2015-2016年广东省深圳市六一学校七年级上学期期中数学试卷带解析答案

合集下载

广东省深圳市-七年级(上)期中数学试卷-(含答案)

广东省深圳市-七年级(上)期中数学试卷-(含答案)

七年级(上)期中数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共12小题,共36.0分) 1. -12的绝对值是( )A. −2B. −12C. 12D. 22. 数轴上,到-3对应点距离为5个单位长度的数是( )A. −8或1B. 8C. −8或2D. 23. 2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384 000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )A. 3.84×104千米B. 3.84×105千米C. 3.84×106千米D. 38.4×104千米4.城市 北京 武汉 广州 哈尔滨 平均气温/℃-4.63.813.1-19.4北京武汉广州 D. 哈尔滨 5. 下列计算正确的是( )A. −2÷(−12)=1 B. −12−13=−16C. −1+2=−3D. (−23) 3=−827 6. 下列各等式不一定成立的是( )A. 0−a =−aB. 1×a =aC. (−a)2=a 2D. 0÷a =07. 下列说法正确的是( )A. 平方是它本身的数只有0B. 立方是它本身的数只有±1C. 绝对值是它本身的数是正数D. 倒数是它本身的数是±1 8. 下列各式中,其中两项是同类项的是( )A. a 2b 和a 2cB. 2mn 和2mnpC. 0.2pq 和0.3pqD. 3a 3b 和2ab 3 9. 下列各式正确的是( )A. a −(b −c +d)=a −b −c +dB. a −2(b −c +d)=a −2b +2c +dC. a −(b −c +d)=a −b +c +dD. a −(b −c +d)=a −b +c −d 10. a 的平方的7倍减去3的差,应写成( )A. 7a 2−3B. 7(a 2−3)C. (7a)2−3D. a 2(7−3)11. 若要使得如图中平面展开图折叠成正方体后,相对面上的数互为相反数,则a +b +c 的值是( ) A. −2 B. 2 C. 4 D. 312. 若|a +1|+(b -2016)2=0,那么a b 的值是( )A. 1B. −1C. 2016D. 1或−1 二、填空题(本大题共4小题,共12.0分)13. 如果盈利15万元记作+15万元,那么亏损3万元记作______ .14.若-23a2b m与4a n b是同类项,则m+n= ______ .15.按照如图计算转换机计算,输出结果为______ .16.观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有______ 个★.三、计算题(本大题共3小题,共29.0分)17.计算题.(1)20-17-(-7)(2)3×(-2)-(-28)÷7(3)(19−16−118)×36(4)-23+3×(-1)2010-(-2)2.18.计算题.(1)-4x2y-8xy2+2x2y-3xy2(2)(7y-3z)-(8y-5z)19.如图,一个边长为a的正方形内画了一个圆,其直径也是a(1)用代数式表示图中阴影部分的面积.(2)当a=8,π取3时,阴影部分的面积是多少?四、解答题(本大题共4小题,共23.0分)20.求代数式的值:4x2+3xy-x2-9,其中x=2,y=-3.21.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.22.“十•一”黄金周期间,九寨沟在7天假期中每天接待游客的人数变化如下表(正日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(万人)+1.6+0.8+0.4-0.4-0.8+0.2-1.4()若月日的游客人数为万人,则月日的游客人数为万人;(2)七天内游客人数最大的是10月______ 日;(3)若9月30日游客人数为3万人,门票每人220元.请求出黄金周期间九寨沟门票总收入是多少万元?23. 请观察下列算式,找出规律并填空11×2=1−12,12×3=12−13,13×4=13−14,14×5=14−15 (1)则第10个算式是______ = ______ ,(2)第n 个算式是______ = ______ ,根据以上规律解答下题: (3)11×2+12×3+13×4+…+199×100.答案和解析1.【答案】C【解析】解:|-|=.故选:C.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.此题考查了绝对值的性质,属于基础题,解答本题的关键是掌握负数的绝对值是它的相反数.2.【答案】C【解析】解:数轴上,到-3对应点距离为5个单位长度的数是:-3-5=-8或-3+5=2.故选:C.数轴上,到-3对应点距离为5个单位长度的数表示的点有可能在-3对应点的左边,也有可能在-3对应点的右边,据此求解即可.此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是熟记数轴上两点之间的距离的求法.3.【答案】B【解析】解:384000=3.84×105.故选B.确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于384 000有6位,所以可以确定n=6-1=5.所以384000=3.84×105.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.4.【答案】D【解析】解:因为-19.4<-4.6<3.8<13.1,所以气温最低的城市是哈尔滨.故选:D.四个城市中,求气温最低的城市,即求这四个数中的最小数.根据有理数大小比较的方法可知结果.本题考查了有理数的大小比较在实际生活中的应用,体现了数学的应用价值.将实际问题转化为数学问题是解决问题的关键.5.【答案】D【解析】解A、原式=-2×(-2)=4,错误;B、原式=-,错误;C、原式=1,错误;D、原式=-,正确,故选D原式各项计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.【答案】D【解析】解:A、原式=0+(-a)=-a,不符合题意;B、原式=a,不符合题意;C、原式=a2,不符合题意;D、当a=0时,原式没有意义,不一定成立,符合题意,故选D各项计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.【答案】D【解析】解:A、平方是它本身的数有0和1,故本选项错误;B、立方是它本身的数有±1、0,故本选项错误;C、绝对值是它本身的数是正数和0,故本选项错误;D、正确.故选D.根据平方、绝对值、立方和倒数的有关概念分析,注意考虑特殊的数:0、±1.此题主要考查有理数的乘方、绝对值、倒数的有关概念,正确理解概念是关键.8.【答案】C【解析】解:0.2pq和0.3pq是同类项,故选(C)根据同类项的概念即可判断本题考查同类项的概念,属于基础题型.9.【答案】D【解析】解:A、原式=a-b+c-d,故本选项错误;B、原式=a-2b+2c-2d,故本选项错误;C、原式=a-b+c-d,故本选项错误;D、原式=a-b+c-d,故本选项正确;故选:D.根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.10.【答案】A【解析】解:依题意得:7a2-3.故选:A.先计算a的平方的7倍,然后减去3.本题考查了列代数式.解决本题的关键是根据题意找出运算顺序,再根据题意列式.11.【答案】B【解析】解:这是一个正方体的平面展开图,共有六个面,其中面“2”与面“b”相对,面“-1”与面“a”相对,面“-3”与面“c”相对.∵相对面上的数互为相反数,∴a=1,b=-2,c=3,∴a+b+c=2.故选B.利用正方体及其表面展开图的特点解题.本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.12.【答案】A【解析】解:由题意得,a+1=0,b-2016=0,解得,a=-1,b=2016,则a b=1,故选:A.根据非负数的性质列出算式,求出a、b的值,根据乘方法则计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.【答案】-3万元【解析】解:“正”和“负”相对,如果盈利15万元记作+15万元,那么亏损3万元记作-3万元.故答案为:-3万元.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.【答案】3【解析】解:由同类项的定义可知n=2,m=1,则m+n=3.故答案为:3.由同类项的定义可先求得m和n的值,从而求出它们的和.本题考查同类项的定义,注意同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.【答案】32【解析】解:根据题意得:[(-3+3)×2-3]÷(-2)=,故答案为:把-3输入计算转换机中计算即可得到结果.此题考查了有理数的混合运算,弄清计算转换机中的运算是解本题的关键.16.【答案】49【解析】解:观察图形会发现,第一个图形的五角星数为:1×3+1;第二个图形的五角星数为:2×3+1;第三个图形的五角星数为:3×3+1;第四个图形的五角星数为:4×3+1;则第16个图形的五角星数为:16×3+1=49个五角星.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 本题是一道找规律的题目,这类题型在中考中经常出现. 17.【答案】解:(1)原式=20-17+7=10;(2)原式=-6+4=-2; (3)原式=4-6-2=-4; (4)原式=-8+3-4=-9. 【解析】(1)原式利用减法法则变形,计算即可得到结果; (2)原式先计算乘除运算,再计算加减运算即可得到结果; (3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果. 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 18.【答案】解:(1)原式=-2x 2y -11xy 2;(2)原式=7y -3z -8y +5z =-y +2z . 【解析】(1)原式合并同类项即可得到结果; (2)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 19.【答案】解:(1)根据题意得:S 阴影=S 正方形-S 圆=a 2-(12a )2π=a 2-14πa 2;(2)当a =8,π=3时,S 阴影=64-48=16. 【解析】(1)由正方形面积减去圆面积表示出阴影部分面积即可; (2)把各自的值代入计算即可求出值.此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.20.【答案】解:原式=3x 2+3xy -9,当x =2,y =-3时,原式=3×4+3×2×(-3)-9=-15.【解析】本题是代数式求值问题中一类常见的问题,题目中的未知数的值都已知,所以可以直接将它们代入原式求解即可.本题是代数式求值中最为直接的一类,求解时直接代入求解即可.21.【答案】解:如图所示:【解析】主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.【答案】a+2.4;3【解析】解:(1)若9月30日的游客人数为a万人,则10月2日的游客人数为a+2.4万人;故答案为:a+2.4.(2)七天内游客人数最大的是10月3日;故答案为:3.(3)[(3+1.6)+(3+1.60+0.8)+(3+1.60+0.8+0.4)+(3+1.60+0.8+0.4-0.4)+(3+1.60+0.8+0.4-0.4-0.8)+(3+1.60+0.8+0.4-0.4-0.8+0.2)+(3+1.60+0.8+0.4-0.4-0.8+0.2-1.4)]×220=(4.6+5.4+5.8+5.4+4.6+4.8+3.4)×220=34×220=7480(万元).答:黄金周期间九寨沟门票总收入是7480万元.(1)10月2日的游客人数为a+1.6+0.8.(2)分别用a 的代数式表示七天内游客人数,再找出最多的人数,以及对应的日期即可.(3)先求出七天游客人数再乘以220元,即可得黄金周期间该公园门票的收入. 本题考查正数和负数的知识,解题关键是要读懂题目,根据题目给出的条件,列式计算.23.【答案】110×11;110−111;1n(n+1);1n -1n+1【解析】 解:(1)由规律得:第10个算式为=;(2)第n 个算式为=;(3)原式=1+…=1=. 故答案为:;;;.(1)根据规律可得第10个算式为=; (2)根据规律可得第n 个算式为=; (3)根据运算规律可得结果.本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.。

2015-2016学年广东省深圳市六一学校七年级(上)期中数学试卷含答案

2015-2016学年广东省深圳市六一学校七年级(上)期中数学试卷含答案

2015-2016学年广东省深圳市六一学校七年级(上)期中数学试卷一、选择题(每小题3分,共36分.请把答案填到下表相应表格内,否则不给分.)1.(3分)下列各图经过折叠不能围成一个正方体的是()A.B.C.D.2.(3分)如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是()A.B. C. D.3.(3分)如图所示几何体的截面是()A.四边形B.五边形C.六边形D.五棱柱4.(3分)数轴上的点A到原点的距离是5,则点A表示的数为()A.﹣5 B.5 C.5或﹣5 D.2.5或﹣2.55.(3分)某地区一月份的平均气温为﹣19℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.17℃B.21℃C.﹣17℃D.﹣21℃6.(3分)下列各式中,正确的是()A.(﹣2)2>(﹣3)2B.﹣22>﹣32C.(﹣2)3<﹣32D.﹣22<﹣32 7.(3分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012km C.95×1011km D.950×1010km8.(3分)橡皮的单价是x元,圆珠笔的单价是橡皮的2.5倍,则圆珠笔的单价为()A.2.5x元B.0.4x元C.(x+2.5)元D.(x﹣2.5)元9.(3分)下列各组代数式中,是同类项的是()A.5x2y与xy B.﹣5x2y与yx2C.5ax2与yx2D.83与x310.(3分)下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.11.(3分)下列各式正确的是()A.a﹣(b﹣c+d)=a﹣b﹣c+d B.a﹣2(b﹣c+d)=a﹣2b+2c+dC.a﹣(b﹣c+d)=a﹣b+c+d D.a﹣(b﹣c+d)=a﹣b+c﹣d12.(3分)若(a+1)2+|b﹣2|=0,则2a+b﹣1的值为()A.1 B.﹣1 C.3 D.﹣3二、填空题(每小题3分,共12分)13.(3分)一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是cm.14.(3分)用“<”、“>”填空:﹣|﹣9| 0;.15.(3分)如果2x3n y4与﹣3x6y4m是同类项,那么mn=,这两项合并后的结果为.16.(3分)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第n个图形中需要黑色瓷砖块(用含n的代数式表示).三、解答题(本大题共7小题,共52分)17.(6分)根据要求,画出图形:画出下列几何体的从正面看,从左面看,从上面看的图形:18.(6分)计算(1)18﹣3×(﹣2)÷(2).19.(8分)化简:(1)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(2)4(x2﹣5x)﹣5(2x2+3x).20.(8分)先化简,再求值:,其中x=﹣2,y=.21.(8分)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?22.(8分)某公园的门票价格是:成人单价是10元,儿童单价是4元.某旅行团有a名成人和b名儿童;那么:(1)该旅行团应付多少的门票费.(2)如果该旅行团有32个成人,10个儿童,那么该旅行团应付多少的门票费.23.(8分)已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c 是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由).2015-2016学年广东省深圳市六一学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分.请把答案填到下表相应表格内,否则不给分.)1.(3分)下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.2.(3分)如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是()A.B. C. D.【解答】解:左边的图形绕着给定的直线旋转一周后形成的几何体是空心圆柱,故选:D.3.(3分)如图所示几何体的截面是()A.四边形B.五边形C.六边形D.五棱柱【解答】解:此几何体是五棱柱,故其截面的形状是五边形.故选:B.4.(3分)数轴上的点A到原点的距离是5,则点A表示的数为()A.﹣5 B.5 C.5或﹣5 D.2.5或﹣2.5【解答】解:根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选:C.5.(3分)某地区一月份的平均气温为﹣19℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.17℃B.21℃C.﹣17℃D.﹣21℃【解答】解:2﹣(﹣19)=2+19=21℃.故选:B.6.(3分)下列各式中,正确的是()A.(﹣2)2>(﹣3)2B.﹣22>﹣32C.(﹣2)3<﹣32D.﹣22<﹣32【解答】解:根据题意,(﹣2)2=4,(﹣3)2=9,﹣22=﹣4,﹣32=﹣9,(﹣2)3,=﹣8,即得(﹣2)2<(﹣3)2.﹣22>﹣32,(﹣2)3>﹣32,﹣22>﹣32.故选:B.7.(3分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012km C.95×1011km D.950×1010km【解答】解:将9500 000 000 000km用科学记数法表示为:9.5×1012km.故选:B.8.(3分)橡皮的单价是x元,圆珠笔的单价是橡皮的2.5倍,则圆珠笔的单价为()A.2.5x元B.0.4x元C.(x+2.5)元D.(x﹣2.5)元【解答】解:由题意得,圆珠笔的单价为2.5x元.故选:A.9.(3分)下列各组代数式中,是同类项的是()A.5x2y与xy B.﹣5x2y与yx2C.5ax2与yx2D.83与x3【解答】解:A、相同字母的指数不同,故A不是同类项;B、字母相同且相同字母的指数也相同,故B是同类项;C、D、字母不同,故C、D不是同类项;故选:B.10.(3分)下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.【解答】解:A、﹣(﹣1)2+(﹣1)=﹣1﹣1=﹣2,故选项错误;B、﹣22+|﹣3|=﹣4+3=﹣1,故选项错误;C、﹣(﹣2)3=8,故选项正确;D、﹣+(﹣)﹣1=﹣1﹣1=﹣2,故选项错误.故选:C.11.(3分)下列各式正确的是()A.a﹣(b﹣c+d)=a﹣b﹣c+d B.a﹣2(b﹣c+d)=a﹣2b+2c+dC.a﹣(b﹣c+d)=a﹣b+c+d D.a﹣(b﹣c+d)=a﹣b+c﹣d【解答】解:A、原式=a﹣b+c﹣d,故本选项错误;B、原式=a﹣2b+2c﹣2d,故本选项错误;C、原式=a﹣b+c﹣d,故本选项错误;D、原式=a﹣b+c﹣d,故本选项正确;故选:D.12.(3分)若(a+1)2+|b﹣2|=0,则2a+b﹣1的值为()A.1 B.﹣1 C.3 D.﹣3【解答】解:∵(a+1)2+|b﹣2|=0,∴a+1=0且b﹣2=0,解得:a=﹣1,b=2,则2a+b﹣1=﹣2+2﹣1=﹣1.故选:B.二、填空题(每小题3分,共12分)13.(3分)一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是8cm.【解答】解:根据以上分析一个棱柱有12个顶点,所以它是六棱柱,即有6条侧棱,又因为所有侧棱长的和是48cm,所以每条侧棱长是48÷6=8cm.故答案为8.14.(3分)用“<”、“>”填空:﹣|﹣9| <0;>.【解答】解:∵﹣|﹣9|=﹣9,∴﹣|﹣9|<0;∵|﹣|=,|﹣|=,∴﹣>﹣,故答案为:<,>.15.(3分)如果2x3n y4与﹣3x6y4m是同类项,那么mn=2,这两项合并后的结果为﹣x6y4.【解答】解:根据题意得:,解得:,则mn=2.则两个单项式是:2x6y4,和﹣3x6y4.则两项合并后的结果为﹣x6y4.故答案是:2,﹣x6y4.16.(3分)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖10块,第n个图形中需要黑色瓷砖3n+1块(用含n的代数式表示).【解答】解:本题考查的是规律探究问题.从图形观察每增加一个图形,黑色正方形瓷砖就增加3块,第一个黑色瓷砖有3块,则第3个图形黑色瓷砖有10块,第N个图形瓷砖有4+3(n﹣1)=3n+1(块).故答案为:10;3n+1.三、解答题(本大题共7小题,共52分)17.(6分)根据要求,画出图形:画出下列几何体的从正面看,从左面看,从上面看的图形:【解答】解:如图所示:.18.(6分)计算(1)18﹣3×(﹣2)÷(2).【解答】解:(1)原式=18+6×(﹣3)=18﹣18=0;(2)原式=32×(+)+(﹣2)3=9×﹣8=4﹣8=﹣4.19.(8分)化简:(1)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(2)4(x2﹣5x)﹣5(2x2+3x).【解答】解:(1)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(2)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x.20.(8分)先化简,再求值:,其中x=﹣2,y=.【解答】解:原式=x﹣2x+y2+x﹣y2=y2,当x=﹣2,y=时,原式=.21.(8分)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?【解答】解:(1)60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨),则下午运完货物后存货59.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元),则下午货车共得运费320元.22.(8分)某公园的门票价格是:成人单价是10元,儿童单价是4元.某旅行团有a名成人和b名儿童;那么:(1)该旅行团应付多少的门票费.(2)如果该旅行团有32个成人,10个儿童,那么该旅行团应付多少的门票费.【解答】解:(1)该旅行团应付(10a+4b)元的门票费;(2)把a=32,b=10代入代数式10a+4b,得:10×32+4×10=360(元),因此,他们应付360元门票费.23.(8分)已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c 是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由).【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:评分细则:描对一个点或两个点均不给分.(2)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣,∴=4,答:运动4秒后,点Q可以追上点P.(3)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:(只写对一个给1分).。

