2019版高考数学一轮复习 第九章 解析几何 第一节 直线与方程实用

合集下载

高考数学一轮复习 第九章解析几何9.1直线及其方程教学案 理

高考数学一轮复习 第九章解析几何9.1直线及其方程教学案 理

第九章 解析几何9.1 直线及其方程考纲要求1.在平面直角坐标系中,结合具体图形,掌握确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.1.直线的倾斜角与斜率(1)直线的倾斜角:①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴____与直线l ____方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为______.②倾斜角的取值范围为________.(2)直线的斜率:①定义:一条直线的倾斜角α的______叫做这条直线的斜率,斜率常用小写字母k 表示,即k =______,倾斜角是______的直线的斜率不存在.②过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =________.2.直线的方程(1)点斜式:已知直线过点(x 0,y 0),斜率为k ,则直线方程为____________,它不包括__________的直线.(2)斜截式:已知直线在y 轴上的截距b 和斜率k ,则直线方程为__________,它不包括垂直于x 轴的直线.(3)两点式:已知直线经过两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则直线方程为______________,它不包括垂直于坐标轴的直线.(4)截距式:已知直线在x 轴和y 轴上的截距分别为a ,b (其中a ≠0,b ≠0),则直线方程为____________,它不包括垂直于坐标轴的直线和过原点的直线.(5)一般式:任何直线的方程均可写成______________的形式.1.直线x -3y +a =0(a 为常数)的倾斜角α为( ).A .π6B .π3C .23π D.56π 2.过点(-1,2)且倾斜角为150°的直线方程为( ).A .3x -3y +6+3=0B .3x -3y -6+3=0C .3x +3y +6+3=0D .3x +3y -6+3=03.已知A (3,1),B (-1,k ),C (8,11)三点共线,则k 的取值是( ).A .-6B .-7C .-8D .-94.直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ).A .1B .-1C .-2或-1D .-2或15.若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角α为钝角,则实数a 的取值范围是__________.一、直线的倾斜角与斜率【例1】(1)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ).A .⎣⎢⎡⎦⎥⎤0,π4B .⎣⎢⎡⎭⎪⎫3π4,π C .⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π D .⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π (2)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为__________.方法提炼直线倾斜角的范围是[0,π),但这个区间不是正切函数的单调区间.因此在考虑倾斜角与斜率的关系时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).请做演练巩固提升1二、直线方程的求法【例2】已知△ABC 中,A (1,-4),B (6,6),C (-2,0).求:(1)△ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程;(2)BC 边的中线所在直线的一般式方程,并化为截距式方程.方法提炼求直线方程的方法主要有以下两种:(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程;(2)待定系数法:先设出直线方程,再根据已知条件求出待定系数,最后代入求出直线方程.请做演练巩固提升2,3三、直线方程的应用【例3-1】已知点A (2,5)与点B (4,-7),试在y 轴上求一点P ,使得|PA |+|PB |的值为最小.【例3-2】已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.方法提炼在求直线方程的过程中,若有以直线为载体的面积、距离的最值等问题,一般要结合函数、不等式或利用对称来加以解决.请做演练巩固提升5易忽视过原点的直线而致误【典例】过点M (3,-4)且在两坐标轴上的截距互为相反数的直线方程为__________.解析:(1)当过原点时,直线方程为y =-43x , (2)当不过原点时,设直线方程为x a +y-a=1,即x -y =a . 代入点(3,-4),∴a =7,即直线方程为x -y -7=0.答案:y =-43x 或x -y -7=0 答题指导:解决与直线方程有关的问题时,要注意以下几点:(1)充分理解直线的倾斜角、斜率的意义;(2)掌握确定直线的两个条件;(3)注意数形结合的运用,在平时的学习和解题中,多思考一些题目的几何意义;(4)注意逆向思维、发散思维的训练.1.直线x sin α-y +1=0的倾斜角的变化范围是( ).A .⎝⎛⎭⎪⎫0,π2 B .(0,π) C .⎣⎢⎡⎦⎥⎤-π4,π4 D .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π 2.光线自点M (2,3)射到N (1,0)后被x 轴反射,则反射光线所在的直线方程为( ).A .y =3x -3B .y =-3x +3C .y =-3x -3D .y =3x +33.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在的直线方程为( ).A.x+y=0 B.x-y+2=0C.x+y+2=0 D.x-y=04.点P在直线x+y-4=0上,O为坐标原点,则|OP|的最小值为__________.5.若直线l过点P(-2,3),与两坐标轴围成的三角形面积为4,求直线l的方程.参考答案基础梳理自测知识梳理1.(1)①正半轴 向上 0° ②[0°,180°)(2)①正切值 tan α 90° ②y 2-y 1x 2-x 12.(1)y -y 0=k (x -x 0) 垂直于x 轴(2)y =kx +b (3)y -y 1y 2-y 1=x -x 1x 2-x 1(4)x a +y b =1 (5)Ax +By +C =0(其中A ,B 不同时为0)基础自测1.A 解析:易知直线的斜截式方程为y =33x +33a , ∴k =33,tan α=33. ∴α=π6. 2.D 解析:由直线的倾斜角α=150°,得k =tan α=-33, 由点斜式方程得y -2=-33(x +1),即3x +3y -6+3=0. 3.B 解析:∵A ,B ,C 三点共线,∴k -1-1-3=11-18-3. ∴k =-7.4.D 解析:当直线l 过原点时,则-2-a =0,即a =-2;当直线l 不过原点时,原方程可化为x a +2a+y a +2=1, 由a +2a=a +2,得a =1. ∴a 的值为-2或1.5.-2<a <1 解析:tan α=2a -(1+a )3-(1-a )=a -12+a. 由a -12+a<0得-2<a <1. 考点探究突破【例1】(1)B (2)k ≤-4或k ≥34解析:(1)将直线方程变形为y =-1a 2+1x -1a 2+1, ∴直线的斜率k =-1a 2+1. ∵a 2+1≥1,∴0<1a 2+1≤1. ∴-1≤k <0,即-1≤tan α<0.∴34π≤α<π.故选B. (2)如图,由斜率公式,得k AP =1-(-3)1-2=-4, k BP =1-(-2)1-(-3)=34, ∴k ≥34或k ≤-4. 【例2】解:(1)平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标分别为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2, 所以这条直线的方程为y +21+2=x +1272+12. 整理,得6x -8y -13=0,化为截距式方程为x 136-y 138=1. (2)因为BC 边上的中点坐标为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0. 化为截距式方程为x 117-y 11=1. 【例3-1】解:如图所示,先求出A 点关于y 轴的对称点A ′(-2,5),∴|PA |+|PB |=|PB |+|PA ′|.∴当P 为直线A ′B 与y 轴的交点时,|PA ′|+|PB |的值最小,即|PA |+|PB |的值最小.直线A ′B 的方程为y +75+7=x -4-2-4, 化简为2x +y -1=0.令x =0,得y =1.故所求P 点坐标为(0,1).【例3-2】解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b=1. 由基本不等式知3a +2b ≥26ab ,即ab ≥24(当且仅当3a =2b,即a =6,b =4时等号成立). 又S =12a ·b ≥12×24=12, 此时直线方程为x 6+y4=1,即2x +3y -12=0. ∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0.演练巩固提升1.D 解析:直线x sin α-y +1=0的斜率是k =sin α,又∵-1≤sin α≤1,∴-1≤k ≤1.当0≤k ≤1时,倾斜角的范围是⎣⎢⎡⎦⎥⎤0,π4;当-1≤k <0时,倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π. 2.B 解析:点M 关于x 轴的对称点M ′(2,-3),则反射光线即在直线NM ′上,由y -0-3-0=x -12-1,得y =-3x +3. 3.B 解析:∵k BC =3-11-3=2-2=-1, ∴BC 边上的高所在直线过A (-1,1)且k =-1k BC=1. ∴所求直线方程为y -1=x +1,即x -y +2=0.4.2 2 解析:根据题意知,|OP |的最小值为原点O 到直线x +y -4=0的距离.根据点到直线的距离公式,得42=2 2. 5.解:由题意知,直线l 的斜率存在,设为k ,则l 的方程为y -3=k (x +2).令x =0,得y =2k +3;令y =0,得x =-3k-2, 则12·|2k +3|·⎪⎪⎪⎪⎪⎪-3k -2=4, ∴(2k +3)⎝ ⎛⎭⎪⎫3k +2=±8. 若(2k +3)⎝ ⎛⎭⎪⎫3k +2=8, 化简得4k 2+4k +9=0,方程无解;若(2k +3)⎝ ⎛⎭⎪⎫3k +2=-8, 化简得4k 2+20k +9=0, 解得k =-92或-12. ∴直线l 的方程为y -3=-92(x +2)或y -3=-12(x +2), 即9x +2y +12=0或x +2y -4=0.。

(通用版)2019版高考数学一轮复习第9章平面解析几何1第1讲直线的倾斜角与斜率、直线的方程教案理

(通用版)2019版高考数学一轮复习第9章平面解析几何1第1讲直线的倾斜角与斜率、直线的方程教案理

第1讲 直线的倾斜角与斜率、直线的方程在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. 能根据两条直线的斜率判定这两条直线平行或垂直.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的取值范围是[0,π). 2.直线的斜率判断正误(正确的打“√”,错误的打“×”) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案:(1)× (2)× (3)× (4)× (5)√(教材习题改编)经过点P 0(2,-3),倾斜角为45°的直线方程为( ) A .x +y +1=0 B .x +y -1=0 C .x -y +5=0D .x -y -5=0解析:选D .由点斜式得直线方程为y -(-3)=tan 45°(x -2)=x -2,即x -y -5=0,故选D.如果AC <0,BC <0,那么直线Ax +By +C =0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C.由题意知直线的斜率k =-A B <0,直线在y 轴上的截距b =-C B>0,故选C. 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =________. 解析:tan 3π4=2y +1-(-3)4-2=2y +42=y +2,因此y +2=-1,y =-3. 答案:-3(教材习题改编)经过点(-4,3)且在两坐标轴上的截距相等且不过原点的直线方程为________.解析:由题意可设方程为x +y =a , 所以a =-4+3=-1. 所以直线方程为x +y +1=0. 答案:x +y +1=0直线的倾斜角与斜率[典例引领](1)直线2xcos α-y -3=0⎝⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的变化范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3(2)已知直线l :x -my +3m =0上存在点M 满足与两点A (-1,0),B (1,0)连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是( ) A .[-6, 6] B.⎝ ⎛⎭⎪⎫-∞,-66∪⎝ ⎛⎭⎪⎫66,+∞。

高考数学一轮复习第九章解析几何第一节直线与方程实用理

高考数学一轮复习第九章解析几何第一节直线与方程实用理

倾斜角α 锐角 0° 钝角
90°
2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=
tan α的单调性,如图所示:
(1)当α取值在
0,π2
内,由0增大到
π 2
α≠π2
时,k由0增大并趋向于正无穷大;
(2)当α取值在π2,π内,由π2α≠π2增大到π(α≠π)时,k由负无 穷大增大并趋近于0.
解决此类问题,常采用数形结合思想.
[易错提醒]
直线倾斜角的范围是[0,π),而这个区间不是正切函 数的单调区间,因此根据斜率求倾斜角的范围时,要分 0,π2 与 π2,π 两种情况讨论.由正切函数图象可以看 出,当α∈ 0,π2 时,斜率k∈[0,+∞);当α= π2 时,斜率 不存在;当α∈π2,π时,斜率k∈(-∞,0).
两直线的位置关系
解析:设l1,l2,l3的倾斜角分别为α1,α2,α3.由题图易知 0<α3<α2<90°<α1<180°,∴tan α2>tan α3>0>tan α1, 即k2>k3>k1. 答案:k2>k3>k1
(3)已知直线l1:x=-2,l2:y=
1 2
,则直线l1与l2的位置关系
是________.
答案:垂直
(4)已知直线l1:ax+(3-a)y+1=0,l2:x-2y=0.若l1⊥l2, 则实数a的值为________. 解析:由题意,得a-a 3=-2,解得a=2. 答案:2
讲练区 研透高考· 完成情况
[全析考法]
直线的倾斜角与斜率
1.直线都有倾斜角,但不一定都有斜率,二者的关系具 体如下:
斜率k k=tan α>0 k=0 k=tan α<0 不存在

