金属学第二章 金属的晶体结构
材料科学基础2.2金属的晶体结构
间隙原子与最近邻原子
间距离:
四面体边长:
a 3/4
a/ 2
112 1 4 4
8
fcc Octahedron 八面体间隙大小
r 2 1 0.414 R
2r
a 2 2R
体中心和棱的中间
Rr a 2
fcc
C
D
Tetrahedron 四面体间隙大小
rin
3 4
a
R
f cc ,
R fcc
2a 4
bcc 八面体间隙大小
4R 3a bcc
rin
a/4
Rbcc
a/2
1
23
r aR R R
2 in
bcc
3
bcc
bcc
rin 2 3 1 0.155
Rbcc
3
(3) A3: hcp
Octahedral sites:6个
a/ 2
C
hcp
Tetrahedral sites
2 6 2 1 2 3 12 3
2.2.2 晶体的原子堆垛方式和间隙
1.密排面和密排向 晶体晶格中原子密度最大的晶面、晶向
密排六方结构A3(hcp) 0001和 1120
C
C
中间层相对底层错动
110 1 0
3
面心立方结构A1 (ABCABC…)
111和 110
1
8
9
7
3
2
6
4
5
密排面的堆积:(ABCABC…)
1
7 2
8 3
4 第二层相对于第一层错动
FCC
BCC HCP
三种典型晶体中的间隙
八面体间隙
第2章.金属的晶体结构
(3)分布有序度分 固溶体分无序固溶体和有序固溶体两种。
无序固溶体:是溶质原子占据溶剂晶格结点的位置是随机的,任意 的和不固定的,是溶质原子无规则分布。
有序固溶体:溶质原子只占据溶剂晶格结点的某几个固定位置,从 而形成溶质原子有规则分布在溶剂晶格当中。
2. 固溶体的性能 溶质原子溶入→晶格畸变→位错运动阻力上升→金属塑性变形困难 →强度、硬度升高。
β相化合物 CuZn
γ相化合物 Cu5Zn8 ε相化合物 CuZn3
3.间隙化合物 ( interstitial compounds )
由过渡族金属元素与碳、氮、氢、硼等原子半径较小的非金 属元素形成的化合物为间隙化合物。尺寸较大的过渡族元素原子 占据晶格的结点位置,尺寸较小的非金属原子则有规则地嵌入晶 格的间隙之中。根据结构特点,间隙化合物分间隙相和复杂结构 的间隙化合物两种。
3 . 二元合金: 由两个组元组成的合金称为二元合金 , 例如工程上常用的铁碳合金、铜镍合金、铝铜合金等。
4 . 相: 在合金中,凡化学成分相同、晶体结构相同 并有界面与其它部分分开的均匀组成部分叫做相。液态物 质为液相,固态物质为固相。
二、合金的相结构
★ 由于组元相互作用不同,固态合金的相结构有两大类:固溶体和金属化合 物。 (一 )固溶体 固溶体:合金组元通过溶解形成一种成分和性能均匀的、且结构与组元之 一相同的固相。 溶剂:与固溶体晶格相同的组元,一般在合金中含量较多; 溶质:以原子状态分布在溶剂晶格中,一般含量较少。
金属键的实质就是金属正离子与电子云之间产生的强烈静电引力同各 正离子间的斥力及电子间的斥力之间的相互平衡。
金属特征 1. 良好的导电、导热性; 2. 正的电阻温度系数; 3. 不透明,有光泽; 4. 具有延展性。
金属的晶体结构
金属的晶体结构
晶格结构
金属的晶格结构可以分为几种常见类型:
1. 立方晶格:包括面心立方晶格和体心立方晶格两种。
面心立方晶格中,每个原子占据正方形的每个面的中心和每个角的一半位置。