【真卷】2015-2016学年广东省深圳市南山区七年级(上)数学期中试题与解析

【真卷】2015-2016学年广东省深圳市南山区七年级(上)数学期中试题与解析

2015-2016学年广东省深圳市南山区七年级(上)期中数学试卷一、选择题(本题有12小题,每小题3分,共36分)1.(3分)如图,沿着虚线旋转一周得到的图形为()A.B.C.D.2.(3分)圆锥的侧面展开图是()A.长方形B.正方形C.圆D.扇形3.(3分)下列平面图形中不能围成正方体的是()A.B.C.D.4.(3分)用一个平面去截一个长方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形5.(3分)如图,该物体的俯视图是()A. B.C.D.6.(3分)下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0是最小的有理数D.整数和分数统称有理数7.(3分)在数轴上,与表示﹣5的点距离等于3的点所表示的数是()A.2 B.﹣2 C.﹣8 D.﹣8或﹣28.(3分)人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长30000000个核苷酸.30000000用科学记数法表示为()A.30×106 B.0.3×108C.3×108D.3×1079.(3分)在一条东西走向的街道上,小明先向西走了5米,记作“﹣5”,又向东走了6米,此时他所在的位置可记作()A.﹣11 B.﹣1 C.+11 D.+110.(3分)下列说法正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数11.(3分)有理数32015的个位数字是()A.1 B.3 C.7 D.912.(3分)已知a,b,c是三个有理数,他们在数轴上的位置如图所示,化简|a﹣b|+|c﹣a|﹣|b+c|得()A.2c﹣2b B.﹣2a C.2a D.﹣2b二、填空题(本题共4个小题,每小题3分,共12分)13.(3分)|﹣4|的相反数是.14.(3分)若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=.15.(3分)某件商品的出厂价格为a元,另外加的销售费用,则该商品的售价是元.16.(3分)已知|x+5|与|y﹣6|互为相反数,则y﹣x=.三、解答题(本题共6小题,其中第17题24分,第18题5分,第19题5分,第20题6分,第21题6分,第22题6分,共52分)17.(24分)计算下列各式.(1)(2)(﹣2.5)﹣(+2.7)﹣(﹣1.6)﹣(﹣2.7)+(+2.4)(3)(4)(5)52014×(0.2)2014﹣(0.125)2015×82015(6)﹣12015+[(﹣4)2+12﹣(﹣2)3]÷(﹣12)18.(5分)已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.19.(5分)若a,b互为相反数,c,d互为倒数,|m|=4,求﹣5cd+6m 的值.20.(6分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.21.(6分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4升/千米,这天上午老王耗油多少升?22.(6分)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=;(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:=.2015-2016学年广东省深圳市南山区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分)1.(3分)如图,沿着虚线旋转一周得到的图形为()A.B.C.D.【解答】解:有线动成面的知识可得:半圆绕它的直径旋转一周形成球.故选:C.2.(3分)圆锥的侧面展开图是()A.长方形B.正方形C.圆D.扇形【解答】解:圆锥的侧面展开图是扇形.故选:D.3.(3分)下列平面图形中不能围成正方体的是()A.B.C.D.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有A选项不能围成正方体.故选:A.4.(3分)用一个平面去截一个长方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形【解答】解:长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选:D.5.(3分)如图,该物体的俯视图是()A. B.C.D.【解答】解:从上面看,是横放两个正方体.故选:C.6.(3分)下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0是最小的有理数D.整数和分数统称有理数【解答】解:A、负整数就不是正数,显然A错误;B、不是正数,有可能是零,所以B错误;C、负数比零小,也错误;根据有理数的概念;D、正确;故选:D.7.(3分)在数轴上,与表示﹣5的点距离等于3的点所表示的数是()A.2 B.﹣2 C.﹣8 D.﹣8或﹣2【解答】解:表示﹣5左边的,比﹣5小3的数时,这个数是﹣5﹣3=﹣8表示﹣5右边的,比﹣5大3的数时,这个数是﹣5+3=﹣2.故选:D.8.(3分)人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长30000000个核苷酸.30000000用科学记数法表示为()A.30×106 B.0.3×108C.3×108D.3×107【解答】解:将30000000用科学记数法表示为:3×107.故选:D.9.(3分)在一条东西走向的街道上,小明先向西走了5米,记作“﹣5”,又向东走了6米,此时他所在的位置可记作()A.﹣11 B.﹣1 C.+11 D.+1【解答】解:由题意得,向东走为正,向西走为负,则﹣5+6=1(m).故选:D.10.(3分)下列说法正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数【解答】解:①当a>0时,﹣a<0,|a|>0,﹣|a|<0;②当a=0时,﹣a=0,|a|=0,﹣|a|=0;③当a<0时,﹣a>0,|a|>0,﹣|a|<0.综上所述:﹣a可以是正数、0、负数;|a|可以是正数、0;﹣|a|可以是负数、0.故选:C.11.(3分)有理数32015的个位数字是()A.1 B.3 C.7 D.9【解答】解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2015÷4=503…3,∴32015的末位数字与33的末位数字相同是7.故选:C.12.(3分)已知a,b,c是三个有理数,他们在数轴上的位置如图所示,化简|a﹣b|+|c﹣a|﹣|b+c|得()A.2c﹣2b B.﹣2a C.2a D.﹣2b【解答】解:如图所示:a﹣b>0,c﹣a<0,b+c<0,则|a﹣b|+|c﹣a|﹣|b+c|=a﹣b﹣c+a+b+c=2a.故选:C.二、填空题(本题共4个小题,每小题3分,共12分)13.(3分)|﹣4|的相反数是﹣4.【解答】解:∵|﹣4|=4,4的相反数是﹣4,∴|﹣4|的相反数是﹣4.故答案为﹣4.14.(3分)若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=8.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,1与x是相对面,3与y是相对面,∵相对面上两个数之和为6,∴x=5,y=3,∴x+y=5+3=8.故答案为:8.15.(3分)某件商品的出厂价格为a元,另外加的销售费用,则该商品的售价是a元.【解答】解:根据题意,得:a+a=a,故答案为:a.16.(3分)已知|x+5|与|y﹣6|互为相反数,则y﹣x=11.【解答】解:∵|x+5|与|y﹣6|互为相反数,∴|x+5|+|y﹣6|=0,∴x+5=0,y﹣6=0,解得x=﹣5,y=6,所以,y﹣x=6﹣(﹣5)=6+5=11.故答案为:11.三、解答题(本题共6小题,其中第17题24分,第18题5分,第19题5分,第20题6分,第21题6分,第22题6分,共52分)17.(24分)计算下列各式.(1)(2)(﹣2.5)﹣(+2.7)﹣(﹣1.6)﹣(﹣2.7)+(+2.4)(3)(4)(5)52014×(0.2)2014﹣(0.125)2015×82015(6)﹣12015+[(﹣4)2+12﹣(﹣2)3]÷(﹣12)【解答】解:(1)原式=23+16﹣4﹣5=40﹣10=30;(2)原式=﹣2.5﹣2.7+1.6+2.7+2.4=﹣2.5﹣2.7+2.7+1.6+2.4=﹣2.5+4=1.5;(3)原式=18﹣20+30﹣21=48﹣41=7;(4)原式=﹣×××=﹣1;(5)原式=(5×0.2)2014﹣(0.125×8)2015=1﹣1=0;(6)原式=﹣1+(16+12+8)÷(﹣12)=﹣1﹣3=﹣4.18.(5分)已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.【解答】解:∵|a|=5,|b|=6,∴a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a﹣b=5﹣6=﹣1;②当a=5,b=﹣6时,a+b=﹣1,不满足|a+b|=a+b,故舍去;③当a=﹣5,b=6时,a+b=1,满足|a+b|=a+b,此时a﹣b=﹣5﹣6=﹣11;④当a=﹣5,b=﹣6时,a+b=﹣11,不满足|a+b|=a+b,故舍去.综上所述:a﹣b的值为﹣1或﹣11.19.(5分)若a,b互为相反数,c,d互为倒数,|m|=4,求﹣5cd+6m 的值.【解答】解:根据题意得:a+b=0,cd=1,m=4或﹣4,当m=4时,原式=0+16﹣5+24=35;当m=﹣4时,原式=0+16﹣5﹣24=﹣13.20.(6分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.【解答】解:如图所示:21.(6分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4升/千米,这天上午老王耗油多少升?【解答】解:(1)∵(+8)+(+4)+(﹣10)+(﹣3)+(+6)+(﹣5)=0.∴将第6名乘客送到目的地时,老王刚好回到上午出发点.(2)∵(+8)+(+4)+(﹣10)+(﹣3)+(+6)+(﹣5)+(﹣2)+(﹣7)+(+4)+(+6)+(﹣9)+(﹣11)=﹣19,∴将最后一名乘客送到目的地时,老王距上午出发点西边19千米处.(3)∵|+8|+|+4|+|﹣10|+|﹣3|+|+6|+|﹣5|+|﹣2|+|﹣7|+|+4|+|+6|+|﹣9|+|﹣11|=75千米,75×0.4=30升,∴这天上午老王耗油30升.22.(6分)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=﹣;(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:= .【解答】解:(1)根据题意得:=﹣;(2)①原式=1﹣+﹣+…+﹣=1﹣=;②原式=1﹣+﹣+…+﹣=1﹣=; (3)原式=(1﹣+﹣+…+﹣)=(1﹣)=.故答案为:(1)﹣;(2)①;②;(3)。

2015年期中考试七年级数学试题及答案

2015年期中考试七年级数学试题及答案

2015-2016学年度第一学期七年级期中考试数 学 试 题(分值:120分 考试时间:90分钟)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.2-等于( ). A. -2 B. 2C.-21D.21 2.化简2a -2(a +1)的结果是( ).A .-2B .2C .-1D .1 3.下列说法正确的是( ).A .所有的整数都是正数B .不是正数的数一定是负数C .0不是最小的有理数D .正有理数包括整数和分数4.下列说法正确的是( ).A .23xyz 与23xy 是同类项 B .1x与2x 是同类项 C .3212x y -与232x y 是同类项 D .25m n 与22nm -是同类项 5.若21-x +()212+y =0,则22x y +的值是( ). A .0 B .21C .41D .16.若多项式y x xy y x 82322+--与某多项式的差为122+-x x ,则这个多项式为( ).A.13823222--+--x y x xy y xB.13823222+-+--x y x xy y x C.1823222+++--x y x xy y x D.1823222-++--x y x xy y x 7. 若a +b <0,ab <0,则下列说法正确的是( ).A.a ,b 同号B.a ,b 异号且负数的绝对值较大C.a ,b 异号且正数的绝对值较大D.以上均有可能8.)]4()25.0[()]711()87[()711()4()25.0()87(-⨯-⨯+⨯-=+⨯-⨯-⨯-这是为了运算简便而使用( ).A.乘法交换律B.乘法结合律C.分配律D.乘法交换律和结合律9.下列说法正确的是( ).A .x +y 是一次单项式B .多项式3πa 3+4a 2-8的次数是4C .x 的系数和次数都是1D .单项式4×104x 2的系数是4 10. 如果A 是x 的二次多项式,B 是x 的四次多项式,那么A -B 是( ).A.三次多项式B.二次多项式C.四次多项式D.五次多项式11. 今年弟弟10岁,姐姐12岁,经过t 年后,姐弟年龄之和为( ).A.(12+t)岁B.(11+t)岁C.(22+2t)岁D.(22+t)岁12.为了做一个试管架,在长为a (cm )(a ﹥6)的木板上钻3个小孔(如图),每个小孔的直径为2cm ,则x 等于().(12题图)A .3cm 4a -B .3cm 4a +C .6cm 4a -D .6cm 4a +二、填空题:本大题共8小题,共24分,只要求填写最后结果,每小题填对得3分.13.十八大开幕当天,网站关于某一信息的总浏览量达550 000 000次.将550 000 000用科学记数法表示为 .14.甲、乙、丙三地的海拔高度分别是30米、-15米、-9米,那么最高的地方要比最低的地方高 米.15.在数轴上到原点距离等于4的点表示为 . 16.若a 2+2a -3=0,则代数式2a 2+4a +6的值等于 . 17.已知4||=x ,21||=y ,且xy <0的值等于 . 18.长方形的一边长为3a -b ,另一边比它小a -2b ,那么长方形的周长为 . 19. 观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是 .20.如图,是用火柴搭的 1条、 2条、 3条“金鱼”……,则搭n 条“金鱼”需要火柴 根.(第20题图)三、解答题:本大题共7小题,共60分.解答要写出必要的文字说明、证明过程或演算步骤. 21.(6分)把下列各数填入相应的大括号里.-7, 3.01, 2008, -0.142, +0.1, 0, 99, 75- (1)整数集合:{ ……} (2)负分数集合:{ ……} (3)正整数集合:{ ……}22.(6分)计算:(1)2423(1)(4)5-+⨯---⨯ (2)(用简便方法计算):2(35)911-÷23.(6分)化简求值:)2(2)]42(212)2(3[b a b a b a b a -+--+--,其中21=a ,32-=b .24.(10分) “囧”(jiǒng )是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y .(1)用含有x 、y 的代数式表示下图中“囧”的面积; (2)当y =6,x =8时,求此时“囧”的面积.(第24题图)25.(10分)有一个整式减去..(23)xy yz xz -+的题目,小春同学误看成加法..了,得到的答案是232yz xz xy -+.假如小春同学没看错,原来题目正确解答是什么?26.(10分)出租车司机小李某天下午的营运全是在东西走向的城中路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:+8,-7,+10,-6,+3,-5,+9,-6(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李在出发地的什么方向?距下午出发地有多远?(2)如果汽车耗油量为0.5升/千米,油箱容量为26升,若出发时油箱装满汽油,请你判断途中是否需要补充汽油?27.(12分)某市区自2014年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):1.6×20+2.4×10+3.2×2=62.4(元)(1)如果甲用户的月用水量为12吨,则甲需缴的水费为元;(2)如果乙用户缴的水费为39.2元,则乙月用水量吨;(3)如果丙用户的月用水量为a吨,则丙用户该月应缴水费多少元?(用含a的代数式表示,并化简)2015-2016学年度第一学期七年级期中考试数学试题答案一、选择题:1-5:BACDB 6-10:DBDCC 11-12:CC二、填空题:13、5.5×108.14、45 15、±4 16、12 17、-8 18、10a19、8 20、6n+2三、解答题:21. (本题满分6分)(1)整数集合:{ -7,2008,0,99……}(2)负分数集合:{-0.142,……}(3)正整数集合:{2008,99……}22.(本题满分6分)(1)(2)=-4+3×1-(-4)×5 ==-4+3+20 ==19 ;==.23.(本题满分6分)解:原式=[3a-6b-a+2b-a+2b] +2a-4b=3a-6b-a+2b-a+2b+2a-4b=3a-6b.错误!未找到引用源。

