不确定性推理原理

合集下载

不确定性推理方法

不确定性推理方法

不确定性推理是一种在不确定情况下进行推理的方法,是人工智能领域中的一个重要分支。

它是基于对不确定性的建模,使用数学方法对不确定的信息进行推理的过程。

不确定性推理的应用非常广泛,在计算机科学、统计学、人工智能等领域都有广泛的应用。

它可以用于解决各种类型的推理问题,例如:
决策支持:通过不确定性推理,可以对决策过程中的不确定信息进行推理,为决策者提供支持。

建模和预测:不确定性推理可以用于对复杂的系统进行建模,并预测未来的发展趋势。

诊断和故障排除:不确定性推理可以用于诊断系统故障,并提供
解决矛盾问题:不确定性推理可以用于解决矛盾问题,例如两个相互矛盾的命题的真假性判定。

自然语言理解:不确定性推理可以用于自然语言理解,例如解决句子的歧义问题。

模式识别:不确定性推理可以用于模式识别,例如识别图像中的物体。

不确定性推理方法有许多种,其中包括贝叶斯网络、规则基系统、不确定性推理语言、随机游走模型等。

贝叶斯网络是一种用于不确定性推理的图形模型,它基于贝叶斯定理,通过对条件概率进行建模,可以对不确定的信息进行推理。

规则基系统是一种基于规则的不确定性推理方法,它使用规则来描述系统的知识,并使用规则来对不确定的信息进行推理。

不确定性推理语言是一种用于表示不确定信息的语言,常见的不确定性推理语言有PROLOG 和Fuzzy Logic。

随机游走模型是一种基于随机游走的不确定性推理方法,它通过模拟随机游走的过程,对不确定的信息进行推理。

在实际应用中,不确定性推理方法通常需要与其他方法结合使用,才能得到最优的结果。

例如,在人工智能系统中,不确定性推理方法常常与机器学习方法结合使用,以获得更好的结果。

2不确定性推理1基本概念2不确定性推理中的基本问题不确定

2不确定性推理1基本概念2不确定性推理中的基本问题不确定
1 2
2 不确定性推理中的基本问题
1. 不确定性的表示与度量
不确定性推理中的“ 不确定性推理中的“不确定性” 不确定性”一般分为两类: 一般分为两类:一是知 识的不确定性, ,一是证据的不确定性。 识的不确定性 一是证据的不确定性。 知识不确定性的表示: 知识不确定性的表示:目前在专家系统中知识的不确定 性一般是由领域专家给出的, 性一般是由领域专家给出的,通常用一个数值表示, 通常用一个数值表示,它 表示相应知识的不确定性程度, 表示相应知识的不确定性程度,称为知识的静态强度。 称为知识的静态强度。 证据不确定性的表示: 证据不确定性的表示:证据不确定性的表示方法与知识 不确定性的表示方法一致, 不确定性的表示方法一致,通常也用一个数值表示, 通常也用一个数值表示,代 表相应证据的不确定性程度, 表相应证据的不确定性程度,称之为动态强度。 称之为动态强度。
第四章2
基本概念 概率方法 可信度方法
不确定性推理
1 基本概念
什么是不确定性推理 不确定性推理是建立在非经典逻辑基础 上的一种推理, 上的一种推理,它是对不确定性知识的 运用与处理。 运用与处理。 具体地说, 具体地说,所谓不确定性推理就是从不 确定性的初始证据( 确定性的初始证据(即事实) 即事实)出发, 出发,通 过运用不确定性的知识, 过运用不确定性的知识,最终推出具有 一定程度不确定性的结论。 一定程度不确定性的结论。
8
7
概率推理方法 概率推理方法
经典概率方法要求给出条件概率P(H/E),在实际 中通常比较困难。 中通常比较困难。例如E代表咳嗽, 代表咳嗽,H代表支气管 炎,则P(H/E)表示在咳嗽的人群中患支气管炎的 概率, 概率,这个比较困难, 这个比较困难,因为样本空间太大。 因为样本空间太大。而逆 概率P(E/H)表示在得支气管炎的人群中咳嗽的概 率,这个就比较容易获得。 这个就比较容易获得。 我们可以根据Bayes定理从P(E/H)推出P(H/E)

