知x ,y 满⾜⽅程组{3x -y =4,4x +y =3,则2x -3y 的值为( ) A .-1 B .0 C .1 D .59.如图,△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处,若∠A =25°,则∠BDC 等于( ) A .60° B .60° C .70° D .75°第9题图10.有⼀根长40cm 的⾦属棒,欲将其截成x 根长7cm 的⼩段和y 根长9cm 的⼩段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( ) A .x =1,y =3 B .x =4,y =1 C .x =3,y =2 D .x =2,y =3 ⼆、填空题(每⼩题3分,共24分)11.若2x 3-2k+2=4是关于x 的⼀元⼀次⽅程,则k =________. 12.不等式12x -1>3的解集是________.13.如图,线段AB 可以看成是线段CD 先绕点C ________旋转90°,再向________平移________⼩格得到的.14.已知△ABC 的边长a ,b ,c 满⾜(a -2)2+|b -4|=0,若c 为偶数,则c 的值为________.15.已知关于x 的不等式组>+>-23,)1(21x m x 的解集为x >-1,则m 的取值范围是________.16.如果只⽤⼀种正多边形做平⾯密铺,⽽且在每⼀个正多边形的每⼀个顶点周围都有6个正多边形,则该正多边形的每个内⾓度数为________.17.某商场计划每⽉销售900台电脑,2015年10⽉1⽇⾄7⽇黄⾦周期间,商场开展促销活动,10⽉的销售计划⼜增加了30%,已知黄⾦周这7天平均每天销售54台,则这个商场本⽉后24天平均每天⾄少销售________台才能完成本⽉计划. 18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外⾓∠EAC ,内⾓∠ABC ,外⾓∠ACF .以下结论:①AD ∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°-∠ABD ;④∠BDC =∠BAC .其中正确的结论有________.三、解答题(共66分)19.(8分)解下列⽅程(组):(1)2x -15+3x +13=x +2; (2)=+=-245,1443y x y x20.(10分)解下列不等式(组),并把解集在数轴上表⽰出来.(1)1+x 3>5-x -22;(2)??+≤->-9131,21x x x x21.(8分)如图,⽅格纸中的每个⼩⽅格为1个单位长度的正⽅形.(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1(要求A 与A 1,B 与B 1,C 与C 1相对应);(2)作出将△ABC向右平移5个单位长度后的△A2B2C2(要求A与A2,B与B2,C与C2相对应).22.(8分)如图,在△ABC中,∠1=∠B,∠2=∠C,∠DAC=40°,求∠B的度数.23.(8分)如图,在四边形ABCD中,AO,BO分别为∠DAB,∠ABC的平分线,且∠D+∠C=220°,求∠AOB的度数.24.(12分)甲、⼄两商场以同样的价格出售同样的商品,并且⼜各⾃推出不同的优惠⽅案:在甲商场累计购物超过100元后,超出100元的部分按a折收费;在⼄商场累计购物超过50元后,超过50元的部分按95%收费.若王⽼师到甲商场购物150元,实际⽀付145元.(1)求a的值;(2)当累计购物超过100元时,请你分析顾客到哪家商场购物更合算.25.(12分)某⽔果基地计划装运甲、⼄、丙三种⽔果到外地销售(规定每辆汽车满载,并且只装⼀种⽔果).下表为装运甲、⼄、丙三种⽔果的重量及利润.(1)⽤8少辆?(2)⽔果基地计划⽤20辆汽车装运甲、⼄、丙三种⽔果共72吨到B地销售(每种⽔果不少于⼀车),假设装运甲⽔果的汽车为m 辆,则装运⼄、丙两种⽔果的汽车各多少辆(结果⽤m 表⽰)?(3)在(2)问的基础上,如何安排装运可使⽔果基地获得最⼤利润?最⼤利润是多少?参考答案与解析1.D 2.B 3.D 4.B 5.A 6.D 7.C 8.D 9.C10.C 解析:根据题意得7x +9y ≤40,则x ≤40-9y7.∵40-9y ≥0且y 是正整数,∴y 的值可以是1或2或3或4.当y =1时,x ≤317,则x =4,此时,所剩的废料是40-1×9-4×7=3(cm);当y =2时,x ≤227,则x =3,此时,所剩的废料是40-2×9-3×7=1(cm);当y =3时,x ≤137,则x =1,此时,所剩的废料是40-3×9-7=6(cm);当y =4时,x ≤47,则x =0(舍去).若使废料最少,则x =3,y =2.故选C.11.1 12.x >8 13.逆时针左 1 14.4 15.m ≤-1 16.60° 17.3318.①②③解析:①∵AD 平分△ABC 的外⾓∠EAC ,∴∠EAD =∠DAC .∵∠EAC =∠ACB +∠ABC ,且∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,故①正确;②由①可知AD ∥BC ,∴∠ADB =∠DBC .∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠ABC =2∠ADB .∵∠ABC =∠ACB ,∴∠ACB =2∠ADB ,故②正确;③在△ADC 中,∠ADC +∠CAD +∠ACD =180°,∵CD 平分△ABC 的外⾓∠ACF ,∴∠ACD =∠DCF .∵AD ∥BC ,∴∠ADC =∠DCF ,∠ADB =∠DBC,∠CAD =∠ACB ,∴∠ACD =∠ADC ,∠CAD =∠ACB =∠ABC =2∠ABD ,∴∠ADC +∠CAD +∠ACD =∠ADC +2∠ABD +∠ADC =2∠ADC +2∠ABD =180°,∴∠ADC +∠ABD =90°,∴∠ADC =90°-∠ABD ,故③正确;④∵∠BAC +∠ABC =∠ACF ,∴12∠BAC +12∠ABC =12∠ACF .∵∠BDC +∠DBC =12∠ACF ,∴12∠BAC +12∠ABC =∠BDC +∠DBC .∵∠DBC =12∠ABC ,∴12∠BAC =∠BDC ,即∠BDC =12∠BAC ,故④错误.故正确的结论有①②③.19.解:(1)x =143.(4分)(2)?x =2,y =-2.(8分)20.解:(1)x >6,在数轴上表⽰如下.(5分)(2)x <-1,在数轴上表⽰如下.(10分)21.解:画图略.(8分)22.解:设∠B =x °,则∠1=x °.⼜∵∠2=∠1+∠B =2x °,∴∠C =∠2=2x °.(3分)⼜∵∠2+∠C +∠DAC =180°,(5分)∴2x °+2x °+40°=180°,解得x =35,(7分)即∠B 的度数为35°.(8分) 23.解:∵∠D +∠C +∠DAB +∠ABC =360°,∠D +∠C =220°,∴∠DAB +∠ABC =140°.(3分)∵AO ,BO 分别为∠DAB ,∠ABC 的平分线,∴∠1=∠2,∠3=∠4,∴∠2+∠3=70°,(6分)∴∠AOB =180°-(∠2+∠3)=180°-70°=110°.(8分) 24.解:(1)依题意得(150-100)×a10=145-100,解得a =9.(4分)(2)设累计购物x (x >100)元,则甲商场购物需:100+0.9(x -100)元,⼄商场购物需:50+0.95(x -50)元.(6分)①若50+0.95(x -50)=100+0.9(x -100),解得x =150,所以当累计购物150元时,到两商场购物花费⼀样;(8分)②若到甲商场购物花费少,则50+0.95(x -50)>100+0.9(x -100),解得x >150,即累计购物超过150元时,到甲商场购物合算;(10分)③若到⼄商场购物花费少,则50+0.95(x -50)<100+0.9(x -100),解得x <150,即累计购物超过100元不到150元时,到⼄商场购物合算.(12分)25.解:(1)设装运⼄、丙⽔果的汽车分别为x 辆,y 辆,由题意得x +y =8,2x +3y =22,解得?x =2,y =6.答:装运⼄种⽔果的汽车有2辆、丙种⽔果的汽车有6辆.(3分)(2)设装运⼄、丙⽔果的汽车分别为a 辆,b 辆,由题意得m +a +b =20,4m +2a +3b =72,解得a =m -12,b =32-2m .答:装运⼄种⽔果的汽车是(m -12)辆,丙种⽔果的汽车是(32-2m )辆.(7分)(3)设总利润为w 千元,则w =5×4m +7×2(m -12)+4×3(32-2m )=10m +216.(8分)∵m ≥1,m -12≥1,32-2m ≥1,∴13≤m ≤15.5.⼜∵m 为正整数,∴m =13,14,15.(10分)将m =13,14,15依次代⼊w =10m +216中,可得当m =15时,w 最⼤,此时w =366.答:安排运甲⽔果的车15辆,运⼄⽔果的车3辆,运丙⽔果的车2辆,可使⽔果基地获得最⼤利润,最⼤利润为366千元.(12分)初中奥数题试题⼀⼀、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之⼀是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下⾯的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下⾯说法中不正确的是 ( )A. 有最⼩的⾃然数 B .没有最⼩的正有理数 C .没有最⼤的负整数 D .没有最⼤的⾮负数4.如果a ,b 代表有理数,并且a +b 的值⼤于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.⼤于-π并且不是⾃然数的整数有 ( )A.2个 B.3个 C.4个 D.⽆数个6.有四种说法:甲.正数的平⽅不⼀定⼤于它本⾝;⼄.正数的⽴⽅不⼀定⼤于它本⾝;丙.负数的平⽅不⼀定⼤于它本⾝;丁.负数的⽴⽅不⼀定⼤于它本⾝。

华师大版七年级下册数学期末考试试卷附答案

华师大版七年级下册数学期末考试试卷附答案

华师大版七年级下册数学期末考试试题一、单选题1.若代数式x+3的值为2,则x 等于A .1B .1-C .5D .5-2.观察下边的图案,既是中心对称图形又是轴对称图形的是( )A .B .C .D .3.下列不等式一定成立的是( )A .26x <B .0x ->C .10x +>D .20x > 4.小育到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正八边形 B .正六边形 C .正方形 D .正三角形5.三元一次方程组3210x y z x y z x y -+=-⎧⎪+-=⎨⎪+=⎩的解是( )A .112x y z =-⎧⎪=⎨⎪=⎩B .124x y z =-⎧⎪=-⎨⎪=-⎩C .221x y z =-⎧⎪=⎨⎪=⎩D .227x y y =⎧⎪=-⎨⎪=-⎩6.下列说法中不正确的是( )A .内角和是1080°的多边形是八边形B .六边形的对角线一共有8条C .三角形任一边的中线把原三角形分成两个面积相等的三角形D .一个多边形的边数每增加一条,这个多边形的内角和就增加180°7.如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x ,宽为y ,则依据题意可得二元一次方程组为( )A.153x yx y+=⎧⎨=⎩B.1523x yx y+=⎧⎨=⎩C.1523x yx x y-=⎧⎨=+⎩D.21523x yx x y-=⎧⎨=+⎩8.已知x2y4k{2x y2k1+=+=+,且1x y0-<-<,则k的取值范围为A.11k2-<<-B.10k2<<C.0k1<<D.1k12<<9.在道路两旁种树,每隔3米一棵,还剩3棵;每隔2.5米一棵,到头还缺77棵,则这条道路()A.长为600米,共有405棵树B.长为600米,共有403棵树C.长为300米,共有403棵树D.长为300米,共有405棵树10.如图,∠ABC=∠ACB,BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,BE平分外角∠MBC交DC的延长线于点E,以下结论:①∠BDE=12∠BAC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠BAC+2∠BEC=180°.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于_________ .12.如果等腰三角形一边长是5cm,另一边长是8cm,则这个等腰三角形的周长是______________.13.如图,将△ABC沿BC方向向右平移2cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________cm.14.若关于x 的不等式组25322x a x b -≥⎧⎨-<⎩的解集为3≤x <4,则a -2b=________. 15.如图,四边形ABCD 中,∠A=100°,∠C=70°,将△BMN 沿MN 翻折,得到△FMN ,若MF ∥AD ,FN ∥DC ,则∠D=________.16.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种袋装粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种袋装粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A 、B 、C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为71.5元,利润率为30%,乙种粗粮利润率为20%,则乙种粗粮每袋的售价为________元.(利润率=-100%⨯售价成本成本)三、解答题17.解下列方程(组):(1) ()()371323x x x --=-+(2)516213410x y x y -=⎧⎨++=⎩18.解不等式组523(2)121123x x x x +<+⎧⎪+-⎨≤+⎪⎩,把解集在数轴上表示出来,并求不等式组的整数解.19.如图,方格纸中每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上.(1)画出与△ABC关于直线MN成轴对称的△A1B1C1;(2)画出将△ABC绕点O逆时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴.20.若关于x的方程1123x k k--=+与方程()315x x x--=-的解互为相反数,求k的值.21.如图,在△ABC中,∠B=32°,∠C=70°,AD⊥BC于点D,AE平分∠BAC交BC于点E,DF⊥AE于点F.(1)求∠BAE的度数;(2)求∠ADF的度数.22.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).23.某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?24.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数” .将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123) =6.(1)计算:F(315),F(746);(2)若s、t都是“相异数”,其中s=100x+42,t=160+y(1≤x≤9,1≤y≤9,x、y都是正整数),当F(s)+F(t)=17时,求x、y的值.25.将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1= 度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.参考答案1.B【解析】试题分析:根据题意,列出关于x的一元一次方程x+3=2,通过解该方程可以求得x的值:由题意,得x+3=2,解得x=﹣1.故选B.2.D【解析】【分析】根据中心对称图形和轴对称图形的定义逐个判断即可.【详解】A 选项是轴对称图形但不是中心对称图形;B 选项是既不是轴对称图形也不是中心对称图形;C选项是既不是轴对称图形也不是中心对称图形;D 选项既是中心对称图形也是轴对称图形;故选D.【点睛】本题主要考查中心对称图形和轴对称图形的概念,注意两者的区别.3.C【解析】【分析】根据绝对值的意义和一个数的平方大于等于0,逐个判断即可.【详解】A 选项不一定成立;B选项不一定成立;C选项一定成立;D选项不一定成立,还有可能等于0.故选C.【点睛】本题主要考查绝对值大于等于0,一个数的平方大于等于0,这是重点知识,必须掌握.4.A【解析】【分析】根据圆周角的性质,首先计算每个选项中正多边形的的内角,再计算是否能够无缝铺砖,即可得到答案.【详解】A 正八边形的内角为: (82)180=1358︒︒-⨯,因为360135︒︒不能整除,所以不能无缝铺砖; B 正六边形的内角为: (62)180=1206︒︒-⨯,因为360=3120︒︒ 所以能无缝铺砖;C 正方形的内角为:90︒,因为360=490︒︒ 所以能无缝铺砖;D 正三角形的内角为:60︒,因为360=660︒︒ 所以能无缝铺砖;故选A.【点睛】本题主要考查正多边形的内角和的计算公式,这个是重点知识必须掌握.5.C【解析】【分析】采用加减消元法计算即可.【详解】解:3(1)21(2)0(3)x y z x y z x y -+=-⎧⎪+-=⎨⎪+=⎩将(1)+(2)可得:22(4)x y +=-将(4)-(3)可得:2x =-(5)将(5)代入(3)可得:2y =(6)将(5)和(6)代入(1)可得:1z =所以可得221x y z =-⎧⎪=⎨⎪=⎩故选C.【点睛】本题主要考查三元一次方程的消元法,这是解决方程的最重要的方法,必须掌握. 6.B【解析】【分析】根据各选项逐个判断说法是否正确即可.【详解】A 根据正多边形的内角和计算公式可得:(82)1801080︒︒-⨯=,因此A 说法正确;B 选项说法不正确,六边形的对角线有18条;C 正确,因为每个边上的高是相等的,只要边上的中线则分成的两个三角形的面积相等;D 正确,根据多边形的内角和的计算公式可得每增加一条边,正多边形的内角增加180°. 故选B.【点睛】本题主要考查正多边形的性质,这些选项都是基本性质,必须掌握.7.A【解析】【分析】设每一个小长方形的长为x ,宽为y ,根据大长方形的宽为15及小长方形的长与宽之间的关系,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设每一个小长方形的长为x ,宽为y ,依题意,得:153x y x y +=⎧⎨=⎩. 故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.D【解析】【详解】∵x+2y=4k 2x+y=2k+1⎧⎨⎩①②∴②-①,得x y 2k 1-=-+将x y 2k 1-=-+代入1x y 0-<-<,得:112k 1022k 1k 12-<-+<⇒-<-<-⇒<<故选D9.A【解析】【分析】根据题意首先设这条道路长x m,;列出一元一次方程求解即可.【详解】解:设这条道路长x m22232773 2.5xx++=+-解得:600x = 所以一共有树:2600234053⨯++=故选A.【点睛】本题主要考查一元一次方程的应用题,注意这类题一定要末端要多种一颗树. 10.D【解析】【分析】根据角平分线的性质,逐个判断结论是否正确即可.【详解】①正确,180BDE DBC DCB ︒∠=-∠-∠12DBC ABC ∠=∠; DCB ACD ACB ∠=∠+∠1()2DCB BAC ABC ACB ∴∠=∠+∠+∠ 11180()22BDE ABC BAC ABC ACB ︒∴∠=-∠-∠+∠-∠即: 12BDE BAC ∠=∠ 故正确;②正确, BD 、BE 分别平分△ABC 的内角∠ABC 、外角∠MBC ,11,22DBC ABC CBE MBC ∴∠=∠∠=∠ 111()90222DBC CBE ABC MBC ABC MBC ︒∴∠+∠=∠+∠=∠+∠= BD BE ∴⊥故正确;③正确,ABC ACB ∠∠=由①可得∠BDC=12BAC ∠ 所以可得∠BDC+∠ABC =90°故正确;④正确, ∠BEC=11180180909022DBE BDE BAC BAC ︒︒︒︒-∠-∠=--∠=-∠ 122(90)1802BAC BEC BAC BAC ︒︒∴∠+∠=∠+⨯-∠= 故正确.故选D.【点睛】本题主要考查平分线的性质,结合三角形的内角和的性质,应用等量替换的方法,这个换算即可.11.﹣1【解析】试题分析:把x=2代入得到4+3m-1=0,所以m=-1考点:一元一次方程,代入求值点评:本题考查代入求值,比较简单,细心就可.12.21或18【解析】【分析】根据题意要根据腰的情况分类讨论,第一当腰为5cm是计算周长;第二当腰为8cm计算周长.【详解】解:根据题意可得第一当腰为5cm时,周长为:5+5+8=18;当腰为8cm时,周长为:8+8+5=21故答案为:21或18【点睛】本题主要考查等腰三角形的腰的分类讨论,这是数学中最常用的思想,必须掌握理解. 13.24【解析】【分析】根据四边形ABFD的周长为:AB+BF+DF+AD,而△ABC的周长为:AB+BC+AC=20cm,采用等量替换的方法计算即可.【详解】解:△ABC的周长为:AB+BC+AC=20cm根据题意可得四边形ABFD的周长为:AB+BF+DF+AD=AB+BC+CF+AC+AD=AB+BC+AC+CF+AD=20+2+2=24故答案为24.【点睛】本题主要考查四边形的周长计算,关键在于利用等量替换的方法计算,等量替换是解决几何问题最重要的方法,必须熟练掌握.14.-9【解析】【分析】首先求解不等式组,再根据解集求出未知数的值,代入计算即可.【详解】解:根据题意可得:52223a x b x +⎧≥⎪⎪⎨+⎪<⎪⎩即:52223a b x ++≤< 所以可得2243532b a +⎧=⎪⎪⎨+⎪=⎪⎩ 解得15a b =⎧⎨=⎩ 所以a -2b=1259-⨯=-故答案为-9【点睛】本题主要考查不等式中参数的求解,关键在于根据不等式的解集求解参数.15.95︒【解析】【分析】首先根据MF ∥AD ,FN ∥DC ,可得100,70BMF BNF ︒︒∠=∠=,由于△FMN 是△BMN沿MN 翻折得到的,所以可得,BMN FMN BNM FNM ∠=∠∠=∠,故可得MFN ∠ 的度数,进而可得∠D 的度数.【详解】 解: MF ∥AD ,FN ∥DC100,70,BMF BNF D MFN ︒︒∴∠=∠=∠=∠△FMN 是△BMN 沿MN 翻折得到的∴ ,BMN FMN BNM FNM ∠=∠∠=∠100701809522MFN ︒︒︒︒∴∠=--= 95D ︒∴∠=故答案为95︒【点睛】本题主要考查折叠图形的性质,关键在于折叠后的图形的性质与原图形全等.16.96【解析】【分析】首先根据甲种粗粮的售价和利润率,列方程求得B 和C 的成本价,再计算乙种粗粮的的成本价,根据利润率的公式即可计算的乙种粗粮每袋的售价.【详解】解:根据=100%⨯售价-成本利润率成本 可得:甲种粗粮的成本为:71.5=551+30%所以可得1千克B 和1千克C 的成本价为:553637-⨯=因此可得2千克B 和2千克C 的成本价为:23774⨯=则乙种粗粮的的成本价为:67480+=故乙种粗粮每袋的售价为:808020%96+⨯=故答案为96【点睛】本题主要考查利润率的计算,这是应用题中的一个重要的类型,必须掌握.17.(1)5x = (2)11x y =⎧⎨=-⎩【解析】【分析】(1)根据等式的性质求解即可.(2)采用加减消元法计算即可.【详解】解:(1)原式可化为:210x -=-解得5x =(2)原式可化为:51621(1)12164(2)x y x y -=⎧⎨+=-⎩将(1)+(2)可得:1717x = 解得:1x =将1x =代入(1)可得:1y =-所以可得:11 xy=⎧⎨=-⎩【点睛】本题主要考查方程的解法,注意二元一次方程组中加减消元法的计算. 18.-1,0,1【解析】【分析】首先根据不等式的性质求解不等式组,然后在数轴上表示,写出整数解即可. 【详解】解:原式可化为:24-1xx<⎧⎨≥⎩即-12x≤<在数轴上表示如下:所以可得不等式的整数解集为:-1,0,1【点睛】本题主要考查不等式的解法,关键在于根据数轴写出不等式的解集. 19.(1)见解析(2)见解析(3)是对称图形,对称轴见解析. 【解析】【分析】(1)首先画出对称点,在连接对称点即可;(2)首先画出逆时针旋转的点,在连接点即可;(3)根据图形观察即可,画出对称轴即可.【详解】(1)首先画出A、B、C点的对称点如下图所示:(2)首先画出逆时针旋转的点如下图所示:(3)是对称图形,对称轴如图所示:【点睛】本题主要考查直角坐标系中点的坐标的绘制,关键在于根据点来绘制图形.20.-2【解析】【分析】首先根据未含参数的方程求解出未知数,在代入参数方程求解参数即可.【详解】解:根据()315x x x --=- 可得2x =- 因为方程1123x k k --=+ 与方程()315x x x --=-的解互为相反数 所以可得1123x k k --=+的解为2x = 代入可得:21123k k --=+ 解得2k =-【点睛】本题主要考查方程参数的计算,关键在于计算参数方程的解.21.(1)20︒ (2)71︒【解析】【分析】(1)根据三角形的内角和,首先计算出BAC ∠的度数,再根据AE 平分∠BAC 可得∠BAE 的度数;(2)在ACD ∆中,根据C ∠首先计算出CAD ∠的度数,再结合ADF ∆和DAF ∠便可计算出∠ADF 的度数.【详解】解:(1)在ABC ∆中∠B=32°,∠C=70°根据三角形的内角和为180︒可得180327078BAC ∠=︒-︒-︒=︒AE 平分∠BAC78392BAE ︒∴∠==︒ (2)在ACD ∆中,∠C=70° AD ⊥BC907020DAC ︒︒︒∴∠=-=由(1)可得39CAE ︒∠=19DAF ∴∠=︒DF ⊥AE90901971ADF DAF ∴∠=︒-∠=︒-︒=︒【点睛】本题主要考查三角形的内角和、角平分线的性质,关键在于根据角的计算求解.22.(1)130︒ (2)100︒ (3)∠BDC=1902A ︒+∠ 【解析】【分析】(1)首先根据∠A=80°,便可计算出ABC ACB ∠+∠的度数,再根据BD 、CD 平分ABC ∠和ACB ∠,再结合BCD ∆便可计算的∠BDC 的度数;(2)根据∠EDC=40°,可计算的BDC ∠的度数,再结合BCD ∆可得DBC DCB ∠+∠,再根据BD 、CD 平分ABC ∠和ACB ∠,在△ABC 中便可计算出∠A 的度数;(3)根据(1)和(2)中的计算可直接写出∠A 与∠BDC 之间的数量关系【详解】(1)在△ABC 中∠A=80°∴ 180********ABC ACB A ∠+∠=︒-∠=︒-︒=︒BD 、CD 平分ABC ∠和ACB ∠∴ 11()1005022DBC DCB ABC ACB ∠+∠=∠+∠=⨯︒=︒ 在BCD ∆中,∠BDC=180********DBC DCB ︒-∠-∠=︒-︒=︒(2)在BCD ∆中∠EDC=40°∴ 18040140BDC ∠=︒-︒=︒∴ 18014040DBC DCB ∠+∠=︒-︒=︒BD 、CD 平分ABC ∠和ACB ∠∴ 2()24080ABC ACB DBC DCB ∠+∠=∠+∠=⨯︒=︒在△ABC 中180********A ABC ACB ∠=︒-∠-∠=︒-︒=︒(3)根据(1)和(2)可得∠BDC=1902A ︒+∠ 【点睛】本题主要考查三角形的内角和的定理和角平分线的性质,关键在于要结合三角形进行计算. 23.(1)甲、乙两种材料每千克分别是15、25元(2)生产方案有3种:第一种:A 产品20件,B 产品30件第二种:A 产品21件,B 产品29件第三种:A 产品22件,B 产品28件【解析】【分析】(1)首先根据题意设甲、乙两种材料每千克分别是x ,y 元,根据题意列方程求解即可; (2)首先根据题意设A 两种产品分别为m 件,根据题意列出不等式求解正整数解即可.【详解】(1)解:设甲、乙两种材料每千克分别是x ,y 元 根据题意可得:4023105x y x y +=⎧⎨+=⎩解得1525x y =⎧⎨=⎩(2)设A 两种产品分别为m 件,则B 中产品为50m -根据题意可得:5028301510252015(50)2025(50)38000m m m m m -≥⎧⎨⨯+⨯+⨯-+⨯⨯-≤⎩ 解得:2220m m ≤⎧⎨≥⎩即:2022m ≤≤ 故m 的取值为:20、21、22所以可得生产方案有3种:第一种:A 产品20件,B 产品30件第二种:A 产品21件,B 产品29件第三种:A 产品22件,B 产品28件【点睛】本题主要考查二元一次方程的应用和不等式的应用,关键在于根据题意列出方程和不等式. 24.(1)9 17 (2)13x y =⎧⎨=⎩【解析】【分析】(1)根据相异数的概念首先写出对调的三个数,再求和,计算F(315),F(746)即可; (2)首先根据题意计算F (s )和F (t ),求解x 和y 的值即可.【详解】(1)根据题意可得315的三个数的和为:315+531+153=999所以999÷111=9 故F(315)=9746的三个三位数的和为:746+674+467=1887所以1887÷111=17 故F(746)=17(2) s 、t 都是相异数,s=100x+42, t=160+y ∴ F(s)=(100x+42+420+x+204+10x )÷111=x+6F(t)=(160+y+601+10y+100y+16) ÷111=y+7F(s)+F(t)=17∴6717x y +++=∴x+y=41≤x≤9,1≤y≤9,x 、y 都是正整数13x y =⎧∴⎨=⎩ 或22x y =⎧⎨=⎩ 或31x y =⎧⎨=⎩ s 和t 都是相异数42x x ∴≠≠、,16y y ≠≠、13x y =⎧∴⎨=⎩ 【点睛】本题主要考查新概念的理解,根据新概念列方程,采用分类讨论的思想求解. 25.(1)①160°,②30°;(2)证明见解析.【解析】分析:(1)①根据旋转的性质可得120ACA ∠=︒,再根据直角三角形两锐角互余求出BCD ∠,然后根据111BCB BCD ACB ∠=∠+∠进行计算即可得解;②根据直角三角形两锐角互余求出1A DE ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出1ACA ∠,即为旋转角的度数;(2)根据两直线平行,同旁内角互补求出90ADC ∠=︒,再根据直角三角形30°角所对的直角边等于斜边的一半可得12CD AC ,=根据旋转的性质可得1A C AC ,=然后求出解即可. 详解:(1)①由旋转的性质得,120ACA ∠=︒,∴1902070BCD ACB ACA ∠=∠-∠=-=,∴1117090160.BCB BCD A CB ∠=∠+∠=+=②∵AB ⊥11A B ,∴11190903060A DE B AC ∠=︒-∠=︒-︒=︒, ∴11603030ACA A DE BAC ∠=∠-∠=︒-︒=︒,∴旋转角为30;(2)∵AB ∥CB 1,第 21 页 ∴111801809090ADC ACB ∠=︒-∠=︒-︒=︒,∵30BAC ,∠= ∴12CD AC ,= 又∵由旋转的性质得,1A C AC ,= ∴1.A D CD =点睛:考查了旋转的性质,三角形外角的性质,平行线的性质,熟记和运用各性质是解题的关键.。