(全国通用版)2019版高考数学大一轮复习_第九章 平面解析几何 第9节 第1课时 直线与圆锥曲线课件 理 新人

(全国通用版)2019版高考数学大一轮复习_第九章 平面解析几何 第9节 第1课时 直线与圆锥曲线课件 理 新人

第9节圆锥曲线的综合问题最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.知识梳理1.直线与圆锥曲线的位置关系判断直线 l 与圆锥曲线 C 的位置关系时,通常将直线 l 的方程 Ax +By +C 0(A ,B 不同时为 0)代入圆锥曲线C 的方程 F (x ,y )=0,消去 y (也可以消去 x )得一个 关于变量 x (或变量 y )的一元方程, 即Ax +By +C =0, 消去 y ,得 ax 2+bx +c =0.F (x ,y )=0(1)当a≠0时,设一元二次方程ax+bx+c=0的判别式为Δ,则:2Δ>0⇔直线与圆锥曲线相交C______;Δ=0⇔直线与圆锥曲线相切C______;Δ<0⇔直线与圆锥曲线相离C______.(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线平行l与双曲线的渐近线的位置关系是______;若平C行为抛物线,则直线l与抛物线的对称轴的位置关系是______________.2.圆锥曲线的弦长设斜率为 k (k ≠0)的直线 l 与圆锥曲线 C 相交于 A ,B 两点,A (x 1,y 1),B (x 2y 2),则|AB |= 1+k 2|x 1-x 2| 2 2 1+k ·(x +x )-4x x =__________________________1 2 1 2 1 2 = 1+k 12·|y 1-y 2|=_______________________________.1+·(y +y )-4y y 2 1 2 1 2 k[常用结论与微点提醒]1.直线与椭圆位置关系的有关结论(1)过椭圆外一点总有两条直线与椭圆相切;(2)过椭圆上一点有且仅有一条直线与椭圆相切;(3)过椭圆内一点的直线均与椭圆相交.2.直线与抛物线位置关系的有关结论(1)过抛物线外一点总有三条直线和抛物线有且只有一个公共点,两条切线和一条与对称轴平行或重合的直线;(2)过抛物线上一点总有两条直线与抛物线有且只有一个公共点,一条切线和一条与对称轴平行或重合的直线;(3)过抛物线内一点只有一条直线与抛物线有且只有一个公共点,一条与对称轴平行或重合的直线.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.((2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.( )(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C只有一个公共点.( )(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长=1+t2|y1-y2|.( )解析(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.答案(1)√ (2)× (3)×(4)√2 2x y2.直线y=kx-k+1与椭圆+=1的位置关系为( )9 4A.相交C.相离B.相切D.不确定解析直线y=kx-k+1=k(x-1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.答案 A23.(教材习题改编)已知与向量v=(1,0)平行的直线l与双曲线x4-y2=1相交于A,B两点,则|AB|的最小值为________.2解析由题意可设直线l的方程为y=m,代入x4-y2=1得x2=4(1+m2),所以x1=4(1+m2)=2 1+m2,x2=-2 1+m2,所以|AB|=|x1-x2|=4 1+m2,所以|AB|=4 1+m2≥4,即当m=0时,|AB|有最小值 4.答案 44.过抛物线 y =2x 的焦点的直线与抛物线交于 A (x 1,y 1),B (x 2,2 y 2)两点,则x 1x 2等于________. 1解析易知抛物线 y =2x 2的焦点为0, ,焦点的直线的斜率为 k ,则其方程8 2 y 2x =, 1 8 1得 2x 2-kx -=0,故x 1x 2=-161 . 1 8 为 y =kx +,由 y =kx + 8 答案-1615.已知F 1,F 2是椭圆16x +25y =1 600的两个焦点,P 是椭圆上2 2 一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.解析 由题意可得|PF 1|+|PF 2|=2a =20,|PF 1|+|PF 2| =|F 1F 2| =4c =144=(|PF 1|+|PF 2|) -2|PF 1|·|PF 2|2 2 2 2 2 =202-2|PF 1|·|PF 2|, 解得|PF |·|PF |=1 128, 所以△F PF 1的面积2为 |P F |·|PF 2|=12×128=64. 1 2 1 2 答案 64第1 课时直线与圆锥曲线考点一直线与圆锥曲线的位置关系2 2 x y 【例 1】在平面直角坐标系 xOy 中,已知椭圆 C 1:+ 2=1(a >b >0左焦点为2 a b F 1(-1,0),且点 P (0,1)在 C 1上.(1)求椭圆 C 1的方程;(2)设直线 l 同时与椭圆 C 1和抛物线 C 2:y 2=4x 相切,求直线 l 的方程.解 (1)椭圆C 1的左焦点为F 1(-1,0),∴c =1,又点P (0,1)在曲线C 1上,0 1 ∴+ 2=1,得 b =1,则 a 2=b 2+c 2=2,2 a b 2所以椭圆 C 1的方程为x 2+y 2=1.(2)由题意可知,直线 l 的斜率显然存在且不等于 0,设直线 l 的方程为 y =m , x 2 2+y 2=1, 由 消去 y ,得(1+2k 2)x 2+4kmx +2m 2-2=0.y =kx +m因为直线 l 与椭圆 C 1相切,所以 Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0.整理得 2k 2-m 2+1=0.①2y =4x , 消去 y ,得 k 2x 2+(2km -4)x +m 2=0. 由y =kx +m 因为直线 l 与抛物线 C 2相切, 所以 Δ2=(2km -4)2-4k 2m 2=0,整理得 km =1.② 2 k =, k =- 22, 2 综合①②,解得或 m = 2 m =-2.所以直线 l 的方程为 y = 22x + 2或 y =- 22x- 2.规律方法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,消元后,应注意讨论含x2项的系数是否为零的情况,以及判别式的应用.但对于选择题、填空题要充分利用几何条件,用数形结合的方法求解.【训练 1】若直线 mx +ny =4与圆 O :x 2+y 2=4没有交点,则过点 P (m ,的直 2 2 x y 线与椭圆+=1的交点个数为( ) 9 4A.至多一个B.2 D.0C.1 4 解析∵直线 m x +ny =4和圆 O :x 2+y 2=4没有交点,∴m 2+n 2>2,∴m 2+n 2<4,4-m 2 2 2 2 2 2 m n m ∴+ <+ 9 4 9 5 36 x y =1- m 2<1,∴点(m ,n )在椭圆+=1的内∴过点(m , 9 4 4 2 2 x y n )的直线与椭圆+=1的交点有 2个,故选 B.9 4 答案 B考点二弦长问题2 2 x y 【例 2】 (2018·黄山二模)设 F 1,F 2分别是椭圆 D :+ 2=1(a >b >0)的右焦点,2 a b π 过 F 2作倾斜角为 3的直线交椭圆 D 于 A ,B 两点,F 1到直线 AB 的距离2 3,连接椭圆 D 的四个顶点得到的菱形的面积为 2 5.(1)求椭圆 D 的方程;(2)设过点 F 2的直线 l 被椭圆 D 和圆 C :(x -2)2+(y -2)2=4所截得的弦分别为 m ,n ,当 m ·n 最大时,求直线 l 的方程.解 (1)设 F 1的坐标为(-c ,0),F 2的坐标为(c ,0)(c >0),则直线 AB 的方程为 y = 3(x -c ),即 3x -y - 3c=0,|- 3c - 3c | ∴ 2=2 3,解得 c =2. ( 3)2+(-1)∵12·2a ·2b =2 5,∴ab =5,又 a 2=b 2+c 2,∴a 2=5,b 2=1, 2 ∴椭圆 D 的方程为x 5+y 2=1.|2t | t 2+1 (2)由题意知,可设直线 l 的方程为 x =ty +2,则圆心 C 到直线 l 的距离 d =, 4 ∴n =2 22-d 2= t 2+1, x =ty +2, 由x 2 得(t 2+5)y 2+4ty -1=0, +y 2= 1 5设直线 l 与椭圆 D 的交点坐标为(x 1,y 1),(x 2,y 2),-1 2 t +52 5(t 2+1) t 2+5 4t ∴y 1+y 2=- ,y 1y 2= ,∴m = 1+t 2|y 1-y 2|= , 2 t +5 8 5· t 2+1 t 2+5 8 5 ∴m ·n = = ≤2 5 4 t 2+1+ t 2+ 14 t 2+ 1当且仅当 t 2+1= ,即t =± 3时,等号成立,∴直线 l 的方程为 x - 3y -2=0或 x + 3y -2=0.规律方法弦长的三种常用计算方法(1)定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义,可优化解题.(2)点距法:将直线的方程和圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长.(3)弦长公式法:它体现了解析几何中设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系得到的.【训练2】 (2018·郑州一模)已知倾斜角为 60°的直线l 通过抛物线x =4y 的焦点,且与抛物线相交于A ,B 两点,则弦|AB | =________. 2 y = 3x +1, 得y 2-14y +1=0. 解析直线 l 的方程为 y = 3x +1,由x 2=4y , 设 A (x 1,y 1),B (x 2,y 2),则 y 1+y 2=14,∴|AB |=y 1+y 2+p =14+2=16.答案 16考点三中点弦问题(多维探究)命题角度 1利用中点弦确定直线或曲线的方程2 2 x y 【例 3-1】 (1)已知椭圆 E :+ 2=1(a >b >0)的右焦点为 F (3,0),点 F 的直2 a b 线交 E 于 A ,B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为( ) 2 2 2 2 x y A.+=1 45 36 x y B.+=1 36 272 2 2 2 x y C.+=1 27 18 x y D.+=1 18 92 2 x y (2)(一题多解)已知 P (1,1)为椭圆+=1内一定点,经过 P 引一条弦,此弦4 2 被 P 点平分,则此弦所在的直线方程为________.解析 (1)因为直线 A B 过点 F (3,0)和点(1,-1), 2 2 2 a 1 2 x y 2 2 所以直线 A B 的方程为 y = (x -3),代入椭圆方程 2+ 2=1消去 y ,得4+ b x a b 3 2 9 4 - a 2x + a 2-a 2b 2=0,3 2 a 2 所以 A B 的中点的横坐标为 a 2 =1,即 a 2=2b 2, 24+b 2又 a 2=b 2+c 2,所以 b =c =3,a =3 2.(2)法一易知此弦所在直线的斜率存在,所以设其方程为 y=k (x -1),此弦的两 端点坐标分别为 A (x 1,y 1),B (x 2,y 2).y -1=k (x -1), 由x y 2 2 消去 y 整理得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0, +=1, 4 24k (k -1) 2k 2+1∴x 1+x 2= , 4k (k -1) =2,解得 k =-12. 2k 2+1 又∵x 1+x 2=2,∴ 1 2 故此弦所在的直线方程为 y -1=- (x -1),即 x +2y -3=0.法二易知此弦所在直线的斜率存在,所以设斜率为 k ,此弦的两端点坐标分别为 A (x 1,y 1),B (x 2,y 2), 2 2 2 2 4 2 2 x y x y 则+ 1=1①,+2=1②, 1 4 2 (x 1+x 2)(x 1-x 2)(y 1+y 2)(y 1-y 2) ①-②得 + =0, 4 2x 1-x 2 2 y 1-y 2 =-12. x 1-x 2 ∵x 1+x 2=2,y 1+y 2=2,∴+y 1-y 2=0,∴k = 1 2 ∴此弦所在的直线方程为 y -1=- (x -1),即 x +2y -3=0.答案 (1)D (2)x +2y -3=0命题角度2利用中点弦解决对称问题【例3-2】若抛物线y=2x2上两点A(x1,y1),B(x2,y2)关于直线y=x+m 称,且x1x2=-12,则实数m的值为________.解析由题意可设直线A B的方程为y=-x+b,代入y=2x2得2x2+x-b=0,-b∴x1+x2=-12,x1x2==-12,2∴b=1,即直线A B的方程为y=-x+1.设A B的中点为M(x0,y0),则 x 0= 1 2x +x 2=-14,代入 y 0=-x 0+1, 5 4 1 5得 y 0=,则 M -, , 4 4 1 5又 M -, 在直线 y =x +m 上, 4 4 ∴=-+m ,∴m =32.5 1 4 43 2答案规律方法处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式含y 1-y 有 x 1+x 2,y 1+y 2, x 1-x 2 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点 A ,于直线 l 对称,则 l 垂直直线 A B 且A ,B 的中点在直线l 上的应用.【训练3】若椭圆的中心在原点,一个焦点为 (0,2),直线y=3x +7与椭圆相交所得弦的中点的纵坐标为 1,则这个椭 圆的方程为________.解析因为椭圆的中心在原点,一个焦点为(0,2),则 a 2-4,所以可设椭圆方 y 2 2 +bx 2=1, 程为b 2+4 y =3x +7, 由y 2 x 2 消去 x ,整理得(10b 2+4)y 2-14(b 2+4)y -9b 4+13b 2+=0, +b 2=1, b 2+4设直线 y =3x +7与椭圆相交所得弦的端点为(x 1,y 1),(x 2,y 2),14(b 2+4) 由一元二次方程根与系数的关系得:y 1+y 2==2. 10b 2+4 2 2 x y 解得:b 2=8.所以 a 2=12.则椭圆方程为+=1. 8 12 2 2 x y 答案 +=1 8 12。

近年高考数学一轮复习第9章解析几何第1课时直线方程练习理(2021年整理)

近年高考数学一轮复习第9章解析几何第1课时直线方程练习理(2021年整理)

2019高考数学一轮复习第9章解析几何第1课时直线方程练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第9章解析几何第1课时直线方程练习理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第9章解析几何第1课时直线方程练习理的全部内容。

第1课时直线方程1.直线3x+错误!y-1=0的倾斜角是()A.错误!B.错误!C.错误!D。

错误!答案C解析直线3x+错误!y-1=0的斜率k=-错误!,倾斜角为错误!。

2.直线l过点M(-2,5),且斜率为直线y=-3x+2的斜率的14,则直线l的方程为()A.3x+4y-14=0 B.3x-4y+14=0C.4x+3y-14=0 D.4x-3y+14=0答案A解析因为直线l的斜率为直线y=-3x+2的斜率的错误!,则直线l的斜率为k=-错误!,故y-5=-错误!(x+2),得3x+4y-14=0,故选A.3.直线(2m2-m+3)x+(m2+2m)y=4m+1在x轴上的截距为1,则实数m的值为( )A.2或错误!B.2或-错误!C.-2或-错误!D.-2或错误!答案A解析令y=0,则(2m2-m+3)x=4m+1,又2m2-m+3≠0,所以错误!=1,即2m2-5m+2=0,解得m=2或m=错误!.4.两直线错误!-错误!=1与错误!-错误!=1的图像可能是图中的哪一个( )答案B5.若直线l经过点A(1,2),且在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A.-1〈k<错误!B.k〉1或k〈错误!C。

错误!<k〈1 D.k〉错误!或k<-1答案D解析设直线的斜率为k,则直线方程为y-2=k(x-1),直线在x轴上的截距为1-错误!,令-3<1-错误!〈3,解不等式可得.也可以利用数形结合.6.直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足( ) A.ab〉0,bc<0 B.ab〉0,bc〉0C.ab〈0,bc〉0 D.ab<0,bc〈0答案A解析由于直线ax+by+c=0经过第一、二、四象限,∴直线存在斜率,将方程变形为y =-错误!x-错误!,易知-错误!〈0且-错误!>0,故ab>0,bc<0。

(全国通用版)2019版高考数学大一轮复习_第九章 平面解析几何 第1节 直线的方程课件 文 新人教A版

(全国通用版)2019版高考数学大一轮复习_第九章 平面解析几何 第1节 直线的方程课件 文 新人教A版

第1节直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识梳理1.直线的倾斜角(1)定义:当直线l与x轴相交时,我们取x轴作为基准,向上x轴正向与直线l方向之间所成的角α叫做直线l的倾斜角.(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为.[0,π)(3)范围:直线的倾斜角α的取值范围是.2.直线的斜率π(1)定义:当直线l的倾斜角α≠时,其倾斜角α的正切值2tan α叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tan α.(2)斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为y2-y1k=x2-x1 .3.直线方程的五种形式名称几何条件方程适用条件纵截距、斜_________________y=kx+b斜截式点斜式率_____y-y=k(x-x0)0 与x轴不垂直的直线过一点、斜_________________y-y x-x1 1=_____1 2率y2-y x-x1_________________与两坐标轴均不垂直两点式过两点x y+=1_____的直线a b_________________不过原点且与两坐标截距式纵、横截距_____轴均不垂直的直线Ax+By+C=0(A+2[常用结论与微点提醒]1.直线的倾斜角α和斜率k 之间的对应关系:0°<α<9 0° 90°<α<1 80°α 0° 90° 不存 2.求直线方程时要注意判断直线斜率是否存在;每条直线都有 k 0 k >0 k <0 在 倾斜角,但不一定每条直线都存在斜率.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)直线的倾斜角越大,其斜率就越大.( )(2)直线的斜率为tan α,则其倾斜角为α.( )(3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( )解析(1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k1=-1,k2=1,k1<k2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°.(3)两直线的斜率相等,则其倾斜角一定相等.答案(1)× (2)× (3)× (4)√2.(2018·衡水调研)直线x-y+1=0的倾斜角为( )A.30°B.45°C.120°D.150°解析由题得,直线y=x+1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°,故选B.答案 B3.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过( )A.第一象限C.第三象限B.第二象限D.第四象限解析由已知得直线Ax+By+C=0在x轴上的截距-CA>0,在y轴上的截距-CB>0,故直线经过第一、二、四象限,不经过第三象限.答案 C4.(必修2P89B5改编)若过两点A(-m,6),B(1,3m)的直线的斜率为12,则直线的方程为________.3m-6解析由题意得1+m=12,解得m=-2,∴A(2,6),∴直线AB的方程为y-6=12(x-2),整理得12x-y-18=0.答案12x-y-18=05.(必修2P100A9改编)过点P (2,3)且在两轴上截距相等的直线方程为________. 解析当纵、横截距均为 0时,直线方程为 3x -2y =0;当纵、横截距均不时, 设直线方程为ax +ay =1,则+=1,解得 a =5.所以直线方程为 x +y -5=0. 2 3 a a 答案 3x -2y =0或x +y -5=0考点一直线的倾斜角与斜率(典例迁移)π π【例1】(1)直线2x cos α-y-3=0α∈,的倾斜角的取值范围是( )6 3π ππ πA.,B.,6 3 4 3π ππ 2πC.,D.,4 24 3(2)(一题多解)(经典母题)直线l过点P(1,0),且与以A(2,1),B(0,3)为端点的线段有公共点,则直线l斜率的取值范围为________.解析 (1)直线2x cos α-y -3=0的斜率k =2cos α,因为 α∈, ,所以≤cos α≤ 23, π π 1 2 6 3因此 k =2·cos α∈[1, 3].设直线的倾斜角为 θ,则有 tan θ∈[1, 3]. π π 又 θ∈[0,π),所以 θ∈, , 4 3 π π 即倾斜角的取值范围是, . 4 3(2)法一设PA与PB的倾斜角分别为α,β,直线PA的斜率是k AP=1,直线PB的斜率是k BP=-3,当直线l由PA变化到与y轴平行的位置PC时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞). 当直线l由PC变化到PB的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3].故斜率的取值范围是(-∞,-3]∪[1,+∞).法二设直线l的斜率为k,则直线l的方程为y=k(x-1),即kx -y-k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1-k)(-3-k)≤0,即(k-1)(k+3)≥0,解得k≥1或k≤- 3.即直线l的斜率k的取值范围是(-∞,-3]∪[1,+∞).答案(1)B (2)(-∞,-3]∪[1,+∞)【迁移探究1】若将本例(2)中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.解设直线l的斜率为k,则直线l的方程为y=k(x+1),即kx-y+k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1+k)(-3+k)≤0,即(3k-1)(k-3)≤0,解得13≤k≤3.1即直线l的斜率的取值范围是3,3.【迁移探究2】若将本例(2)中的B点坐标改为B(2,-1),其他条件不变,求直线l倾斜角的范围.解由例1(2)知直线l的方程kx-y-k=0,∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1-k)(2k+1-k)≤0,即(k-1)(k+1)≤0,解得-1≤k≤1.π3π即直线l倾斜角的范围是0,∪,π.4 4规律方法 1.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=tan α的性,ππππ当α取值在0,,即由0增大到α≠ 时,k由0增大到+∞,当α取值在,π2 2 2 2ππ即由α≠ 增大到π(α≠π)时,k由-∞增大到0. 2 22.斜率的两种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k=tan α率.y2-y1(2)公式法:若已知直线上两点A(x1,y1),B(x2,y2),一般根据斜率公式k=x2-x1(x1≠x2)求斜率.【训练1】(2018·惠州一调)直线x sin α+y+2=0的倾斜角的取值范围是( )π3πA.[0,π)B.0,∪,π4 4πππC.0,D.0,∪,π4 4 2解析设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以1≤π 3πtan θ≤1,又θ∈[0,π),所以0≤θ≤或≤θ<π,故选B. 4 4答案 B考点二直线方程的求法【例2】根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;(3)直线过点(5,10),且到原点的距离为5.解(1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0≤α<π),从而cos α=±31010,则k=tan α=±13.1故所求直线方程为y=± (x+4).3即x+3y+4=0或x-3y+4=0.(2)由题设知纵、横截距不为0,设直线方程为ax +12-y a =1,又直线过点(-3,4),-3 4 从而 a +12-a =1,解得 a =-4或 a=9. 故所求直线方程为4x -y +16=0或x +3y -9=0.(3)当斜率不存在时,所求直线方程为x -5=0满足题意;当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.|10-5k | k 2+1=5,解得 k = .3 4 由点线距离公式,得 故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).【训练2】求适合下列条件的直线方程:(1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线 y =3x 的倾斜角的 2 倍;解 (1)设直线l 在x ,y 轴上的截距均为a , (3)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形.若a =0,即l 过点(0,0)和(4,1),1 ∴l 的方程为 y = x ,即 x -4y =0. 4 x y a a若 a ≠0,则设 l 的方程为+=1, 4 1 ∵l 过点(4,1),∴+=1,∴a =5,∴l 的方程为 x +y -5=0.a a 综上可知,直线 l 的方程为 x -4y =0或 x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α,则所求直线的倾斜角为∵tan 2αα.=3,∴tan 2α= 2tan α =-34.1-tan 2α又直线经过点A (-1,-3),因此所求直线方程为 y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1.又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为x -y +1=0或x +y -7=0.考点三直线方程的综合应用【例3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程. (1)证明直线l的方程可化为k(x+2)+(1-y)=0,x+2=0,x=-2,令解得1-y=0,y=1.∴无论k取何值,直线总经过定点(-2,1).1+2k (2)解由方程知,当 k ≠0时直线在 x 轴上的截距为- ,在 y 轴上的截距为 1k 1+2k - ≤-2, 解得 k >0;+2k ,要使直线不经过第四象限,则必须有 k 1+2k ≥1,当k =0时,直线为y =1,符合题意,故 k 的取值范围是 [0,+ ∞).(3)解由题意可知 k ≠0,再由 l 的方程,得 A ,0,B (0,1+2k ). 1+2k - k1+2k - <0, 解得 k >0.k 1+2k >0,依题意得1(1+2k )2 1 ·|1+2k |=2· = 4k +k +4≥2×(2×2+4)=4, 1 1 1 2 1 1+2k ∵S = ·|OA |·|OB |= · 2 k k 2 “=”成立的条件是 k >0且 4k =1k ,即 k=, 1 2∴S min =4,此时直线l 的方程为x -2y +4=0.规律方法 1.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.2.求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.【训练3】(一题多解)已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ ABO的面积的最小值及此时直线l的方程.解法一设直线方程为ax +by =1(a >0,b >0), 点 P (3,2)代入得+=1≥2 ab 6,得 ab ≥24, 3 2 a b1 从而 S △ABO = ab ≥12,23 2 b 2 当且仅当=时等号成立,这时 k =-=-, a b a 3 从而所求直线方程为2x +3y -12=0.法二依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 2且有 A 3-,0,B (0,2-3k ),k 1 2 2 ∴S △ABO = (2-3k )3- k 4 (-k ) 2 4 1 2 1 12+(-9k )+ 12+2(-9k )· (-k ) = ≥1 = ×(12+12)=12. 2当且仅当-9k =-4k ,即 k =-时,等号成立, 2 3即△ABO 的面积的最小值为12.故所求直线的方程为2x +3y -12=0.。

