最新广西南宁市中考数学试卷(含答案和解析)

合集下载

2024年广西南宁市中考模拟数学试卷(三)

2024年广西南宁市中考模拟数学试卷(三)

2024年广西南宁市中考模拟数学试卷(三)一、单选题1.2024-的相反数是( )A .2024-B .2024C .12024-D .120242.下列图形中,是中心对称图形的是( )A .B .C .D . 3.下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -= 4.如图是某工厂要设计生产的零件的主视图,这个零件可能是( )A .B .C .D . 5.数据2370000用科学记数法可表示为( )A .62.3710⨯B .52.3710⨯C .70.23710⨯D .423710⨯ 6.若点P (m ﹣1,5)与点Q (3,2﹣n )关于y 轴对称,则m +n 的值是( ) A .﹣5 B .1 C .5 D .117.在同一平面直角坐标系中,正比例函数y =kx 与一次函数y =-kx -k (k ≠0)的大致图象是( )A .B .C .D . 8.在平行四边形ABCD 中,AC ,BD 是两条对角线,现从以下四个关系:①AB =BC ,②AC =BD ,③AC ⊥BD ,④AB ⊥BC 中任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为( )A .14B .12 C .34 D .19.《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x 只,兔有y 只,那么可列方程组为( )A .35,4494x y x y +=⎧⎨+=⎩B .35,4294x y x y +=⎧⎨+=⎩C .94,2435x y x y +=⎧⎨+=⎩D .35,2494x y x y +=⎧⎨+=⎩ 10.《九章算术》中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深1寸((1ED =寸),锯道长1尺(1AB =尺10=寸),问这块圆形木材的直径是多少.”如图,请根据所学知识计算:圆形木材的直径AC 是()A .13寸B .20寸C .26寸D .28寸11.定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) A .3- B .5 C .34- D .3212.如图,OABC Y 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA V 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D ¢落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .B .C .1,0)D .1,0)二、填空题13.满足式子2≤3x ﹣7<8成立的所有整数解的和为.14.分解因式:244ax ax a -+=.15.学校要从王静,李玉两同学中选拔一人参加运动会志愿者工作,选拔项目为普通话,体育知识和旅游知识.并将成绩依次按4∶3∶3计分. 两人的各项选拔成绩如下表所示,则最终胜出的同学是.16.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45o ,测得该建筑底部C 处的俯角为17o .若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m .(参考数据:sin170.29≈o ,cos170.96≈o , tan170.31≈o )17.如图,要用一个扇形纸片围成一个无底盖的圆锥(接缝处忽略不计),若该圆锥的底面圆周长为20πcm ,侧面积为240π2cm ,则这个扇形的圆心角的度数是度.18.如图,抛物线y =﹣x 2+2x+3交x 轴于A ,B 两点,交y 轴于点C ,点D 为抛物线的顶点,点C 关于抛物线的对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG周长的最小值为.三、解答题19.计算:2024()()()1625-+÷---20.先化简,再求值:22311213x x x x x x x+-⋅+-++,其中1x = 21.如图,已知E 是平行四边形ABCD 对角线AC 上的点,连接DE .(1)过点B 在平行四边形内部作射线BF 交AC 于点F ,且使CBF ADE ∠=∠(要求:用尺规作图,保留作图痕迹,不写作法与证明)(2)连接BE ,DF ,判断四边形BFDE 的形状并证明.22.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x (单位:分)进行统计: 七年级 86 94 79 84 71 90 76 83 90 87八年级 88 76 90 78 87 93 75 87 87 79整理如下:根据以上信息,回答下列问题:(1)填空:=a _______,b =________.A 同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由. 23.某县贡桔成本为10元/斤,售价不低于15元/斤,不高于30元/斤.(1)每日贡桔销售量y (斤)与售价x (元/斤)之间的函数关系如图所示,求y 与x 之间的函数关系式;(2)若每天销售利润率不低于60%,且不高于80%,求每日销售的最大利润.24.如图,ABC V 是等腰直角三角形,90ACB ∠=︒,O 为AB 的中点,连接CO 交O e 于点E , O e 与AC 相切于点D .(1)求证:BC 是O e 的切线;(2)延长CO 交O e 于点G ,连接AG 交O e 于点F ,若AC =FG 的长.25.如图,在矩形ABCD 中,5cm AB =,3cm BC =.动点P ,Q 分别从点A ,B 出发,同时以1cm/s 的速度沿折线ADC 和BAD 分别向终点C ,D 运动.设运动时间为(s)(0)x x >,直线PQ ,BQ ,PC ,BC 所围成的图形的面积为2(cm )y .(1)当点P 与点D 重合时,AQ 的长为 cm ;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)当PBQ V 为直角三角形时,直接写出x 的值.26.综合与实践问题背景数学小组发现国旗上五角星的五个角都是顶角为36︒的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现如图1,在ABC V 中,36A ∠=︒,AB AC =.(1)操作发现:将ABC V 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则BDE ∠=_______︒,设1AC =,BC x =,那么AE =______(用含x 的式子表示);(2)进一步探究发现:BC AC 底腰这个比值被称为黄金比.在(1)的条件下试证明:BC AC 底腰 拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的ABC V是黄金三角形.如图2,在菱形ABCD 中,72BAD ∠=︒,1AB =.求这个菱形较长对角线的长.。