华师大版七年级下册数学期末考试试卷及答案

华师大版七年级下册数学期末考试试卷及答案

华师大版七年级下册数学期末考试试题一、单选题1.已知7x =是方程27x ax -=的解,则a =( )A .1B .2C .3D .72.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.不等式1122x +的解集是( ) A .1x B .2x C .12x D .12x - 4.三角形的两边长分别是4和7,则第三边长不可能是( )A .4B .6C .10D .125.下列说法错误的是( )A .若a b =,则ac bc =B .若1b =,则ab a =C .若a b c c=,则a b = D .若()()11a c b c -=-,则a b = 6.用正三角形和正六边形铺成一个平面,则在同一个顶点处,正三角形和正六边形的个数之比为( )A .4:1B .1:1C .1:4D .4:1或1:1 7.已知关于x ,y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则m ,n 的值为( ) A .51m n =⎧⎨=⎩ B .15m n =⎧⎨=⎩C .32m n =⎧⎨=⎩D .23m n =⎧⎨=⎩ 8.如果关于x 的方程3212x a +=和方程()3423x x -=-的解相同,那么与a 互为倒数的是( )A .3B .9C .19D .529.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°10.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g11.若关于x 的不等式()()131a xa --的解都能使不等式5x a -成立,则a 的取值范围是( )A .1a 或2a ≥B .2a ≤C .12a ≤D .2a =12.如图,在ABC ∆中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,2BD DC =,8BGD S ∆=,3AGE S ∆=,则ABC ∆的面积是( )A .16B .19C .22D .30二、填空题 13.关于x 的方程()232523m a x x -++-=是一元一次方程,则a m +=__________ 14.若关于x ,y 的二元一次方程组23122x y k x y +=-⎧⎨+=-⎩的解满足1x y +=,则k 的值是______;15.如图,已知ABC ∆的面积为16,8BC =,现将ABC ∆沿直线BC 向右平移a 个单位到DEF ∆的位置,当ABC ∆所扫过的面积为32时,a 的值为____;16.如图,在ABC ∆中,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC ∆的外角EAC ∠,内角ABC ∠,外角ACF ∠,以下结论:①//AD BC ;②ACB ADB ∠=∠;③90ADC ABD ∠+∠=︒;④1452ADB CDB ∠=︒-∠,其中正确的结论有__.三、解答题17.(1)解方程:2532234x x +--=.(2)解不等式组:12025112x x x ⎧+≥⎪⎪⎨+⎪-<--⎪⎩,并将解集在数轴上表示.18.如图所示,每个小正方形的边长为1,ABC ∆,DEF ∆的顶点都在小正方形的顶点处.(1)将ABC ∆平移,使点A 平移到点F ,点B ,C 的对应点分别是点'B ,'C ,画出''FB C ∆; (2)画出DEF ∆关DF 于所在直线对称的'DE F ∆;(3)求四边形'''B C FE 的面积.19.已知y=kx+b .当x=1时,y=3;当x=-2时,y=9.(1)求出k ,b 的值;(2)当-3≤x ≤3时,求代数式x-y 的取值范围.20.如图,在ABC ∆中,AD 是高,10DAC ∠=︒,AE 是ABC ∆外角MAC ∠的平分线,交BC 的延长线于点E ,BF 平分ABC ∠交AE 于点F ,若46ABC ∠=︒,求AFB ∠的度数。

华师大版七年级下册数学期末测试卷及含答案

华师大版七年级下册数学期末测试卷及含答案

华师大版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列四张扑g牌的牌面,不是中心对称图形的()A. B. C. D.2、| x-2 |+3=4,下列说法正确的是( )A.解为3B.解为1C.其解为1或3D.以上答案都不对3、不等式组的最小整数解为 ( )A.-1B.0C.1D.24、某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是()A. B. C. D.5、在△ABC中,∠A=70°,∠B=55°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形6、我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则正确的方程组是()A. B. C. D.7、不等式3x﹣1>x+1的解集在数轴上表示为()A. B. C. D.8、下列命题:①有一个角为60°的等腰三角形是等边三角形;②三边长为,,的三角形为直角三角形;③等腰三角形的两条边长为2, 4,则等腰三角形的周长为10或8;④在直角三角形中,30°角所对直角边等于斜边的一半。

正确的个数有()A.4个B.3个C.2个D.1个9、在五边形ABCDE中,若∠A=120°,且其余四个内角度数相等,则∠C等于()A.60°B.105°C.110°D.115°10、某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可赢利6元.设每本书的进价是x元,根据题意列一元一次方程,正确的是()A. B. C.D.11、下列图案是轴对称图形的是()A. B. C. D.12、下列图形中,是轴对称图形,不是中心对称图形的是()A. B. C. D.13、如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB 为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠AB.∠1=2∠A+∠2C.∠1=2∠2+2∠AD.2∠1=∠2+∠A14、下列各项中,结论正确的是()A.若a>0,b<0,则>0B.若a>b,则a﹣b>0C.若a<0,b <0,则ab<0D.若a>b,a<0,则<015、ABCD是边长为1的正方形,△BPC是等边三角形,则△BPD的面积为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面________米.17、如图,已知△ABC中,∠A=60°,BD、BE三等分∠ABC,CD、CE三等分∠ACB,连接DE,则∠BDE=________°.18、如图,把一个等腰直角三角形放在平面直角坐标系中,∠ACB=90°,点C (-1,0),点B在反比例函数的图像上,且y轴平分∠BAC,则k的值是________.19、如图,设∠1=x°,∠2=y°,且∠1的度数比∠2的度数的2倍多10°,则可列方程组为________ .20、如图,已知AB=AC,AD=BD=BC.在BC延长线上取点C1,连接DC1,使DC=CC1,在CC1延长线上取点C2,在DC1上取点E,使EC1=C1C2,同理FC2=C2C3,若继续如此下去直到C2021,则∠C2021的度数为________.21、如图,,矩形的顶点、分别在边、上,当在边上运动时,随之在上运动,矩形的形状保持不变,其中,,运动过程中,点到点的最大距离为________.22、如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是________.23、在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是________ (填A′D、A′E、A′F).24、在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是________cm.25、台州市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN 便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是________.三、解答题(共5题,共计25分)26、(1)解方程组:;(2)化简:.</p>27、解不等式组,并将解集在数轴上表示出来.28、已知关于x的一元一次方程的解是,求k的值.29、如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB 的周长最小值.30、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、B5、B7、C8、C9、B10、C11、D12、D13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

最新华东师大版七年级数学下册期末综合测试题及答案三套

最新华东师大版七年级数学下册期末综合测试题及答案三套

最新华东师大版七年级数学下册期末综合测试题及答案三套七年级下册数学全册综合检测一姓名:__________ 班级:__________一、选择题(共12小题;每小题3分,共36分)1.下面生活中的物体的运动情况可以看成平移的是()A. 摆动的钟摆B. 在笔直的公路上行驶的汽车C. 随风摆动的旗帜D. 汽车玻璃上雨刷的运动2.下列等式变形错误的是( )A. 由a=b得a+5=b+5;B. 由a=b得;C. 由x+2=y+2得x=y;D. 由-3x=-3y得x=-y3.下列图形中,不是轴对称图形的是()A. B. C. D.4.小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得()A. 4+3x=25B. 12+x=25C. 3(4+x)=25D. 3(4﹣x)=255.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这样做的根据是________;生活中的活动铁门是利用四边形的________.6.一个教室有5盏灯,其中有40瓦和60瓦的两种,总的瓦数为260瓦,则40瓦和60瓦的灯泡个数分别是()A. 1,4B. 2,3C. 3,2D. 4,17.一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°.则可得到的方程组为()A. B. C. D.8.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A. 1800元B. 1700元C. 1710元D. 1750元9.如图,已知DE由线段AB平移得到的,且AB=DC=4cm,EC=3cm,则△DCE的周长是()A. 9cmB. 10cmC. 11cmD. 12cm10.甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x,可列方程()A. 54+x=2(48﹣x)B. 48+x=2(54﹣x)C. 54﹣x=2×48D. 48+x=2×5411.几个人共同种一批树苗,如果每人种5棵,则剩下3棵树苗未种;如果每人种6棵,则缺4棵树苗.若设参与种树的人数为x人,则下面所列方程中正确的是()A. 5x+3=6x﹣4B. 5x+3=6x+4C. 5x﹣3=6x﹣4D. 5x﹣3=6x+412.用代入法解方程组:,下面的变形正确的是()A. 2y﹣3y+3=1B. 2y﹣3y﹣3=1C. 2y﹣3y+1=1D. 2y﹣3y﹣1=1二、填空题(共10题;共30分)13.若x=2是方程k(2x﹣1)=kx+7的解,那么k的值是________14.根据图中提供的信息,可知一个杯子的价格是________元.15.如果3x+5=8,那么3x=8﹣ ________16.为表彰“我爱读书”演讲比赛中获奖同学,老师决定购买笔记本与钢笔作为奖品,已知5个笔记本和2支钢笔共需100元:4个笔记本和7支钢笔共需161元.设每个笔记本z元,每支钢笔y元,根据题意可列方程组为________17.要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是40元,台阶宽为3米,侧面如图所示.购买这种红地毯至少需要________元.18.探究:中华人民共和国国旗上的五角星的每个角均相等,小明为了计算每个角的度数,画出了如图①的五角星,每个角均相等,并写出了如下不完整的计算过程,请你将过程补充完整.解:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF=________°,∴∠A+∠B+∠C+∠D+∠E=________°,∴∠A=∠B=∠C=∠D=∠E=________°.拓展:如图②,小明改变了这个五角星的五个角的度数,使它们均不相等,请你帮助小明求∠A、∠B、∠C、∠D、∠E的和.应用:如图③.小明将图②中的点A落在BE上,点C落在BD上,若∠B=∠D=36°,则∠CAD+∠ACE+∠E=________°.19.已知乙组人数是甲组人数的一半,若将乙组人数的调入甲组,则甲组比乙组多15人,甲、乙两组的人数分别为________20.不等式10﹣2x≥2的正整数解为________.21.写出一个满足下列条件的一元一次方程:①某个未知数的系数是3;②方程的解是2;这样的方程是________.22.不等式13﹣3x>0的正整数解是________.三、解答题(共3题;共34分)23.如图所示,有一条宽相等的小路穿过长方形的草地ABCD ,若AB=60m,BC=84m,AE=100m,若要硬化这条小路,且每平方米造价50元,则需要多少元钱?24..25.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?参考答案一、选择题B D A C5.三角形的稳定性;不稳定性6.B7.D8.C9.C 10.A 11.A 12.A二、填空题13.7 14.9 15.516.17.1200 18.180;180;36;10819.18人、9人20.1,2,3,421.3x﹣6=0 22.1,2,3,4三、解答题23.在矩形ABCD中,AF∥EC ,又∵AF=EC ,∴四边形AECF是平行四边形.在Rt△ABE中,AB=60,AE=100,根据勾股定理得BE=80,∴EC=BC-BE=4,所以这条小路的面积S=EC•AB=4×60=240(m2).240×50=12000元.答:需要12000元钱.24.解:,把①代入②得:3(1﹣2y)﹣2y=11,解得:y=﹣1,把y=﹣1代入①得:x=3,则方程组的解为25.(1)解:每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元(2)解:设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3 .∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车七年级下册数学全册综合检测二姓名:__________ 班级:__________一、选择题(共11小题;每小题3分,共33分)1.运用等式性质进行的变形,不正确的是()A. 如果那么B. 如果那么C. 如果那么D. 如果那么2.若不等式组的解集为,则m的取值范围是()A. m≤2B. m≥2C. m>2D. m<23.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A. -1B. 0C. 1D.4.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y吨货,则可列方程组()A. B. C. D.5.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=50°,则∠AED的大小是()A. 50°B. 60°C. 65°D. 70°6.下列图形中对称轴最多的是()A. 等腰三角形B. 正方形C. 圆形D. 线段7.如图,在△ABC中,AD⊥BC于点D,DB=DC,若BC=6,AD=5,则图中阴影部分的面积为( )A. 6B. 7.5C. 15D. 308.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A. 22+x=2×26B. 22+x=2(26-x)C. 2(22+x)=26-xD. 22=2(26-x)9.如图所示,∠1+∠2+∠3+∠4的度数为()A. 100°B. 180°C. 360°D. 无法确定10.由方程组可得出x与y的关系是()A. 2x+y=4B. 2x﹣y=4C. 2x+y=﹣4D. 2x﹣y=﹣411.某班共有学生49人。

华东师大版七年级下册数学期末复习检测卷(含答案)

华东师大版七年级下册数学期末复习检测卷(含答案)

期末评估试题一.选择题1.下列利用等式的性质,错误的是()A.由a=b,得到1﹣2a=1﹣2bB.由ac=bc,得到a=bC.由,得到a=bD.由a=b,得到2.下列方程中,不是二元一次方程的是()A.3x=2y B.2y﹣5x=0 C.4x﹣=0 D.2x+y=13.解集在数轴上表示为如图所示的不等式组是()A.B.C.D.4.下列图形中,可以看作是中心对称图形的是()A.B.C.D.5.如图,点D、E分别在∠BAC的边AB、AC上,沿DE将△ADE折叠到△A'DE的位置.若A'D⊥AC,∠BAC=28°,则∠ADE的大小为()A.28°B.31°C.36°D.62°6.若x>y,则下列式子中正确的是()A.x﹣2>y﹣2 B.x+2<y+2 C.﹣2x>﹣2y D.7.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A.5 B.6 C.10 D.48.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定9.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°10.已知是方程mx﹣y=2的解,则m的值是()A.﹣1 B.﹣C.1 D.5二.填空题11.已知x=3是方程ax﹣6=a+10的解,则a=.12.如图,直线AB∥CD,点E、M分别为直线AB、CD上的点,点N为两平行线间的点,连接NE、NM,过点N作NG平分∠ENM,交直线CD于点G,过点N作NF⊥NG,交直线CD于点F,若∠BEN=160°,则∠NGD﹣∠MNF=度.13.已知方程组,则的值是.14.请写出解集为x<3的不等式:.(写出一个即可)15.商店出售有下列形状的地板砖:①正三角形;②正方形;③正六边形;④正八边形.(1)若只选购其中一种地砖镶满地面,可供选择的有(2)若只选购其中两种地砖镶满地面,可供选择的有.16.若关于的方程|1﹣x|=mx有解,则实数m的取值范围.三.解答题17.解方程(1)5x﹣2(x﹣5)=6(2)=1﹣18.解不等式组,并把解集在数轴上表示出来.19.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠ABC=30°,∠ACB=60°(1)求∠DAE的度数;(2)写出∠DAE与∠C﹣∠B的数量关系,并证明你的结论.20.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?21.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.22.先阅读下列材料,再解决问题:解方程组时,如果我们直接消元,那么会很麻烦,但若用下面的解法,则要简便得多.解方程组解:①﹣②得2x+2y=2,即x+y=1③③×16得16x+16y=16④②﹣④得x=﹣1,将x=﹣1代入③得y=2,所以原方程组的解是.根据上述材料,解答问题:若x,y的值满足方程组,试求代数式x2+xy+y2的值.23.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,且点E在线段AD 上,若AF=4,∠F=60°.(1)指出旋转中心和旋转角度;(2)求DE的长度和∠EBD的度数.24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?25.在四边形ABCD中,AD∥BC,E为AB边上一点,∠BCE=16°,EF∥BC交DC于点F(1)依题意补全图形,并求∠FEC的度数;(2)若∠A=141°,求∠AEC的度数.参考答案一.选择题1.B.2.C.3.D.4.C.5.B.6.A.7.A.8.A.9.C.10.C.二.填空题11.8.12.110.13.﹣.14.x﹣3<0(答案不唯一).15.(1)正方形、正三角形、正六边形;(2)正三角形和正六边形,正方形和正三角形.16.m≥0或m<﹣1.三.解答题17.解:(1)5x﹣2(x﹣5)=65x﹣2x+10=6,解得:x=﹣;(2)2(x﹣3)=6﹣3(x﹣1),2x﹣6=6﹣3x+3,解得:x=3.18.解:,解第一个不等式得x≥﹣1,解第二个不等式得x<3,则不等式组的解集为﹣1≤x<3,将解集表示在数轴上如下:19.解:(1)∵∠B+∠C+∠BAC=180°,∠ABC=30°,∠ACB=60°,∴∠BAC=180°﹣30°﹣60°=90°.∵AE是△ABC的角平分线,∴∠BAE=∠BAC=45°.∵∠AEC为△ABE的外角,∴∠AEC=∠B+∠BAE=30°+45°=75°.∵AD是△ABC的高,∴∠ADE=90°.∴∠DAE=90°﹣∠AEC=90°﹣75°=15°.(2)由(1)知,∠DAE=90°﹣∠AEC=90°﹣()又∵∠BAC=180°﹣∠B﹣∠C.∴∠DAE=90°﹣∠B﹣(180°﹣∠B﹣∠C),=(∠C﹣∠B).20.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.21.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A1B1C1与△A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).22.解:,①﹣②,得2x+2y=2,即x+y=1③②﹣2007×③,得x=﹣1,把x=﹣1代入③,y=2所以x2+xy+y2=(﹣1)2+(﹣1)×2+22=1﹣2+4=3.23.解:(1)若△ADF顺时针旋转一定角度后得到△ABE,则旋转中心为点A,旋转角为90°;若△ADF逆时针旋转一定角度后得到△ABE,则旋转中心为点A,旋转角为270°;(2)∠EBD=15°.24.解:(1)设水果店第一次购进水果x元,第二次购进水果y元,由题意,得.解之,得.故水果店第一次购进水果800元,第二次购进水果1200元.(2)设该水果每千克售价为m元,第一次购进水果800÷4=200千克,第二次购进水果1200÷3=400千克,由题意[200×(1﹣3%)+400×(1﹣4%)]m﹣2000≥3780.解之,得m≥10.故该水果每千克售价为10元.25.解:(1)补全的图形如图所示.∵AD∥BC,EF∥AD,∴EF∥BC.∴∠FEC=∠BCE.∵∠BCE=16°,∴∠FEC=16°.(2)∵EF∥AD,∴∠AEF+∠A=180°.∵∠A=141°,∴∠AEF=39°.∴∠AEC=39°+16°=55°.。

华师大版七年级下册数学期末测试卷(含答案及答题卡)

华师大版七年级下册数学期末测试卷(含答案及答题卡)
二对计算题当考生的解答在某一步出现错误时如果后继部分的解答未改变该题的内容和难度可视影响的程度决定后继部分的给分但不得超过该部分正确解答应得分数的一半如果后继部分的解答有较严重的错误就不再给分
2021 年春期义务教育阶段教学质量监测
七年级 数学
(考试时间:120 分钟;满分 150 分) 注意事项: 1.答题前,考生在答题卷上务必将自己的姓名、学校、班级、考号填写清楚,并贴 好条形码.请认真核准条形码上的考号、姓名和科目. 2.解答选择题时,每小题选出答案后,用 2B 铅笔把答题卷上对应题目的答案标号涂 黑,如需改动,用橡皮擦干净后,再选涂其他答案标号. 3.解答填空题、解答题时,请在答题卷上各题的答题区域内作答.
x=3··················································································(4 分)
2x y 2①
(2)解:
2x
3y
10②
.
由①-②得,4y=-8,y=-2··································································· (2 分) 把 y=-2 代入①,解得:x=2,···························································· (3 分)
2021 年春期数学学科参考答案与评分细则 第 2页(共 3页)
一、选择题:(本大题共 12 个小题,每小题 4 分,共 48 分)在每小题给出的四个选项中, 只有一项是符合题目要求的.(注意:在.试.题.卷.上.作.答.无.效.)
1.现实世界中,对称现象无处不在,我国的汉字有些也具有对称性,下列汉字是轴对称

