七年级数学上册 第1章 有理数 1.3.1 有理数的加法 第2课时 有理数加法的运算律习题课件 新

合集下载

1.3.1 有理数的加法 第2课时 有理数的加法运算律

1.3.1 有理数的加法    第2课时 有理数的加法运算律

计算:(-)++(-1)+0.25. 解:(-)++(-1)+0.25 =+(-1)+0.25 =-+0.25 =-+ =-1. 以上解法是不是最佳解法?如果不是,应如何改进?
解:不是.不应该从左到右依次计算,而应该运用加法的交换律和结合律简 化计算.改进如下: 原式=[(-23)+(-113)]+(34+0.25)=-2+1=-1.
第一章 有理数
1.3.1 有理数的加法
第一章 有理数
第2课时 有理数的加法运算律
目标突破 总结反思
目标突破
目标一 运用有理数的加法运算律进行简便运算
例 1 教材例 2 针对训练 利用有理数的加法运算律计算: (1)12+(-13)+8+(-7); (2)1.125+-352+-18+(-0.6) (3)17+56+-47+-12.
目标二 利用加法运算律简便地解决实际问题
例2 教材补充例题 某出租车司机某天下午营运都是在东西走向的 人民大道上进行的,如果规定向东为正,向西为负,他这天下午的 行驶记录(单位:千米)如下: +15,+14,-3,-11,+10,-12,+4,-15,+16,- 18.
(1)该司机将最后一名乘客送到目的地时,他距离下午出发点多少 千米? (2)若出租车的耗油量为a升/千米,则这天下午该出租车共耗油多 少升?
[解析]求多个有理数的和时,尽量用加法运算律使运算简便.(1)题可把正数和 负数分别相加;(2)题中-18=-0.125,-325=-3.4,它们分别与 1.125 和-0.6 凑整进行计算;(3)题中可把同分母的分数结合相加.
解:(1)原式=(12+8)+[(-13)+(-7)]=20+(-20)=0. (2)原式=[1.125+(-18)]+[(-325)+(-0.6)]=1+(-4)=-3. (3)原式=17+(-47)+56+(-12)= -37+13=-291+271=-221.

人教版七年级数学上册第一章有理数《有理数的加法》第二课时教案

人教版七年级数学上册第一章有理数《有理数的加法》第二课时教案

课题 1.3.1有理数的加法(2)备课时间序号授课时间主备人授课班级七年级课标要求理解有理数的运算律,能解决简单问题。

教学目标知识与技能:能用运算律简化有理数加法的运算。

过程与方法:经历有理数加法运算律的探索过程,理解有理数加法的运算律。

情感态度价值观:使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力。

教学重点加法交换律和结合律,及其合理、灵活的运用教学难点合理运用运算律教学方法类比教学过程设计师生活动设计意图一、引出课题回顾复习:小学时已学过的加法运算律有哪几条?提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题。

二、分析问题、探究新知1.有理数加法交换律的学习问题1:我们如何知道加法交换律在有理数范围内是否适用?问题2:我们如何用语言来叙述有理数加法的交换律呢?教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变。

”问题3 :你能把有理数加法的交换律用字母来表示吗?〔1〕式子中的字母分别表示任意的一个有理数。

(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。

(2)在同一个式子中,同一个字母表示同一个数.2.有理数加法结合律的学习.(基本步骤同于加法交换律的学习)学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证由学生回答得出a+b=b+a后,教师说明“加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律.让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性板书设计:1.3.1 有理数的加法有理数的加法中,两个数相加, 交换加数的位置,和不变。

加法交换律:a+b=b+a有理数的加法中,三个数相加, 先把前两个数相加,或者先把 后两数相加,和不变。

统编教材人教版七年级数学上册1.3.1 第2课时 有理数的加法运算律 公开课教学课件

统编教材人教版七年级数学上册1.3.1 第2课时 有理数的加法运算律 公开课教学课件
A.+613++423+18+[(-18)+(-6.8)+(-3.2)] B.+613+-6.8++423+[(-18)+18+(-3.2)] C.+613+-18++423+-6.8+[18+(-3.2)] D.+613++423+[(-18)+18]+[(-6.8)+(-3.2)]
知识管理
加法的运算律 交换律:有理数的加法中,两个数相加,交换加数的位置, 和 不变. a+b= b+a . 结合律:有理数的加法中,三个数相加,先把前两个数相加,或者 先把后两个数相加 ,和不变.(a+b)+c= a+(b+c) .
注 意:灵活运用加法的运算律,可使运算简便,通常有下列情形: (1)互为相反数的两个数,可先相加; (2)几个数相加得整数,可先相加; (3)同分母的分数可先相加; (4)符号相同的数可先相加.
6.计算: (1)(-0.8)+(+1.2)+(-0.6)+(-2.4); (2)(-0.5)++214+-912+(+9.75); (3)-319+(-2.16)+814+319+(-3.84)+(-0.25)+45.
解:(1)原式=[(-0.8)+(+1.2)]+[(-0.6)+(-2.4)]=0.4+(-3)=-2.6. (2)原式=-0.5+-912++214 + +9.75=-10+12=2. (3)原式=-319+319+[(-2.16)+(-3.84)]+814+-0.25+45 =0-6+8+45 =245.
3.根据加法运算律填空:756+-513+214+-434
= 756+-513 + 214+
-434



212+-212

0.
4.计算:(-20.75)+314+-4.25+1934= -2 . 5.绝对值大于 2 而小于 7 的所有整数的和是 0 .

鲁山县第九中学七年级数学上册第1章有理数1.3有理数的加减法1.3.1有理数的加法课时2有理数的加法

鲁山县第九中学七年级数学上册第1章有理数1.3有理数的加减法1.3.1有理数的加法课时2有理数的加法
O
〔3〕点C在线段AB上 ;
AC
B
C A
B
课后作业
1.从课后习题中选取 ; 2.完成练习册本课时的习题。
课堂小结
通过本节课的学习,你 有什么收获?
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们 休息一下眼睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐 对身体不好哦~
结束语
同学们,你们要相信梦想是价值的源泉,相 信成功的信念比成功本身更重要,相信人生 有挫折没有失败,相信生命的质量来自决不 妥协的信念,考试加油!奥利给~
新课讲解
知识点1 有理数加法运算
填一填
(1) 3 ﹢ -7 ﹦ -4 -7 ﹢ 3 ﹦ -4
(2) 28 ﹢ -9 ﹦ 3 -9 ﹢ 12 ﹦ 3
思考
以上每组中的两个算式的结果有什么关系 ?每组中的两个 算式有什么特征 ?
新课讲解
知识点1 有理数加法运算
填一填
(3)( 3 ﹢ 6 )﹢ -7 ﹦ 2
新课导入
知识回顾
(1)同号两数相加 , 取_相__同__的__符__号___并,__把__绝__対__值__相__加_____. (2)异号两数相加 , 取__绝__対___值__较__大___的__数__的___符__号_, _并___用__较__大___的_ 绝対值__减__去__较___小__的__绝___対__值____. (3)互为相反数的两数相加得_零___. (4)一个数同零相加仍得_这___个__数__.
线段AB〔或BA〕 线段a
射线AB 射线BA 直线AB〔或BA〕
直线l
例题练习
以下说法准确的选项是C哪一项:〔 〕
A.射线AB与射线BA是同一条射线 B.线段AB与线段BA不是同一条射线 C.射线AC是直线AC的一部分 D.延长直线AB , 使它经过点M