高考数学一轮总复习:第九章 解析几何1

高考数学一轮总复习:第九章 解析几何1

高考数学一轮总复习:第九章解析几何目录第1课时直线方程第2课时两直线的位置关系第3课时圆的方程及直线与圆的位置关系第4课时圆与圆的位置关系及圆的综合问题第5课时椭圆(一)第6课时椭圆(二)第7课时双曲线(一)第8课时双曲线(二)第9课时抛物线(一)第10课时抛物线(二)第11课时直线与圆锥曲线的位置关系专题研究一求曲线的轨迹方程专题研究二最值与范围问题专题研究三定点、定值问题专题研究四探索性问题第1课时直线方程1.直线x-3y+a=0(a为常数)的倾斜角为( )A.π6B.π3C.23π D.56π答案 A2.过点(-1,2)且倾斜角为150°的直线方程为( ) A.3x-3y+6+3=0 B.3x-3y-6+3=0C.3x+3y+6+3=0D.3x+3y-6+3=0答案 D3.在等腰三角形AOB中,AO=AB,点O(0,0),A(1,3),点B在x轴的正半轴上,则直线AB的方程为( )A.y-1=3(x-3) B.y-1=-3(x-3)C.y-3=3(x-1) D.y-3=-3(x-1)答案 D解析因为AO=AB,所以直线AB的斜率与直线AO的斜率互为相反数,所以kAB =-kOA=-3,所以直线AB的点斜式方程为y-3=-3(x-1).4.已知直线l的倾斜角为α,斜率为k,那么“α>π3”是“k>3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析当π2<α<π时,k<0;当k>3时,π3<α<π2.所以“α>π3”是“k>3”的必要不充分条件,故选B.5.如果AC<0且BC<0,那么直线Ax+By+C=0不通过( )A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析由条件知直线在两个坐标轴上的截距为正数.6.过点(5,2)且在y轴上的截距是在x轴上的截距的2倍的直线方程是( )A.2x+y-12=0 B.2x+y-12=0或2x-5y=0C.x-2y-1=0 D.x-2y-1=0或2x-5y=0答案 B解析设所求直线在x轴上的截距为a,则在y轴上的截距为2a.①当a=0时,所求直线经过点(5,2)和(0,0),所以直线方程为y=25x,即2x-5y=0;②当a≠0时,设所求直线方程为xa+y2a=1,又直线过点(5,2),所以5a+22a=1,解得a=6,所以所求直线方程为x6+y12=1,即2x+y-12=0.综上,所求直线方程为2x-5y=0或2x+y-12=0.故选B.7.若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴,y轴上的截距之和的最小值为( )A.1 B.2C.4 D.8答案 C解析∵直线ax+by=ab(a>0,b>0)过点(1,1),∴a+b=ab,即1a+1b=1,∴a+b=(a+b)(1a+1b)=2+ba+ab≥2+2ba·ab=4,当且仅当a=b=2时上式等号成立.∴直线在x轴,y轴上的截距之和的最小值为4.8.在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是( )答案 B解析当a>0,b>0时,-a<0,-b<0,B项符合.9.已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x-y的最大值为( )A.-1 B.3C.7 D.8答案 C解析依题意得kAB =5-12-4=-2,所以线段lAB:y-1=-2(x-4),x∈[2,4],即y=-2x+9,x∈[2,4],故2x-y=2x-(-2x+9)=4x-9,x∈[2,4].设h(x)=4x-9,易知h(x)=4x-9在[2,4]上单调递增,故当x=4时,h(x)max=4×4-9=7.10.曲线y=13x3-x2+5在x=1处的切线的倾斜角为( )A.π6B.3π4C.π4D.π3答案 B解析y′=x2-2x,当x=1时,切线斜率k=12-2×1=-1,设切线的倾斜角为θ,则tanθ=-1,∴θ=3π4.11.已知点A(2,3),B(-3,-2),若直线kx-y+1-k=0与线段AB相交,则k的取值范围是( )A.[34,2] B.(-∞,34]∪[2,+∞)C.(-∞,1]∪[2,+∞) D.[1,2] 答案 B解析直线kx-y+1-k=0恒过P(1,1),kPA =2,kPB=34,故k的取值范围是(-∞,34]∪[2,+∞).故选B.12.已知直线l的斜率为16,且和坐标轴围成面积为3的三角形,则直线l的方程为________.答案x-6y+6=0或x-6y-6=0解析设所求直线l的方程为xa+yb=1.∵k=16,即ba=-16,∴a=-6b.又三角形面积S=3=12|a|·|b|,∴|ab|=6.则当b=1时,a=-6;当b=-1时,a=6.∴所求直线方程为x -6+y 1=1或x 6+y -1=1. 即x -6y +6=0或x -6y -6=0.13.已知P(-3,2),Q(3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 (-73,-13)解析 直线l :ax +y +3=0是过点A(0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ =13,k AQ =73,k l =-a.若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a<-13.14. 若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________.答案 k =0或k≥1解析 由题意,知|x -1|=kx ,有且只有一个正实根,结合图形,可得k =0或k≥1.15.在△ABC 中,已知A(1,1),AC 边上的高线所在直线方程为x -2y =0,AB 边上的高线所在直线方程为3x +2y -3=0.求BC 边所在直线方程.答案 2x +5y +9=0 解析 k AC =-2,k AB =23.∴l AC :y -1=-2(x -1),即2x +y -3=0,l AB :y -1=23(x -1),即2x -3y +1=0.由⎩⎨⎧2x +y -3=0,3x +2y -3=0,得C(3,-3). 由⎩⎨⎧2x -3y +1=0,x -2y =0,得B(-2,-1). ∴l BC :2x +5y +9=0.16.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P(1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.答案 (3+3)x -2y -3-3=0 解析 由题意可得k OA =tan45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x. 设A(m ,m),B(-3n ,n), 所以AB 的中点C(m -3n 2,m +n2), 由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1, 解得m =3,所以A(3,3).又P(1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0. 17.已知直线l :kx -y +1+2k =0(k∈R ), (1)求证:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.答案 (1)定点(-2,1) (2)k≥0 (3)S 最小值为4,x -2y +4=0 解析 (1)证明:设直线过定点(x 0,y 0), 则kx 0-y 0+1+2k =0对任意k∈R 恒成立, 即(x 0+2)k -y 0+1=0恒成立. 所以x 0+2=0,-y 0+1=0.解得x 0=-2,y 0=1,故直线l 总过定点(-2,1). (2)直线l 的方程为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1, 要使直线l 不经过第四象限,则⎩⎨⎧k≥0,1+2k≥0,解得k 的取值范围是k≥0. (3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,则A(-1+2kk ,0),B(0,1+2k).又-1+2kk<0,且1+2k>0, ∴k>0.故S =12|OA||OB|=12×1+2k k×(1+2k)=12(4k+1k+4)≥12(4+4)=4,当且仅当4k=1k,即k=12时,等号成立.故S的最小值为4,此时直线l的方程为x-2y+4=0.第2课时两直线的位置关系1.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若两直线平行,则a(a+1)=2,即a2+a-2=0,∴a=1或-2,故a=1是两直线平行的充分不必要条件.2.若直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则实数n的值为( )A.-12 B.-2C.0 D.10答案 A解析由2m-20=0,得m=10.由垂足(1,p)在直线mx+4y-2=0上,得10+4p-2=0.∴p=-2.又垂足(1,-2)在直线2x-5y+n=0上,则解得n=-12.3.若l1:x+(1+m)y+(m-2)=0,l2:mx+2y+6=0平行,则实数m的值是( )A.m=1或m=-2 B.m=1C.m=-2 D.m的值不存在答案 A解析 方法一:据已知若m =0,易知两直线不平行,若m≠0,则有1m =1+m2≠m -26⇒m =1或m =-2.方法二:由1×2=(1+m)m ,得m =-2或m =1.当m =-2时,l 1:x -y -4=0,l 2:-2x +2y +6=0,平行. 当m =1时,l 1:x +2y -1=0,l 2:x +2y +6=0,平行.4. 直线kx -y +2=4k ,当k 变化时,所有直线都通过定点( ) A .(0,0) B .(2,1) C .(4,2) D .(2,4)答案 C解析 直线方程可化为k(x -4)-(y -2)=0,所以直线恒过定点(4,2). 5. 分别过点A(1,3)和点B(2,4)的直线l 1和l 2互相平行且有最大距离,则l 1的方程是( )A .x -y -4=0B .x +y -4=0C .x =1D .y =3 答案 B解析 连接AB ,当l 1与l 2分别与AB 垂直时,l 1与l 2之间有最大距离且d =|AB|,此时k AB =1,∴kl 1=-1,则y -3=-(x -1),即x +y -4=0.6.光线沿直线y =2x +1射到直线y =x 上,被y =x 反射后的光线所在的直线方程为( )A .y =12x -1B .y =12x -12C .y =12x +12D .y =12x +1答案 B解析 由⎩⎨⎧y =2x +1,y =x ,得⎩⎨⎧x =-1,y =-1,即直线过(-1,-1).又直线y =2x +1上一点(0,1)关于直线y =x 对称的点(1,0)在所求直线上, ∴所求直线方程为y -0-1-0=x -1-1-1,即y =x 2-12.7.点A(1,1)到直线xcosθ+ysinθ-2=0的距离的最大值是( ) A .2 B .2- 2 C .2+ 2 D .4答案 C解析 由点到直线的距离公式,得d =|cosθ+sinθ-2|cos 2θ+sin 2θ=2-2sin (θ+π4),又θ∈R , ∴d max =2+ 2.8.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0答案 A解析 令y′=4x 3=4,得x =1,∴切点为(1,1),l 的斜率为4.故l 的方程为y -1=4(x -1),即4x -y -3=0.9. 若动点A(x 1,y 1),B(x 2,y 2)分别在直线l 1:x +y -7=0,l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值为( )A .3 2B .2 3C .3 3D .4 2 答案 A解析 由题意知,点M 所在直线与l 1,l 2平行且与两直线距离相等.设该直线的方程为x +y +c =0,则|c +7|2=|c +5|2,解得c =-6.点M 在直线x +y -6=0上.点M 到原点的最小值就是原点到直线x +y -6=0的距离,即d =|-6|2=3 2.故选A.10. 复数z 满足zi =3+4i ,若复数z -在复平面内对应的点为M ,则点M 到直线3x -y +1=0的距离为( )A.4105B.7105C.8105D.10答案 D解析 由zi =3+4i ,得z =3+4i i =3i -4-1=4-3i ,∴z -=4+3i ,∴z -在复平面内对应的点M(4,3),∴所求距离d =|3×4-3+1|10=10.11. 三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k≠±1,k ≠0C .k ∈R 且k≠±5,k ≠-10D .k ∈R 且k≠±5,k ≠1答案 C解析 由l 1∥l 3,得k =5;由l 2∥l 3,得k =-5;由x -y =0与x +y -2=0,得⎩⎨⎧x =1,y =1,若(1,1)在l 3上,则k =-10.若l 1,l 2,l 3能构成一个三角形,则k≠±5且k≠-10,故选C.12. 已知倾斜角为α的直线l 与直线m :x -2y +3=0垂直,则cos2α=________.答案 -35解析 直线m :x -2y +3=0的斜率是12,∵l ⊥m ,∴直线l 的斜率是-2,故tanα=-2,∴π2<α<2π3,sin α=255,cos α=-55,∴cos2α=2cos 2α-1=2×(-55)2-1=-35.13.若函数y =ax +8与y =-12x +b 的图像关于直线y =x 对称,则a +b =________.答案 2解析 直线y =ax +8关于y =x 对称的直线方程为x =ay +8,所以x=ay+8与y=-12x+b为同一直线,故得⎩⎨⎧a=-2,b=4.所以a+b=2.14.已知点M(a,b)在直线3x+4y=15上,则a2+b2的最小值为________.答案 3解析∵M(a,b)在直线3x+4y=15上,∴3a+4b=15.而a2+b2的几何意义是原点到M点的距离|OM|,所以(a2+b2)min =1532+42=3.15.已知直线l过点P(3,4)且与点A(-2,2),B(4,-2)等距离,则直线l的方程为________.答案2x+3y-18=0或2x-y-2=0解析设所求直线方程为y-4=k(x-3),即kx-y+4-3k=0,由已知,得|-2k-2+4-3k|1+k2=|4k+2+4-3k|1+k2.∴k=2或k=-2 3 .∴所求直线l的方程为2x+3y-18=0或2x-y-2=0.16.如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是________.答案210解析由题意,求出P关于直线x+y=4及y轴的对称点分别为P1(4,2),P 2(-2,0),由物理知识知,光线所经路程即为|P1P2|=210.17.在△ABC中,BC边上的高所在直线l1的方程为x-2y+1=0,∠A的平分线所在的直线l2的方程为y=0,若点B的坐标为(1,2),求点A,C的坐标.答案A(-1,0),C(5,-6)解析如图,设C(x0,y),由题意知l1∩l2=A,则⎩⎨⎧x -2y +1=0,y =0⇒⎩⎨⎧x =-1,y =0. 即A(-1,0).又∵l 1⊥BC ,∴k BC ·kl 1=-1. ∴k BC =-1kl 1=-112=-2. ∴由点斜式可得BC 的直线方程为y -2=-2(x -1),即2x +y -4=0.又∵l 2:y =0(x 轴)是∠A 的平分线,∴B 关于l 2的对称点B′在直线AC 上,易得B′点的坐标为(1,-2),由两点式可得直线AC 的方程为x +y +1=0.由C(x 0,y 0)在直线AC 和BC 上,可得⎩⎨⎧x 0+y 0+1=0,2x 0+y 0-4=0⇒⎩⎨⎧x 0=5,y 0=-6.即C(5,-6).18.设一直线l 经过点(-1,1),此直线被两平行直线l 1:x +2y -1=0和l 2:x +2y -3=0所截得线段的中点在直线x -y -1=0上,求直线l 的方程.答案 2x +7y -5=0解析 方法一:设直线x -y -1=0与l 1,l 2的交点为C(x C ,y C ),D(x D ,y D ),则⎩⎨⎧x +2y -1=0,x -y -1=0⇒⎩⎨⎧x C =1,y C =0,∴C(1,0). ⎩⎨⎧x +2y -3=0,x -y -1=0⇒⎩⎪⎨⎪⎧x D =53,y D=23,∴D(53,23).则C ,D 的中点M 为(43,13).又l 过点(-1,1),由两点式得l 的方程为 y -131-13=x -43-1-43, 即2x +7y -5=0为所求方程.方法二:∵与l 1,l 2平行且与它们的距离相等的直线方程为x +2y +-1-32=0,即x +2y -2=0.由⎩⎨⎧x +2y -2=0,x -y -1=0,得M(43,13).(以下同方法一)方法三:过中点且与两直线平行的直线方程为x +2y -2=0, 设所求方程为(x -y -1)+λ(x+2y -2)=0,∵(-1,1)在此直线上,∴-1-1-1+λ(-1+2-2)=0,∴λ=-3,代入所设得2x +7y -5=0.方法四:设所求直线与两平行线l 1,l 2的交点为A(x 1,y 1),B(x 2,y 2),则 ⎩⎨⎧x 1+2y 1-1=0,x 2+2y 2-3=0⇒(x 1+x 2)+2(y 1+y 2)-4=0. 又A ,B 的中点在直线x -y -1=0上, ∴x 1+x 22-y 1+y 22-1=0.解得⎩⎪⎨⎪⎧x 1+x 22=43,y 1+y 22=13.(以下同方法一)第3课时 圆的方程及直线与圆的位置关系1.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆面积最大时,圆心坐标为( )A .(-1,1)B .(1,-1)C .(-1,0)D .(0,-1)答案 D解析r=12k2+4-4k2=124-3k2,当k=0时,r最大.2.圆C与x轴相切于T(1,0),与y轴正半轴交于A,B两点,且|AB|=2,则圆C的标准方程为( )A.(x-1)2+(y-2)2=2 B.(x-1)2+(y-2)2=2C.(x+1)2+(y+2)2=4 D.(x-1)2+(y-2)2=4答案 A解析由题意得,圆C的半径为1+1=2,圆心坐标为(1,2),∴圆C 的标准方程为(x-1)2+(y-2)2=2,故选A.3.已知圆C:x2+y2+Dx+Ey+F=0,则“E=F=0且D<0”是“圆C与y 轴相切于原点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析圆C与y轴相切于原点⇔圆C的圆心在x轴上(设坐标为(a,0)),且半径r=|a|.∴当E=F=0且D<0时,圆心为(-D2,0),半径为|D2|,圆C与y轴相切于原点;圆(x+1)2+y2=1与y轴相切于原点,但D=2>0,故选A.4.直线mx-y+2=0与圆x2+y2=9的位置关系是( )A.相交B.相切C.相离D.无法确定答案 A解析方法一:圆x2+y2=9的圆心为(0,0),半径为3,直线mx-y+2=0恒过点A(0,2),而02+22=4<9,所以点A在圆的内部,所以直线mx-y+2=0与圆x2+y2=9相交.故选A.方法二:求圆心到直线的距离,从而判定.5.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )A.-53或-35B.-32或-23C.-54或-45D.-43或-34答案 D解析由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k,则反射光线所在直线的方程为y+3=k(x-2)即kx-y-2k-3=0,又因为反射光线与圆相切,所以|-3k-2-2k-3|k2+1=1⇒12k2+25k+12=0⇒k=-43,或k=-34,故选D项.6.已知圆C关于x轴对称,经过点(0,1),且被y轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A.x2+(y±33)2=43B.x2+(y±33)2=13C.(x±33)2+y2=43D.(x±33)2+y2=13答案 C解析方法一:(排除法)由圆心在x轴上,则排除A,B,再由圆过(0,1)点,故圆的半径大于1,排除D,选C.方法二:(待定系数法)设圆的方程为(x-a)2+y2=r2,圆C与y轴交于A(0,1),B(0,-1),由弧长之比为2∶1,易知∠OCA=12∠ACB=12×120°=60°,则tan60°=|OA||OC|=1|OC|,所以a=|OC|=33,即圆心坐标为(±33,0),r2=|AC|2=12+(33)2=43.所以圆的方程为(x±33)2+y2=43,选C.7.过点P(-1,0)作圆C:(x-1)2+(y-2)2=1的两条切线,设两切点分别为A ,B ,则过点A ,B ,C 的圆的方程是( )A .x 2+(y -1)2=2B .x 2+(y -1)2=1C .(x -1)2+y 2=4D .(x -1)2+y 2=1答案 A解析 P ,A ,B ,C 四点共圆,圆心为PC 的中点(0,1),半径为12|PC|=12(1+1)2+22=2,则过点A ,B ,C 的圆的方程是x 2+(y -1)2=2. 8.直线xsinθ+ycosθ=2+sinθ与圆(x -1)2+y 2=4的位置关系是( )A .相离B .相切C .相交D .以上都有可能 答案 B解析 圆心到直线的距离d =|sinθ-2-sinθ|sin 2θ+cos 2θ=2.所以直线与圆相切.9. 过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0 答案 A解析 如图,圆心坐标为C(1,0),易知A(1,1).又k AB ·k PC =-1,且k PC=1-03-1=12,∴k AB =-2. 故直线AB 的方程为y -1=-2(x -1),即2x +y -3=0,故选A.另解:易知P ,A ,C ,B 四点共圆,其方程为(x -1)(x -3)+(y -0)(y -1)=0,即x 2+y 2-4x -y +3=0.又已知圆为x 2+y 2-2x =0,∴切点弦方程为2x +y -3=0,选A.10. 已知圆x 2+(y -1)2=2上任一点P(x ,y),其坐标均使得不等式x +y +m≥0恒成立,则实数m 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3]答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C(0,1)到l 的距离为|1+m|2,切线l 1应满足|1+m|2=2,∴|1+m|=2,m =1或m =-3(舍去).从而-m≤-1,∴m ≥1.11. 直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A ,B 两点,则CA →·CB →的值为( )A .-1B .0C .1D .6答案 B解析 联立⎩⎨⎧(x -3)2+(y -3)2=4,x -y +2=0,消去y ,得x 2-4x +3=0.解得x 1=1,x 2=3. ∴A(1,3),B(3,5).又C(3,3),∴CA →=(-2,0),CB →=(0,2). ∴CA →·CB →=-2×0+0×2=0.12.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( )A .1B .2 2 C.7 D .3答案 C解析设直线上一点P,切点为Q,圆心为M,则|PQ|即为切线长,MQ为圆M的半径,长度为1,|PQ|=|PM|2-|MQ|2=|PM|2-1,要使|PQ|最小,即求|PM|最小,此题转化为求直线y=x+1上的点到圆心M的最小距离,设圆心到直线y=x+1的距离为d,则d=|3-0+1|12+(-1)2=22,∴|PM|最小值为22,|PQ|=|PM|2-1=(22)2-1=7,选C.13.以直线3x-4y+12=0夹在两坐标轴间的线段为直径的圆的方程为________.答案(x+2)2+(y-32)2=254解析对于直线3x-4y+12=0,当x=0时,y=3;当y=0时,x=-4.即以两点(0,3),(-4,0)为端点的线段为直径,则r=32+422=52,圆心为(-4 2,32),即(-2,32).∴圆的方程为(x+2)2+(y-32)2=254.14.从原点O向圆C:x2+y2-6x+274=0作两条切线,切点分别为P,Q,则圆C上两切点P,Q间的劣弧长为________.答案π解析如图,圆C:(x-3)2+y2=9 4,所以圆心C(3,0),半径r=3 2 .在Rt△POC中,∠POC=π6.则劣弧PQ所对圆心角为2π3.弧长为23π×32=π.15.若直线l:4x-3y-12=0与x,y轴的交点分别为A,B,O为坐标原点,则△AOB内切圆的方程为________.答案(x-1)2+(y+1)2=1解析由题意知,A(3,0),B(0,-4),则|AB|=5.∴△AOB的内切圆半径r=3+4-52=1,内切圆的圆心坐标为(1,-1).∴内切圆的方程为(x-1)2+(y+1)2=1.16.一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为27,求此圆的方程.答案x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0解析方法一:∵所求圆的圆心在直线x-3y=0上,且与y轴相切,∴设所求圆的圆心为C(3a,a),半径为r=3|a|.