广西初三初中数学中考真卷带答案解析

广西初三初中数学中考真卷带答案解析

广西初三初中数学中考真卷班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.(1)求证:∠ABD=∠CBD;(3分)(2)若∠C=2∠E,求证:AB=DC;(4分)(3)在(2)的条件下,求四边形AEBD的面积.(5分)2.如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.(1)求a,c的值;(4分)(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;(4分)(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)(4分)3.在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(5分)(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:(1)tan∠PEF的值是否发生变化?请说明理由;(5分)(2)直接写出从开始到停止,线段EF的中点经过的路线长.(4分)4.(11·钦州)(本题满分6分)先化简,再求值:(a+1)(a-1)+a (1-a),其中a=2012.5.(11·钦州)(本题满分6分)如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.6.(11·钦州)(本题满分7分)如图,在平面直角坐标系中,点O为原点,反比例函数y=的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上.(1)求反比例函数的关系式;(2)直接写出菱形OABC的面积.7.(11·钦州)(本题满分9分)某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:频数分布表扇形统计图(1)频数分布表中的m=_ ▲,n=_ ▲;(2)样本中位数所在成绩的级别是_ ▲,扇形统计图中,E组所对应的扇形圆心角的度数是_ ▲;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?8.(11·钦州)(本题满分9分)某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2 000千克/亩、2 500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68 000千克,求A、B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?9.10.(8分)如图,已知CA=CD,∠1=∠2.(1)请你添加一个条件,使得△ABC≌△DEC.你添加的条件是;(2)添加条件后证明:△ABC≌△DEC.11.(8分)小华是某校八年级一班的学生,他班上最高的男生大伟的身高是174cm,最矮的男生小刚的身高是150cm,为了参加学校篮球队的选拔,小华对班上30名男生的身高(单位:cm)进行了统计.请你根据上面不完整的频率分布表,解答下列问题:(1)表中a和b所表示的数分别为a=,b=;(2)小华班上男生身高的极差是 cm;(3)身高的中位数落在哪个分组?;(4)若身高不低于165cm的男生可以参加选拔,则符合条件的男生占全班男生的百分之几?12.(8分)如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx-2的图象经过点A、C,并与y轴交于点E,反比例函数的图象经过点A.(1)点E的坐标是;(2)求一次函数和反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.13.(8分)2009年,王先生在某住宅小区购买了一套140m2的住房,当时该住房的价格为2500元/m2,两年后该住房的价格变为3600元/m2.(1)问该住房价格的年平均增长率是多少?(2)王先生准备进行室内装修,在购买相同质量的材料时,甲、乙两建材商店有不同的优惠方式:在甲商店累计购买2万元材料后,再购买的材料按原价的90%收费;在乙商店累计购买1万元材料后,再购买的材料按原价的95%收费.当王先生计划累计购买材料超过2万元时,请你帮他算一算在何种情况下选择哪一家建材商店购买材料可获得更大优惠.14.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当∠B AC=60º时,DE与DF有何数量关系?请说明理由;(3)当AB=5,BC=6时,求tan∠BAC的值.15.(12分)如图,抛物线:y=ax2+bx+4与x轴交于点A(-2,0)和B(4,0)、与y轴交于点C.(1)求抛物线的解析式;(2)T是抛物线对称轴上的一点,且△ACT是以AC为底的等腰三角形,求点T的坐标;(3)点M、Q分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行.当点M原点时,点Q立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥轴,交AC或BC于点P.求点M的运动时间t(秒)与△APQ的面积S的函数关系式,并求出S的最大值.二、选择题1.(11·钦州)70等于A.0B.1C.7D.-72.(11·钦州)一组数据3,4,5,5,6,8的极差是A.2B.3C.4D.53.(11·钦州)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立体的个数是A.3B.4C.5D.64.(11·钦州)“十二·五”期间,,钦州市把“建大港,兴产业,造新城”作为科学发展的三大引擎,其中到2015年港品吞吐能力争取达到120 000 000吨,120 000 000用科学记数法表示为A.1.2×107B.12×107C.1.2×108D.1.2×10-85.(11·钦州)下列计算正确的是6.(11·钦州)如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格,B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针方向90º旋转,再右平移6格D.把△ABC绕着点A顺时针方向90º旋转,再右平移6格7.(11·钦州)下列关于x的一元二次方程中,有两个不相等的实数根的方程是A.x2+1=0B.x2-2x+1=0C.x2+x+1=0D.x2+2x-1=08.(11·钦州)已知⊙O1和⊙O2的半径分别为2和5,如果两圆的位置关系为外离,那么圆心距O1O2的取值范围在数轴上表示正确的是9.(11·钦州)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件A.必然事件B.不可能事件C.随机事件D.确定事件10.(11·钦州)函数y=ax-2 (a≠0).与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是11.(11·钦州)一个圆锥的底面圆的周长是2π,母线长是3,则它的侧面展开图的圆心角等于A.150ºB.120ºC.90ºD.60º12.(11·钦州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的A.B.C.D.13.-7的绝对值是【】14.点P(2,-3)所在的象限是【】A.第一象限B.第二象限C.第三象限D.第四象限15.涠洲岛是全国假日旅游新热点,上岛休闲度假,体验海岛风情,感受火山文化已成为众多游客的首选,据统计该景区去年实现门票收入约598000元.用科学记数法表示598000是【】A.0.598×106B.59.8×104C.5.98×104D.5.98×10516.下列四个图形中,是轴对称图形的有【】17.如图,由6个小正方体搭建而成的几何体的俯视图是【】18.下列运算正确的是【】A.(-2x2)3=-6x6B.x4÷x2=x2C.2x+2y=4xy D.(y+x)(-y+x)=y2-x219.若三角形的两边长分别为2和6,则第三边的长可能是【】A.3B.4C.5D.820.21.若一个圆柱的底面半径为1、高为3,则该圆柱的侧面展开图的面积是【】A.6B.C.D.22.已知⊙O1与⊙O2相切,若⊙O1的半径为1,两圆的圆心距为5,则⊙O2的半径为【】A.4B.6C.3或6D.4或623.如图所示,渔船在A处看到灯塔C在北偏东60º方向上,渔船向正东方向航行了12海里到达B处,在B处看到灯塔C在正北方向上,这时渔船与灯塔C的距离是【】24.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90º后,所得直线的解析式为【】A.y=x-2B.y=-x+2C.y=-x-2D.y=-2x-1三、填空题1.(11·钦州)在-2,2,这三个实数中,最小的是 _ .2.(11·钦州)写出一个正比例函数,使其图象经过第二、四象限:_ .3.(11·钦州)在4张完全相同的卡片上分别画上图①、②、③、④.在看不见图形的情况下随机抽取一张,卡片上的图形是中心对称图形的概率是 _ .4.(11·钦州)分式方程=的解是_ .5.(11·钦州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是_ .6.(11·钦州)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2011次运动后,动点P的坐标是_ .7.因式分解:xy-7y=.8.9.函数的自变量x的取值范围是.10.若一个多边形的内角和是900º,则这个多边形是边形.11.在完全相同的四张卡片上分别写有如下四个命题:①半圆所对的弦是直径;②圆既是轴对称图形,又是中心对称图形;③弦的垂线一定经过这条弦所在圆的圆心;④圆内接四边形的对角互补.把这四张卡片放入一个不透明的口袋内搅匀,从口袋内任取一张卡片,则取出卡片上的命题是真命题的概率为.12.如图,△ABC的面积为63,D是BC上的一点,且BD∶CD=2∶1,DE∥AC交AB于点E,延长DE到F,使FE∶ED=2∶1,则△CDF的面积为.四、计算题(6分)计算:.广西初三初中数学中考真卷答案及解析一、解答题1.如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.(1)求证:∠ABD=∠CBD;(3分)(2)若∠C=2∠E,求证:AB=DC;(4分)(3)在(2)的条件下,求四边形AEBD的面积.(5分)【答案】(1)证明:∵AD∥BC∴∠ADB=∠CBD∵AB=AD∴∠ADB=∠ABD∴∠ABD=∠CBD(2)∵AE∥DB∴∠E=∠CBD由(1)得∠ABD=∠CBD∴∠ABC=2∠CBD=2∠E又∵∠C=2∠E∴∠ABC=∠C在梯形ABCD中,∴AB=DC【解析】略2.如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.(1)求a,c的值;(4分)(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;(4分)(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)(4分)【答案】【解析】略3.在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(5分)(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:(1)tan∠PEF的值是否发生变化?请说明理由;(5分)(2)直接写出从开始到停止,线段EF的中点经过的路线长.(4分)【答案】【解析】略4.(11·钦州)(本题满分6分)先化简,再求值:(a+1)(a-1)+a (1-a),其中a=2012.【答案】解:解法一:原式=a2-1+a-a2 ………………4分=a-1………………5分当a=2012时,原式=a-1=2012-1=2011………………6分解法二:原式=(a+1)(a-1)-a (a-1)………………2分=(a-1) (a+1-a)=a-1………………5分当a=2012时,原式=a-1=2012-1=2011………………6分【解析】略5.(11·钦州)(本题满分6分)如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.【答案】证明:∵四边形ABCD是平行四边形∴BC=AD BC∥AD………………2分∴∠ACB=DAC………………3分∵BE∥DF∴∠BEC=∠AFD………………4分∴△CBE≌△ADF………………5分∴BE=DF………………6分【解析】略6.(11·钦州)(本题满分7分)如图,在平面直角坐标系中,点O为原点,反比例函数y=的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上.(1)求反比例函数的关系式;(2)直接写出菱形OABC的面积.【答案】解:(1)∵y=的图象经过点(1,4),∴4=,即k=4………………3分∴所求反比例函数的关系式为y=………………4分=8………………7分(2)S菱形OABC【解析】略7.(11·钦州)(本题满分9分)某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:频数分布表扇形统计图(1)频数分布表中的m=_ ▲,n=_ ▲;(2)样本中位数所在成绩的级别是_ ▲,扇形统计图中,E组所对应的扇形圆心角的度数是_ ▲;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?【答案】(1)4,8(2)D 1080(3)800=528(人)答:该校九年级的学生中,体育综合测试成绩不少于80分的大约有528人【解析】略8.(11·钦州)(本题满分9分)某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2 000千克/亩、2 500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68 000千克,求A、B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?【答案】解:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2 000x+2 500(30-x)=68 000解得x=14∴30-x=16答:种植A种生姜14亩,那么种植B种生姜16亩.(2)由题意得,x≥ (30-x)解得x≥10………………5分设全部收购该基地生姜的年总收入为y元,则y=8×2 000x+7×2 500(30-x)=-1 500 x+525 000………………7分∵y随x的增大而减小,当x=10时,y有最大值此时,30-x=20,y的最大值为510 000元………………8分答:种植A种生姜10亩,那么种植B种生姜20亩,全部收购该基地生姜的年总收入最多为510 000元.………………9分【解析】略9.【答案】解:原式===当时,【解析】略10.(8分)如图,已知CA=CD,∠1=∠2.(1)请你添加一个条件,使得△ABC≌△DEC.你添加的条件是;(2)添加条件后证明:△ABC≌△DEC.【答案】(1)CB=CE(或∠B=∠E,∠A=∠D有一个即可)(2)证明:∵∠1=∠2 ∴∠ACB=∠DCE在△ACB和△DCE中,∵CA=CD,∠ACB=∠DCE,CB=CE∴△ACB≌△DCE【解析】略11.(8分)小华是某校八年级一班的学生,他班上最高的男生大伟的身高是174cm,最矮的男生小刚的身高是150cm,为了参加学校篮球队的选拔,小华对班上30名男生的身高(单位:cm)进行了统计.请你根据上面不完整的频率分布表,解答下列问题:(1)表中a和b所表示的数分别为a=,b=;(2)小华班上男生身高的极差是 cm;(3)身高的中位数落在哪个分组?;(4)若身高不低于165cm的男生可以参加选拔,则符合条件的男生占全班男生的百分之几?【答案】解:(1)(2)24(3)(4)30%【解析】略12.(8分)如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx-2的图象经过点A、C,并与y轴交于点E,反比例函数的图象经过点A.(1)点E的坐标是;(2)求一次函数和反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.【答案】解:(1)点E的坐标为,(2)由题意得知AB∥OE,∴,∴∵嗲你C的坐标为(4,0),∴把嗲你C的坐标(4,0)代入得,,∴,∴所求一次函数为。