【人教版】七年级上册数学教案:1.3.1 第2课时 有理数加法的运算律及运用

【人教版】七年级上册数学教案:1.3.1 第2课时 有理数加法的运算律及运用

第一章 有理数 1.3 有理数的加减法 1.3.1 有理数的加法第2课时 有理数加法的运算律及运用学习目标:1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性;2.能运用加法运算律简化加法运算;3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用. 学习难点:运用有理数加法法则简化运算. 课堂活动一、有理数加法运算律的探索 1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○ 和 ○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇ 和 □+(○+◇) 2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括: 字母表示 加法的结合律:文字概括: 字母表示 二、有理数加法运算律的应用 问题1.计算(1) (-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6(3))75()65()72(61++-+-+ (4)(+4.56)+(-3.45)+(+4.44)+(+2.45)问题2:计算 (1) (-11)+8+(-14) (2)32)41()32()43(+-+-+-(3) 0.35+(-0.6)+0.25+(-5.4) (4))61(31)21()2(-++-+-三、拓展延伸问题3.10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 问(1)10筐苹果共超过(不足)多少千克? (2)10筐苹果共重多少千克?课堂反馈:1.从某点O 出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O?2.10名学生的某一次数学考试成绩如下(单位:分)87,91,94,88,93,91,89,87,92,86,你能迅速算出总成绩之和吗?知识巩固 一、填空1. 存折中有存款240元,取出125元,又存入100元,存折中还有 元.2.绝对值小于5的所有负整数的和为3.已知a 是最小的正整数,b 是a 的相反数,c 的绝对值为3,则a +b +c =4.某天股票A 的开盘价是18元,上午11:30跌1.5元,下午收盘时又涨0.3元,则股票A 这天的收盘价是 元.5.如果a<0,则︱a ︱+a= 二、计算(1) )4(1)3()1(3-++-+-+ (2)(-9)+4+(-5)+8;(3)(-36.35)+(-7.25)+26.35+(+714) (4))2(9465195-+++(5))127(25)125()23(-++-+- (6)(-13)+(+25)+(+35)+(-123)三、解答题1. 一天早晨的气温是-7ºC,中午上升了11ºC,半夜又降了9ºC,则半夜的气温是多少?2.仓库内原存某种原料4500千克,一周内存入和领出情况如下(存入为正,单位:千克): 1500,-300,-670,400,-1700,-200,-250.问:第7天末仓库内还存有这种原料多少千克?3. 某种袋装奶粉标明净含量为400g ,检查其中8袋,记录如下表:请问这8袋被检奶粉的总净含量是多少?4.一只电子跳骚从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?5. 某出租车沿公路左右行驶,向左为正,向右为负,某天从A 地出发后到收工回家所走的路线如下:(单位:千米)8,9,4,7,2,10,18,3,7,5+-++--+-++ ⑴ 问收工时离出发点A 多少千米?⑵ 若该出租车每千米耗油0.3升,问从A 地出发到收工共耗油多少升?6.已知c b a ,7,2-==的相反数为-5,试求a +)(b -+(-c )7.计算:|1-12|+|12-13|+|13-14|+…+|19-110|课后反思:学习小结:课后作业:。