不确定性推理概述

不确定性推理概述

不确定性推理概述4.1.1 不确定推理的概念所谓推理就是从已知事实出发,运⽤相关知识(或规则)逐步推出结论或证明某个假设成⽴或不成⽴的思维过程。

其中已知事实和知识(规则)是构成推理的两个基本要素。

已知事实是推理过程的出发点,把它称为证据。

4.1.2 不确定性推理⽅法的分类可信度⽅法、主观Bayes⽅法、证据理论都是在概率论的基础上发展起来的不确定性推理⽅法。

4.1.3 不确定性推理知识库是⼈⼯智能的核⼼,⽽知识库中的知识既有规律性的⼀般原理,⼜有⼤量的不完全的专家知识,即知识带有模糊性、随机性、不可靠或不知道不确定因素。

世界上⼏乎没有什么事情是完全确定的。

不确定性推理即是通过某种推理得到问题的精确判断。

(1)不确定性问题的代数模型⼀个问题的代数模型由论域、运算和公理组成。

建⽴不确定性问题模型必须说明不确定知识的表⽰、计算、与语义解释。

不确定性的表⽰问题:指⽤什么⽅法描述不确定性,通常有数值和⾮数值的语义表⽰⽅法。

数值表⽰便于计算,⽐较,再考虑到定性的⾮数值描述才能较好的解决不确定性问题。

例如对规则A->B(即A真能推导B真)和命题(或称证据、事实)A,分别⽤f(B,A)来表⽰不确定性度量。

推理计算问题:指不确定性的传播和更新,也即获得新的信息的过程。

包括:①已知C(A),A->B,f(B,A),如何计算C(B)②证据A的原度量值为C1(A),⼜得C2(A),如何确定C(A)③如何由C(A1)和C(A2)来计算C(A1∧A2),C(A1∨A2)等。

⼀般初始命题/规则的不确定性度量常常由有关领域的专家主观确定。

语义问题:是指上述表⽰和计算的含义是什么?即对它们进⾏解释,概率⽅法可以较好地回答这个问题,例如f(B,A)可理解为前提A为真时对结论B为真的⼀种影响程度,C(A)可理解为A为真的程度。

特别关⼼的是f(B,A)的值是:①A真则B真,这时f(B,A)=?②A真则B假,这时f(B,A)=?③A对B没有影响时,这时f(B,A)=?对C(A)关⼼的值是①A真时,C(A)=?②A假时,C(A)=?③对A⼀⽆所知时,C(A)=?(2)不确定推理⽅法的分类不确定推理⽅法在⼈⼯智能系统中通常是不够严谨的,但尚能解决某些实际问题,符合⼈类专家的直觉,在概率上也可给出某种解释。

不确定性推理概念

不确定性推理概念

不确定性推理概念6.1不确定性推理概念的基本概念不确定性是智能问题的一个本质特征,研究不确定性推理概念是人工智能的一项基本内容。

为加深对不确定性推理概念的理解和认识,在讨论各种不确定性推理概念方法之前,首先先对不确定性推理概念的含义,不确定性推理概念的基本问题,以及不确定性推理概念的基本类型进行简单讨论。