2023年广西南宁市中考数学试题及参考答案

2023年广西南宁市中考数学试题及参考答案

2023年广西南宁市中考数学试题及参考
答案
一、选择题
1. 一台电视机原价5000元,先降价20%,然后又降价10%,
现在的价格是多少元?
A. 4000元
B. 4400元
C. 4500元
D. 4600元
2. 在一个几何图形中,如果一个角为90°,则这个角是什么角?
A. 顶角
B. 平角
C. 直角
D. 钝角
3. 图1是一个正方形,边长为40厘米。

其中的线段AB为边长的1/5,线段CD为边长的1/3,求线段BE的长度是多少厘米?
![图1](image1.png)
A. 20
B. 15
C. 12
D. 10
二、填空题
1. 某公司制作计划生产个产品,已完成7956个产品的制作,
还剩下____个产品未完成。

2. 某股票第1天涨了5%,第2天下跌了10%,那么第2天的
收盘价相对于第1天的涨跌幅为____。

3. 若a=5、b=3,则a的平方加b的平方等于____。

三、解答题
1. 某超市促销活动,购买3件相同商品可以打折,原价100元,现在以90元的价格销售,如果购买5件相同商品,应付多少元?
2. 现有一条长为28厘米的线段,将它分成3段,比为1:3:4,求第一段的长度是多少厘米?
四、参考答案
一、选择题
1. B
2. C
3. D
二、填空题
1. 4566
2. -4%
3. 34
三、解答题
1. 150元
2. 4厘米
以上是2023年广西南宁市中考数学试题及参考答案。

广西数学中考试题及答案doc

广西数学中考试题及答案doc

广西数学中考试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 2/3答案:B2. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 30答案:C3. 函数y=2x+3的图象与x轴的交点坐标是?A. (-3/2, 0)B. (3/2, 0)C. (0, 3)D. (0, -3)答案:A4. 一个数的平方根是它本身,这个数是?A. 1C. -1D. 以上都不是答案:B5. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 任意三角形答案:B6. 计算(3a^2b - 2ab^2) ÷ ab的结果是多少?A. 3a - 2bB. 3a + 2bC. a - 2bD. a + 2b答案:A7. 如果一个圆的半径增加20%,那么它的面积增加多少?A. 20%B. 40%C. 44%D. 60%答案:C8. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是多少?B. 26C. 28D. 32答案:A9. 下列哪个是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax + bx + cC. y = ax^2 + bxD. y = ax + c答案:A10. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可能是______。

答案:±512. 一个三角形的内角和是______度。

答案:18013. 一个数的立方根是2,这个数是______。

答案:814. 一个数除以-1/3等于乘以______。

答案:-315. 一个圆的直径是10,那么它的半径是______。

答案:516. 函数y=x^2-4x+4的顶点坐标是(______,______)。

南宁市中考数学试题及答案详解()

南宁市中考数学试题及答案详解()