冷水江市第九中学七年级数学上册 第一章 有理数 1.3 有理数的加减法 1.3.2 有理数的减法3

冷水江市第九中学七年级数学上册 第一章 有理数 1.3 有理数的加减法 1.3.2 有理数的减法3

有理数的减法第2课时有理数的加减混合运算学习目标:1.理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.2.通过加减法的相互转化,培养应变能力、计算能力.重点:把加减混合运算理解为加法运算.难点:把省略括号的和的形式直接按有理数加法进行计算.自主学习一、知识链接1.有理数的加法法则__________________________________________________________________________.2.有理数的加法运算律__________________________________________________________________________. 有理数的减法法则__________________________________________________________________________. 计算(1)(-7)-(+ 4)(2)0-(-5)(3)(- 2.5)+5.9 (4)(-2)+(-1)二、新知预习一架飞机作特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?方法一:4.5+(-3.2)+1.1+(-1.4)方法二:4.5-3.2+1.1-1.4=1.3+1.1+(-1.4) =1.3+1.1-1.4=2.4+ (-1.4)=2.4-1.4=1(千米). =1(千米).比较以上两种算法,你发现了什么?【自主归纳】加法运算中,各个加数的括号及其前面的运算符号“+”可以省略不写.例如:4.5+(-3.2)+1.1+(-1.4)可写成 4.5-3.2+1.1-1.4 .它表示4.5,-3.2,1.1与-1.4的和,读作“4.5,负3.2,”,或读作“1.4”.自学自测计算(1) 10+(+4)+(-6)-(-5);(2)(-8)-(+4)+(-7)-(+9).四、我的疑惑___________________________________________________________________________________________ ___________________________________________________________课堂探究要点探究探究点1:有理数的加减混合运算问题1:引入相反数后,加减混合运算可以统一为加法运算.如:a+b-c=a+b+______.将(-20)+(+3)-(-5)-(+7)转化为加法:______________________________这个算式我们可以看作是______、______ 、______、______这四个数的和.为书写简单,省略算式中的括号和加号写为____________也可简单写为:(-20)+(+3)+(+5)+(-7)在符号简写这个环节,有什么小窍门么?问题2:观察下列式子,你能发现简化符号的规律吗?(-40)-(+27)+19-24-(-32)=-40-27+19-24+32(-9)-(-2)+(-3)-4=-9 + 2 - 3-4规律:数字前“-”号是奇数个取“-”;数字前“-”号是偶数个取“+”例1 计算:(-2)+(+30)-(-15)-(+27)例2 计算:(1) -127+116-125+115(2)(-18.25)-452+(+1841)+4.4归纳总结:有理数加减混合运算的步骤: (1)将减法转化为加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 探究点2:加减混合运算的应用例3 动物园在检验成年麦哲伦企鹅的身体状况时,最重要的一项工作就是称体重.已知某动物园对6只成年麦哲伦企鹅进行体重检测,以4kg 为标准,超过或者不足的千克数分别用正数、负数表示,称重记录如下表所示,求这6只企鹅的总体重.可以先求出每只企鹅的体重后,再相加吗?哪种方法根简便呢? 针对训练 1.计算(1) 0-1+2-3+4-5; (2) –4.2+5.7-8.4+10.2;(3)–30+11-(-10)+(-11);(4)1111320.252436⎛⎫⎛⎫⎛⎫--+--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.某公路养护小组乘车沿南北方向公路巡视维护,某天从地出发,约定向南行驶为正,到收工时的行驶记录如下:(单位:千米)8,-5,7,-4,-6,13,4,12,-11 (1)问收工时,养护小组在地的哪一边?距离地多远?(2)若汽车行驶毎千米耗油0.5升,求从出发到收工共耗油多少升?二、课堂小结有理数加减法混合运算: 方法一:减法转化成加法 1.减法变加法:a+b-c=a+b+(-c) 2.运用加法交换律使同号两数分别相加; 3.按有理数加法法则计算 方法二:省略括号法 1.省略括号; 2.同号放一起; 3.进行加减运算. 当堂检测1.若a= -2,b=3,c= -4 ,则a-(b-c)的值为______ .2.计算:(1)-11-9-7+6-8+10 (2)-5.75-(-3) +(-5)-3.125(3)|-141|-(-43)+1-|21-1|3.下列交换加数的位置的变形中,正确的是( ) A.1-4+5-4=1-4+4-5B.-31+43-61-41=41+43-31-61C.1-2+3-4=2-1+4-34.计算1-2+3-4+5+ …+99-100=________.5.-4,-5,+7这三个数的和比这三个数的绝对值的和小________.数轴教学目标知识与技能:1.认识数轴,会用数轴上的点表示有理数.2.了解数轴的概念,知道数轴的三要素,会画数轴.过程与方法:从直观认识到理性认识,从而建立数轴的概念.情感态度与价值观:通过数轴的学习,体会数形结合的数学思想方法,认识事物之间的联系,感受数学与生活的联系.教学重难点重点:数轴的概念难点:从直观认识到理性认识,建立数轴的概念,正确地画出数轴.教学过程活动1:创设情境,导入新课设计意图:直接抛出数轴的名称,对应学生小学中已经接触过的用直线上的点表示数,引起学生的学习兴趣,建立初步的数轴印象.师:提问有理数包括哪些数?0是正数还是负数?在日常生活中,你能举出一些用刻度来表示物品的数量的例子吗?让学生充分讨论,明确知识是从实践中得到的,它与我们的生活息息相关;再有,数除了可以用符号表示外,还有其他表示方法,从而引出新课:数轴.活动2:学习数轴的概念,探索数轴的画法设计意图:通过教具的使用,使学生能够直观地感受数与形之间的对应关系,渗透数形结合的数学思想,通过讨论、自主学习、合作交流等形式,使学生对数轴从感性认识上升到理性认识.1.教师出示温度计,问:你会读温度计吗?温度上的刻度与数值之间有什么关系?2.教师出示图片,提出:怎样用数简明的表示树、电线杆与汽车站的相对位置关系(方向、距离)?说明:将公路看作直线,将各个事物看作点.学生动手操作,感受画数轴的过程,之后,师让学生阅读教材15页上的三段话,正确规范地理解数轴的概念,然后师生共同总结数轴的三要素.活动3:学习有理数在数轴上的表示方法设计意图:会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来,这是本节课要求学生掌握的最基本的技能,也是以后继续学习坐标系的基础.让学生通过练习感受数与形之间的对应关系,感受数学直观与抽象之间的联系.师:数轴上的点都是整数,分数或小数能用数轴上的点表示吗?生:思考后回答,然后完成教材练习.师:观察数轴,数轴上原点左边的数都是什么数,右边呢?生:讨论后进行归纳,最后师作点评.活动4:课后作业下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错,没有原点;②错,没有正方向;③正确; ④错,没有单位长度;⑤错,单位不统一;⑥错,正方向标错.【板书设计】活动1:创设情境,导入新课活动2:学习数轴的概念,探索数轴的画法.活动3:学习有理数在数轴上的表示方法活动4:课后作业检测内容:5.3-5.4得分________ 卷后分________ 评价________一、选择题(每小题4分,共32分)1.下列A,B,C,D四幅“福牛乐乐”图中,能通过平移图①得到的是( C )2.(2019•湘西州)如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为( B ) A.40° B.90° C.50° D.100°第2题图第3题图3.(天门中考)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是( D )A.25° B.35° C.45° D.50°4.(2019•甘肃)如图,将一块含有30°角的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是( D )A.48° B.78° C.92° D.102°第4题图第5题图5.(2019•泰安)如图,直线l1//l2,∠1=30°,则∠2+∠3=( C )A.150° B.180° C.210° D.240°6.下列命题:①两直线平行,同旁内角互补;②如果x2=4,那么x=2;③经过一点有且只有一条直线平行于已知直线;④邻补角的平分线互相垂直.其中假命题的个数有( B )A.1个 B.2个 C.3个 D.4个7.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( A )A.60° B.120° C.150° D.180°第7题图第8题图8.(内江中考)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( D )A.31° B.28° C.62° D.56°二、填空题(每小题4分,共16分)9.如图所示,同位角一共有__6__对,内错角一共有__4__对,同旁内角一共有__4__对.第9题图第11题图10.命题“邻补角的平分线互相垂直”的题设是__两个角是邻补角__,结论是__它们的平分线互相垂直__.它是一个__真__命题(填“真”或“假”).11.(2019•郴州)如图,直线a,b被直线c,d所截.若a∥b,∠1=130°,∠2=30°,则∠3的度数为__100__度.12.如图,在三角形ABC中,∠C=90°,AC=4,将三角形ABC沿CB向右平移得到三角形DEF,若平移距离为2,则四边形ABED的面积等于__8__.三、解答题(共52分)13.(10分)完成下面证明.如图,∠1=∠2,∠A=∠F,求证:∠C=∠D.证明:∵∠1=∠2(已知),又∵∠2=∠3(__对顶角相等__),∴∠1=∠3(__等量代换__),∴__BD__∥__CE__(_同位角相等,两直线平行_),∴∠C=∠ABD(__两直线平行,同位角相等__).∵∠A=∠F(已知),∴__AC__∥__DF__(内错角相等,两直线平行),∴∠D=∠ABD(__两直线平行,内错角相等__),∴∠C=∠D(__等量代换__).14.(10分)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问:直线EF 与AB有怎样的位置关系?为什么?解:EF∥AB.理由:∵CD∥AB,∴∠ABC=∠DCB=70°,又∵∠CBF=20°,∴∠ABF=50°,∴∠ABF+∠EFB=50°+130°=180°,∴EF∥AB(同旁内角互补,两直线平行)15.(10分)如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,且∠1=∠F,试猜想CE与DF的位置关系?并说明你的理由.解:CE∥DF.理由如下:∵BD平分∠ABC,CE平分∠ACB,∴∠1=12∠ABC,∠2=12∠ACB.又∵∠ABC=∠ACB,∴∠1=∠2,∵∠1=∠F,∴∠2=∠F,∴CE∥DF 16.(10分)如图,已知AB⊥BD,CD⊥BD,AE∥DF,问∠1=∠2吗?为什么?解:∵AB⊥BD,CD⊥BD,∴AB∥CD,∴∠BAD=∠CDA,∵AE∥DF,∴∠EAD=∠ADF,∴∠BAD-∠EAD=∠ADC-∠ADF,即∠1=∠217.(12分)(许昌期中)如图,已知MN∥PQ,点B在MN上,点C在PQ上,点A在点B 的左侧,点D在点C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE,BE交于点E,∠CBN =120°.(1)若∠ADQ=110°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).解:(1)如图①,延长DE交MN于点H.∵∠ADQ=110°,ED平分∠ADP,∴∠PDH=12∠PDA=35°,∵PQ∥MN,∴∠EHB=11 ∠PDH =35°,∵∠CBN =120°,EB 平分∠ABC ,∴∠EBH =12∠ABC =30°,∴∠BED =∠EHB +∠EBH =65°(2)有三种情形.当n °>60°时,如图②中,延长DE 交MN 于点H .∵PQ ∥MN ,∴∠QDH +∠DHB =180°,∴∠EHB =180°-12 n °,∴∠BED =∠EHB +∠EBH =180°-12n °+30°=210°-12n °;当n °<60°时,如图③中,设BE 交PQ 于点H .∵∠DHB =∠HBA =30°,∠EDH =12 n °,又∵∠DHB =∠BED +∠EDH ,∴∠BED =30°-12n °;当n °-60°时,∠BED 不存在.综上所述,∠BED =210°-12 n °或30°-12n °。