6.1.1不确定性推理概念的含义不确定性推理概念是指那种建立在不确定性知识和证据的基础上的推理。

例如,不完备、不精确知识的推理,模糊知识的推理等。

不确定性推理概念实际上是一种从不确定的初始证据出发,通过运用不确定性知识,最终推出具有一定程度的不确定性但却又是合理或基本合理的结论的思维过程。

采用不确定性推理概念是客观问题的需求,其原因包括以下几个主要方面。

(1)所需知识不完备、不精确。

所谓知识的不完备是指在解决某一问题时,不具备解决该问题所需要的全部知识。

例如,医生在看病时,一般是从病人的部分症状开始诊断的。

所谓知识的不精确是指既不能完全确定知识为真,又不能完全确定知识为假。

例如,专家系统中的知识多为专家经验,而专家经验又多为不精确知识。

(2)所需知识描述模糊。

所谓知识描述模糊是指知识的边界不明确,它往往是由模糊概念所引起的。

例如,人们平常所说的“很好”、“好”、“比较好”、“不很好”、“不好”、“很不好”等都是模糊概念。

那么,当用这类概念来描述知识时,所得到的知识当然也是模糊的。

例如,“如果李清这个人比较好,那么我就把他当成好朋友”所描述的就是一条模糊知识。

(3)多种原因导致同一结论。

所谓多种原因导致同一结论是指知识的前提条件不同而结论相同。

在现实世界中,可由多种不同原因导出同一结论的情况有很多。

例如,引起人体低烧的原因至少有几十种,如果每种原因都作为一条知识,那就可以形成几十条前提条件不同而结论相同的知识。

当然,在不确定性推理概念中,这些知识的静态强度可能是不同的。

(4)解决方案不唯一。

所谓解决方案不唯一是指同一个问题可能存在多种不同的解决方案。

(完整版)不确定性推理推理方法

(完整版)不确定性推理推理方法
H:是结论,它可以是一个单一结论,也可以是多 个结论。
CF(H,E):是该条知识的可信度,称为可信度因子或 规则强度,静态强度。
CH(H,E) 在[-1,1]上取值,它指出当前提条件 E 所 对应的证据为真时,它对结论为真的支持程度。
例如: if 头痛 and 流涕 then 感冒(0.7)
表示当病人确有“头痛”及“流涕”症状时,则有7 成的把握认为 他患了感冒。
MD:称为不信任增长度,它表示因与前提条件E匹 配的证据的出现,使结论H为真的不信任增长度。
在 C-F 模型中,把CF(H,E)定义为:
CF(H,E)=MB(H,E) – MD(H,E)
MB:称为信任增长度,它表示因与前提条件 E 匹 配的证据的出现,使结论H为真的信任增长度。
MB定义为:
MB(H,E)=
1 Max{P(H/E), P(H)} – P(H)
1 – P(H)
若P(H)=1 否则
性。
3. 可信度方法
(1) 可信度 根据经验对一个事物或现象为真的相信程度。
(2) C-F模型 C-F 模型是基于可信度表示的不确定性推理的基本方法。
Ⅰ. 知识不确定性的表示
在C-F模型中,知识是用产生式规则表示的,其一般 形式是:
if E then H (CF(H, E)) 其中,
E:是知识的前提条件,它既可以是一个单个条件, 也可以是用 and 及 or 连接起来的复合条件;
* 证据的不确定性表示方法应与知识的不确定性表 示方法保持一致,以便于推理过程中对不确定性进行统 一处理。
• 不确定性的量度
对于不同的知识和不同的证据,其不确定性的程度 一般是不相同的,需要用不同的数据表示其不确定性的 程度,同时还要事先规定它的取值范围。