南宁市中考数学试卷本试卷分第I 卷和第II 卷,满分120分,考试时间120分钟第I 卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A )、(B )、(C )、(D )四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卷上将选定的答案标号涂黑. 1.3的绝对值是( ).(A )3 (B )-3 (C )31(D )31 考点:绝对值.专题:计算题.分析:直接根据绝对值的意义求解. 解答:解:|3|=3. 故选A .点评:本题考查了绝对值:若a >0,则|a|=a ;若a=0,则|a|=0;若a <0,则|a|=﹣a . 2.如图1是由四个大小相同的正方体组成的几何体,那么它的主视图是( ).考点:简单组合体的三视图. 专题:计算题.分析:从正面看几何体得到主视图即可.解答:解:根据题意的主视图为:,故选B点评:此题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.3.南宁快速公交(简称:BRT )将在今年底开始动工,预计下半年建成并投入试运营,首条BRT 西起南宁火车站,东至南宁东站,全长约为11300米,其中数据11300用科学记数法表示为( ). A .0.113×105 B .1.13×104 C .11.3×103 D .113×102 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:解:将11300用科学记数法表示为:1.13×104. 故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.正面 图1 (A ) (B ) (C ) (D )图 24.某校男子足球队的年龄分布如图2条形图所示,则这些队员年龄的众 数是( ).(A )12 (B )13 (C )14 (D )15考点:众数;条形统计图.分析:根据条形统计图找到最高的条形图所表示的年龄数即为众数. 解答:解:观察条形统计图知:为14岁的最多,有8人, 故众数为14岁, 故选C .点评:考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义,难度较小.5.如图3,一块含30°角的直角三角板ABC 的直角顶点A 在直线DE 上,且BC//DE ,则∠CAE 等于( ). (A )30° (B )45° (C )60° (D )90°考点:平行线的性质. 分析:由直角三角板的特点可得:∠C=30°,然后根据两直线平行内错角相等,即可求∠CAE 的度数. 解答:解:∵∠C=30°,BC ∥DE , ∴∠CAE=∠C=30°. 故选A .点评:此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.6.不等式132<-x 的解集在数轴上表示为( ).(A ) (B ) (C ) (D )考点:在数轴上表示不等式的解集;解一元一次不等式. 专题:数形结合.分析:先解不等式得到x <2,用数轴表示时,不等式的解集在2的左边且不含2,于是可判断D 选项正确.解答:解:2x <4, 解得x <2, 用数轴表示为:.故选D .图3点评:本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心;二是定方向,定方向的原则是:“小于向左,大于向右”.7.如图4,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( ).(A )35° (B )40° (C )45° (D )50°考点:等腰三角形的性质.分析:先根据等腰三角形的性质求出∠ADB 的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD 中,AB=AD ,∠B=70°, ∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°, ∵AD=CD ,∴∠C=(180°﹣∠ADC )÷2=(180°﹣110°)÷2=35°, 故选:A .点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.8.下列运算正确的是( ).(A )ab a ab 224=÷ (B )6329)3(x x = (C )743a a a =• (D )236=÷考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方;二次根式的乘除法. 专题:计算题.分析:A 、原式利用单项式除以单项式法则计算得到结果,即可做出判断; B 、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断; C 、原式利用单项式乘以单项式法则计算得到结果,即可做出判断; D 、原式利用二次根式的除法法则计算得到结果,即可做出判断. 解答:解:A 、原式=2b ,错误;B 、原式=27x 6,错误;C 、原式=a 7,正确;D 、原式=,错误, 故选C点评:此题考查了整式的除法,同底数幂的乘法,幂的乘方与积的乘方,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键.9.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ). (A )60° (B )72° (C )90° (D )108°考点:多边形内角与外角.分析:首先设此多边形为n 边形,根据题意得:180(n ﹣2)=540,即可求得n=5,再再由多边形的外角和等于360°,即可求得答案.解答:解:设此多边形为n 边形, 根据题意得:180(n ﹣2)=540, 解得:n=5,图4图 6图∴这个正多边形的每一个外角等于:=72°.故选B .点评:此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n ﹣2)•180°,外角和等于360°.10.如图5,已知经过原点的抛物线)0(2≠++=a c bx ax y 的对称轴是直线1-=x 下列结论中:①0>ab ,②0>++c b a ,③当002<<<-y x 时,,正确的个数是( ). (A )0个 (B )1个 (C )2个 (D )3个考点:二次函数图象与系数的关系.分析:①由抛物线的开口向上,对称轴在y 轴左侧,判断a ,b 与0的关系,得到•ab >0;故①错误; ②由x=1时,得到y=a+b+c >0;故②正确;③根据对称轴和抛物线与x 轴的一个交点,得到另一个交点,然后根据图象确定答案即可. 解答:解:①∵抛物线的开口向上, ∴a >0,∵对称轴在y 轴的左侧, ∴b >0∴•ab >0;故①正确;②∵观察图象知;当x=1时y=a+b+c >0, ∴②正确;③∵抛物线的对称轴为x=﹣1,与x 轴交于(0,0), ∴另一个交点为(﹣2,0),∴当﹣2<x <0时,y <0;故③正确; 故选D .点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.如图6,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点,若MN=1,则△PMN 周长的最小值为( ). (A )4 (B )5 (C )6 (D )7考点:轴对称-最短路线问题;圆周角定理.分析:作N 关于AB 的对称点N′,连接MN′,NN′,ON′,ON ,由两点之间线段最短可知MN′与AB 的交点P′即为△PMN 周长的最小时的点,根据N 是弧MB 的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.解答:解:作N 关于AB 的对称点N′,连接MN′,NN′,ON′,ON . ∵N 关于AB 的对称点N′,∴MN′与AB 的交点P′即为△PMN 周长的最小时的点, ∵N 是弧MB 的中点,∴∠A=∠NOB=∠MON=20°, ∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN 周长的最小值为4+1=5. 故选B .点评:本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.对于两个不相等的实数a 、b ,我们规定符号Max{a ,b}表示a 、b 中的较大值,如:Max{2,4}=4,按照这个规定,方程{}xx x x Max 12,+=-的解为( ).(A )21- (B )22- (C )2121-+或 (D )121-+或 考点:解分式方程. 专题:新定义.分析:根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可.解答:解:当x <﹣x ,即x <0时,所求方程变形得:﹣x=,去分母得:x 2+2x+1=0,即x=﹣1;当x >﹣x ,即x >0时,所求方程变形得:x=,即x 2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解. 故选D .点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.第II 卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.因式分解:=+ay ax .考点:因式分解-提公因式法. 专题:因式分解.分析:观察等式的右边,提取公因式a 即可求得答案. 解答:解:ax+ay=a (x+y ). 故答案为:a (x+y ).点评:此题考查了提取公因式法分解因式.解题的关键是注意找准公因式.14.要使分式11-x 有意义,则字母x 的取值范围是 . 考点:分式有意义的条件.分析:分式有意义,分母不等于零.yA B图7 解答:解:依题意得 x ﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念: (1)分式无意义⇔分母为零; (2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.15.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是 .考点:概率公式.分析:首先判断出1,2,3,4,5中的奇数有哪些;然后根据概率公式,用奇数的数量除以5,求出取出的小球标号是奇数的概率是多少即可.解答:解:∵1,2,3,4,5中的奇数有3个:1、3、5,∴取出的小球标号是奇数的概率是:3÷5=. 故答案为:.点评:此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.16.如图7,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .考点:正方形的性质;等边三角形的性质.分析:根据正方形的性质,可得AB 与AD 的关系,∠BAD 的度数,根据等边三角形的性质,可得AE 与AD 的关系,∠AED 的度数,根据等腰三角形的性质,可得∠AEB 与∠ABE 的关系,根据三角形的内角和,可得∠AEB 的度数,根据角的和差,可得答案. 解答:解:∵四边形ABCD 是正方形, ∴AB=AD ,∠BAD=90°. ∵等边三角形ADE ,∴AD=AE ,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°, AB=AE ,∠AEB=∠ABE=(180°﹣∠BAE )÷2=15°, ∠BED=∠DAE ﹣∠AEB=60°﹣15°=45°, 故答案为:45°.点评:本题考查了正方形的性质,先求出∠BAE 的度数,再求出∠AEB ,最后求出答案.17.如图8,点A 在双曲线)0(32>=x xy 上,点B 在双曲线)0(>=x xk y 上(点B 在点A的右侧),且AB//x 轴,若四边形OABC 是菱形,且∠AOC=60°,则k .考点:菱形的性质;反比例函数图象上点的坐标特征.分析:首先根据点A 在双曲线y=(x >0)上,设A 点坐标为(a ,),再利用含30°直角三角形的性质算出OA=2a ,再利用菱形的性质进而得到B 点坐标,即可求出k 的值. 解答:解:因为点A 在双曲线y=(x >0)上,设A 点坐标为(a ,),因为四边形OABC 是菱形,且∠AOC=60°, 所以OA=2a , 可得B 点坐标为(3a ,), 可得:k=,故答案为:点评:此题主要考查了待定系数法求反比例函数,关键是根据菱形的性质求出B 点坐标,即可算出反比例函数解析式.18.如图9,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A 向左移动3 个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种移动规律移动下去,第n 次移动到点A N ,如果点A N 与原点的距离不小于20,那么n 的最小值是 .考点:规律型:图形的变化类;数轴.分析:序号为奇数的点在点A 的左边,各点所表示的数依次减少3,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,于是可得到A 13表示的数为﹣17﹣3=﹣20,A 12表示的数为16+3=19,则可判断点A n 与原点的距离不小于20时,n 的最小值是13.