体心立方晶格中,每个原子位于立方体的中心。
2. 六角密排晶格:每个原子占据六边形密集堆积的每个角和每个孔的一半位置。
3. 其他晶格:还有一些金属存在其他的非常规晶格结构,如密排立方和简单立方等。
应用
金属的晶体结构对其性能和性质具有重要影响。
通过改变金属
的晶体结构,可以调节金属的硬度、强度、导电性、热导性等特性。
同时,晶体结构也决定了金属的晶界、位错等缺陷的分布和性质。
在金属加工中,了解金属的晶体结构可以帮助工程师选择合适
的加工方法和工艺参数,以获得所需的金属性能。
结论
金属的晶体结构是金属固体内原子或离子的有序排列方式。
不
同的晶格结构决定了金属的性能和性质。
通过了解金属的晶体结构,可以更好地设计和加工金属材料。
第二章 金属的结构与结晶
第二章金属的结构与结晶第一节金属的晶体结构一、晶体与非晶体非晶体:在物质内部,凡原子呈无序堆积状况的,称为非晶体。
如:普通玻璃、松香、树脂等。
晶体:凡原子呈有序、有规则排列的物质,金属的固态、金刚石、明矾晶体等。
性能:晶体有固定的熔、沸点,呈各向异性,非晶体没有固定熔点,而且表现为各向同性。
二、晶体结构的概念:1、晶格和晶胞:表示原子在晶体中排列规律的空间格架叫做晶格。
能完整地反映晶格特征的最小几何单元,称为晶胞。
2、晶面和晶向:在晶体中由一系列原子组成的平面,称为晶面。
通过两个或两个以上原子中心的直线,可代表晶格空间排列的一定方向,称为晶向。
由于在同一晶格的不同晶面和晶向上原子排列的疏密程度不同,因此原子结合力也就不同,从而在不同的晶面和晶向上显示出不同的性能,这就是晶体具有各向异性的原因。
三、金属晶格的类型:1、体心立方晶格:它的晶胞是一个立方体,原子位于立方体的八个顶角上和立方体的中心。
如:铬(Cr)、钒(V)、钨(W)、钼(Mo)及α-Fe2、面心立方晶格:它的晶胞也是一个立方体,原子位于立方体的八个顶角上和立方体六个面的中心。
如:铝(Al)、铜(Cu)、铅(Pb)、镍(Ni)及γ-Fe3、密排六方晶格:它的晶胞是一个正六棱柱体,原子排列在柱体的每个顶角上和上、下底面的中心,另外三个原子排列在柱体内。
属于这种晶格类型的金属有镁(Mg)、铍(Be)、镉(Cd)、及锌(Zn)等。
第二节纯金属的结晶金属由原子不规则排列的液体转变为原子规则排列的固体的过程称为结晶。
一、纯金属的冷却曲线及过冷度。
用热分析法进行研究:图2—1纯金属的冷却曲线(理论) 纯金属的冷却曲线(实际)实际结晶温度(T1)低于理论结晶温度(To)这一现象称为“过冷现象”。
理论结晶温度和实际结晶温度之差称这“过冷度”(△T=To—T1)。
金属结晶时过冷度的大小与冷却速度有关。
冷却速度越快,金属的实际结晶温度越低,过冷度也就越大。
第二单元 金属的晶体结构和结晶
ROAD ENERGY
(1) 单晶体与多晶体
对于单晶体,由于各个方向上原子排列
不同,导致各个方向上的性能不同,即“ 各向异性”的特点; 多晶体对每个小晶粒具有“各向异性” 的特点,而就多晶体的整体,由于各小晶 粒的位向不同,表现的是各小晶粒的平均 性能,不具备“各向异性”的特点。
单晶体
多晶体
ROAD ENERGY
2 金属的典型晶体结构
ROAD ENERGY
规则排列的方式为晶体的结构
晶格:表示晶体中原子排列形成的空间格子。
晶体
原子
晶胞:组成晶格最基本的几何单元。
晶格常数—a ,b , c a=b=c且互垂直 a