不确定性推理

不确定性推理
若CF(H,E) < 0,则P(H|E) < P(H)。这说明由于证据E的出现减少了H为真的概率,即增加了H为假的可信度,CF(H,E)的值越小,增加H为假的可信度就越大。
知识的不确定性通常是用一个数值来描述的,该数值表示相应知识的确定性程度,也称为知识的静态强度。知识的静态强度可以是该知识在应用中成功的概率,也可以是该知识的可信程度等。如果用概率来表示静态强度,则其取值范围为[0,1],该值越接近于1,说明该知识越接近于“真”;其值越接近于0,说明该知识越接近于“假”。如果用可信度来表示静态强度,则其取值范围一般为[−1,1]。当该值大于0时,值越大,说明知识越接近于“真”;当其值小于0时,值越小,说明知识越接近于“假”。在实际应用中,知识的不确定性是由领域专家给出的。
6.1.2 不确定性推理的基本问题
在不确定性推理中,除了需要解决在确定性推理中所提到的推理方向、推理方法、控制策略等基本问题外,一般还需要解决不确定性的表示与度量、不确定性的匹配、不确定性的合成和不确定性的更新等问题。
1.不确定性的表示
不确定性的表示包括知识的不确定性表示和证据的不确定性表示。
1.知识不确定性的表示
在CF模型中,知识是用产生式规则表示的,其一般形式为
IF E THEN H (CF(H,E))
其中,E是知识的前提证据;H是知识的结论;CF(H,E)是知识的可信度。对它们简单说明如下。
(1)前提证据E可以是一个简单条件,也可以是由合取和析取构成的复合条件。例如
(3)多种原因导致同一结论。所谓多种原因导致同一结论是指知识的前提条件不同而结论相同。在现实世界中,可由多种不同原因导出同一结论的情况有很多。例如,引起人体低烧的原因至少有几十种,如果每种原因都作为一条知识,那就可以形成几十条前提条件不同而结论相同的知识。当然,在不确定性推理中,这些知识的静态强度可能是不同的。

第四章不确定性推理

第四章不确定性推理
– 在推理一级上扩展确定性推理。其特点是把不确定的 证据和不确定的知识分别与某种度量标准对应起来, 并且给出更新结论不确定的算法。这类方法与控制策 略一般无关,即无论用何种控制策略,推理的结果都 是唯一的。模型方法分为:
– 数值方法 • 按其所依据的理论又可分为:基于概率的方 法和基于模糊理论的模糊推理。 – 非数值方法
19
若A1,A2,…,An是彼此独立的事件, P( Ai ) P( B | Ai ) P( Ai | B) n , i 1, 2,..., n P( Aj ) P( B | Aj )
j 1
其中,P(Ai)是事件Ai的先验概率;P(B|Ai)是在事件Ai发生条 件下事件B的条件概率。 如果用产生式规则 IF E THEN Hi 中的前提条件E代替Bayes公式中的B,用Hi代替公式中的Ai , 就可得到 P( H i ) P( E | H i ) P( H i | E ) n , i 1, 2,..., n 20 P( H j ) P( E | H j )
• P(¬ A)=1-P(A) • P(A∪B)=P(A)+P(B)-P(AB) • 如果 A B ,则P(A-B)=P(A)-P(B)
13
• 如果在事件B发生的条件下考虑事件A发生的概率, 就称它为事件A的条件概率,记为P(A|B)。 • 定义4.3 设A,B是两个事件,P(B)>0,则称
P( A | B) P( A B) P( B)
j 1
P ( H i | E1 E2 Em ) P ( H i ) P ( E1 | H i ) P ( E2 | H i ) P ( Em | H i )
P( H
j 1
n

人工智能 课件 第十二讲 不确定性推理-可信度方法

人工智能 课件 第十二讲 不确定性推理-可信度方法

基本概念
-- 一些基本问题
b.

证据的不确定性的表示 证据来源于用户在求解问题时提供的初始 证据或者在推理中用前面推出的结论作为 当前推理的证据。证据的不确定性称为动 态强度。 不管怎么表示,通常证据的不确定性表示 方法与知识的不确定性表示方法保持一致, 以便于推理过程中对不确定性进行统一的 处理。
可信度方法
--带有阈值限度的不确定性推理
2.
3.
证据不确定性的表示 证据可信度的取值范围也作了改变: 0≤CF(E)≤1 CF(E)=0时,表示该证据可信度无法得 知。 组合证据不确定性的算法 与C-F模型一样。
可信度方法
--带有阈值限度的不确定性推理
4.