解答:解:第一次点A 向左移动3个单位长度至点A 1,则A 1表示的数,1﹣3=﹣2﹣2; 第2次从点A 1向右移动6个单位长度至点A 2,则A 2表示的数为﹣2+6=4; 第3次从点A 2向左移动9个单位长度至点A 3,则A 3表示的数为4﹣9=﹣5; 第4次从点A 3向右移动12个单位长度至点A 4,则A 4表示的数为﹣5+12=7; 第5次从点A 4向左移动15个单位长度至点A 5,则A 5表示的数为7﹣15=﹣8; …;则A 7表示的数为﹣8﹣3=﹣11,A 9表示的数为﹣11﹣3=﹣14,A 11表示的数为﹣14﹣3=﹣17,A 13表示的数为﹣17﹣3=﹣20,图9 图8A 6表示的数为7+3=10,A 8表示的数为10+3=13,A 10表示的数为13+3=16,A 12表示的数为16+3=19, 所以点A n 与原点的距离不小于20,那么n 的最小值是13. 故答案为:13.点评:本题考查了规律型,认真观察、仔细思考,找出点表示的数的变化规律是解决本题的关键.考生注意:第三至第八大题为解答题,要求在答题卡上写出解答过程,如果运算结果含有根号,请保留根号.三、(本大题共2小题,每小题满分6分,共12分)19.计算:445tan 2)1(201520+--+o .考点:实数的运算;零指数幂;特殊角的三角函数值. 专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用特殊角的三角函数值计算,最后一项利用算术平方根定义计算即可得到结果. 解答:解:原式=1+1﹣2×1+2 =2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(1+x )(1-x )+x (x +2)-1,其中x =21.考点:整式的混合运算—化简求值. 专题:计算题.分析:先利用乘法公式展开,再合并得到原式=2x ,然后把x=代入计算即可. 解答:解:原式=1﹣x 2+x 2+2x ﹣1 =2x ,当x=时,原式=2×=1.点评:本题考查了整式的混合运算﹣化简求值:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.四、(本大题共2小题,每小题满分8分,共16分)21.如图10,在平面直角坐标系中,已知∆ABC 的三个顶点的坐标分别为A (-1,1),B (-3,1),C (-1,4).(1)画出△ABC 关于y 轴对称的;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).考点:作图-旋转变换;作图-轴对称变换. 专题:作图题.分析:(1)根据题意画出△ABC 关于y 轴对称的△A 1B 1C 1即可;(2)根据题意画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,线段BC 旋转过程中扫过的面积为扇形BCC 2的面积,求出即可.解答:解:(1)如图所示,画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)如图所示,画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2, 线段BC 旋转过程中所扫过得面积S==.点评:此题考查了作图﹣旋转变换,对称轴变换,以及扇形面积,作出正确的图形是解本题的关键. 22.今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题: (1)求全班学生人数和m 的值;(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分(60分)共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.考点:列表法与树状图法;频数(率)分布表;扇形统计图;中位数.分组 分数段(分) 频数 A 36≤x <41 2 B 41≤x <46 5 C 46≤x <51 15 D 51≤x <56 m E56≤x <6110图 11-2图10图11-1分析:(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.解答:解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)P(一男一女)==.点评:此题主要考查了列表法求概率以及扇形统计图的应用,根据题意利用列表法得出所有情况是解题关键五、(本大题满分8分)23.如图12,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF;(2)若 DEB=90°,求证四边形DEBF是矩形.图12考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.专题:证明题.分析:(1)由在▱ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在▱ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形ABCD是平行四边形,∵∠DEB=90°,∴四边形DEBF 是矩形.点评:此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD 是平行四边形是关键.六、(本大题满分10分)24.如图13-1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的83,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价1y (元)、2y (元)与修建面积)(2m x 之间的函数关系如图13-2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?考点:一次函数的应用;一元二次方程的应用.分析:(1)用含a 的式子先表示出花圃的长和宽后利用其矩形面积公式列出式子即可;(2)根据通道所占面积是整个长方形空地面积的,列出方程进行计算即可;(3)根据图象,设出通道和花圃的解析式,用待定系数法求解,再根据实际问题写出自变量的取值范围即可.解答:解:(1)由图可知,花圃的面积为(40﹣2a )(60﹣2a );(2)由已知可列式:60×40﹣(40﹣2a )(60﹣2a )=×60×40,解以上式子可得:a 1=5,a 2=45(舍去),答:所以通道的宽为5米;(3)设修建的道路和花圃的总造价为y ,由已知得y 1=40x ,y 2=,则y=y 1+y 2=;图13-2图13-1x 花圃=(40﹣2a )(60﹣2a )=4a 2﹣200a+2400;x 通道=60×40﹣(40﹣2a )(60﹣2a )=﹣4a 2+200a ,当2≤a≤10,800≤x 花圃≤,384≤x 通道≤1600,∴384≤x≤,所以当x 取384时,y 有最小值,最小值为2040,即总造价最低为23040元,当x=383时,即通道的面积为384时,有﹣4a 2+200a=384,解得a 1=2,a 2=48(舍去),所以当通道宽为2米时,修建的通道和花圃的总造价最低为23040元.点评:本题考查了一次函数的应用以及一元二次方程的应用,解题的关键是表示出花圃的长和宽. 七、(本大题满分10分)25.如图14,AB 是⊙O 的直径,C 、G 是⊙O 上两点,且AC = CG ,过点C 的直线CD ⊥BG 于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F.(1)求证:CD 是⊙O 的切线.(2)若32=FD OF ,求∠E 的度数.(3)连接AD ,在(2)的条件下,若CD=3,求AD 的长. 考点:圆的综合题.分析:(1)如图1,连接OC ,AC ,CG ,由圆周角定理得到∠ABC=∠CBG ,根据同圆的半径相等得到OC=OB ,于是得到∠OCB=∠OBC ,等量代换得到∠OCB=∠CBG ,根据平行线的判定得到OC ∥BG ,即可得到结论;(2)由OC ∥BD ,得到△OCF ∽△BDF ,△EOC ∽△EBD ,得到,,根据直角三角形的性质即可得到结论;(3)如图2,过A 作AH ⊥DE 于H ,解直角三角形得到BD=3,DE=3,BE=6,在R t △DAH 中,AD===. 解答:(1)证明:如图1,连接OC ,AC ,CG ,∵AC=CG ,∴,∴∠ABC=∠CBG ,∵OC=OB ,∴∠OCB=∠OBC ,∴∠OCB=∠CBG ,∴OC ∥BG ,∵CD ⊥BG ,∴OC ⊥CD ,∴CD 是⊙O 的切线;(2)解:∵OC ∥BD ,∴△OCF ∽△BDF ,△EOC ∽△EBD ,∴,图14∴,∵OA=OB ,∴AE=OA=OB ,∴OC=OE ,∵∠ECO=90°,∴∠E=30°;(3)解:如图2,过A 作AH ⊥DE 于H ,∵∠E=30°∴∠EBD=60°,∴∠CBD=EBD=30°,∵CD=,∴BD=3,DE=3,BE=6,∴AE=BE=2,∴AH=1,∴EH=,∴DH=2, 在R t △DAH 中,AD===.点评:本题考查了切线的判定和性质,锐角三角函数,勾股定理相似三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.八、(本小题满分10分)26.在平面直角坐标系中,已知A 、B 是抛物线)0(2>=a ax y 上两个不同的点,其中A 在第二象限,B 在第一象限.(1)如图15-1所示,当直线AB 与x 轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A 、B 两点的横坐标的乘积.(2)如图15-2所示,在(1)所求得的抛物线上,当直线AB 与x 轴不平行,∠AOB 仍为90°时,A 、B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.(3)在(2)的条件下,若直线22--=x y 分别交直线AB ,轴于点P 、C ,直线AB 交y 轴于点D ,且∠BPC=∠OCP ,求点P 的坐标.考点:二次函数综合题.分析:(1)如图1,由AB 与x 轴平行,根据抛物线的对称性有AE=BE=1,由于∠AOB=90°,得到OE=AB=1,求出A (﹣1,1)、B (1,1),把x=1时,y=1代入y=ax 2得:a=1得到抛物线的解析式y=x 2,A 、B 两点的横坐标的乘积为x A •x B =﹣1(2)如图2,过A 作AM ⊥x 轴于M ,BN ⊥x 轴于N 得到∠AMO=∠BNO=90°,证出△AMO ∽△BON ,得到OM•ON=AM•BN ,设A (x A ,y A ),B (x B ,y B ),由于A (x A ,y A ),B (x B ,y B )在y=x 2图象上,得到y A =,y B =,即可得到结论;(3)设A (m ,m 2),B (n ,n 2).作辅助线,证明△AEO ∽△OFB ,得到mn=﹣1.再联立直线m :y=kx+b 与抛物线y=x 2的解析式,由根与系数关系得到:mn=﹣b ,所以b=1;由此得到OD 、CD 的长度,从而得到PD 的长度;作辅助线,构造Rt △PDG ,由勾股定理求出点P 的坐标.解答:解:(1)如图1,∵AB 与x 轴平行,根据抛物线的对称性有AE=BE=1,∵∠AOB=90°,∴OE=AB=1,∴A (﹣1,1)、B (1,1),把x=1时,y=1代入y=ax 2得:a=1,∴抛物线的解析式y=x 2,A 、B 两点的横坐标的乘积为x A •x B =﹣1(2)x A •x B =﹣1为常数,图15-1 图15-2如图2,过A作AM⊥x轴于M,BN⊥x轴于N,∴∠AMO=∠BNO=90°,∴∠MAO+∠AOM=∠AOM+∠BON=90°,∴∠MAO=∠BON,∴△AMO∽△BON,∴,∴OM•ON=AM•BN,设A(x A,y A),B(x B,y B),∵A(x A,y A),B(x B,y B)在y=x2图象上,∴,y A=,y B=,∴﹣x A•x B=y A•y B=•,∴x A•x B=﹣1为常数;(3)设A(m,m2),B(n,n2),如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.∴,即,整理得:mn(mn+1)=0,∵mn≠0,∴mn+1=0,即mn=﹣1.设直线AB的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.∵m,n是方程的两个根,∴mn=﹣b.∴b=1.∵直线AB与y轴交于点D,则OD=1.易知C(0,﹣2),OC=2,∴CD=OC+OD=3.∵∠BPC=∠OCP,∴PD=CD=3.设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,解得a=0(舍去)或a=﹣,当a=﹣时,﹣2a﹣2=,∴P(﹣,).点评:本题考查了二次函数与一次函数的图象与性质、等腰直角三角形的性质,勾股定理、相似三角形的判定和性质、一元二次方程等知识点,有一定的难度.第(3)问中,注意根与系数关系的应用.。