长垣县第七中学七年级数学上册第一章有理数1.3有理数的加减法1.3.2第2课时有理数的加减混合运算知

长垣县第七中学七年级数学上册第一章有理数1.3有理数的加减法1.3.2第2课时有理数的加减混合运算知

第2课时有理数的加减混合运算知能演练提升能力提升1.等式-2-7不能读作()A.-2与7的差B.负2、负7的和C.-2与-7的差D.负2减72.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了()A.加法交换律B.加法结合律C.分配律D.加法的交换律与结合律★3.某地有一眼奇特的报时泉,泉眼在距山脚约100 m处的半山腰,专家沿洞向上游走了15 m,又向下游走了15 m,再向上游走了4 m,这时专家在洞口的()A.上游11 m处B.下游11 m处C.上游 m处D.上游4 m处4.“负8、正15、负20、负8、正12的和”用算式表示为.5.0-21的值为.6.计算:1-2-3+4+5-6-7+8+9-10-11+…+2 013-2 014-2 015+2 016+2 017-2 018=.7.一只跳蚤在某条直线上从点O开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,落点处与点O 的距离是个单位.8.若|a+2|+|b+4|+|c-4|=0,则a+b-c=.9.计算:(1);(2)1-+|-4|;(3)3+5.10.已知a=-3,b=+2.5,c=+3,d=-1,求(a+b)+(c+d)的值.11.高速公路养护小组,乘车沿东西方向的公路巡视维护,约定向东为正,向西为负,当天的行驶记录如下(单位:km):+18,-9,+7,-14,-3,+11,-6,-8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为0.1 L,则这次养护小组的汽车共耗油多少升?创新应用★12.如图,一口水井,水面比井口低3 m,一只蜗牛从水面沿井壁往井口爬,第一次往上爬0.5 m后,又往下滑了0.1 m;第二次往上爬了0.47 m后,又往下滑了0.15 m;第三次往上爬了0.6 m后,又往下滑了0.15 m;第四次往上爬了0.8 m后,又往下滑了0.1 m;第五次往上爬了0.55 m没有下滑.问:它能爬出井口吗?如果不能,那么第六次它至少要往上爬多少米才能爬出井口?★13.数学活动课上,王老师给同学们出了一道题:规定一种新运算“@”,对于任意有理数a,b,都有a@b=a-b+1.请你根据新运算,计算[2@(-3)]@(-2)的值.参考答案知能演练·提升能力提升1.C2.D3.D4.-8+15-20-8+125.-18原式=-21+3==-21+3=-18.6.-17.50设向右跳为正,向左跳为负,由题意,得1-2+3-4+5-6+…+99-100==-50.所以第100次落在点O左侧50个单位处,故落点处与点O的距离是50个单位.8.-10根据绝对值的非负性和互为相反数的两个数和为0,得a+2=0,b+4=0,c-4=0,解得a=-2,b=-4,c=4,所以a+b-c=(-2)+(-4)-4=-2-4-4=-10.9.解(1)原式=.(2)原式=1-+4=1+5+4=10.(3)原式=+=9+(-11)=-2.10.解(a+b)+(c+d)==-1+1.11.解(1)18-9+7-14-3+11-6-8+6+15=17(km).答:养护小组最后到达的地方在出发点的东边,距出发点17 km处.(2)养护过程中,最远处离出发点18 km.(3)|+18|+|-9|+|+7|+|-14|+|-3|+|+11|+|-6|+|-8|+|+6|+|+15|=(18+9+7+14+3+11+6+8+6+15)×0.1=9.7(L).答:这次养护小组的汽车共耗油9.7 L.创新应用12.解因为0.5-0.1+0.47-0.15+0.6-0.15+0.8-0.1+0.55=2.92-0.5=2.42<3,所以它不能爬出井口.因为3-2.42=0.58(m),所以第六次它至少要往上爬0.58 m才能爬出井口.13.解根据运算法则,得[2@(-3)]@(-2)=[2-(-3)+1]@(-2)=6@(-2)=6-(-2)+1=6+2+1=9.第2课时有理数的混合运算一、新课导入1.课题导入:在2+32×(-6)这个式子中,存在着哪些运算?这些运算如何进行呢?这就是本节课我们要学习的内容——有理数的混合运算.2.三维目标:(1)知识与技能了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.(2)过程与方法能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.(3)情感态度培养学生对数的感觉,提高学生正确运算的能力,培养学生思维的逻辑性和灵活性,进一步发展学生的思维能力.3.学习重、难点:重点:有理数的混合运算顺序.难点:混合运算中符号的确定.二、分层学习1.自学指导:(1)自学内容:教材第43页例4前的内容.(2)自学时间:5分钟.(3)自学要求:认真看课本中例3的计算步骤,弄清每步做什么,怎么做的.(4)自学参考提纲:①在有理数的混合运算中,运算顺序是:a.先算乘方,再算乘除,最后算加减;b.同级运算,从左到右进行;c.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.②想一想:a.2÷(12-2)与2÷12-2运算顺序有什么不同?b.2÷(2×3)与2÷2×3运算顺序有什么不同?③在小组内交流例3的运算除把握好运算顺序外,还应注意些什么?符号,去括号时符号的改变.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生是否熟悉了混合运算顺序,是否知道例题的每步计算依据.②差异指导:对个别运算顺序掌握不够的学生进行跟踪指导.(2)生助生:学生相互帮助解决一些疑难问题.4.强化:(1)解题要领:有理数混合运算的运算顺序.(个别背记和集中背诵)(2)练习:①(-1)10×2+(-2)3÷4 ②(-5)3-3×(-1 2 )4③115×(13-12)×311÷54④(-10)4+[(-4)2-(3+32)×2]解:①0;②-125316;③-225;④99921.自学指导:(1)自学内容:教材第43页例4.(2)自学时间:5分钟.(3)自学要求:例4是寻找数字规律的问题,过去在数字游戏或数学竞赛中经常出现,解题的关键是观察所给数字之间的大小关系、符号等特征,寻找规律.(4)自学参考提纲:①例4的分析中,从符号和绝对值两方面考虑,发现第一行数排列的规律.②你也从上面两方面考虑,能发现第三行数排列的规律吗?-(-2)0,-(-2)1;-(-2)2③你发现了二、三行数之间的关系吗?②=2×③+2④你能从上面②、③给出例4的另一个方法吗?试试看.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师参与学生探讨之中,了解学生从这三列数中有何发现?②差异指导:对观察和表述有困难的学生予以指导.(2)生助生:学生相互交流帮助解决一些自学中的疑难问题.4.强化:(1)学会观察一列数的特征方法.(2)观察归纳填空.①-3,9,-27,81,…,(-3)10,…,(-3)n(第十个数)(第n个数)②2,-4,8,-16,32,-64,…,-(-2)n(第n个数)三、评价1.学生的自我评价(围绕三维目标):谈谈自己在本节课学习中的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节学习中表现突出的方面和普通存在问题进行总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学重在培养学生计算能力,要求学生先通过交流,正确归纳出有理数混合运算顺序,再在实际解题过程中寻找规律,发现问题,学生间互相辨析指正.教师在指导过程中,强调学生对易错点的关注,解题时仔细分析问题结构特征,合理选择步骤和运算律.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(20分)计算式子(-1)3 +(-1)6的结果是(C)A.1B.-1C.0D.1或-12.(20分)设a=-2×32,b=(-2×3)2,c=-(2×3)2,那么a、b、c的大小关系是(B)A.a<c<bB.c<a<bC.c<b<aD.a<b<c3.(30分)计算:(1)(-1)100×5+(-2)4÷4(2)(-3)3-3×(-1 3 )4(3)76×(16-13)×314÷35(4)(-10)3+[(-4)2-(1-32)×2](5)-23÷49×(-23)2 (6)4+(-2)3×5-(-0.28)÷4解:(1)9;(2)-27127;(3)-572;(4)-968;(5)-8;(6)-35.93.二、综合应用(每题15分,共30分)4.(10分)给出依次排列的一列数:-2,4,-8,16,-32,…,写出第100项是(-2)100,第n个数是(-2)n.5.(10分)一个长方体的长、宽都是a,高是b,它的体积和表面积怎样计算?当a=2 cm,b=5 cm时,它的体积和表面积是多少?解:体积V=a2b=22×5=20 cm3.表面积S=2a2+4ab=2×22+4×2×5=48 cm2.三、拓展延伸(20分)6.(10分)当你把纸对折一次时,可以得到2层;对折2次时,可以得到4层;对折3次时,可以得到8层;照这样折下去:(1)你能发现层数与折纸的次数的关系吗?(2)计算对折5次时层数是多少?(3)如果每张纸的厚度是0.05毫米,求对折10次后纸的总厚度.解:(1)2n;(2)25=32(3)0.05×210=51.2毫米答:对折10次后纸的总厚度为51.2毫米.第一章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(南通中考)计算x 2·x 3结果是(B ) A .2x 5 B .x 5 C .x 6 D .x 82.(广西中考)下列运算正确的是(D ) A .a(a +1)=a 2+1 B .(a 2)3=a 5 C .3a 2+a =4a 3 D .a 5÷a 2=a 33.人体中成熟的红细胞的平均直径为0.000 007 7 m ,用科学记数法表示为(D ) A .7.7×10-5 m B .77×10-6 m C .77×10-5 m D .7.7×10-6 m4.已知x a =3,x b =5,则x 3a -2b=(A )A .2725B .910C .35D .525.如果(2x +m)(x -5)展开后的结果中不含x 的一次项,那么m 等于(D ) A .5 B .-10 C .-5 D .106.计算(π-3.14)0+(-0.125)1000×81000的结果是(D ) A .π-3.14 B .0 C .1 D .27.我们约定a ⊗b =10a ×10b ,如2⊗3=102×103=105,那么4⊗8为(C ) A .32 B .1032 C .1012 D .12108.若a +b =0,ab =-11,则a 2-ab +b 2的值是(D ) A .-11 B .11 C .-33 D .339.如图是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x ,y 表示小长方形的两边长(x>y),请观察图案,指出以下关系式中,不正确的是(D )A .x +y =7B .x -y =2C .4xy +4=49D .x 2+y 2=2510.已知P =715m -1,Q =m 2-815m(m 为任意实数),则P ,Q 的大小关系为(C )A .P >QB .P =QC .P <QD .不能确定二、填空题(每小题3分,共18分)11.若(2x +1)0=1,则x 的取值范围是x≠-12.12.若a 为正整数,且x 2a=6,则(2x 5a )2÷4x 6a的值为36.13.已知实数a ,b 满足a +b =3,ab =2,则a 2+b 2=5.14.已知一个长方形的周长为6a -4b ,其中一边长为a -b ,则这个长方形的面积为2a 2-3ab +b 2.15.当x =-2时,代数式ax 3+bx +1的值是2021,那么当x =2时,代数式ax 3+bx +1的值是-2019.16.如图,从直径是x +2y 的圆中挖去一个直径为x 的圆和两个直径为y 的圆,则剩余部分的面积是πxy +12πy 2. 三、解答题(共72分)17.(6分)计算:(1)(-1)2020+(π-3.14)0-(13)-1; 解:原式=1+1-3=-1(2)(a +1)2-a 2.解:原式=(a +1+a)(a +1-a)=2a +118.(6分)(宁波中考)先化简,再求值:(x -1)2+x(3-x),其中x =-12. 解:原式=x 2-2x +1+3x -x 2=x +1,当x =-12时, 原式=-12+1=1219.(6分)已知A ,B 为多项式,B =2x +1,计算A +B 时,某同学把A +B 看成A÷B,结果得4x 2-2x +1,请你求出A +B 的正确答案,并求当x =-1时,A +B 的值.解:由题意可得:A =(2x +1)(4x 2-2x +1)=8x 3+4x 2-4x 2-2x +2x +1=8x 3+1,∴A +B =(8x 3+1)+(2x +1)=8x 3+2x +2,∴当x =-1时,A +B =8×(-1)3+2×(-1)+2=-820.(6分)如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB =2a ,BC =3b ,且E 为AB 边的中点,CF =13BC ,现打算在阴影部分种植一片草坪,求这片草坪的面积. 解:S 阴影=6ab -12×6ab-12a×2b=2ab21.(8分)按下列程序计算,把答案写在表格内: n →平方→+n →÷n →-n →答案(1)填写表格:输入n 312 -2 -3 … 输出答案 1 1… (2)请将题中计算程序用代数式表达出来,并给予化简.解:(1)1 1 (2)(n 2+n)÷n-n(n≠0)=n (n +1)n-n =n +1-n =122.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(-12xy)=3x 2y -xy 2+12xy (1)求所捂的多项式;(2)若x =23,y =12,求所捂多项式的值. 解:(1)设多项式为A ,则A =(3x 2y -xy 2+12xy)÷(-12xy)=-6x +2y -1 (2)∵x=23,y =12, ∴原式=-6×23+2×12-1=-4+1-1=-423.(10分)(1)正方形的边长增大 5 cm,面积增大75 cm2,求原正方形的边长及面积;(2)正方形的一边增加 4 cm,邻边减少4 cm,所得长方形的面积与这个正方形的边长减少2 cm所得的正方形的面积相等,求原正方形的边长.解:(1)设原正方形的边长为x cm,由题意得(x+5)2-x2=75,解得x=5,则原正方形的边长为5 cm,面积为25 cm2(2)设原正方形的边长为y cm,由题意得(y+4)(y-4)=(y-2)2,解得y=5,则原正方形的边长为5 cm24.(10分)在日历上,我们可以发现其中某些数满足一定的规律,如图是2019年7月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:7×9-1×15=________,18×20-12×26=________,不难发现,结果都是________;(1)请将上面三个空补充完整;(2)我们发现选择其他类似的部分规律也相同,请你利用整式的运算对以上的规律加以证明.解:(1)48 48 48(2)设四个数围起来的中间的数为x,则四个数依次为x-7,x-1,x+1,x+7,则(x-1)×(x+1)-(x-7)×(x+7)=48(设其他的数也可)25.(12分)已知:2a=3,2b=5,2c=75.(1)求22a的值;(2)求2c-b+a的值;(3)试说明:a+2b=c.解:(1)22a=(2a)2=32=9(2)2c-b+a=2c÷2b×2a=75÷5×3=45(3)因为22b=(5)2=25,所以2a22b=2a+2b=3×25=75;又因为2c=75,所以2c=2a+2b,所以a+2b=c。