深圳市南山区2015-2016学年七年级上期中数学试卷含答案解析

深圳市南山区2015-2016学年七年级上期中数学试卷含答案解析

深圳市南山区2015-2016学年七年级上期中数学试卷含答案解析2015-2016学年广东省深圳市南山区七年级(上)期中数学试卷一、选择题(本题有12小题,每小题3分,共36分)1.如图,沿着虚线旋转一周得到的图形为( )A.B. C. D.2.圆锥的侧面展开图是( )A.长方形B.正方形C.圆D.扇形3.下列平面图形中不能围成正方体的是( ) A.B.C.D.4.用一个平面去截一个长方体,截面的形状不可能是( )A.四边形B.五边形C.六边形D.七边形5.如图,该物体的俯视图是( )A.B.C.D.6.下列说法正确的是( )A.所有的整数都是正数B.不是正数的数一定是负数C.0是最小的有理数D.整数和分数统称有理数7.在数轴上,与表示﹣5的点距离等于3的点所表示的数是( )A.2 B.﹣2 C.﹣8 D.﹣8或﹣28.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长30000000个核苷酸.30000000用科学记数法表示为( ) A.30×106 B.0.3×108C.3×108D.3×1079.在一条东西走向的街道上,小明先向西走了5米,记作“﹣5”,又向东走了6米,此时他所在的位置可记作( )A.﹣11 B.﹣1 C.+11 D.+110.下列说法正确的是( )A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数11.有理数32015的个位数字是( )A.1 B.3 C.7 D.912.已知a,b,c是三个有理数,他们在数轴上的位置如图所示,化简|a﹣b|+|c﹣a|﹣|b+c|得( )A.2c﹣2b B.﹣2a C.2a D.﹣2b二、填空题(本题共4个小题,每小题3分,共12分)13.|﹣4|的相反数是__________.14.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=__________.15.某件商品的出厂价格为a元,另外加的销售费用,则该商品的售价是__________元.16.已知|x+5|与|y﹣6|互为相反数,则y﹣x=__________.三、解答题(本题共6小题,其中第17题24分,第18题5分,第19题5分,第20题6分,第21题6分,第22题6分,共52分)17.(24分)计算下列各式.(1)(2)(﹣2.5)﹣(+2.7)﹣(﹣1.6)﹣(﹣2.7)+(+2.4)(3)(4)(5)52014×(0.2)2014﹣(0.125)2015×82015(6)﹣12015+[(﹣4)2+12﹣(﹣2)3]÷(﹣12)18.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.19.若a,b互为相反数,c,d互为倒数,|m|=4,求﹣5cd+6m的值.20.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.21.出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4升/千米,这天上午老王耗油多少升?22.观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=__________;(2)直接写出下列各式的计算结果:①=__________;②=__________.(3)探究并计算:=__________.2015-2016学年广东省深圳市南山区七年级(上)期中数学试卷一、选择题(本题有12小题,每小题3分,共36分)1.如图,沿着虚线旋转一周得到的图形为( )A.B. C. D.【考点】点、线、面、体.【分析】根据半圆绕它的直径旋转一周形成球可得出答案.【解答】解:有线动成面的知识可得:半圆绕它的直径旋转一周形成球.故选C.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.2.圆锥的侧面展开图是( )A.长方形B.正方形C.圆D.扇形【考点】几何体的展开图.【专题】常规题型.【分析】根据圆锥的侧面展开图是扇形作答.【解答】解:圆锥的侧面展开图是扇形.故选D.【点评】本题考查了立体图形的侧面展开图,熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.3.下列平面图形中不能围成正方体的是( ) A.B.C.D.【考点】展开图折叠成几何体.【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有A选项不能围成正方体.故选:A.【点评】本题考查了正方体展开图,熟记展开图常见的11种形式与不能围成正方体的常见形式“一线不过四,田凹应弃之”是解题的关键.4.用一个平面去截一个长方体,截面的形状不可能是( )A.四边形B.五边形C.六边形D.七边形【考点】截一个几何体.【分析】长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形.【解答】解:长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选D.【点评】本题考查长方体的截面.长方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形.5.如图,该物体的俯视图是( )A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到的图叫做俯视图,根据图中正方体摆放的位置判定则可.【解答】解:从上面看,是横放两个正方体.故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.6.下列说法正确的是( )A.所有的整数都是正数B.不是正数的数一定是负数C.0是最小的有理数D.整数和分数统称有理数【考点】有理数.【分析】整数包括正整数、负整数、零;不是正数,有可能是负数和零,零既不是正数,也不是负数;有理数可这样分,正数、零、负数;有理数的概念:整数和分数统称为有理数.【解答】解:A、负整数就不是正数,显然A错误;B、不是正数,有可能是零,所以B错误;C、负数比零小,也错误;根据有理数的概念;D、正确;故选D.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.7.在数轴上,与表示﹣5的点距离等于3的点所表示的数是( )A.2 B.﹣2 C.﹣8 D.﹣8或﹣2【考点】数轴.【分析】在数轴上和表示﹣5的点的距离等于3的点,可能表示﹣5左边的比﹣5小3的数,也可能表示在﹣5右边,比﹣5大3的数.据此即可求解.【解答】解:表示﹣5左边的,比﹣5小3的数时,这个数是﹣5﹣3=﹣8表示﹣5右边的,比﹣5大3的数时,这个数是﹣5+3=﹣2.故选:D.【点评】本题考查的是数轴上两点间的距离,熟知数轴上两点间的距离公式是解答此题的关键.8.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长30000000个核苷酸.30000000用科学记数法表示为( ) A.30×106 B.0.3×108C.3×108D.3×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将30000000用科学记数法表示为:3×107.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.9.在一条东西走向的街道上,小明先向西走了5米,记作“﹣5”,又向东走了6米,此时他所在的位置可记作( )A.﹣11 B.﹣1 C.+11 D.+1【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示【解答】解:由题意得,向东走为正,向西走为负,则﹣5+6=1(m).故选D.【点评】此题考查的知识点是正数和负数,解答此题的关键是正确理解正、负数的概念,区分正、负数的关键就是看它的值是大于0还是小于0,不能只看前面是否有负号.10.下列说法正确的是( )A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数【考点】绝对值;正数和负数.【专题】分类讨论.【分析】只需分a>0、a=0、a<0三种情况讨论,就可解决问题.【解答】解:①当a>0时,﹣a<0,|a|>0,﹣|a|<0;②当a=0时,﹣a=0,|a|=0,﹣|a|=0;③当a<0时,﹣a>0,|a|>0,﹣|a|<0.综上所述:﹣a可以是正数、0、负数;|a|可以是正数、0;﹣|a|可以是负数、0.故选C.【点评】本题考查的是数的分类、绝对值的概念、相反数等知识,其中数可分为正数、0、负数,运用分类讨论的思想是解决本题的关键.11.有理数32015的个位数字是( )A.1 B.3 C.7 D.9【考点】尾数特征.【分析】由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,可知3的乘方的末位数字以3、9、7、1四个数字为一循环,用32015的指数2015除以4得到的余数是几就与第几个数字的末位数字相同,由此解答即可.【解答】解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2015÷4=503…3,∴32015的末位数字与33的末位数字相同是7.故选:C.【点评】此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.12.已知a,b,c是三个有理数,他们在数轴上的位置如图所示,化简|a﹣b|+|c﹣a|﹣|b+c|得( )A.2c﹣2b B.﹣2a C.2a D.﹣2b【考点】整式的加减;数轴;绝对值.【分析】利用数轴结合a,b,c的位置,进而去绝对值,再合并同类项即可.【解答】解:如图所示:a﹣b>0,c﹣a<0,b+c<0,则|a﹣b|+|c﹣a|﹣|b+c|=a﹣b﹣c+a+b+c=2a.故选:C.【点评】此题主要考查了绝对值的性质以及合并同类项法则,正确绝对值是解题关键.二、填空题(本题共4个小题,每小题3分,共12分)13.|﹣4|的相反数是﹣4.【考点】相反数;绝对值.【专题】计算题.【分析】可先求出|﹣4|,然后再求|﹣4|的相反数.【解答】解:∵|﹣4|=4,4的相反数是﹣4,∴|﹣4|的相反数是﹣4.故答案为﹣4.【点评】本题主要考查的是数的绝对值、相反数等知识,需要注意的是求的是|﹣4|的相反数,而不是﹣4的相反数.14.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=8.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,1与x是相对面,3与y是相对面,∵相对面上两个数之和为6,∴x=5,y=3,∴x+y=5+3=8.故答案为:8.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.某件商品的出厂价格为a元,另外加的销售费用,则该商品的售价是a元.【考点】列代数式.【分析】根据该商品的售价=出厂价格+销售费用,即可解答.【解答】解:根据题意,得:a+a=a,故答案为:a.【点评】本题考查了列代数式,解决本题的关键是明确商品的售价=出厂价格+销售费用.16.已知|x+5|与|y﹣6|互为相反数,则y﹣x=11.【考点】非负数的性质:绝对值.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x、y 的值,然后相减计算即可得解.【解答】解:∵|x+5|与|y﹣6|互为相反数,∴|x+5|+|y﹣6|=0,∴x+5=0,y﹣6=0,解得x=﹣5,y=6,所以,y﹣x=6﹣(﹣5)=6+5=11.故答案为:11.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.三、解答题(本题共6小题,其中第17题24分,第18题5分,第19题5分,第20题6分,第21题6分,第22题6分,共52分)17.(24分)计算下列各式.(1)(2)(﹣2.5)﹣(+2.7)﹣(﹣1.6)﹣(﹣2.7)+(+2.4)(3)(4)(5)52014×(0.2)2014﹣(0.125)2015×82015(6)﹣12015+[(﹣4)2+12﹣(﹣2)3]÷(﹣12)【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式利用减法法则变形,结合后相加即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式从左到右依次计算即可得到结果;(5)原式逆用积的乘方运算法则计算,即可得到结果;(6)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=23+16﹣4﹣5=40﹣10=30;(2)原式=﹣2.5﹣2.7+1.6+2.7+2.4=﹣2.5﹣2.7+2.7+1.6+2.4=﹣2.5+4=1.5;(3)原式=18﹣20+30﹣21=48﹣41=7;(4)原式=﹣×××=﹣1;(5)原式=(5×0.2)2014﹣(0.125×8)2015=1﹣1=0;(6)原式=﹣1+(16+12+8)÷(﹣12)=﹣1﹣3=﹣4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.【考点】绝对值.【专题】计算题;分类讨论.【分析】根据绝对值的概念可得a=±5,b=±6,然后分类讨论,就可求出符合条件“|a+b|=a+b”时的a﹣b的值.【解答】解:∵|a|=5,|b|=6,∴a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a﹣b=5﹣6=﹣1;②当a=5,b=﹣6时,a+b=﹣1,不满足|a+b|=a+b,故舍去;③当a=﹣5,b=6时,a+b=1,满足|a+b|=a+b,此时a﹣b=﹣5﹣6=﹣11;④当a=﹣5,b=﹣6时,a+b=﹣11,不满足|a+b|=a+b,故舍去.综上所述:a﹣b的值为﹣1或﹣11.【点评】本题考查的是绝对值的概念,在解决问题的过程中,用到了分类讨论的思想,是解决本题关键,需要注意的是绝对值等于正数的数有两个,而不是一个.19.若a,b互为相反数,c,d互为倒数,|m|=4,求﹣5cd+6m的值.【考点】代数式求值;相反数;绝对值;倒数.【专题】计算题;实数.【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=4或﹣4,当m=4时,原式=0+16﹣5+24=35;当m=﹣4时,原式=0+16﹣5﹣24=13.【点评】此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.20.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.【解答】解:如图所示:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.21.出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4升/千米,这天上午老王耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)老王刚好回到上午出发点,就是说正负相加为0,估算后发现是前六个数相加.(2)把所有的行车里程相加,计算出的和的绝对值即为所求;(3)耗油总量=行走的总路程×单位耗油量.【解答】解:(1)∵(+8)+(+4)+(﹣10)+(﹣3)+(+6)+(﹣5)=0.∴将第6名乘客送到目的地时,老王刚好回到上午出发点.(2)∵(+8)+(+4)+(﹣10)+(﹣3)+(+6)+(﹣5)+(﹣2)+(﹣7)+(+4)+(+6)+(﹣9)+(﹣11)=﹣19,∴将最后一名乘客送到目的地时,老王距上午出发点西边19千米处.(3)∵|+8|+|+4|+|﹣10|+|﹣3|+|+6|+|﹣5|+|﹣2|+|﹣7|+|+4|+|+6|+|﹣9|+|﹣11|=75千米,75×0.4=30升,∴这天上午老王耗油30升.【点评】本题考查了正负数、绝对值及有理数在实际中的应用.注意,东表示正数,西表示负数,但实际行走的路程应该等于所有数的绝对值之和.22.观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=﹣;(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:=.【考点】有理数的混合运算.【专题】规律型.【分析】(1)猜想得到结论,写出即可;(2)利用得出的拆项法化简各式,计算即可得到结果;(3)原式变形后,利用拆项法变形,计算即可得到结果.【解答】解:(1)根据题意得:=﹣;(2)①原式=1﹣+﹣+…+﹣=1﹣=;②原式=1﹣+﹣+…+﹣=1﹣=;(3)原式=(1﹣+﹣+…+﹣)=(1﹣)=.故答案为:(1)﹣;(2)①;②;(3)【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

广东省 七年级(上)期中数学试卷-(含答案)

广东省 七年级(上)期中数学试卷-(含答案)