晶胞示意图
c
b
表示晶胞几何形状大小 形成的原因:各原子 之间相互吸引力与排 斥力相平衡结果。
晶体中的原子排列
ROAD ENERGY
2)、过冷度:理论结晶温度与实际结晶温度的 差。 3)、自由能:物质能自动向外界释放出多余的 或能够对外作功的能量叫自由能。 据热力学定律,自然界中一切自发转变过程, 总是向能量最低状态转变。
ROAD ENERGY
液体金属在结晶时的温度-时间曲线称为冷却曲线。 理论结晶温度T0与开 始结晶温度Tn之差叫 做 过冷度( undercooling), 用ΔT表示。 ΔT= T0—Tn
为单晶体。 在一块很小的金属中也含着许多的小晶体,每个小晶体的内部
,晶格位向都是均匀一致的,而各个小晶体之间,彼此的位向都
不相同。这种小晶体的外形呈颗粒状,称为“晶粒”。 晶粒与晶粒之间的界面称为“晶界”。在晶界处,原子排列为
适应两晶粒间不同晶格位向的过度,总是不规则的。
多晶体:实际上由多个晶粒组成的晶体结构称为“多晶体”。
第2章金属的晶体结构
金属结晶后的晶粒大小:
晶粒的大小通常是指以晶粒度来表示。而晶粒 度又是以单位界面内晶粒数目的多少来划分和标 定的。通常是晶粒愈小材料强度、塑性愈好。通 过细化晶粒而使金属材料力学性能提高的方法称 为细晶强化。
晶粒大小对材料的物理化学性能也有明显的
影响。如:硅钢片中晶粒愈大磁滞损耗愈少耐 蚀不锈钢中晶粒愈大耐腐蚀性愈好。 按照材料的不同用途和种类应合理的控制 其晶粒大小。这就需要了解一些金属结晶时影 响晶粒大小的因素。
于变形金属再固态下的再结晶。因此,同素异晶
转变也被称为重结晶,是一种固态相变。
金 属 的 同 素 异 构 转 变
-Fe
1394℃
-Fe
912℃
-Fe
Fe具有同素异晶转变现象。图是铁的冷却曲线。
从冷却曲线上可见到第一个1538℃的平台是 铁的结晶温度。结晶后是体心立方晶格Fe。当温 度降到1394℃出现第二个平台。这是Fe在固态下 第一次同素异晶转变。转变成为面心立方的Fe。 当继续冷却到912℃时出现第三个平台,这是Fe的 第二次同素异晶转变。变成体心立方的Fe。当继 续冷却到769℃时出现第四个平台。这个平台对应 的温度称为居里点。它不是同素异晶转变,因为 没有晶格类型的变化。只是Fe原子的外层电子排 列的变化引起Fe的磁性状态的改变。晶格类型虽 然仍是体心立方,但是晶格常数减小了。
间隙原子和大径的置换原子会引起一个以一个点为
中心的晶格局部“撑开”现象,称之为正畸变。而晶格
空位和小直径的置换原子会引起一个点为中心的晶格局
部“靠拢”现象,称之为负畸变。
晶体中的点缺陷都是处在不断的变化和运动中,其
位置随时在变。这是金属原子扩散的一种主要方式,也
是金属在固态下“相变”和化学热处理工艺的基础。
第二章 金属的晶体结构
晶向指数简化确定方法
1 确定三维坐标系:所求晶向的起点为原点,棱 边以长度为坐标轴的长度单位。 2 求坐标:求所求晶向距起 点最近的原子在三个坐标轴 方向上的坐标值。 3 化最简整数,加方括号。 形式为 [uvw] ,坐标中出现 负值,在数字上方冠负号。
晶向指数的例子
所有平行的晶向,都 具有相同的晶向指数
内蒙古科技大学高等职业技术学院
(111) (111) (111) (111) {1 1 1}晶面族:
(111) (111) (111) (111)
(111)
(111)
(111)
(111)
内蒙古科技大学高等职业技术学院