人教版数学七年级上习题课件第1章 1.3.1 第2课时 有理数加法的运算律

人教版数学七年级上习题课件第1章 1.3.1 第2课时 有理数加法的运算律
(2)278+(-2172)+553+(-178)+225+(-3112). 解:原式=313
18.出租车司机小李某天下午营运全是在东西走向的大道上行驶,如果规定 向东行驶为正,向西行驶为负,这天下午行车里程如下(单位:千米): +10,-3,+16,-11,+12,-10,+5,-15,+18,-16. (1)当最后一名乘客被送到目的地时,距出车地点的距离为多少千米? (2)若每千米的营运额为 7 元,则这天下午的营业额为多少? 解:(1)10+(-3)+(+16)+(-11)+(+12)+(-10)+(+5)+(-15)+(+18) +(-16)=6(千米);
A.-1
B.1
C.0
D.4
13.已知上周五(周末不开市)沪市指数以 2900 点报收,本周内股市涨跌情况
如下表(“+”表示比前一天涨,“-”表示比前一天跌):
星期
一二三四五
股指变化/点 +50 -30 +10 -20 +50
那么本周五的沪市指数报收点为( B )
A.2910
B.2960
C.2970
解:497.5 千克
11.下列变形,运用运算律正确的是( B ) A.2+(-1)=1+2
B.3+(-2)+5=(-2)+3+5
C.[6+(-3)]+5=[6+(-5)]+3
D.13+(-2)+(+23)=(13+23)+(+2)
12.计算(-241)+(+56)+(-34)+(+116)等于( A )
A.1
B.-1
1 C.12
D.-112
3.在算式每一步后面填上这一步所应用的运算律:
(+8)+(-11)+(-8)
=(-11)+(+8)+(-8)① 加法交换律
=(-11)+[(+8)+(-8)]② 加法结合律

【人教版七年级数学上册第一章】1.3.1第2课时《有理数加法的运算律及运用》说课稿1

【人教版七年级数学上册第一章】1.3.1第2课时《有理数加法的运算律及运用》说课稿1

【人教版七年级数学上册第一章】1.3.1 第2课时《有理数加法的运算律及运用》说课稿1一. 教材分析《有理数加法的运算律及运用》这一节内容,主要让学生掌握有理数的加法运算律,并能够运用运算律简化计算。

本节课的内容是初中的基础内容,对于学生来说,理解起来并不困难,但需要学生熟练掌握运算法则,为后续的学习打下基础。

二. 学情分析面对七年级的学生,他们对有理数的概念已经有了初步的了解,也掌握了有理数的加减法运算。

因此,在理解有理数的加法运算律时,他们会有一定的基础。

但是,学生对运算律的理解可能还停留在表面,需要通过实例来加深理解。

三. 说教学目标1.知识与技能:让学生掌握有理数的加法运算律,能够运用运算律进行简便计算。

2.过程与方法:通过实例分析,让学生理解并掌握加法运算律的应用。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生的逻辑思维能力。

四. 说教学重难点1.重点:掌握有理数的加法运算律。

2.难点:运用加法运算律进行简便计算。

五.说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究加法运算律。

2.通过实例分析,让学生理解并掌握加法运算律的应用。

3.利用多媒体教学手段,展示实例,增强学生的直观感受。

六. 说教学过程1.导入:回顾有理数的加减法运算,引导学生思考能否简化计算。

2.探究:提出问题,引导学生发现加法运算律。

3.讲解:通过实例分析,讲解加法运算律的应用。

4.练习:让学生自主完成练习题,巩固所学内容。

5.总结:对本节课的内容进行总结,强调加法运算律的重要性。

七. 说板书设计板书设计如下:有理数加法运算律1.加法运算律:a + b + c = a + (b + c)2.应用:简便计算八. 说教学评价教学评价将从学生的知识掌握、能力提高、情感态度三个方面进行。