广西南宁市2024--2025学年九年级上学期数学学科10月份质量评估试卷(1)

广西南宁市2024--2025学年九年级上学期数学学科10月份质量评估试卷(1)

广西南宁市2024--2025学年九年级上学期数学学科10月份质量评估试卷 (1)一、单选题1.如果水位升高5米记为5+米,那么水位下降3米应记为( )A .5-米B .5+米C .2-米D .3-米 2.要使分式51x --有意义,则x 的取值范围是( ) A .1x ≠ B .1x > C .1x < D .1x ≠- 3.2024年2月26日,中国航天科技集团发布《中国航天科技活动蓝皮书》.根据计划,明确了总体目标为2030年前实现中国人首次登陆月球,开展月球科学考察及相关技术试验等.已知,地球和月球的距离大约为384400公里,数据384400用科学记数法表示为( ) A .60.384410⨯ B .438.4410⨯ C .53.84410⨯ D .63.84410⨯ 4.如图所示,直线,a b 被直线c 所截,则1∠的度数是( )A .55︒B .75︒C .110︒D .无法确定 5.在ABC V 中,5080A B ∠=︒∠=︒,,则C ∠的度数为( )A .50︒B .60︒C .70︒D .80︒6.不等式10x -≥的解集在数轴上表示正确的是( ).A .B .C .D . 7.下列计算,正确的是( )A .()326a a =B .236a a a ⋅=C .632a a a ÷=D .22+=a a a8.青岛市某学校准备从甲、乙、丙、丁四个科创小组中选出一组,参加市南区青少年科技创新大赛.表格反映的是各组平时成绩的平均数(单位:分)及方差2S ,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )A .甲B .乙C .丙D .丁 9.将抛物线()212y x =--,先向上平移3个单位,再向左平移2个单位,所得新抛物线的函数关系式为( )A .()224y x =+-B .()244y x =--C .()235y x =--D .y ()211y x =++ 10.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱,问人数,物价各多少?”,设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是( )A .8374x y x y+=⎧⎨-=⎩ B .8374x y x y -=⎧⎨+=⎩ C .8374x y x y +=⎧⎨+=⎩ D .8374x y x y -=⎧⎨-=⎩11.如图,将正五边形纸片ABCDE 沿BP 折叠,得到BC P '△,点C 的对应点为点C ',BC '的延长线交DE 于点F ,若DF EF =,则BPC '∠的度数为( )A .30︒B .45︒C .60︒D .72︒12.如图,已知开口向下的抛物线y =ax 2+bx +c 与x 轴交于点()60,,对称轴为直线x =2.则下列结论正确的有( )①0abc <;②0a b c -+>;③方程20cx bx a ++=的两个根为1211,26x x ==-;④抛物线上有两点P x 1,y 1 和Q x 2,y 2 ,若122x x <<且124x x +>,则12y y <.A .5个B .4个C .3个D .2个二、填空题13=.14.要使得式子 a 的取值范围是.15.分解因式:244x -=.三、单选题16.点()3,2A x +与()1,B y 关于原点对称,则x y +=.四、填空题17.如图是某座抛物线形的廊桥示意图.抛物线的函数表达式为211050y x =-+,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏灯,则这两盏灯的水平距离EF 是米.18.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点()1,2P 在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,则点P 的坐标为.五、解答题19.计算:()020********-+-.20.解分式方程:351x x=- 21.在平面直角坐标系xOy 中,ABC V 的三个顶点的坐标分别为(2,5)A -,(3,0)B -,(1,2)C .将ABC V 绕原点O 顺时针旋转90︒得到A B C '''V ,点A ,B ,C 的对应点分别为A ',B ',C '.(1)画出旋转后的A B C '''V ;(2)直接写出点C '的坐标;(3)求ABC V 的面积.22.百度推出了“文心一言”AI 聊天机器人(以下简称A 款),抖音推出了“豆包”AI 聊天机器人(以下简称B 款).有关人员开展了A ,B 两款AI 聊天机器人的使用满意度评分测验,并从中各随机抽取20份,对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息:抽取的对A 款AI 聊天机器人的评分数据中“满意”的数据:84,86,86,87,88,89;抽取的对B 款AI 聊天机器人的评分数据:67,68,69,83,85,86,87,87,87,88,88,89,95,96,96,96,96,98,99,100; 抽取的对A ,B 款AI 聊天机器人的评分统计表根据以上信息,解答下列问题:(1)上述图表中a =______,b =______,c =______;(2)根据以上数据,你认为哪款AI 聊天机器人更受用户喜爱?请说明理由(写出一条理由即可);(3)在此次测验中,有240人对A 款AI 聊天机器人进行评分、300人对B 款AI 聊天机器人进行评分,请通过计算,估计此次测验中对AI 聊天机器人不满意的共有多少人?23.将两个三角形纸板ABC V 和DBE V 按如图所示的方式摆放,连接DC .已知BA DB =,BE BC =,AC DE DC ==.(1)求证:ABC V ≌DBE V ;(2)若72ACD ∠=︒,求BED ∠的度数;24.如图,有长为30m 的篱笆,一面利用墙(墙的最大可用长度为10m ),围成中间隔有一道篱笆(平行于AB )的长方形花圃.(1)设花圃的一边AB 为m x ,则BC 的长可用含x 的代数式表示为_________m ;(2)当AB 的长是多少米时,围成的花圃面积为63平方米?(3)围成的花圃面积能否80平方米?若能,请求出AB 的长度;若不能,请说明理由. 25.如图,在跳绳时,绳甩到最高处的形状可近似看作拋物线,抛物线解析式的二次项系数为0.1-.已知甲、乙两名学生拿绳的手间距为6.5米,距地面均为1米.(1)请在图中建立直角坐标系,求抛物线的函数表达式;(2)现有一身高为1.75米的同学也想参加这个活动,请问他在跳绳时,头顶与用绳之间的最大竖直距离为多少(假定当绳用到最高处时,学生双脚处于落地状态);(3)若参加跳绳的学生身高均为1.75米,为保证安全,要求相邻学生之间的安全距离不小于0.4米,问跳绳时,甩绳内部最多可容纳多少名学生?26.综合实践课,同学们以“图形的折叠”为主题开展数学活动.操作一:如图1,对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在正方形内部点M 处,把纸片展平,连接PM ,BM .(1)当点M 在EF 上时,MBC ∠的度数是__________.(2)如图2,改变点P 在AD 上的位置(点P 不与点A ,D 重合),延长PM 交CD 于点Q ,连接BQ .①求证:PQ AP CQ =+;②若正方形纸片ABCD 的边长为8cm ,1cm CQ =,求AP 的长.。

2024年广西中考真题数学试卷含答案解析

2024年广西中考真题数学试卷含答案解析

2024年广西中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是()A.B.C.D.2.端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.【答案】B【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.不是轴对称图形,故不符合题意;B.是轴对称图形,故符合题意;C.不是轴对称图形,故不符合题意;D.不是轴对称图形,故不符合题意;故你:B.3.广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为()A.90.84910⨯B.88.4910⨯C.784.910⨯D.684910⨯4.榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是()A.B.C.D.【答案】A【分析】本题考查三视图,根据主视图是从前往后看,得到的图形,进行判断即可.【详解】解:由图可知:几何体的主视图为:故选A.5.不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A.1B.13C.12D.236.如图,2时整,钟表的时针和分针所成的锐角为()A .20︒B .40︒C .60︒D .80︒【答案】C 【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .7.如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A .()3,0B .()0,2C .()3,2D .()1,2【答案】C 【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P 的坐标可得出横、纵轴上一格代表一格单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P 的坐标为()2,1,∴点Q 的坐标为()3,2,故选:C .8.激光测距仪L 发出的激光束以5310km ⨯的速度射向目标M ,s t 后测距仪L 收到M 反射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A .53102d t ⨯=B .5310d t =⨯C .52310d t =⨯⨯D .6310d t=⨯【答案】A9.已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A .120y y <<B .210y y <<C .120y y <<D .120y y <<10.如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .11.《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A .1345x x x ++=B .100345x x x ++=C .3451x x x ++=D .345100x x x ++=12.如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A .1B .2C .5D .10理等知识,明确题意,灵活运用相关知识求解是解题的关键.二、填空题13.已知1∠与2∠为对顶角,135∠=︒,则2∠= °.【答案】35【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒,∴2135∠=∠=︒.故答案为:35.14大的整数是 .15.八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的400种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有 种.【答案】80【分析】本题考查了扇形统计图,用400乘以藤本类的百分比即可求解,看懂统计图是解题的关键.【详解】解:由扇形统计图可得,藤本类有40020%80⨯=种,故答案为:80.16.不等式7551x x +<+的解集为 .【答案】<2x -【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x -<-,合并同类项得,24x <-,系数化为1得,<2x -,故答案为:<2x -.17.如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为 cm .18.如图,壮壮同学投掷实心球,出手(点P处)的高度OP是7m4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m,高度是4m.若实心球落地点为M,则OM=m.【答案】35 3三、解答题19.计算:()()2342-⨯+-【答案】8-【分析】本题主要考查了有理数的混合运算.先算乘法和乘方,再算加法即可.【详解】解:原式124=-+8=-.20.解方程组:2321x y x y +=⎧⎨-=⎩21.某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.22.如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.(2)连接BE 如下图:∵DE 为线段AB 的垂直平分线,∴BE AE =,∴45EBA A ∠=∠=︒,∴90BEA ∠=︒,∴ABE 为等腰直角三角形,2BE 23.综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5ddw=+前后.其中d前、d后分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:kg)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.24.如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.18OD r =-,再利用勾股定理求解即可.【详解】(1)证明:∵点D ,E 分别是BC ,AC 的中点,∴BD CD =,AE CE =,又∵AEF CED ∠=∠,DE EF =,∴AEF CED △≌△,∴AF CD =,F EDC ∠=∠,∴AF BD =,∥A F B D ,∴四边形ABDF 是平行四边形;(2)证明:如图,连接AD ,∵AB AC =,D 为BC 中点,∴AD BC ⊥,∴AD 过圆心,∵∥A F B D ,∴AF AD ⊥,而OA 为半径,∴AF 为O 的切线;(3)解:如图,过B 作BQ AC ⊥于Q ,连接OB ,∵3tan 4BAC ∠=,∴34BQ AQ =,设BQ 3x =,则4AQ x =,∴225AC AB AQ BQ x ==+=,∴CQ AC AQ x =-=,25.课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.26.如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M '①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.由旋转的性质知AOC A OC '' ≌∴OM A C '''⊥,43A C AC ''==,OM 根据垂线段最短知MN MM '≤,又MM OM OM ≤'+',∴当M 、O 、M '三点共线,且点此时180α=︒,∴A MC ''△面积的最大值为142⨯②∵246MC MO OC ''≤+=+=,4∵AOC A OA'≌ ∴30A CAO '∠=∠=︒,OAA OCA '∠=∠∴120A OA '∠=︒,试题21∵90AMO ∠=︒,∴60AOM ∠=︒,∴180A OA AOM '∠+∠=︒,∴A '、O 、M 三点共线,∴A MC ''△为直角三角形,此时旋转角120A OA α'=∠=︒;当A '和C 重合时,如图,同理30OCC CAO '∠=∠=︒,30C OCA '∠=∠=︒,∴120COC '∠=︒,∵AO CO =,60AOM ∠=︒∴60COM AOM ∠=∠=︒,∴180COM COC '∠+∠=︒,∴C '、O 、M 三点共线,又90AMO ∠=︒∴A MC ''△为直角三角形,此时旋转角360240A OA α'=︒-∠=︒;综上,旋转角α的度数为120︒或240︒时,A MC ''△为直角三角形.【点睛】本题考查了线段垂直平分线的性质,含30︒的直角三角形的性质,勾股定理,旋转的性质等知识,明确题意,正确画出图形,添加辅助线,合理分类讨论是解题的关键.。