七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作()A. 7℃B. −7℃C. 2℃D. −12℃2.下列四个数中,负数是()A. −3B. 0C. 1D. 23.-5的相反数是()A. −5B. 5C. −15D. 154.下列各数中,互为倒数的是()A. 0.1与1B. 3与−13C. −3与3 D. 2与125.比-1大1的数是()A. 2B. 1C. 0D. −26.(-3)2的值是()A. 9B. −9C. 6D. −67.下列单项式中,与a2b是同类项的是()A. 2a2bB. a2b2C. ab2D. 3ab8.计算:5x-3x=()A. 2xB. 2x2C. −2xD. −29.舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A. 5×1010千克B. 50×109千克C. 5×109千克D. 0.5×1011千克10.近似数2.70所表示的准确数a的取值范是()A. 2.695≤a<2.705B. 2.65≤a<2.75C. 2.695<a≤2.705 D. 2.65<a≤2.75二、填空题(本大题共6小题,共24.0分)11.我市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是______℃.12.买一个篮球需要x元,买一个排球需要y元,则买3个篮球和2排球共需______元.13.-6x m y3是一个六次单项式,则m=______.14.已知5x3y m与6x n y2可以合并为一项,则m n的值是______.15.若(a-2)2+|b-3|=0,那么a-b=______.16.拉面是这样做的:一根拉一次变成2根,再拉一次变成4根,照这样做下去,那么拉上7次后,师傅手中的拉面有______根.三、计算题(本大题共1小题,共9.0分)17.有这样一道题:先化简,再计算:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3),其中x=12,y=-1.甲同学把“x=12”错抄成“x=-12”,但他计算的结果也是正确的,试说明理由,并求出这个结果.四、解答题(本大题共6小题,共57.0分)18.计算:(1)33+(-6)+17+(-24)×(-6)(2)(-20)÷(-4)-13(3)(3x+3)-2(x-1).19.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5,这8筐白菜共超重或不足多少千克?总重量是多少千克?20.已知:A=2x2−3x+2,B=x2−3x−2.(1)求A-B;(2)当x=-2时,求A-B的值.21.已知a、b互为相反数,c、d互为倒数,m的绝对值为3,求a+b+m-cd的值.522. 观察下列等式:第1个等式:a 1=11×3=12×(1-13); 第2个等式:a 2=13×5=12×(13-15); 第3个等式:a 3=15×7=12×(15-17); 第4个等式:a 4=17×9=12×(17-19)…请解答下列问题:(1)用含有n (n 为正整数)的式子表示第n 个等式; (2)求a 1+a 2+a 3+a 4+…+a 100的值.23. 小马虎在计算一个多项式减去2a 2+a -5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是a 2+3a -1. (1)求这个多项式;(2)算出此题的正确的结果.答案和解析1.【答案】B【解析】解:∵冰箱冷藏室的温度零上5℃,记作+5℃,∴保鲜室的温度零下7℃,记作-7℃.故选:B.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.【答案】A【解析】解:四个数中,负数是-3.故选:A.根据小于0的是负数即可求解.此题主要考查了正数和负数,判断一个数是正数还是负数,关键是看它比0大还是比0小.3.【答案】B【解析】解:-5的相反数是5.故选:B.根据相反数的概念解答即可.本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.【答案】D【解析】解:0.1×1=0.1,故A错误;3×(-)=-1,故B错误;-3×3=-9,故C错误;2×=1,故D正确.故选:D.依据倒数的定义回答即可.本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.5.【答案】C【解析】解:(-1)+1=0,故比-1大1的数是0,故选:C.根据有理数的加法,可得答案.本题考查了有理数的加法,互为相反数的和为0.6.【答案】A【解析】解:(-3)2=9.故选A.本题考查有理数的乘方运算,(-3)2表示2个(-3)的乘积.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.7.【答案】A【解析】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a和字母b的指数都不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选:A.根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.8.【答案】A【解析】解:原式=(5-3)x=2x,故选A原式合并同类项即可得到结果.此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.9.【答案】A【解析】解:500亿=50000000000=5×1010.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【答案】A【解析】解:近似数4.50所表示的准确值a的取值范围是2.695≤a<2.705.故选A.根据近似数的精确度进行求解即可.本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.11.【答案】8【解析】解:6-(-2),=6+2,=8℃.故答案为:8.用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.12.【答案】(3x+2y)【解析】解:∵买一个篮球需要x元,买一个排球需要y元,∴买3个篮球和2排球共需:(3x+2y)元.故答案为:(3x+2y).直接利用根据题意表示出买3个篮球以及2个排球的钱数,相加即可.此题主要考查了列代数式,正确表示出买篮球以及排球的钱数是解题关键.13.【答案】3【解析】解:由题意得m+3=6,解得:m=3.故答案为:3.根据单项式次数的概念求解.本题考查了单项式的知识,一个单项式中所有字母的指数的和叫做单项式的次数.14.【答案】8【解析】解:∵5x3y m与6x n y2是同类项,∴n=3,m=2,则m n=8.故答案为:8.根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,求出m,n的值,继而可求得结论.本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个相同:相同字母的指数相同.15.【答案】-1【解析】解:由题意得,a-2=0,b-3=0,解得a=2,b=3,所以,a-b=2-3=-1.故答案为:-1.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.【答案】128【解析】解:∵拉1次面条根数为21,拉2次面条根数为22,∴拉n次面条根数为2n,∴拉上7次后,师傅手中的拉面有27=128根.故答案为:128.根据乘方的定义和题意可知,拉面师傅拉1次面条根数为21,拉2次面条根数为22,…,拉n次面条根数为2n,据此列出方程即可得出答案.此题主要考查了从图示或数据中寻找规律的能力.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是求n个相同因数的积的简便运算.17.【答案】解:原式=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3,由于所得的结果与x的取值没有关系,故他将y的值代入计算后,所得的结果也正确,当y=-1时,原式=2.【解析】将原式去括号合并得到最简结果,得到结果与x无关,进而将“x=12”错抄成“x=-12”,运算结果也正确.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)33+(-6)+17+(-24)=(33+17)+[(-6)+(-24)]=50+(-30)=20;×(-6)(2)(-20)÷(-4)-13=5+2=7;(3)(3x+3)-2(x-1)=3x+3-2x+2=x+5.【解析】(1)根据整式的加减法可以解答本题;(2)根据有理数的乘除法和减法可以解答本题;(3)先去括号,然后合并同类项即可解答本题.本题考查整式的加减和有理数的混合运算,解答本题的关键是明确整式的加减和有理数的混合运算的计算方法.19.【答案】解:1.5-3+2-0.5+1-2-2-2.5=-5.5,25×8-5.5=200-5.5=194.5(千克).答:这8筐白菜不足5.5千克,总重量是194.5千克.【解析】先把超出或不足标准的8个数相加,根据有理数的加法运算法则进行计算,然后再加上标准质量即可.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.【答案】解:(1)A-B=2x2−3x+2−x2−3x−2=2x2−3x+2−x2+3x+2=x2+4;(2)当x=-2时,原式=−22+4=8.【解析】(1)根据整式的加减,多项式减多项式要加括号,再根据去括号、合并同类项,可化简整式;(2)根据代数式求值,可得答案.本题考查了整式的加减,去括号是解题关键,括号前是负数去括号都变号,括号前是正数去括号不变号.21.【答案】解:根据题意得:a +b =0,cd =1,m =3或-3,当m =3时,a +b 5+m -cd =0-1+3=2; 当m =-3时,a +b 5+m -cd =0-1-3=-4.【解析】利用相反数,倒数,以及绝对值的代数意义求出a+b ,cd ,以及m 的值,代入原式计算即可得到结果.此题考查了代数式求值,利用相反数,倒数,以及绝对值的代数意义求出a+b ,cd ,以及m 的值是解本题的关键.22.【答案】解:(1)由已知等式知,连续奇数乘积的倒数等于各自倒数差的一半,∴第n 个等式为1(2n−1)(2n +1)=12(12n−1-12n +1);(2)原式=12×(1-13)+12×(13-15)+12×(17-19)+…+12(1199-1201) =12×(1-13+13-15+15-17+…+1199-1201) =12×(1-1201) =12×200201 =100201. 【解析】(1)由已知等式知,连续奇数乘积的倒数等于各自倒数差的一半,据此可得;(2)根据以上规律可得原式=×(1-)+×(-)+×(-)+…+(-)=×(1-+-+-+…+-),即可得出答案.本题主要考查数字的变化规律,根据题意得出连续奇数乘积的倒数等于各自倒数差的一半且掌握裂项求和是解题的关键.23.【答案】解:(1)由题意可得,这个多项式是:a2+3a-1+2a2-a+5=3a2+2a+4,即这个多项式是3a2+2a+4;(2)由(1)可得,3a2+2a+4-(2a2+a-5)=3a2+2a+4-2a2-a+5=a2+a+9,即此题的正确的结果是a2+a+9.【解析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.本题考查整式的加减,解答本题的关键是明确整式的加减时对多项式要加括号,求出相应的多项式.第11页,共11页。

人教版2015-2016学年七年级(上)期中数学试卷(

人教版2015-2016学年七年级(上)期中数学试卷(
法.
3.用四舍五入法把 0.06097 精确到千分位的近似值的有效数字是( ) A.0,6,0 B.0,6,1,0 C.0,6,1 D.6,1 【考点】近似数和有效数字. 【分析】一个近似数的有效数字是从左边第一个不是 0 的数字起,后面所有的数字都是这个 数的有效数字. 精确到哪位,就是对它后边的一位进行四舍五入. 【解答】解:用四舍五入法把 0.060 97 精确到千分位的近似值是 0.061.其有效数字是从左 边第一个不为零的数字 6 开始,至精确到的数位 1 结束,共有 6、1 两位.故选 D. 【点评】本题旨在考查对基本概念的应用能力,需要同学们熟记有效数字的概念:从一个数 的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.
A.单项式
的系数是 3,次数是 2
B.单项式 m 的次数是 1,没有系数 C.单项式﹣xy2z 的系数是﹣1,次数是 4 D.多项式 2x2+xy+3 是三次三项式
5.当 k 取何值时,多项式 x2﹣3kxy﹣3y2+ xy﹣8 中,不含 xy 项( )
A.0 B. C. D.﹣ 6.如图钟表 8 时 30 分时,时针与分针所成的角的度数为( )
1 / 12
A.2075 B.1575 C.2000 D.1500 10.下列图形中,不是正方体的展开图的是( )
A.
B.
C.
D.
11.下列四个角中,最有可能与 70°角互补的角是( )
A.
B.
C.
D.
12.已知点 A、B、P 在一条直线上,则下列等式中,能判断点 P 是线段 AB 的中点的个数 有( )
3 / 12
人教版七年级(上)期中数学试卷
参考答案与试题解析

广东省深圳市新华中学2015-2016学年七年级数学上学期期中试题(含解析) 新人教版

广东省深圳市新华中学2015-2016学年七年级数学上学期期中试题(含解析) 新人教版

广东省深圳市新华中学2015-2016学年七年级数学上学期期中试题一、选择题:(共36分,请将答案填在表格中)1.在﹣(﹣8),|﹣1|,﹣|0|,(﹣2)3,﹣24这四个数中,负数共有( )A.4个B.3个C.2个D.1个2.截止2010年6月5日11时28分,上海世博园参观人数累计突破10000000人次,这个数用科学记数法可表示为(保留两个有效数字)( )A.1.0×108B.1.0×107C.1.00×107D.1.00×1083.在下列各组中,表示互为相反意义的量是( )A.上升与下降B.篮球比赛胜5场与负2场C.向东走3米,再向南走3米D.增产10吨粮食与减产﹣10吨粮食4.一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是( ) A.圆锥 B.长方体C.八棱柱D.正方体5.下列说法中,错误的有( )①是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥﹣1是最小的负整数.A.1个B.2个C.3个D.4个6.下列各组代数式中,是同类项的是( )A.5x2y与xy B.﹣5x2y与yx2 C.5ax2与yx2D.83与x37.下列计算中,错误的是( )A.﹣62=﹣36 B.()2=C.(﹣4)3=﹣64 D.(﹣1)100+(﹣1)1000=08.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )A.B.C.D.9.某企业去年产值x万元,今年比去年增产10%,今年产值是( )A.(1+10%)x万元B.万元C.10%x万元D.(1﹣10%)x万元10.下列各式中,正确的是( )A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4 D.a3+a2=a511.一滴墨水洒在一个数轴上,根据图中标出的数值,可以判定墨迹盖住的整数个数是( )A.285 B.286 C.287 D.28812.用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子( )A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚二、填空题:(共12分)13.2.5的相反数是__________,的倒数是__________.14.比较大小:__________.15.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最少__________个小立方块,最多各需要__________ 个小立方块.16.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10=__________.三.解答题(共52分)17.如图是由7个相同的小立方体组成的几何体,请画出它的三视图.18.计算题(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣)×÷(﹣0.25)×(﹣12)(3)(﹣24)×(﹣+)+(﹣2)3(4)﹣42÷(﹣4)×﹣0.25×(﹣12)+|﹣5|.19.如图所示,正方形的边长为a,试用字母a表示阴影部分的面积.20.化简或求值(1)化简:5x2﹣[3x﹣2(2x﹣3)﹣4x2](2)先化简,再求值:5x2y﹣3xy2﹣7(x2y﹣xy2),其中x=2,y=﹣1.(3)在计算代数式(2x5﹣3x2y﹣2xy2)﹣(x5﹣2xy2+y5)+(﹣x5+3x2y﹣y5)的值,其中x=0.5,y=﹣1时,甲同学把x=0.5错抄成x=﹣0.5,但他计算的结果是正确的.试说明理由,并求出这个结果.21.观察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…(1)请根据你发现的规律填空:6×8+1=(__________)2;(2)用含n的等式表示上面的规律:__________;(3)用找到的规律解决下面的问题:计算:(1+)(1+)(1+)(1+)…(1+)22.中国移动成都公司开设适合普通用户的两种通讯业务分别是:“全球通”用户先缴12元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,每分钟通话0.3元.(通话均指拨打本地电话)(1)设一个月内通话时间约为x分钟(x≥3且x为整数),求这两种用户每月需缴的费用分别是多少元?(用含x的代数式表示)(2)若张老师一个月通话约180分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?并说明理由.23.如图,图1是个正五边形,分别连接这个正五边形各边中点得到图2,再分别连接图2小正五边形各边中点得到图3:(3)能否分出246个三角形?简述你的理由.2015-2016学年广东省深圳市新华中学七年级(上)期中数学试卷一、选择题:(共36分,请将答案填在表格中)1.在﹣(﹣8),|﹣1|,﹣|0|,(﹣2)3,﹣24这四个数中,负数共有( )A.4个B.3个C.2个D.1个【考点】正数和负数;绝对值;有理数的乘方.【专题】计算题.【分析】先把这一组数进行计算,再根据正数和负数的定义解答即可.【解答】解:∵﹣(﹣8)=8,|﹣1|=1,﹣|0|=0,(﹣2)3=﹣8,﹣24=﹣16,数中负数有2,(﹣2)3=﹣8,﹣24=﹣16,故选C.【点评】本题考查的知识点是正数和负数,判断一个数是正数还是负数,要把它化简成最后形式再判断.2.截止2010年6月5日11时28分,上海世博园参观人数累计突破10000000人次,这个数用科学记数法可表示为(保留两个有效数字)( )A.1.0×108B.1.0×107C.1.00×107D.1.00×108【考点】科学记数法与有效数字.【专题】应用题.【分析】较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.【解答】解:10000000=1.0×107.故选B.【点评】从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.3.在下列各组中,表示互为相反意义的量是( )A.上升与下降B.篮球比赛胜5场与负2场C.向东走3米,再向南走3米D.增产10吨粮食与减产﹣10吨粮食【考点】正数和负数.【专题】探究型.【分析】根据相反意义的量指的是就是两个数字,它们的正负符号相反,代表着相对于基准点(0点)处于不同的方位,而它们的绝对值是不是相等没有关系,可以判断四个选项的是否正确.【解答】解:上升和下降只是相反,但没有数字,故选项A错误;篮球比赛胜5场和负两场是具有相反意义的量,故选项B正确;向东走3米,再向南走3米中东和南不是相反的,故选项C错误;增产10吨粮食与减产﹣10吨粮食都是表示的增长10吨粮食,故选项D错误.故选B.【点评】本题考查正数和负数,解题的关键是明确什么是相反意义的量的定义.4.一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是( ) A.圆锥 B.长方体C.八棱柱D.正方体【考点】截一个几何体.【分析】分别得到几何体有几个面,再根据截面是七边形作出选择.【解答】解:∵圆锥有一个平面和一个曲面,长方体和正方体有6个面,八棱柱有10个面,∴只有八棱柱可能得到一个七边形截面.故选C.【点评】考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.5.下列说法中,错误的有( )①是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥﹣1是最小的负整数.A.1个B.2个C.3个D.4个【考点】有理数.【分析】本题根据有理数的基本定义,对各项进行判定即可求得答案.【解答】解:①是负分数;正确;②1.5不是整数;正确,是分数;③非负有理数不包括0;错误,0也为有理数;④整数和分数统称为有理数;正确;⑤0是最小的有理数;错误,负数也为有理数;⑥﹣1是最小的负整数,错误,﹣1为最大的负整数;∴③⑤⑥三项错误.故选:C.【点评】本题考查有理数的基本定义和概念,掌握这些做此题较简单.6.下列各组代数式中,是同类项的是( )A.5x2y与xy B.﹣5x2y与yx2 C.5ax2与yx2D.83与x3【考点】同类项.【专题】新定义.【分析】所含字母相同,并且相同字母的指数也相同的项叫同类项,且常数项也是同类项.通过该定义来判断是不是同类项.【解答】解:A、5x2y与xy字母x、y相同,但x的指数不同,所以不是同类项;B、﹣5x2y与yx2字母x、y相同,且x、y的指数也相同,所以是同类项;C、5ax2与yx2字母a与y不同,所以不是同类项;D、83与x3,对83只是常数项无字母项,x3只是字母项无常数项,所以不是同类项.故选B【点评】同学们判断一个整式是否是同类项主要从以下三个方面:①所含字母相同②且相同字母的指数也相同的项③常数项也是同类项.7.下列计算中,错误的是( )A.﹣62=﹣36 B.()2=C.(﹣4)3=﹣64 D.(﹣1)100+(﹣1)1000=0【考点】有理数的乘方.【分析】根据有理数的乘方的定义对各选项分别进行计算,然后利用排除法求解.【解答】解:A、﹣62=﹣36,故本选项错误;B、()2=,故本选项错误;C、(﹣4)3=﹣64,故本选项错误;D、(﹣1)100+(﹣1)1000=1+1=2,故本选项正确.故选D.【点评】本题考查了有理数的乘方,是基础题,熟记概念并准确计算是解题的关键.8.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:四个方格形成的“田”字的,不能组成正方体,A错;出现“U”字的,不能组成正方体,B错;以横行上的方格从上往下看:C选项组成正方体.故选:C.【点评】如没有空间观念,动手操作可很快得到答案.需记住正方体的展开图形式:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种.9.某企业去年产值x万元,今年比去年增产10%,今年产值是( )A.(1+10%)x万元B.万元C.10%x万元D.(1﹣10%)x万元【考点】列代数式.【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值=(1+10%)x万元,故选A.【点评】本题考查了增长率的知识,增长后的收入=(1+10%)×增长前的收入.10.下列各式中,正确的是( )A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4 D.a3+a2=a5【考点】合并同类项.【专题】计算题.【分析】根据同类项的定义,合并同类项的法则.【解答】解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.合并同类项的法则:系数相加减,字母与字母的指数不变.11.一滴墨水洒在一个数轴上,根据图中标出的数值,可以判定墨迹盖住的整数个数是( )A.285 B.286 C.287 D.288【考点】数轴.【分析】在数轴上从左到右数字依次增大,盖住整数个数可以用以下计算方法.【解答】解:在﹣109.2与﹣11.9之间最小整数是﹣109,最大整数是﹣12共计包含(﹣12)﹣(﹣109)+1=98个整数.在10.5与199.5之间包含最小整数是11,最大整数是199.共计包含199﹣11+1=189个整数,因此墨水共盖住98+189=287个整数.故选C.【点评】此题考查了数轴的有关内容,要求掌握在数轴上的基本运算.例在﹣109.2与﹣11.9之间包含(﹣12)﹣(﹣109)+1=98个整数.12.用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子( )A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚【考点】规律型:图形的变化类.【分析】每增加一个数就增加四个棋子.【解答】解:n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选A.【点评】主要培养学生的观察能力和空间想象能力.二、填空题:(共12分)13.2.5的相反数是﹣2.5,的倒数是﹣3.【考点】倒数;相反数.【分析】根据相反数的定义,倒数的定义解答即可.【解答】解:2.5的相反数是﹣2.5,的倒数﹣3.故答案为:﹣2.5;﹣3.【点评】本题考查了倒数的定义,相反数的定义,熟记概念是解题的关键.14.比较大小:<.【考点】有理数大小比较.【分析】先比较出两个数的绝对值,再根据两个负数比较,绝对值大的反而小,即可得出答案.【解答】解:∵>,∴<.故答案为:<.【点评】此题考查了有理数的大小比较,掌握两个负数比较大小的方法即两个负数比较,绝对值大的反而小是本题的关键.15.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最少11个小立方块,最多各需要17 个小立方块.【考点】由三视图判断几何体.【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可;【解答】解:搭这样的几何体最少需要8+2+1=11个小正方体,最多需要8+6+3=17个小正方体;故答案为:11,17.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.16.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10=0.【考点】代数式求值.【专题】整体思想.【分析】先对已知进行变形,把所求代数式化成已知的形式,再利用整体代入法求解.【解答】解:∵2x2+3x+7=12∴2x2+3x=12﹣7∴4x2+6x﹣10=2(2x2+3x)﹣10=2×(12﹣7)﹣10=0.【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.三.解答题(共52分)17.如图是由7个相同的小立方体组成的几何体,请画出它的三视图.【考点】作图-三视图.【分析】主视图有3列,每列小正方形数目分别为2,1,2;左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每列小正方形数目分别为2,2,1.【解答】解:如图所示:【点评】本题主要考查了简单组合体的三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.18.计算题(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣)×÷(﹣0.25)×(﹣12)(3)(﹣24)×(﹣+)+(﹣2)3(4)﹣42÷(﹣4)×﹣0.25×(﹣12)+|﹣5|.【考点】有理数的混合运算.【分析】(1)先化简,再分类计算即可;(2)先判定符号,再把除法改为乘法计算即可;(3)先利用乘法分配律算乘法,计算乘方,再算加减;(4)先算乘方和绝对值,再算乘除,最后算加减.【解答】解:(1)原式=﹣12﹣5﹣14+39=8;(2)原式=﹣××4×12=﹣;(3)原式=(﹣24)×﹣(﹣24)×+(﹣24)×﹣8=﹣3+8﹣6﹣8=﹣9;(4)原式=﹣16÷(﹣4)×+3+5=1+3+5=9.【点评】此题考查有理数的混合运算,掌握运算顺序与计算方法是解决问题的关键.19.如图所示,正方形的边长为a,试用字母a表示阴影部分的面积.【考点】列代数式.【分析】根据阴影部分的面积等于扇形的面积减去半圆的面积可以求解.【解答】解:S阴影=S扇形﹣S半圆=πa2﹣=【点评】本题考查了列代数式的知识,熟知阴影部分的面积是由哪几个图形的面积复合而成是解题的关键.20.化简或求值(1)化简:5x2﹣[3x﹣2(2x﹣3)﹣4x2](2)先化简,再求值:5x2y﹣3xy2﹣7(x2y﹣xy2),其中x=2,y=﹣1.(3)在计算代数式(2x5﹣3x2y﹣2xy2)﹣(x5﹣2xy2+y5)+(﹣x5+3x2y﹣y5)的值,其中x=0.5,y=﹣1时,甲同学把x=0.5错抄成x=﹣0.5,但他计算的结果是正确的.试说明理由,并求出这个结果.【考点】整式的加减—化简求值;整式的加减.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(3)原式去括号合并得到最简结果,与x取值无关,进而求出结果.【解答】解:(1)原式=5x2﹣3x+4x﹣6+4x2=9x2+x﹣6;(2)原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=2,y=﹣1时,原式=8﹣2=6;(3)原式=2x5﹣3x2y﹣2xy2﹣x5+2xy2﹣y5﹣x5+3x2y﹣y5=﹣2y5,当x=0.5,y=﹣1时,原式=2.结果与x取值无关,故甲同学把x=0.5错抄成x=﹣0.5,但他计算的结果是正确的.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.观察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…(1)请根据你发现的规律填空:6×8+1=(7)2;(2)用含n的等式表示上面的规律:n(n+2)+1=(n+1)2;(3)用找到的规律解决下面的问题:计算:(1+)(1+)(1+)(1+)…(1+)【考点】规律型:数字的变化类.【分析】(1)根据已知中数字变化规律得出第一个数字是连续的正整数,第二个数比第一个大2,它们的乘积加1等于两数之间的数的平方,进而得出答案;(2)根据(1)规律得出答案即可;(3)首先将括号里面通分,进而得出即可.【解答】解:(1)∵1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…∴6×8+1=72,故答案为:7;(2)根据已知中数据的变化规律得出:n(n+2)+1=(n+1)2;故答案为:n(n+2)+1=(n+1)2;(3)原式===2×=.【点评】此题主要考查了数字变化规律,根据已知得出数字中的变与不变是解题关键.22.中国移动成都公司开设适合普通用户的两种通讯业务分别是:“全球通”用户先缴12元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,每分钟通话0.3元.(通话均指拨打本地电话)(1)设一个月内通话时间约为x分钟(x≥3且x为整数),求这两种用户每月需缴的费用分别是多少元?(用含x的代数式表示)(2)若张老师一个月通话约180分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?并说明理由.【考点】列代数式;代数式求值.【分析】(1)由“全球通”用户先缴12元月租,然后每分钟通话费用0.2元,一个月内通话时间为x分钟,话费为12+0.2x元,“神州行”用户不用缴纳月租费,每分钟通话0.4元,直接时间×每分钟话费,即可求出;(2)分别求出当x=80分钟时,求出总的话费,再进行比较大小.【解答】解:(1)“全球通”每月的费用为:(12+0.2x)元;“神州行”每月的费用为:0.3x元;(2)建议张老师选择“全球通”,理由如下:当x=180时,12+0.2x=12+0.2×180=48(元);【点评】此题主要考查了一次函数的应用,以及不等式在一次函数的应用,在中考中是热点问题.23.如图,图1是个正五边形,分别连接这个正五边形各边中点得到图2,再分别连接图2小正五边形各边中点得到图3:(3)能否分出246个三角形?简述你的理由.【考点】规律型:图形的变化类.【专题】规律型.【分析】(1)第一行分别是1,2,3;第二行分别是0,5,10;(2)根据第二个图形中有5个三角形,第三个图中有10个三角形,可以发现第n个图中有5(n﹣1)个三角形;(3)根据(2)中发现的规律,因为246不是5的倍数,所以不能分出246个三角形.【解答】解:(1)第一行1,2,3;第二行0,5,10;(2)5(n﹣1);(3)因为246不是5的倍数,所以不能分出.【点评】此题注意结合图形进行分析.。