通过课堂提问、练习完成情况、课后反馈等方式,评估学生对加法运算律的理解和运用能力。

九. 说教学反思在教学过程中,要注意引导学生主动探究,激发学生的学习兴趣。

七年级数学上册第一章1.3有理数的加减法人教版

七年级数学上册第一章1.3有理数的加减法人教版

七年级数学上册第一章1.3有理数的加减法(人教版)有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则1.了解有理数加法的意义.2.理解有理数加法法则的合理性.3.能运用有理数加法法则正确进行有理数加法运算.阅读教材P16~18,思考并回答下列问题.结合教材对两个有理数相加的7个算式,类似地再列举出相应的算式并结合数轴解释,得出结果[如(+3)+(+4)、(-3)+(-4)、(-3)+(+4)、(+3)+(-4)、(+3)+(-3)、(-3)+0、(+3)+0],根据以上7个算式,思考:你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数的两个数相加,一个有理数和0相加,和分别为多少?知识探究有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加. 2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.自学反馈计算:(1)16+(-8)=8;(2)(-12)+(-13)=-56;(3)(+312)+(-72)=0;(4)(+8)+(-3)=5;(5)(-0.125)+(18)=0;(6)0+(-9.7)=-9.7.在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算和的绝对值.即“一辨、二定、三算”.活动1 小组讨论例1 计算:(1)(-3)+(-9);(2)(-4.7)+解:(1)-12.(2)-0例2 足球循环比赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数.解:黄队净胜球:-2,红队净胜球:2,蓝队净胜球:0.活动2 跟踪训练1.计算:(1)(+3)+(+8) (2)(+14)+(-12);(3)(-312)+(-3.5); (4)(-314)+(+213);(5)(-19)+8.3; (6)-3.4+4.解:(1)11.(2)-14.(3)-7.(4)-1112.(5)10.7.(6)0 注意计算的符号,特别是负号.2.某县某天夜晚平均气温是-10 ℃,白天比夜晚高12 ℃,那么白天的平均气温是多少?解:2 ℃.3.两个数的和为负数,则下列说法中正确的是(D) A.两个均是负数B.两个数一正一负C.至少有一个正数 D.至少有一个负数4.一个正数与一个负数的和是(D)A.正数 B.负数C.零 D.不能确定符号活动3 课堂小结有理数加法法则:1.同号相加,取相同的符号,并把绝对值相加.2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.3.任意有理数和零相加,仍得这个数.第2课时有理数的加法运算律1.掌握有理数的加法运算律,理解小学中的加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算. 3.能根据有理数加法算式的特点选择适当的简便运算方法.阅读教材P19~20,思考并回答下列问题.知识探究加法交换律的文字表达:两个数相加,交换加数的位置,和不变.加法交换律的字母表达:a+b=b+a.加法交换律的例子说明:1+2=2+1.加法结合律的文字表达:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.加法结合律的字母表达:(a+b)+c=a+(b+c).加法结合律的例子说明:(1+2)+3=1+(2+3).自学反馈计算:(1)(-7.34)+(-12.74)+7.34+12.4;(2)(-35+15)+(-45);(3)(-37)+(+15)+(+27)+(-115);(4)(-20.75)+314+(-4.25)+1934;(5)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7).解:(1)-0.34.(2)-65.(3)-117.(4)-2.(5)1. 活动1 小组讨论例1 计算:(1)(-2)+3+1+(-3)+2+(-4);(2)16+(-25)+24+(-35);(3)314+(-235)+534+(-825);(4)(-7)+6+(-3)+10+(-6).解:(1)-3.(2)-20.(3)-2.(4)0.例2 10袋小麦称后记录如图所示(单位:kg).10袋小麦一共多少千克?如果每袋小麦以90 kg为标准,10袋小麦总计超过多少千克或不足多少千克?解法1:先计算10袋小麦一共多少千克:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=90再计算总计超过多少千克:905.4-90×10=解法2:每袋小麦超过90 kg的千克数记作正数,不足的千克数记作负数.10袋小麦对应的数分别为+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,++1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+=[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1)=0×10+5.4=90答:10袋小麦一共905.4 kg,总计超过5.4 kg.注意运算律的运用.活动2 跟踪训练1.用适当的方法计算:(1)23+(-17)+6+(-22);(2)1+(-12)+13+(-16);(3)1.125+(-325)+(-18)+(-0.6);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)-10.(2)23.(3)-3.(4)-10.2.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-(1)将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为a升/千米,这天下午汽车共耗油多少升?解:(1)15+14-3-11+10-12+4-15+16-18=0,距出发点0千米.(2)118a升.活动3 课堂小结1.有理数的加法交换律、结合律:加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c).2.简便运算:①运用运算律;②运用相反数的和为零;③凑整.1.3.2 有理数的减法第1课时有理数的减法法则1.掌握有理数的减法法则.2.熟练地进行有理数的减法运算.3.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.阅读教材P21~22,思考下列问题.通过实际例子,一方面,利用加法与减法互为逆运算可知:计算4-(-3),就是求一个数x,使x+(-3)=4,易知x=7,所以4-(-3)=7.①另一方面,4+(+3)=7.②由①②,有4-(-3)=4+(+3).再试着把减数-3换成正数,任意列出一些算式进行计算,如:计算9-8与9+(-8);15-7与15+(-7).得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a-b=a+(-b).减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.知识探究有理数减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a-b=a+(-b).自学反馈计算:(1)(-3)-(-6);(2)0-8;(3)6.4-(-3.6); (4)(-312)-(+514).解:(1)3.(2)-8.(3)10.(4)-(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a-b=a+(-b).活动1 小组讨论例计算:(1)(-38)-(-36);(2)0-(-711);(3)1.7-(-3.5); (4)(-234)-(-112);(5)323-(-234); (6)(-334)-(+1.75).解:(1)-2.(2)711.(3)5.2.(4)-114.(5)6512.(6)-活动2 跟踪训练1.计算:(1)(-23)-(+112)-(-14);(2)(-0.1)-(-813)+(-1123)-(-110);(3)(-1.5)-(-1.4)-(-3.6)+(-4.3)-(+5.2);(4)(5-6)-(7-9).解:(1)-12.(2)-313.(3)-6.(4)1.2.根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数;(2)-13的绝对值的相反数与23的相反数的差.解:(1)-0.81-1.8=-2(2)-|-13|-(-23)=-13+23=活动3 课堂小结1.有理数的减法法则:a-b=a+(-b).2.转化原则:减号变加号,减数变成相反数.第2课时有理数的加减混合运算1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,提高运算的速度和准确度.3.能把有理数加法运算省略加号和括号,理解有理数的和.4.形成解决有理数加减混合运算问题的一些基本策略.阅读教材P23~24,体会加法与减法的统一和书写的简约.知识探究把下列算式统一为加法,并写成省略括号的形式: (-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7;(-7)+(+5)+(-4)-(-10)=(-7)+(+5)+(-4)+(+10)=-7+5-4+10.注意有理数的加减混合运算写成省略括号的和的形式的意义.自学反馈把(+23)+(-45)-(+15)-(-13)-(+1)写成省略括号的和的形式,并计算.解:23-45-15+13-1=-活动1 小组讨论例1 计算:(1)(+27)+(-49)-(+59)-(-57)-(+1);(2)-7-(-8)-(-712)-(+9)+(-10)+1112;(3)-99+100-97+98-95+96+ (2)(4)-1-2-3- (100)解:(1)-1.(2)1.(3)50.(4)-5 050.例2 银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,存进1 200元,存进2 500元,取出1 025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?解:增加了,增加了1 625元.例3 把-a+(+b)-(-c)+(-d)写成省略括号的和的形式为-a+b+c-d.总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算;(2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加;(4)按有理数加法法则计算.活动2 跟踪训练1.把下列算式写成省略括号的和的形式.(1)(+9)-(+10)+(-2)-(-8)+3;(2)(-13)-(+22)+(-17)-(-18).解:(1)9-10-2+8+3.(2)-13-22-17+2.计算:(1)(-7)-(+5)+(-4)-(-10);(2)1-4+3-0.5;(3)34-72+(-16)-(-23)-1;(4)-2.4+3.5-4.6+解:(1)-6.(2)-0.5.(3)-314.(4)0.活动3 课堂小结1.有理数的加减混合运算.2.省略加号和括号。

人教版七年级数学上册 第一章:有理数_1.3.1:有理数的加法 学案(含答案)

人教版七年级数学上册 第一章:有理数_1.3.1:有理数的加法 学案(含答案)

初中七年级数学上册第一章:有理数——1.3.1:有理数的加法(解析)一:知识点讲解知识点一:有理数加法法则有理数加法法则:✧同号两数相加,取相同的符号,并把绝对值相加;✧绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