又圆在直线y=x上截得的弦长为27,圆心C(3a,a)到直线y=x的距离为d=|3a-a| 12+12.∴有d2+(7)2=r2.即2a2+7=9a2,∴a=±1.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.方法二:设所求的圆的方程是(x-a)2+(y-b)2=r2,则圆心(a,b)到直线x-y=0的距离为|a-b|2.∴r2=(|a-b|2)2+(7)2.即2r2=(a-b)2+14.①由于所求的圆与y 轴相切,∴r 2=a 2.② 又因为所求圆心在直线x -3y =0上, ∴a -3b =0.③ 联立①②③,解得a =3,b =1,r 2=9或a =-3,b =-1,r 2=9. 故所求的圆的方程是(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法三:设所求的圆的方程是x 2+y 2+Dx +Ey +F =0, 圆心为(-D 2,-E 2),半径为12D 2+E 2-4F.令x =0,得y 2+Ey +F =0.由圆与y 轴相切,得Δ=0,即E 2=4F.④ 又圆心(-D 2,-E2)到直线x -y =0的距离为|-D 2+E 2|2,由已知,得⎝⎛⎭⎪⎫|-D 2+E 2|22+(7)2=r 2,即(D -E)2+56=2(D 2+E 2-4F).⑤ 又圆心(-D 2,-E2)在直线x -3y =0上,∴D -3E =0.⑥ 联立④⑤⑥,解得D =-6,E =-2,F =1或D =6,E =2,F =1. 故所求圆的方程是x 2+y 2-6x -2y +1=0 或x 2+y 2+6x +2y +1=0.17. 已知圆C :x 2+y 2+2x +a =0上存在两点关于直线l :mx +y +1=0对称.(1)求实数m 的值;(2)若直线l 与圆C 交于A ,B 两点,OA →·OB →=-3(O 为坐标原点),求圆C 的方程.答案 (1)m =1 (2)x 2+y 2+2x -3=0解析 (1)圆C 的方程为(x +1)2+y 2=1-a ,圆心C(-1,0). ∵圆C 上存在两点关于直线l :mx +y +1=0对称, ∴直线l :mx +y +1=0过圆心C. ∴-m +1=0,解得m =1.(2)联立⎩⎨⎧x 2+y 2+2x +a =0,x +y +1=0,消去y ,得2x 2+4x +a +1=0. 设A(x 1,y 1),B(x 2,y 2), Δ=16-8(a +1)>0,∴a<1. 由x 1+x 2=-2,x 1x 2=a +12,得 y 1y 2=(-x 1-1)(-x 2-1)=a +12-1. ∴OA →·OB →=x 1x 2+y 1y 2=a +1-1=a =-3. ∴圆C 的方程为x 2+y 2+2x -3=0.第4课时 圆与圆的位置关系及圆的综合问题1.两圆C 1:x 2+y 2+2x -6y -26=0,C 2:x 2+y 2-4x +2y +4=0的位置关系是( )A .内切B .外切C .相交D .外离答案 A解析 由于圆C 1的标准方程为(x +1)2+(y -3)2=36,故圆心为C 1(-1,3),半径为6;圆C 2的标准方程为(x -2)2+(y +1)2=1,故圆心为C 2(2,-1),半径为1.因此,两圆的圆心距|C 1C 2|=(-1-2)2+(3+1)2=5=6-1,显然两圆内切.2. 直线x -3y =0截圆(x -2)2+y 2=4所得劣弧所对的圆心角是( )A.π6B.π3C.π2D.2π3答案 D解析画出图形,如图,圆心(2,0)到直线的距离为d=|2|12+(3)2=1,∴sin∠AOC=d|OC|=12,∴∠AOC=π6,∴∠CAO=π6,∴∠ACO=π-π6-π6=2π3.3.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=( ) A.2 B.4 2C.6 D.210答案 C解析由题意得圆C的标准方程为(x-2)2+(y-1)2=4,所以圆C的圆心为(2,1),半径为2.因为直线l为圆C的对称轴,所以圆心在直线l上,则2+a -1=0,解得a=-1,连接AC,BC,所以|AB|2=|AC|2-|BC|2=(-4-2)2+(-1-1)2-4=36,所以|AB|=6,故选C.4.直线y=-33x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m的取值范围是( )A.(3,2) B.(3,3)C.(33,233) D.(1,233)答案 D解析当直线经过点(0,1)时,直线与圆有两个不同的交点,此时m=1;当直线与圆相切时有圆心到直线的距离d =|m|1+(33)2=1,解得m =233(切点在第一象限),所以要使直线与圆在第一象限内有两个不同的交点,需要1<m<233.5.圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,其圆心为P ,若∠APB =90°,则实数c 的值是( )A .-3B .3C .2 2D .8答案 A解析 由题知圆心为(2,-1),半径为r =5-c.令x =0得y 1+y 2=-2,y 1y 2=c ,∴|AB|=|y 1-y 2|=21-c.又|AB|=2r ,∴4(1-c)=2(5-c).∴c=-3.6.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .1个B .2个C .3个D .4个 答案 C解析 把x 2+y 2+2x +4y -3=0化为(x +1)2+(y +2)2=8,圆心为(-1,-2),半径r =22,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于 2.7. 在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A(-1,0),B(1,2).在圆C 上存在点P ,使得|PA|2+|PB|2=12,则点P 的个数为( )A .1B .2C .3D .4 答案 B解析 设P(x ,y),则(x -2)2+y 2=4,|PA|2+|PB|2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,即x 2+y 2-2y -3=0,即x 2+(y -1)2=4,因为|2-2|<(2-0)2+(0-1)2<2+2,所以圆(x -2)+y 2=4与圆x 2+(y -1)2=4相交,所以点P的个数为2.选B.8.已知点P在圆x2+y2=5上,点Q(0,-1),则线段PQ的中点的轨迹方程是( )A.x2+y2-x=0 B.x2+y2+y-1=0C.x2+y2-y-2=0 D.x2+y2-x+y=0答案 B解析设P(x0,y),PQ中点的坐标为(x,y),则x=2x,y=2y+1,代入圆的方程即得所求的方程是4x2+(2y+1)2=5,化简,得x2+y2+y-1=0.9.在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC 和BD,则四边形ABCD的面积为( )A.5 2 B.10 2C.15 2 D.20 2答案 B解析圆的标准方程为(x-1)2+(y-3)2=10,则圆心(1,3),半径r=10,由题意知AC⊥BD,且|AC|=210,|BD|=210-5=25,所以四边形ABCD的面积为S=12|AC|·|BD|=12×210×25=10 2.10.已知两点A(0,-3),B(4,0),若点P是圆x2+y2-2y=0上的动点,则△ABP面积的最小值为( )A.6 B.11 2C.8 D.21 2答案 B解析如图,过圆心C向直线AB作垂线交圆于点P,连接BP,AP,这时△ABP的面积最小.直线AB的方程为x4+y-3=1,即3x -4y -12=0,圆心C 到直线AB 的距离为d =|3×0-4×1-12|32+(-4)2=165,∴△ABP 的面积的最小值为12×5×(165-1)=112.11. 若直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程是( )A .x =0B .y =1C .x +y -1=0D .x -y +1=0答案 D解析 依题意,直线l :y =kx +1过定点P(0,1).圆C :x 2+y 2-2x -3=0化为标准方程为(x -1)2+y 2=4.故圆心为C(1,0),半径为r =2.则易知定点P(0,1)在圆内.由圆的性质可知当PC⊥l 时,此时直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短.因为k PC =1-00-1=-1,所以直线l 的斜率k =1,即直线l 的方程是x -y +1=0.12.若双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2 B. 3 C. 2 D.233答案 A解析 依题意,双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线方程为bx -ay=0.因为直线bx -ay =0被圆(x -2)2+y 2=4所截得的弦长为2,所以|2b|b 2+a 2=4-1,所以3a 2+3b 2=4b 2,所以3a 2=b 2,所以e =1+b 2a2=1+3=2,选择A.13.已知直线3x -y +2=0及直线3x -y -10=0截圆C 所得的弦长均为8,则圆C 的面积是________.答案 25π解析 因为已知的两条直线平行且截圆C 所得的弦长均为8,所以圆心到直线的距离d 为两直线距离的一半,即d =12×|2+10|3+1=3.又因为直线截圆C 所得的弦长为8,所以圆的半径r =32+42=5,所以圆C 的面积是25π.14. 设抛物线y 2=4x 的焦点为F ,准线为l.已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为________.答案 (x +1)2+(y -3)2=1解析 由题意知该圆的半径为1,设圆心坐标为C(-1,a)(a>0),则A(0,a),又F(1,0),所以AC →=(-1,0),AF →=(1,-a),由题意得AC →与AF →的夹角为120°,得cos120°=-11×1+a 2=-12,解得a =3,所以圆的方程为(x +1)2+(y -3)2=1.15.在不等式组⎩⎪⎨⎪⎧x -3y +3≥0,x +3y +3≥0,x ≤3,表示的平面区域内作圆M ,则最大圆M 的标准方程为________.答案 (x -1)2+y 2=4解析 不等式组构成的区域是三角形及其内部,要作最大圆其实就是三角形的内切圆,由⎩⎪⎨⎪⎧x -3y +3=0,x +3y +3=0,得交点(-3,0), 由⎩⎨⎧x -3y +3=0,x =3,得交点(3,23),由⎩⎨⎧x +3y +3=0,x =3,得交点(3,-23),可知三角形是等边三角形,所以圆心坐标为(1,0),半径为(1,0)到直线x =3的距离,即半径为2,所以圆的方程为(x -1)2+y 2=4.16.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 答案 (1)y 2-x 2=1(2)x 2+(y -1)2=3或x 2+(y +1)2=3 解析 (1)设P(x ,y),圆P 的半径为r. 由题设y 2+2=r 2,x 2+3=r 2. 从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P(x 0,y 0).由已知得|x 0-y 0|2=22. 又P 点在双曲线y 2-x 2=1上,从而得⎩⎨⎧|x 0-y 0|=1,y 02-x 02=1.由⎩⎨⎧x 0-y 0=1,y 02-x 02=1,得⎩⎨⎧x 0=0,y 0=-1. 此时,圆P 的半径r = 3. 由⎩⎨⎧x 0-y 0=-1,y 02-x 02=1,得⎩⎨⎧x 0=0,y 0=1. 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.17. 已知圆C 经过(2,4),(1,3),圆心C 在直线x -y +1=0上,过点A(0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,请求出该定值,若不是,请说明理由; ②若OM →·ON →=12(O 为坐标原点),求直线l 的方程.答案 (1)(x -2)2+(y -3)2=1 (2)①AM →·AN →为定值,且定值为7 ②y=x+1解析 (1)设圆C 的方程为(x -a)2+(y -b)2=r 2,则依题意,得⎩⎨⎧(2-a )2+(4-b )2=r 2,(1-a )2+(3-b )2=r 2,a -b +1=0,解得⎩⎨⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1. (2)①AM →·AN →为定值.过点A(0,1)作直线AT 与圆C 相切,切点为T ,易得|AT|2=7, ∴AM →·AN →=|AM →|·|AN →|cos0°=|AT|2=7,∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M(x 1,y 1),N(x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1并整理,得(1+k 2)x 2-4(1+k)x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k(x 1+x 2)+1=4k (1+k )1+k 2+8=12,即4k (1+k )1+k 2=4,解得k =1,又当k =1时Δ>0,∴k =1,∴直线l 的方程为y=x +1.第5课时 椭圆(一)1. 已知椭圆x 225+y 2m 2=1(m>0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9答案 B解析 由4=25-m 2(m>0)⇒m =3,故选B.2.若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍.则m 的值为( )A.14B.12 C .2 D .4答案 A解析 将原方程变形为x 2+y 21m=1.由题意知a 2=1m ,b 2=1,∴a =1m,b =1. ∴1m =2,∴m =14. 3. 已知椭圆C :x 2a 2+y 2b 2=1(a>b>0),若长轴的长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A.x 236+y 232=1 B.x 29+y 28=1 C.x 29+y 25=1 D.x 216+y 212=1 答案 B解析 由题意知2a =6,2c =13×6,所以a =3,c =1,则b =32-12=22,所以此椭圆的标准方程为x 29+y 28=1.4. 若椭圆mx 2+ny 2=1的离心率为12,则mn =( )A.34 B.43 C.32或233D.34或43 答案 D解析将椭圆方程标准化为x21m+y21n=1,∵e2=1-b2a2,∴b2a2=1-e2=34,①若a2=1m,b2=1n,则mn=34;②若a2=1n,b2=1m,则mn=43,故选D.5.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为22.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为( )A.x216+y212=1 B.x216+y28=1C.x28+y24=1 D.x28+y22=1答案 B解析根据椭圆焦点在x轴上,可设椭圆方程为x2a2+y2b2=1(a>b>0).∵e=22,∴ca=22.根据△ABF2的周长为16得4a=16,因此a=4,b=22,所以椭圆方程为x216+y28=1.6.在平面直角坐标系xOy中,P是椭圆y24+x23=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为( )A.5 B.4C.3 D.2答案 A解析∵椭圆的方程为y24+x23=1,∴a2=4,b2=3,c2=1,∴B(0,-1)是椭圆的一个焦点,设另一个焦点为C(0,1),如图所示,根据椭圆的定义知,|PB|+|PC|=4,∴|PB|=4-|PC|,∴|PA|+|PB|=4+|PA|-|PC|≤4+|AC|=5.7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.15答案 B解析由题意有2a+2c=2(2b),即a+c=2b.又c2=a2-b2,消去b整理,得5c2=3a2-2ac,即5e2+2e-3=0,∴e=3 5或e=-1(舍去).8.如图,已知椭圆C:x2a2+y2b2=1(a>b>0),其中左焦点为F(-25,0),P为C上一点,满足|OP|=|OF|,且|PF|=4,则椭圆C的方程为( )A.x225+y25=1 B.x236+y216=1C.x236+y210=1 D.x245+y225=1答案 B解析设椭圆的焦距为2c,右焦点为F1,连接PF1,如图所示.由F(-25,0),得c=2 5.由|OP|=|OF|=|OF1|,知PF1⊥PF.在Rt△PFF1中,由勾股定理,得|PF1|=|F1F|2-|PF|2=(45)2-42=8.由椭圆定义,得|PF1|+|PF|=2a=4+8=12,从而a=6,得a2=36,于是b2=a2-c2=36-(25)2=16,所以椭圆C的方程为x236+y216=1.9.已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则椭圆的离心率为( )A.22B.2- 3C.5-2D.6- 3 答案 D解析设|F1F2|=2c,|AF1|=m,若△ABF1是以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=2m.由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+2m,即m=(4-22)a,则|AF2|=2a-m=(22-2)a,在Rt△AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2-2)2a2+4(2-1)2a2,即有c2=(9-62)a2,即c=(6-3)a,即e=ca=6-3,故选D.10.椭圆x25+y24=1的左焦点为F,直线x=m与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是( )A.55B.655C.855D.455答案 C解析 设右焦点为F′,由椭圆的定义得,△FMN 的周长C =|MN|+|MF|+|NF|=|MN|+(2a -|F′M|)+(2a -|F′N|)=4a +|MN|-|F′M|-|F′N|≤4a,当MN 过点F′时取等号,即当直线x =m 过右焦点F′时,△FMN 的周长最大. 由椭圆的定义可得c =5-4=1.把x =1代入椭圆标准方程可得15+y 24=1,解得y =±455.所以△FMN 的面积S =12×2×2×455=855.故选C.11. 焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a>b>0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( )A.14B.13C.12D.23答案 C解析 由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ·b =12(2a +2c)·b 3,得a =2c ,即e =c a =12,故选C.12. 椭圆x 2a 2+y 2b 2=1(a>b>0)的一个焦点为F 1,若椭圆上存在一点P ,满足以椭圆短轴为直径的圆与线段PF 1相切于该线段的中点,则椭圆的离心率为( )A.22B.23C.59D.53 答案 D解析设线段PF1的中点为M,另一个焦点为F2,由题意知,|OM|=b,又OM是△F2PF1的中位线,∴|OM|=12|PF2|=b,|PF2|=2b,由椭圆的定义知|PF1|=2a-|PF2|=2a-2b.又|MF1|=12|PF1|=12(2a-2b)=a-b,又|OF1|=c,在直角三角形OMF1中,由勾股定理得(a-b)2+b2=c2,又a2-b2=c2,可得2a=3b,故有4a2=9b2=9(a2-c2),由此可求得离心率e=ca=53,故选D.13.设F1,F2为椭圆的两个焦点,以F2为圆心作圆,已知圆F2经过椭圆的中心,且与椭圆相交于点M,若直线MF1恰与圆F2相切,则该椭圆的离心率为( )A.3-1 B.2- 3C.22D.32答案 A解析由题意知∠F1MF2=π2,|MF2|=c,|F1M|=2a-c,则c2+(2a-c)2=4c2,e2+2e-2=0,解得e=3-1.14.若点O和点F分别为椭圆x22+y2=1的中心和左焦点,点P为椭圆上的任意一点,则|OP|2+|PF|2的最小值为________.答案 2解析由题意可知,O(0,0),F(1,0),设P(2cosα,sinα),则|OP|2+|PF|2=2cos2α+sin2α+(2cosα-1)2+sin2α=2cos2α-22cosα+3=2(cosα-22)2+2,所以当cosα=22时,|OP|2+|PF|2取得最小值2. 15. 椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.答案 (-3,0)或(3,0)解析 记椭圆的两个焦点分别为F 1,F 2,有|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=25,当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25.所以点P 的坐标为(-3,0)或(3,0).16 一个底面半径为2的圆柱被与底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于________.答案 4 3解析 ∵底面半径为2的圆柱被与底面成60°的平面所截,其截面是一个椭圆,∴这个椭圆的短半轴长为2,长半轴长为2cos60°=4.∵a 2=b 2+c 2,∴c=42-22=23,∴椭圆的焦距为4 3.17.如图所示,已知椭圆x 2a 2+y 2b 2=1(a>b>0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B.(1)若∠F 1AB =90°,求椭圆的离心率;(2)若椭圆的焦距为2,且AF 2→=2F 2B →,求椭圆的方程. 答案 (1)22 (2)x 23+y 22=1解析 (1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形.所以有|OA|=|OF 2|,即b =c.所以a =2c ,e =c a =22.(2)由题知A(0,b),F 2(1,0),设B(x ,y), 由AF 2→=2F 2B →,解得x =32,y =-b 2. 代入x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1.即94a 2+14=1,解得a 2=3. 所以椭圆方程为x 23+y 22=1.18. 设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N.(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a ,b. 答案 (1)12(2)a =7,b =27解析 (1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,2b 2=3ac.将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a =-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点.故b 2a=4,即b 2=4a.①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|. 设N(x 1,y 1),由题意知y 1<0,则⎩⎨⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎨⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1.解得a =7,b 2=4a =28. 故a =7,b =27.第6课时 椭圆(二)1.已知对任意k∈R ,直线y -kx -1=0与椭圆x 25+y 2m =1恒有公共点,则实数m 的取值范围是( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5)思路 该题有两种解题思路,一是根据直线和圆锥曲线位置关系的讨论方法,由直线方程和椭圆方程联立组成的方程组必有解,通过消元,进一步转化为方程恒有解的问题,利用判别式Δ≥0求解参数的取值范围;二是由直线系方程得到直线所过的定点,由直线和椭圆恒有公共点可得,定点在椭圆上或在椭圆内,这样便可得到关于参数m 的不等式,解之即可.答案 C解析 方法一:由椭圆的方程,可知m>0,且m≠5. 将直线与椭圆的方程联立方程组,得⎩⎨⎧y -kx -1=0,①x 25+y 2m=1,②由①,得y =kx +1. 代入②,得x 25+(kx +1)2m=1.整理,得(5k 2+m)x 2+10kx +5(1-m)=0.。