广东省深圳市南山区2015-2016学年七年级数学上学期期中试题(含解析) 新人教版

广东省深圳市南山区2015-2016学年七年级数学上学期期中试题(含解析) 新人教版

广东省深圳市南山区2015-2016学年七年级数学上学期期中试题一、选择题(本题有12小题,每小题3分,共36分)1.如图,沿着虚线旋转一周得到的图形为( )A.B.C.D.2.圆锥的侧面展开图是( )A.长方形B.正方形C.圆D.扇形3.下列平面图形中不能围成正方体的是( )A.B.C.D.4.用一个平面去截一个长方体,截面的形状不可能是( )A.四边形B.五边形C.六边形D.七边形5.如图,该物体的俯视图是( )A. B.C.D.6.下列说法正确的是( )A.所有的整数都是正数B.不是正数的数一定是负数C.0是最小的有理数D.整数和分数统称有理数7.在数轴上,与表示﹣5的点距离等于3的点所表示的数是( )A.2 B.﹣2 C.﹣8 D.﹣8或﹣28.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长30000000个核苷酸.30000000用科学记数法表示为( )A.30×106B.0.3×108C.3×108D.3×1079.在一条东西走向的街道上,小明先向西走了5米,记作“﹣5”,又向东走了6米,此时他所在的位置可记作( )A.﹣11 B.﹣1 C.+11 D.+110.下列说法正确的是( )A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数11.有理数32015的个位数字是( )A.1 B.3 C.7 D.912.已知a,b,c是三个有理数,他们在数轴上的位置如图所示,化简|a﹣b|+|c﹣a|﹣|b+c|得( )A.2c﹣2b B.﹣2a C.2a D.﹣2b二、填空题(本题共4个小题,每小题3分,共12分)13.|﹣4|的相反数是__________.14.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=__________.15.某件商品的出厂价格为a元,另外加的销售费用,则该商品的售价是__________元.16.已知|x+5|与|y﹣6|互为相反数,则y﹣x=__________.三、解答题(本题共6小题,其中第17题24分,第18题5分,第19题5分,第20题6分,第21题6分,第22题6分,共52分)17.(24分)计算下列各式.(1)(2)(﹣2.5)﹣(+2.7)﹣(﹣1.6)﹣(﹣2.7)+(+2.4)(3)(4)(5)52014×(0.2)2014﹣(0.125)2015×82015(6)﹣12015+[(﹣4)2+12﹣(﹣2)3]÷(﹣12)18.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.19.若a,b互为相反数,c,d互为倒数,|m|=4,求﹣5cd+6m的值.20.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.21.出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4升/千米,这天上午老王耗油多少升?22.观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=__________;(2)直接写出下列各式的计算结果:①=__________;②=__________.(3)探究并计算:=__________.2015-2016学年广东省深圳市南山区七年级(上)期中数学试卷一、选择题(本题有12小题,每小题3分,共36分)1.如图,沿着虚线旋转一周得到的图形为( )A.B.C.D.【考点】点、线、面、体.【分析】根据半圆绕它的直径旋转一周形成球可得出答案.【解答】解:有线动成面的知识可得:半圆绕它的直径旋转一周形成球.故选C.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.2.圆锥的侧面展开图是( )A.长方形B.正方形C.圆D.扇形【考点】几何体的展开图.【专题】常规题型.【分析】根据圆锥的侧面展开图是扇形作答.【解答】解:圆锥的侧面展开图是扇形.故选D.【点评】本题考查了立体图形的侧面展开图,熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.3.下列平面图形中不能围成正方体的是( )A.B.C.D.【考点】展开图折叠成几何体.【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有A选项不能围成正方体.故选:A.【点评】本题考查了正方体展开图,熟记展开图常见的11种形式与不能围成正方体的常见形式“一线不过四,田凹应弃之”是解题的关键.4.用一个平面去截一个长方体,截面的形状不可能是( )A.四边形B.五边形C.六边形D.七边形【考点】截一个几何体.【分析】长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形.【解答】解:长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选D.【点评】本题考查长方体的截面.长方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形.5.如图,该物体的俯视图是( )A. B.C.D.【考点】简单组合体的三视图.【分析】从上面看到的图叫做俯视图,根据图中正方体摆放的位置判定则可.【解答】解:从上面看,是横放两个正方体.故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.6.下列说法正确的是( )A.所有的整数都是正数B.不是正数的数一定是负数C.0是最小的有理数D.整数和分数统称有理数【考点】有理数.【分析】整数包括正整数、负整数、零;不是正数,有可能是负数和零,零既不是正数,也不是负数;有理数可这样分,正数、零、负数;有理数的概念:整数和分数统称为有理数.【解答】解:A、负整数就不是正数,显然A错误;B、不是正数,有可能是零,所以B错误;C、负数比零小,也错误;根据有理数的概念;D、正确;故选D.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.7.在数轴上,与表示﹣5的点距离等于3的点所表示的数是( )A.2 B.﹣2 C.﹣8 D.﹣8或﹣2【考点】数轴.【分析】在数轴上和表示﹣5的点的距离等于3的点,可能表示﹣5左边的比﹣5小3的数,也可能表示在﹣5右边,比﹣5大3的数.据此即可求解.【解答】解:表示﹣5左边的,比﹣5小3的数时,这个数是﹣5﹣3=﹣8表示﹣5右边的,比﹣5大3的数时,这个数是﹣5+3=﹣2.故选:D.【点评】本题考查的是数轴上两点间的距离,熟知数轴上两点间的距离公式是解答此题的关键.8.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长30000000个核苷酸.30000000用科学记数法表示为( )A.30×106B.0.3×108C.3×108D.3×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将30000000用科学记数法表示为:3×107.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.在一条东西走向的街道上,小明先向西走了5米,记作“﹣5”,又向东走了6米,此时他所在的位置可记作( )A.﹣11 B.﹣1 C.+11 D.+1【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示【解答】解:由题意得,向东走为正,向西走为负,则﹣5+6=1(m).故选D.【点评】此题考查的知识点是正数和负数,解答此题的关键是正确理解正、负数的概念,区分正、负数的关键就是看它的值是大于0还是小于0,不能只看前面是否有负号.10.下列说法正确的是( )A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数【考点】绝对值;正数和负数.【专题】分类讨论.【分析】只需分a>0、a=0、a<0三种情况讨论,就可解决问题.【解答】解:①当a>0时,﹣a<0,|a|>0,﹣|a|<0;②当a=0时,﹣a=0,|a|=0,﹣|a|=0;③当a<0时,﹣a>0,|a|>0,﹣|a|<0.综上所述:﹣a可以是正数、0、负数;|a|可以是正数、0;﹣|a|可以是负数、0.故选C.【点评】本题考查的是数的分类、绝对值的概念、相反数等知识,其中数可分为正数、0、负数,运用分类讨论的思想是解决本题的关键.11.有理数32015的个位数字是( )A.1 B.3 C.7 D.9【考点】尾数特征.【分析】由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,可知3的乘方的末位数字以3、9、7、1四个数字为一循环,用32015的指数2015除以4得到的余数是几就与第几个数字的末位数字相同,由此解答即可.【解答】解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2015÷4=503…3,∴32015的末位数字与33的末位数字相同是7.故选:C.【点评】此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.12.已知a,b,c是三个有理数,他们在数轴上的位置如图所示,化简|a﹣b|+|c﹣a|﹣|b+c|得( )A.2c﹣2b B.﹣2a C.2a D.﹣2b【考点】整式的加减;数轴;绝对值.【分析】利用数轴结合a,b,c的位置,进而去绝对值,再合并同类项即可.【解答】解:如图所示:a﹣b>0,c﹣a<0,b+c<0,则|a﹣b|+|c﹣a|﹣|b+c|=a﹣b﹣c+a+b+c=2a.故选:C.【点评】此题主要考查了绝对值的性质以及合并同类项法则,正确绝对值是解题关键.二、填空题(本题共4个小题,每小题3分,共12分)13.|﹣4|的相反数是﹣4.【考点】相反数;绝对值.【专题】计算题.【分析】可先求出|﹣4|,然后再求|﹣4|的相反数.【解答】解:∵|﹣4|=4,4的相反数是﹣4,∴|﹣4|的相反数是﹣4.故答案为﹣4.【点评】本题主要考查的是数的绝对值、相反数等知识,需要注意的是求的是|﹣4|的相反数,而不是﹣4的相反数.14.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=8.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,1与x是相对面,3与y是相对面,∵相对面上两个数之和为6,∴x=5,y=3,∴x+y=5+3=8.故答案为:8.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.某件商品的出厂价格为a元,另外加的销售费用,则该商品的售价是a元.【考点】列代数式.【分析】根据该商品的售价=出厂价格+销售费用,即可解答.【解答】解:根据题意,得:a+a=a,故答案为:a.【点评】本题考查了列代数式,解决本题的关键是明确商品的售价=出厂价格+销售费用.16.已知|x+5|与|y﹣6|互为相反数,则y﹣x=11.【考点】非负数的性质:绝对值.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x、y的值,然后相减计算即可得解.【解答】解:∵|x+5|与|y﹣6|互为相反数,∴|x+5|+|y﹣6|=0,∴x+5=0,y﹣6=0,解得x=﹣5,y=6,所以,y﹣x=6﹣(﹣5)=6+5=11.故答案为:11.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.三、解答题(本题共6小题,其中第17题24分,第18题5分,第19题5分,第20题6分,第21题6分,第22题6分,共52分)17.(24分)计算下列各式.(1)(2)(﹣2.5)﹣(+2.7)﹣(﹣1.6)﹣(﹣2.7)+(+2.4)(3)(4)(5)52014×(0.2)2014﹣(0.125)2015×82015(6)﹣12015+[(﹣4)2+12﹣(﹣2)3]÷(﹣12)【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式利用减法法则变形,结合后相加即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式从左到右依次计算即可得到结果;(5)原式逆用积的乘方运算法则计算,即可得到结果;(6)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=23+16﹣4﹣5=40﹣10=30;(2)原式=﹣2.5﹣2.7+1.6+2.7+2.4=﹣2.5﹣2.7+2.7+1.6+2.4=﹣2.5+4=1.5;(3)原式=18﹣20+30﹣21=48﹣41=7;(4)原式=﹣×××=﹣1;(5)原式=(5×0.2)2014﹣(0.125×8)2015=1﹣1=0;(6)原式=﹣1+(16+12+8)÷(﹣12)=﹣1﹣3=﹣4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.【考点】绝对值.【专题】计算题;分类讨论.【分析】根据绝对值的概念可得a=±5,b=±6,然后分类讨论,就可求出符合条件“|a+b|=a+b”时的a﹣b的值.【解答】解:∵|a|=5,|b|=6,∴a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a﹣b=5﹣6=﹣1;②当a=5,b=﹣6时,a+b=﹣1,不满足|a+b|=a+b,故舍去;③当a=﹣5,b=6时,a+b=1,满足|a+b|=a+b,此时a﹣b=﹣5﹣6=﹣11;④当a=﹣5,b=﹣6时,a+b=﹣11,不满足|a+b|=a+b,故舍去.综上所述:a﹣b的值为﹣1或﹣11.【点评】本题考查的是绝对值的概念,在解决问题的过程中,用到了分类讨论的思想,是解决本题关键,需要注意的是绝对值等于正数的数有两个,而不是一个.19.若a,b互为相反数,c,d互为倒数,|m|=4,求﹣5cd+6m的值.【考点】代数式求值;相反数;绝对值;倒数.【专题】计算题;实数.【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=4或﹣4,当m=4时,原式=0+16﹣5+24=35;当m=﹣4时,原式=0+16﹣5﹣24=13.【点评】此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.20.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.【解答】解:如图所示:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.21.出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4升/千米,这天上午老王耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)老王刚好回到上午出发点,就是说正负相加为0,估算后发现是前六个数相加.(2)把所有的行车里程相加,计算出的和的绝对值即为所求;(3)耗油总量=行走的总路程×单位耗油量.【解答】解:(1)∵(+8)+(+4)+(﹣10)+(﹣3)+(+6)+(﹣5)=0.∴将第6名乘客送到目的地时,老王刚好回到上午出发点.(2)∵(+8)+(+4)+(﹣10)+(﹣3)+(+6)+(﹣5)+(﹣2)+(﹣7)+(+4)+(+6)+(﹣9)+(﹣11)=﹣19,∴将最后一名乘客送到目的地时,老王距上午出发点西边19千米处.(3)∵|+8|+|+4|+|﹣10|+|﹣3|+|+6|+|﹣5|+|﹣2|+|﹣7|+|+4|+|+6|+|﹣9|+|﹣11|=75千米,75×0.4=30升,∴这天上午老王耗油30升.【点评】本题考查了正负数、绝对值及有理数在实际中的应用.注意,东表示正数,西表示负数,但实际行走的路程应该等于所有数的绝对值之和.22.观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=﹣;(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:=.【考点】有理数的混合运算.【专题】规律型.【分析】(1)猜想得到结论,写出即可;(2)利用得出的拆项法化简各式,计算即可得到结果;(3)原式变形后,利用拆项法变形,计算即可得到结果.【解答】解:(1)根据题意得:=﹣;(2)①原式=1﹣+﹣+…+﹣=1﹣=;②原式=1﹣+﹣+…+﹣=1﹣=;(3)原式=(1﹣+﹣+…+﹣)=(1﹣)=.故答案为:(1)﹣;(2)①;②;(3)【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11。