3.4 晶向指数与晶面指数的联系
当某一晶向[uvw]位于或平行于某一晶面(hkl) 时,必须满足:hu+kv+lw=0。 [100]//(010);[110]位于(111)上 当某一晶向[uvw]垂直 于某一晶面(hkl) 时,必须满足:u=h, v=k,w=l。 [111]⊥(111); [010] ⊥(010)
晶面指数的例子
立方晶系中一些重要晶面的晶面指数
内蒙古科技大学高等职业技术学院
二、晶面族
晶面族:原子排列相同但空间位向不同 的所有晶面,以{hkl}表示。 立方晶系中的晶面族: {1 0 0}:(100)+(010)+(001)
内蒙古科技大学高等职业技术学院
{1 1 0}晶面族:
(110) (101) (011) (110) (101) (011)
基本概念
为了便于确定和区别晶体中不同方位的晶向和晶 面,国际上通用密勒指数(Miller indices)来统 一标定晶向指数与晶面指数。 晶面指数(indices of crystal plane ): 表示晶面的符号。 晶向指数(indices of crystal orientation): 表示晶向的符号。
第2章金属学的基本知识
(1)点缺陷 空间三维尺寸都很小的缺陷。 最常见的点缺陷是空位和间隙原子。 点缺陷可提高材料的强度和硬度。
(2)线缺陷 线缺陷的特征是在两个方向的 尺寸很小,在另一个方向的尺寸相对很大。 晶体中的线缺陷实际上就是位错,也就是说 在晶体中有一列或若干列原子,发生了有规律的 错排现象。分为刃型位错和螺型位错。
(3)晶格常数 在三维空间中,晶胞的几何 特征即大小和形状常以晶胞的棱边长度a、b、c及 棱边夹角α、β、γ来描述,其中晶胞的棱边长 度a、b、c一般称为晶格常数。
3.金属常见的晶体结构 (1)体心立方晶格 体心立方晶格的晶胞是一 个立方体,在立方体的中心有一个原子,在立方体 的八个角上分别有一个与其他晶胞共有的原子。其 晶格常数a=b=c,棱边夹角α=β=γ=90°。属于 体心立方晶格的金属有α-Fe、Cr、W、Mo等。
2.2
金属与合金的结晶
结晶 金属与合金在液态转变为固态晶体的过 程中,其原子是由不规则排列的液体状态逐步过渡 到原子作规则排列的晶体状态,这一过程称为结晶。 一、纯金属的结晶 1.冷却曲线和过冷现象 纯金属都有一个固定的熔点(或结晶温度), 因此纯金属的结晶过程是在一个恒定的温度下进行 的,其结晶过程可以用冷却曲线来描述。
臵换固溶体
②间隙固溶体 间隙固溶体是指溶质原子溶入 溶剂晶格的间隙而形成的固溶体。 由于溶剂晶格的间隙有限,因此间隙固溶体都 是有限固溶体。 形成间隙固溶体的条件是溶质原子与溶剂原子 的比值r溶质/r溶剂≤0.59。因此形成间隙固溶体的溶 质元素都是一些原子半径 小的非金属元素,如氢、 硼、碳、氮、氧等。
柱状晶区 由于模壁温度升高,结晶释放 出的潜热,使细晶区前沿液体的过冷度减小, 形核困难。加上模壁的定向散热,使已有的晶 体沿着与散热相反的方向生长而形成柱状晶区。
第二章 金属学的基本知识
§ 2.1 金属与合金的晶体结构
合金中,具有同一化学成分且结构相同的均匀部分叫相。合金中相
与相之间有明显的界面。液态合金通常为单相液体。合金在固态下,
由一个固相组成时称为单相合金,由两个以上固相组成时称为多相合 金。
组成合金各相的成分、结构、形态、性能和各相的组合情况构成