✧一个数同0相加,仍得这个数。

有理数的加法运算遵循“一定二求三加减”的顺序:1)确定和的符号;2)求加数的绝对值;3)依据加法法则确定是把绝对值相加还是相减。

例1:计算:①()()8.25.3++-;②⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-31272;解:原式=﹣0.7解:原式=21132-③527435+⎪⎭⎫ ⎝⎛-;④⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-653653;解:原式=20131 解:原式=0⑤()05+-解:原式=﹣5知识点二:有理数的加法运算律加法运算律:✧ 加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。

a b b a +=+。

✧ 加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

()()c b a c b a ++=++。

在运算时,一定要根据需要灵活运用一下规律,以达到简化运算的目的:✧ 相反数结合法:互为相反数的两个数可先相加; ✧ 同分母结合法:同分母的分数可先相加; ✧ 凑整法:几个数相加得整数时,可先相加; ✧ 同号结合法:符号相同的数可先相加;✧ 同形结合法:带分数可拆成整数和真分数两部分再相加。

例2:计算:1) ()()781312-++-+;解:原式=02) ()6.081523125.1-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+;解:原式=﹣33)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++21746571;解:原式=212-4) ()()⎪⎭⎫ ⎝⎛++-++-+85275.18335.6431。

解:原式=﹣0.5二:知识点复习知识点一:有理数加法法则1. 计算()53+-的结果等于( A )A. 2B. ﹣2C. 8D. ﹣82. 下列计算错误的是( B )A. 15.0211-=+⎪⎭⎫ ⎝⎛-B.()()422=-+-C.()71071-=+-D.()42125.1-=⎪⎭⎫⎝⎛-+-3. 下列说法中,正确的是( D )A. 两个有理数相加,符号不变,绝对值相加B. 两个有理数的和一定大于任意一个加数C.()()25757-=--=-+-D. 两个负数相加,和取负号,并把它们的绝对值相加4. 一个数是15,另一个数比15的相反数大4,则这两个数的和是( D )A. 26B. ﹣4C. ﹣26D. 45.31与绝对值等于32的数的和等于( D ) A.31B. 1C. ﹣1D.31-或1 6. 绝对值不大于414的所有整数的和是 0 。

【精品推荐】七年级数学上册第一章有理数1.3有理数的加减法1.3.1有理数的加法2课件新版新人教版

【精品推荐】七年级数学上册第一章有理数1.3有理数的加减法1.3.1有理数的加法2课件新版新人教版

则a+b+c=
−. 87.5
知识点2 加法运算律的应用
4.某地一天早晨的气温是-3℃,到中午升高了5℃,下午又降低了3℃,
到晚上又降低了5℃.则晚上的气温是 ( )
C
A.6℃
B.10℃ C.-6℃
D.-8℃
5.某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的
情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15.则今年
(-
3+
2-
5) +
(-
1 3
+
1 2
-
16 )
=- 6+ 0
=- 6
例3:某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规 定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15, +14,-3,-11,+10,-12,+4,-15,+16,-18 (1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千 米? (2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?
=(-4)+9 =5
点拨2: 能凑整的先凑整
(3)(-8)+(+2.8)+(+8)+(-2.8) [点拨3有相反数的可先把相反数相加]
(4)3 1 (2 3) 5 3 (8 2)
4
54
5
[点拨4有分母相同的,可先把分母相同的数结合相加。]
(1)(+28)+(-17)+5+(-16) 正数与正数,负数与负数负分别相加
从而使计算简便.
谢谢观看,敬请指导
天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现“=”,让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。 例2继续教学等式,教材的安排有三个特点: 第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。

赤水市第八中学七年级数学上册第一章有理数1.3有理数的加减法1.3.2第2课时有理数的加减混合运算课

赤水市第八中学七年级数学上册第一章有理数1.3有理数的加减法1.3.2第2课时有理数的加减混合运算课

有理数大小的比较方式 :
在数轴上表示的两个数 ,
右边的数总比左边的数大.


-3 -2 -1 0
负数
<
0
1
2
<
3
正数
归纳
任意几个数比较大小方式 :
〔1〕按照负数<0 , 0<正数 , 负数<正数 ,
即负数 < 0 < 正数的规定比较;
〔2〕在数轴上找出每个数 ,
观察它们从左到右的顺序 ,
知识要点
多项式里,
项的次数,叫做这个多项式的次数.
次数最高
2

4.多项式
次多项式,最高次项的系数
- 3 +2x-3 是
1
是 -3
.
1.多项式的有关概念
【例 1】 下列说法中正确的是(
A.x2+x3 是五次多项式
)
+
B. 3 不是多项式
C.x2-2 是二次多项式,其常数项是-2
D.xy2-1 是二次多项式
(1)8____6
>
绝対值大的大
先比整数部分再比
数部分
(2) 2.3265___2.3266
<
(3)0.3___
< 1
3
(4)0.02___0
>
3
(5) 4 ___
>
5
4
分数与小数互化比较
正数大于0
通分后根据同分母比较
讲授新知
下表表示未来一周的气温情况
星期
温度