华师大版七年级数学下册各单元各章能力测试题及期中期末测试题及答案【精品全套】

华师大版七年级数学下册各单元各章能力测试题及期中期末测试题及答案【精品全套】

华师大版七年级数学下册各单元各章能力测试题及期中期末测试题及答案【精品全套】华师七下第6章一元一次方程能力测试题(时间120分钟,满分120分)一、填一填(3分×10=30分)3201、由方程,得到的依据是_____________________________. ,,x5x,,3432、7与x的差的比x的3倍小6的方程是____________________. 425,m3、已知方程是关于x的一元一次方程,那么x=_______. ,,,245xmxx,,234、已知方程的解也是方程的解,则b=_______. ,,232xb,,52123x,233,y5、若单项式与是同类项,则代数式的值为____.xyyx,,,,6abab,,,,2vvat,,6、在公式中,若v=15,v=5,t=3,则a=_______. 007、已知关于m的方程的解比关于m的方程的解大2,则30ma,,50ma,,a=_______.8、某厂的两个车间10月份共生产1339个零件,第一车间10月份比9月份增产12%,第二车间10月份比9月份减产24%,若9月份第一车间的产量是第二车间产量的3倍,那么9月份两个车间各生产了多少个零件,设第二车间9月份生产x 个零件,则10月份第一车间生产了_______个零件,第二车间生产了_______个零件,列方程为____________________________.9、王叔叔购买了25000元某公司1年期的债券,1年后,扣除20%的利息税后,得到本息和为26000元,这种债券的年利率为_______.10、国家规定个人发表文章,出版图书获得稿费的原纳税计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4000元的应缴纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元的应缴纳全部稿费的11%的税;今知丁老师获得一笔稿费,并缴纳个人所得税420元,则丁老师的这笔稿费有_______元.二、选一选(3分×10=30分)11、下列方程中是一元一次方程的是( )11223xy,A( B( C( D( ,,2xxx,,,117561xx,,,,,,,x212、下列方程的解是的有( ) x,31? ? ? ?xx,,2 x,,25xx,,,310,,,260x,,,,3A(1个 B(2个 C(3个 D(4个11121x,,,x,,,113、方程变形正确的是( ) ,,2346,,114321xx,,,,1242124xx,,,,A( B( ,,1,,,,34246,,1111C( D( xx,,,,16322112xx,,,,,,,,683614、一个饲养场鸡的只数与猪的头数之和为90,鸡、猪的腿数之和为320,设鸡有x只,列方程( )A( B( 2490320xx,,,2490320x,,,,,C( D( 4290320xx,,,4290320x,,,,,11,,5m,15、若代数式与的值互为相反数,则m的值为( ) 5m,,,44,,311A(0 B( C( D( 20201016、小华在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污11染的方程是,怎么办呢,小明想了一想,便翻看了书后的答案,yy,,,?33 此方程的解是:y,,6,小华很快补好了这个常数,并迅速完成了作业,这个常数是( )2211A( B(3 C( D(4 ,4,4333317、小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( )×××××××A. B. C. D. ××× ×× ×× ×× 18、一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x千米/时,那么下列方程中正确的是( )22,,,,416416,,,,xx416416,,,,xA( B( ,,,,,,,,,,33,,,,2,,416416,,,,xC( D( 41640.416,,,,xx,,,,,,,,,,3,,19、某公路的干线上有相距108公里的A、B两个车站,某日16点整,甲、乙两车分别从A、B两站同时出发,相向而行,已知甲车速度为45公里/时,乙车速度为36公里/时,则两车相遇的时间是( )A(16时20分 B(17时20分 C(17时30分 D(16时50分 20、某时刻钟表在10点和11点之间,在这个时刻再过6分钟的分针和这个时刻3分钟前的时针正好方向相反且在同一直线上,那么钟表这个时刻为( ) A(10点25分 B(10点20分C(10点15分 D(10点19分三、解答题21、解下列方程(6分×4=24分)yy,,223(1) (2) ,,1432040xx,,,,,,4641.550.81.2xxx,,,431,,,,(3) (4) ,,,3x,,,261,,,,0.50.20.1345,,,,22、试一试(8分×2=16分)(1)m为何值时,关于x的方程的解是的解的2倍, 4231xmx,,,xxm,,232bam,,12(2)已知ab,,,,310,代数式的值比多1,求m. bam,,,,2223、机械厂加工车间有85名工人,平均每人每天加工在齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套,(8分)24、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元,(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打8折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说服他可以选择哪一家购买吗,若两家都可以选择,在哪一家购买更省钱,(12分) 华师七下第6章一元一次方程能力测试题参考答案一、填一填(3分×10=30分)31、方程的简单变形2(或方程的基本性质2) 2、 736,,,xx,,4131021153、 4、 5、20 6、 7、 ,,107348、 3112%, 124%,3112%124%1339xxxx,,,,,,,,,,,,,,9、5% 10、3800二、选一选(3分×10=30分)11、B 12、A 13、A 14、A 15、D 16、D 17、C 18、A 19、B 20、C三、解答题21、解下列方程(6分×4=24分)(1) (2) (3) (4) y,0x,8x,55x,,2122、试一试(8分×2=16分)(1) (2) m,,m,041085,x,,16xx,,, 2523、设安排x个工人加工大齿轮,则有.所以需要25人23生产大齿轮,60人生产小齿轮.24、(1)设书包的单价x元,则随身听单价为元,则45x,48452xx,,,,,,,解之得:x=92,4x-8=360答:该同学看中的随身听单价为360元,书包为92元. (2)两家都可以选择,在A超市更省钱.华师七下第6章一元一次方程能力测试题(时间120分钟,满分120分) 一、填一填(3分×10=30分)24xy,,142______,,,xy1、已知,则.m332mnmn,,mxny,,12、若是关于x、y的二元一次方程组,则,______. n x,3,3、若一个二元一次方程组的解是,请写出一个符合要求的二元一次方程,y,2,组_____________________.22xyxy,,,,,,563640xy,,_____4、已知,则. ,,,,235xt,,,5、消去方程组中的t,得___________. ,342yt,,,24xmy,,,6、当m=_______时,方程组的解是正整数. ,xy,,48,7、某学生在n次考试中,其考试成绩满足条件:如果最后一次考试得97分,则平均为90分,如果最后一次考试得73分,则平均分为87分,则n=_______.8、一轮船从重庆到上海要5昼夜,而从上海到重庆要7昼夜,那么一木排从重庆顺流漂到上海要_______昼夜.9、一批宿舍,若每间住1人,则10人无法安排;若每间住3人,则有10间无人住,这批宿舍有_______间.10、某商品售价a元,利润为成本的20%,若把利润提高到30%,售价应提高到_______元.二、选一选(3分×10=30分)11、下列方程中的二元一次方程组的是( )1,,,y3,321xy,,a,3mn,,1,,,x,A( B( C( D( ,,,,1mn,,3yz,,41232ba,,,,,,,,24xy,,1212、已知,当t=1时,S=13;当t=2时,S=42,则当t=3时,S等Svtat,,02于( )A(106.5 B(87 C(70.5 D(69yx,53224,y13、已知单项式与的和仍是单项式,则x、y的值为( ) 2ab,,4abx,0,x,1x,2x,2,,,,A( B( C( D( ,1,,,y,y,,1y,1y,2,,,,5,234xy,,356xy,,,,14、已知方程组与有相同的解,则a、b的值为( ) ,,bxay,,,4axby,,2,,a,,2a,1a,1a,,1,,,,A( B( C( D( ,,,,b,,2b,1b,,2b,2,,,,,213kxky,,,,,,15、若方程组的解x和y互为相反数,则k的值为( ) ,431xy,,,,A(2 B(-2 C(3 D(-3xym,,2,3+214xy,16、如果关于的方程组的解是二元一次方程的一个xy、,xym,,4,解,那么m的值( )A(1 B(-1 C(2 D(-2 17、6年前,A的年龄是B的3倍,现在A的年龄是B的2倍,A现在年龄是( ) A(12 B(18 C(24 D(30 18、我市股市交易中心每买、卖一次需千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为( )A(2000元 B(1925元 C(1835元 D(1910元 19、第二十届电视剧飞天奖今年有a部作品参赛,比去年增加了40%还多2部,设去年参赛的作品有b部,则b是( ) a,2a,2A( B( C( D( a140%2,,a140%2,,,,,,140%,140%,20、方程的一组正整数解是( ) 199019891991xy,,x,12785x,12785x,11936x,13827,,,,A( B( C( D( ,,,,y,12768y,12770y,11941y,12632,,,,三、解答题×4=24分) 21、解下列方程组(6分xy,35xy,,,2,,(1) (2) 23,,231xy,,,,2328xy,,,xyxy,,,,,5,3221xyxyxy,,,,,34(3) (4) ,,,xyxy,,456,,,11,34,22abababab,,,,,,9, 1, 2求22、已知的值.(5分) ,,23、已知,证明.(6分) 23354pqpq,,,,,pppq,,,,2323,,,,axy,,515,24、已知方程组,由于甲看错了方程?中的a得到方程组的解为,42xby,,,,x,,13x,5,,,乙看错了方程?中的b得到方程组的解为,若按正确的a、b,,y,,1y,4,,计算,则原方程组的解x与y的差的值是多少,(7分) xy,25、某车间有甲、乙两种硫酸的溶液,浓度分别为90%和70%,现将两种溶液混合配制成浓度为80%的硫酸溶液500千克,甲、乙两种溶液各需取多少克,(8分)26、某中学新建一栋4层的教学楼,每层有8间教室,进出这栋楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可通过560名学生;当同时开启一道正门和侧门时,4分钟可通过800名学生.(1)求平均每分钟一道正门和一道侧门名可以通过多少名学生, (2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定,请说明理由.(10分)华师七下第7章二元一次方程组能力测试题参考答案一、填一填(3分×10=30分)1001、-7 2、25 3、略 4、 5、 415260xy,,,9136、-4 7、8 8、35 9、20 10、 a12二、选一选(3分×10=30分)11、B 12、B 13、B 14、B 15、A 16、C 17、C 18、C 19、C 20、C三、解答题21、解下列方程(6分×4=24分)6,x,5x,,4x,18x,,,,,,(1) (2) (3) (4) 7,,,,y,3y,12y,6,,,,y,1,22、-223、略34124、 ,1525、甲、乙均取250千克26、(1)设平均每分钟一道正门通过x名学生,一道侧门通过y名学生,则22560xy,,,,,, ,4800xy,,,,,,x,120,? ,y,80,(2)这栋楼最多有学生4×8×45=1440(名)拥挤时5分钟4道门能通过,5×2×(120+80)×(1-20%)=1600(名) ?1600,1440?建造的4道门符合规定.华师七下第8章一元一次不等式能力测试题(时间:60分钟,满分:100分) 一、填空题(每空3分,共27分)11.(1)不等式的解集是________; 2x,3(2)不等式的非负整数解是________; 327x,,215x,,,-3 -2 -1 0 1 2 (3)不等式组的解集是______________; 3 ,27,,x图1 ,(4)根据图1,用不等式表示公共部分x的范围______________.2.当k________时,关于x的方程2x-3=3k的解为正数.23.已知,且,那么ab________b(填“>”“<”“=”). ab,,0, 0ab,4.一个三角形的三边长分别是3,1-2m,8,则m的取值范围是________.15.若不等式的解集为,则m的值为________. x,,327mx,,,,3xm?,1,6.若不等式组无解,则m的取值范围是________. ,xm,,21,二、选择题(每小题4分,共24分)7. 如果不等式的解集为,那么( ) mxm,,,22x,1,,A( B( C( D(m为任意有理数 m,2m,2m,28.如果方程有惟一解,则( ) abxab,,,x,,1,,A( B( C( D( ab,ab,ab,ab,19.下列说法?是不等式的一个解;?当时,;?不等a,210a,,x,236x?22式恒成立;?不等式和解集相同,其中正确的个数为( ) y,,3?1,,,230x3 A(4个 B(3个 C(2个 D(1个 10.下面各个结论中,正确的是( )1A(3a一定大于2a B(一定大于a a32C(a+b一定大于a-b D(a+1不小于2a1211.已知-1<x<0,则x、x、三者的大小关系是( ) x11112222A( B( C( D( xx,,xx,,xx,,,,xxxxxx12.已知a=x+2,b=x-1,且a>3>b,则x的取值范围是( ) A(x>1 B(x<4 C(x>1或x<4 D(1<x<4 三、解答题13.解下列不等式(组).(12分)40.30.55.8xx,,,,,,2,,,23263,,xxx,,,?(1) (2) ,,,,,11,,3,,51,,,,xx,34,14.已知满足不等式的最小正整数是关于x的方程的axx,,,941531,x?,,,,解,求代数式的值.(12分)已知他家离火车站10千米.到火车站后,15.某人9点50分离家赶11点整的火车.进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度问公共汽车每小时至少行驶多少千米才走了1千米,然后乘公共汽车去火车站.能不误当次火车,(12分)16.某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a元.现欲从中分流出x人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)华师七下第8章一元一次不等式能力测试题参考答案一、填空题1x,1. (1) (2)0,1,2 (3) (4) 2.k>-1 3.> x,3,,32?x6194. 5.m,, 6. ,,,,52xm?23二、选择题7.C 8.D 9.A 10.D 11.D 12.D 三、解答题413.(1) (2)x<2 x?-7114. 9315.18千米/时16.15人功16人华师七下第9章多边形能力测试题(时间120分钟,满分120分)一、填空题(每小题3分,共30分)1、三角形中,三个内角的比为1?3?6,它的三个内角度数分别是________.2、三角形a、b两边的长分别是7cm和9cm,则第三边c的取值范围是________.3、等腰三角形两边分别是3和6,则周长为________________.4、如图1,在?ABC中,?A=27?,?1=95?,?B=38?则?E=________.15、正n边形的一个外角等于它的一个内角的,则n=________. 3?,则从这个多边形的一个顶点出发可引_____6、正n边形的一个内角等于150 条对角线.7、在正方形、等腰三角形、正六边形、正七边形、正八边形中,能铺满地面的正多边形是________________________.8、如图2,?x=________.C E A ? 80 E xD C 2 3 F 1 1 4 115? B C D B AE D 30? A B 图2 图3图1 图49、直角三角形两锐角平分线相交所成的钝角的度数是________. 10、一个多边形除去一个内角后,其余各内角的和为2780?,则除去的这个内角的度数为________.二、选择题(每小题3分,共30分)11、下列三条线段不能构成三角形的是( )A(4cm、2cm、5cm B(3cm、3cm、5cmC(2cm、4cm、3cm D(2cm、2cm、6cm12、有4根铁条,它们的长分别是14cm、12cm、10cm和3cm,选其中三根组成一个三角形,不同的选法有( )A(1种 B(2种 C(3种 D(4种13、如图3,AD是几个三角形的高( )A(4 B(5 C(6 D(714、下列说法中,?等边三角形是等腰三角形;?三角形外角和大于这个三角形内角和;?四边形的内角最多可以有三个钝角;?多边形的对角线有7条,正确的个数有几个( )A(1 B(2 C(3 D(415、现有正三角形、正十边形与第三种正多边形能铺平整的地面,则第三种正多边形是( )A(正十二边形 B(正十三边形 C(正十四边形 D(正十五边形 16、如图4,AD、BE是?ABC的高,则下列错误的结论是( ) A(?1=?4 B(?1+?2+?3+?4=180?C(?AFB+?1+?4=180? D(?AFB=180?-?C17、如果一个多边形的边数增加1倍,它的内角和是2160?,那么原来那个多边形的边数是( )A(5 B(6 C(7 D(818、a、b、c是三角形的三边长,化简后等于( ) abcbaccab,,,,,,,,A( B( C( D( bac,,3abc,,333abc,,abc,,19、一个n边形削去一个角后,变成(n+1)边形的内角和为2520?,则原n边形的边数是( )A(7 B(10 C(14 D(1520、如图5,至少去掉( )个点,才能使留下的任何三个点都不能组成一个正三角形( )2 B(3 C(4 D(5 A(图5 三、解答题(每小题10分,共60分)21、如图6,AD是?ABC的角平分线,?B=45?,?ADC=75?,求?BAC、C的度数. ?CDB A 图622、如图7,?ABC中,?BAC??ABC=7?6,?ABC比?C大10?,BE、AD是?ABC的高,交于点H,求?DHB的度数. CE DHA B 图723、如图8,?ABC中,?C=70?AD是?CAB的平分线,BD是?ABC的外角平分线,AD与BD交于点D,求?D的度数.CDA B E图824、四个村庄地理位置如图9点A、B、C、D处,为了解决四个村庄饮水问题,现准备兴建一座地下水供水厂,问建在何处,材料费用最低,画出示意图,并. 说明理由DACB图925、等腰三角形的周长是20cm,其中一边长是6cm,求等腰三角形其他两边的长.26、如图10,已知DC是?ABC中?BCA相邻外角的平分线,试说明为什么?ABC,?A?DBE A C图10华师七下第9章多边形能力测试题参考答案一、填空题1、18?,54?,108?2、2cm,c,16cm3、154、20?5、86、97、正方形、正六边形8、45?9、135? 10、100? 二、选择题11、D 12、C 13、C 14、C 15、D 16、C 17、C 18、B 19、D 20、C三、解答题21、?BAC=60?,?C=75?22、50?123、35?(提示:?D=?C) 224、连结AC、BD交于点O,则点O就是要求的点25、6cm、8cm或7cm、7cm26、(方法一)??ABC,?BCD,?ECD,?A??BCD=?ECD 又??ABC,?A(方法二)??ABC=?D+?DCB1又??DCB=?ECB 21??ABC=?D+?ECB 2??ECB=?A+?ABC1??ABC=?D+(?ABC+?A) 21??D=(?ABC-?A) 2即?ABC-?A=2?D??D,0??ABC,?A华师七下第10章轴对称能力测试题(时间120分钟,满分120分) 一、填空题(每小题3分,共30分)1、已知?AOB=30?,P在OA上且OP=3cm,点P关于直线OB的对称点是Q,那么PQ=________.2、?ABC中,?A=70?,若三角形内有点P到三边的距离相等,则?BPC=________;若三角形内有点M到三个顶点的距离相等,则?BMC=________.3、如图1,直线l,l,l表示三条互相交叉的公路,现在建一个货l2313 物中转站,要求到三条公路的距离相等,则可选择的地址有l________处. 2 l1图14、等腰三角形腰上的高与另一腰的夹角为40?,则它的顶角为________.5、如图2,一个六边形的六个内角都是120?,连续四边的长依次是1,3,3,2,则该六边形的周长为=________.6、等腰三角形是________图形,它的对称轴是_____________________________. 7、等腰三角形的一个角是另一个角的4倍,则这个等腰三角形的顶角1 ________度. 3 8、如果顶角为锐角的等腰三角形的腰长不变,而顶角在逐渐变大,那么底边的长度逐渐________,三角形的面积将___________. 3 2 9、等腰三角形的周长为24cm,其中两边的差是3cm,则这个三角形的三图2 边的长为_________.10、如果一个三角形有一个内角为40?,且过某一顶点能将该三角形分成两个等腰三角形,则该三角形其余两个角的度数分别是________________.二、选择题(每小题3分,共30分)11、在?ABC中,?A、?B的平分线相交于点O,则?ABO( ) A(可能是直角三角形B(可能是锐角三角形C(一定是钝角三角形 D(以上都有可能12、如图3是奥运会会旗上的五球圆形,它只有( )条对称轴.A(1 B(2 C(3 D(413、已知等腰三角形的边长为4cm,另一边长为9cm,则它的周长为( )A(13cm B(17cm C(22cm D(17cm或22cmM ' A AA' BB P'F ED CCCNB 图3 图4图5 14、如图4,在?ABC中,?B、?C的平分线相交于F,过F作DE?BC,交AB于D,交AC于E,那么下列结论正确的有( )??BDF,?CEF都是等腰三角形;?DE=DB+CE;?AD+DE+AE=AB+AC;?BF=CF. A(1个B(2个 C(3个 D(4个15、如图5,?ABC与?ABC关于直线MN对称,P为MN上任一点,下列结论中错误111的是( )A(?AAP是等腰三角形 B(MN垂直平分AA,CC 111C(?ABC与?ABC面积相等 D(直线AB、AB的交点不一定在MN上 111116、等腰三角形边长为5cm,一腰上中线把其周长分为两部分之差为3cm,则腰长为( ) A(2cm B(8cm C(2cm或8cm D(以上都不对C17、如图6,BC=BD,AD=AE,DE=CE,?A=36?,则?B=( )E A(45? B(36? C(72? D(30?18、下列说法中,错误的有( )个. AB D ?等腰三角形的底角是锐角;?等腰三角形的角平分线、中线图6 和高是同一条线段;?等腰三角形两腰上的高相等;?等腰三角形两腰上的中线相等.A(0 B(1 C(2 D(319、有一个外角等于120?,且有两个内角相等的三角形是( )A(不等边三角形 B(等腰三角形 C(等边三角形 D(不能确定 20、下列图形中,是轴对称图形的有( )个?角;?线段;?等腰三角形;?直角三角形;?圆;?锐角三角形 A(2 B(3 C(4 D(5三、解答题(每小题10分,共60分)21、如图7,?A=90?,BD是?ABC的角平分线,DE是BC的垂直平分线,求?ABC 和?CDE的度数.ADC B E 图722、如图8,在右图中分别作出点P关于OA、OB对称点P、P,连结PP交OA 于M,1212交OB于N,若PP=5cm,求?PMN的周长. 12APO B图823、如图9,已知在?ABC中,AB=AC,AD?BC于D,若将此三角形沿AD剪开后再拼成一个四边形,你能拼出所有不同形状的四边形吗,画出所拼的四边形的示意图(标出图中的直角). AB C D图9 24、如图10,已知?ABC中,?C=90?,D是AB上一点,且AC=AD,请问?A 与?A DCB具有怎样的关系,并说明理由.DC B图1025、如图11,已知BO、CO分别是?ABC和?ACB的平分线,OE?AB,OF?AC,如果已知BC的长为a,你能知道?OEF的周长吗,算算看. F E C BOA图1126、如图12,在?ABC内有一点P,问:(1)能否在BA、BC边上各找到一点M、N,使?PMN的周长最短,若能,请画图说明,若不能,说明理由.(2)若?ABC=40?,在(1)问的条件下,能否求出?MPN的度数,若能,请求出它的数值.若不能,请说明原因.APB C图12华师七下第10章轴对称能力测试题参考答案一、填空题1、3cm2、125?,140?3、44、50?或130?5、156、轴对称,顶角平分线(或底边上中线或底边上高)所在直线7、120?或20?8、增大,逐渐增大然后又逐渐减小9、7cm,7cm,10cm或9cm,9cm,6cm 10、105?和35?或120?和20?或80?和60?或90?和50?二、选择题11、C 12、A 13、C 14、D 15、D 16、B 17、B 18、B 19、C 20、C三、解答题21、?ABC=60?,?CDE=60?22、5cm23、略24、?A=2?DCB,由?ACD=?ADC=?DCB+?B,得?ACD+?DCB=2?DCB+?B=90?,又?A+?B=90?,所以?A=2?DCB25、a26、(1)能,在BA、BC边各找一点M、N(2)如图答1,?MPN=100?,'''设?P=x,?P=y,'''则?PPP=140?,?PMN=2x,?PNM=2y,xyMPN,,,,:140,则有 ,22180xyMPN,,,,:,解之得:?MPN=100?华师七下第11章体验不确定现象能力测试题一、填空题(每小题3分,共30分)1、宇宙飞船的速度比飞机的速度快是__________事件。

最新华东师大版七年级数学下册各章综合测验及期中期末试卷(精选配套习题,含答案)

最新华东师大版七年级数学下册各章综合测验及期中期末试卷(精选配套习题,含答案)

华东师大版七年级数学下册习题第六章一元一次方程 (1)第七章一次方程组 (9)第八章一元一次不等式 (16)第九章多边形 (23)第十章轴对称、平移与旋转 (31)期中试卷 (39)期末测试 (46)第六章一元一次方程一、选择题(每小题3分,共30分)1.下列是一元一次方程的是( )A.8+72=2×40 B.9x=3x-8C.5y-3 D.x2+x-1=02.解方程x-13-4-x2=1时,去分母正确的是( )A.2(x-1)-3(4x-1)=1 B.2x-1-12+x=1C.2(x-1)-3(4-x)=6 D.2x-2-12-3x=6 3.研究下面解方程1+4(2x-3)=5x-(1-3x)的过程:①去括号,得1+8x-12=5x-1-3x;②移项,得8x-5x+3x=-1-1+12;③合并同类项,得6x=10;④未知数系数化为1,得x=5 3 .对于上面的解法,你认为( )A.完全正确 B.变形错误的是①C.变形错误的是② D.变形错误的是③4.当x=3时,下列方程成立的个数有( )①-2x-6=0;②|x+2|=5;③(x-3)(x-1)=0;④13x=x-2.A.1个 B.2个 C.3个 D.4个5.已知关于x的方程2x+m-8=0的解是x=3,则m的值为( ) A.2 B.3 C.4 D.56.单项式3a3b2x与-13b4(x-12)a3是同类项,那么x的值是( )A.-1 B.1 C.-14D.147.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于正方体的重量的个数为( )A.2个 B.3个 C.4个 D.5个8.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( ) A.54+x=80%×108 B.54+x=80%(108-x)C.54-x=80%(108+x) D.108-x=80%(54+x)9.将x0.5-10.7=1变形为10x5=1-107,其错在( )A.不应将分子、分母同时扩大10倍 B.移项未改变符号C.去括号出现错误 D.以上都不是10.小明需要在规定时间内从家里赶到学校,若每小时走5千米,可早到20分钟;若每小时走4千米,就迟到15分钟.设规定的时间为x小时,则可列方程为( )A.5(x-2060)=4(x+1560) B.5(x+2060)=4(x-1560)C.5(x-1560)=4(x+2060) D.5(x+1560)=4(x+2060)二、填空题(每小题3分,共15分)11.若2x=-5x+3,则2x+___=3,依据是.12.当x =____时,代数式3x -28的值是2. 13.已知x =4是关于x 的一元一次方程(即x 为未知数)3a -x =x2+3的解,则a =____.14.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为____元.15.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动43周,甲、乙第一次相遇……以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转____周,时针和分针第一次相遇.三、解答题(共75分) 16.(8分)解下列方程:(1)x 2-7=5+x; (2)x -32-2x +13=1.17.(9分)截至2020年底,某省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?18.(9分)已知关于x的方程4x+2m-1=3x的解比关于x的方程3x+2m =6x+1的解大4,求m的值及这两个方程的解.19.(9分)已知小明骑车和步行的速度分别为240米/分钟,60米/分钟,小红每次从家步行到学校所需时间相同,请你根据小红和小明的对话内容(如图),求小明从家到学校的路程和小红从家步行到学校所需的时间.20.(9分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.21.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用含x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?22.(10分)某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,甲队单独完成该项工程需20天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独做,每天各可完成多少工作量?单独完成这项工程乙需要多少天?(2)若工程管理部门决定从这两个队中选一个单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.23.(11分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7·化为分数形式.由于0.7·=0.777……,设x =0.777……①, 则10x =7.777……②,②-①得9x =7,解得x =79,于是得0.7·=79.