2019版高考数学一轮复习 第一部分 基础与考点过关 第九章 平面解析几何学案

2019版高考数学一轮复习 第一部分 基础与考点过关 第九章 平面解析几何学案

第九章 平面解析几何1. (原创)设m 为常数,则过点A (2,-1),B (2,m )的直线的倾斜角是 W. 答案:90°解析:因为过点A (2,-1),B (2,m )的直线x =2垂直于x 轴,故其倾斜角为90°. 2. (必修2P 80练习1改编)若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为 W.答案:1解析:由1=4-mm +2,得m +2=4-m ,解得m =1.3. (原创)若直线l 的斜率k 的变化范围是[-1,3],则它的倾斜角的变化范围是 W.答案:⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π 解析:由-1≤k≤3,即-1≤tan α≤3,∴ α∈⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π.4. (必修2P 80练习6改编)已知两点A (4,0),B (0,3),点C (8,a )在直线AB 上,则a = W.答案:-3解析:由k AB =k BC 得3-4=a -38,解得a =-3.5. (必修2P 80练习4改编)若直线l 沿x 轴的负方向平移2个单位,再沿y 轴的正方向平移3个单位后,又回到原来的位置,则直线l 的斜率为 W.答案:-32解析:设直线上任一点为(x ,y ),平移后的点为(x -2,y +3),利用斜率公式得直线l 的斜率为-32.1. 直线倾斜角的定义 在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°;直线的倾斜角α的取值范围是[0,π)W.2. 直线斜率的定义倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tan α.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.3. 过两点的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式为k =tan α=y 2-y 1x 2-x 1,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°W.[备课札记], 1 直线的倾斜角和斜率之间的关系), 1) 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x-y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为 W.答案:α1<α2<α3解析:由tan α1=k 1=1>0,所以α1∈⎝ ⎛⎭⎪⎫0,π2.tan α2=k 2=-12<0,所以α2∈⎝ ⎛⎭⎪⎫π2,π,α2>α1.tan α3=k 3=-13<0,所以α3∈⎝ ⎛⎭⎪⎫π2,π,α3>α1,而-12<-13,正切函数在⎝ ⎛⎭⎪⎫π2,π上单调递增,所以α3>α2.综上,α1<α2<α3.变式训练已知经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 的值为 W.答案:-3解析:由2y +1-(-3)4-2=2y +42=y +2=tan 3π4,得y +2=-1,所以y =-3., 2 求直线的倾斜角和斜率) , 2) 已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB倾斜角的一半,求直线l 的斜率.解:设直线l 的倾斜角为α,则直线AB 的倾斜角为2α,由题意可知tan 2α=34,∴ 2tan α1-tan 2α=34. 整理得3tan 2α+8tan α-3=0,解得tan α=13或tan α=-3.∵ tan 2α=34>0,∴ 0°<2α<90°,∴ 0°<α<45°,∴ tan α>0,故直线l 的斜率为13.变式训练如图,已知直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求直线l 1,l 2的斜率.解:直线l 1的斜率k 1=tan α1=tan 30°=33. ∵ 直线l 2的倾斜角α2=90°+30°=120°,∴ 直线l 2的斜率k 2=tan 120°=tan (180°-60°)=-tan 60°=- 3. , 3 求直线的倾斜角和斜率的取值范围) , 3) 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点.(1) 求直线l 的斜率k 的取值范围; (2) 求直线l 的倾斜角α的取值范围. 解:如图,由题意可知,k PA =4-0-3-1=-1,k PB =2-03-1=1.(1) 要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是(-∞,-1]∪[1,+∞).(2) 由题意可知,直线l 的倾斜角介于直线PB 与PA 的倾斜角之间. 又PB 的倾斜角是45°,PA 的倾斜角是135°, 所以α的取值范围是[45°,135°]. 变式训练若直线mx +y +1=0与连结点A (-3,2),B (2,3)的线段相交,求实数m 的取值范围.解:直线的斜率为k =-m ,且直线经过定点P (0,-1),因为直线PA ,PB 的斜率分别为-1,2,所以斜率k 的取值范围是(-∞,-1]∪[2,+∞),即实数m 的取值范围是(-∞,-2]∪[1,+∞).1. 已知A (-1,23),B (0,3a ),C (a ,0)三点共线,则此三点所在直线的倾斜角α的大小是 W.答案:120°解析:若a =0,则点B ,C 重合,不合题意.由A ,B ,C 三点共线得k AB =k BC ,即3a -230+1=0-3a a -0,解得a =1,所以B (0,3).此三点所在直线的斜率k AB =3-230+1=-3,即tan α=- 3.又0°≤α<180°,所以α=120°.2. 直线xcos α+3y +2=0的倾斜角的取值范围是 .答案:⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π 解析:由直线的方程可知其斜率k =-cos α3∈⎣⎢⎡⎦⎥⎤-33,33.设直线的倾斜角为θ,则tan θ∈⎣⎢⎡⎦⎥⎤-33,33,且θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π. 3. 已知实数x ,y 满足y =-2x +8,且2≤x≤3,求yx的最大值和最小值.解:如图,由于点(x ,y )满足关系式2x +y =8,且2≤x≤3可知,点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23.4. 已知直线kx +y -k =0与射线3x -4y +5=0(x≥-1)有交点,求实数k 的取值范围.解:kx +y -k =0⇒k (x -1)+y =0,直线过定点(1,0)⇒由题意作图可得:由题意可看出: k∈⎝ ⎛⎭⎪⎫-∞,-34∪⎣⎢⎡⎭⎪⎫14,+∞.(或者由两直线方程联立,消去y 得x =4k -53+4k ≥-1,即4k -14k +3≥0⇒k ≥14或k <-34)1. 已知x 轴上的点P 与点Q (-3,1)连线所成直线的倾斜角为30°,则点P 的坐标为 W.答案:(-23,0)解析:设P (x ,0),由题意得k PQ =tan 30°=33,即1-3-x =33,解得x =-23,故点P 的坐标为(-23,0).2. 如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则它们的大小关系为 W.答案:k 1<k 3<k 2 解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.3. 已知函数f (x )=asin x -bcos x.若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为 W.答案:3π4解析:由f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知,函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以-b =a ,所以直线ax -by +c =0的斜率为a b =-1.设直线ax -by +c =0的倾斜角为α,则tan α=-1,因为α∈[0,π),所以α=3π4,即直线ax -by +c =0的倾斜角为3π4.4. 若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是 W.答案:⎝ ⎛⎭⎪⎫π6,π2 解析:如图,直线l :y =kx -3过定点P (0,-3).又A (3,0),所以k PA =0-(-3)3-0=33,所以直线l 的斜率范围为⎝ ⎛⎭⎪⎫33,+∞,由于直线的倾斜角的取值范围为[0,π),所以满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.1. 求斜率要熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 要正确理解倾斜角的定义,明确倾斜角的取值范围,倾斜角与斜率的关系是k =tanα(α≠90°),其中α为倾斜角,因此求倾斜角的取值范围通常需从斜率的范围入手,而求斜率的范围则常需考虑倾斜角的取值范围,但都需要利用正切函数的性质,借助图象或单位圆数形结合,注意直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k∈(-∞,0).第2课时 直线的方程(对应学生用书(文)123~124页、(理)128~129页)1. (必修2P 82练习1(1)~(4)改编)过点P (-2,0),且斜率为3的直线的方程是 W.答案:y =3x +6解析:设所求直线方程为y =3x +b ,由题意可知3×(-2)+b =0,∴ b =6,故y =3x +6.2. (必修2P 87练习4改编)如果ax +by +c =0表示的直线是y 轴,则系数a ,b ,c 满足条件 W.答案:a≠0且b =c =0解析:ax +by +c =0表示的直线是y 轴,即x =0,∴ b =c =0,a ≠0.3. (必修2P 87练习1改编)直线x 3-y4=1在两坐标轴上的截距之和为 W.答案:-1解析:令x =0,得y =-4;令y =0,得x =3. 故直线在两坐标轴上的截距之和为-4+3=-1.4. (必修2P 85练习4改编)下列说法中正确的是 W.(填序号) ① 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; ② 经过定点A (0,b )的直线都可以用方程y =kx +b 表示;③ 不经过原点的直线都可以用方程x a +yb=1表示;④ 经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.答案:④解析:对于①②,斜率有可能不存在,对于③,截距也有可能为0. 5. (必修2P 85练习2(2)(3)改编)若一直线经过点P (1,2),且在y 轴上的截距与直线2x +y +1=0在y 轴上的截距相等,则该直线的方程是 W.答案:3x -y -1=0解析:直线2x +y +1=0在y 轴上的截距为-1,由题意,所求直线过点(0,-1),又所求直线过点P (1,2),故由两点式得直线方程为y +12+1=x -01-0,即3x -y -1=0.1. 直线方程的五种形式111222(1) 当x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1W. (2) 当x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1W. (3) 当x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0W. (4) 当x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0W. (5) 直线的斜率k 与倾斜角α之间的关系如下表:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式., 1 求直线方程), 1) 已知直线l 过点P (5,2),分别求满足下列条件的直线方程. (1) 直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2) 直线l 与两坐标轴围成的三角形面积为52.解:(1) 当直线l 过原点时,直线l 的斜率为25,∴ 直线方程为y =25x ,即2x -5y =0;当直线l 不过原点时,设直线方程为x 2a +y a =1,将x =5,y =2代入得a =92,∴ 直线方程为x +2y -9=0.综上,直线l 的方程为2x -5y =0或x +2y -9=0. (2) 显然直线与坐标轴不垂直. ∵ 直线l 经过点P (5,2),且能与坐标轴围成三角形,∴ 可设直线l 的方程为y -2=k (x -5)(k≠0),则直线在x 轴上的截距为5-2k,在y 轴上的截距为2-5k ,由题意,得12|5-2k |·|2-5k|=52,即(5k -2)2=5|k|.当k>0时,原方程可化为(5k -2)2=5k ,解得k =15或k =45;当k<0时,原方程可化为(5k -2)2=-5k ,此方程无实数解;故直线l 的方程为y -2=15(x -5)或y -2=45(x -5),即x -5y +5=0或4x -5y -10=0.变式训练求过点(-3,4),且在两坐标轴上的截距之和为12的直线方程.解:由题设知截距不为0,设直线方程为x a +y 12-a =1,又直线过点(-3,4),从而-3a+412-a=1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. , 2 含参直线方程问题), 2) 已知直线l :kx -y +1+2k =0 (k∈R ). (1) 求证:直线l 过定点;(2) 若直线不经过第四象限,求k 的取值范围;(3) 若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.(1) 证明:直线l 的方程是k (x +2)+(1-y )=0, 令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1, ∴ 无论k 取何值,直线l 总经过定点(-2,1).(2) 解:由方程知,当k≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k≥1,解得k>0;当k =0时,直线为y =1,符合题意,故k≥0.(3) 解:由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k>0,解得k>0.∵ S =12·OA ·OB =12·⎪⎪⎪⎪⎪⎪-1+2k k ·|1+2k|=12·(1+2k )2k =12·⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4,“=”成立的条件是k>0且4k =1k ,即k =12,∴ S min =4,此时l :x -2y +4=0. 变式训练已知直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y +6-2m =0. (1) 求实数m 的取值范围;(2) 若直线l 的斜率不存在,求实数m 的值;(3) 若直线l 在x 轴上的截距为-3,求实数m 的值; (4) 若直线l 的倾斜角是45°,求实数m 的值. 解:(1) 当x ,y 的系数不同时为零时,方程表示一条直线,令m 2-2m -3=0,解得m =-1或m =3;令2m 2+m -1=0解得m =-1或m =12.所以实数m 的取值范围是(-∞,-1)∪(-1,+∞).(2) 由(1)易知,当m =12时,方程表示的直线的斜率不存在.(3) 依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m -15=0,所以m =3或m =-53,由(1)知所求m =-53.(4) 因为直线l 的倾斜角是45°,所以斜率为1.由-m 2-2m -32m 2+m -1=1,解得m =43或m =-1(舍去).所以当直线l 的倾斜角为45°时,m =43., 3 直线方程的综合应用), 3) 为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图,建立平面直角坐标系,则E (30,0),F (0,20),∴ 线段EF 的方程为x 30+y20=1(0≤x≤30).在线段EF 上取点P (m ,n ),作PQ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =PQ·PR=(100-m )(80-n ).又m 30+n 20=1(0≤m≤30),∴ n =20⎝ ⎛⎭⎪⎫1-m 30.∴ S =(100-m )⎝⎛⎭⎪⎫80-20+23m =-23(m -5)2+18 0503(0≤m≤30).∴ 当m =5时,S 有最大值,∴ 当矩形草坪的两边在BC ,CD 上,一个顶点在线段EF 上,且这个顶点距AD 边5 m 时,草坪面积最大.备选变式(教师专享)如图,互相垂直的两条道路l 1,l 2相交于点O ,点P 与l 1,l 2的距离分别为2千米、3千米,过点P 建一条直线道路AB ,与l 1,l 2分别交于A ,B 两点.(1) 当∠BAO=45°时,试求OA 的长;(2) 若使△AOB 的面积最小,试求OA ,OB 的长.解:以l 1为x 轴,l 2为y 轴,建立平面直角坐标系,则O (0,0),P (3,2). (1) 由∠BAO=45°知,OA =OB ,可设A (a ,0),B (0,a )(a >0),直线l 的方程为x a +ya=1.∵ 直线l 过点P (3,2),∴ 3a +2a=1⇒a =5,即OA =5千米. (2) 设A (a ,0),B (0,b )(a >0,b >0),则直线l 的方程为x a +yb=1.∵ 直线l 过点P (3,2),∴ 3a +2b =1,b =2aa -3(a >3).从而S △ABO =12a ·b =12a ·2a a -3=a 2a -3,令a -3=t ,t >0,则a 2=(t +3)2=t 2+6t +9,故有S △ABO =t 2+6t +9t =t +9t +6(t >0).设f (t )=t +9t+6,可证f (t )在(0,3)上单调递减,在(3,+∞)上单调递增,∴ 当t =3时,f (t )min =f (3)=12,此时a =6,b =4,直线l 的方程为x 6+y4=1,即OA =6千米,OB =4千米.1. 若直线(2m 2+m -3)x +(m 2-m )y =4m -1 在x 轴上的截距为1,则实数m 的值是 W.答案:2或-12解析:令y =0,则(2m 2+m -3)x =4m -1,∴ x =4m -12m 2+m -3=1,∴ m =2或-12.2. 若方程(a 2-a -2)x +(a 2+a -6)y +a +1=0表示垂直于y 轴的直线,则a 为 W.答案:-1解析:因为方程表示垂直于y 轴的直线,所以a 2-a -2=0且a 2+a -6≠0,解得a =-1.3. 已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.当OA +OB 取得最小值时,直线l 的方程是 W.答案:x +y -2=0解析:设A (a ,0),B (0,b )(a>0,b>0),直线l 的方程为x a +yb=1,已知直线l 过点M (1,1),则OA +OB =a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a=b =2时取等号,此时直线l 的方程为x +y -2=0.4. 已知直线l 过点(0,5),且在两坐标轴上的截距之和为2,则直线l 的方程为 W.答案:5x -3y +15=0解析:∵ 直线过点(0,5),∴ 直线在y 轴上的截距为5. ∵ 在两坐标轴上的截距之和为2, ∴ 直线在x 轴上的截距为-3.∴ 直线l 的方程为x -3+y5=1,即5x -3y +15=0.5. 已知在△ABC 中,A (1,-4),B (6,6),C (-2,0).求(1) △ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2) BC 边的中线所在直线的一般式方程和截距式方程. 解:(1) 平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0, 化为截距式方程为x 136-y138=1.(2) 因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.1. 若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则实数m 满足条件 W.答案:m≠1解析:2m 2+m -3,m 2-m 不能同时为0.2. 若直线(2t -3)x +2y +t =0不经过第二象限,则t 的取值范围是 W.答案:⎣⎢⎡⎦⎥⎤0,32 解析:直线方程可化为y =⎝ ⎛⎭⎪⎫32-t x -t 2,由题意得⎩⎪⎨⎪⎧32-t≥0,-t2≤0,解得0≤t≤32.3. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点 . 答案:(-2,3)解析:把直线方程(m -1)x -y +2m +1=0, 整理得(x +2)m -(x +y -1)=0, 则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3. 4. 已知直线x +2y =2与x 轴、y 轴分别相交于A ,B 两点.若动点P (a ,b )在线段AB 上,则ab 的最大值为 W.答案:12解析:由题意知A (2,0),B (0,1),所以线段AB 的方程可表示为x2+y =1,x ∈[0,2].又动点P (a ,b )在线段AB 上,所以a 2+b =1,a ∈[0,2].又a 2+b≥2ab 2,所以1≥2ab2,解得0≤ab≤12,当且仅当a 2=b =12,即P ⎝ ⎛⎭⎪⎫1,12时,ab 取得最大值12. 5. 已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1),Q 2(a 2,b 2)(a 1≠a 2)的直线方程.解:由题意,知P (2,3)在已知直线上, ∴ ⎩⎪⎨⎪⎧2a 1+3b 1+1=0,2a 2+3b 2+1=0, ∴ 2(a 1-a 2)+3(b 1-b 2)=0,即b 1-b 2a 1-a 2=-23,∴ 所求直线方程为y -b 1=-23(x -a 1),∴ 2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.1. 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况;而选用两点式时不要忽视与坐标轴垂直的情况.2. 解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.[备课札记]第3课时 直线与直线的位置关系(对应学生用书(文)125~126页、(理)130~131页)1. (原创)“a=3”是“直线ax +3y =1与直线x +y =1平行”的 条件. 答案:充要解析:若a =3,直线ax +3y =1与直线x +y =1显然平行;若直线ax +3y =1与直线x+y =1平行,由a 1= 31 ≠ 11,易得a =3.2. (必修2P 93练习6改编)过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为 W.答案:2x +y -1=0解析:设直线方程为2x +y +c =0,又直线过点P (-1,3),则-2+3+c =0,c =-1,即所求直线方程为2x +y -1=0.3. (必修2P 95练习3改编)若三条直线2x +3y +8=0,x -y -1=0和x +ky =0相交于一点,则k = W.答案:-12解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =-1,y =-2, ∴ 点(-1,-2)在x +ky =0上,即-1-2k =0,∴ k =-12.4.(必修2P 105练习1改编)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a .1解析:由题意知|a -2+3|2=1,∴ |a +1|= 2.又∵ a>0,∴ a =2-1.5. (必修2P 106习题10改编)与直线7x +24y =5平行,并且距离等于3的直线方程是 W.