0~8℃

1~7℃




-1~6℃

吕梁市第七中学七年级数学上册 第一章 有理数 1.3 有理数的加减法 1.3.1 第2课时 有理数的

吕梁市第七中学七年级数学上册 第一章 有理数 1.3 有理数的加减法 1.3.1 第2课时 有理数的

第2课时有理数的加法运算律知能演练提升能力提升1.下列哪组数的和加上-111大于0()A.101,10B.0,|-106|C.-99,10D.-88,2002.下列使用加法的运算律最为合理的是()A.(-8)+(-5)+8=[(-8)+(-5)]+8B.C.(-2.6)+(+3.4)+(+1.7)+(-2.5)=[(-2.6)+(-2.5)]+[(+3.4)+(+1.7)]D.9+(-2)+(-4)+1+(-1)=[9+(-2)+(-4)+(-1)]+13.计算:(1)0.815+6.25+5.185=;(2)(-3.125)+(-4.5)+(-6.875)=.4.绝对值小于2 019的整数有个,它们的和是.5.已知数学成绩85分以上为优秀,以85分为基准作简记,例如:89分记为+4,83分记为-2.张老师将七年级6名同学的成绩简记为+7,-5,0,+15,+6,-5,则这6名同学的数学平均成绩为分.★6.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2017)=.7.计算:(1)(+5)+(-13)+9;(2)(-2.8)++(-1.2)+(-0.4);(3)0.85+(+2.75)++(-1.85)+(-5);(4).8.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地.规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B地在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?9.用简便方法计算:某产粮专业户出售余粮10袋,每袋的质量如下(单位:kg):199,201,197,203,200,195,197,199,202,196.(1)如果每袋余粮以200 kg为标准,求这10袋余粮总计超过多少千克或者不足多少千克.(2)这10袋余粮一共有多少千克?创新应用★10.已知钟面上有1~12共12个数字,试在某些数字的前面添上负号,使钟面上的所有数字之和等于零.(只要写出其中的一种方法即可)11.某市食品药品监督管理局对标准容量为每瓶500 mL(误差允许范围±1.5 mL)的某品牌的冰红茶进行了一次抽检,抽取10瓶样品,编号1~10后进行检测,结果如图(单位:mL):(1)这10瓶冰红茶的总容量是多少?请尝试用简便方法解决.(2)单独从容量的角度分析,你对该批产品有何评价?参考答案知能演练·提升能力提升1.D-88+200+(-111)=1>0.2.C选项A应先把互为相反数的两个数相加;选项B应先把同分母的分数相加;选项D应先把相加得整数的两个数相加.3.(1)12.25(2)-14.5(1)原式=0.815+5.185+6.25=6+6.25=12.25;(2)原式=-(3.125+6.875+4.5)=-(10+4.5)=-14.5.4.4 0370绝对值小于2 019的整数为±2 018,±2 017,±2 016,…,±2,±1,0,共有2 018×2+1=4 037(个),除零外,其余整数两两互为相反数,故它们的和为0.5.88=88(分).6.-1 009原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2 013)+(+2 014)]+[(-2 015)+(+2 016)]+(-2 017)=-1 009.7.解(1)原式=[(+5)+9]+(-13)=14+(-13)=1.(2)原式=[(-2.8)+(-1.2)]+=-4.(3)原式=[0.85+(-1.85)]++(-5)=(-1)+(+2)+(-5)=-4.(4)原式==(-8)+(+4)=-4.8.解(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B地在A地的东侧,且两地相距28 km.(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),故这一天共消耗油33.3 L.9.解(1)以200 kg为基准,超过200 kg的数记作正数,不足200 kg的数记作负数,则这10袋余粮的质量对应的数分别为-1,+1,-3,+3,0,-5,-3,-1,+2,-4.所以(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)=-11(kg).答:这10袋余粮总计不足11 kg.(2)200×10+(-11)=2 000-11=1 989(kg).答:这10袋余粮一共有1 989 kg.创新应用10.分析由于1+2+…+12=(1+12)×12÷2=78,因此只需将和分为+39与-39两部分即可.解答案不唯一,如1+2+3+4+5+(-6)+7+8+9+(-10)+(-11)+(-12)=(1+2+3+4+5+7+8+9)+[(-6)+(-10)+(-11)+(-12)]=39+(-39)=0.11.解(1)用正、负数表示每瓶容量偏离标准容量的数值分别为-1.1,-0.5,+0.5,+1.1,+0.2,-0.4,-0.2,+0.8,+1.5,+0.9.这10瓶冰红茶容量分别与标准容量的偏差值的总和是(-1.1)+(-0.5)+0.5+1.1+0.2+(-0.4)+(-0.2)+0.8+1.5+0.9=[(-1.1)+1.1]+[(-0.5)+0.5]+[(-0.2)+0.2]+(-0.4)+0.8+1.5+0.9=2.8(mL).这10瓶冰红茶的总容量为500×10+2.8=5 002.8(mL).(2)单独从容量的角度分析,该品牌的冰红茶单瓶容量都在国家误差允许范围内,并且大部分都超过标准容量,质量有保证,值得信赖.二元一次方程组的应用(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.小颖家离学校1200米3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y 分钟,根据题意可列方程组为( ) A. B.C. D.2.(2013·潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A.B.C.D.3.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是( )A.50元,150元B.150元,50元C.100元,50元D.50元,100元二、填空题(每小题4分,共12分)4.甲种电影票每张20元,乙种电影票每张15元.若购买甲,乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.5.学校组织一次有关历史知识的竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得了76分,那么他答对道题.6.一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为cm2.三、解答题(共26分)7.(8分)(2013·8.(8分)(2013·宜宾中考)2013年4月20日,四川省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【拓展延伸】9.(10分)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解题过程.答案解析1.【解析】选 B.第一个等量关系式为:x+y=1.2,第二个等量关系式为:x+y=16,构成方程组2.【解析】选B.根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”所得的方程是x-y=22;调查的吸烟的人数是,不吸烟的人数是,根据共调查了10000人,列方程得+=10000,所以可列方程组3.【解析】选B.设甲的定价为x元,乙的定价为y元.则解得:4.【解析】设购买甲种电影票x张,乙种电影票y张,由题意得解得即甲种电影票买了20张.答案:20【归纳整合】二元一次方程组的优点当我们遇到两个量之间出现两种等量关系时,可以考虑列二元一次方程组解题.虽然本题也可列一元一次方程,但相比较而言,列二元一次方程组比列一元一次方程更好.5.【解析】设他答对x道题,答错或不答y道题.根据题意,得解得答案:166.【解析】设长方形的长为xcm,宽为ycm,则根据题意得解这个方程组得所以长方形的面积xy=.答案:7.【解析】设大宿舍有x间,小宿舍有y间,根据题意得解得答:大宿舍有30间,小宿舍有20间.8.【解析】设规定时间为x天,生产任务是y顶帐篷,由题意得,解得答:规定时间是6天,生产任务是800顶帐篷.9.【解析】本题答案不唯一,方法一:问题:普通公路段和高速公路段各长多少千米?设普通公路段长为xkm,高速公路段长为ykm.由题意可得:解得答:普通公路段长为60km,高速公路段长为120km.方法二:问题:汽车在普通公路段和高速公路段上各行驶了多少小时?设汽车在普通公路段上行驶了xh,在高速公路段上行驶了yh.由题意可得:解得:答:汽车在普通公路段上行驶了1h,在高速公路段上行驶了1.2h.8.3 实际问题与二元一次方程组第3课时实际问题与二元一次方程组(3)——探究3一、导学1.导入课题:在上两节课的基础上,这节课我们继续来学习用列表分析的方式设未知数,列方程组来解应用题.2.学习目标:(1)巩固列方程组解应用题的一般步骤.(2)学会用列表的方式分析问题中蕴含的数量关系,并列二元一次方程组.3.学习重点、难点:借助列表分析问题中蕴含的数量关系,并列二元一次方程组.4.自学指导:(1)自学内容:课本P100~P101探究3.(2)自学时间:10分钟.(3)自学要求:认真阅读课文,注意探究3中的一些条件是用示意图给出的,能从图中正确获取信息,并会列表整理这些信息.(4)探究提纲:①要求的问题是:销售款-(原料费+运输费).其中运输费包括公路运费和铁路运费,它们分别为15000元和97200元.因此,需要求出销售额和原料费,又销售款=产品销售单价×产品数量,原料费=原料购进单价×原料数量,结合已知条件分析,需先求出产品数量和原料数量.②设制成xt产品,购买yt原料,根据题中数量关系填写下表:产品xt(从工厂到B地)原料yt(从A地到工厂)合计由上表,列方程组1.5201015000 1.211012097200.x yx y+=⎧⎨+=⎩()()③解②中方程组,得300400 xy=⎧⎨=⎩.因此,销售款为2400000元,原料费为400000元,销售款比原料费与运输费的和多1887800元.二、自学同学们结合探究提纲相互交流研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和存在的问题.①是否弄清解题思路.②能否理顺题中数量关系.(2)差异指导:对少数学有困难的学生进行引导.2.生助生:小组内学生之间相互交流研讨,互帮互学.四、强化1.从图表获取信息的要点.设每餐甲、乙两种原料各x克,y克恰好满足病人的需要.(1)填表:(2)列方程组为0.50.7350.440;x yx y+=⎧⎨+=⎩(3)解方程组得2830 xy=⎧⎨=⎩;(4)答:每餐甲、乙两种原料各28克,30克恰好满足病人的需要.五、评价1.学生学习的自我评价:各小组长汇报本组的学习收获和不足.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的重点是让学生抓住实际问题的等量关系建立方程组模型,以此解决行程问题、图文信息问题和方案设计问题等.教学中采取让学生独立思考、合作交流等方式,帮助学生形成严谨的思维方式,养成良好的学习习惯.(时间:12分钟满分:100分)一、基础巩固(60分)·km ),铁路运费为1元/(t ·km ),飞腾公司共支付公路运费750元,铁路运费4000元.根据以上信息计算:购进原料多少吨?加工后销往B 地的产品为多少吨?设购进原料xt ,加工后销往B 地的产品为yt.(1) 填表:(2) 根据上表中反映的信息列方程组为30157501501004000x y x y +=⎧⎨+=⎩; (3)解方程组得2010x y =⎧⎨=⎩; (4)答:购进原料20t.加工后销往B 地的产品为10t.2.(30分)A 地至B 地的航线长9750km ,一架飞机从A 地顺风飞往B 地需12.5h ,它逆风飞行同样的航线需13h ,求飞机的平均速度与风速.解:设飞机的平均速度为xkm/h ,风速为ykm/h.由题意,得()12.59750139750.x y x y +⨯=⎧⎪⎨-⨯=⎪⎩(), 化简,得780750.x y x y +=-=⎧⎨⎩,①②①+②,得2x=1530.解得x=765.把x=765代入①,得y=15.∴这个方程组的解为76515.x y =⎧⎨=⎩, 答:飞机的平均速度为765km/h ,风速为15km/h.二、综合运用(20分)3.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需54min ,从乙地到甲地需42min.甲地到乙地全程是多少?解:设从甲地到乙地的上坡路为xkm,平路为ykm.由题意,得54346042.5460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,①②解得1.53.1.1.6xx yy=⎧∴+=⎨=⎩,,答:甲地到乙地全程是3.1km.三、拓展延伸(20分)4.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花多少钱?解:设打折前A商品每件x元,B商品每件y元.由题意,得60301080 5010840.x yx y+=⎧⎨+=⎩,解得164.xy=⎧⎨=⎩,500x+500y=500×16+500×4=10000. 10000-9600=400(元).答:比不打折少花400元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档