2015-2016学年度第一学期期中考试七年级数学附答案

2015-2016学年度第一学期期中考试七年级数学附答案

2015-2016学年度第一学期期中考试七年级数学(总分:150分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的)。

1.用代数式表示“比m 的相反数大1的数”是:A .m+1B .m-1C .-m-1D .-m+1 2. -21的倒数是: A .2 B .21 C .-2 D .-21 3.若43=-x ax 的解为x=-4,则a 的值是:A .4B .-4C .2D .-24. 下列说法,正确的是: A .5-、a 不是单项式B .2abc-的系数是2- C .223x y -的系数是13-,次数是4D .2x y 的系数是0,次数是25. 方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x x C.1071203110=--+x x D.107102031010=--+x x 6. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是:A. a+b=0B. b <aC. ab >0D. |b|<|a| 7. 现有几种说法:①3的平方等于9 ②平方后等于9的数是3 ③倒数等于本身的数有0,1,-l ; ④平方后等于本身的数是0,1,-1; ⑤如果A 和B 都是四次多项式,则A +B 一定是四次多项式. 其中正确的说法有:A .1个B .2个C .3个D .4个 8. 已知4433xyz xyz -=,则x z y x y z++值为多少:A .1或-1B .1或-3C .-1或3D .3或-3二、填空题(本大题共10题,每题3分,共30分)。

9.如果将盈利2万元记作2万元,那么-4万元表示_________________。

10. 绝对值等于6的数是___________。

11. 2ab+b 2+( )=3ab-b 2。

12. 用“>”连接:-2, 4,-0.5,-(-2),这几个数:___________________________。

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。

2015七年级上学期期中数学试卷(含答案)

2015七年级上学期期中数学试卷(含答案)

2015-2016学年七年级上学期期中考试数学试卷(满分120分,考试时间120分钟) 座位号_______一、选择题(每题..3分,共3×8=24分) 1. 下列各数中,是负数的是 ( )A. )9(--B. )9(+-C. 9-D. 2)9(-2. (-3)4表示( )A .-3个4相乘 B.4个-3相乘 C. 3个4相乘 D.4个3相乘 3.单项式322xy π-的系数和次数分别是 ( )A.3 , 32 B. -3 , 32C. 3 , 32π-D. 2 , 2- 4. 光年是天文学中的距离单位,1光年大约是9500 000 000 000㎞,这个数据用科学记数法表示是( )A.131095.0⨯ ㎞B.12105.9⨯ ㎞C.111095⨯ ㎞D.1010950⨯ ㎞5. 下列计算正确的是 ( )(A) 09)3(3=+- (B) 36)9()4(-=-⨯- (C) 13223=÷ (D) 4)2(23=-÷-6. 下列说法正确的是( )A .0.600精确到十分位B .5.7万精确到0.1C .6.610精确到千分位D .410708.2⨯精确到千分位 7.a 、b 为有理数,它们在数轴上的对应点的位置如图所示,把a 、-a 、b 、-b 按照从小到大的顺序排序是 ( )A.-b ﹤-a ﹤a ﹤bB.-a ﹤-b ﹤a ﹤bC.-b ﹤a ﹤-a ﹤bD.-b ﹤b ﹤-a ﹤a8. 以下说法正确的有( )(1)不是正数的数一定是负数;(2) 0C表示没有温度; (3)小华的体重增长了-2 kg 表示小华的体重减少2 kg ;(4)数轴上离原点越远,数就越小;(5) 绝对值等于其本身的有理数只有零A 、1个B 、2个C 、3个D 、4个 二、填空题(每.题.3分,共3×8=24分) 9. -9的相反数是 ,3.0-的倒数是 w10. 倒数等于本身的数是 ,绝对值等于本身的数是 11. 比较大小:① 2-- )2(-- ② -0.5 13--12. 某旅游景点11月5日的最低气温为2-,最高气温为8℃,那么该景点这天的温差是____.C13.a =51,则a1= . 14. 两个有理数之积是1,已知一个数是—712,则另一个数是 15. 若 7=a , 2=b ,且b a >,则b a -= 16. 观察一列数:123456,,,,,2510172637---……根据规律,请你写出第10个数是 。

2015-2016学年人教版数学七年级上册数学期中样卷(含答案).pdf

2015-2016学年人教版数学七年级上册数学期中样卷(含答案).pdf

2a+1.5b+1.2c
(3)
3
=58 元

参考答案

一、选择题( 本题共 10小题,每题 3分,共 30分 )


1.C 2.C 3.B 4.B 5.D 6.A 7.C 8.D 9.C 10.B

封 不 二、填空题( 本题共 8小题,每题 3分,共 24分)
内 11. -1 12 310℃ 13 1.4 × 103 14. 百 2 3 0 2.3 × 104 15.4 16.3a

B、所有的有理数都有相反数
A、1 个
B、2 个
10 错误!未指定书签。
C、3 个
D、4 个
、下面用数学语言叙述代数式
1 a - b ,其中表达不正确的是
C、正数和负数互为相反数 答
D、在一个有理数前添加“ -”号就得到它的相反数
() A 、比 a 的倒数小 b 的数
B、1 除以 a 的商与 b 的相反数的差
这三个数之和为
(用含 a 的代数式表示)。
()







A 、- 2015
B、2015
C、- 1
D、1
12345
第 1 页,共 4 页
第 2 页,共 4 页
6 7 8 9 10 11 12 13 14 15 16 17 18 19
21、( 5 分)先化简,再求值 已知 |a – 4| + ( b+1 ) 2 = 0 ,求 5ab2–[2a 2b-(4ab 2-2a 2b)]+4a 2b 的值
表示


()
15、已知 | a + 2 | + 3( b +1

新人教版2015-2016学年七年级数学(上)期中数学试卷及答案

新人教版2015-2016学年七年级数学(上)期中数学试卷及答案

2015-2016学年七年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)1.﹣的倒数是()A.B.﹣C.﹣D.2.如果一个物体向东移动8m记为+8m,那么向西移动3m记为()A.+3m B.﹣3m C.+5m D.﹣5m3.多项式x2﹣4xy2+y2的次数为()A.2 B. 3 C. 4 D.﹣44.在有理数0,1,﹣4,﹣2.5中,属于负整数的是()A.0 B. 1 C.﹣4 D.﹣2.55.今年由于降水明显偏少,气温持续偏高,河库水量锐减,据统计,某市造成直接经济损失达560 000 000元,该数据用科学记数法表示为()A.5.6×107元B. 5.6×108元C.56×107元D.56×108元6.下列选项中,是同类项的是()A.3ab和3b B.﹣2pq和npq C.b2和2b D.4xy和xy7.比较﹣,5,﹣0.5的大小,下列选项正确的是()A.﹣B.﹣C.﹣0.5D.5<﹣<﹣0.58.一个两位数,个位数是x,十位数是y,如果个位数字与十位数字对调,所得的两位数与原来的两位数的和是()A.10x+y B.10y+x C.2x+2y D.11x+11y9.观察一列单项式:2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…则第2014个单项式是()A.﹣22014x3 B.22014x3 C.﹣24018x3 D.24018x310.按照如图所示的操作步骤,若输入的值为﹣4,则输出的值为()A.44 B.4 C.﹣D.﹣84二、填空题(共6小题,每小题3分,共18分)11.﹣(﹣3.5)的相反数为.12.(﹣7)8的底数是.13.用计算器计算:7.783+(﹣0.32)2=(精确到百分位)14.求图中阴影部分的面积.15.若a在数轴上所对应的点到数轴上表示﹣3的点和数轴上表示7的点之间的距离相等,则a=.16.小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌现有的张数相同;第二步从左边一堆拿出3张,放入中间一堆;第三步从右边一堆拿出2张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是.三、解答题(共6小题,计72分.解答应写出过程)17.计算:(﹣1)98×()﹣(﹣2)4÷4.18.先化简,再求值:+2(x﹣)﹣(﹣3x2+2y2)﹣x,其中x=2,y=3.19.某村棉花的种植面积是a公顷,玉米的种植面积比棉花的种植面积的2倍多5公顷,蔬菜的种植面积比玉米的种植面积的3倍少2公顷,求棉花、玉米和蔬菜的种植面积和.20.周助平时骑自行车的速度为a km/h.今天风速为16km/h,他顺骑4个小时的路程是多少千米?逆风骑2个小时的路程是多少千米?两个路程相差多少千米?21.(10分)(2014秋•旬阳县期中)某儿童服装店老板以25元的价格买进30件连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:售出件数7 6 3 5 4 5售价/元+3 +2 +1 0 ﹣1 ﹣1问该服装店在售完这30件连衣裙后,赚了多少钱?22.(12分)(2014秋•旬阳县期中)某商场为了促销,推出两种促销方式:方式①:一次性购物超过100元,所有商品打七折;方式②:一次性购物超过100元,超过的部分减半.(1)若单老师一下性购买的商品的标价总额为a(a>100)元,按照方式①付款,单老师实际应付多少钱?按照方式②付款,单老板实际应付多少钱?(2)夏目帮叔叔一次性购买的商品的标价总额为170元,参加促销活动,哪种方式更划算?为什么?若一次性购买的商品的标价总额为370元呢?2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)1.﹣的倒数是()A.B.﹣C.﹣D.考点:倒数.分析:根据倒数的定义,即可解答.解答:解:﹣的倒数是﹣,故选:B.点评:本题考查了倒数的定义,解决本题的关键是熟记倒数的定义.2.如果一个物体向东移动8m记为+8m,那么向西移动3m记为()A.+3m B.﹣3m C.+5m D.﹣5m考点:正数和负数.分析:认真审题,根据向东移动记为正数则向西移动记为负数,据此即可得到本题的答案.解答:解:向东移动记为8m记为+8,则向西移动3m记为﹣3m.故选B.点评:本题主要考查了正数与负数的意义,用正数与负数可以表示相反意义的量,是经常考查的题目,注意总结.3.多项式x2﹣4xy2+y2的次数为()A.2 B. 3 C. 4 D.﹣4考点:多项式.专题:计算题.分析:利用多项式次数的定义判断即可.解答:解:多项式x2﹣4xy2+y2的次数为3.故选B.点评:此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.4.在有理数0,1,﹣4,﹣2.5中,属于负整数的是()A.0 B. 1 C.﹣4 D.﹣2.5考点:有理数.分析:根据负整数是小于0的整数,判断出在有理数0,1,﹣4,﹣2.5中,属于负整数的有哪些即可.解答:解:在有理数0,1,﹣4,﹣2.5中,属于负整数的是﹣4.故选:C.点评:此题主要考查了有理数的分类,要熟练掌握,解答此题的关键是要明确:负整数是小于0的整数.5.今年由于降水明显偏少,气温持续偏高,河库水量锐减,据统计,某市造成直接经济损失达560 000 000元,该数据用科学记数法表示为()A.5.6×107元B. 5.6×108元C.56×107元D.56×108元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将560 000 000用科学记数法表示为:5.6×108.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列选项中,是同类项的是()A.3ab和3b B.﹣2pq和npq C.b2和2b D.4xy和xy考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断.解答:解:A、所含字母不同,则不是同类项,B、所含字母不同,则不是同类项,C、相同的字母的指数不同,故不是同类项.D、正确.故选D.点评:本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.7.比较﹣,5,﹣0.5的大小,下列选项正确的是()A.﹣B.﹣C.﹣0.5D.5<﹣<﹣0.5考点:有理数大小比较.分析:有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解答:解:根据有理数比较大小的方法,可得﹣0.5.故选:C.点评:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.8.一个两位数,个位数是x,十位数是y,如果个位数字与十位数字对调,所得的两位数与原来的两位数的和是()A.10x+y B.10y+x C.2x+2y D.11x+11y考点:列代数式.分析:分别表示出两数,然后相加即可得到正确的选项.解答:解:∵两位数的个位数是x,十位数是y,∴两位数为10y+x,个位数字与十位数字对调的两位数为10x+y,∴两位数的和为10y+x+10x+y=11x+11y,故选D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.9.观察一列单项式:2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…则第2014个单项式是()A.﹣22014x3 B.22014x3 C.﹣24018x3 D.24018x3考点:单项式.专题:规律型.分析:根据已知得出单项式变化规律进而得出即可.解答:解:∵2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…∴系数为(﹣1)n+12n,次数都为3,∴第2014个单项式是:(﹣1)2014+122014x3=﹣22014x3.故选A.点评:此题主要考查了单项式,正确利用已知得出变化规律是解题关键.10.按照如图所示的操作步骤,若输入的值为﹣4,则输出的值为()A.44 B.4 C.﹣D.﹣84考点:有理数的混合运算.专题:图表型.分析:把﹣4代入程序框图中计算,判断结果与15大小,即可得到输出的值.解答:解:根据题意得:(﹣4)2=16>15,可得﹣4×(16+5)=﹣84,故选D点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题3分,共18分)11.﹣(﹣3.5)的相反数为﹣3.5.考点:相反数.分析:先化简,再求相反数.解答:解:﹣(﹣3.5)=3.5,3.5的相反数是﹣3.5,故答案为:﹣3.5.点评:本题考查了相反数,解决本题的关键是熟记相反数的定义.12.(﹣7)8的底数是﹣7.考点:有理数的乘方.分析:根据有理数的乘方,即可解答.解答:解:(﹣7)8的底数是﹣7.故答案为:﹣7.点评:本题考查了有理数的乘方,解决本题的关键是熟记有理数乘方的定义.13.用计算器计算:7.783+(﹣0.32)2=471.01(精确到百分位)考点:计算器—有理数.分析:首先用计算器分别求出7.783、(﹣0.32)2的值各是多少;然后把它们求和,并应用四舍五入法,求出算式7.783+(﹣0.32)2精确度百分位的结果是多少即可.解答:解:7.783+(﹣0.32)2=470.910952+0.1024=471.013352≈471.01.故答案为:471.01.点评:此题主要考查了计算器的使用方法,以及四舍五入法求近似值问题的应用,要熟练掌握.14.求图中阴影部分的面积2ab﹣2b2.考点:列代数式.分析:图中两个阴影部分的面积都是长为b,宽为(a﹣b)的矩形.根据矩形的面积公式得:阴影部分的面积是2b(a﹣b).解答:解:阴影部分的面积=b(a﹣b)×2=2ab﹣2b2.点评:正确表示阴影矩形的宽,运用矩形的面积公式列式计算.15.若a在数轴上所对应的点到数轴上表示﹣3的点和数轴上表示7的点之间的距离相等,则a=2.考点:数轴.分析:画出数轴,找出表示﹣3与7的两点中点表示的数即为a的值.解答:解:作图如下:则a=2.故答案为:2.点评:此题考查了数轴的认识,作出相应的图形是解本题的关键.16.小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌现有的张数相同;第二步从左边一堆拿出3张,放入中间一堆;第三步从右边一堆拿出2张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是8.考点:整式的加减.专题:压轴题.分析:把每堆牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.解答:解:设第一步时候,每堆牌的数量都是x(x≥3);第二步时候:左边x﹣3,中间x+3,右边x;第三步时候:左边x﹣3,中间x+3+2,右边x﹣2;第四步开始时候,左边有(x﹣3)张牌,则从中间拿走(x﹣3)张,则中间所剩牌数为(x+5)﹣(x﹣3)=x+5﹣x+3=8.所以中间一堆牌此时有8张牌.故答案为8点评:本题考查了整式的加减运算,解决此题,根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.三、解答题(共6小题,计72分.解答应写出过程)17.计算:(﹣1)98×()﹣(﹣2)4÷4.考点:有理数的混合运算.专题:计算题.分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:原式=1×(﹣)﹣16×=﹣4=﹣.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:+2(x﹣)﹣(﹣3x2+2y2)﹣x,其中x=2,y=3.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=x2+2x﹣y2+x2﹣y2﹣x=x2+x﹣2y2,当x=2,y=3时,原式=5+3﹣18=﹣10.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.某村棉花的种植面积是a公顷,玉米的种植面积比棉花的种植面积的2倍多5公顷,蔬菜的种植面积比玉米的种植面积的3倍少2公顷,求棉花、玉米和蔬菜的种植面积和.考点:整式的加减.分析:根据题意得出玉米及蔬菜的种植面积,再把两式相加即可.解答:解:由题意得:玉米的种植面积是(2a+5)公顷,蔬菜的种植面积是[3(2a+5)﹣2]公顷,a+(2a+5)+[3(2a+5)﹣2]=a+2a+5+6a+13=(9a+18)(公顷).答:棉花、玉米和蔬菜的种植面积和为=(9a+18)公顷.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.周助平时骑自行车的速度为a km/h.今天风速为16km/h,他顺骑4个小时的路程是多少千米?逆风骑2个小时的路程是多少千米?两个路程相差多少千米?考点:整式的加减.分析:先根据顺风骑的路程=(a+16)×4,逆风骑的路程=(a﹣16)×2,再作查差比较其大小即可.解答:解:∵周助平时骑自行车的速度为a km/h.今天风速为16km/h,∴顺风骑的路程=(a+16)×4=(4a+64)千米,逆风骑的路程=(a﹣16)×2=(2a﹣32)千米,∴(4a+64)﹣(2a﹣32)=4a+64﹣2a+32=(2a+96)(千米).答:周助顺骑4个小时的路程是(4a+64)千米,逆风骑2个小时的路程是(2a﹣32)千米,两个路程相差(2a+96)千米.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.21.(10分)(2014秋•旬阳县期中)某儿童服装店老板以25元的价格买进30件连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:售出件数7 6 3 5 4 5售价/元+3 +2 +1 0 ﹣1 ﹣1问该服装店在售完这30件连衣裙后,赚了多少钱?考点:正数和负数.分析:认真审题,首先求出总售价的变化,再求出按标准售价进行出售所赚的钱数,加在一起就是最后赚的钱数.解答:解:7×3+6×2+3×1+5×0+4×(﹣1)+5×(﹣2)=21+12+3+0﹣4﹣10=22(元),(45﹣25)×30+22=20×30+22=622(元).答:赚了622元.点评:本题主要考查了正数与负数的意义,让学生理解正数与负数只是一种“记法”,理解“记法”与原数之间的关系是解题的关键,注意认真总结.22.(12分)(2014秋•旬阳县期中)某商场为了促销,推出两种促销方式:方式①:一次性购物超过100元,所有商品打七折;方式②:一次性购物超过100元,超过的部分减半.(1)若单老师一下性购买的商品的标价总额为a(a>100)元,按照方式①付款,单老师实际应付多少钱?按照方式②付款,单老板实际应付多少钱?(2)夏目帮叔叔一次性购买的商品的标价总额为170元,参加促销活动,哪种方式更划算?为什么?若一次性购买的商品的标价总额为370元呢?考点:列代数式;代数式求值.分析:(1)按照两种方式直接列出代数式即可;(2)分别代入数值计算,比较得出答案即可.解答:解:(1)方式①付款:0.7a(元)方式②付款:100+0.5(a﹣100)=0.5a+50(元);(2)商品的标价总额为170元,参加促销活动,方式①更划算;方式①:170×0.7=119(元)方式②:0.7×170+50=135(元)119<135所以方式①更划算;商品的标价总额为370元,参加促销活动,方式②更划算;方式①:370×0.7=259(元)方式②:0.7×370+50=235(元)259>235所以方式②更划算.点评:此题考查列代数式以及代数式求值,理解优惠方法,列出代数式是解决问题的前提.。