了合金的组织。组织是合金的内部情景,还包括晶粒的大小、形状、 种类以及各种晶粒之间的相对数量和相对分布,可以用肉眼或借助各
固溶体,如图2-10(b)所示。
由于溶剂晶格的间隙有限,因此间隙固溶体都是有限固溶体。形成间 隙固溶体的条件是溶质原子与溶剂原子的比值r溶质/r溶剂≤0. 59。因此
形成间隙固溶体的溶质元素都是一些原子半径小的非金属元素,如氢、
硼、碳、氮、氧等。
上一页 下一页
§ 2.1 金属与合金的晶体结构
应当指出,所形成的固溶体虽然仍保持着溶剂金属的晶格类型, 但由于溶质与溶剂原子尺寸的差别,必然会造成晶格的畸变,如图 2-11。晶格畸变使合金的强度、硬度和电阻升高。这种通过溶人 溶质元素使固溶体的强度、硬度升高的现象称为固溶强化。固溶强 化是提高金属材料力学性能的重要途径之一。实践表明,适当控制
态的金属和合金。晶体具有一定的熔点,并具有各向异性的特征。
晶体中的原子排列情况如图2-1(a)所示。 2.晶体结构的基本知识 (1)晶格为了便于描述晶体中原子排列的规律及几何形状,人 为地将原子看作一个点,再用一些假想的线条,将原子的中心
下一页
§ 2.1 金属与合金的晶体结构
连接起来,使之构成一个空间格子,如图2-1 ( b)。这种抽象 的、用于描述原子在晶体中排列方式的空间格子叫做“晶格”。 晶格中的每个点叫做晶格结点。 (2)晶胞由于晶体中原子排列具有周期性特点,因此在研究晶 体结构时,为方便起见,通常只从晶格中选取一个能够完全反映 晶格特征的最小的几何单元来分析晶体中原子排列的规律,这个 最小的几何单元称为晶胞,如图2-1 (c)。实际上整个晶格就是 由许多大小、形状和位向相同的晶胞在空间重复堆积而成的。晶 胞的大小和形状常以晶胞的棱边长度a,b,c及棱边夹角α,β,γ来
第二章金属的晶体结构与结晶PPT课件
❖ 密排六方晶胞中原子数为12×1/6+2×1/2+3=6 (个)。密排六方晶格的金属有Mg 、Zn 。
二、实际金属的晶体结构
❖ (一)金属材料都是多晶体。
❖ 单晶体:晶格位向完全一致的晶体。晶粒, ❖ 亚晶界。亚晶界。
晶体
晶粒 晶界
亚晶界 亚晶界
多晶体示意图
多晶体示意图
(二)、晶体的缺陷
❖ 缺陷对金属的性能(物理性能、化学性能、机械性能)有 很大的影响。
来表示晶胞的形状和大小。
(三)、金属中常见晶格
1、体心立方晶格(bcc):如 aFe Cr
❖ 晶胞中实际原子数为8×1/8+1=2(个)。
1/8
2、面心立方晶格(fcc)
❖ 面心立方晶胞中原子数为8×1/8+6×1/2=4(个)。
面心立方晶格的金属有 rFe、Al等。
3、密排六方晶格(hcp)
冷变形加工后金属出现了强度 提高的现象(加工硬化),就 是由于位错密度的增加所致。
立体 模型
平面 模型
刃型位错示意图
a ) 刃晶 形格 立位体错模示型意b图) 平 面 图
3、面缺陷——晶界和亚晶界
晶界的过渡结构示意图
晶界结构
亚晶界结构示意图
亚晶界结构
第二节 纯金属的结晶
主要内容 ❖ 凝固与结晶的概念 ❖ 结晶的现象与规律 ❖ 同素异晶(构)转变
温
度
理论冷却曲线
结晶平台(是由结晶潜热导致)
To
T1
实际冷却曲线
时间
2. 过冷现象与过冷度
❖过冷现象 :T实际<T理论;
❖ 过冷度:过冷是结晶的必要条件。
ΔT = T0 – T1
二).结晶的一般规律(结晶过程)
金属及合金的晶体结构