不确定性的传递算法 当CF(E)≥λ时,结论H的可信度CF(H)由下式计 算得到: CF(H)=CF(H,E)×CF(E) 注:由于CF(E)≥0,所以用CF(E)与CF(H,E)“相 乘”,而不是max{0,CF(E)};并且这里的“×” 既可为“相乘”运算,也可为“取极小”或其 他运算,要按实际情况定。(后面出现的“×” 号均表示这个意思,不再赘述)
可信度方法
--带有阈值限度的不确定性推理
加权求和法: CF(H,Ei)被看作权值 III. 有限和法: 各结论H的可信度和不能大于1,否则CF(H)取1
II.
可信度方法
--带有阈值限度的不确定性推理

上式是加权求和法 下式是有限和法
可信度方法
--带有阈值限度的不确定性推理
IV.
递推计算法: 从CF1(H)开始,按知识被应用的顺序逐步进行 递推。可用以下两条公式表示: 令 C1 = CF(H,E1)×CF(E1) 对任意的k>1,

第4讲 不确定性推理

第4讲 不确定性推理

第4章 不确定性推理4.1 不确定性及其类型 4.2 主观Bayes方法 4.3 可信度理论 4.4 证据理论4.1 不确定性及其类型推理的分类: 精确推理 不精确推理(即不确定推理)4.1 不确定性及其类型一、 不确定性的原因:A 证据的不确定性 歧义性: 不完全性: 不精确性: 模糊性: 可信性: 随机性:其它因素引起的不确定性。

4.1 不确定性及其类型B 规则的不确定性前提条件的不确定性:例如“如发高烧则可能感冒”, 发高烧是个模糊的概念。

观察证据的不确定性:如人的体温早晚是不同的。

组合证据的不确定性。

规则自身的不确定性。

在规则的使用过程中含有两种典型的不确定性4.1 不确定性及其类型C 推理的不确定性 推理的不确定性反映了知识不确定性的 动态积累和转播过程。

二、 不确定推理网络中的三种基本模式证据逻辑组合模式已知证据E1、E2、……、En的不确定测度分别为MU1、 MU2、 …… 、MUn,则证据组合后的不确定测度为MU(1) 证据的合取:MU(E1^E2^……^En)=f(MU1,MU2,……,MUn)f是一个函数的名称。

(2) 证据的析取:MU(E1 V E2 V …… V En)=g(MU1,MU2,……,MUn)g是一个函数的名称。

(3) 证据的否定: MU(~Ei)=h(MUi) h是一个函数的名称。

2. 证据的并行规则模式已知每一单条规则 if Ei then h with Mui(i=1,2,……,n),则所有规则都满足 时,h的不确定测度 MU=p(MU1,MU2, … ,MUn) p是一个函数的名称。

3. 证据的顺序规则模式已知规则 if E’ then E with MU0 if E then h with MU1则规则 if E’ then h with MU 中的MU的计算 MU=s(MU0,MU1) s是一个函数的名称4.2 主观Bayes方法1. 主观Bayes公式:a. p(E):证据E的不确定性,为E发生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2.4 不确定性的传递

包含两个子问题

在每一步推理中,如何把证据及知识的不 确定性传递给给结论 在多步推理中,如何把初始证据的不确定 性传递给最终结论

4.2.5 结论不确定性的合成

用不同知识进行推理得到相同的结论 同个结论的不确定性程度却不相同


需要用合适的算法对它们进行合成
4. 3 不确定性推理方法的分类
为给定条件E下,事件A发生的条件概率。
对于条件概率有如下联合概率公式:
P( A
n
E ) P( A | E ) P( E )
n 1
若A1, A2, ..., An为X中的n个事件,可得
P(
i 1
Ai ) P( A1 ) P( A2 | A1 ) P( A3 | A1
A2 )
P( An |