同理可得0.3·=39=13,1.4·=1+0.4·=1+49=139根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) 【基础训练】(1)0.5·=________,5.8·=________;(2)将0.2·3·化为分数形式,写出推导过程; 【能力提升】(3)0.3·15·=________,2.01·8·=________;(注:0.3·15·=0.315315……,2.01·8·=2.01818……) 【探索发现】(4)①试比较0.9·与1的大小:0.9·________1;(填“>”“<”或“=”)②若已知0.2·85714·=27,则3.7·14285·=________.(注:0.2·85714·=0.285714285714……)答案选择题:1-5:BCBCA 6-10:BDBBA 填空题:11._5x 等式的性质 12. 6 13.3 14.415. 1211 解答题16..(1)x =-24 (2)x =-1717. 解:设市县级自然保护区有x 个,则省级自然保护区有(x +5)个,根据题意,得10+x +5+x =49,解得x =17,∴x +5=22.答:省级自然保护区有22个,市县级自然保护区有17个18. 解:m =-1,第一个方程的解是x =3,第二个方程的解是x =-1 19. 解:设小红从家步行到学校所需时间为x 分钟,则小明从家步行到学校需(x +2)分钟,小明从家到学校骑车需(x -4)分钟,则240×(x -4)=60×(x +2),解得x =6,∴小明从家到学校的路程为240×(6-4)=480(米),小红从家步行到学校需6分钟20. 解:(1)设成人人数为x 人,则学生人数为(12-x)人.根据题意,得35x +352(12-x)=350.解得x =8.所以学生人数为12-8=4(人),成人人数为8人 (2)如果买团体票,按16人计算,共需费用:35×0.6×16=336(元).336<350,所以购团体票更省钱21. 解:(1)∵裁剪时x 张用A 方法,∴裁剪时(19-x)张用B 方法.∴侧面的个数为6x +4(19-x)=(2x +76)个,底面的个数为:5(19-x)=(95-5x)个 (2)由题意,得2(2x +76)=3(95-5x),解得x =7,∴盒子的个数为2×7+763=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子22. 解:(1)甲的工作量为120,由题意得乙每天完成的工作量为112-120=130,∴乙单独完成的天数为1÷130=30(天),∴甲、乙两队单独做,每天完成的工作量分别为120,130;单独完成这项工程乙需要30天 (2)设乙队每天的工程费用为x 元,则甲队的费用为(x +150)元,∴12x +12(x +150)=13 800, 解得x =500,x +150=650(元),甲单独完成所需费用为20×650=13 000(元),乙单独完成所需费用为30×500=15 000(元),故从节约资金的角度考虑,应选择甲工程队23. 解:(1)由题意知0.5·=59,5.8·=5+89=539,故答案为:59 539(2)0.2·3·=0.232323……,设x =0.232323……①,则100x =23.2323……②,②-①,得99x =23,解得x =2399,∴0.2·3·=2399(3)同理,0.3·15·=315999=35111,2.01·8·=2+110×1899=11155,故答案为:55111 11155(4)①0.9·=99=1,故答案为:= ②3.7·14285·=3+714285999999=3+57=267.故答案为:267第七章 一次方程组一、选择题(每小题3分,共30分)1.已知2x -3y =1,用含x 的代数式表示y 正确的是( )A .y =23x -1B .x =3y +12C .y =2x -13D .y =-13-23x2.方程组⎩⎨⎧3x +2y =7①,4x -y =13②,下列变形正确的是( )A .①×2-②消去xB .①-②×2消去yC .①×2+②消去xD .①+②×2消去y 3.方程组⎩⎨⎧x -y =3,3x -8y =14的解为( )A.⎩⎨⎧x =-1y =2B.⎩⎨⎧x =1y =-2C.⎩⎨⎧x =-2y =1D.⎩⎨⎧x =2y =-14.已知有理数x ,y 满足|x +6y -7|+6x +y =0,则x +y 的值是( ) A .1 B.32 C.52D .35.二元一次方程3x +y =10在正整数范围内解的组数是( )A .1B .2C .3D .46.已知⎩⎨⎧x =3,y =2是二元一次方程组⎩⎨⎧ax +by =5,ax -by =1的解,则b -a 的值为( )A .0B .1C .2D .37.如果方程组⎩⎨⎧4x +3y =7,kx +(k -1)y =3的解x ,y 的值相等,则k 的值为( )A .2B .0C .1D .-28.对于有理数x ,定义f (x )=ax +b ,若f (0)=3,f (-1)=2,则f (2)的值为( )A .5B .4C .3D .1 9.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A.⎩⎨⎧11x =9y (10y +x )-(8x +y )=13B.⎩⎨⎧10y +x =8x +y 9x +13=11yC.⎩⎨⎧9x =11y (8x +y )-(10y +x )=13D.⎩⎨⎧9x =11y (10y +x )-(8x +y )=13 10.阅读理解:a ,b ,c ,d 是实数,我们把符号⎪⎪⎪⎪⎪⎪a b c d 称为2×2阶行列式,并且规定:⎪⎪⎪⎪⎪⎪ab cd =a ×d -b ×c ,例如:⎪⎪⎪⎪⎪⎪3 2-1 -2=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解可以利用2×2阶行列式表示为⎩⎪⎨⎪⎧⎪⎪⎪⎪x =D xD y =D yD ;其中D =⎪⎪⎪⎪⎪⎪a 1 b 1a 2b 2,D x =⎪⎪⎪⎪⎪⎪c 1 b 1c 2 b 2,D y =⎪⎪⎪⎪⎪⎪a 1 c 1a 2 c 2. 问题:对于用上面的方法解二元一次方程组⎩⎨⎧2x +y =1,3x -2y =12时,下面说法错误的是( )A .D =⎪⎪⎪⎪⎪⎪2 13 -2=-7 B .D x =-14C .D y =27 D .方程组的解为⎩⎨⎧x =2y =-3二、填空题(每小题3分,共15分)11.若关于x ,y 的二元一次方程3x -ay =1有一个解是⎩⎨⎧x =3,y =2,则a =____.12.若二元一次方程组⎩⎨⎧x +y =3,3x -5y =4的解为⎩⎨⎧x =a ,y =b ,则a -b =____.13.母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知一束鲜花的价格是____元.14.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为___.15.若关于x ,y 的二元一次方程组⎩⎨⎧3x -my =5,2x +ny =6的解是⎩⎨⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎨⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是____. 三、解答题(共75分)16.(8分)解方程组:(1)⎩⎨⎧x +y =1,4x +y =10; (2)⎩⎪⎨⎪⎧x +32+y +53=6,x -43+2y -35=23.17.(9分)已知a +b =9,a -b =1,求2(a 2-b 2)-ab 的值.18.(9分)用消元法解方程组⎩⎨⎧x -3y =5,①4x -3y =2.②时,两位同学的解法如下: 解法一:由①-②,得3x =3.解法二:由②得,3x +(x -3y)=2,③把①代入③,得3x +5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”;(2)请选择一种你喜欢的方法,完成解答.19.(9分)已知关于x ,y 的方程组⎩⎨⎧3x -2y =4,ax +by =7与⎩⎨⎧2ax -3by =19,5y -x =3有相同的解,求a ,b 的值.20.(9分)当m 为何值时,方程组⎩⎨⎧3x +2y =m ,2x -y =2m +1的解x ,y 满足x -y =2?并求出此方程组的解.21.(10分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?22.(10分)随着中国传统节日“端午节”的临近,商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?23.(11分)为庆祝六一儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不足90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两所学校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛,请你为两所学校设计一种最省钱的购买服装方案.答案选择1-5:CDDAC6-10:AAADC填空:11.412. 7413.1514. ⎩⎨⎧x +y =200,(1-15%)x +(1-10%)y =17415.⎩⎪⎨⎪⎧a =32,b =-12解答题16. (1)解:⎩⎨⎧x =3,y =-2 (2)解:⎩⎨⎧x =3,y =417. 解:-218. 解:(1)解法一中的解题过程有错误,由①-②,得3x =3“×”,应为由①-②,得-3x =3 (2)由①-②,得-3x =3,解得x =-1,把x =-1代入①,得-1-3y =5,解得y =-2.故原方程组的解是⎩⎨⎧x =-1,y =-219. 解:a =4,b =-120. 解:m =1,x =1,y =-121. 解:(1)设这批学生有x 人,原计划租用45座客车y 辆,根据题意得⎩⎨⎧x =45y +15,x =60(y -1),解得⎩⎨⎧x =240,y =5.答:这批学生有240人,原计划租用45座客车5辆 (2)∵要使每位学生都有座位,∴租45座客车需要5+1=6(辆),所需费用为220×6=1320(元),租60座客车需要5-1=4(辆),所需费用为300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算22. 解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得⎩⎨⎧6x +3y =600,50×0.8x +40×0.75y =5200,解得⎩⎨⎧x =40,y =120.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元 (2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元23. 解:(1)5 000-92×40=1 320(元) (2)设甲、乙两所学校各有x 名,y 名学生准备参加演出,则⎩⎨⎧x +y =92,50x +60y =5 000,解得⎩⎨⎧x =52,y =40 (3)∵甲校有10人不能参加演出,∴甲校有52-10=42(人)参加演出,若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买可以节约(42+40)×60-4 100=820(元),但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买每套50元可节约4 100-3 640=460(元),因此,最省钱的购买方案是两校联合购买91套服装(即比实际人数多购买9套)第八章 一元一次不等式一、选择题(每小题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m -2<n -2 B.m 4>n4C .6m <6nD .-8m >-8n 2.不等式3x -6≥0的解集在数轴上表示正确的是( )3.不等式组⎩⎨⎧x +1>0,2x -6≤0的解集在数轴上表示正确的是( )4.不等式组⎩⎨⎧1-2x <3,x +12≤2的正整数解的个数是( ) A .5 B .4 C .3 D .25.已知(x -2)2+|2x -3y -m |=0中,y 为正数,则m 的取值范围是( )A .m <2B .m <3C .m <4D .m <56.在解不等式1-x 3<3x -22时,其中错误的一步是( ) ①去分母,得2(1-x )<3(3x -2);②去括号,得2-2x <9x -6;③移项,得-2x -9x <-6-2;④合并同类项,得-11x <-8;⑤系数化为1,得x <811. A .① B .② C .③ D .⑤7.不等式14(2x +m )>1的解集是x >3,则m 的值为( ) A .-2 B .-12 C .2 D.128.若关于x 的一元一次不等式组⎩⎨⎧6-3(x +1)<x -9,x -m >-1的解集是x >3,则m 的取值范围是( )A .m >4B .m ≥4C .m <4D .m ≤49.某商店老板销售一种商品,他要以不低于进价120%的价格出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价多少元,商店老板才肯出售( )A .80元B .100元C .120元D .160元10.某种饮料原零售价为每瓶6元,凡购买2瓶以上(含2瓶),超市推出两种优惠销售方法:第一种:第一瓶按原价,其余按原价的七折出售;第二种:全部按原价的八折出售.购买相同数量饮料的情况下,要使第一种销售方法比第二种销售方法的优惠多,至少要购买这种饮料( )A .3瓶B .4瓶C .5瓶D .6瓶二、填空题(每小题3分,共15分)11.用不等号填空:若a <b <0,则-a 5___-b 5;2a -1___2b -1. 12.不等式组⎩⎨⎧2(x +1)>5x -7,43x +3>1-23x的解集为____. 13.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打__8__折.14.若关于x 的一元一次不等式组⎩⎨⎧3-2x >2,x -a >0有3个整数解,则a 的取值范围是____.15.若x 为实数,则[x]表示不大于x 的最大整数,例如[1.6]=1,[π]=3,[-2.82]=-3等.[x]+1是大于x 的最小整数,对任意的实数x 都满足不等式[x]≤x <[x]+1.①利用这个不等式①,求出满足[x]=2x -1的所有解,其所有解为___.三、解答题(75分)16.(8分)解下列不等式(组),并把不等式(组)的解集在数轴上表示出来.(1)3x -22≤2; (2)⎩⎨⎧3x -5≤1①,13-x 3<4x ②.17.(9分)解不等式组⎩⎪⎨⎪⎧12(x +1)≤2,x +22≥x +33,并求出不等式组的整数解之和.18.(9分)已知不等式5(x -3)-2(x -1)>2.(1)求该不等式的解集;(2)若不等式的最小整数解与m 的值相等,求代数式m -1m +1的值.19.(9分)已知关于x ,y 的方程组⎩⎨⎧3x +2y =m +1,2x +y =m -1,当m 为何值时,x >y?20.(9分)已知方程组⎩⎨⎧x +y =-7-a ,x -y =1+3a的解x 为非正数,y 为负数. (1)求a 的取值范围;(2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1?21.(10分)小明购买A ,B 两种商品,每次购买同一种商品的单价相同,具体信息如下表:(1)求A ,B 两种商品的单价;(2)若第三次购买这两种商品共12件,且A 种商品的数量不少于B 种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.22.(10分)某市继2019年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?23.(11分)为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?答案选择题1—5:BBCCC 6-10:DADCB 填空题11. > ; < 12. -1<x <3 13. 814. -3≤x <-2 15. _x =0.5或x =116. (1)解:x ≤2(2)解:1<x ≤2 在数轴上表示解集略17. 解:解不等式12(x +1)≤2,得x ≤3,解不等式x +22≥x +33,得x ≥0,则不等式组的解集为0≤x ≤3,所以不等式组的整数解之和为0+1+2+3=618. 解:(1)x >5 (2)5719. 解:用含m 的代数式分别表示x ,y ,得x =m -3,y =-m +5,因为x>y ,所以m -3>-m +5,解此不等式,得m>4,所以当m>4时,x>y20. 解:(1)解方程组,得⎩⎨⎧x =-3+a ,y =-4-2a ,根据题意,得⎩⎨⎧-3+a ≤0,-4-2a<0,解不等式组,得-2<a ≤3 (2)当-2<a ≤3时,|a -3|+|a +2|=3-a +a +2=5 (3)解不等式(2a +1)x>2a +1,根据题意,得2a +1<0,解得a<-12,所以a 的取值范围为-2<a <-12,又∵a 为整数,∴a =-121. 解:(1)设A 种商品的单价为x 元,B 种商品的单价为y 元,根据题意可得⎩⎨⎧2x +y =55,x +3y =65,解得⎩⎨⎧x =20,y =15,答:A 种商品的单价为20元,B 种商品的单价为15元 (2)设第三次购买商品A 种a 件,则购买B 种商品(12-a)件,根据题意可得a ≥2(12-a),解得8≤a ≤12,第三次购买这两种商品的总费用为20a +15(12-a)=(5a +180)元,当a =8时所花钱数最少,即购买A 商品8件,B 商品4件22. 解:(1)设温馨提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意,得2x +3×3x =550,解得x =50,经检验,x =50符合题意,∴3x =150(元),即温馨提示牌和垃圾箱的单价分别是50元和150元 (2)设购买温馨提示牌y 个(y 为正整数),则垃圾箱为(100-y)个,根据题意得⎩⎨⎧100-y ≥48,50y +150(100-y )≤10000,∴50≤y ≤52,∵y 为正整数,∴y 为50,51,52,共3种方案;即温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,购买温馨提示牌和垃圾箱的总费用为50y +150(100-y)=-100y +15000,当y =52时,所需资金最少,最少是9800元23. 解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得⎩⎨⎧15x +9y =57000,10x +16y =68000,解得⎩⎨⎧x =2000,y =3000,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元 (2)设m 人清理养鱼网箱,则(40-m)人清理捕鱼网箱,根据题意,得⎩⎨⎧2000m +3000(40-m )≤102000,m <40-m 解得18≤m <20,∵m 为整数,∴m =18或m =19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱第九章多边形一、选择题(每小题3分,共30分)1.一个五边形的内角和为( )A.540° B.450° C.360° D.180°2.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,53.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为( )A.54° B.62° C.64° D.74°4.一副分别含有30°和45°角的两个直角三角板,拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( ) A.15° B.25° C.30° D.10°5.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )A.15° B.20° C.25° D.30°6.从一个n边形的一个顶点出发,分别连结这个顶点与其余的各顶点,若把这个多边形分割成6个小三角形,则n的值是( )A.6 B.7 C.8 D.97.幼儿园的小朋友们打算选择一种形状、大小都相同的多边形塑料板铺活动室的地面,为了保证铺地时既无缝隙又不重叠,请你告诉他们下面形状的塑料板:①正三角形;②正四边形;③正五边形;④正六边形;⑤正八边形.可以选择的是( )A.③④⑤ B.①②④ C.①④ D.①③④⑤8.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于( )A.90° B.180° C.210° D.270°9.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A.γ=2α+β B.γ=α+2βC.γ=α+β D.γ=180°-α-β10.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A.13 B.14 C.15 D.16二、填空题(每小题3分,共15分)11.一个多边形的每一个外角都是36°,则这个多边形的边数是____.12.求图中∠1的度数:(1)∠1=____;(2)∠1=____;(3)∠1=____.13.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是____.14.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小的内角的度数为____.15.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=___.三、解答题(共75分)16.(8分)如图,已知∠A=20°,∠B=27°,AC⊥DE.求∠1,∠D度数.17.(9分)如图,△ABC中,∠ABC∶∠C=5∶7,∠C比∠A大10°,BD是△ABC的高,求∠A与∠CBD的度数.18.(9分)如图,将△ABC沿EF折叠,使点C落在点C′处,试探究∠1,∠2与∠C的关系.19.(9分)小明在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现是少加了一个内角.问这个内角是多少度?小明求的是几边形的内角和?20.(9分)如图,在△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD ⊥AB于点D,DF⊥CE于点F,求∠CDF的度数.21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.22.(10分)已知△ABC.(1)如图①,∠BAC和∠ACB的平分线交于点I,∠BAC=50°,∠ACB=70°,求∠AIC的度数.(2)如图②,△ABC的外角∠CAE的平分线的反延长线与∠ACB的平分线交于点O,则∠O和∠B有什么数量关系?说明你的理由.23.(11分)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图①,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB.∴∠1+∠2=12(∠ABC+∠ACB).又∵∠ABC+∠ACB=180°-∠A,∴∠1+∠2=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠1+∠2)=180°-(90°-12∠A)=90°+12∠A.探究2:如图②中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图③中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:________.答案选择题1-5:ACCAB6-10:CBBAB填空题11. 1012. (1)∠1=62°;(2)∠1=23°;(3)∠1=105°13. 40°14. 30°15. 72°16. 解:∠1=110°,∠D=43°17. 解:设∠ABC=(5x)°,∠C=(7x)°,则∠A=(7x-10)°.由∠A+∠ABC +∠C=180°,得5x+7x+7x-10=180.解得x=10.∴∠ABC=50°,∠C=70°,∠A=60°.∵BD是△ABC的高,∴∠BDC=90°.∴∠CBD=90°-∠C=90°-70°=20°18. 解:根据翻折的性质,得∠CEF=∠C′EF,∠CFE=∠C′FE,则∠1+2∠CEF =180°,∠2+2∠EFC=180°,所以∠1+∠2+2∠CEF+2∠EFC=360°,而∠C+∠CEF+∠CFE=180°,所以∠1+∠2+2(180°-∠C)=360°,所以∠1+∠2=2∠C19. 解:设此多边形的边数为n,则由题意,得0<(n-2)×180-1125<180,解得8.25<n<9.25,所以n=9, 少加的一个内角为1260°-1125°=135°20. 解:∵∠A=40°,∠B=72°,∴∠ACB=180°-40°-72°=68°,∵CE 平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∵CD⊥AB,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=74°21. 解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F =∠CEB=25°22. 解:∵AI平分∠BAC,∴∠IAC=12∠BAC,∵CI平分∠BCA,∴∠ICA=12∠BCA,∵∠BAC=50°,∠ACB=70°,∴∠IAC=25°,∠ICA=35°,∴∠AIC=180°-25°-35°=120°(2)∠B=2∠O,理由:∵CO平分∠ACB,∴∠ACO=1 2∠ACB,∵AD平分∠EAC,∴∠DAC=12∠EAC,∵∠O+∠ACO=∠DAC,∴2∠O+∠ACB=∠EAC,又∵∠B+∠ACB=∠EAC,∴∠B=2∠O23. 解:(1)探究2结论:∠BOC=12∠A,理由如下:如图∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=12∠ABC,∠2=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=12(∠A+∠ABC)=12∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2-∠1=12∠A+∠1-∠1=12∠A(2)探究3:∠OBC =12(∠A +∠ACB),∠OCB =12(∠A +∠ABC),∠BOC =180°-∠OBC -∠OCB =180°-12(∠A +∠ACB)-12(∠A +∠ABC)=180°-12∠A-12(∠A +∠ABC +∠ACB)=90°-12∠A ,∴结论:∠BOC =90°-12∠A第十章轴对称、平移与旋转一、选择题(每小题3分,共30分)1.下列图形中一定是轴对称图形的是( )A.直角三角形B.四边形C.平行四边形D.长方形2.下列图形中,既是中心对称图形,又是轴对称图形的是( )3.如图,△ABC经过平移到达△DEF的位置,则下列四个说法中,正确的有( )①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC ∥EF,BC=EF.A.1个 B.2个 C.3个 D.4个4.如图,是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( ) A.150° B.180° C.210° D.120°5.如图,在下列四种图形变换中,该图案不包含的变换是( )A.平移 B.轴对称 C.旋转 D.中心对称6.如图,如果甲、乙两图关于点O成中心对称,则乙图不符合题意的一块是( )7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为( ) A.30° B.60° C.90° D.150°,8.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为( )A.6 B.8 C.10 D.129.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P 关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为( ) A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包括△ABC本身)共有( )A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共15分)11.如图,下列各图是旋转对称图形的有____,是中心对称图形的有____.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD=____度.13.如图,△ABC≌△DEF,∠A=70°,∠B=40°,BF=6,则∠DEF=____,EC=____.14.如图,一块长46 m,宽25 m的草地上,准备修两条如图所示的小径,则修了小径后,草地可种草的面积变为____ m2.15.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,若AF=12AB,则可通过____(填“平移”“旋转”或“轴对称”)变换,使△ABE变换到△ADF的位置,且线段BE,DF的数量关系是____,位置关系是___.三、解答题(共75分)16.(8分)下列图形是全等图形的有:____.(填序号)17.(9分)如图,四边形ABCD的顶点D在直线m上.(1)画出四边形ABCD关于直线m为对称轴的对称图形A1B1C1D;(2)延长线段BA和B1A1,它们的交点与直线m有怎样的关系;(3)如果∠A=91°,BC=16 cm,请你求出∠A1的度数与B1C1的长.18.(9分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.19.(9分)如图,在8×8的方格纸中,将△ABC向右平移4个单位长度得到△A1B1C1,△ABC关于直线MN对称的图形为△A2B2C2,将△ABC绕点O旋转180°得△A3B3C3.(1)在方格纸中画出△A1B1C1、△A2B2C2和△A3B3C3;(2)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成轴对称?请画出对称轴;(3)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成中心对称?请画出对称中心P.20.(9分)学完图形的全等后,数学老师出了一道题:“如图,已知△ABC≌△ADE,∠BAD=40°,∠C=50°,问DE与AC有何位置关系,并说明理由.”请你完成这道题.21.(10分)认真观察前四个图中阴影部分构成的图案(每个小正方形的边长都为1),回答下列问题:(1)请写出这四个图案都具有的三个共同特征:特征1:__________________________________________________;特征2:__________________________________________________;特征3:__________________________________________________.(2)请在第五个图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.22.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且点A与点A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.23.(11分)如图,在正方形ABCD中,点E在BC上,∠FDE=45°,△DEC 按顺时针方向旋转一个角度后得△DGA.(1)图中哪一个点是旋转中心?旋转角度是多少?(2)试指明图中旋转图形的对应线段与对应角?(3)图中有除正方形四边相等外的相等线段与相等的角吗?有没有能够完全重合的三角形?若有,请找出来;若没有,说明理由.(4)你能求出∠GDF的度数吗?说明你的理由.。