第二章金属及合金的晶体结构金属材料是指以金属键来表征其特性的材料,它包括金属及其合金。
金属材料在固态下通常都是晶体状态, 所以要研究金属及合金的结构就必须首先研究晶体结构。
一、晶体的基本概念晶体结构指晶体内部原子规则排列的方式。
晶体结构不同,其性能往往相差很大。
为了便于分析研究各种晶体中原子或分子的排列情况,通常把原子抽象为几何点,并用许多假想的直线连接起来,这样得到的三维空间几何格架称为晶格,如图2-3(b)所示;晶格中各连线的交点称为结点;组成晶格的最小几何单元称为晶胞,晶胞各边的尺寸a、b、c称为晶格常数,其大小通常以为计量单位(人),晶胞各边之间的相互夹角分别以a、8、Y表示。
图2-3 (c)所示的晶胞为简单立方晶胞,其晶格常数a=b=c,而a=B = Y=90o。
由于晶体中原子重复排列的规律性,因此晶胞可以表示晶格中原子排列的特征。
在研究晶体结构时,通常以晶胞作为代表来考查。
为了描述晶格中原子排列的紧密程度,通常采用配位数和致密度(K)来表示。
配位数是指晶格中与任一原子处于相等距离并相距最近的原子数目;致密度是指晶胞中原子本身所占的体积百分数,即晶胞中所包含的原子体积与晶胞体积(V)的比值。
图2-3简单立方晶体(a)晶体结构(b)晶格(c)晶胞二、常见纯金属的晶格类型在金属元素中,除少数具有复杂的晶体结构外,大多数具有简单的晶体结构,常见的晶格类型有以下三种:1.体心立方晶格体心立方晶格的晶胞如图2-4所示。
它的形状是一个立方体,其晶格常数a=b=c,所以只要一个常数a即可表示;其a=8 = Y=90o。
在体心立方晶胞中,原子位于立方体的八个顶角和中心。
属于这类晶格的金属有 a -Fe、Cr、V、W、Mo、Nb 等。
图2-4体心立方晶胞(a)模型;(b)晶胞;(c)晶胞原子数从(2)可以看出,在体心立方晶胞中,原子沿对角线紧密地接触着,所以从图中可求出原子半径为:。
从小)也可看出,体心立方晶胞的每个角上的原子是同属于与其相邻的八个晶胞所共有,故只有1/8个原子属于这个晶胞,而晶胞中心的原子则完全属于这个晶胞,所以体心立方晶胞中的原子数为:。
第二章 金属的晶体结构
柱体,在晶胞的12个角上各有一个原子,上 底面和下底面的中心各有一个原子,上下底 面的中间有三个原子。属于这类晶格的金属 有Mg、Zn、Be、Cd等。
三、表示晶体结构特征的几何参数
(一)晶胞原子数——一个晶胞内所包含的
原子个数。 (1) 体心立方晶格 1/8*8+1=2(个)八个 顶点和体心一个 (2)面心立方晶格 1/8*8+1/2*6=4(个) (3)密排六方晶格 1/6*12+1/2*2+3=6(个)
原子个数
每个晶胞实际占有的原子个数。 (分析时要认真考虑每个原子的空间状况) 在体心立方晶胞中, 每个角上的原子在晶格中同时 属于8个相邻的晶胞,因而每个角上的原子属于一个 晶胞仅为1/8, 而中心的那个原子则完全属于这个晶 胞。所以一个体心立方晶胞所含的原子数为 2个。
(二)原子半径
原子有大小,一般可近似看成有一定大小的
密排面和密排方向
不同晶体结构中不同晶面、不同晶向上原子 排列方式和排列密度不一样。其性能也不同! 在体心立方晶格中,原子密度最大的晶面为 {110}, 称为密排面; 原子密度最大的晶向为 <111>, 称为密排方向。 在面心立方晶格中, 密排面为{111}, 密排方向 为<110>。
第三节 金属的实际晶体结构
晶体与非晶体的转变
1. 2. 3.