2015-2016学年新人教版七年级(上)期中数学试卷及答案

2015-2016学年新人教版七年级(上)期中数学试卷及答案

2015-2016学年七年级(上)期中数学试卷一、选择题(本题包括10小题,每小题3分,共30分)1.在1,0,﹣2,3这四个数中,比0小的数是()A.1 B.0 C.﹣2 D.32.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣83.绝对值大于3且小于6的所有整数的和是()A.0 B.9 C. 6 D.184.下列各式2m+n,3ab,,,a,﹣8中,单项式的个数有()A.3个B.4个C.5个D.6个5.如图所示,则﹣a、﹣b的大小关系是()A.﹣a>﹣b B.﹣a<﹣b C.﹣a=﹣b D.都有可能6.下列各组是同类项的是()A.5x与xy B.﹣x2y与2xy2 C.3x2y3与﹣y3x2 D.a与b7.下列运算正确的是()A.2x+3y=5 B.4x2y﹣5xy2=﹣x2yC.a5+a6=a11 D.3ab2﹣b2a=2ab28.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.99.已知代数式3x2﹣2x+6的值是8,则代数式x2﹣x+4的值是()A.1 B. 5 C. 3 D. 410.若4<a<5时,化简|a﹣4|+|a﹣5|=()A.2a﹣9 B.2a﹣1 C.1 D.9二、填空题(每题3分,共24分)11.如果水库的水位高于标准水位6m时,记作+6m,那么低于标准水位2m,应记作m.12.﹣|﹣3|的相反数是.13.近似数1.5万精确到位.14.若(2x+1)2+|y﹣|=0,则x2+y2=.15.若单项式3x4y n与﹣2x m y3的和仍是单项式,则m﹣n=.16.地球上的海洋面积约为361000000km2,则科学记数法可表示为km2.17.在数轴上到表示﹣2的点的距离为4的点所表示的数是.18.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,,…三、解答题(共46分)19.画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.20.计算:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)(3)(﹣3)2﹣(1)3×+|﹣|3.21.(10分)(2014秋•蓟县期中)先化简,再求值:(1)5(3x2y﹣xy2)﹣(xy2﹣3x2y),其中x=,y=﹣1.(2)2x2y+(2y2﹣x2)﹣(x2+2y2),其中x=1,y=﹣10.22.已知a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式(a+b)•cd+|x|的值.23.下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 167 172身高与班级平均身高的差值﹣2 +2 ﹣3 +4(1)完成表中空的部分;(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?24.一汽车在东西方向公路来回行驶,约定向东为正,向西为负,某天自A地出发到达B 地,行驶记录如下:(单位:km)+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)B地在A地的哪个方向?两地距离多远?(2)汽车行驶的路程有多少千米?若每千米耗油0.3升,这一过程共耗油多少升?25.已知A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1,且2A+3B的值与x无关,求m的值.2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题包括10小题,每小题3分,共30分)1.在1,0,﹣2,3这四个数中,比0小的数是()A.1 B.0 C.﹣2 D.3考点:有理数大小比较.分析:根据正数都大于0,负数都小于0即可得出结论.解答:解:∵1,3是正数,﹣2是负数,∴1>0,3>0,﹣2<0.故选C.点评:本题考查的是有理数的大小比较,熟知正数都大于0,负数都小于0,正数大于一切负数是解答此题的关键.2.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣8考点:相反数.分析:在一个数前面放上“﹣”,就是该数的相反数,利用这个性质可化简.解答:解:A、∵﹣(﹣3)=3,∴错误;B、∵﹣[﹣(﹣10)]=﹣10,∴正确;C、∵﹣(+5)=﹣5,∴错误;D、∵﹣[﹣(+8)]=8,∴错误.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.绝对值大于3且小于6的所有整数的和是()A.0 B.9 C. 6 D.18考点:有理数的加法;绝对值.分析:大于3小于6的整数绝对值是4或5,因为互为相反数的两个数的绝对值相等,所以绝对值大于3且小于6的所有整数有±4,±5.解答:解:绝对值大于3小于6的所有整数是±4,±5.4+(﹣4)+5+(﹣5)=0+0=0.故选:A.点评:本题主要考查了绝对值的定义、有理数的加法法则,解题关键是掌握互为相反数的两个数的绝对值相等.4.下列各式2m+n,3ab,,,a,﹣8中,单项式的个数有()A.3个B.4个C.5个D.6个考点:单项式.分析:根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,求解即可.解答:解:根据单项式的定义:3ab,a,﹣8,是单项式,共3个.故选:A.点评:本题考查了单项式的知识,解答本题的关键是掌握单项式的定义,属于基础题.5.如图所示,则﹣a、﹣b的大小关系是()A.﹣a>﹣b B.﹣a<﹣b C.﹣a=﹣b D.都有可能考点:有理数大小比较;数轴.专题:数形结合.分析:由数轴和相反数的定义可知﹣a、﹣b都表示正有理数,根据两个正数,绝对值大的其值就大比较大小.解答:解:观察数轴可知:a,b都表示负有理数,且|a|<|b|,∴﹣a、﹣b都表示正有理数,|﹣a|<|﹣b|,∴﹣a<﹣b.故选B.点评:本题考查了有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小;⑤两个正数,绝对值大的其值就大.6.下列各组是同类项的是()A.5x与xy B.﹣x2y与2xy2 C.3x2y3与﹣y3x2 D.a与b考点:同类项.分析:同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.解答:解:A、5x与xy中所含不相同字母的指数不同,不是同类项.故选项错误;B、﹣x2y与2xy2所含字母指数不同,不是同类项.故选项错误;C、3x2y3与﹣y3x2所含字母相同,指数也相同,所以是同类项.故选项正确;D、a与b不是同类项,故选项错误.故选:C.点评:本题考查了同类项的定义.判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.缺少其中任何一条,就不是同类项.注意所有常数项都是同类项.7.下列运算正确的是()A.2x+3y=5 B.4x2y﹣5xy2=﹣x2yC.a5+a6=a11 D.3ab2﹣b2a=2ab2考点:合并同类项.分析:直接利用合并同类项法则分析求出即可.解答:解:A、2x+3y无法计算,故此选项错误;B、4x2y﹣5xy2无法计算,故此选项错误;C、a5+a6无法计算,故此选项错误;D、3ab2﹣b2a=2ab2,正确.故选:D.点评:此题主要考查了合并同类项,正确掌握运算法则是解题关键.8.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9考点:有理数的乘方.分析:先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.解答:解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.点评:解决此类题目的关键是熟记平方数的特点,任何数的平方都是非负数,所以平方为正数的数有两个,且互为相反数.9.已知代数式3x2﹣2x+6的值是8,则代数式x2﹣x+4的值是()A.1 B. 5 C. 3 D. 4考点:代数式求值.分析:由代数式3x2﹣2x+6的值是8,得出3x2﹣2x=2,易得x2﹣x的值,再整体代入原式即可.解答:解;由题意得,3x2﹣2x+6=8,∴3x2﹣2x=2,∴x2﹣x=1,∴x2﹣x+4=1+4=5,故选B.点评:本题主要考查了代数式求值,先根据题意得出x2﹣x的值,再整体代入是解答此题的关键.10.若4<a<5时,化简|a﹣4|+|a﹣5|=()A.2a﹣9 B.2a﹣1 C.1 D.9考点:整式的加减;绝对值.分析:根据题意4<a<5,利用此条件先去掉绝对值,然后进行计算.解答:解:∵4<a<5,∴|a﹣4|=a﹣4,|a﹣5|=5﹣a,∴|a﹣4|+|a﹣5|=a﹣4+5﹣a=1.故选C.点评:本题考查了整式的加减以及绝对值的运算,根据绝对值的意义去掉绝对值符号是解题的关键.二、填空题(每题3分,共24分)11.如果水库的水位高于标准水位6m时,记作+6m,那么低于标准水位2m,应记作﹣2 m.考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“高”和“低”相对,若水库的水位高于标准水位6米时,记作+6米,则低于标准水位2米时,应记﹣2m.故答案为:﹣2.点评:本题主要考查的是正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.﹣|﹣3|的相反数是3.考点:相反数;绝对值.专题:计算题.分析:首先把﹣|﹣3|化简,再根据相反数的定义;只有符号不同的两个数叫相反数,得到答案.解答:解:﹣|﹣3|=﹣3,﹣3的相反数是:3,故答案为:3.点评:此题主要考查了绝对值与相反数,关键是把握相反数和绝对值的定义.13.近似数1.5万精确到千位.考点:近似数和有效数字.分析:根据精确值的确定方法,首先得出原数据,再从原数据找出5后面0所在数据的位置,再确定精确到了多少位.解答:解:近似数1.5万=1500,5所在数据的千位,故答案为:千.点评:此题主要考查了精确值的确定方法,必须写出原数据,确定准最后一位所在的位置是解决问题的关键.14.若(2x+1)2+|y﹣|=0,则x2+y2=.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:利用非负数的性质得出x,y,代入即可.解答:解:∵(2x+1)2+|y﹣|=0,∴2x+1=0,y﹣=0,∴x=,y=,∴x2+y2==,故答案为:.点评:本题主要考查了代数式求值和非负数的性质,利用非负数的性质解的x,y是解答此题的关键.15.若单项式3x4y n与﹣2x m y3的和仍是单项式,则m﹣n=1.考点:合并同类项.分析:直接利用合并同类项法则得出x,y的次数相同,进而得出答案.解答:解:∵单项式3x4y n与﹣2x m y3的和仍是单项式,∴m=4,n=3,则m﹣n=4﹣3=1.故答案为:1.点评:此题主要考查了合并同类项,正确掌握运算法则是解题关键.16.地球上的海洋面积约为361000000km2,则科学记数法可表示为 3.61×108km2.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将361 000 000用科学记数法表示为3.61×108.故答案为3.61×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.在数轴上到表示﹣2的点的距离为4的点所表示的数是﹣6或2.考点:数轴.专题:常规题型.分析:根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出答案.解答:解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.故答案为:﹣6或2.点评:此题主要考查了实数与数轴之间的对应关系,解题应该会根据距离和已知的一点的坐标确定另一点的坐标方法:左减右加.18.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,﹣,…考点:规律型:数字的变化类.分析:分子是从1开始的连续奇数,分母是从1开始连续自然数的平方,奇数位置为正,偶数位置为负,第n个数为(﹣1)n+1,由此代入求得答案即可.解答:解:数列为:1,﹣,,﹣,,﹣,.故答案为:,﹣,.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、解答题(共46分)19.画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.考点:有理数大小比较;数轴.专题:计算题.分析:先利用数轴表示四个数,然后根据负数小于零;负数的绝对值越大,这个数反而越小即可得到它们的大小关系.解答:解:用数轴表示为:它们的大小关系为﹣4<﹣2<﹣0.5<0.点评:本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.也考查了数轴.20.计算:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)(3)(﹣3)2﹣(1)3×+|﹣|3.考点:有理数的混合运算.分析:(1)先化简,再计算加减法;(2)(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)=﹣40﹣28+19﹣32=﹣81(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)=﹣10+8﹣8﹣120=﹣130;(3)(﹣3)2﹣(1)3×+|﹣|3.=9﹣×+=9﹣+=9.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.21.(10分)(2014秋•蓟县期中)先化简,再求值:(1)5(3x2y﹣xy2)﹣(xy2﹣3x2y),其中x=,y=﹣1.(2)2x2y+(2y2﹣x2)﹣(x2+2y2),其中x=1,y=﹣10.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=15x2y﹣5xy2﹣xy2+3x2y=12x2y﹣6xy2,当x=,y=﹣1时,原式=﹣3﹣3=﹣6;(2)原式=2x2y+2y2﹣x2﹣x2﹣2y2=2x2y﹣2x2,当x=1,y=﹣10时,原式=﹣20﹣2=﹣22.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式(a+b)•cd+|x|的值.考点:代数式求值;相反数;绝对值;倒数.分析:首先根据相反数和倒数的定义得a+b=0,cd=1,再由x的绝对值是1,代入原式即可.解答:解:∵a,b互为相反数∴a+b=0,∵c,d互为倒数∴cd=1,∵x的绝对值是1,∴原式=0×1+1=1.点评:本题主要考查了代数式求值,利用相反数和倒数的定义得出a+b=0,cd=1,然后代入是解答此题的关键.23.下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 169167 164171172身高与班级平均身高的差值﹣2 +2 0﹣3 +4 +5(1)完成表中空的部分;(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?考点:有理数的加减混合运算.专题:计算题.分析:(1)根据表格中的数据得出标准身高为167,得出空白处的数字即可;(2)找出最高的与最矮的之差即可;(3)根据表格中的数据求出他们的平均身高即可.解答:解:(1)下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 169 167 164 171 172身高与班级平均身高的差值﹣2 +2 0 ﹣3 +4 +5故答案为:169,164,171,0,+5;(2)根据题意得:172﹣164=8(cm),则他们的最高与最矮相差8cm;(3)他们的平均身高为×(﹣2+2+0﹣3+4+5)+167=1+167=168(cm).点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.24.一汽车在东西方向公路来回行驶,约定向东为正,向西为负,某天自A地出发到达B 地,行驶记录如下:(单位:km)+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)B地在A地的哪个方向?两地距离多远?(2)汽车行驶的路程有多少千米?若每千米耗油0.3升,这一过程共耗油多少升?考点:正数和负数.分析:(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.3计算即可得解.解答:解:(1)(+8)+(﹣9)+(+4)+(+7)+(﹣2)+(﹣10)+(+18)+(﹣3)+(+7)+(+5)=25km所以B地在A地的东边25km处;(2)8+9+4+7+2+10+18+3+7+5=73km,(8+9+4+7+2+10+18+3+7+5)×0.3=21.9升.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.已知A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1,且2A+3B的值与x无关,求m的值.考点:整式的加减.分析:把A与B代入2A+3B中,去括号合并得到最简结果,由结果与x无关,求出m的值即可.解答:解:把A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1代入得:2A+3B=2(﹣3x2﹣2mx+3x+1)+3(2x2+mx﹣1)=(﹣m+6)x﹣1,由结果与x无关,得到﹣m+6=0,解得:m=6.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.。