华师大版七年级数学下册《期末测试卷》(含答案)

华师大版七年级数学下册《期末测试卷》(含答案)

一、选择题(共10小题,每小题3分,共30分)1.已知关于x的方程3x+m+4=0的解是x=﹣2,则m的值为()A.2 B.3 C.4 D.52.下列等式变形正确的是()A.若﹣3x=5,则x =﹣B .若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=13.不等式组的解集在数轴上应表示为()A .B .C .D .4.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是()A .B .C .D .5.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……A.38°B.39°C.42°D.48°6.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A.B.C.D.7.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.268.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°9.用边长相等的两种正多边形进行密铺,其中一种是正八边形,则另一种正多边形可以是()A.正三角形B.正方形C.正五边形D.正六边形10.把一些书分给几名同学,若();若每人分11本,则不够.依题意,设有x名同学可列不等式7(x+9)<11x.A.每人分7本,则可多分9个人B.每人分7本,则剩余9本C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本二、填空题(每小题3分,共15分)11.方程2x﹣5=3的解为.12.写出不等式5x+3<3(2+x)所有的非负整数解.13.如果将一副三角板按如图方式叠放,那么∠1=.14.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.15.如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BAC=a,则∠BED=.(用含a 的代数式表示)三、解答题(本大题8个小题,满分75分)16.(8分)解方程组.17.(9分)解不等式组,并把它们的解集表示在数轴上.18.(9分)在如图所示的方格中,每个小正方形的边长为1,点A、B、C在方格纸中小正方形的顶点上.(1)按下列要求画图:①过点A画BC的平行线DF;②过点C画BC的垂线MN;③将△ABC绕A点顺时针旋转90°.(2)计算△ABC的面积.19.(9分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8 8 12小刚12 10 16 (1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?20.(9分)已知BD、CE是△ABC的两条高,直线BD、CE相交于点H.(1)如图,①在图中找出与∠DBA相等的角,并说明理由;②若∠BAC=100°,求∠DHE的度数;(2)若△ABC中,∠A=50°,直接写出∠DHE的度数是.21.(10分)浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.(10分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.23.(11分)如图1,将一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.(1)如图1,求∠EFB的度数;(2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.①当旋转至如图2所示位置时,恰好CD∥AB,则∠ECB的度数为°;②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB的大小;如果不存在,请说明理由.参考答案一、选择题1.A.2.D.3.C.4.D.5.A.6.A.7.D.8.D.9.B.10.A.二、填空题11.4.12.0,1.13.105°.14.6.15.α.三、解答题16.解:原方程组整理为一般式可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,所以方程组的解为.17.解:,解不等式①得,x<2,解不等式②得,x≥﹣1,在数轴上表示如下:所以不等式组的解集为:﹣1≤x<2.18.解:(1)如图,DF、MN、△AB′C′为所作;(2)△ABC的面积=×2×1=1.19.解:(1)根据题意得:,解得:.(2)11×1+14×=18(元).答:小华的打车总费用是18元.20.解:(1)①∠DBA=∠ECA证明:∵BD、CE是△ABC的两条高,∴∠BDA=∠AEC=90°,∴∠DBA+∠BAD=∠ECA+∠EAC=90°,又∵∠BAD=∠EAC,∴∠DBA=∠ECA;②∵BD、CE是△ABC的两条高,∴∠HDA=∠HEA=90°,在四边形ADHE中,∠DAE+∠HDA+∠DHE+∠HEA=360°,又∵∠HDA=∠HEA=90°,∠DAE=∠BAC=100°,∴∠DHE=360°﹣90°﹣90°﹣100°=80°;(2)当∠A=50°时,①△ABC是锐角三角形时,∠DHE=180°﹣50°=130°;②△ABC是钝角三角形时,∠DHE=∠A=50°;故答案为:50°或130°.21.【解答】(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.22.解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).23.解:(1)∵∠A=30°,∠CDE=45°,∴∠ABC=90°﹣30°=60°,∠E=90°﹣45°=45°,∴∠EFB=∠ABC﹣∠E=60°﹣45°=15°;(2)①∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;如图2,DE∥AB时,延长CD交AB于F,则∠BFC=∠D=45°,在△BCF中,∠BCF=180°﹣∠B﹣∠BFC,=180°﹣60°﹣45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°;如图3,CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°;如图4,CE∥AB时,∠ECB=∠B=60°,如图5,DE∥AB时,∠ECB=60°﹣45°=15°.。

华东师大版七年级下册数学全册综合检测试卷(含答案)

华东师大版七年级下册数学全册综合检测试卷(含答案)

华东师大版七年级下册数学全册综合检测试卷一、选择题(本大题共10个小题,每题3分,共30分) 1.若m>n ,则下列不等式正确的是( )A.m-2<n-2B.m 4>n 4C.6m<6n D .-8m>-8n 2.方程x-1=5+2x 的解是( )A.-6B.-4C.4D.6 3.下列四个手机APP 图标中,是轴对称图形的是 ( )A B C D4.已知三角形的两边长分别为2和5,则三角形的周长l 的取值范围是( ) A.3<l<7 B .9<l<12 C.10<l<14 D.无法确定5.如图,把△ABC 绕着点A 逆时针旋转40°得到△ADE ,∠1=30°,则∠BAE=( ) A.10° B.30° C.40° D.70°第5题图 第6题图 第7题图6.如图,在三角形纸片ABC 中,AB=10,BC=7,AC=6,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为( )A.7B.8C.9D.10 7.如图,四边形ABCD 中,∠ADC=∠ABC=90°,与∠ADC ,∠ABC 相邻的两外角的平分线交于点E.若∠A=50°,则∠E 的度数为( )A.60°B.50°C.40°D.30°8.在一次健美操比赛中,中学组有17名男运动员需要住宿,住宿时有2人间和3人间可供选择,要求每个房间都要住满,那么他们有住宿方案( ) A.2种 B.3种 C.4种 D.5种9.若关于x ,y 的方程组{x +y =9m,x -y =3m的解是方程3x+2y=24的一个解,则m 的值是 ( ) A.1 B.-1 C.2D.-2 10.如图,△ABC 的角平分线CD ,BE 相交于点F ,∠A=90°,EG ∥BC ,CG ⊥EG 于点G ,给出下列结论:①∠CEG=2∠DCB ;②∠DFB=12∠CGE ;③∠ADC=∠GCD ;④CA 平分∠BCG.其中一定正确的个数是( )A.1B.2C.3D.4 二、填空题(本大题共5个小题,每题3分,共15分)11.若a3+1与2a+13互为相反数,则a 的值为 .12.把一副三角尺按照如图所示的方式摆放,两个三角尺各有一条直角边在水平桌面上,则其斜边相交所成的∠α为 度.第12题图 第14题图13.已知关于x 的不等式组{x -a ≤0,3+2x >5的整数解只有3个,则a 的取值范围是 . 14.如图,在七边形ABCDEFG 中,AB ,ED 的延长线相交于O 点.若图中∠1,∠2,∠3,∠4的度数和为220°,则∠BOD 的度数为 .15.对于任意数a ,b ,定义一种运算:a ※b=ab-a+b-2.例如,2※5=2×5-2+5-2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是 .三、解答题(本大题共8个小题,共75分)16.(8分)解方程(组):(1)x-x -25=2x -13-1; (2){2x -y =3,3x +y =7.17.(8分)解不等式组{x -1≤2,x -2<4(x +1),并把解集表示在数轴上.18.(8分)若关于x ,y 的二元一次方程组{2x +y =−4m +5,x +2y =m +4的解满足{x -y >−6,x +y <8. (1)x-y= ,x+y= ;(用含m 的代数式表示)(2)求m 的取值范围.。

华师大版初一数学下册期末学业检测试卷(附答案)

华师大版初一数学下册期末学业检测试卷(附答案)

七年级期末学业检测数 学 试 题一、选择题:(每小题2分,共14分) 1. 下列方程的根是.0=x 的是( ).A.031=-x B. 11=xC. 05=-xD. ()012=-x 2. 一个不等式组的解集在数轴上表示如图1,则这个不等式组可能是( ).A. ⎩⎨⎧-x x 21<, B. ⎩⎨⎧-x x 21>,C. ⎩⎨⎧- x x ,<1D. ⎩⎨⎧- x x 21,> 3. 在下列学习用具(刻度上的数字可忽略不计)中,不是..轴对称图形的是( ).4. 如图2,若DEF ∆是由ABC ∆经过平移后得到的,则平移的 距离是( ).A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度 D.线段EF 的长度 5. 如图3,在正方形网格中,将ABC ∆绕点A 旋转后得到ADE ∆,则在下列旋转方式中,符合题意的是( ).A. 顺时针旋转90°B. 逆时针旋转90°C. 顺时针旋转45°D. 逆时针旋转45°6. 已知348,64a b a b +=⎧⎨+=⎩,则b a -等于( ).A. 2B.83C. 3D. 1 7. 若ABC ∆满足下列某个条件,则它不是直角三角形.......的是( ). A. B A C ∠+∠=∠ B. B A C ∠-∠=∠ C. 3:4:1::=∠∠∠C B A D. C B A ∠=∠=∠32(图3)(图2)(图1)-3 -2 -112 30 A.1 2 3 40 B.1 2 3 40 C.1 2 3 4 0 5 6D.≥2 ≥ ≤ ≤二、填空题:(每小题3分,共30分)8. 一元一次方程240x -=的解是______=x .9. 若25x y -+=,则________=y (用含x 的式子表示).10. 不等式组13,30x x -<⎧⎨-+⎩的解集是___________. 11. 如图4所示,该图形是_____对称图形. 12. 正六形的每个外角是 度.13. 用同一种规格的正多边形地砖铺满地面,这种地砖的形状可能是 . (写出一种即可)14. 把一块含︒60的三角板与一把直尺按如图5方式放置,则_______=∠α度.15. 三元一次方程组⎪⎩⎪⎨⎧=+=-=-,4,1,1z x z y y x 的解是___________.16. 若等腰三角形的一个外角是︒40,则该等腰三角形的顶角是_________度.18.(6分)解方程: ()()73124.x x -+=-≥(图4)(图5)19.(6分)解方程组:5329,3 5.x y x y -=⎧⎨+=-⎩20.(6分)解不等式()()5823410x x --+>.21.(6分)解不等式组⎪⎩⎪⎨⎧+++.132,45142xx x x )(<22. (6分) 如图7,点D 是ABC ∆的边BC 上的一点,C BAD B ∠=∠=∠,︒=∠72ADC . 试求DAC ∠的度数.DC(图7)≤23. (6分) 如图8,在正方形网格中,每个小正方形的边长 都是1个单位长度,△ABC 和△DEF 的三个顶点都在 格点上.⑴画出ABC ∆沿水平方向向左平移1个单位长度得到 的111C B A ∆;⑵画出111C B A ∆绕点O 逆时针旋转180°后得到的222C B A ∆⑶判断DEF ∆与222C B A ∆属于哪种对称?若是中心对称, 试画出对称中心点Q ;若是轴对称,试画出对称轴l (用粗线表示).24. (6分)如图9,在铅笔盒中有一支圆珠笔和一把小刀, 已知圆珠笔的长AB 是小刀长CD (小刀不打开时的最大长度)的715倍,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC 的长是cm 2,铅笔盒内部的长AD 为cm 20,设小刀的长为xcm ,求x 的值.(图8) A(图9)25. (7分)如图10,在ABC Rt ∆中,︒=∠90C ,cm AC 4=,cm BC 3=,将ABC ∆沿AB 方向向右平移得到DEF ∆,若cm AE 8=,cm DB 2=.⑴求ABC ∆向右平移的距离AD 的长;⑵求四边形AEFC 的周长.26. (7分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民 “一户一表”生活用水阶梯式计费价格表的一部分:已知小张家2012年4月份用水20吨,交水费41元;5月份用水25吨,交水费53.5元.(水费=自来水费+污水处理费) ⑴求a 、b 的值;⑵随着夏天的到来用水量将增加,为了节约开支,小张计划把6月份水费控制在家庭月收入的1%,若小张家月收入为9800元,则小张家6月份最多能用水多少吨?A DB E(图10)参考答案及评分标准一、选择题:(每小题2分,共14分)1.C ;2.D ;3.C ;4.B ;5.B ;6.A ;7.D ;二、填空题:(每小题3分,共30分)8. 2; 9.52x +; 10. 3≤x ; 11. 中心(或旋转); 12. 60; 13. 如:正三角形(答案不唯一);14. 120; 15. ⎪⎩⎪⎨⎧===,1,2,3z y x ; 16. ︒140; 17. (1)100;(2)α2180-︒.[注:(1)2分,(2)1分]三、解答题:(共56分)18.(6分)解:x x 28337-=-- ………………2分37823+-=+-x x ………………3分4=-x …………………5分 4-=x ………………6分 19.(6分)解方程组:()()⎩⎨⎧-=+=-25312935 y x y x 解法一:由()()21+得:246=x ………………3分 4=x ………………4分把4=x 代入()2,得:435y +=-354y =-- 39y =-3-=y ………………5分∴⎩⎨⎧-==34y x ………………6分解法二:由()2得:()335 y x --=………………2分把()3代入()1得:()293355=---y y ……………3分3-=y ………………4分把3-=y 代入()3,得:4=x ………………………5分∴⎩⎨⎧-==34y x …………………6分20.(6分)解:4056810x x --->……………………4分113210x -+>111032x -->1122x --> ……………5分2x <……………………6分21.(6分)解:由(1)得:205142+<+x x142052-<-x x 63<-x2->x …………………2分 由(2)得:132≤-xx 13≤x 3≤x ………………………4分在同一数轴上表示不等式(1)、(2)的解集如下:………………………………5分∴原不等式组的解集为32≤<-x . ………6分22. (6分)解:∵ADC ∠是ABD ∆的外角,︒=∠72ADC∴BAD B ADC ∠+∠=∠ 又∵BAD B ∠=∠ ∴36B BAD ∠=∠=︒……………………3分 ∵B BAD C ∠=∠=∠ ∴36C ∠=︒在ADC ∆中,︒=∠+∠+∠180C ADC DAC ∴180DAC ADC C ∠=︒-∠-∠180723672=︒-︒-︒=︒…………6分 23. (6分)解:(1)图形及字母标注正确 …………2分; (2)图形及字母标注正确 …………4分; (3) DEF ∆与222C B A ∆属于轴对称, 对称轴如图所示.……………6分.0 12 3 D24. (6分) 解:依题意,得:202715=-+x x ,………………………3分 解得7=x ,经检验,符合题意,…………5分 答:x 的值是cm 7.…………………6分25. (7分)解:(1) ∵ABC ∆沿AB 方向向右平移得到DEF ∆,∴CF BE AD ==, cm EF BC 3==………………………3分∵cm AE 8=,cm DB 2=. ∴()cm CF BE AD 3228=-=== ……………………5分∴四边形AEFC 的周长是()cm AC CF EF AE 184338=+++=+++.………………………7分26.(7分)解:(1)由题意,得⎩⎨⎧=⨯++=⨯++,5.538.025718,418.020218b a b a ……………………2分解得:⎩⎨⎧==7.1,2.1b a ,经检验,符合题意. …………………4分(2)当用水量为30吨时,水费为:18×2+12×2.5=66元,9800×1%=98元, ……………………5分∵66﹤98,∴小张家六月份的用水量超过30吨,设小张家6月份用水量为x 吨,由题意得:()18 1.212 1.7 2.4300.898x x ⨯+⨯+-+≤,………………………6分解得:40≤x ,∴小张家六月份最多用水40吨………………………ABDE。

华师大版七年级下册数学期末考试试卷带答案

华师大版七年级下册数学期末考试试卷带答案

华师大版七年级下册数学期末考试试题一、单选题1.若x=−1是方程ax+3x=2的解,则a的值是( )A.-1 B.5 C.1 D.-5 2.下列各式中是二元一次方程的是( )A.3x−2y=7z B.2x+y=5C.1x+2=3y D.x−3=4y23.对于二元一次方程y−2x=7,用含y的方程表示x为( )A.x=y−72B.x=7−y2C.x=7+2y D.x=7−y4.已知关于x的一元一次方程(a+2)x|a|−1+5=0,则a的值为( ) A.±2 B.-2 C.2 D.±1 5.已知<b,下列式子不成立的是( )A.a−5<b−5B.3a<3bC.−12a>−12b D.−a+1<−b+16.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.12≤a≤52D.32≤a≤527.下列各组数不可能是一个三角形的边长的是( )A.5,7,12 B.5,12,13C.5,5,5 D.5,7,78.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.9.如图,将ΔABC绕点C按逆时针方向旋转得ΔA′B′C,且A′点在AB上,A′B′交CB于点D,若∠BCB′=β,则∠CA′B′的度数为( )A .180°−βB .90°+12βC .180°−12βD .90°−12β 10.方程2x−14=1−3−x 8去分母后正确的结果是( )A .2(2x −1)=1−(3−x)B .2(2x −1)=8−(3−x)C .2x −1=8−(3−x)D .2x −1=1−(3−x) 11.在等式y =kx +b 中,当x =2时,y =-4;当x =-2时,y =8,则这个等式是( ) A .y =−3x +2B .y =3x +2C .y =3x −2D .y =−3x −212.下列四种正多边形中,用同一种图形不能铺满平面的是 ( )]A .正三角形B .正方形C .正五边形D .正六边形 13.已知等腰三角形一腰上的中线将它的周长分成6cm 和12cm 两部分,则等腰三角形的底边长为( )A .10cmB .2cmC .6cm 或4cmD .2cm 或10cm14.“五一”期间,某电器按成本价提高20%后标价,再打7折(标价的70%)销售,售价为2080元,设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x(1+20%)×70%=2080B .x ⋅20%⋅70%=2080C .2080×20%×70%=xD .x ⋅20%=2080×70%15.若关于x ,y 的二元一次方程组{3x +y =−3m +2x +2y =4的解满足x +y >−32,满足条件的m 的所有正整数值为( )A .0,1,2B .0,1,2,3C .1,2,3D .1,2,3,4,516.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数可能是( )A .10,11,12B .11,10C .8,9,10D .9,10二、填空题17.若(x +y −2)2+|4x +3y −7|=0,则7x −3y 的值为_____. 18.已知方程组456218x y x y -=⎧⎨+=⎩和13418ax by ax by +=-⎧⎨-=⎩的解相同,则2a b -=_____. 19.一个多边形对角线的条数与它的边数相等,这个多边形的边数是_____.20.如图,两个全等的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =8, DH =2,平移距离为3,则阴影部分的面积是________.21.关于x 的不等式组23284a x x a ->⎧⎨+>⎩的解集中每一个值均不在-1≤x ≤4的范围中,则a 的取值范围是_____.三、解答题 22.解方程:43(8)4x x --=.23.解不等式:[]32(7)x x --≤4x .24.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.25.解三元一次方程组:3113y z x x y z x z y +-=-⎧⎪+-=-⎨⎪+-=⎩26.在△ABC 中,∠B =20°,∠ACB =110°,AE 平分∠BAC ,AD ⊥BD 于点D ,求∠EAD 的度数.27.如图,四边形ABCD 中,100BAD ∠=︒,70BCD ∠=︒,点M ,N 分别在AB ,BC 上,将BMN ∆沿MN 翻折,得FMN ∆,若//MF AD ,//FN DC ,求B 的度数.28.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知△ABC 的顶点均为网格线的交点.(1)将△ABC 向下平移5个单位长度,再向左平移1个单位长度,画出平移后的△A 1B 1C 1; (2)画出△A 1B 1C 1关于直线l 轴对称的△A 2B 2C 2;(3)将△ABC 绕点C 逆时针旋转90°,画出旋转后的△A 3B 3C 3以A 、A 3、B 、B 3为顶点的四边形的面积为 .29.先阅读下列解题过程,然后解答问题(1)、(2)、(3). 例:解绝对值方程:21x =.解:讨论:①当x ≥0时,原方程可化为21x =,它的解是12x =. ②当x <0时,原方程可化为21x -=,它的解是12x =-. ∴原方程的解为12x =和12-. 问题(1):依例题的解法,方程122x =的解是 ; 问题(2):尝试解绝对值方程:226x -=;问题(3):在理解绝对值方程解法的基础上,解方程:215x x -+-=.30.为落实“绿水青山就是金山银山”的发展理念,某县政府部门决定,招标一工程队负责完成一座水库的土方施工任务.该工程队有A ,B 两种型号的挖掘机,已知1台A 型和2台B 型挖掘机同时施工1小时共挖土80立方米,2台A 型和3台B 型挖掘机同时施工1小时共挖土140立方米.每台A 型挖掘机一个小时的施工费用是350元,每台B 型挖掘机一个小时的施工费用是200元.(1)分别求每台A 型,B 型挖掘机一小时各挖土多少立方米?(2)若A 型和B 型挖掘机共10台同时施工4小时,至少完成1360立方米的挖土量,且总费用不超过14000元.问施工时有哪几种调配方案?且指出哪种调配方案的施工费用最低,最低费用多少元?31.(1)如图1,在△ABC中,∠A<90°,P是BC边上的一点,P1,P2是点P关于AB、AC的对称点,连结P1P2,分别交AB、AC于点D、E.①若∠A=58°,求∠DPE的度数;②请直接写出∠A与∠DPE的数量关系;(2)如图2,在△ABC中,若∠BAC=90°,用三角板作出点P关于AB、AC的对称点P1、P2,(不写作法,保留作图痕迹),试判断点P1,P2与点A是否在同一直线上,并说明理由.参考答案1.D【解析】【分析】将x=-1代入到方程ax+3x=2后即可求得a的值.【详解】∵x=-1方程ax+3x=2的解,∴-a+3×(-1)=2得:a=−5.故选D.【点睛】此题考查一元一次方程的解,解题关键在于将x=-1代入到方程.2.B【解析】【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【详解】A. 3x−2y=7z不是二元一次方程,因为含有3个未知数;B. 2x+y=5是二元一次方程;+2=3y不是二元一次方程,因为不是整式方程;C. 1xD. x−3=4y2不是二元一次方程,因为其未知数的最高次数为2.故选B.【点睛】此题考查二元一次方程的定义,解题关键在于掌握其定义.3.A【解析】【分析】把y看做已知数求出x即可.【详解】方程y−2x=7,解得:x=y−7,2故选:A.【点睛】此题考查二元一次方程的解,解题关键在于把y看做已知数求出x.4.C【解析】【分析】根据一元一次方程的一般定义,可得|a|-1=1且a-2≠0,进一步得到答案.【详解】由题意,得|a|−1=1且a+2≠0,解得a=2.故选:C.【点睛】此题考查一元一次方程的定义,解题关键在于掌握其定义.5.D【解析】【分析】利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变.【详解】A. 不等式两边同时减5,不等号方向不变,故本选项正确,不符合题意;B. 不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C. 不等式两边同时乘以−1,不等号方向改变,故本选项正确,不符合题意;2D. 不等式两边同时乘以-1加1,不等号方向改变,故本选项错误,符合题意。