晶体与非晶体在一定条件下可以相互转变 玻璃经长时间加热能变为晶态玻璃; 金属从高温液态急冷,可变为非晶态金属; 非晶态金属具有高的强度与韧性等一系列突出性 能,近年来已为人们所重视。
(二)晶体结构的基本概念
1、晶格
原子的刚性球堆垛模型-----直观易懂。但不易
第2章 常见金属的晶体结构与结晶
(2)树枝状长大 当过冷度较大,尤其 是液态金属中存在非 自发形核时,金属晶 体常以树枝状的形式 长大。 在晶核长大的初期,晶体的外形是较为规则的。但随 着晶体的继续长大,晶体的棱角和棱边由于散热条件 优越而优先生长,成为伸入到液体中的晶枝。 结晶后得到的是树枝状的晶体,称为枝晶。
第2章 常见金属的晶体结构与结晶
2.2.3 晶粒大小对金属力学性能的影响 金属结晶后是由许多晶粒组成的多晶体,晶粒的大 小对金属力学性能有很大的影响。 晶粒大小通常用单位截面积上晶粒数目或晶粒的平 均直径来表示。 一般来说,晶粒越细小,则金属的强度越高,同时 塑性和韧性也越好。细化晶粒可以提高金属的力学 性能,这种方法称为细晶强化。
第2章 常见金属的晶体结构与结晶
2.2.2 纯金属的结晶过程 1.晶核的形成
金属结晶时,首先由液态金属内部生成一些极细小 晶体作为结晶的核心,这些细小晶体称为晶核。 (1)自发形核
当温度降到结晶温度以下时,液态金属中的短程有 序原子集团变得稳定,不再消失,成为结晶核心, 这一过程称为自发形核。 由液态金属内部自发形成的晶核称为自发晶核。
(2)间隙原子 位于晶格间隙之中的多余原子称为 间隙原子。
第2章 常见金属的晶体结构与结晶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子云
中性原子 正离子
…………
…………
…………
…………………………………………………………………………………………………………………………………………………………………………………… … ……………………………………………………………………………
用金属键的特点解释金属特性
导电性 — 自由电子在电场 作用下定向移动形成电流 ;
可见原子外层参与结合的电子数决定着结合键的本质,对化学 性能、强度等特性有重要影响。
6
2、 金属键
处于聚集状态的金属原子
将价电子贡献出来,为整个原
子集体所共有,形成电子云。
贡献出价电子的原子,变成
正离子,沉浸于电子云中,依
靠运动于其间的公有化自由电
子的静电作用而结合—形成金和镨导电性还不如非金属(如石墨)。 由性能确定,不具有共性,没揭示金属与非金属的本质区别。
严格定义: 具有正的电阻温度系数的物质,非金属的电阻都随温度升高而下
降。 由原子结构和原子间的结合方式确定。
5
1、 金属原子的结构特点
原子(10-10m、Å = 10-1nm)= 带正电的原子核(质子+中子) (10-14m)+ 带负电的按能级排布核外电子(最外层与次外层为 价电子) 。
一定条件晶体←→非晶体 ,玻璃高温长时间保温,非晶体→晶态玻璃; 液态金属急快冷却(冷速107℃/s) ,可形成非晶态金属。
性能发生显著变化。
11
2、晶体结构与空间点阵 晶体结构: 指晶体中原子(或离子、分子、原子集团)的具体排列情况,也 就是晶体中的质点(也叫基元,可以是原子、离子、分子或者原子集 团)在三维空间中有规律的周期性重复排列方式。
• 例如最细的白金丝直径不过1/5000mm,纯净的金属
铂有高度的可塑性,可以冷轧制成厚度为0.0025mm
的箔。 延展性最好金属的是金。有人将28克金延伸
至65公里长。最薄的金箔只有1/10000mm厚,一两
黄金,压成金箔可覆盖两个篮球场。 金属的延展性
可以由金属的结构得到解释。当金属受到外力作用
可见,除化学成分外,金属的内部结构和组织状态也是决定金 属材料性能的重要因素。
金属和合金在固态下通常都是晶体,要了解金属及合金的 内部结构,首先应了解晶体的结构,其中包括:
• 晶体中原子是如何相互作用并结合起来的; • 原子的排列方式和分布规律; • 各种晶体结构的特点及差异等。
4
1.1 金属
金属的传统定义: 良好导电性、导热性、延展性(塑性)和金属光泽的物质。
导热性— 自由电子的运动 和正离子振动;
正电阻温度系数 — 正离子 或原子的振幅随温度的升高增 大,阻碍自由电子的定向运动, 使电阻升高;
金属光泽 — 电子跃迁吸收 或放出可见光;
延展性 —无饱和性和方向 性。
7
延展性
• 物体在外力作用下能延伸成细丝而不断裂的性质叫 延性;在外力(锤击或滚轧)作用能碾成薄片而不 破裂的性质叫展性。
金属之最
• 1.熔点最高的金属——钨 W • 2.熔点最低的金属——汞 Hg • 3.硬度最大的金属——铬 Cr • 4.密度最大的金属——锇 Os • 5.密度最小的金属——锂 Li • 6.地壳中含量最多的金属——铝Al • 7.人类冶炼最多的金属——铁Fe • 8.导热、导电性最好的金属——银Ag • 9.人体内最多的金属元素——钙Ca
2
第二章 金属的晶体结构
体心立方结构 body-centered cubic (bcc)
面心立方结构 face-centered cubic (fcc)
3
金属材料的化学成分不同,其性能也不同。
对于同一种成分的金属材料,通过不同的加工处理工艺,改变 材料内部的组织结构,也可以使性能发生极大的变化。
10
1.2 金属的晶体结构
用双原子模型解释形成晶体的原因: ★ 原子之间保持一定的平衡距离; ★ 原子周围要保持尽可能多的近邻原子。
1、晶体的特性: 天然晶体(宝石) → 规则外型 金属一般无规则外型 晶体 → 原子在三维空间按照一定的规律周期性的重复排列。 具有固定的熔点、各向异性。 不同方向上的性能,表现出差异,称为各向异性。 非晶体→ 内部原子杂乱无章,至多有局部或短程规则排列。 无固定熔点、各向同性。
稳定的电子壳层。金刚石中的碳原子 间即为共价键。
9
3、 结合力与结合能(双原子作用模型图解)
原子间结合力是由自由电子与金属正离 子间的结引合力能(是长吸程引力能)和,排以斥及能正的离代子数间、 电子和间。的当排原斥子力处(于短平程衡力距)离合d成0时的,。其当两 原子结间合距能较达大到,最引低力值>,斥此力时,原两子原的子势自动 靠近能;最当低两、原最子稳自定动。靠任近何,对使d电0的子偏层离发,生 重叠都时会,使斥原力子↑势↑能;增直加到,两使原原子子间处距于为d0 时,不引稳力定=状斥态力,。原任子何就对有平力衡图位回置到d低0的偏 离,能都状将态受,到即一恢个复力到的平作衡用距,离促的使倾其向回。到 平衡位置。原子间最大结合力不是出现在 平衡位置d0而是在dc位置,最大结合力与 金属的理论抗拉强度相对应。
金属的最外层电子数很少(1~3),外层电子与原子核的结合力 弱,容易脱离原子核的束缚而变成自由电子;原子成为正离子,将 这些元素称为正电性元素。
过渡族金属元素的核外电子先填充次外层再填充最外层电子,很 容易失去,化合价可变。结合力特强,表现为熔点、强度高。
非金属外层电子数较多,最多7个,最少4个,易获得电子,原子 成为负离子,故非金属元素又称为负电性元素。
时,金属内原子层之间容易作相对位移,金属发生
形变而不易断裂,因此,金属具有良好的变形性。
但也有少数金属,如锑、铋、锰等,性质较脆,没
有延展性。
8
离子键 正电性元素与负电性元素相遇
时,电子一失一得,各自成为正、 负离子,正、负离子间靠静电作 用结合而成。NaCL
共价键 相邻原子共用其外部价电子,形成
原子堆垛模型: 假定晶体中的物质质点都是固定
的刚球,晶体由刚球堆垛而成。 优点:直观、立体感强; 缺点:很难看清内部原子排列的规律
和特点。
12
空间点阵: 为清楚地表明原子在空间的排列规律性,常将构成晶体的实际质点