2015—2016学年度第一学期七年级数学期中试卷

2015—2016学年度第一学期七年级数学期中试卷

2015—2016学年度第一学期七年级数学期中试卷注意事项:全卷满分100分,考试时间100分钟.考生答题全部答在答题卡上,答在本试卷上无效.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.答选择题必须用2B 钢笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定地,在其他位置答题一律无效. 作图必须用2B 钢笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.2-的相反数是( )A .12 B .2 C .12- D .2- 2.2008年我国的国民生产总值约130800亿元,那么130800用科学记数法表示正确的是( ) A .51.30810⨯ B .413.0810⨯ C .41.30810⨯D .21.30810⨯3.下列各组是同类项的一组是( ) A .5xy 与2xyzB .2与7-C .22x y -与25y xD .3ac 与7bc4.下列各组数中,数值相等的是( ) A .23和32B .23-和()23-C .()32-和32-D .()2--和2--5.单项式222x yz -的系数和次数分别是( )A .2-,2B .2-,5C .12-,2D .12-,56.以下各正方形的边长是无理数的是( ) A .面积为3的正方形 B .面积为1.44的正方形 C .面积为25的正方形 D .面积为16的正方形二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 7.112-的倒数是__________;()20151-=__________. 8.比较大小:234⎛⎫- ⎪⎝⎭__________12-)(填“<”、“=”、“>”).9.在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是__________.10.多项式232x x -+-的次数为__________,项数为__________.11.钢笔每支2元,钢笔每支0.5元,n 支钢笔和m 支钢笔共__________元. 12.有理数a 、b 、c 在数轴上的位置如图,化简a b c b +--的结果为__________.13.如图所示的阴影部分面积用代数式表示为__________.14.长方形的周长为53a b +,其中一边长为2a b -,则这个长方形的另一边长为__________.(写出化简后的结果)15.已知2235x x -+的值为9,则代数式2468x x -+的值为__________.16.观察下列图形,它们是按一定规律排列的,依照此规律,第n 个图形有__________个太阳.(图4)(图3)(图2)(图1)三、解答题(本大题共8小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(4分)画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.132-,4,2.5,1,7,5- 18.计算:((1)(2)每题4分,(3)(4)每题5分,共18分) (1)24+(-14)+(-16)+8;(2)()142722449-÷⨯÷-;(3)()357124468⎛⎫-+-⨯- ⎪⎝⎭;(4)()()341110.5243⎡⎤---÷⨯--⎣⎦.19.计算:(第(1)题4分,第(2)(3)题5分,共14分)(1)3257x y x y -+--(2)()()5322a a b a b +---(3)()()22222222x y xy x y x xy y +---- 20.(6分)先化简再求值:222214332332x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中34x =,1y =-.21.(6分)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米? (2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由. 22.(5分)如图,两摞规格完全相同的课本整齐叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本课本的厚度为__________cm ;(2)若有一摞上述规格的课本x 本,整齐叠放在讲台上,请用含x 的代数式表示出这一摞数学课本的顶部距离地面的高度;(3)当56x =时,若从中取走14本,求余下的课本的顶部距离地面的高度.23.(5分)从2开始的连续偶数相加,它们和的情况如下表:(1)根据表中的规律,直接写出24681012+++++=__________.(2)根据表中的规律猜想:24682S n =+++++=__________(用n 的代数式表示) (3)利用上题中的公式计算102104106200++++的值(要求写出计算过程). 24.(10分) 【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,()()()()3333-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()3-④,读作“3-的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(0a ≠)记作n a ,读作“a 的圈n 次方”. 【初步探究】(1)直接写出计算结果:2=█__________,12⎛⎫-= ⎪⎝⎭█__________.(2)关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数n ,1=1█C .3=4██D .负数的圈奇数次方结果是负数,负数的圈子偶数次方结果是正数 【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?=(12)2=2×122④=2÷2÷2÷2除方(1)试一试:依照上面的算式,将下列运算结果直接写成幂.的形式. ()3=-█__________; 5=█__________;1=2⎛⎫- ⎪⎝⎭█__________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于__________; (3)算一算:23111123423⎛⎫⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭███.。

2015-2016深圳第一学期七年级数学期中考试试卷

2015-2016深圳第一学期七年级数学期中考试试卷

2015-2016第一学期七年级数学期中调研试卷命题人:李玲玲 审核人: 罗贤华一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一 项是符合题目要求的,请将正确答案填涂在答题卡上,否则不得分) 1. 2015的相反数是( )A .2015B .-2015 C. 20151 D .-201512. 下列各数中,最小的是( )3. 下列各式:①-(-2);②-|-2|;③-22;④(-2)2,计算结果为负数的个数有( ) A .4个 B .3个 C .2个 D .1个 4. 在数轴上与O 的距离等于4个单位的点表示的数是( )A. 4B. -4C.-4和4D. 3和55. 被誉为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示应是( )A .15×106×107公顷 C. 150×105×l08公顷 6. 下列计算正确的是 ( )A . ab b a 325=-B .a a a 523-=+-C . 532752a a a =+ D . b a a b a 2223b 25=- 7. 下列说法中错误的是( )A .若一个有理数不是正数,则它一定是负数B .0是自然数,也是整数,也是有理数C .若仓库运进货物5t 记作+5t ,那么运出货物5t 记作﹣5tD .0既不是正数,也不是负数8. 已知某商品原价为a 元,打7折后的价格为( ) A .70%a 元 B.10a 7元 C.30%a 元 D.37a 元 9. 下列各组数中,结果相等的是( )A .()2211--与 B .332233⎛⎫ ⎪⎝⎭与C .32和23D .()3333--与10. 下列说法中,正确的是( )A.2-是单项式,但不是整式6523-+-x xy 的次数是3次 332a π-的系数是32-332a π-的次数是3次 11. 已知x 2﹣2x ﹣3=0,则2x 2﹣4x 的值为( )A .-6 B.6 C. -2或6 D. -2或30 12. 数a 、b 在数轴上的位置如图所示,化简a b a --的结果为( )C. -bD. b二、填空题。

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( ) A 2 B 3 C 6 D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π= ,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分) (1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=-(3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+ 23-+;35-+- ()()35-+-;05+-()05+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分)1.对任意有理数,,,a b c d ,规定一种新运算:bc ad d c b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.若()1111112c a b a b =-++,()2222212c a b a b =-++,()3333312c a b a b =-++…, ()1007100710071007200721b a b ac ++-=.设1231007S c c c c =++++…,求S 的最大值和最小值,并给出相应的分组方案.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>==(2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A 2B 3C 6D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π=,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分)(1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=- (3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+23+;35-+-)()35-+-;05+-()5+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分) 1.对任意有理数,,,a b c d ,规定一种新运算:bc ad dc b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>== (2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max 100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年广东省深圳市六一学校七年级(上)期中数学试卷一、选择题(每小题3分,共36分.请把答案填到下表相应表格内,否则不给分.)1.(3分)下列各图经过折叠不能围成一个正方体的是()A.B.C.D.2.(3分)如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是()A.B. C. D.3.(3分)如图所示几何体的截面是()A.四边形B.五边形C.六边形D.五棱柱4.(3分)数轴上的点A到原点的距离是5,则点A表示的数为()A.﹣5 B.5 C.5或﹣5 D.2.5或﹣2.55.(3分)某地区一月份的平均气温为﹣19℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.17℃B.21℃C.﹣17℃D.﹣21℃6.(3分)下列各式中,正确的是()A.(﹣2)2>(﹣3)2B.﹣22>﹣32C.(﹣2)3<﹣32D.﹣22<﹣327.(3分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012km C.95×1011km D.950×1010km8.(3分)橡皮的单价是x元,圆珠笔的单价是橡皮的2.5倍,则圆珠笔的单价为()A.2.5x元B.0.4x元C.(x+2.5)元D.(x﹣2.5)元9.(3分)下列各组代数式中,是同类项的是()A.5x2y与xy B.﹣5x2y与yx2C.5ax2与yx2D.83与x310.(3分)下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.11.(3分)下列各式正确的是()A.a﹣(b﹣c+d)=a﹣b﹣c+d B.a﹣2(b﹣c+d)=a﹣2b+2c+dC.a﹣(b﹣c+d)=a﹣b+c+d D.a﹣(b﹣c+d)=a﹣b+c﹣d12.(3分)若(a+1)2+|b﹣2|=0,则2a+b﹣1的值为()A.1 B.﹣1 C.3 D.﹣3二、填空题(每小题3分,共12分)13.(3分)一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是cm.14.(3分)用“<”、“>”填空:﹣|﹣9| 0;.15.(3分)如果2x3n y4与﹣3x6y4m是同类项,那么mn=,这两项合并后的结果为.16.(3分)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第n个图形中需要黑色瓷砖块(用含n的代数式表示).三、解答题(本大题共7小题,共52分)17.(6分)根据要求,画出图形:画出下列几何体的从正面看,从左面看,从上面看的图形:18.(6分)计算(1)18﹣3×(﹣2)÷(2).19.(8分)化简:(1)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(2)4(x2﹣5x)﹣5(2x2+3x).20.(8分)先化简,再求值:,其中x=﹣2,y=.21.(8分)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?22.(8分)某公园的门票价格是:成人单价是10元,儿童单价是4元.某旅行团有a名成人和b名儿童;那么:(1)该旅行团应付多少的门票费.(2)如果该旅行团有32个成人,10个儿童,那么该旅行团应付多少的门票费.23.(8分)已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c 是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由).2015-2016学年广东省深圳市六一学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分.请把答案填到下表相应表格内,否则不给分.)1.(3分)下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.2.(3分)如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是()A.B. C. D.【解答】解:左边的图形绕着给定的直线旋转一周后形成的几何体是空心圆柱,故选:D.3.(3分)如图所示几何体的截面是()A.四边形B.五边形C.六边形D.五棱柱【解答】解:此几何体是五棱柱,故其截面的形状是五边形.故选:B.4.(3分)数轴上的点A到原点的距离是5,则点A表示的数为()A.﹣5 B.5 C.5或﹣5 D.2.5或﹣2.5【解答】解:根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选:C.5.(3分)某地区一月份的平均气温为﹣19℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.17℃B.21℃C.﹣17℃D.﹣21℃【解答】解:2﹣(﹣19)=2+19=21℃.故选:B.6.(3分)下列各式中,正确的是()A.(﹣2)2>(﹣3)2B.﹣22>﹣32C.(﹣2)3<﹣32D.﹣22<﹣32【解答】解:根据题意,(﹣2)2=4,(﹣3)2=9,﹣22=﹣4,﹣32=﹣9,(﹣2)3,=﹣8,即得(﹣2)2<(﹣3)2.﹣22>﹣32,(﹣2)3>﹣32,﹣22>﹣32.故选:B.7.(3分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012km C.95×1011km D.950×1010km【解答】解:将9500 000 000 000km用科学记数法表示为:9.5×1012km.故选:B.8.(3分)橡皮的单价是x元,圆珠笔的单价是橡皮的2.5倍,则圆珠笔的单价为()A.2.5x元B.0.4x元C.(x+2.5)元D.(x﹣2.5)元【解答】解:由题意得,圆珠笔的单价为2.5x元.故选:A.9.(3分)下列各组代数式中,是同类项的是()A.5x2y与xy B.﹣5x2y与yx2C.5ax2与yx2D.83与x3【解答】解:A、相同字母的指数不同,故A不是同类项;B、字母相同且相同字母的指数也相同,故B是同类项;C、D、字母不同,故C、D不是同类项;故选:B.10.(3分)下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.【解答】解:A、﹣(﹣1)2+(﹣1)=﹣1﹣1=﹣2,故选项错误;B、﹣22+|﹣3|=﹣4+3=﹣1,故选项错误;C、﹣(﹣2)3=8,故选项正确;D、﹣+(﹣)﹣1=﹣1﹣1=﹣2,故选项错误.故选:C.11.(3分)下列各式正确的是()A.a﹣(b﹣c+d)=a﹣b﹣c+d B.a﹣2(b﹣c+d)=a﹣2b+2c+dC.a﹣(b﹣c+d)=a﹣b+c+d D.a﹣(b﹣c+d)=a﹣b+c﹣d【解答】解:A、原式=a﹣b+c﹣d,故本选项错误;B、原式=a﹣2b+2c﹣2d,故本选项错误;C、原式=a﹣b+c﹣d,故本选项错误;D、原式=a﹣b+c﹣d,故本选项正确;故选:D.12.(3分)若(a+1)2+|b﹣2|=0,则2a+b﹣1的值为()A.1 B.﹣1 C.3 D.﹣3【解答】解:∵(a+1)2+|b﹣2|=0,∴a+1=0且b﹣2=0,解得:a=﹣1,b=2,则2a+b﹣1=﹣2+2﹣1=﹣1.故选:B.二、填空题(每小题3分,共12分)13.(3分)一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是8cm.【解答】解:根据以上分析一个棱柱有12个顶点,所以它是六棱柱,即有6条侧棱,又因为所有侧棱长的和是48cm,所以每条侧棱长是48÷6=8cm.故答案为8.14.(3分)用“<”、“>”填空:﹣|﹣9| <0;>.【解答】解:∵﹣|﹣9|=﹣9,∴﹣|﹣9|<0;∵|﹣|=,|﹣|=,∴﹣>﹣,故答案为:<,>.15.(3分)如果2x3n y4与﹣3x6y4m是同类项,那么mn=2,这两项合并后的结果为﹣x6y4.【解答】解:根据题意得:,解得:,则mn=2.则两个单项式是:2x6y4,和﹣3x6y4.则两项合并后的结果为﹣x6y4.故答案是:2,﹣x6y4.16.(3分)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖10块,第n个图形中需要黑色瓷砖3n+1块(用含n的代数式表示).【解答】解:本题考查的是规律探究问题.从图形观察每增加一个图形,黑色正方形瓷砖就增加3块,第一个黑色瓷砖有3块,则第3个图形黑色瓷砖有10块,第N个图形瓷砖有4+3(n﹣1)=3n+1(块).故答案为:10;3n+1.三、解答题(本大题共7小题,共52分)17.(6分)根据要求,画出图形:画出下列几何体的从正面看,从左面看,从上面看的图形:【解答】解:如图所示:.18.(6分)计算(1)18﹣3×(﹣2)÷(2).【解答】解:(1)原式=18+6×(﹣3)=18﹣18=0;(2)原式=32×(+)+(﹣2)3=9×﹣8=4﹣8=﹣4.19.(8分)化简:(1)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(2)4(x2﹣5x)﹣5(2x2+3x).【解答】解:(1)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(2)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x.20.(8分)先化简,再求值:,其中x=﹣2,y=.【解答】解:原式=x﹣2x+y2+x﹣y2=y2,当x=﹣2,y=时,原式=.21.(8分)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?【解答】解:(1)60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨),则下午运完货物后存货59.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元),则下午货车共得运费320元.22.(8分)某公园的门票价格是:成人单价是10元,儿童单价是4元.某旅行团有a名成人和b名儿童;那么:(1)该旅行团应付多少的门票费.(2)如果该旅行团有32个成人,10个儿童,那么该旅行团应付多少的门票费.【解答】解:(1)该旅行团应付(10a+4b)元的门票费;(2)把a=32,b=10代入代数式10a+4b,得:10×32+4×10=360(元),因此,他们应付360元门票费.23.(8分)已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c 是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由).【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:评分细则:描对一个点或两个点均不给分.(2)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣,∴=4,答:运动4秒后,点Q可以追上点P.(3)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:(只写对一个给1分).。

相关文档
最新文档