“To do what is right and just is more acceptable to the LORD than sacrifice.” From PROVERBS 21:3 NIV
4.2.3 证据不确定性的组合

单一证据 & 组合证据

单一证据:前提条件仅为一个简单条件 组合证据:一个复合条件对应于一组证据
在选择不确定性度量方法时应考虑的因素: 充分表达相应知识及证据不确定性的程度

度量范围便于领域专家及用户估计不确定性

便于计算过程中的不确定性传递,结论的不确 定性度量不超出规定的范围 度量的确定应直观,且有相应的理论依据

4.2.2 不确定性匹配

解决不确定性匹配的常用方法

设计一个匹配算法用以计算相似度 指定一个相似度的“限定”(即阈值)
4. 2 不确定性推理中的基本问题

不确定性的表示与度量 不确定性匹配 不确定性的传递算法



不确定性的合成
4.2.1 不确定性的表示与度量
1. 不确定性的表示 选择不确定性表示方法时应考虑的因素 充分考虑领域问题的特征 恰当地描述具体问题的不确定性 满足问题求解的实际需求 便于推理过程中对不确定性的推算
不确定性的表示与度量(续1)
2. 不确定性的度量 针对不同的领域问题采用不同的度量方法

用不同的数值刻画不同的不确定性程度 事先规定不确定性程度的取值范围
3. 常用的度量方法

测度理论(基于概率统计的度量方法) Shannon信息熵 其它度量方法 ……
不确定性的表示与度量(续2)
精确推理及其不足

4.1.2 不确定性推理的定义及意义
1. 定义 也称“不精确性推理”

从不确定性的初始证据(即已知事实)出发 运用不确定性的知识(或规则) 推出具有一定程度的不确定性但却是合理或近乎 合理的结论
2. 意义 使计算机对人类思维的模拟更接近于人类的 真实思维过程

证据理论方法

1967年Dempster首次提出,1976年Shafer完善 可表示并处理“不知道”等不确定性信息
关于不确定性推理方法的说明(续2)

模糊推理方法

可表示并处理由模糊性引起的不确定性 已广泛应用于不确定性推理

粗糙集理论方法


1981年Z. Pawlak首次提出 一种新的可表示并处理“含糊”等不确定性的数学方 法 可用于不确定性推理、数据挖掘等领域
定义4.5 (马氏条件独立性) 若A1, A2, ..., An是按时间顺 序发生的一系列事件,而且具有如下特性:未来某一事 件Ak+1发生的可能性只依赖于当前时刻的事件Ak ,而与 过去发生的事件无关,即
P ( Ak 1 |
k j 1
A j ) P ( Ak 1 | Ak )
这时称n个事件具有马氏(Markov)独立性。 对n个满足马氏独立性条件的事件满足
称为g测度。 【注】:关于测度理论的详细论述请参见夏道行编著的 《实变函数与泛函分析》,复旦大学出版社。
定义4.2(模糊测度) 模糊测度被定义为一个映射
M: (X) [0, 1]
具有如下性质: (1) 有界性: M() = 0, M(X) = 1; (2) 单调性: 对任意A, B(X), AB时,有M(A) M(B) 由模糊测度定义可知: (1)有界性表示:一个非空元素不可能属于,它必然 属于全集;
(1) B() = 0, B(X) = 1;
(2) 对于X中任意子集A1,A2,…,An有
n
B(
i 1
Ai )
I {1,2,..., n} I

(1)|I |1 B(
iI
Ai )
如果仅仅满足,对于X中任意两个子集A1及A2有
P( A | H ) P( H )
i 1 i i
m
Bayes公式与全概率公式的区别