华师大版七年级下册数学期末测试(含答案解析)

华师大版七年级下册数学期末测试(含答案解析)

华师大版七年级下册数学期末测试一、选择题(每小题给出的四个选项中,只有一个是符合题目要求的,请选出并在答题卡上将该选项涂黑.本大题共10个小题,每小题3分,共30分) 1.方程39x =-的解是( ) A .6x =-B .2x =-C .3x =-D .27x =-2.“瓦当”是中国古建筑中覆盖檐头筒瓦前端的遮挡,主要有防水、排水、保护木制飞檐和美化屋面轮廓的作用.瓦当上的图案设计优美,字体行云流水,极富变化,是中国特有的文化艺术遗产.下面“瓦当”图案中既是轴对称图形又是中心对称图形的是( )ABCD3.若解集在数轴上的表示如图所示,则这个不等式组可以是( )A .23x x -⎧⎨⎩<B .23x x -⎧⎨⎩C .23x x -⎧⎨⎩D .23x x -⎧⎨⎩>4.用一批完全相同的正多边形能镶嵌成一个平面图案的是( ) A .正五边形B .正六边形C .正七边形D .正八边形5.下列各式变形正确的是( ) A .如果221x y =+,那么1x y =+ B .如果253x =+,那么352x =- C .如果33x y -=-,那么x y =D .如果84x -=,那么2x =-6.将一张长方形纸条折成如图所示的形状,BC 为折痕,若80DBA ∠=︒,则ABC ∠等于( )A .40°B .50°C .60°D .70°7.如图,将ABE △向右平移2 cm 得到DCF △,如果ABE △的周长是16 cm ,那么四边形ABFD 的周长是( )A .16 cmB .18 cmC .20 cmD .21 cm8.已知三角形两边的长分别是4和6,则此三角形第三边的长可能是( ) A .2B .6C .11D .169.如图,在ABC △中,以C 为中心,将ABC △顺时针旋转35°得到DEC △,边ED ,AC 相交于点F ,若30A ∠=︒,则EFC ∠的度数为( )A .60°B .65°C .72.5°D .115°10.在方程组2122x y mx y +=-⎧⎨+=⎩中,若x 、y 满足0x y -<,则m 的取值范围是( )A .1m -<B .1m ->C .1m >D .1m <二、填空题(本大题共6个小题,每小题3分,共18分)11.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_________根木条.12.如果2x =是关于x 的方程132x m +=的解,那么m 的值是_________. 13.如图,一环湖公路的AB 段为东西方向,经过四次拐弯后,又变成了东西方向的FE 段,则B C D E ∠+∠+∠+∠的度数是_________.14.如图,ABC ADE △≌△,如果 5 cm AB =,7 cm BC =, 6 cm AC =,那么DE 的长是_________.15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章. 《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x 个人,那么可以列方程为_________.16.代数式kx b +中,当x 取值分别为1-,0,1,2时,对应代数式的值如下表:x… 1- 0 1 2 … kx b +…1-135…则k b +=_________.三、解答题(解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.本大题共8个题,共72分) 17.(10分)解方程或方程组. (1)解方程:()5127x x +=-;(2)解方程组:135x y x y +=⎧⎨+=⎩18.(6分)解不等式组:()23423x x x x ⎧--⎪⎨-⎪⎩<并求所有整数解.19.(8分)如图,方格纸中每个小正方形的边长都为1,在方格纸内将ABC △平移后得到A B C '''△,图中点B '为点B 的对应点.(1)画出ABC 的边AB 上的中线CD ; (2)画出ABC △的边BC 上的高AE ; (3)画出A B C '''△;(4)A B C '''△的面积为_________.20.(8分)一个多边形的内角和是外角和的3倍,求这个多边形的边数.21.(8分)如图,ABC △中,AD BC ⊥,垂足为D ,AE 平分BAC ∠,70C ∠=︒,15DAE ∠=︒,求B ∠的度数.22.(8分)甲、乙两人共同解方程组51642ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为21x y =-⎧⎨=-⎩乙看错了方程②中的b ,得到方程组的解为32x y =-⎧⎨=⎩求出a 、b 的正确值.23.(12分)在“抗疫”期间,某药店销售A 、B 两种型号的口罩,已知销售800只A 型口罩和450只B 型口罩的利润为210元,销售400只A 型口罩和600只B 型口罩的利润为180元. (1)求每只A 型口罩和B 型口罩的销售利润;(2)该药店计划一次购进这两种型号的口罩共2000只,要想利润不低于380元,问B 型口罩进货量最少是多少只?24.(12分)探索三角形的内(外)角平分线形成的角的规律在三角形中,由三角形的内角平分线、外角平分线所形成的角存在一定的规律. 规律1:三角形的两个内角的平分线形成的钝角等于90°加上第三个内角度数的一半.规律2:三角形的两个外角的平分线形成的锐角等于90°减去与这两个外角不相邻的内角度数的一半. 如图(1),已知点P 是ABC △的内角平分线BP 与CP 的交点,点M 是ABC △的外角平分线BM 与CM 的交点,则1902P A ∠=︒+∠,1902M A ∠=︒-∠ 证明规律1:BP ∵、CP 是ABC △的角平分线,112ABC ∠=∠∴,122ACB ∠=∠,(1) ()180212A ∠=︒-∠+∠∴,(2) 112902A ∠+∠=︒-∠∴,()118012902P A ∠=︒-∠+∠=︒+∠∴.证明规律2:132()A ACB ∠=∠+∠∵,(4)12A ABC ∠=∠+∠,()1113490222A ACB ABC A A ∠+∠=∠+∠+∠+∠=︒+∠∴, ()118034902M A ∠=︒-∠+∠=︒-∠∴.请解决以下问题:(1)写出上述证明过程中步骤(2)的依据是:_________;(2)如图(2),已知点Q 是ABC △的内角平分线BQ 与ABC △的外角(ACD ∠)平分线CQ 的交点,请猜想Q ∠和A ∠的数量关系,并说明理由.答案解析一、 1.【答案】C【解析】解:方程39x =-, 解得:3x =-, 故选:C . 2.【答案】B【解析】解:A 、不是轴对称图形,也不是中心对称图形,选项错误; B 、既是轴对称图形又是对称图形,故选项正确; C 、是轴对称图形,不是中心对称图形,选项错误; D 、不是轴对称图形,是中心对称图形,选项错误. 故选:B . 3.【答案】A【解析】解:若解集在数轴上的表示如图所示,可得解集为23x -≤<, 则这个不等式组可以是23x x -⎧⎨⎩≥<.故选:A . 4.【答案】B【解析】解:根据密铺的条件可知3个正六边形能密铺. 故选:B . 5.【答案】C【解析】解:A 、由221x y =+,可知12x y =+,故A 错误; B 、由243x =+,可知325x =-,故B 错误; C 、由63x y -=-,可知x y =,故C 正确; D 、由84x -=,可知12x =-,故D 错误. 故选:C . 6.【答案】B【解析】解:根据题意得:2180ABC DBA ∠+∠=︒, 则()18080250ABC ∠=︒-︒÷=︒. 故选:B .7.【答案】C【解析】解:ABE ∵△向右平移2 cm 得到DCF △,2 cm EF AD ==∴,AE DF =, 16 cm AB BE AE ++=∴, AB BE AE EF AD =++++20 cm =.故选:C . 8.【答案】B【解析】解:设第三边长为x ,则由三角形三边关系定理得6464x -+<<,即210x <<. 因此,本题的第三边应满足510x <<,只有6符合不等式, 故选:B . 9.【答案】B【解析】解:由旋转的性质得:30D A ∠=∠=︒,35DCF ∠=︒,303565EFC A DCF ∠=∠+∠=︒+︒=︒∴;故选:B . 10.【答案】B【解析】解:将方程组中两个方程相减可得1x y m -=--,0x y -∵<,则1m ->, 故选:B . 二、 11.【答案】3【解析】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条; 故答案为:3. 12.【答案】2【解析】解:把2x =代入方程得13m +=, 解得:2m =. 故答案为:2. 13.【答案】540°【解析】解:如图,根据题意可知:AB EF ∥,分别过点C ,D 作AB 的平行线CG ,DH ,则180B BCG ∠+∠=︒,180HDE DEF ∠+∠=︒,540B BCD CDE E ∠+∠+∠+∠=︒∴.故答案为540°. 14.【答案】7 cm【解析】解:ABC ADE △≌△∵,7BC =()7cm DE BC ==∴,故答案为:7 cm .15.【答案】400 3 400300100x x -=- 【解析】解:设有x 个人,依题意,得:400 3 400300100x x -=-. 故答案为:400 3 400300100x x -=-. 16.【答案】3【解析】解:1x =∵时,代数式3kx b +=,3k b +=∴.故答案为:3. 三、17.【答案】解:(1)去括号,得5527x x +=-, 移项,得5775x x -=--, 系数化为1,得4x =-. (2)-②①,得26x =, 把2x =代入①,得1y =-.∴原方程组的解为.18.【答案】原不等式组的解集是12x -≤<,所有整数解是1-,0,1.【解析】解:2(3)423x x x x --⎧⎪⎨-⎪⎩<①≤②,由不等式①,得6x < 由不等式②,得1x -≥故原不等式组的解集是16x -≤<,∴该不等式组的所有整数解是1-,0,1.19.【答案】解:(1)如图所示:CD 即为所求; (2)如图所示:AE 即为所求; (3)如图所示;(4)A B C '''△的面积为:14482⨯⨯=. 故答案为:8.20.【答案】解:设这个多边形是n 边形,由题意得:()21803603n -⨯︒=︒⨯,答:这个多边形的边数是8. 21.【答案】解:AD BC ⊥∵,90ADC ∠=︒∴,180180907020CAD ADC C ∠=︒-∠-∠=︒-︒-︒=︒∴, 152035CAE DAE CAD ∠=∠+∠=︒+︒=︒∴, 270BAC EAC ∠=∠=︒∴,180180707040B BAC C ∠=︒-∠-∠=︒-︒-︒=︒∴.22.【答案】解:把21x y =-⎧⎨=-⎩代入②得:82b -+=-,解得6b =;把35x y =-⎧⎨=⎩代入①得:解得2a =-.23.【答案】解:(1)设每只A 型口罩销售利润为a 元,每只B 型口罩销售利润为b 元,根据题意得:800450210400600180a b a b +=⎧⎨+=⎩, 答:每只A 型口罩销售利润为0.15元,每只B 型口罩销售利润为0.2元; 则()0.1520007.2380m m ⨯-+≥,m ∴的最小整数值为1600,答:B 型口罩进货量最少是1600只.24.【答案】解:(1)证明过程中步骤(2)的依据是三角形内角和等于180°, 故答案为:三角形内角和等于180°; 理由如下:CQ ∵平分ACD ∠,BQ ∵平分ABC ∠,ACD A ABC ∠=∠+∠∵,12Q ∠=∠+∠∵,2A Q ∠=∠∴,即52Q A ∠∠=.。

最新华师大版七年级数学下册单元测试题全套及答案

最新华师大版七年级数学下册单元测试题全套及答案

最新华师大版七年级数学下册单元测试题全套及答案第6章 一元一次方程 综合测试题 (时间: 满分:120分)一、选择题(每小题3分,共30分)1.下列方程:①x-1=1;②2x-y=0;③031=+x ;④21x +-131=;⑤3y-2=y 2.其中是一元一次方程的是 ( )A.①②③④B.①④C.①③D.①④⑤ 2.下列运用等式性质变形:①若22b a =,则a=b ;②若a=b,则32ba =;③若-a-2m=-b-2m,则a=b ;④若ba 11=,则a=b.其中正确的有 ( ) A.1个 B.2个 C.3个 D.4个3.下列方程运用方程变形规则正确的是 ( ) A.由-2x=3,得x=-32 B.由-2y-3=y+1得y+2y=3+1 C.由x x =--1312,得2x-1-1=3x D.由131221=--+x x ,得3x+3-4x+2=6 4.下列变形属于移项的是 ( ) A.由-2y+5=y,得2y+y=5 B.由-3x=-6,得x=2 C.由51y=2,得y=10D.由-2(1-2x)+3=0,得-2+4x+3=05.若关于x 的一元一次方程2x+|m-1|=0的解为x=-1,则m 的值为 ( ) A.m=3 B.m=-1C.m=-3或m=1D.m=3或m=-16.下列解一元一次方程正确的是 ( ) A.解方程-x-2x=1,得x=-3 B.解方程2-x=x-6,得x=-4C.解方程2(2x-1)-3(2x+1)=3,得x=-4D.解方程213yy =-,得y=-1 7.解方程32(23x-9)=5,下列变形比较简便的是 ( ) A.方程两边都乘以6,得2(3x-18)=30 B.去括号,得x-6=5C.方程两边都乘以23,得23x-9=215 D.整理方程,得32×2183-x =58.小明今年比他的祖父小60岁,4年后,祖父的年龄是小明年龄的6倍,设今年小明年龄为x 岁,根据题意,可列方程为 ( )A.x+4=6(x+60+4)B.6(x+4)=x+60+4C.6(x+4)=x+60D.4(x+6)=x+60+69.某届青年歌手大奖赛知识问答题共10道题,规定答对1道得10分,不答1道的得2分,答错1道扣4分,一位歌手有1道题没答,共得64分,则该歌手答对的题为( )A.5道B.6道C.7道D.8道10. 用同样大小的黑色棋子按如图所示的规律摆放,已知第n 个图形中共有51个黑色棋子,则n 的值为 ( )A.15B.16C.17D.18二、填空题(每小题3分,共24分) 11.一元一次方程-21y=-1的解为_________. 12.当a=______时,关于x 的方程(a+2)x 2-2x+a=0是一元一次方程,方程的解为______. 13.若a=b,则12-=m b a 成立,根据等式的性质,可知m 的值为________. 14.将方程811212+=-x x 去分母时,方程两边同乘以最小的正整数m ,则代数式2015-m 的值是________.15.当n=_______时,代数式-2(n+3)的值比3(2n-1)大5.16.小英买了80分和2元的邮票共12枚,花了19元2角.若设她买了2元的邮票x 枚,可列方程为________________.17.一列慢车和一列快车都从A 站出发到B 站,它们的速度分别是60千米/时、100千米/时,慢车早发车半小时,结果快车到达B 站时,慢车刚到达距离B 站50千米的C 站(C 站在A 、B 两站之间),则A 、B 两站之间的距离是_________千米.18.定义新运算“⊕”,规定:a ⊕b=13a -4b ,若21y ⊕(-1)=3⊕2,则y=_______.三、解答题(共66分) 19.(8分)解方程:()252-y =)1(5321+-y y .20.(10分)请写出一个满足下列条件的一元一次方程,并写求解过程: ①某个未知数的系数为31-; ②方程的解是-4.21.(11分)马虎同学在解方程231x --m=31m-时,不小心把等式左边m 前面的“-”当做“+”进行求解,得到的结果为x=1,求代数式m 2-2m+1的值.22.(11分)若53⎪⎭⎫⎝⎛-1035a 与-3(a+2)互为相反数,试解关于y 的一元一次方程:31y-a=0.23.(12分)在A 、B 两个不透明的袋子中各装有若干个相同的乒乓球,若从A 袋中拿出1个放到B 袋中,则两个袋子中乒乓球相等;若从B 袋中拿出1个放到A 袋中,则A 袋子中的乒乓球是B 袋中乒乓球的2倍,求两个袋子中乒乓球各有多少个.24.(14分)某商场销售的一款笔记本电脑按进价提高30%标价,在一次促销活动中,按标价的9折销售,同时顾客在该商场还可领取50元的购物券,这样每台电脑仍可赢利14.5%. (1)求这款电脑每台的进价.-==⎛⎫ ⎪⎝⎭利润售价进价利润率进价进价(2)在这次促销活动中,商场销售了这款电脑80台,问:赢利多少元? 参考答案一、1. B 2. C 3. D 4. A 5. D 6. C 7. B 8. B 9. C 10. B 二、11. y=2 12. -2 x=-1 13. 3 14. 1991 15. -1 16. 200x+80(12-x)=1920 17. 200 18. -66三、19. 解:去分母,得4(y-2)=5y-6(y+1). 去括号,得4y-8=5y-6y-6. 移项、合并同类项,得5y=2. 系数化为1,得y=52. 20. 解:33531=+-x .(答案不唯一) 过程:去分母,得-x+5=9. 移项,得x=-4.21. 解:由题意可知,x=1是方程231x -+m=31m-的解, 则2131⨯-+m=31m-. 解得m=1.当m=1时,m 2-2m+1=12-2×1+1=0. 22. 解:根据题意,得53⎪⎭⎫⎝⎛-1035a +[-3(a+2)]=0. 解得a=-6.所以方程31y-a=0可化为31y-(-6)=0.解得y=-18.23. 解:设A 袋中有乒乓球x 个,则B 袋中有乒乓球(x-2)个. 根据题意,得x+1=2[(x-2)-1] . 解得x=7. 所以x-2=5.因此A 袋中的乒乓球有7个,B 袋中的乒乓球有5个.24. 解:(1)设这款电脑每台的进价为x 元,则标价为(1+30%)x 元. 根据题意,得(1+30%)x×90%-x-50=14.5%x. 解得x=2000.所以这款电脑每台的进价为2000元. (2)2000×14.5%×80=23 200(元).所以商场销售这款电脑80台,盈利23 200元.第7章 二元一次方程组 单元考试题姓名: ,成绩: ;一.选择题(共10小题,共30分)1.下列方程中,是二元一次方程的是( )A .x=1﹣2yB . =1﹣2yC .x 2=1﹣2yD .x=z ﹣2y2.下列方程组①②③④⑤,其中是二元一次方程组的有()A.2个B.3个C.4个D.5个3.若方程组的解x与y互为相反数,则a的值等于()A.1 B.2 C.3 D.44.如果2x+3y﹣z=0,且x﹣2y+z=0,那么的值为()A.﹣B.﹣C.D.﹣35.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣16.若+|2a﹣b+1|=0,则(b﹣a)2015=()A.﹣1 B.1 C.52015D.﹣520157.若==,且a﹣b+c=12,则2a﹣3b+c等于()A.B.2 C.4 D.128.如果方程组的解与方程组的解相同,则a、b的值是()A.B.C.D.9.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A.B.C.D.10.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.二.填空题(共6小题,18分)11.若方程组与的解相同,则a=,b=.12.若方程组的解是,则方程组的解为.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.15.如图①的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式的两种无盖纸盒,现在仓库里有100张正方形纸板和250张长方形纸板,如果做这两种纸盒若干个,恰好使库存的纸板用完,则竖式和横式纸盒一共可做个.三.解答题(共8小题,52分)17.解方程组:.(4分)18.(1)解方程:2﹣=(2)解方程组:.19.我校七年级(1)班小伟同学裁剪了16张一样大小长方形硬纸片,小强用其中的8张恰好拼成一个大的长方形,小红用另外的8张拼成一个大的正方形,但中间留下一个边长为2cm的正方形(见如图中间的阴影方格),请你算出小伟裁剪的长方形硬纸片长与宽分别是多少?20.某景点的门票价格如表:购票人数/人1~50 51~100 100以上每人门票价/元12 10 8某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?21.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?22.在等式y=ax2+bx+c中,当x=﹣2时,y=﹣1;x=0时,y=2;x=2时,y=0.求a、b、c的值.23.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?24.假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?七年级二元一次方程组单元考试题参考答案与试题解析一.选择题(共10小题)1.A.x=1﹣2y B.=1﹣2y C.x2=1﹣2y D.x=z﹣2y【解答】解:A、x=1﹣2y是二元一次方程,A正确;B、=1﹣2y不是整式方程,不是二元一次方程,B不正确;C、x2=1﹣2y不是一次方程,C不正确;D、x=z﹣2y是三元一次方程,D不正确.故选:A.2.下列方程组①②③④⑤,其中是二元一次方程组的有()A.2个B.3个C.4个D.5个【解答】解:①是三元一次方程组;②是二元一次方程组;③是二元二次方程组;④是分式方程;⑤是二元一次方程组,故选:A.3.若方程组的解x与y互为相反数,则a的值等于()A.1 B.2 C.3 D.4【解答】解:∵x,y的值互为相反数,∴x+y=0,则4x+3y=1可以变形为4x﹣3x=1,解得x=1,则y=﹣1,把x=1,y=﹣1代入ax﹣(a﹣1)y=3,可得a+(a﹣1)=3,解得a=2.故选B.4.如果2x+3y﹣z=0,且x﹣2y+z=0,那么的值为()A.﹣B.﹣C.D.﹣3【解答】解:,①×2+②×3得7x+z=0,即z=﹣7x,所以==﹣.故选A.5.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣1 【解答】解:∵单项式2x2y a+b与﹣x a﹣b y4是同类项,∴,解得:a=3,b=1,故选A.6.若+|2a﹣b+1|=0,则(b﹣a)2015=()A.﹣1 B.1 C.52015D.﹣52015【解答】解:∵+|2a﹣b+1|=0,∴,解得:,则(b﹣a)2015=(﹣3+2)2015=﹣1.故选:A.7.若==,且a﹣b+c=12,则2a﹣3b+c等于()A.B.2 C.4 D.12【解答】解:设===k,则a=2k,b=3k,c=7k,代入方程a﹣b+c=12得:2k﹣3k+7k=12,解得:k=2,即a=4,b=6,c=14,则2a﹣3b+c=2×4﹣3×6+14=4.故选C.8.如果方程组的解与方程组的解相同,则a、b的值是()A.B.C.D.【解答】解:由题意得:是的解,故可得:,解得:.故选A.9.A.B.C.D.【解答】解:设“一少”的狗有x条,“三多”的狗有y条,可得:,故选:B.10.A.B.C.D.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.二.填空题(共6小题)11.若方程组与的解相同,则a=33,b=.【解答】解:解方程组得,代入方程组得,解得,故答案为:33,.12.若方程组的解是,则方程组的解为.【解答】解:把方程组的解代入原方程组中得:,此式代入所求的方程得:,解得.故答案填.13.定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=10.【解答】解:根据题中的新定义化简已知等式得:,解得:a=1,b=2,则2*3=4a+3b=4+6=10,故答案为:10.14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【解答】解:根据题意得:,故答案为:.15.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个小袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.【解答】解:设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,依题意有,解得.故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.故答案为:120.16.如图①的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式的两种无盖纸盒,现在仓库里有100张正方形纸板和250张长方形纸板,如果做这两种纸盒若干个,恰好使库存的纸板用完,则竖式和横式纸盒一共可做70个.【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得,解得:,40+30=70.答:竖式和横式纸盒一共可做70个.故答案为:70.三.解答题(共8小题)17.解方程组:.【解答】解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.18.(1)解方程:2﹣=(2)解方程组:.【解答】解:(1)去分母得:12﹣2(2x+1)=3(1+x),去括号得:12﹣4x﹣2=3+3x,移项合并得:﹣7x=﹣7,解得:x=1;(2),①×3+②得:10x=20,解得:x=2,将x=2代入①得:y=﹣1,则方程组的解为.19.我校七年级(1)班小伟同学裁剪了16张一样大小长方形硬纸片,小强用其中的8张恰好拼成一个大的长方形,小红用另外的8张拼成一个大的正方形,但中间留下一个边长为2cm的正方形(见如图中间的阴影方格),请你算出小伟裁剪的长方形硬纸片长与宽分别是多少?【解答】解:设小长方形的长、宽分别为xcm,ycm,则,解得:,经检验得出,符合题意.答:小伟裁剪的长方形的长、宽分别为10cm,6cm.20.某景点的门票价格如表:购票人数/人1~50 51~100 100以上每人门票价/元12 10 8某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解答】解:(1)设七年级(1)班有x人、七年级(2)班有y人,由题意,得,解得:.答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(10﹣8)×53=106元.21.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?【解答】解:设平路有xm,下坡路有ym,根据题意得,解得:,答:小华家到学校的平路和下坡路各为300m,400m.22.在等式y=ax2+bx+c中,当x=﹣2时,y=﹣1;x=0时,y=2;x=2时,y=0.求a、b、c的值.【解答】解:把x=﹣2时,y=﹣1;x=0时,y=2;x=2时,y=0代入等式y=ax2+bx+c得,,解得.答:a、b、c的值分别为﹣,,2.23.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【解答】解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得,解得:.答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36﹣24)+200×(48﹣33)=3600+3000=6600(元).答:该商场共获得利润6600元.24.假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?【解答】解:(1)设出租车的起步价是x元,超过1.5千米后每千米收费y元.依题意得,第8章一元一次不等式综合测试题一、选择题(本大题共10小题,每小题3分,共30分)1.若m>n,下列不等式不一定成立的是()A. m+2>n+2B. 2m>2nC.D. m2>n22.解不等式2x≥x-1,其解集在数轴上表示正确的是()A B C D3.若关于x的一元一次不等式组的解集在数轴上表示如图1,则该不等式组的解集是()A.-2<x<1B.-2<x≤1C. -2≤x<1D. -2≤x≤1图14.使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在5.如果|x-2|=x-2,那么x的取值范围是()A. x≤2B. x≥2C. x<2D. x>26.不等式组的整数解的个数是()A.3个B.5个C.7个D.无数个7.若a是一个整数,比较a与3a的大小,下列正确的是()A. a>3aB. a<3aC. a=3aD.无法确定8.某商品的进价是120元,商家出售这样的一件商品时可获利润是进价的20%~30%,则售价的范围是()A. 144~156元B. 126~144元C. 136~154元D. 145~155元9.若关于x 的不等式组⎩⎨⎧1ax >>x 的解集为x >1 ,则a 的取值范围是( )A. a >1B. a <1C. a ≥1D. a ≤110.东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( ) A.11 B.8 C.7 D.5二、填空题(本大题共8小题,每小题4分,共32分) 11. 3x 与9的差是非负数,用不等式表示为 . 12.若a >b ,则ac 2 bc 2.13.若x ≥2的最小值是a ,x ≤-6的最大值是b ,则a+b=_________. 14.写出一个解集为x >1的一元一次不等式: .15.若点(1-2m ,m -4)在第三象限内,则m 的取值范围是 . 16. 当a________时,不等式31224x a x-+>的解集是x >2. 17. 若不等式组4050a x x a ->⎧⎨+->⎩无解,则a 的取值范围是________.18.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 辆.三、解答题(本大题共5小题,共58分)19.(10分)已知三个一元一次不等式:2x >4,2x ≥x-1,x-3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并将解集在图2中的数轴上表示出来.(1)你组成的不等式组是: . (2)解:图220.(10分)若式子912x++的值不小于式子113x+-的值,求x的取值范围.21.(12分)某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别每台是多少元.(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,最少需要购进A型号计算器多少台?22.(12分)若|x-3|+(3x-y-m)2=0,当y≥0时,求m的取值范围.23.(14分)甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):累计购物实际花费130 290 (x)在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?附加题(15分,不计入总分) 阅读下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式,如:01-x 3x 2 01x 2-x <,>++.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.可表示为:①若a >0 ,b >0 ,则b a >0;若a <0 ,b <0,则ba >0; ②若a >0 ,b <0 ,则b a <0 ;若a <0,b >0 ,则b a<0. 反之:(1)若b a>0,则⎩⎨⎧⎩⎨⎧.0b 0a 0b 0a <,<或>,> 若ba<0 ,则__________或__________. (2)根据上述规律,求不等式012x >+-x 的解集. 参考答案一、1.D 2.B 3.C 4.A 5.B 6.B 7.D 8.A 9.D 10.B 提示:根据题意,可列不等式8+1.5(x-3)≤15.5.二、11.3x-9≥0 12. ≥ 13.-4 14.答案不唯一,如3x >3 15. 12<m <416. =6 17. a ≤118. 6 提示:设甲种运输车共运输x 吨,则乙种运输车共运输(46-x )吨.根据题意,得4465x x-+≤10.三、19. 解:答案不唯一,如(1)(2)解不等式组①,得x >2. 解不等式组②,得x ≥-1.所以不等式组的解集为x >2,在数轴上表示略. 20. 解:根据题意,可得912x ++≥113x +-. 去分母,得3(x+9)+6≥2(x+1)-6. 去括号,得3x+27+6≥2x+2-6. 移项、合并同类项,得x ≥-37.21. 解:(1)设A 、B 型号计算器的销售价格分别是每台x 元,y 元.根据题意,得⎩⎨⎧=-+-=-+.120)40(3)30(67640y 30-5y x x ,)()( 解得⎩⎨⎧==.5642y x ,答:商场销售A 、B 两种型号计算器的销售价格分别为每台42元,56元. (2)设购进A 型号计算器a 台.根据题意,得30a+40(70-a )≤2500,解得a ≥30.答:最少需要购进A 型号计算器30台. 22. 解:由题意,得x-3=0,3x-y-m=0. 解得x=3,y=9-m.由y ≥0,得9-m ≥0,所以m ≤9. 即m 的取值范围是m ≤9.23. 解:(1)依次填:271,0.9x+10,278,0.95x+2.5. (2)根据题意,得0.9x+10=0.95x+2.5,解得x=150. 所以当x=150时,小红在甲、乙两商场的花费相同. (3)由0.9x+10<0.95x+2.5,解得x>150; 由0.9x+10>0.95x+2.5,解得x<150.所以当小红累计购物超过150元时,在甲商场的实际花费少;当小红累计购物超过100元,而不超过150元时,在乙商场的实际花费少.附加题解:(1)⎩⎨⎧0b 0a <,>⎩⎨⎧0b 0a >,<(2)由上述规律可知,不等式转化为⎩⎨⎧+01x 02-x >,>或⎩⎨⎧+.01x 02-x <,<解得x >2或x <-1.第9章 多边形 综合测试题一、选择题(每小题3分,共30分)1.下列各组线段不能构成三角形的是( ) A. 4 cm 、2 cm 、5 cm B. 3 cm 、3 cm 、5 cm C. 2 cm 、4 cm 、3 cm D. 2 cm 、2 cm 、6 cm2.下列图形具有稳定性的是( ) A. 正方形 B. 矩形 C. 平行四边形 D. 直角三角形3.在数学课上,同学们在练习画边AC 上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是( )A B C D 4. 小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540°,则对应的图形是( )A B C D5.如图1所示,在△ABC 中,AB =8,AC =6,AD 是△ABC 的中线,则△ABD 与△ADC 的周长之差为( ) A .2 B .1 C .14 D .7图1 图2 图36.如图2,在△ABC 中,∠B =46°,∠C =54°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠ADE 的大小是( )A. 45°B. 54°C. 40°D. 50° 7.正多边形的一个内角等于144°,则该多边形的边数是( ) A. 10 B . 9 C. 12 D. 88.现有正三角形、正十边形与第三种正多边形能铺平整的地面,则第三种正多边形是( ) A. 正十二边形 B .正十三边形 C .正十四边形 D .正十五边形9.如图3,∠1,∠2,∠3,∠4是五边形ABC DE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是( )A. 110°B. 108°C. 105°D. 100°10. a 、b 、c 是三角形的三边长,化简|a+b-c|+|b-c-a|+|b+c-a|等于( ) A. b+a-3c B. a+b+c C. 3a+3b+3c D. a+b-c二、填空题(每小题4分,共32分)11.三角形中,三个内角的比为1:3:6,它的最大内角度数是 .12.若一个三角形的两条边相等,一边长为4 cm ,另一边长为7 cm ,则这个三角形的周长为 . 13.已知在△ABC 中,∠A =60°,∠B -∠C =40°,则∠B = . 14.如图4,已知AE ∥BD ,∠1=130°,∠2=30°,则∠C = 度.15.正多边形的一个外角等于它的一个内角的51,则该正多边形一个内角的度数为 . 16.正多边形的一个内角等于150°,则从这个多边形的一个顶点出发可引 条对角线. 17.一个多边形少算了一个内角,其余各内角的和为2016°,则少算的这个内角的度数为 . 18.如图5,在同一平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠3+∠1-∠2= °.三、解答题(共58分)19.(10分)小颖要制作一个三角形木架,现有两根长度为8 cm 和5 cm 的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?图4图520.(10分)在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.21.(12分)如图6,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.图622.(12分)我们常见到如图7那样图案的地面,它们分别是全用正方形或全用正六边形形状的材料铺成的,这样形状的材料能铺成平整、无空隙的地面.现在问:图7(1)像上面那样铺地面,能否全用正五边形的材料,为什么?(2)你能不能另外想出一个用一种多边形(不一定是正多边形)的材料铺地的方案?把你想到的方案画成草图.(3)请你再画出一个用两种不同的正多边形材料铺地的草图.23.(14分)如图8,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD.(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.图8附加题(15分,不计入总分)24.在△ABC和△DEF中,将△DEF按要求摆放,使得∠D的两条边分别经过点B和点C.(1)当将△DEF 如图9摆放时,若∠A =50°,∠E +∠F =100°,则∠ABD +∠ACD = °. (2)当将△DEF 如图10摆放时,∠A =m °,∠E +∠F =n °,请求出∠ABD +∠ACD 的度数,并说明理由.参考答案一、1. D 2. D 3. C 4. C 5. A 6. C 7. A 8. D 9. D 10. B 二、11. 108° 12. 15 cm 或18 cm 13. 80° 14. 20 15. 150° 16. 9 17. 144 18. 24°三、19. 解:设第三根木棒的长度是x cm . 根据三角形的三边关系,得3<x <13.因为x 是整数,所以小颖有9种选法.第三根木棒的长度可以是4 cm ,5 cm ,6 cm ,7 cm ,8 cm ,9 cm ,10 cm ,11 cm ,12 cm .20. 解:(1)设这个多边形的每一个外角的度数为x °. 根据题意,得3x +x =180.解得x =45. 故这个多边形的每一个外角的度数为45°. (2)360°÷45°=8.故这个多边形的边数为8. 21.解:(1)如图所示:(2)因为A D 是高,所以∠ADB=90°,在△ABD 中,∠BAD=180°-∠B -∠ADB=60°, 因为∠ACB 是△ACD 的外角,所以∠CAD=∠ACB -∠ADC=130°-90°=40°. 22.解:(1)所用材料的形状不能是正五边形.因为正五边形的每个内角都是108°,不能被360整除,所以不能全用是正五边形的材料铺地面. (2)如图:(3)如图:图9 图10EDABC23. 解:(1)因为∠BFD =∠ABF +∠BAD ,∠ABC =∠ABF +∠FBC ,又∠BAD =∠FBC ,所以∠ABC =∠BFD . (2)因为∠BFD =∠ABC =35°,EG ∥AD ,所以∠BEG =∠BFD =35°. 因为EH ⊥BE ,所以∠BEH =90°. 所以∠HEG =∠BEH -∠BEG =55°. 24. 解:(1)230(2)∠ABD +∠ACD =(180-m -n )°;理由如下:因为∠E +∠F =n °,所以∠CBD +∠BCD =∠E +∠F =n °.所以∠ABD +∠ACD =∠ABC +∠ACB -(∠BCD +∠CBD )=(180-m -n )°.第10章 轴对称、平移与旋转检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形但不是轴对称图形的是( )2.在下列某品牌T 恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( )3.如图,△DEF 是由△ABC 经过平移后得到的,则平移的距离是( )A.线段 BE 的长度B.线段 EC 的长度C.线段 BC 的长度D.线段 EF 的长度4.如图,将边长为4的等边△ABC 沿边 BC 向右平移2个单位长度得到△DEF ,则四边形 ABFD 的周长为( )A.12B.16C.20D.245.如图,P 是等腰直角△ABC 内一点, BC 是斜边,如果将△ABP 绕点A 按逆时针方向旋转到△ACP'的位置,则∠APP'=( ) A. 30° B. 45° C. 50° D. 60°第5题图第4题图第3题图6.下列图形中,不能由图形 M 经过一次平移或旋转得到的是( )7.俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作( ) A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移8.如图,△ABC 与△A'B'C'关于直线l 对称,则∠B 等于( ) A.30° B.50° C.90° D.100°9.如图,△OAB 绕点O 逆时针旋转90°到△OCD 的位置,已知∠AOB =45°,则∠AOD 的度数为( ) A.55° B.45° C.40° D.35°10.如图,△ABC ≌△DEF ,则此图中相等的线段有( ) A.1对 B.2对 C.3对 D.4对二、填空题(每小题3分,共24分)11.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是____________.12.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=______°.13.如图,已知△ABC 和△DCE 是等边三角形,则△ACE 绕着 点按逆时针方向旋转____ 度可得到△ .第7题图第8题图第9题图第10题图第11题图 第12题图 第13题图。