2022年广西南宁市中考数学真题及答案

2022年广西南宁市中考数学真题及答案

2022年广西南宁市中考数学真题及答案本试卷分第一卷和第二卷,总分值120分,考试时间120分钟。

第一卷〔选择题,共36分〕一、选择题〔本大题共12小题,每题3分,共36分〕1. 如果水位升高3m 时水位变化记作+3m ,那么水位下降3m 时水位变化记作 ( )(A)-3m (B)3 m (C)6 m (D) -6 m2.以下列图形中,是轴对称图形的是 ( )(A ) 〔B 〕〔C 〕〔D 〕3. 南宁东高铁火车站位于南宁市青秀区凤岭北路,火车站总建筑面积约为267000平方米,其中数据267000用科学记数法表示为 ( )〔A 〕26.7×104〔B 〕2.67×104〔C 〕2.67×105〔D 〕0.267×1064. 要使二次根式2+x 在实数范围内有意义,那么实数x 的取值范围是( ) 〔A 〕x >2〔B 〕x ≥2〔C 〕x >2-〔D 〕x ≥2-5.以下运算正确的选项是( )〔A 〕2a ·3a = 6a 〔B 〕()32x =6x 〔C 〕6m ÷2m =3m 〔D 〕6a -4a =26.在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图1所示,假设油面的宽AB =160cm ,那么油的最大深度为 ( )〔A 〕40cm 〔B 〕60cm 〔C 〕80cm 〔D 〕100cm 7.数据1,2,4,0,5,3,5的中位数和众数分别是( ) 〔A 〕3和2 〔B 〕3和3 〔C 〕0和5 〔D 〕3和58.如图2所示把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是 ( ) 图2(A )正三角形 〔B 〕正方形 〔C 〕正五边形 〔D 〕正六边形9.“黄金1号〞玉米种子的价格为5元/千克,如果一次购置2千克以上的种子,超过2千克局部的种子的价格打6折,设购置种子数量为x 千克,付款金额y 为元,那么y 与x 的函数关系的图像大致是 ( )〔A 〕〔B 〕〔C 〕〔D 〕10.如图3,二次函数y =x x 22+-,当1-<x <a 时,y 随x 的增大而增大,那么实数a 的取值范围是 ( ) 〔A 〕a >1〔B 〕1-<a ≤1〔C 〕a >0 〔D 〕1-<a <1 11.如图4,在ABCD 中,点E 是AD 的中点,延长BC到点F ,使CF : BC =1 : 2,连接DF ,EC .假设AB=5,AD =8,sin B =54,那么DF 的长等于 ( )〔A 〕10〔B 〕15〔C 〕17〔D 〕5212.点A 在双曲线y x2-=上,点B 在直线4-=x y 上,且A ,B 两点关于y 轴对称,设点A 的坐标为〔m ,n 〕,那么n m +mn的值是( )〔A 〕-10 〔B 〕-8 〔C 〕6 〔D 〕4第二卷〔非选择题,共84分〕二、填空题〔本大题共6小题,每题3分,共18分〕 13.比较大小: 5-3〔填“>〞“<〞或“=〞〕.14.如图5,直线a ∥b ,∠1=120°,那么∠2的度数是°. 15.因式分解:a a 622-=.16.第45届世界体操锦标赛将于2022年10月3日至12日在南宁市隆重举行,届时某校将从小记者团内负责体育赛事报道的3名同学〔2男1女〕中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是.17.如图6,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进20海里到达B 点,此时,测得海岛C 位于北偏东30° 的方向,那么海岛C 到航线AB 的距离CD 等于海里. 18. 如图7,△ABC 是等腰直角三角形,AC =BC =a ,以斜边AB 上的点 O 为圆心的圆分别与AC ,BC 相切与点E ,F , 与AB 分别交于点 G ,H ,且 EH 的延长线和 CB 的延长线交于点D ,那么CD 的长为.三、〔本大题共2小题,每题总分值6分,共12分〕 19. 计算:()21-︒-45sin 4+3-+820. 解方程:2-x x 422--x 1=四、〔本大题共2小题,每题总分值8分,共16分〕 21. 如图8,△ABC 三个顶点的坐标分别为A 〔1,1〕,B 〔4,2〕,C 〔3,4〕.(1) 请画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1;A 2B 2C 2; (2) 请画出△ABC 关于原点对称的△ (3) 在x 轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写...出.P 的坐标. 22.考试前,同学们总会采用各种方式缓解考试压力,以最正确状态迎接考试. 某校对该校九年级的局部同学做了一次内容为“最适合自己的考前减压方式〞的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类,学校收集整理数据后,绘制了图19-和图29-两幅不完整的统计图,请根据统计图中的信息解答以下问题:(1) 这次抽样调查中,一共抽查了多少名学生? (2) 请补全条形统计图;(3) 请计算扇形统计图中“享受美食〞所对应扇形的圆心角的度数;(4) 根据调查结果,估计该校九年级500名学生中采用“听音乐〞的减压方式的人数. 五、〔本大题总分值8分〕23.如图10,AB ∥FC ,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,分别延长FD 和CB 交于点G .(1) 求证:△ADE ≌△CFE ;图10(2) 假设GB =2,BC =4,BD =1,求AB 的长. 六、〔本大题总分值10分〕24.“保护好环境,拒绝冒黑烟〞.某市公交公司将淘汰某一条线路上“冒黑烟〞较严重的公交车,方案购置A 型和B 型两种环保节能公交车共10辆. 假设购置A 型公交车1辆,B 型公交车2辆,共需400万元;假设购置A 型公交车2辆,B 型公交车1辆,共需350万元. (1) 求购置A 型和B 型公交车每辆各需多少万元?(2) 预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.假设该公司购置A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,那么该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?七、〔本大题总分值10分〕25. 如图111-,四边形ABCD 是正方形,点E 是边BC 上一点,点F 在射线CM 上,∠AEF =90°,AE =EF ,过点F 作射线BC 的垂线,垂足为H ,连接AC . (1) 试判断BE 与FH 的数量关系,并说明理由; (2) 求证:∠ACF =90°;(3) 连接AF ,过A ,E ,F 三点作圆,如图211-.假设EC =4,∠CEF =15°,求 AE 的长. 八、〔本大题总分值10分〕26.在平面直角坐标系中, 抛物线=y 2x +()k x k --1与直线1+=kx y 交于A ,B 两点,点A 在点B的左侧.(1) 如图112-,当1=k 时,直接写出....A ,B 两点的坐标;(2) 在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3) 如图212-,抛物线=y 2x +()k x k --1()0>k 与x 轴交于C ,D 两点〔点C 在点D 的左侧〕.在直线1+=kx y 上是否存在唯一一点Q ,使得∠OQC =90°?假设存在,请求出此时k 的值;假设不存在,请说明理由.试卷答案1.答案:A 由正数负数的概念可得。