全概率公式

由原因到结果的计算公式 不如Bayes公式使用广泛

Bayes公式

后验概率公式 已知某结果发生,寻求这个结果发生的原因 在实际问题中有着十分重要的应用
定义4.8(信任测度) 设X是有限集,称B:(X) [0, 1] 为信任测度,若满足:
概率统
计方法
数值 模型 方法 模糊推 理方法 粗糙集 方法
非数值 方法
绝对概 率方法 贝叶斯 方法 证据理 论方法
方法
不确 定性 推理
控制 方法
HMM 方法
可信度 方法
发生率 计算
相关性制导回溯、机缘控制、启 发式搜索等Leabharlann .3.3 关于不确定性推理方法的说明

数值方法

对不确定性的一种定量表示和处理方法 其研究及应用较多,已形成多种应用模型
4.4 描述不确定性信息的测度理论
4.4.1 测度及其分类
设(X) 是有限集合X上的子集合的全体,测度的定 义如下:
定义6.1(测度) 若g: (X) [0, 1]满足条件: (1) g(X) = 1; (2) 当A B = 时,有
g(A B) = g(A) + g(B) + g(A) g(B)
March 10, 2002第一稿 April 18, 2007第四次修改稿
Outline



本章的主要参考文献 基本概念 基本问题 不确定性推理方法的分类 不确定性度量的测度理论 不确定性的其它度量方法 Shannon信息熵及在决策树中的应用 模糊推理
本章的主要参考文献
[1] 王永庆. 人工智能原理与方法. 西安交通大学出版社, 1998. pp156-252. (偏重基本概念) [2] 张文修, 梁怡. 不确定性推理原理. 西安交通大学出版社, 1996. (偏重数学原理) [3] 陆汝钤. 人工智能(下册). 科学出版社, 2000. pp1133-1170. (偏重Bayes概率推理、可信度、模糊推理) [4] 史忠植. 知识发现. 清华大学出版社, 2002. pp24-26, pp141-202. (偏重Rough set和贝叶斯网络)
(2)单调性表示:一个元素隶属于一个集合的确定度 不大于它隶属于更大的一个集合的确定度。
模糊测度及其性质
定理4.1 当>-1时, 测度g是模糊测度。 定理4.2 当>-1时, 测度g具有如下性质:
1 g ( A) g ( A ) 1 g ( A)
c
g ( A) g ( B) g ( A B) g ( A) g ( B) g ( A B) 1 g ( A B)
4.3.1 不确定性推理的两条研究路线 模型方法

在推理一级上扩展确定性推理 不确定证据和知识与某种度量标准对应 给出更新结论不确定性的算法 构成相应的不确定性推理模型

控制方法

在控制策略一级上处理不确定性 无统一的不确定性处理模型,其效果依赖于控制策略
4.3.2 不确定性推理方法的分类
Aj )
j 1
若A, B两个事件满足P(A|B) = P(A),即A发生的可能性 与B无关,称A, B是相互独立的。这时有
P( A B) P( A) P( B)
若n个事件A1, A2, ..., An相互独立,则
n
P(
i 1
Ai ) P( Ai )
i 1
n
Markov条件独立性
浙江大学研究生《人工智能引论》课件
第四讲 不确定性推理概述
(Chapter4 Uncertainty Reasoning )
徐从富(Congfu Xu) PhD, Associate Professor
Email: xucongfu@ Institute of Artificial Intelligence, College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China


前提条件用AND(与)或OR(或)把多个简单 条件连接起来构成复合条件
常用的组合证据不确定性计算方法
(1)最大最小法
T(E1 AND E2) = min {T(E1), T(E2)}
T(E1 OR E2) = max {T(E1), T(E2) (2)概率方法 (要求事件之间完全独立)
T(E1 AND E2) = T(E1) × T(E2)
n
P(
i 1
Ai ) P( A1 ) P( A2 | A1 ) P( A3 | A2 )
P( An | An1 )
定义4.6(全概率公式) 设Hi (i<=m)是X上的分划, Hi Hj (i j),且H1H2 … Hm =X。由概率可加性,对 于任意事件A,有
相关文档
最新文档