答案:7x +24y +70=0或7x +24y -80=0解析:设直线方程为7x +24y +c =0,则d =|c +5|242+72=3,∴ c =70或-80.1. 两条直线的位置关系设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.若方程组有惟一解,则两条直线相交,此解就是交点坐标W.若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.若方程组有无数组解,则两条直线重合W.3. 几种距离(1) 两点间的距离: 平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式:d (A ,B )=AB =(x 1-x 2)2+(y 1-y 2)2. (2) 点到直线的距离:点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C|A 2+B2. (3) 两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2.4. 常见的三大直线系方程(1) 与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m∈R 且m≠C). (2) 与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m∈R ).(3) 过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.5. 中心对称(1) 点关于点对称:若点M (x 1,y 1)与N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2) 直线关于点对称问题的主要解法:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用l 1∥l 2,由点斜式得到所求的直线方程.6. 轴对称(1) 点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在对称轴l 上,且连结P 1P 2的直线垂直于对称轴l ,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,A (y 1-y 2)=B (x 1-x 2),可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中A≠0,x 1≠x 2).特别地,若直线l :Ax +By +C =0满足|A|=|B|,则P 1(x 1,y 1)与P 2(x 2,y 2)坐标关系为⎩⎪⎨⎪⎧Ax 1+By 2+C =0,Ax 2+By 1+C =0.(2) 直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[备课札记], 1 两直线的平行与垂直), 1) 已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1) l 1⊥l 2,且直线l 1过点(-3,-1);(2) l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1) ∵ l 1⊥l 2,∴ a (a -1)-b =0. ∵ 直线l 1过点(-3,-1),∴ -3a +b +4=0.故a =2,b =2. (2) ∵ 直线l 2的斜率存在,l 1∥l 2,∴ 直线l 1的斜率存在.∴ k 1=k 2,即ab=1-a.∵ 坐标原点到这两条直线的距离相等,∴ l 1,l 2在y 轴上的截距互为相反数,即4b=b.故a =2,b =-2或a =23,b =2.变式训练已知直线l 1经过点A (3,a ),B (a -1,2),直线l 2经过点C (1,2),D (-2,a +2),分别在下列条件下求a 的值:(1) l 1∥l 2; (2) l 1⊥l 2.解:设直线l 2的斜率为k 2,则k 2=2-(a +2)1-(-2)=-a3.(1) 若l 1∥l 2,则直线l 1的斜率k 1=-a3.又k 1=2-a a -4,则2-a a -4=-a 3,解得a =1或a =6.经检验,当a =1或a =6时,l 1∥l 2. (2) 若l 1⊥l 2.① 当k 2=0时,此时a =0,k 1=-12,不符合题意.② 当k 2≠0时,直线l 2的斜率存在,此时k 1=2-aa -4.由k 2k 1=-1,得-a 3·2-aa -4=-1,解得a =3或a =-4.经检验,当a =3或a =-4时,l 1⊥l 2. , 2 两直线的交点) , 2) 已知△ABC 的顶点B (3,4),AB 边上的高CE 所在直线方程为2x +3y -16=0,BC 边上的中线AD 所在直线方程为2x -3y +1=0,求AC 的长.解:∵ k CE = -23,AB ⊥CE ,∴ k AB =32, ∴ 直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x -2y -1=0,2x -3y +1=0,解得A (1,1), 设C (a ,b ), 则D ⎝ ⎛⎭⎪⎫3+a 2,4+b 2,∵ C 点在CE 上,BC 的中点D 在AD 上, ∴ ⎩⎪⎨⎪⎧2a +3b -16=0,2·3+a 2-3·4+b2+1=0,得C (5,2), 由两点间距离公式得AC 的长为17. 变式训练已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴ l AC :2x +y -11=0.联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴ C (4,3).设B (x 0,y 0),则AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0, ∴ ⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴ B (-1,-3), ∴ k BC =65,∴ 直线BC 的方程为y -3=65(x -4),即6x -5y -9=0., 3 点到直线及两平行直线之间的距离) , 3) 已知点P (2,-1).(1) 求过P 点且与原点距离为2的直线l 的方程;(2) 求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3) 是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1) 过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1), 可见,过P (2,-1)且垂直于x 轴的直线满足条件. 此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2) 过P 点与原点O 距离最大的直线是过P 点且与OP 垂直的直线,由l⊥OP,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3) 不存在.理由:由(2)可知,过P 点不存在到原点距离大于5的直线,因此不存在过P 点且到原点距离为6的直线.备选变式(教师专享)已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1) 若点A (5,0)到l 的距离为3,求直线l 的方程; (2) 求点A (5,0)到直线l 的距离的最大值. 解:(1) 由直线l 经过直线l 1与l 2交点知,其直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.∵ 点A (5,0)到直线l 的距离为3,∴ |10+5λ-5|(2+λ)2+(1-2λ)2=3, 即2λ2-5λ+2=0,∴ λ=2或λ=12,∴ 直线l 的方程为x =2或4x -3y -5=0.(2) 设直线l 1与l 2的交为P ,由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得P (2,1),如图,过点P 作任一直线l ,设d 为点A 到l 的距离,则d≤PA(当l⊥PA 时等号成立).∴ d max =PA =(5-2)2+(0-1)2=10., 4 对称问题), 4) 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1) 点A 关于直线l 的对称点A′的坐标;(2) 直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3) 直线l 关于点A (-1,-2)对称的直线l′的方程. 解:(1) 设A′(x ,y ),由已知得 ⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴ A ′⎝ ⎛⎭⎪⎫-3313,413. (2) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m′上.设对称点为M′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M′⎝ ⎛⎭⎪⎫613,3013. 设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,解得N (4,3).∵ m ′经过点N (4,3),∴ 由两点式得直线m′的方程为9x -46y +102=0.(3) 设P (x ,y )为l′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P′(-2-x ,-4-y ).∵ P ′在直线l 上,∴ 2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0. 备选变式(教师专享) 光线通过点A (2,3),在直线l :x +y +1=0上反射,反射光线经过点B (1,1),试求入射光线和反射光线所在直线的方程.解:设点A (2,3)关于直线l 的对称点为A′(x 0,y 0),则⎩⎪⎨⎪⎧2+x 02+3+y 02+1=0,y 0-3x 0-2=1,解得A′(-4,-3).由于反射光线经过点A′(-4,-3)和B (1,1),所以反射光线所在直线的方程为y -1-3-1=x -1-4-1,即4x -5y +1=0.解方程组⎩⎪⎨⎪⎧4x -5y +1=0,x +y +1=0,得反射点P ⎝ ⎛⎭⎪⎫-23,-13.所以入射光线所在直线的方程为y -3-13-3=x -2-23-2,即5x -4y +2=0.1. (2016·上海卷文)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2.解析:利用两平行线间距离公式得d =|-1-1|22+12=255. 2. 将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(m ,n )重合,则m +n 的值是 W.答案:345解析:点(0,2)与点(4,0)关于y -1=2(x -2)对称,则点(7,3)与点(m ,n )也关于y -1=2(x -2)对称,则⎩⎪⎨⎪⎧n +32-1=2⎝ ⎛⎭⎪⎫m +72-2,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315.∴ m +n =345.3. 已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是 .答案:x +2y -3=0解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.4. 在平面直角坐标系中,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是 W.答案:(2,4) 解析:设P 为平面上一点,则由三角形两边之和大于第三边知PA +PC≥AC,PB +PD≥BD,所以四边形ABCD 对角线的交点到四点距离之和最小,直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1),由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得交点坐标为(2,4).5. △ABC 的两条高所在直线的方程分别为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.解:可以判断A 不在所给的两条高所在的直线上,则可设AB ,AC 边上的高所在直线的方程分别为2x -3y +1=0,x +y =0,则可求得AB ,AC 边所在直线的方程分别为y -2=-32(x -1),y -2=x -1,即3x +2y -7=0,x -y +1=0. 由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得B (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得C (-2,-1), 所以BC 边所在直线的方程为2x +3y +7=0.1. 在平面直角坐标系xOy 中,直线l :(2k -1)x +ky +1=0,则当实数k 变化时,原点O 到直线l 的距离的最大值为 W.答案: 5解析:直线l 过定点P (1,-2),原点O 到直线l 的距离的最大值即为OP =12+(-2)2= 5.2. 若过点P (1,2)作一直线l ,使点M (2,3)和点N (4,-1)到直线l 的距离相等,则直线l 的方程为 W.答案:2x +y -4=0或x +2y -5=0解析:当直线l 经过MN 的中点时,其方程为x +2y -5=0;当过M ,N 两点的直线平行于直线l 时,直线l 的方程为2x +y -4=0.3. 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是 W.答案:⎝ ⎛⎭⎪⎫-16,12解析:由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴ 交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.∵ 交点位于第一象限,∴ ⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.∴ 实数k 的取值范围是⎝ ⎛⎭⎪⎫-16,12. 4. 已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为 W.答案:-3或13解析:(解法1)在直线l 上任取一点P (x ,y ),点P 到直线l 1和直线l 2的距离相等.|2x -y -2|22+(-1)2=|x +2y -1|12+22,整理得,直线l 的方程为3x +y -3=0或x -3y -1=0,所以直线l 的斜率为-3或13.(解法2)设l 1的倾斜角为α.因为l 1⊥l 2,所以l 的倾斜角为α±π4,所以直线l 的斜率为tan ⎝⎛⎭⎪⎫α±π4. 因为tan α=2,所以tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=-3,tan ⎝⎛⎭⎪⎫α-π4=tan α-tanπ41+tan αtanπ4=13, 所以直线l 的斜率为-3或13.1. 在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.2. 运用公式d =|C 1-C 2|A 2+B2求两平行直线间的距离时,一定要把x ,y 项系数化为相等的系数.3. 对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.[备课札记]第4课时 圆 的 方 程(对应学生用书(文)127~128页、(理)132~133页)1. (必修2P 111练习4改编)圆x 2+y 2-4x +6y =0的圆心坐标是 W. 答案:(2,-3)解析:由(x -2)2+(y +3)2=13知,圆心坐标为(2,-3). 2. (必修2P 111习题7改编)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为 W.答案:(x -2)2+y 2=10解析:设圆心坐标为(a ,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,∴ 圆心为(2,0),半径为10,∴ 圆C 的标准方程为(x -2)2+y 2=10.3. (必修2P 111练习6改编)经过三点A (1,-1),B (1,4),C (4,-2)的圆的一般方程为 W.答案:x 2+y 2-7x -3y +2=0解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.将A ,B ,C 三点代入,整理得方程组⎩⎪⎨⎪⎧D -E +F =-2,D +4E +F =-17,4D -2E +F =-20,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2,∴ 所求圆的一般方程为x 2+y 2-7x -3y +2=0.4. 已知点P (1,1)在圆x 2+y 2-ax +2ay -4=0的内部,则a 的取值范围是 W. 答案:(-∞,2)解析:由圆的一般方程知a∈R ,因为点P 在圆内,所以1+1-a +2a -4<0,解得a<2.5. (原创)已知实数x ,y 满足x 2+(y +3)2=4,则(x -3)2+(y -1)2的最大值为 W.答案:49解析:(x -3)2+(y -1)2表示圆x 2+(y +3)2=4上一动点P (x ,y )到点(3,1)的距离d 的平方,因为圆心(0,-3)到点(3,1)的距离为5,所以d 的最大值为5+2=7,所以d 2的最大值为49.1. 圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径W.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r>0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2W.(2) 特殊的,x 2+y 2=r 2(r>0)的圆心为(0,0),半径为r W. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0变形为⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4. (1) 当D 2+E 2-4F>0时,该方程表示以⎝ ⎛⎭⎪⎫-D 2,-E 22(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2;(3) 当D 2+E 2-4F <0时,该方程不表示任何图形.4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系:(1) 若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2W.(2) 若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2W.(3) 若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2W. [备课札记]1 确定圆的方程) 1) 求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程.解:(解法1)设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝ ⎛⎭⎪⎫-D2,-E 2,∴ k CB =6+E 28+D 2.∵ 圆C 与直线l 相切,∴ k CB ·k l =-1,即6+E 28+D 2·⎝ ⎛⎭⎪⎫-13=-1 ①.又有(-2)2+(-4)2-2D -4E +F =0 ②,又82+62+8D +6E +F =0 ③.联立①②③,可得D =-11,E =3,F =-30,∴ 所求圆的方程为x 2+y 2-11x +3y -30=0. (解法2)设圆的圆心为C ,则CB⊥l, 可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0 ①. 由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1).又k AB =6+48+2=1,∴ AB 的垂直平分线的方程为y -1=-(x -3), 即x +y -4=0 ②.由①②联立,解得⎩⎪⎨⎪⎧x =112,y =-32.即圆心坐标为⎝ ⎛⎭⎪⎫112,-32.∴ 所求圆的半径r =⎝ ⎛⎭⎪⎫112-82+⎝ ⎛⎭⎪⎫-32-62=1252, ∴ 所求圆的方程为⎝⎛⎭⎪⎫x -1122+⎝ ⎛⎭⎪⎫y +322=1252.变式训练圆经过点A (2,-3)和B (-2,-5). (1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程. 解:(1) 要使圆的面积最小,则AB 为圆的直径,圆心C (0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5.(2) 因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10,因此,所求的圆的方程为(x +1)2+(y +2)2=10.备选变式(教师专享) 已知一圆的圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分,求圆的方程. 解:如图,因为圆周被直线3x +4y +15=0分成1∶2两部分,所以∠AOB=120°,而圆心O (0,0)到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6,所以所求圆的方程为x 2+y 2=36., 2 与参数有关的圆方程问题), 2) 已知圆C 的方程x 2+y 2-2ax +2y +a +1=0.(1) 若圆C 上任意点A 关于l :x +2y -5=0的对称点也在圆上,求实数a 的值;(2) 求圆心C 到直线ax +y -a 2=0的距离的取值范围.解:(1) 将圆C 的方程配方得(x -a )2+(y +1)2=a 2-a.由题意知圆心C (a ,-1)在直线l :x +2y -5=0上,即a -2-5=0,所以a =7.(2) 由圆方程可知, a 2-a >0,解得a >1或a <0.由方程得圆心C (a ,-1)到直线ax +y -a 2=0的距离d =|a 2-1-a 2|a 2+1=1a 2+1.因为a >1或a <0,所以a 2+1>1,所以0<d <1,所以所求距离的取值范围为(0,1).变式训练已知圆C :(x -a )2+(y -b )2=1,设平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为 W. 答案:37解析:作出可行域,如图,由题意知,圆心为C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.而直线y =1与可行域边界的交点为A (6,1),B (-2,1),目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与点A 重合时,z 取到最大值,z max =37.备选变式(教师专享)设△ABC 顶点坐标为A (0,a ),B (-3a ,0),C (3a ,0),其中a>0,圆M 为△ABC 的外接圆.(1) 求圆M 的方程;(2) 当a 变化时,圆M 是否过某一定点,请说明理由.解:(1) 设圆M 的方程为x 2+y 2+Dx +Ey +F =0. ∵ 圆M 过点A (0,a ),B (-3a ,0),C (3a ,0)∴ ⎩⎨⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a ,∴ 圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2) 圆M 的方程可化为(3+y )a -(x 2+y 2+3y )=0. 由⎩⎪⎨⎪⎧3+y =0,x 2+y 2+3y =0,解得⎩⎪⎨⎪⎧x =0,y =-3. ∴ 圆M 过定点(0,-3)., 3 圆方程的应用), 3) 如图,某市有一条东西走向的公路l ,现欲经过公路l 上的O 处铺设一条南北走向的公路m.在施工过程中发现在O 处的正北1百米的A 处有一汉代古迹.为了保护古迹,该市决定以A 为圆心,1百米为半径设立一个圆形保护区.为了连通公路l ,m ,欲再新建一条公路PQ ,点P ,Q 分别在公路l ,m 上(点P ,Q 分别在点O 的正东,正北方向上),且要求PQ 与圆A 相切.(1) 当点P 距O 处2百米时,求OQ 的长; (2) 当公路PQ 长最短时,求OQ 的长.。