华师大版七年级数学下册全套试卷

华师大版七年级数学下册全套试卷

华师大版七年级数学下册全套试卷特别说明:本试卷为最新华师大版中学生七年级达标测试卷。

全套试卷共6份。

试卷内容如下:1. 第六单元使用2. 第七单元使用3. 第八单元使用4. 第九单元使用5. 第十单元使用6. 期末检测卷第6章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .2x =1B .1x -2=0 C .2x -y =5 D .x 2+1=2x2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若ax =ay ,则x =yC .若a =b ,则ac =bcD .若b a =dc,则b =d3.如果13a +1与2a -73互为相反数,那么a 的值为( )A .43B .10C .-43 D .-10 4.下列变形正确的是( )A .若3x -1=2x +1,则3x +2x =1+1B .若3(x +1)-5(1-x)=0,则3x +3-5-5x =0C .若1-3x -12=x ,则2-3x -1=xD .若x +10.2-x 0.3=10,则x +12-x 3=15.已知关于x 的方程2x -3=m3+x 的解满足|x|-1=0,则m 的值是( )A .-6B .-12C .-6或-12D .任何数6.轮船在静水中的速度为20 km /h ,水流速度为4 km /h ,从甲码头顺流航行到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头间的距离.设两码头间的距离为x km ,则列出的方程正确的是( )A .(20+4)x +(20-4)x =5B .20x +4x =5C .x 20+x 4=5D .x 20+4+x 20-4=5 7.甲、乙两个足球队连续进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜( )A .5场B .6场C .7场D .8场8.某环形跑道长400米,甲、乙两人练习跑步,他们同时反向从某处开始跑,甲每秒跑6米,乙每秒跑4米,x 秒后,甲、乙两人首次相遇,则依题意列出方程:①6x +4x =400;②(6+4)x =400;③400-6x =4x ;④6x -4x =400.其中正确的方程有( )A .1个B .2个C .3个D .4个9.图①为一正面白色、反面灰色的长方形纸片.沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示,若图②中白色与灰色区域的面积比为8∶3,图②中纸片的面积为33,则图①中纸片的面积为何?( )(第9题)A .2314B .3638 C .42 D .4410.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价一定为( )A .180元B .202.5元C .180元或202.5元D .180元或200元二、填空题(每题3分,共30分) 11.方程2x -1=0的解是________.12.已知关于x 的方程(k -2)x |k -1|-10=0是一元一次方程,则k 的值为________.13.已知方程5x +4=7x +8,则-x 2-2x =________. 14.已知代数式x +12比5-x 3的值大1,则x 的值为________.15.若5a 3b 5(m-1)与a 3b 6m-7是同类项,那么m 的值为________.16.若方程x +2m =8与方程2x -13=x +16的解相同,则m =________.17.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,则可列方程为______________.18.某商店将彩电按进价提高40%标价,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍可获得利润240元,则每台彩电的进价是________元.19.在如图所示的运算流程中,若输出的数y =7,则输入的数x =________.(第19题)(第20题)20.如图所示是一块在电脑屏幕上出现的长方形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为________.三、解答题(21题12分,22题8分,其余每题10分,共60分) 21.解下列方程.(1)2x -12=-12x +2; (2)1-x 2+2x -13=1;(3)x -10.3-x +20.5=1.2; (4)4x -1.50.5-0.5x -0.080.02=1.2-x0.1+2.22.已知x =1是方程2-13(a -x)=2x 的解.求关于y 的方程a(y -5)-2=a(2y -3)的解.23.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按1.8元收费;如果超过15立方米,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元计算.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.24.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?25.如图所示的图形是由边长为1的正方形按照某种规律排列组成的.(第25题)(1)观察图形,填写下表:(2)推测第n个图形中,正方形的个数为________,周长为________.(用含有n的式子表示)(3)第________个图形中,正方形的个数是48,此时图形的周长是________.(4)由m个正方形按此规律组成的图形,周长用含m的式子表示是________,当m=________时,图形的周长是158,此时是此规律中的第________个图形.(5)由95个正方形能拼成符合此规律的图形吗?为什么?26.小刚为书房买灯,现有两种灯可供选购,其中一种是9 W(0.009 kW)的节能灯,售价49元/盏;另一种是40 W(即0.04 kW)的白炽灯,售价18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2 800 h.已知小刚家所在地的电价是每千瓦时0.5元.(1)设照明时间是x h,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用.(注:费用=灯的售价+电费)(2)小明想在这两种灯中选购一盏.①当照明时间是多少时,使用两种灯的费用一样多?②试用特殊值判断:照明时间在什么范围内,选用白炽灯费用低?照明时间在什么范围内,选用节能灯费用低?答案一、1.A 2.C 3.A 4.D 5.C 6.D 7.B 8.C 9.C 10.C 二、11.x =12 12.0 13.014.135 15.2 16.7217.2x +56=589-x 18.2 000 19.28或27 20.143 三、21.解:(1)2x -12=-12x +22x +12x =5252x =52x =1 (2)1-x 2+2x -13=1 3(1-x)+2(2x -1)=6 3-3x +4x -2=6 x =5 (3)x -10.3-x +20.5=1.2 5(x -1)-3(x +2)=1.8 5x -5-3x -6=1.8 2x =12.8 x =6.4 (4)4x -1.50.5-0.5x -0.080.02=1.2-x 0.1+2 40x -155-50x -82=12-10x +2 2(40x -15)-5(50x -8)=140-100x 80x -30-250x +40=140-100x -70x =130 x =-13722.解:将x =1代入方程2-13(a -x)=2x ,得2-13(a -1)=2, 解得a =1.再把a =1代入方程a(y -5)-2=a(2y -3),得 y -5-2=2y -3, 解得y =-4.23.解:因为若该户一月份用水量为15立方米,则需支付水费15×(1.8+1)=42(元),而42<58.5,所以该户一月份用水量超过15立方米.设该户一月份用水量为x 立方米,则列方程为42+(2.3+1)(x -15)=58.5,解得x =20. 答:该户一月份用水量为20立方米. 24.解:(1)设两人合做需x 天, 由题意得x 30+x20=1,解得x =12, 因为12<15,所以正常情况下两人能履行合同.(2)完成75%所用天数为34÷⎝⎛⎭⎫130+120=9(天). 若调走甲,设共需y 天完成, 由题意得 34+y -920=1, 解得y =14. 因为14<15, 所以能履行合同;若调走乙,设共需z 天完成, 由题意得34+z -930=1,解得z =16.5. 因为16.5>15,所以不能履行合同.综上可知,调走甲更合适. 25.解:(1)13;18;28;38 (2)5n +3;10n +8 (3)9;98(4)2m +2;78;15(5)不能,理由:由5n +3=95,解得n 不是整数.26.解:(1)用一盏节能灯的费用是(49+0.004 5x)元,用一盏白炽灯的费用是(18+0.02x)元.(2)①由题意,得49+0.004 5x =18+0.02x , 解得x =2 000,所以当照明时间是2 000 h 时,两种灯的费用一样多. ②取特殊值x =1 500,则用一盏节能灯的费用是49+0.004 5×1 500=55.75(元),用一盏白炽灯的费用是18+0.02×1 500=48(元),所以当照明时间小于2 000 h 时,选用白炽灯费用低.取特殊值x =2 500,则用一盏节能灯的费用是49+0.004 5×2 500=60.25(元),用一盏白炽灯的费用是18+0.02×2 500=68(元),所以当照明时间超过2 000 h 时,选用节能灯费用低.第7章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.已知2x -3y =1,用含x 的式子表示y 正确的是( ) A .y =23x -1 B .x =3y +12 C .y =2x -13 D .y =-13-23x2.下列方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x -y =0,3x -2y =7B .⎩⎪⎨⎪⎧2x -y =3,3xy =8C .⎩⎪⎨⎪⎧x +y =3,x -z =5 D .⎩⎨⎧12x +3y =1,13x +12y =13.用加减法解方程组⎩⎪⎨⎪⎧3x -2y =10,①4x -y =15②时,最简捷的方法是( )A .①×4-②×3,消去xB .①×4+②×3,消去xC .②×2+①,消去yD .②×2-①,消去y4.若⎩⎪⎨⎪⎧x =2,y =-1是下列某二元一次方程组的解,则这个方程组为( )A .⎩⎪⎨⎪⎧x +3y =5,x +y =1B .⎩⎪⎨⎪⎧x =y -3,y +2x =5C .⎩⎪⎨⎪⎧x =2y ,x =3y +1D .⎩⎪⎨⎪⎧2x -y =5,x +y =15.若方程组⎩⎪⎨⎪⎧ax +y =0,x +by =1的解是⎩⎪⎨⎪⎧x =1,y =-1,那么a ,b 的值是( )A .⎩⎪⎨⎪⎧a =1b =0B .⎩⎪⎨⎪⎧a =1b =12C .⎩⎪⎨⎪⎧a =-1b =0D .⎩⎪⎨⎪⎧a =0b =0(第6题)6.如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的2倍少15°,设∠ABD 与∠DBC 的度数分别为x°,y°,根据题意,下列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =90,x =y -15B .⎩⎪⎨⎪⎧x +y =90,x =2y -15C .⎩⎪⎨⎪⎧x +y =90,x =15-2yD .⎩⎪⎨⎪⎧x +y =90,x =2y +15 7.如果方程x +2y =-4,2x -y =7,y -kx +9=0有公共解,则k 的解是( ) A .-3 B .3 C .6 D .-68.如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3a ,x -y =9a 的解是二元一次方程2x -3y +12=0的一个解,那么a 的值是( )A .34B .-47C .74D .-439.甲、乙两人各买了相同数量的信封和信笺,甲每发出一封信只用1张信笺,乙每发出一封信用3张信笺,结果甲用掉了所有的信封,但余下50张信笺,而乙用掉了所有的信笺,但余下50个信封,则甲、乙两人买的信笺张数、信封个数分别为( )A .150,100B .125,75C .120,70D .100,15010.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图给出了“河图”的部分点图,请你推算出P 处所对应的点图是( )(第10题)二、填空题(每题3分,共30分)11.若(m -3)x +2y |m -2|+8=0是关于x ,y 的二元一次方程,则m =________.12.若⎩⎪⎨⎪⎧x +y =7,3x -5y =-3,则3(x +y)-(3x -5y)的值是________.13.已知4x a+2b -5-2y 3a-b -3=8是二元一次方程,那么a -b =________.14.已知单项式-8a 3x+y -zb 12c x+y +z与13a 4b 2x -y +3z c 6是同类项,则x =________,y =________,z =________.15.定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________.16.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm .设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =________,y =________.(第16题)(第19题)17.有这样一个故事:一头驴子和一头骡子驮着不同袋数的货物一同走,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那么我所负担的就是你的两倍;如果我给你一袋,那么我们才恰好驮的一样多!”驴子原来所驮货物为________袋.18.若x ,y 是方程组⎩⎪⎨⎪⎧3y +2x =100-2a ,3y -2x =20的解,且x ,y ,a 都是正整数.①当a ≤6时,方程组的解是________;②满足条件的所有解的个数是________.19.设“、、”分别表示三种不同的物体.如图所示,前两架天平保持平衡,如果要使第三架天平也保持平衡,那么“?”处应放入“”的个数为________.20.如图①所示,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②所示,这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是________.(第20题)三、解答题(21题10分,25题12分,26题14分,其余每题8分,共60分)21.解方程组:(1)⎩⎪⎨⎪⎧2x +y =5,x -y =1. (2)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=4,x +y 2+x -y6=1.22.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +3y =3m +7,x -y =4m +1.(1)试用含m 的式子表示方程组的解;(2)若该方程组的解也是方程x +y =6的解,求m 的值.23.对于x ,y 定义一种新运算“Ø”,xØy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3Ø5=15,4Ø7=28,求1Ø1的值.24.某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1 118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少人?(2)团体购票与单独购票相比较,两个班各节约了多少钱?25.小明和小刚同时解方程组⎩⎪⎨⎪⎧ax +by =26,cx +y =6.(第25题)根据小明和小刚的对话,试求a ,b ,c 的值.26.电脑中有一种游戏——蜘蛛纸牌,开始游戏前有500分的基本分,游戏规则如下:①操作一次减x分;②每完成一列加y分.有一次小明在玩这种“蜘蛛纸牌”游戏时,随手用表格记录了两个时段的电脑显示:(1)通过列方程组,求x,y的值;(2)如果小明最终完成此游戏(即完成10列),分数是1 182,问他一共操作了多少次?答案一、1.C 2.A 3.D 4.D 5.A 6.B7.B 点拨:解方程组⎩⎪⎨⎪⎧x +2y =-4,2x -y =7,得⎩⎪⎨⎪⎧x =2,y =-3.把x =2,y =-3代入 y -kx +9=0,得-3-2k +9=0,解得k =3,故选B . 8.B9.A 点拨:设他们每人买了x 个信封和y 张信笺. 由题意得⎩⎪⎨⎪⎧y -x =50,x -y 3=50,解得⎩⎪⎨⎪⎧x =100,y =150.故选A .10.C 点拨:通过观察看出此题实质上是让2个点与5个点的和等于1个点与P 处所对应的点图的点数的和.再进一步算出P 处所对应的点图的点数为2+5-1=6.故选C .二、11.1 点拨:因为(m -3)x +2y |m -2|+8=0是关于x ,y 的二元一次方程,所以⎩⎪⎨⎪⎧m -3≠0,|m -2|=1,即⎩⎪⎨⎪⎧m ≠3,m =1或m =3.所以m =1. 12.24 点拨:此题的技巧是不解方程组,整体代入求值,即原式=3×7-(-3)=24. 13.0 点拨:根据题意,得⎩⎪⎨⎪⎧a +2b -5=1,3a -b -3=1, 解得⎩⎪⎨⎪⎧a =2,b =2,则a -b =0.14.2;1;3 点拨:若单项式 -8a 3x+y -zb 12c x+y +z与13a 4b 2x -y +3zc 6是同类项, 则满足方程组⎩⎪⎨⎪⎧3x +y -z =4,2x -y +3z =12,x +y +z =6,解得⎩⎪⎨⎪⎧x =2,y =1,z =3.15.10 点拨:根据题中的新定义化简已知等式得⎩⎪⎨⎪⎧a +2b =5,4a +b =6.解得⎩⎪⎨⎪⎧a =1,b =2.则2*3=4a +3b =4+6=10.16.4;5 点拨:根据题意,得⎩⎪⎨⎪⎧2x +3y =23,3x +2y =22,解得⎩⎪⎨⎪⎧x =4,y =5.17.5 点拨:设驴子原来所驮货物为x 袋,骡子原来所驮货物为y 袋,则依题意有⎩⎪⎨⎪⎧2(x -1)=y +1,x +1=y -1, 解得⎩⎪⎨⎪⎧x =5,y =718.①⎩⎪⎨⎪⎧x =17,y =18 点拨:解方程组可得⎩⎨⎧x =20-a 2,y =20-a 3.又x ,y ,a 均为正整数且a ≤6, 所以a =6.故x =17,y =18.②6 点拨:当a =6,12,18,24,30,36时,x ,y ,a 均为正整数.19.5 点拨:设1个“○”的质量为x ,1个“□”的质量为y ,1个“△”的质量为z ,则⎩⎪⎨⎪⎧2x =y +z ,x +y =z ,故x =2y ,z =3y ,所以x +z =5y.20.100 点拨:根据题意得出⎩⎪⎨⎪⎧a +b =30,a -b =20,解得⎩⎪⎨⎪⎧a =25,b =5,故Ⅱ部分的面积是5×20=100.三、21.解:(1)⎩⎪⎨⎪⎧2x +y =5,①x -y =1.②①+②,得3x =6,解得x =2. 将x =2代入②,得2-y =1, 解得y =1.所以方程组的解是⎩⎪⎨⎪⎧x =2,y =1.(2)令x +y =a ,x -y =b , 则原方程组变为⎩⎪⎨⎪⎧3a -4b =4,a 2+b 6=1.解这个方程组得⎩⎨⎧a =2815,b =25,即⎩⎨⎧x +y =2815,x -y =25,解得⎩⎨⎧x =1715,y =1115.点拨:本题第(2)问运用的是换元法,也可先对方程组进行化简,再利用加减消元法求解.22.解:(1)解方程组⎩⎪⎨⎪⎧2x +3y =3m +7①,x -y =4m +1②, ①-2×②,得5y =-5m +5,解得y =-m +1,把y =-m +1代入②得x -(-m +1)=4m +1,解得x =3m +2,所以方程组的解为⎩⎪⎨⎪⎧x =3m +2,y =-m +1.(2)把⎩⎪⎨⎪⎧x =3m +2,y =-m +1代入x +y =6,得3m +2-m +1=6,解得m =32.23.解:由题意,得⎩⎪⎨⎪⎧3a +5b =15,4a +7b =28,解得⎩⎪⎨⎪⎧a =-35,b =24.所以1Ø1=-35×1+24×1=-11.24.解:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得⎩⎪⎨⎪⎧12x +10y =1 118,8(x +y )=816,解得⎩⎪⎨⎪⎧x =49,y =53.答:七年级(1)班有49人、七年级(2)班有53人. (2)七年级(1)班节省的费用为:(12-8)×49=196(元), 七年级(2)班节省的费用为:(10-8)×53=106(元).25.解:把⎩⎪⎨⎪⎧x =4,y =-2,⎩⎪⎨⎪⎧x =7,y =3代入方程组的第1个方程中得⎩⎪⎨⎪⎧4a -2b =26,7a +3b =26, 解得⎩⎪⎨⎪⎧a =5,b =-3.再把⎩⎪⎨⎪⎧x =4,y =-2代入方程cx +y =6中,得4c +(-2)=6,所以c =2.故a =5,b =-3,c=2.26.解:(1)依题意得⎩⎪⎨⎪⎧2y -66x =634-500,5y -102x =898-500. 解得⎩⎪⎨⎪⎧x =1,y =100.(2)设他一共操作了a 次,则10×100-a ×1=1 182-500,解得a =318. 答:他一共操作了318次.第8章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.某市4月5日的气温是20 ℃±3 ℃,用不等式表示该市4月5日的气温T 的范围是( )A .17 ℃<T <20 ℃B .17 ℃≤T ≤20 ℃C .20 ℃<T <23 ℃D .17 ℃≤T ≤23 ℃ 2.若x >y ,则下列式子中错误的是( )A .x -3>y -3B .x 3>y3 C .x +3>y +3 D .-3x >-3y3.不等式2x ≥x -1的解集在数轴上表示正确的是( )4.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( ) A .m >92 B .m <0 C .m <92D .m >05.已知a<b ,若c 是任意有理数,则下列不等式中总成立的是( ) A .a +c<b +c B .a -c>b -c C .ac>bc D .ac 2>bc 26.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围是( )A .m >-23B .m ≤23C .m >23D .m ≤-237.若不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是( )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <08.方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3的解满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .0<k <8D .k >-49.某运输公司要将300吨的货物运往某地,现有A ,B 两种型号的汽车可调用,已知A 型汽车每辆可装货物20吨,B 型汽车每辆可装货物15吨.在每辆汽车不超载的情况下,要把这300吨货物一次性装运完成,并且A 型汽车确定要用7辆,至少调用B 型汽车的辆数为( )A .10B .11C .12D .13 10.我们定义⎝⎛⎭⎪⎫a b cd =ad +bc ,例如⎝⎛⎭⎪⎫234 5=2×5+3×4=22,若x 满足-2≤⎝⎛⎭⎪⎫423 x <2,则整数x 的值有( )A .0个B .1个C .2个D .3个二、填空题(每题3分,共30分)11.“m 的2倍与8的和不大于2与m 的差”用不等式表示为______________. 12.如图是某机器零件的设计图纸,用不等式表示零件长度的合格尺寸,则长度l 的取值范围是________.(第12题)13.不等式2x +3<-1的解集为________.14.用“>”或“<”填空:若a <b <0,则-a 5________-b 5;1a ________1b ;2a -1________2b -1.15.不等式组-3≤2x -13<5的解集是________.16.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.17.某校规定期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学期中数学考了86分,她希望自己这学期总成绩不低于95分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了x 分,可列不等式__________________.18.若不等式组⎩⎪⎨⎪⎧x -a >2,b -2x >0的解集是-1<x <2,则(a +b)2 015=________.19.如果不等式组⎩⎪⎨⎪⎧4x -a ≥0,3x -b <0的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b)共有________个.20.已知有理数x ,y 满足2x -3y =4,并且x ≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三、解答题(22~24题每题8分,其余每题12分,共60分)21.解下列不等式或不等式组,并把它们的解集在数轴上表示出来. (1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎪⎨⎪⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x3,①1+3x>2(2x -1).②22.若式子5x +46的值不小于78-1-x3的值,求满足条件的x 的最小整数值.23.先阅读,再解题. 解不等式:2x +5x -3>0.解:根据两数相除,同号得正,异号得负,得①⎩⎪⎨⎪⎧2x +5>0,x -3>0或②⎩⎪⎨⎪⎧2x +5<0,x -3<0.解不等式组①,得x >3,解不等式组②,得x <-52.所以原不等式的解集为x >3或x <-52.参照以上解题过程所反映的解题思想方法,试解不等式:2x -31+3x <0.24.若关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =30-k ,3x +y =50+k 的解都是非负数.(1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.25.今年某区为绿化行车道,计划购买甲、乙两种树苗共计n 棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.(1)当n=500时,①根据信息填表(用含x的式子表示);②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.(第25题)26.某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?答案一、1.D 2.D 3.B4.A 点拨:方程4x -2m +1=5x -8的解为x =9-2m.由题意得9-2m <0,则m >92.5.A6.C 点拨:⎩⎪⎨⎪⎧x -2m <0,①x +m >2,②解不等式①,得x <2m. 解不等式②,得x >2-m.因为不等式组有解, 所以2m >2-m. 所以m >23.7.A 点拨:不等式组⎩⎪⎨⎪⎧x <1,x >m -1的解集为m -1<x <1.又因为不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,所以-2≤m -1<-1,解得-1≤m <0.8.A 点拨:两个方程相加得4x +4y =k +4,所以x +y =k +44.又因为0<x +y <1,所以0<k +44<1,所以-4<k <0.9.B 点拨:设调用B 型汽车的辆数为x ,由题意得7×20+15x ≥300,解得x ≥1023,因为x 取整数,所以至少应该调用B 型汽车11辆.故选B .10.B 点拨:根据题意得-2≤4x +6<2,解得-2≤x <-1,则x 的整数值是-2,共1个,故选B .二、11.2m +8≤2-m 12.39.8≤l ≤40.2 13.x <-2 14.>;>;< 15.-4≤x <8 16.017.86×40%+60%x ≥95 18.119.12 点拨:由原不等式组可得a 4≤x <b3.在数轴上画出这个不等式组解集的可能区间,如图所示:(第19题)根据数轴可得0<a 4≤1,3<b 3≤4.由0<a4≤1得0<a ≤4,所以a =1,2,3,4,共4个;由3<b3≤4得9<b ≤12,所以b =10,11,12,共3个.4×3=12(个).故适合这个不等式组的整数a ,b 的有序数对(a ,b)共有12个.20.1≤k <3 点拨:由已知条件2x -3y =4,k =x -y 可得x =3k -4,y =2k -4.又因为x ≥-1,y <2,所以⎩⎪⎨⎪⎧3k -4≥-1,2k -4<2,解得⎩⎪⎨⎪⎧k ≥1,k <3.所以k 的取值范围是1≤k <3.三、21.解:(1)移项,得5x -4x>-13-15,所以x>-28.不等式的解集在数轴上表示如图.[第21(1)题](2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.[第21(2)题](3)解不等式①得x<-6;解不等式②得x>2.所以原不等式组无解.不等式组的解集在数轴上表示如图.[第21(3)题](4)解不等式①得x ≥45;解不等式②得x<3,所以原不等式组的解集为45≤x<3.不等式组的解集在数轴上表示如图.[第21(4)题]22.解:由题意得5x +46≥78-1-x 3,解得x ≥-14,故满足条件的x 的最小整数值为0.23.解:根据两数相除,同号得正,异号得负,得①⎩⎪⎨⎪⎧2x -3>0,1+3x <0或②⎩⎪⎨⎪⎧2x -3<0,1+3x >0.不等式组①无解,解不等式组②,得-13<x <32,所以原不等式的解集为-13<x <32. 点拨:理解好给出的例子是解此题的关键.24.解:(1)解关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =30-k ,3x +y =50+k ,得⎩⎪⎨⎪⎧x =k +10,y =20-2k ,所以⎩⎪⎨⎪⎧k +10≥0,20-2k ≥0,解得-10≤k ≤10.故k 的取值范围是-10≤k ≤10.(2)M =3x +4y =3(k +10)+4(20-2k)=110-5k ,所以k =110-M 5,所以-10≤110-M5≤10,解得60≤M ≤160.即M 的取值范围是60≤M ≤160.25.解:(1)①500-x 50x 80(500-x)②50x +80(500-x)=25 600,解得x =480,500-x =20. 答:甲种树苗购买了480棵,乙种树苗购买了20棵.(2)依题意,得90%x +95%(n -x )≥92%×n ,解得x ≤35n .又50x +80(n -x )=26 000,解得x =8n -2 6003,所以8n -2 6003≤35n ,所以n ≤4191131.因为n 为正整数,所以n 的最大值为419.26.解:(1)设年降水量为x 万m 3,每人年平均用水量为y m 3. 由题意,得⎩⎪⎨⎪⎧12 000+20x =16×20y ,12 000+15x =(16+4)×15y ,解得⎩⎪⎨⎪⎧x =200,y =50.答:年降水量为200万m 3,每人年平均用水量为50 m 3. (2)设该镇居民人均每年用水量为z m 3水才能实现目标. 由题意,得12 000+25×200=(16+4)×25z ,解得z =34, 50-34=16(m 3).答:该镇居民人均每年需节约16 m 3水才能实现目标. (3)设该企业n 年后能收回成本.由题意,得[3.2×5 000×70%-(1.5-0.3)×5 000]×300n 10 000-40n ≥1 000,解得n ≥81829.答:该企业至少9年后能收回成本.解题归纳:本题考查了一元一次不等式、二元一次方程组的应用,解答本题的关键是仔细审题,得到等量关系与不等关系.第9章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.在下列长度的四根木棒中,能与4 cm ,9 cm 的两根木棒钉成一个三角形的是( ) A .4 cm B .5 cm C .9 cm D .13 cm2.若三角形三个内角的比为1∶2∶3,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .等腰直角三角形3.下列判断:①三角形的三个内角中最多有一个钝角;②三角形的三个内角中至少有两个锐角;③有两个内角分别为50°和20°的三角形一定是钝角三角形;④直角三角形中两锐角之和为90°;其中正确的有( )A .1个B .2个C .3个D .4个4.若一个多边形的内角和等于2 520°,则这个多边形的边数是( ) A .18 B .17 C .16 D .155.等腰三角形的周长为13 cm ,其中一边长为3 cm ,则该等腰三角形的底边长为( ) A .7 cm B .3 cm C .7 cm 或3 cm D .8 cm 6.如图,已知∠B =∠C ,则( )A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定∠1和∠2的大小关系(第6题)(第7题)(第10题)7.如图,已知AB∥CD,则α,β,γ之间的关系为()A.α+β+γ=180°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=360°8.阳光中学阅览室在装修过程中,准备用边长相等的正方形、正三角形两种地砖铺满地面,在每个顶点的周围,正方形、正三角形地砖的块数分别是()A.2、2 B.2、3 C.1、2 D.2、19.一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形10.如图,正五边形ABCDE中,BE∥CD,过顶点A作直线l∥BE,则∠1的度数为() A.30°B.36°C.38°D.45°二、填空题(每题3分,共30分)11.如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________.12.在△ABC中,三个内角∠A,∠B,∠C满足∠B-∠A=∠C-∠B,则∠B=________.13.如果一个三角形的两边长分别为2 cm,7 cm,且三角形的第三边的长为奇数,则这个三角形的周长是________.14.要使五边形木架(用五根木条钉成)不变形,至少要再钉__________根木条.15.如图,在△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,则∠CDF=________.(第11题)(第15题)(第16题)16.如图,小亮从A点出发,沿直线前进100 m后向左转30°,再沿直线前进100 m,又向左转30°,…,照这样下去,他第一次回到出发地A点时,一共走了________.17.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.(第17题)(第20题)18.一个多边形的内角和比四边形内角和的3倍多180°,则这个多边形的边数是________.19.小亮家离学校1 km,小明家离学校3 km,如果小亮家与小明家相距x km,那么x 的取值范围是________.20.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于________.三、解答题(21~25题每题8分,26,27题每题10分,共60分)21.如图,点F是△ABC的边BC的延长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.22.已知a,b,c是△ABC的三边长,a=4,b=6,若三角形的周长是小于18的偶数.(1)求边长c;(2)判断△ABC的形状.23.已知两个多边形的内角和为1 800°,且这两个多边形的边数之比为2∶5,求这两个多边形的边数.24.如图,在△ABC中,∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC的度数.(第24题)25.已知,在△ABC中,∠A=45°,高BD和CE所在的直线交于点H,画出图形并求出∠BHC的度数.26.若∠A与∠B的两边分别垂直,请判断这两个角的数量关系.(1)如图①,∠A与∠B的数量关系是____________;如图②,∠A与∠B的数量关系是______________;对于上面的两种情况,请用文字语言叙述:________________________________________________________________________.(2)请选择图①和图②其中的一种进行说明.(第26题)27.如图①,已知线段AB,CD相交于点O,连结AD,CB.如图②,在图①的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.试解答下列问题:(1)在图①中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:______________________;(2)在图②中,若∠D=42°,∠B=38°,试求∠P的度数;(3)如果图②中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D,∠B之间的数量关系,并说明理由.(第27题)答案一、1.C 点拨:根据三边关系知:5 cm <第三边的长<13 cm ,只有C 选项符合. 2.C 点拨:利用方程思想,设三个内角分别为x ,2x ,3x ,则x +2x +3x =180°,解得x =30°. 3x =90°. 所以这个三角形为直角三角形.3.D4.C 点拨:利用方程思想,设边数为n ,则(n -2)·180°=2 520°,解得n =16. 5.B 点拨:利用分类讨论思想,当3 cm 为底边长时,腰长为13-32=5(cm ),此时三角形三边长分别为3 cm ,5 cm ,5 cm ,符合三边关系,能组成三角形;当3 cm 为腰长时,底边长为13-2×3=7(cm ),此时三角形三边长分别为3 cm ,3 cm ,7 cm ,3+3<7,不符合三边关系,不能组成三角形.所以底边长只能是3 cm ,故选B .6.A 点拨:利用三角形内角和定理知∠1+∠A +∠B =180°,∠2+∠A +∠C =180°.又∠B =∠C ,所以∠1=∠2.故选A .7.A 点拨:利用平行线的性质与三角形内角和定理解答即可. 8.B9.C 点拨:利用多边形外角的性质得边数=360°÷36°=10.10.B二、11. (1)AB(2)CD12.60°13.16 cm点拨:由三边关系得5 cm<第三边的长<9 cm,因为第三边的长为奇数,所以第三边的长为7 cm.所以周长为16 cm.14.215.74°点拨:∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CE平分∠ACB,CD⊥AB 于点D,∴∠BCE=34°,∠BCD=90°-72°=18°.∵DF⊥CE,∴∠CDF=90°-∠FCD=90°-(∠BCE-∠BCD)=90°-(34°-18°)=74°.16.1 200 m点拨:∵360°÷30°=12, ∴他需要走12次才会回到出发地A点,即一共走了100×12=1 200(m).故答案为1 200 m.17.360°点拨:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.(第17题)18.9点拨:本题利用了方程思想.设边数为n,根据题意列方程得(n-2)·180°=3×(4-2) ·180°+180°,解得n=9.19.2≤x≤4点拨:本题运用了分类讨论思想,将小亮家、小明家和学校看成三点,分三点不在一条直线上和三点在一条直线上两种求解.20. 70°三、21.解:∵DF⊥AB,∴∠FDB=90°.∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B =50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=30°+50°=80°.22.解:(1)因为a=4,b=6,所以周长l的范围为12<l<20.又因为周长为小于18的偶数,所以l=16或l=14.当周长为16时,c=6;当周长为14时,c=4.(2)当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.23.解:设这两个多边形的边数分别是2x和5x,则(2x-2)·180°+(5x-2)·180°=1 800°,解得x=2.所以这两个多边形的边数分别为4和10.24.解:在△ABD中,由三角形外角的性质知:∠ADC=∠B+∠BAD,∵∠BAD=40°,∴∠EDC+∠1=∠B+40°.①同理,得∠2=∠EDC+∠C.∵∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B.②将②代入①得:2∠EDC+∠B=∠B+40°,即∠EDC=20°.25.解:(1)如图①,当△ABC是锐角三角形时,∵BD,CE是△ABC的高,∴∠ADB=90°,∠BEC=90°.在△ABD中,∵∠A=45°,∴∠ABD=90°-45°=45°.∴∠BHC=∠ABD+∠BEC=45°+90°=135°.(2)如图②,当△ABC是钝角三角形时,∵BD,CE是△ABC的高,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°.∵∠ACE=∠HCD(对顶角相等),∠A=45°,∴∠BHC=∠A=45°.综上所述,∠BHC的度数是135°或45°.(第25题)26.解:(1)∠A=∠B;∠A+∠B=180°;如果一个角的两边与另一个角的两边分别垂直,那么这两个角的数量关系是相等或互补(2)选题图①,∵BC⊥AC,BD⊥AD,∴∠ACB=∠ADB=90°.又∵∠AED=∠BEC(对顶角相等),∴∠A=∠B.选题图②,∵BC⊥AC,BD⊥AD,∴∠ACB=∠ADB=90°.∵四边形的内角和等于360°,∴∠A+∠B=360°-90°-90°=180°.(任选一种说明即可) 27.解:(1)∠A+∠D=∠B+∠C(第27题)(2)根据(1)知,∠1+∠2+∠D =∠3+∠4+∠B , ∠1+∠D =∠3+∠P.∵AP ,CP 分别是∠DAB 和∠BCD 的平分线,∴∠1=∠2,∠3=∠4.∴2∠1+∠D =2∠3+∠B.而2∠1+2∠D =2∠3+2∠P ,∴2∠P =∠B +∠D.∵∠D =42°,∠B =38°,∴∠P =12(∠B +∠D)=12(38°+42°)=40°.(3)∠P =12(∠B +∠D).理由与(2)一样.第10章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.将如图所示的图案通过平移后可以得到的图案是( )(第1题) A B C D 2.为了迎接杭州G 20峰会,某校开展了设计“YJG 20”图标的活动.下列图形中既是轴对称图形又是中心对称图形的是( )A B C D 3.下列图案中,是轴对称图形但不是中心对称图形的是( )A B C D 4.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A B C D5.下列图形中是将正方形ABCO绕点O顺时针旋转270°后得到的是()A B C D6.如图,将△OAB绕点O逆时针旋转到△OA′B′,点B恰好落在边A′B′上.已知AB =4cm,BB′=1cm,则A′B的长是()A.1cm B.2cm C.3cm D.4cm(第6题)(第7题)(第8题)(第9题)7.如图,将直角三角形ABC绕直角顶点C顺时针旋转60°到△A′B′C的位置,且点B′恰好落在AB边上,A′B′交AC于点D,若∠A=30°,则∠ADA′的度数是() A.100°B.90°C.80°D.70°8.如图,△ABC与△DEF关于直线MN对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.A,D的连线被MN垂直平分9.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A.把△ABC绕点C顺时针旋转90°,再向下平移2格B.把△ABC绕点C顺时针旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针旋转180°D.把△ABC向下平移5格,再绕点C顺时针旋转180°10.如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在的平面内可作旋转中心的点共有()A.1个B.2个C.3个D.4个(第10题)(第11题)(第12题)(第14题)二、填空题(每题3分,共30分)11.如图所示的图案有________条对称轴.12.如图,将等边三角形OAB绕点O按逆时针方向旋转150°,得到△OA′B′(点A′、B′分别是点A、B的对应点),则∠1=________°.13.小明照镜子时看见T恤上的英文单词是“”,则这个英文单词应是______.14.如图,将△ABC沿直线AB平移到△BDE的位置,若∠CAB=55°,∠ABC=100°,则∠CBE的度数为____________.15.等边三角形至少绕其三条高的交点旋转______度才能与自身重合.16.已知△ABC与△DEF关于点O成中心对称,且A、B、C的对应点分别为D、E、F,若AB=5,AC=3,则EF的取值范围是__________.17.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于__________.。

华东师大版七年级数学下册全套试卷(单元、期中、期末)

华东师大版七年级数学下册全套试卷(单元、期中、期末)

华东师大版七年级数学下册第6章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列式子中,是一元一次方程的是( ) A .3x +1=4x B .x +2>1 C .x 2-9=0 D .2x -3y =0 2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =yaC .若a =b ,则ac =bcD .若b a =dc ,则b =d3.一元一次方程2x =4的解是( ) A .x =1 B .x =2 C .x =3 D .x =44.已知方程x -2y +3=8,则整式x -2y 的值为( ) A .5 B .10 C .12 D .155.下列过程中,变形正确的是( ) A .由2x =3,得x =23B .由x -13-1=1-x 2,得2(x -1)-1=3(1-x )C .由x -1=2,得x =2-1D .由-3(x +1)=2,得-3x -3=26.若x =-3是方程2(x -m )=6的解,则m 的值为( ) A .6 B .-6 C .12 D .-127.关于y 的方程ay -2=4与2y -5=-1的解相同,则a 的值为( ) A .2 B .3 C .4 D .-28.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A .350元B .400元C .450元D .500元 9.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A .5.5公里B .6.9公里C .7.5公里D .8.1公里 10.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15厘米,各装有10厘米高的水,下表记录了甲、乙、丙三个杯子的底面积,今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3∶4∶5.若不计杯子厚度,则甲杯内水的高度变为( )A.5.4厘米 B .5.7C .7.2厘米 D .7.5厘米二、填空题(每小题3分,共24分)11.方程x 0.3-x 0.5=1可变形为10x 3-10x5=________.12.有一个密码系统,其原理如下面的框图所示:输入x →2x +6→输出当输出为10时,则输入的x =________.13.若式子x +33比x -44的值大4,则x 的值为________.14.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x 分钟,那么可列出的方程是__________________.15.若(m -2)x |2m -3|=6是关于x 的一元一次方程,则m 的值是________.16.若a =b ,12b =-12c ,4c -3d =0,则a 和d 之间的关系式为______________.17.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为________.18.规定一种运算“*”,a *b =13a -14b ,则方程x *2=1*x 的解为________.三、解答题(共66分) 19.(12分)解下列方程: (1)-4x +1=-2⎝⎛⎭⎫12-x ;(2)2-3x -74=-x +75;(3)12x +2⎝⎛⎭⎫54x +1=8+x .20.(10分)x 为何值时,代数式12⎣⎡⎦⎤x -12(x -1)的值比34x 小1?21.(10分)对于有理数a ,b ,c ,d ,规定一种运算⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,如⎪⎪⎪⎪⎪⎪1 02 -2=1×(-2)-0×2=-2,那么当⎪⎪⎪⎪⎪⎪2 -43-x 5=25时,x 的值为多少?22.(10例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?23.(12分)小杰到食堂买饭,看到A,B两窗口前面排队的人一样多,就站在A窗口队伍的后面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.此时,若小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,将比继续在A窗口排队提前30秒买到饭,求开始时,每队有多少人排队.24.(12分)某公司以每吨500元的价格收购了100吨某种药材.若直接在市场上销售,每吨的售价是1000元.该公司决定加工后再出售,相关信息如下表所示:注:①出品率指加工后所得产品的质量与原料的质量的比值;②加工后的废品不产生效益.受市场影响,该公司必须在10天内将这批药材加工完毕,现有3种方案:A.全都粗加工;B.尽可能多的精加工,剩余的直接在市场上销售;C.部分粗加工,部分精加工,恰好10天完成.问:哪个方案获得的利润最大?是多少?参考答案与解析1.A 2.C 3.B 4.A 5.D 6.B 7.B 8.B 9.B10.C 解析:由甲、乙、丙三杯内水的高度比为3∶4∶5,可依次设高度为3x 厘米,4x 厘米,5x 厘米.依题意得60(10-3x )+80(10-4x )=100(5x -10),解得x =2.4,所以3x =3×2.4=7.2厘米.故选C.11.1 12.2 13.24 14.250(15-x )+80x =290015.1 16.4a +3d =0 17.90% 18.10719.解:(1)x =13.(4分)(2)x =10311.(8分)(3)x =3.(12分)20.解:由题意得12⎣⎡⎦⎤x -12(x -1)=34x -1,(3分)解得x =52.(10分) 21.解:因为⎪⎪⎪⎪⎪⎪2 -43-x 5=25,所以2×5-(-4)×(3-x )=25,(4分)化简得4x =-3,所以x =-34.(10分)22.解:设五月份用电量为x 度,则六月份用电量为(500-x )度.依题意得500-x >x ,解得x <250,当0<x ≤200时,列方程得0.55x +0.6(500-x )=290.5,解得x =190.则500-x =310,符合题意.(5分)当200<x <250时,列方程得0.6x +0.6(500-x )=290.5,此方程无解.(9分)答:该户居民五、六月份各用电190度,310度.(10分)23.解:设开始时,每队有x 人在排队,2分钟后,B 窗口排队的人数为x -6×2+5×2=x -2,(3分)根据题意得x4=2+x -26+12,(7分)解得x =26.(11分)答:开始时,每队有26人排队.(12分)24.解:方案A 的利润为100×80%×5000-500×100=350000(元);(3分)方案B 的利润为60×60%×11000+40×1000-50000=386000(元);(6分)设方案C 粗加工x 天,则精加工(10-x )天,有14x +6(10-x )=100,解得x =5.(8分)方案C 的利润为5×14×80%×5000+5×6×60%×11000-50000=428000(元).(10分)所以方案C 的利润最大,是428000元.(11分)答:方案C 获得的利润最大,最大利润为428000元.(12分)华东师大版七年级数学下册第7章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列各式中,是二元一次方程的是( ) A .4x +10y =2 B .a +bC .x =y +3D .2x -π=52.解为⎩⎪⎨⎪⎧x =1,y =2的方程组是( )A.⎩⎪⎨⎪⎧x -y =1,3x +y =5B.⎩⎪⎨⎪⎧x -y =-1,3x +y =-5 C.⎩⎪⎨⎪⎧x -y =3,3x -y =1 D.⎩⎪⎨⎪⎧x -2y =-3,3x +y =5 3.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解是( )A.⎩⎪⎨⎪⎧x =-1,y =2B.⎩⎪⎨⎪⎧x =-2,y =3 C.⎩⎪⎨⎪⎧x =2,y =1 D.⎩⎪⎨⎪⎧x =2,y =-1 4.解方程组⎩⎪⎨⎪⎧x -2y =-2①,x 2-y 3=1②的过程如下:②×6,得3x -2y =6③,(1);①+③,得4x =4,(2);即x =1.(3);把x =1代入①,得y =32.(4);方程组的解为⎩⎪⎨⎪⎧x =1,y =32.其中开始错误的步骤为( )A .(1)B .(2)C .(3)D .(4)5.由方程组⎩⎪⎨⎪⎧x +m =4,y -3=m 可得出x 与y 的关系是( )A .x +y =1B .x +y =-1C .x +y =7D .x +y =-76.已知(x -2y -1)2+||2x +y -7=0,则3x -y 的值为( ) A .3 B .1 C .-6 D .87.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的平均速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x ,y 分钟,则列出的二元一次方程组是( )A.⎩⎪⎨⎪⎧x +y =13,200x +70y =3350B.⎩⎪⎨⎪⎧x +y =20,70x +200y =3350C.⎩⎪⎨⎪⎧x +y =13,70x +200y =3350D.⎩⎪⎨⎪⎧x +y =20,200x +70y =33508.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1B .2C .3D .49.小刚解出了方程组⎩⎪⎨⎪⎧3x -y =3,2x +y =△的解为⎩⎪⎨⎪⎧x =4,y =□.因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则△、□分别为( )A .17,9B .16,8C .23,15D .15,2310.甲、乙两药品仓库共存药品45 t ,为共同抗击“H7N9禽流感”,现从甲仓库调出库存药品的60%,从乙仓库调出库存药品的40%支援疫区.结果乙仓库所余药品比甲仓库所余药品多3 t ,那么,甲、乙仓库原来所存药品分别为( )A .21 t ,24 tB .24 t ,21 tC .25 t ,20 tD .20 t ,25 t 二、填空题(每小题3分,共24分)11.将方程2x -3y =5变形为用含x 的代数式表示y 的形式:____________.12.已知x ,y 满足方程组⎩⎪⎨⎪⎧x +2y =5,2x +y =4,则x -y 的值是________.13.若2x a +1-3y b -2=10是关于x ,y 的二元一次方程,则a -b =________.14.已知⎩⎪⎨⎪⎧x =3,y =-2是方程组⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.15.二元一次方程组⎩⎪⎨⎪⎧4x +3y =1,ax +(a -1)y =3中,它的解x 和y 值相等,则a =________.16.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔最多能买________支.17.《孙子算经》是中国传统数学最重要的著作,其中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x 尺,长木为y 尺,可列方程组为____________.18.一铁路大桥长1800米,一列火车从桥上通过,测得火车从开始上桥到完全离开桥共用123分钟,整列火车完全在桥上的时间为113分钟,则火车的速度为20米/秒,火车长为200米.三、解答题(共66分)19.(12分)解下列方程组:(1)⎩⎪⎨⎪⎧4x +y =7,6x -y =3;(2)⎩⎪⎨⎪⎧3x -2(2y +1)=4,x +2y +12=4(x -1).20.(10分)在等式y =x 2+mx +n 中,当x =2时,y =5;当x =-3时,y =-5. (1)求m ,n 的值;(2)试求当x =3时,y 的值.21.(10分)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -5y =2a ,2x +7y =a -18.(1)若x ,y 的值互为相反数,求a 的值;(2)若2x +y +35=0,解这个方程组.22.(10分)为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a-b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?23.(12分)为了实现“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价;(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.24.(12分)小丽购买学习用品的收据如下表,因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?参考答案与解析1.C 2.D 3.D 4.B 5.C 6.D 7.D8.C 解析:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费.设截成2米长的彩绳x 根,1米长的y 根,由题意得2x +y =5,因为x ,y 都是正整数,所以符合条件的解为⎩⎪⎨⎪⎧x =0,y =5或⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =1,则共有3种不同截法.故选C. 9.A10.B 解析:若设甲仓库原来存药x 吨,乙仓库原来存药y 吨,由题意得⎩⎪⎨⎪⎧x +y =45,60%y -40%x =3,解得⎩⎪⎨⎪⎧x =24,y =21.故选B. 11.y =2x -53 12.-1 13.-3 14.-8 15.11 16.317.⎩⎪⎨⎪⎧x -y =4.5,12x -y =-1 18.20 20019.解:(1)⎩⎪⎨⎪⎧x =1,y =3.(6分) (2)⎩⎨⎧x =43,y =-12.(12分) 20.解:(1)由题意得⎩⎪⎨⎪⎧5=4+2m +n ,-5=9-3m +n ,(3分)解得⎩⎪⎨⎪⎧m =3,n =-5.(6分)(2)由(1)可得原等式为y =x 2+3x -5,因此当x =3时,y =32+3×3-5=13.即当x =3时,y 的值为13.(10分)21.解:(1)⎩⎪⎨⎪⎧3x -5y =2a ①,2x +7y =a -18②,①-②×2,得-x -19y =36,即x +19y =-36.当x =-y 时,-y +19y =-36,解得y =-2,∴x =2.代入①,得a =8.(6分)(2)由(1)知,⎩⎪⎨⎪⎧x +19y =-36,2x +y =-35,解得⎩⎪⎨⎪⎧x =-17,y =-1.(10分)22.解:(1)由题意得A =2×2-3=1,B =2×3=6,C =3+5=8.答:接收方收到的密码是1,6,8;(4分) (2)由题意得⎩⎪⎨⎪⎧2a -b =2,2b =8,b +c =11,解得⎩⎪⎨⎪⎧a =3,b =4,c =7.答:发送方发出的密码是3,4,7.(10分)23.解:(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,依题意得⎩⎪⎨⎪⎧2x +3y =380,4x +2y =360,解得⎩⎪⎨⎪⎧x =40,y =100. 答:A 品牌足球的单价为40元,B 品牌足球的单价为100元.(7分)(2)依题意得20×40+2×100=1000(元).答:该校购买20个A 品牌足球和2个B 品牌足球所需总费用为1000元.(12分)24.解:(1)设小丽购买自动铅笔x 支,记号笔y 支,根据题意得⎩⎪⎨⎪⎧x +y =8-(2+2+1),1.5x +4y =28-(6+9+3.5),解得⎩⎪⎨⎪⎧x =1,y =2.(5分) 答:小丽购买自动铅笔1支,记号笔2支.(6分)(2)设小丽购买软皮笔记本m 本,自动铅笔n 支,根据题意得92m +1.5n =15.∵m ,n 为正整数,∴⎩⎪⎨⎪⎧m =1,n =7或⎩⎪⎨⎪⎧m =2,n =4或⎩⎪⎨⎪⎧m =3,n =1.(11分)答:共3种方案:购买1本软皮笔记本与7支自动铅笔;购买2本软皮笔记本与4支自动铅笔;购买3本软皮笔记本与1支自动铅笔.(12分)华东师大版七年级数学下册第8章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列数学表达式中:①-8<0;②4a +3b >0;③a =3;④a +2>b +3,是不等式的有( )A .1个B .2个C .3个D .4个2.一元一次不等式x -1≥0的解集在数轴上表示正确的是( )3.若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x +3>y +3 C .-3x >-3y D.x 3>y34.如图,天平右盘中每个砝码的质量都是1 g ,则图中显示出来的某药品A 质量的范围在数轴上可表示为( )5.下列说法中,错误的是( ) A .不等式x <2的正整数解只有一个 B .-2是不等式2x +2<0的一个解 C .不等式-4x >12的解集是x >-3 D .不等式x <100的整数解有无数个6.若关于x 的不等式(a -2)x >a -2的解集为x >1,那么字母a 的取值范围是( ) A .a >1 B .a <1 C .a >2 D .a <2 7.不等式组⎩⎪⎨⎪⎧2x -1≤1,-12x <1的整数解的个数为( )A .0个B .2个C .3个D .无数个8.某班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔( )A .20支B .14支C .13支D .10支9.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )A. B.C.D.10.图为歌神KTV 的两种计费方案说明.若晓莉和朋友们打算在此KTV 的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?( )A .6人B .7人C .8人D .9人二、填空题(每小题3分,共24分)11.用不等式表示:x 与5的差不小于x 的2倍:____________. 12.当有理数a <0时,6+a ________6-a (填“<”或“>”).13.关于x 的不等式组的解集在数轴上的表示如图,则不等式组的解集为________.14.当x 满足________时,式子x +52-1的值大于式子3x +22的值.15.不等式组⎩⎪⎨⎪⎧x -2<0,5x +1>2(x -1)的解集为______________.16.对一个数x 按如图所示的程序进行操作,规定:程序运行从“输入一个数x ”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x 的取值范围是________.17.若关于x 的不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则a 的取值范围是________.18.某校开学对学生进行军训,将学生编成8个组,如果每组人数比预定人数多1名,那么学生人数将超过100人;如果每组人数比预定人数少1名,那么学生人数将不到90名,则预定每组分配的人数为________.三、解答题(共66分)19.(8分)在公路上,常看到如图所示的不同的交通标志图形,它们有着不同的意义,如果设汽车载重为x ,速度为y ,宽度为l ,高度为h ,请你用不等式表示图中各种标志的意义.20.(8分)解下列不等式(组),并把解集在数轴上表示出来.(1)5x -2≤3x; (2)⎩⎨⎧x -23(2x -1)≤4,1+3x2>2x -1.21.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求有理数a 的取值范围.22.(10分)喷灌是一种先进的田间灌水技术,雾化指标P 是它的技术要素之一,当喷嘴的直径为d (mm),喷头的工作压强为h (kPa)时,雾化指标P =100hd ,如果树喷灌时要求3000≤P ≤4000,若d =4 mm ,求h 的范围.23.(10分)定义:对于有理数a ,符号[a ]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a ]=-2,那么a 的取值范围是____________;(2)如果[x +12]=3,求满足条件的所有正整数x .24.(10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B 种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.(12分)某工厂计划生产A,B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?参考答案与解析1.C 2.A 3.C 4.A 5.C 6.C 7.C 8.C 9.C 10.C 11.x -5≥2x 12.< 13.-4≤x <-114.x <1215.-1<x <2 16.x >4917.a >-36 18.1219.解:x ≤5.5t(2分) y ≤30km/h(4分) l ≤2m(6分) h ≤3.5m(8分) 20.解:(1)x ≤1(在数轴上表示解集略).(4分) (2)-10≤x <3(在数轴上表示解集略).(8分)21.解:由①,得x >-25,由②,得x <2a .(3分)又∵其有三个整数解,∴不等式组的解集为-25<x <2a ,(5分)∴2<2a ≤3,解得1<a ≤32.(8分)22.解:把d =4代入公式P =100h d ,得P =100h4,即P =25h .(3分)又由3000≤P ≤4000,可得⎩⎪⎨⎪⎧25h ≥3000,25h ≤4000,(6分)解得120≤h ≤160.(8分)答:h 的范围为120≤h ≤160.(10分) 23.解:(1)-2≤a <-1(4分)(2)根据题意得3≤x +12<4,解得5≤x <7,则满足条件的所有正整数为5,6.(10分)24.解:(1)设该商场计划购进A ,B 两种品牌的教学设备分别为x 套,y 套,由题意得⎩⎪⎨⎪⎧1.5x +1.2y =66,0.15x +0.2y =9,解得⎩⎪⎨⎪⎧x =20,y =30. 答:该商场计划购进A ,B 两种品牌的教学设备分别为20套,30套.(5分)(2)设A 种设备购进数量减少a 套,则B 种设备购进数量增加1.5a 套,由题意得1.5(20-a )+1.2(30+1.5a )≤69,解得a ≤10.答:A 种设备购进数量至多减少10套.(10分)25.解:(1)设甲材料每千克x 元,乙材料每千克y 元,由题意得⎩⎪⎨⎪⎧x +y =60,2x +3y =155,解得⎩⎪⎨⎪⎧x =25,y =35.答:甲材料每千克25元,乙材料每千克35元.(5分)(2)设生产A产品m件,生产B产品(60-m)件,则生产这60件产品的材料费为25×4m +35×1m+25×3(60-m)+35×3(60-m)=-45m+10800,由题意得-45m+10800≤9900,解得m≥20.(8分)又∵60-m≥38,解得m≤22,∴20≤m≤22,∵m为正整数,∴m的值为20,21,22.(10分)共有三种方案:①生产A产品20件,生产B产品40件;②生产A产品21件,生产B产品39件;③生产A产品22件,生产B产品38件.(12分)华东师大版七年级数学下册期中检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分) 1.下列方程中,是二元一次方程的是( ) A .xy =1 B .y =3x -1 C .x +1y=2 D .x 2+x -3=02.若a <b ,则下列各式中一定成立的是( ) A .a -1<b -1 B.a 3>b3C .-a <-bD .ac <bc3.不等式组⎩⎪⎨⎪⎧x -1>0,8-4x ≤0的解集在数轴上表示为( )4.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=445.已知关于x 的方程2x +4=m -x 的解是负数,则m 的取值范围是( ) A .m <43 B .m >43C .m <4D .m >46.已知a ,b 满足方程组⎩⎪⎨⎪⎧a +2b =8,2a +b =7,则a -b 的值为( )A .-1B .0C .1D .27.已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax +5y =4,5x +y =3与⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,则a ,b 的值为( ) A.⎩⎪⎨⎪⎧a =1,b =2 B.⎩⎪⎨⎪⎧a =-4,b =-6 C.⎩⎪⎨⎪⎧a =-6,b =2 D.⎩⎪⎨⎪⎧a =14,b =2 8.已知⎩⎪⎨⎪⎧3x +4y =4k ,4x +3y =3k +7且0<x +y <1,则k 的取值范围是( )A .-1<k <0B .-1<k <-12C .0<k <1D .-1<k <19.某商品的标价比成本价高m %,根据市场需要该商品需降价n %出售,为了不亏本,n 应满足( )A .n ≤mB .n ≤100m100+mC .n ≤m100+m D .n ≤100m100-m10.宜宾市某化工厂,现有A 种原料52千克,B 种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A 种原料3千克,B 种原料2千克;生产1件乙种产品需要A 种原料2千克,B 种原料4千克,则生产方案的种数为( ) A .4 B .5 C .6 D .7二、填空题(每小题3分,共24分)11.当x =________时,代数式3x -2与代数式6-x 的值相等.12.已知⎩⎪⎨⎪⎧x =-2,y =3是方程x -ky =1的解,那么k =________.13.不等式组⎩⎪⎨⎪⎧12x ≤1,2-x <3的解集是__________.14.已知x =3-2a 是不等式2(x -3)<x -1的一个解,那么a 的取值范围是________. 15.若3x +12的值比2x -23的值小1,则x 的值为________.16.如果4xa +2b -11-2y5a -2b -3=8是关于x ,y 的二元一次方程,那么a -b =________.17.已知关于x的不等式组⎩⎪⎨⎪⎧x -a ≥0,3-2x ≥-1的整数解共有5个,则a 的取值范围是________________.18.书店举行购书优惠活动,活动规则如下: ①一次性购书不超过100元,不享受打折优惠; ②一次性购书超过100元但不超过200元一律打九折; ③一次性购书200元以上一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元. 三、解答题(共66分)19.(8分)解下列方程或方程组:(1)3x -22=4x +23-1; (2)⎩⎪⎨⎪⎧3x -7y =8①,2x +y =11②.20.(8分)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1,把它的解集在数轴上表示出来,并写出不等式组的非负整数解.21.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A ,B 两种饮料各多少瓶?22.(10分)若关于x ,y 的方程组⎩⎪⎨⎪⎧3x +5y =m +2,2x +3y =m 的解x 与y 的值的和等于2,求m 2-4m+4的值.23.(10分)定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.24.(10分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知这两种货车的装货情况如下表:(1)试求甲、乙两种货车每辆每次分别可运货物的吨数;(2)现租用该公司3辆甲种货车及5辆乙种货车,一次刚好运完这批货,如果按每吨付运费30元计算,货主应付多少运费?25.(12分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元;(2)若学校购买两种球拍共40副,其中直拍球拍的数量不低于总数量的70%,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.参考答案与解析1.B 2.A 3.A 4.A 5.C 6.A 7.D 8.A 9.B10.B 解析:设生产甲产品x 件,则乙产品(20-x )件,根据题意得⎩⎪⎨⎪⎧3x +2(20-x )≤52,2x +4(20-x )≤64,解得8≤x ≤12.∵x 为整数,∴x =8,9,10,11,12,∴有5种生产方案.故选B. 11.2 12.-1 13.-1<x ≤2 14.a >-1 15.-13516.-2 17.-3<a ≤-218.248或296 解析:设第一次购书的原价为x 元,则第二次购书的原价为3x 元,依题意得①当0<x ≤1003时,x +3x =229.4,解得x =57.35(舍去);②当1003<x ≤2003时,x +910×3x =229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x ≤100时,x +710×3x =229.4,解得x =74,此时两次购书原价总和为:4x =4×74=296.综上所述,小丽这两次购书原价的总和是248或296元.19.解:(1)x =4.(4分)(2)⎩⎪⎨⎪⎧x =5,y =1.(8分)20.解:不等式组的解集为-1≤x <3,(4分)在数轴上表示略,其非负整数解为0,1,2.(8分)21.解:设A 种饮料生产了x 瓶,B 种饮料生产了y瓶,根据题意得⎩⎪⎨⎪⎧x +y =100,2x +3y =270,(4分)解得⎩⎪⎨⎪⎧x =30,y =70.(7分)答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.(8分)22.解:⎩⎪⎨⎪⎧3x +5y =m +2①,2x +3y =m ②,由①-②,得x +2y =2③.∵x ,y 的值的和等于2,∴x +y =2④,由③-④,得y =0.把y =0代入④,得x =2.把x =2,y =0代入②,得m =4,(7分)∴m 2-4m +4=42-4×4+4=4.(10分)23.解:由题意得⎩⎪⎨⎪⎧3x -3-x +1>5,3x -3-x +1<9,(5分)解得72<x <112.(10分)24.解:(1)设甲、乙两种货车每辆每次分别可运x 吨货物,y 吨货物,由题意得⎩⎪⎨⎪⎧2x +3y =15.5,5x +6y =35,解得⎩⎪⎨⎪⎧x =4,y =2.5. 答:甲种货车每辆每次可运货物4吨,乙种货车每辆每次可运货物2.5吨.(7分) (2)30×(4×3+2.5×5)=735(元).(9分) 答:货主应付运费735元.(10分)25.解:(1)设直拍球拍每副x 元,横拍球每副y 元,由题意得⎩⎪⎨⎪⎧20(x +20)+15(y +20)=9000,5(x +20)+1600=10(y +20),解得⎩⎪⎨⎪⎧x =220,y =260. 答:直拍球拍每副220元,横拍球每副260元.(6分)(2)设购买直拍球拍m 副,则购买横拍球(40-m )副,由题意得⎩⎪⎨⎪⎧m ≥40×70%,m ≤3(40-m ),解得28≤m≤30.∵m 为整数,∴m 为28,29,30.(8分)设买40副球拍所需的费用为w ,则w =(220+20)m +(260+20)(40-m )=11200-40m .(10分)∴当m =28时,w =10080元;当m =29时,w =10040元;当m =30时,w =10000元,∴当m =30时,w 取最小值,最小值为10000元.答:购买直拍球拍30副,购买横拍球10副时,费用最少,最少费用为10000元.(12分)华东师大版七年级数学下册第9章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.一个正多边形的每个外角都等于36°,那么它是( ) A .正五边形 B .正六边形 C .正八边形 D .正十边形 2.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线 C .∠3=12∠ACB D .CE 是△ABC 的角平分线第2题图第3题图3.如图,下列说法中错误的是( ) A .∠1不是△ABC 的外角 B .∠B <∠1+∠2 C .∠ACD 是△ABC 的外角 D .∠ACD >∠A +∠B4.下列长度的三条线段不能组成三角形的是( ) A .5,5,10 B .4,5,6 C .4,4,4 D .3,4,5 5.只用下列图形中的一种,能够铺满地面的是( ) A .正十边形 B .正八边形 C .正六边形 D .正五边形6.已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x ,则x 的取值范围是( )A .0<x <52B .x ≥52C .x >52D .0<x <107.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( ) A .13 B .14 C .15 D .168.如图,把一块含有30°角(∠A =30°)的直角三角板ABC 的直角顶点放在长方形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 在三角板的斜边上,如果∠1=40°,那么∠AFE 的度数是( )A .50°B .40°C .20°D .10°第8题图9.如图,已知在△ABC 中,∠B =∠C ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于点D ,∠AED =155°,则∠EDF 等于( )A .50°B .65°C .70°D .75°第9题图第10题图10.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a ,M 为正八边形内部的小正方形的一个顶点,则∠ABM 的度数及阴影部分的面积分别为( ) A .45°,2a 2B .60°,3a 2C .30°,4a 2D .75°,2a 2二、填空题(每小题3分,共24分)11.在△ABC 中,如果∠B =45°,∠C =72°,那么与∠A 相邻的一个外角等于________度. 12.如果三角形的三边长度分别为3a ,4a ,14,则a 的取值范围是____________.13.如图,AD,BE分别是△ABC的角平分线和高,∠BAC=40°,则∠AFE=________.第13题图第14题图14.如图,在△ABC中,AD是BC边上的中线,已知AB=5cm,AC=7cm,则△ACD与△ABD 的周长差为________cm.15.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2=________.第15题图第16题图第18题图16.维明公园的一段小路是由型号相同的五边形地砖平铺而成的,如图所示,是平铺图案的一部分,如果每一个五边形中有3个内角相等,那么这三个内角的度数都等于________.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.18.如图,A,B,C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积是________.三、解答题(共66分)19.(8分)在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD 和∠ECD的度数.20.(10分)若六边形的内角之比为2∶4:4:4:5:5,求它的最大内角与最大的外角.21.(12分)在等腰△ABC中,腰AB=AC,BD是AC边上的中线,已知△ABD的周长比△BCD 的周长大8 cm,且腰长是底边长的3倍,求△ABC的周长.22.(12分)如图,在△ABC中,已知∠ABC=60°,∠ACB=54°,BE是AC边上的高,CF 是AB边上的高,H是BE和CF的交点,HD是∠BHC的平分线,求∠ABE,∠ACF和∠CHD的度数.23.(10分)已知两个正多边形,其中一个正多边形的外角是另一个正多边形外角的2倍,并且用这两个正多边形可以拼成平面图形,求这两个正多边形的边数.24.(14分)如图①,已知线段AB ,CD 相交于点O ,连接AC ,BD ,我们把形如图①的图形称之为“8字形”.如图②,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD ,AB 分别相交于M ,N .试解答下列问题:(1)仔细观察,在图②中有________个以线段AC 为边的“8字形”; (2)在图②中,若∠B =96°,∠C =100°,求∠P 的度数;(3)在图②中,若设∠C =α,∠B =β,∠CAP =13∠CAB ,∠CDP =13∠CDB ,试问∠P 与∠C ,∠B 之间存在着怎样的数量关系(用α,β表示∠P ),并说明理由; (4)如图③,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为________.参考答案与解析1.D 2.D 3.D 4.A 5.C 6.C 7.C 8.D 9.B 10.A 11.117 12.2<a <14 13.70° 14.215.225° 16.120° 17.30° 18.719.解:∵CD ⊥AB ,∴∠CDB =90°.∵∠B =60°,∴∠BCD =90°-∠B =90°-60°=30°.(3分)∵∠A =20°,∠B =60°,∠A +∠B +∠ACB =180°,∴∠ACB =100°.∵CE 是∠ACB 的平分线,∴∠ACE =12∠ACB =50°,(5分)∴∠CEB =∠A +∠ACE =20°+50°=70°,(7分)∴∠ECD =90°-70°=20°.(8分)20.解:设六边形最小的内角为2x ,则其他几个内角分别为4x ,4x ,4x ,5x ,5x .依题意得2x +4x +4x +4x +5x +5x =(6-2)×180°,(4分)整理得24x =720°,解得x =30°.(6分)所以最大的内角是5x =5×30°=150°,(8分)最大的外角是180°-2x =120°.(10分)21.解:设AB =AC =2x ,则BC =23x .∵BD 是AC 边上的中线,∴AD =CD =12AC =x .又∵AB +AD +BD -(BD +CD +BC )=8cm ,(4分)即2x +x +BD -BD -x -23x =8cm ,(6分)∴43x =8cm ,∴x =6cm ,(8分)∴△ABC 的周长为2x +2x +23x =12+12+4=28(cm).(12分)22.解:在△ABC 中,∠ABC =60°,∠ACB =54°,∴∠A =66°.∵∠AEB =90°,∠A =66°,∴∠ABE =24°.(3分)又∵∠AFC =90°,∴∠ACF =90°-66°=24°,(6分)∴∠HBC =∠ABC -∠ABE =60°-24°=36°,∠HCB =∠ACB -∠ACF =54°-24°=30°,∴∠BHC =180°-36°-30°=114°.(10分)∵HD 是∠BHC 的平分线,∴∠CHD =12∠BHC =57°.(12分)23.解:设这两个正多边形的边数分别为n ,k ,依题意有360°n =2×360°k,(3分)因此k=2n (n ≥3,且n 为整数),(5分)所以n =3,4,5,6,…,从而k =6,8,10,12,….(7分)其中正三角形和正六边形,正方形和正八边形,正五边形和正十边形能拼成平面图形.(10分)24.解:(1)2(2分)(2)∵∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,∴∠CAP =∠BAP ,∠BDP =∠CDP .∵∠CAP +∠C =∠CDP +∠P ,∠BAP +∠P =∠BDP +∠B ,∴∠C -∠P =∠P -∠B ,即∠P =12(∠C+∠B ).(5分)∵∠C =100°,∠B =96°,∴∠P =12(100°+96°)=98°.(7分)(3)∠P =13(β+2α).理由如下:∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,。

华师大版七年级数学下册期末综合检测试卷(含答案)

华师大版七年级数学下册期末综合检测试卷(含答案)

期末综合检测试卷(满分:120分)一、选择题(每小题3分,共30分)1.下列图形中既是轴对称图形又是中心对称图形的是( A )2.已知⎩⎪⎨⎪⎧ x =1,y =2 是方程组⎩⎪⎨⎪⎧ax +y =-1,2x -by =0 的解,则a +b =( B ) A .2 B .-2 C .4D .- 43.下列正多边形地砖的组合中,能够用来密铺地面的是( B )①正六边形与正三角形;②正五边形与正三角形;③正八边形与正方形;④正三角形与正方形.A .①②③B .①③④C .②③④D .①②③④4.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( D ) A .106元 B .105元 C .118元D .108元5.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为( A ) A .5 B .6 C .7D .86.我国民间流传着许多诗歌形式的数学题,如:鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几多鸡儿几多兔?设鸡为x 只,兔为y 只,则可列方程组( D )A .⎩⎪⎨⎪⎧x +y =1004x +2y =36B .⎩⎪⎨⎪⎧x +y =1002x +4y =36C .⎩⎪⎨⎪⎧x +y =364x +2y =100D .⎩⎪⎨⎪⎧x +y =362x +4y =1007.如图,∠ABC 和∠ACB 的外角平分线相交于点D ,设∠BDC =α,那么∠A =( D )A .90°-αB .90°-12αC .180°-12αD .180°-2α8.已知关于x 的不等式组⎩⎪⎨⎪⎧12(x -1)>m ,x -m >2 的解集是x > - 1 ,那么m 的取值是( D )A .1B .-1C .3D .-39.已知⎩⎪⎨⎪⎧x +2y =4k ,2x +y =2k +1, 且-1<x -y <0,则k 的取值范围为( D )A .-1<k <-12B .0<k <12C .0<k <1D .12<k <110.对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如:[1.2]=1,[3]=3,[-2.5]=-3.若⎣⎡⎦⎤x +410=5,则x 的取值可以是( C )A .40B .45C .51D .56二、填空题(每小题3分,共18分)11.若关于x 的方程(k -2)x |k -1|+5k +1=0是一元一次方程,则k +x = 12.12. 如果2m 、m 、1-m 这三个实数是按在数轴上所对应的点从左到右依次排列的,那么m 的取值范围是 m <0 .13.如图所示,△COD 是△AOB 绕点O 顺时针方向旋转35°后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠BOC 的度数是 20° .14.如图,D 、E 、F 分别是△ABC 三边延长线上的点,则∠D +∠E +∠F +∠1+∠2+∠3= 180 度.15.将一筐橘子分给若干名儿童,若每人分4个橘子,则剩下9个橘子;若每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推知共有 7 个儿童分 37 个橘子.16.已知方程组⎩⎪⎨⎪⎧ax +5y =15, ①4x -by =-2, ② 由于甲看错了方程①中的a 得到方程组的解为⎩⎪⎨⎪⎧ x =-3,y =-1; 乙看错了方程②中的b 得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.若按正确的a 、b 计算,则原方程组的解为 ⎩⎪⎨⎪⎧x =14,y =295.三、解答题(共72分) 17.(8分)解方程(组):(1)7x -2=3(x +2); (2)⎩⎪⎨⎪⎧3x -2y =-12,①x +2y =4.②解:(1)去括号,得7x -2=3x +6.移项合并,得4x =8,解得x =2.(2)①+②,得4x =-8,解得x =-2.把x =-2代入②,得y =3,则方程组的解为⎩⎪⎨⎪⎧x =-2,y =3.18.(10分)(1)解不等式x +12>2x +23-1,并写出它的正整数解;(2)解不等式组:⎩⎪⎨⎪⎧6x +5≥4x ,18-7x <10-3x .解:(1)去分母,得3(x +1)>2(2x +2)-6.去括号,得3x +3>4x +4-6.移项,得3x -4x >4-6-3.合并同类项,得-x >-5.系数化为1,得x <5.故不等式的正整数解有1,2,3,4.(2)⎩⎪⎨⎪⎧6x +5≥4x , ①18-7x <10-3x . ②解不等式①,得x ≥-52.解不等式②,得x >2.故原不等式组的解集为x >2.19.(7分)已知x =2是方程2-13(m -x )=2x 的解,求代数式m 2-(6m +2)的值.解:把x =2代入方程,得2-13(m -2)=4,解得m =-4.故m 2-(6m +2)=16-(-24+2)=38.20.(7分)如图,在四边形ABCD 中,∠A =∠C =90°,BE 平分∠ABC ,DF 平分∠ADC ,试问BE 和DF 是否平行,为什么?解:BE 和DF 平行.理由如下:在四边形ABCD 中,因为∠A =∠C =90°,所以∠ABC +∠ADC =180°.因为BE 平分∠ABC ,DF 平分∠ADC ,所以∠CBE =12∠ABC ,∠CDF =12∠ADC ,所以∠CBE +∠CDF =12(∠ABC +∠ADC )=90°.在△BCE 中,因为∠C =90°,所以∠CBE +∠CEB =90°,所以∠CDF =∠CEB ,所以BE ∥DF .21.(8分)某厂接到长沙市一所中学的冬季校服订做任务,计划用A 、B 两台大型设备进行加工.如果单独用A 型设备需要90天做完,如果单独用B 型设备需要60天做完,为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶制.(1)两台设备同时加工,共需多少天才能完成?(2)若两台设备同时加工30天后,B 型设备出了故障,暂时不能工作,此时离发冬季校服时间还有13天.如果由A 型设备单独完成剩下的任务,会不会影响学校发校服的时间?请通过计算说明理由.解:(1)设共需x 天才能完成.根据题意,得⎝⎛⎭⎫190+160x =1,解得x =36.即两台设备同时加工,共需36天才能完成.(2)设由A 型设备单独完成剩下的任务需要y 天才能完成.根据题意,得⎝⎛⎭⎫190+160×30+ y90=1,解得 y =15.因为 15>13,所以会影响学校发校服的时间.22.(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上.(1)请画出△ABC 向右平移5个单位长度后得到的△A 1B 1C 1; (2)请画出△ABC 关于点O 对称的△A 2B 2C 2;(3)在直线l 上求作一点P ,使△P AB 的周长最小,并求出此时△P AB 的面积.解:(1)△A 1B 1C 1如图所示. (2)△A 2B 2C 2如图所示.(3)如图所示,此时△P AB 的周长最小,此时S △P AB =12×(1+2)×3-12×1×1-12×2×2=2.23.(10分)某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场地内建造由两个大棚组成的植物养殖区,要求两个大棚之间有间隔4米的路,设计方案如下图,已知每个大棚的周长为44米.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元;方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?解:(1)设每个大棚的宽为a 米,长为b 米.根据题意,得⎩⎪⎨⎪⎧ a +b =22,2a +4-b =6,解得⎩⎪⎨⎪⎧a =8,b =14.即每个大棚的宽为8米,长为14米.(2)由(1)可知,两个大棚的总面积为2×14×8=224(平方米).若按方案一计算,则造价为224×60-500=12 940(元);若按方案二计算,则造价为224×70×(1-20%)=12 544(元),12 544<12 940,所以选择方案二更优惠.24.(12分)我市某商场出售的A 型冰箱每台售价2190元,每日耗电量为1千瓦时,最近商场又购进一批B 型冰箱,其售价比A 型冰箱高出10%,但每日耗电量却为0.55千瓦时,为了减少库存,商场决定对A 型冰箱降价销售.请解答下列问题:(1)已知A 型冰箱进价为1700元,商场为保证利润率不低于3%,试确定A 型冰箱的降价范围;(2)如果只考虑价格与耗电量,那么商场将A 型冰箱的售价至少打几折,消费者购买A 型冰箱比购买B 型冰箱划算?(按使用期为10年,每年为365天,每千瓦时电费为0.40元计算)解:(1)设商场将A 型冰箱降价x 元时,可以保证商场的利润率不低于3%.根据题意,得2190-x -17001700×100%≥3%,解得x ≤439.即A 型冰箱的降价不高于439元时,可以保证商场利润率不低于3%.(2)设商场将A 型冰箱的售价至少打y 折时,消费者购买A 型冰箱比购买B 型冰箱划算.此时购买A 型冰箱使用10年共耗费2190×y10+0.40×1×365×10=(219y +1460)(元);购买B型冰箱使用10年共耗费2190×(1+10%)+0.40×0.55×365×10=3212(元).依题意,得219y +1460≤3212,解得y ≤8.即商场将A 型冰箱的售价至少打8折时,消费者购买A 型冰箱比购买B 型冰箱划算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新华师大版七年级数学下册各章检测试卷
(共5章 有期末试卷 附答案)
第6章达标检测卷
(120分,90分钟)
一、选择题(每题3分,共30分)
1.下列方程中,是一元一次方程的是( )
A .2x =1
B .1x
-2=0 C .2x -y =5 D .x 2+1=2x 2.下列等式变形正确的是( )
A .若a =b ,则a -3=3-b
B .若ax =ay ,则x =y
C .若a =b ,则ac =bc
D .若b a =d c
,则b =d 3.如果13a +1与2a -73
互为相反数,那么a 的值为( ) A .43B .10 C .-43
D .-10 4.下列变形正确的是( )
A .若3x -1=2x +1,则3x +2x =1+1
B .若3(x +1)-5(1-x)=0,则3x +3-5-5x =0
C .若1-3x -12
=x ,则2-3x -1=x D .若x +10.2-x 0.3=10,则x +12-x 3
=1 5.已知关于x 的方程2x -3=m 3
+x 的解满足|x|-1=0,则m 的值是( ) A .-6 B .-12 C .-6或-12 D .任何数 6.轮船在静水中的速度为20 km /h ,水流速度为4 km /h ,从甲码头顺流航行到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头间的距离.设两码头间的距离为x km ,则列出的方程正确的是( )
A .(20+4)x +(20-4)x =5
B .20x +4x =5
C .x 20+x 4=5
D .x 20+4+x 20-4
=5 7.甲、乙两个足球队连续进行对抗赛,规定胜一场得3分,平一场得1分,负一场得
0分,共赛10场,甲队保持不败,得22分,甲队胜( )
A .5场
B .6场
C .7场
D .8场
8.某环形跑道长400米,甲、乙两人练习跑步,他们同时反向从某处开始跑,甲每秒跑6米,乙每秒跑4米,x 秒后,甲、乙两人首次相遇,则依题意列出方程:①6x +4x =400;②(6+4)x =400;③400-6x =4x ;④6x -4x =400.其中正确的方程有( )
A .1个
B .2个
C .3个
D .4个
9.图①为一正面白色、反面灰色的长方形纸片.沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示,若图②中白色与灰色区域的面积比为8∶3,图②中纸片的面积为33,则图①中纸片的面积为何?( )
(第9题)
A .2314
B .3638
C .42
D .44
10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价一定为( )
A .180元
B .202.5元
C .180元或202.5元
D .180元或200元
二、填空题(每题3分,共30分)
11.方程2x -1=0的解是________.
12.已知关于x 的方程(k -2)x |k -
1|-10=0是一元一次方程,则k 的值为________. 13.已知方程5x +4=7x +8,则-x 2-2x =________.
14.已知代数式x +12比5-x 3
的值大1,则x 的值为________. 15.若5a 3b 5(m -1)与a 3b 6m -7是同类项,那么m 的值为________.
16.若方程x +2m =8与方程2x -13=x +16
的解相同,则m =________. 17.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,则可列方程为
______________.
18.某商店将彩电按进价提高40%标价,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍可获得利润240元,则每台彩电的进价是________元.
19.在如图所示的运算流程中,若输出的数y =7,则输入的数x =________.
(第19题)
(第20题)
20.如图所示是一块在电脑屏幕上出现的长方形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为________.
三、解答题(21题12分,22题8分,其余每题10分,共60分)
21.解下列方程.
(1)2x -12=-12x +2; (2)1-x 2+2x -13
=1;
(3)x -10.3-x +20.5=1.2; (4)4x -1.50.5-0.5x -0.080.02=1.2-x 0.1
+2.
22.已知x =1是方程2-13
(a -x)=2x 的解.求关于y 的方程a(y -5)-2=a(2y -3)的解.
23.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按1.8元收费;如果超过15立方米,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元计算.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.
24.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.
(1)正常情况下,甲、乙两人能否履行该合同?为什么?
(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?。

相关文档
最新文档