2019高考数学一轮复习第九章平面解析几何91直线方程与两条直线的位置关系练习理

2019高考数学一轮复习第九章平面解析几何91直线方程与两条直线的位置关系练习理

哈哈哈哈哈哈哈哈你好§9.1直线方程与两条直线的地点关系命题研究解答过程答案 :A分析:解法一 :由题意可知 , 点 F 的坐标为 (1,0),直线AB的斜率存在且不为0, 故设直线AB的方程为x=my+1. 由得 y2-4my-4=0,设 A(x 1,y 1),B(x 2,y 2), 则 y1+y2=4m,y 1y2=-4,∴x1+x2=m(y1+y2)+2=4m2+2,2∴|AB|=|AF|+|BF|=x1+x 2+2=4m+4.∵AB⊥DE,∴直线DE的方程为x=-y+1,|DE|=+4,∴|AB|+|DE|=4m 2+4++4=4+8≥4×2+8=16,2当且仅当m=, 即 m=±1时, 等号建立 .即 |AB|+|DE| 的最小值为 16. 应选 A.解法二 :如图 ,l 1⊥l2, 直线 l 1与 C 交于 A、 B 两点 , 直线 l 2与 C交于 D、E 两点 ,要使 |AB|+|DE| 最小 , 则 A与 D,B 与 E 对于 x 轴对称 , 即直线 DE的斜率为 1.又直线 l 2过点 (1,0),∴直线 l 2的方程为y=x-1,2联立方程组则y -4y-4=0,设D(x1,y1),E(x2,y2),∴|DE|= ·|y 1-y 2|= ×=8,∴|AB|+|DE| 的最小值为 2|DE|=16哈哈哈哈哈哈哈哈你好考纲解读考点内容解读要求高考示例常考题型展望热度①在平面直角坐标系中 , 联合详细图形 , 确立直线地点2015 课标1.直线的的几何因素 ; Ⅰ,20;选择题★★倾斜角、斜②理解直线的倾斜角和斜率的观点, 掌握过两点的直掌握2014 广填空题☆率和方程线斜率的计算公式 ; 东 ,10;③能依据两条直线的斜率判断这两条直线平行或垂2013 山东 ,9直 ;2.点与直④掌握确立直线地点的几何因素, 掌握直线方程的几2016 四川 ,9; 种形式 ( 点斜式、两点式及一般式 ), 认识斜截式与一次2014 四线、直线与选择题★★函数的关系 ; 掌握川 ,14;直线的位填空题☆⑤能用解方程组的方法求两条订交直线的交点坐标; 置关系2013 课标全⑥掌握两点间的距离公式、点到直线的距离公式, 会求国Ⅱ ,12两条平行直线间的距离剖析解读 1. 理解直线的倾斜角与斜率的关系, 会求直线的倾斜角与斜率.2. 掌握求直线方程的三种方法: 直接法、待定系数法、轨迹法 .3. 能依据两条直线平行、垂直的条件判断两直线能否平行或垂直.4. 熟记两点间的距离公式、点到直线的距离公式、两条平行线间的距离公式, 依据有关条件 , 会求三种距离.5. 理解方程和函数的思想方法 .6. 高考取常联合直线的斜率与方程, 考察与其余曲线的综合应用, 分值约为 5 分, 属中档题 .五年高考考点一直线的倾斜角、斜率和方程1.(2013 山东 ,9,5 分 ) 过点 (3,1) 作圆 (x-1) 2+y2=1 的两条切线 , 切点分别为A,B, 则直线 AB 的方程为 ( )A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=0答案 A2.(2014 广东 ,10,5 分 ) 曲线 y=e-5x +2 在点 (0,3) 处的切线方程为.答案 5x+y-3=03.(2015 课标Ⅰ ,20,12 分) 在直角坐标系 xOy 中 , 曲线 C:y= 与直线 l:y=kx+a(a>0) 交于 M,N两点 .(1) 当 k=0 时 , 分别求 C 在点 M和 N处的切线方程 ;哈哈哈哈哈哈哈哈你好(2)y 轴上能否存在点 P, 使适当 k 改动时 , 总有∠ OPM=∠OPN?说明原因.分析(1) 由题设可得 M(2,a),N(-2,a)或 M(-2,a),N(2,a).又 y'=, 故 y=在 x=2 处的导数值为 ,C 在点 (2,a) 处的切线方程为 y-a=(x-2),即 x-y-a=0.y=在 x=-2 处的导数值为 -,C 在点 (-2,a) 处的切线方程为 y-a=-(x+2),即 x+y+a=0. 故所求切线方程为x-y-a=0 和 x+y+a=0.(5分 )(2) 存在切合题意的点 , 证明以下 :设 P(0,b) 为切合题意的点 ,M(x 1,y 1),N(x 2,y 2), 直线 PM,PN 的斜率分别为 k 1,k 2. 将 y=kx+a 代入 C 的方程得 x 2-4kx-4a=0. 故 x 1+x 2 =4k,x 1x 2=-4a. 进而 k 1+k 2=+==.当 b=-a 时 , 有 k 1+k 2=0, 则直线 PM 的倾斜角与直线PN 的倾斜角互补 , 故∠ OPM=∠OPN,因此点 P(0,-a) 切合题意.(12 分 )考点二 点与直线、直线与直线的地点关系1.(2016 四川 ,9,5 分 ) 设直线 l ,l 2 分别是函数f(x)= 图象上点 P ,P 处的切线 ,l1与 l 2垂直订交于点P, 且 l ,l211 21 分别与 y 轴订交于点 A,B, 则△ PAB 的面积的取值范围是 ( )A.(0,1)B.(0,2)C.(0,+ ∞)D.(1,+ ∞)答案 A2.(2013 课标全国Ⅱ ,12,5 分) 已知点 A(-1,0),B(1,0),C(0,1), 直线 y=ax+b(a>0) 将△ ABC 切割为面积相等的两部分 , 则 b 的取值范围是 ( )A.(0,1)B.C.D.答案 B3.(2013 湖南 ,8,5 分 ) 在等腰直角三角形 ABC 中 ,AB=AC=4,点 P 是边 AB 上异于 A,B 的一点 . 光芒从点 P 出发 , 经 BC,CA 反射后又回到点 P(如图 ). 若光芒 QR 经过△ ABC 的重心 , 则 AP 等于 ()A.2B.1C.D.答案D4.(2014 四川 ,14,5 分 ) 设 m ∈R,过定点 A 的动直线x+my=0 和过定点B的动直线 mx-y-m+3=0 交于点 P(x,y), 则 |PA| ·|PB|的最大值是 .答案5三年模拟A 组 2016— 2018 年模拟·基础题组考点一 直线的倾斜角、斜率和方程1.(2018 贵州遵义期中 ,2) 已知直线 l:x+y+2 017=0, 则直线 l 的倾斜角为 ()A.150°B.120°C.60°D.30°答案B电视播放动画动画哈哈哈哈哈哈哈哈你好2.(2018 河北衡水期末 ,6) 过不重合的A(m2+2,m2-3),B(3-m-m 2,2m) 两点的直线l 的倾斜角为 45°, 则 m的值为( )A.-1B.-2C.-1 或 2D.1 或 -2答案 B3.(2018 浙江金华模拟 ,4) 过点 (-10,10) 且在 x 轴上的截距是在 y 轴上截距的 4 倍的直线的方程为 ()A.x-y=0B.x+4y-30=0C.x+y=0 或 x+4y-30=0D.x+y=0 或 x-4y-30=0答案 C4.( 人教 A 必 2, 三 ,3-2-2,2,变式)已知直线l:ax+y-2=0在x轴和y轴上的截距相等, 则实数 a 的值是 ()A.1B.-1C.-2 或 -1D.-2 或 1答案 A5.(2017福建四地六校联考,6) 已知函数f(x)=asin x- bcos x(a ≠0,b ≠0), 若f=f,则直线ax-by+c=0的倾斜角为 ()A. B.C. D.答案 D6.(2017 安徽“江淮十校”第一次联考,13) 经过圆x2+2x+y2=0 的圆心 C, 且与直线x+y=0 垂直的直线方程是.答案x-y+1=0考点二点与直线、直线与直线的地点关系7.(2018 陕西延安期中 ,6) 等腰直角三角形ABC的直角极点为 C(3,3), 若点 A 的坐标为 (0,4), 则点 B 的坐标可能是 ( )A.(2,0) 或 (4,6)B.(2,0) 或 (6,4)C.(4,6)D.(0,2)答案 A8.(2018 贵州六盘水模拟 ,7) 若点 M和 N 都在直线 l:x+y=1 上, 则点 P,Q 和 l 的关系是 ( )A.P 和 Q都在 l 上B.P 和 Q都不在 l 上C.P 在 l 上 ,Q 不在 l 上D.P 不在 l 上 ,Q 在 l 上答案 A9.(2017 江西景德镇二模 ,4) 若直线 l 1:(m-2)x-y-1=0 与直线 l 2:3x-my=0 相互平行 , 则 m的值等于 ()A.0 或-1 或 3B.0 或 3C.0 或-1D.-1 或 3答案 D10.(2016 江西上饶二模 ,4) 直线 (a+2)x+(1-a)y-3=0 与直线 (a-1)x+(2a+3)y+2=0 相互垂直 , 则 a 的值为 ()A.-1B.1C.±1D.-答案 CB 组2016— 2018 年模拟·提高题组(满分 :35 分时间:40分钟)一、选择题 ( 每题 5 分, 共 20 分)1.(2018 内蒙古包头模拟 ,6) 以下图 , 已知 M(1,0),N(-1,0), 直线 2x+y-b=0 与线段 MN 订交 , 则 b 的取值范围是()A.[-2,2]B.[-1,1]C. D.[0,2] 答案 A2.(2018 新疆乌鲁木齐模拟 ,6) 直线 a 1x+b 1y=2 和 a 2x+b 2y=2 交于点 P(2,3),则过点 A(a 1,b 1) 、 B(a 2,b 2) 的直线方程是()A.2x+3y-2=0B.3x+2y-2=0C.3x+2y+2=0D.2x+3y+2=0答案 A3.(2017 豫南九校联考 ,5) 若 θ 是直线 l 的倾斜角 , 且 sin θ +cos θ =, 则 l 的斜率为 ( )A.-B.- 或 -2C.或 2D.-2答案 D4.(2016 江西南昌二模 ,9) 已知点 A(-2,0),B(1,0),C(0,1), 直线 y=kx 将△ ABC 切割为两部分 , 则当这两部分的面积之积获得最大值时 k 的值为 ()A.-B.-C.-D.- 答案 A二、解答题 ( 共 15 分)5.(2017 湖北十堰模拟 ,18) 已知三条直线 l 1:2x-y+a=0(a>0),l2:4x-2y-1=0和 l 3 :x+y-1=0,且两平行直线 l 1 与l 2 间的距离是 . (1) 求 a 的值 ;(2) 可否找到一点P, 使得 P 点同时知足以下三个条件 : ①P 是第一象限的点 ; ②P 点到 l 1 的距离是 P 点到 l 2 的距离的 ; ③P 点到 l 1 的距离与 P 点到 l 3 的距离之比是∶ ?若能 , 求出 P 点坐标 ; 若不可以 , 请说明原因 .分析 (1)l 2 的方程可化为 2x-y-=0, ∴l 1 与 l 2 间的距离 d==,∴ =, ∴=,∵ a >0, ∴a=3.(2) 能.假定存在知足题意的 P 点.设点 P(x ,y ), ∵P 点知足条件② , ∴P 点在与 l 、l 2平行的直线 l':2x-y+C=0上 , 此中 C 知足 =×,C ≠3 且 C ≠ -,0 1则 C=或 C=,∴ 2x 0-y 0 +=0 或 2x 0-y 0+=0. ∵P 点知足条件③, ∴由点到直线的距离公式得 =×,即 |2x 0-y 0+3|=|x 0+y 0- 1|, ∴x 0-2y 0+4=0 或 3x 0+2=0. ∵P 点在第一象限 , ∴ 3x 0+2=0 不知足题意 .由解得 ( 舍去 ).由解得∴存在知足题意的P 点,且 P 点的坐标为 .C 组 2016— 2018 年模拟·方法题组方法 1 求直线的斜率及倾斜角的范围的方法1.(2018 陕西延安期中 ,5) 直线 a 2x-b 2y=1( 此中 a,b ∈R,且 ab ≠0) 的倾斜角的取值范围为 ( )A. B. C. D. 答案A2.(2018 湖北黄冈模拟 ,4) 直线 x-ysin θ+1=0 的倾斜角的取值范围是 ()A. B. ∪C. D.∪答案 A3.(2016 河北廊坊期末 ,5) 直线 (1+a 2)x-y+2=0 的倾斜角的取值范围是 ()A. B.C.∪D.答案 D4.(2017 湖南益阳调研 ,14) 若过点 (0,2) 的直线 l 与圆 (x-2) 2+(y-2)2=1 有公共点 , 则直线 l 的斜率的取值范围是.答案方法 2确立直线方程的方法5.(2018 广西钦州期中 ,8) 已知直线 l 的方程为 f(x,y)=0,P 1(x 1,y 1) 和 P 2(x 2,y 2) 分别为直线l 上和 l 外的点 , 则方程 f(x,y)-f(x 1,y 1)-f(x 2,y 2)=0 表示 ()A. 过点 P 且与 l 垂直的直线1B. 与 l 重合的直线C. 过点 P 2 且与 l 平行的直线D. 可是点 P , 但与 l 平行的直线2答案 C6.(2017 安徽安庆模拟 ,13) 经过点 (2,1) 的直线 l 和两坐标轴订交于A 、B 两点 , 若△ AOB(O 是原点 ) 的面积恰为4, 则切合要求的直线 l 有 条 .答案 37.(2016 河南天一大联考 ,19)2 2222已知圆 C :x +y =9 与圆 C :(x-3) +(y-4)=r(r>0) 相外切 .12(1) 若圆 C 2 对于直线 l:-=1 对称 , 求由点 (a,b) 向圆 C 2 所作的切线长的最小值 ; (2) 若直线 l 1 过点 A(1,0) 且与圆 C 2 订交于 P,Q 两点 , 求△C 2PQ 面积的最大值 , 并求此时直线 l 1 的方程 .分析 (1) 由题意知圆 C 1 的圆心为 (0,0), 半径为 3, 圆 C 2 的圆心为 (3,4), 半径为 r, 由于圆 C 1 与圆 C 2 外切 , 因此|C 1C 2|=5=3+r, 因此 r=2.由于圆 C 2 对于直线 l:-=1 对称 , 因此圆心 C 2(3,4) 在直线 -=1 上 , 因此 -=1,因此 a=b+3,因此由点 (a,b) 向圆 C 2 所作的切线长为== =,因此当 b=2 时 , 切线长获得最小值 , 最小值为 2.(2) 由于直线 l 1 过点 A 且与圆 C 2 订交 , 因此 l 1 的斜率必定存在且不为 0, 设直线 l 1:kx-y-k=0,则圆心 C (3,4) 到直线 l 1 的距离为 d=,2△C 2PQ 的面积 S=d ×2=d==,当 d=时 ,S 获得最大值 2, 因此 d==, 解得 k=1 或 k=7,因此此时直线l 1的方程为 x-y-1=0或7x-y-7=0.方法 3两直线平行与垂直问题的解决议略8.(2018湖南衡阳模拟,7)过定点M的直线ax+y-1=0与过定点N 的直线 x-ay+2a-1=0交于点P,则|PM|·|PN | 的最大值为 ()A.4B.3C.2D.1答案 D9.(2018广东广州模拟,14) 若三条直线2x-y+4=0,x-2y+5=0,mx-3y+12=0围成直角三角形, 则 m=.答案- 或-610.(2017安徽池州月考,14)已知b>0, 直线 (b 2+1)x+ay+2=0与直线x-b 2 y-1=0垂直,则ab 的最小值为.答案 2方法 4求距离的方法11.(2018天津学业考试,5) 平行于直线l:x+2y-3=0,且与l的距离为2 的直线的方程为()A.x+2y+7=0B.x+2y-13=0或x+2y+7=0C.x+2y+13=0D.x+2y+13=0 或 x+2y-7=0答案 B12.(2018湖南益阳模拟,6) 已知实数x,y 知足 2x+y+5=0, 那么的最小值为()A. B. C.2 D.2答案 A13.(2016 河北石家庄期末 ,8) 点 P(-2,-1) 到直线 l:(1+3 λ )x+(1+2 λ)y=2+5 λ的距离为 d, 则 d 的取值范围是( )A.0≤d<B.d≥0C.d>D.d≥答案 A14.(2017 湖南岳阳二模 ,8) 已知动直线 l:ax+by+c-2=0(a>0,c>0) 恒过点 P(1,m) 且 Q(4,0) 到动直线 l 的最大距离为 3, 则 +的最小值为 ( )A. B. C.1 D.9答案 B方法 5对于对称问题的求解策略15.(2018山西陵川一中期中,6) 若点 (a,b) 对于直线y=2x 的对称点在x 轴上 , 则 a,b 知足的条件为 ()A.4a+3b=0B.3a+4b=0C.2a+3b=0D.3a+2b=0答案 A16.(2017河北五校联考,5)直线ax+y+3a-1=0恒过定点M,则直线2x+3y-6=0对于M点对称的直线方程为()A.2x+3y-12=0B.2x-3y-12=0C.2x-3y+12=0D.2x+3y+12=0答案 D电视播放动画动画。

2019版高考数学一轮总复习第九章解析几何1直线方程课件

2019版高考数学一轮总复习第九章解析几何1直线方程课件

★状元笔记★ 求直线倾斜角范围的步骤 (1)求出斜率 k 的取值范围(若斜率不存在,倾斜角为 90°); (2)利用正切函数的单调性, 借助图像或单位圆确定倾斜角的 取值范围.
思考题 1 (1)将本例(1)中的 sinα 换成 sin2α ,则直线倾 斜角的范围变为________.
【答案】 {θ|θ=0°或 135°≤θ <180°}
3 (2)已知两点 A(-1,2),B(m,3),且实数 m∈[- 3 -1, 3 -1],求直线 AB 的倾斜角 α 的范围. π 【解析】 ①当 m=-1 时,α= 2 ; ②当 m≠-1 时, 1 3 ∵k= ∈(-∞,- 3]∪[ ,+∞), 3 m+1 π π π 2π ∴α∈[ 6 , 2 )∪( 2 , 3 ]. π 2π 综合①②知直线 AB 的倾斜角 α 的范围是[ , ]. 6 3 π 2π 【答案】 [ 6 , 3 ]
2 2
不含垂直于坐标轴和过 原点的直线 所有直线都适用
一般式
1.判断下列说法是否正确(打“√”或“×”). (1)坐标平面内的任何一条直线均有倾斜角与斜率. (2)直线的倾斜角越大,其斜率就越大. (3)斜率相等的两直线的倾斜角一定相等. (4)经过定点 A(0,b)的直线都可以用方程 y=kx+b 表示. x y (5)不经过原点的直线都可以用a +b=1 表示. (6)经过任意两个不同的点 P1(x1,y1),P2(x2,y2)的直线都可 以用方程(y- y1)(x2-x1)=(x-x1)(y2- y1)表示.
课前自助餐
直线的方向向量 若 P1(x1,y1),P2(x2,y2)是直线 l 上两点,则 l 的方向向量的 坐标为(x2-x1, y2- y1); 若 l 的斜率为 k, 则方向向量的坐标为(1, k).

高考数学理科一轮复习第九章第一节直线与方程完美

高考数学理科一轮复习第九章第一节直线与方程完美

(2)坐标平面内的任何一条直线均有倾斜角与斜率. ( × )
(3)直线的倾斜角越大,其斜率就越大.
(× )
(4)当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2. ( × )
(5)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.
(× )
2.填空题 (1)若过两点A(-m,6),B(1,3m)的直线的斜率为12,则m= ________. 答案:-2 (2)如图中直线l1,l2,l3的斜率分别为k1,k2, k3,则k1,k2,k3的大小关系为________.
05
课时达标检测
01 突破点(一) 直线的倾斜角与斜率、两直线的位置关系
自学区 抓牢双基· 完成情况
1.直线的倾斜角
[基本知识]
(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向 与直线l 向上方向 之间所成的角叫做直线l的倾斜角.当直线l 与x轴 平行或重合 时,规定它的倾斜角为0.
(2)范围:直线l倾斜角的范围是 [0,π) .与方程
本节主要包括3个知识点: 1.直线的倾斜角与斜率、两直线的位置关系; 2.直线的方程; 3.直线的交点、距离与对称问题.
01 突破点(一) 直线的倾斜角与斜率、两直线的 位置关系
02
突破点(二) 直线的方程
03 突破点(三) 直线的交点、距离与对称问题
04
全国卷5年真题集中演练——明规律
两直线的位置关系
两直线位置关系的判断方法 (1)已知两直线的斜率存在 ①两直线平行⇔两直线的斜率相等且坐标轴上的截距 不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在 若两直线的斜率不存在,当两直线在x轴上的截距不相 等时,两直线平行;否则两直线重合.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)l1的斜率k1=1-3a--02=a. 当a≠0时,l2的斜率k2=-2aa--0-1=1-a2a. 因为l1⊥l2, 所以k1k2=-1,即a·1-a2a=-1,解得a=1. 当a=0时,P(0,-1),Q(0,0),这时直线l2为y轴,A(-2, 0),B(1,0),直线l1为x轴,显然l1⊥l2. 综上可知,实数a的值为1或0. [答案] (1)D (2)1或0
线l:x+my+m=0与线段PQ有交点,则实数m的取值范围是
________. [解析] (1)因为直线xsin α+y+2=0的斜率k=-sin α,又
-1≤sin α≤1,所以-1≤k≤1.设直线xsin α+y+2=0的倾斜
角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范
围是0,π4∪34π,π.
第九章 解析几何
K12课件
1
第一节 直线与方程
本节主要包括3个知识点: 1.直线的倾斜角与斜率、两直线的位置关系; 2.直线的方程; 3.直线的交点、距离与对称问题.
K12课件
2
01 突破点(一) 直线的倾斜角与斜率、两直线的 位置关系
02
突破点(二) 直线的方程
03 突破点(三) 直线的交点、距离与对称问题
(2)坐标平面内的任何一条直线均有倾斜角与斜率. ( × )
(3)直线的倾斜角越大,其斜率就越大.
(× )
(4)当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2. ( × )
(5)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.
(× )
2.填空题 (1)若过两点A(-m,6),B(1,3m)的直线的斜率为12,则m= ________. 答案:-2 (2)如图中直线l1,l2,l3的斜率分别为k1,k2, k3,则k1,k2,k3的大小关系为________.
解析:设l1,l2,l3的倾斜角分别为α1,α2,α3.由题图易知 0<α3<α2<90°<α1<180°,∴tan α2>tan α3>0>tan α1, 即k2>k3>k1. 答案:k2>k3>k1
(3)已知直线l1:x=-2,l2:y=
1 2
,则直线l1与l2的位置关系
是________.
答案:垂直
(4)已知直线l1:ax+(3-a)y+1=0,l2:x-2y=0.若l1⊥l2, 则实数a的值为________. 解析:由题意,得a-a 3=-2,解得a=2. 答案:2
讲练区 研透高考· 完成情况
[全析考法]
直线的倾斜角与斜率
1.直线都有倾斜角,但不一定都有斜率,二者的关系具 体如下:
斜率k k=tan α>0 k=0 k=tan α<0 不存在
(2)范围:直线l倾斜角的范围是 [0,π) .
2.直线的斜率公式
(1)定义式:若直线l的倾斜角α≠π2,则斜率k= tan α .
(2)两点式:P1(x1,y1),P2(x2,y2)在直线l上,且x1≠x2,
y2-y1 则l的斜率k= x2-x1 .
3.两条直线平行与垂直若其斜率分别为k1, k2,则有l1∥l2⇔ k1=k2 .
倾斜角α 锐角 0° 钝角
90°
2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=
tan α的单调性,如图所示:
(1)当α取值在
0,π2
内,由0增大到
π 2
α≠π2
时,k由0增大并趋向于正无穷大;
(2)当α取值在π2,π内,由π2α≠π2增大到π(α≠π)时,k由负无 穷大增大并趋近于0.
04
全国卷5年真题集中演练——明规律
05
课时达标检测
K12课件
3
01 突破点(一) 直线的倾斜角与斜率、两直线的位置关系
自学区 抓牢双基· 完成情况
1.直线的倾斜角
[基本知识]
(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向 与直线l 向上方向 之间所成的角叫做直线l的倾斜角.当直线l 与x轴 平行或重合 时,规定它的倾斜角为0.
两直线的位置关系
两直线位置关系的判断方法 (1)已知两直线的斜率存在 ①两直线平行⇔两直线的斜率相等且坐标轴上的截距 不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在 若两直线的斜率不存在,当两直线在x轴上的截距不相 等时,两直线平行;否则两直线重合.
[例2] (1)已知直线l1:3x+2ay-5=0,l2:(3a-1)x-ay-2
(2)如图所示,直线l:x+my+m=0过定点 A(0,-1),当m≠0时,kQA=32,kPA=-2, kl=-m1 .
∴-m1 ≤-2或-m1 ≥32. 解得0<m≤12或-23≤m<0; 当m=0时,直线l的方程为x=0,与线段PQ有交点. ∴实数m的取值范围为-23,12. [答案] (1)B (2)-23,12
解决此类问题,常采用数形结合思想.
[例1] (1)直线xsin α+y+2=0的倾斜角的取值范围是( )
A.[0,π)
B.0,π4∪34π,π
C.0,π4
D.0,π4∪π2,π
(2)已知线段PQ两端点的坐标分别为P(-1,1)和Q(2,2),若直
当直线l1,l2不重合且斜率都不存在时,l1∥l2
如果两条直线l1,l2的斜率存在,设为k1,k2,则有 两条直 l1⊥l2⇔ k1·k2=-1 .
线垂直 当其中一条直线的斜率不存在,而另一条直线的斜
率为0时,l1⊥l2
[基本能力]
1.判断题
(1)根据直线的倾斜角的大小不能确定直线的位置. ( √ )
=0,若l1∥l2,则a的值为
()
A.-16
B.6
C.0
D.0或-16
(2)已知经过点A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1) 和点Q(a,-2a)的直线l2互相垂直,则实数a的值为________.
[解析] (1)由l1∥l2,得-3a-2a(3a-1)=0,即6a2+a=0, 所以a=0或a=-16,经检验都成立.故选D.
[易错提醒]
直线倾斜角的范围是[0,π),而这个区间不是正切函 数的单调区间,因此根据斜率求倾斜角的范围时,要分 0,π2 与 π2,π 两种情况讨论.由正切函数图象可以看 出,当α∈ 0,π2 时,斜率k∈[0,+∞);当α= π2 时,斜率 不存在;当α∈π2,π时,斜率k∈(-∞,0).
相关文档
最新文档