广西南宁市(六市同城)中考数学真题试题(含解析)

广西南宁市(六市同城)中考数学真题试题(含解析)

--精品3 3 3 广西南宁市(六市同城)xx 年中考数学真题试题(考试时间:120 分钟 满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。

2. 答题前,请认真阅读答题卡上的注意事项。

3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。

一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A. -3B. 3C. -1D. 1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。

因此-3 的倒数为-1【点评】主要考察倒数的定义2. 下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转 180°后,能与自身重合,那么这个图形就叫做中心对称图形。

【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.3.xx 年俄罗斯世界杯开幕式于 6 月 14 日在莫斯科卢日尼基球场举行,该球场可容纳 81000名观众,其中数据 81000 用科学计数法表示为()A. 81103B. 8.1104C. 8.1105D. 0.81105【答案】B【考点】科学计数法【解析】81000 8.1104,故选 B【点评】科学计数法的表示形式为a 10n的形式,其中1 a 10,n为整数4.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】 B【考点】求平均分 【解析】124 10 684【点评】本题考查用折线图求数据的平均分问题5. 下列运算正确的是A. a (a +1)=a 2+1B. (a 2)3=a 5C. 3a 2+a =4a 3D. a 5÷a 2=a 3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项 A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得 a (a +1)=a 2+a ;选项 B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a 2)3=a 6; 选项 C 错误,直接运用整式的加法法则,3a 2 和 a 不是同类项,不可以合并; 选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得 a 5÷a 2=a 3. 【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。

初中毕业升学考试(广西南宁卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西南宁卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西南宁卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】﹣2的相反数是()A.﹣2 B.0 C.2 D.4【答案】C【解析】试题分析:根据只有符号不同的两个数叫做互为相反数解答.﹣2的相反数是2考点:相反数【题文】把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A. B. C. D.【答案】A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.考点:平行投影.【题文】据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106 B.3.32×105 C.3.32×104 D.33.2×104【答案】B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将332000用科学记数法表示为:3.32×105.考点:科学记数法—表示较大的数.【题文】已知正比例函数y=3x的图象经过点(1,m),则m的值为()评卷人得分A. B.3 C.﹣ D.﹣3【答案】B【解析】试题分析:本题较为简单,把坐标代入解析式即可求出m的值.把点(1,m)代入y=3x,可得:m=3考点:一次函数图象上点的坐标特征.【题文】某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分 B.82分 C.84分 D.86分【答案】D【解析】试题分析:利用加权平均数的公式直接计算即可得出答案.由加权平均数的公式可知===86考点:加权平均数.【题文】如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A. 5sin36°米B. 5cos36°米C. 5tan36°米D. 10tan36°米【答案】C【解析】试题分析:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选C.考点:解直角三角形的应用.【题文】下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6 D.(y3)2=y5【答案】C【解析】试题分析:结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.考点:(1)幂的乘方与积的乘方;(2)合并同类项;(3)同底数幂的乘法.【题文】下列各曲线中表示y是x的函数的是()A. B. C. D.【答案】D【解析】试题分析:根据函数的意义求解即可求出答案.根据函数的意义可知:对于自变量x的任何值,y 都有唯一的值与之相对应,故D正确.考点:函数的概念.【题文】如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【答案】B【解析】试题分析:先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°考点:圆周角定理.【题文】超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x ﹣10=90【答案】A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.【题文】有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1: B.1:2 C.2:3 D.4:9【答案】D【解析】试题分析:设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9考点:正方形的性质.【题文】二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【答案】C【解析】试题分析:设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣l【答案】50°【解析】试题分析:根据两直线平行,同位角相等可得∠1=∠A.∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,考点:平行线的性质【题文】分解因式:a2﹣9=.【答案】(a+3)(a-3)【解析】试题分析:直接利用平方差公式分解因式进而得出答案.a2﹣9=(a+3)(a﹣3)考点:因式分解-运用公式法【题文】如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(2016•南宁)如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC 的面积为8,则k的值为.【答案】2【解析】试题分析:过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2考点:反比例函数系数k的几何意义【题文】观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.【答案】44【解析】试题分析:先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层考点:(1)规律型:(2)数字的变化类【题文】计算:|﹣2|+4cos30°﹣()﹣3+.【答案】4-6【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.试题解析:原式=2+4×﹣8+2=2+2-8+2=4-6考点:(1)实数的运算;(2)负整数指数幂;(3)特殊角的三角函数值.【题文】解不等式组,并把解集在数轴上表示出来.【答案】﹣3<x≤1;数轴见解析【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.试题解析:,解①得x≤1,解②得x>﹣3,不等式组的解集是:﹣3<x≤1.考点:(1)解一元一次不等式组;(2)在数轴上表示不等式的解集.【题文】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4)(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2,并求出∠A2C2B2的正弦值.【答案】(1)答案见解析;(2)【解析】试题分析:(1)将A、B、C三点分别向左平移6个单位即可得到的△A1B1C1;(2)连接OA、OC,分别取OA、OB、OC的中点即可画出△A2B2C2,求出直线AC与OB的交点,求出∠ACB的正弦值即可解决问题.试题解析:(1)如图1所示,(2)如图2所示,∵A(2,2),C(4,﹣4),B(4,0),∴直线AC解析式为y=﹣3x+8,与x轴交于点D(,0),∵∠CBD=90°,∴CD==,∴sin∠DCB===.∵∠A2C2B2=∠ACB,∴sin∠A2C2B2=sin∠DCB=.考点:(1)作图-位似变换;(2)作图-平移变换.【题文】在图“书香八桂,阅读圆梦”读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目(2016•南宁)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB 为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【答案】(1)证明过程见解析;(2)12.【解析】试题分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.试题解析:(1)连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.考点:切线的判定【题文】在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【答案】(1)450天;(2)7.5倍.【解析】试题分析:(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.试题解析:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,答:乙队的最大工作效率是原来的7.5倍考点:(1)一次函数的应用;(2)分式方程的应用【题文】已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【答案】(1)AE=EF=AF;(2)证明过程见解析;(3)3-【解析】试题分析:(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形;(2)欲证明BE=CF,只要证明△BAE≌△CAF即可;(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.试题解析:(1)结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAl在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=l【题文】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x;C(-1,-3);(2)证明过程见解析;(3)(,0)或(,0)或(﹣1,0)或(5,0)【解析】试题分析:(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.试题解析:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x ,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).考点:(1)二次函数综合题;(2)三角形相似;(3)分类讨论思想。

广西壮族自治区2023年中考数学试卷((附参考答案))

广西壮族自治区2023年中考数学试卷((附参考答案))

广西壮族自治区2023年中考数学试卷一、单项选择题(本大题共12小题,每小题3分.)1.若零下2摄氏度记为,则零上2摄氏度记为()A.B.C.D.2.下列数学经典图形中,是中心对称图形的是()A.B.C.D.3.若分式有意义,则x的取值范围是()A.B.C.D.4.如图,点A、B、C在上,,则的度数是()A.B.C.D.5.在数轴上表示正确的是()A.B.C.D.6.甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:,,,,则成绩最稳定的是()A.甲B.乙C.丙D.丁7.如图,一条公路两次转弯后又回到与原来相同的方向,如果,那么的度数是()A.B.C.D.8.下列计算正确的是()A.B.C.D.9.将抛物线向右平移3个单位,再向上平移4个单位,得到的抛物线是()A.B.C.D.10.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为,拱高约为,则赵州桥主桥拱半径R约为()A.B.C.D.11.据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为()A.B.C.D.12.如图,过的图象上点A,分别作x轴,y轴的平行线交的图象于B,D两点,以,为邻边的矩形被坐标轴分割成四个小矩形,面积分别记为,,,,若,则的值为()A.4B.3C.2D.1二、填空题(本大题共6小题,每小题2分,共12分.)13.化简:=.14.分解因式:a2+5a=.15.函数的图象经过点,则.16.某班开展“梦想未来、青春有我”主题班会,第一小组有2位男同学和3位女同学,现从中随机抽取1位同学分享个人感悟,则抽到男同学的概率是.17.如图,焊接一个钢架,包括底角为的等腰三角形外框和3m高的支柱,则共需钢材约m (结果取整数).(参考数据:,,)18.如图,在边长为2的正方形中,E,F分别是上的动点,M,N分别是的中点,则的最大值为.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.计算:.20.解分式方程:.21.如图,在中,,.(1)在斜边上求作线段,使,连接;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)若,求的长.22.4月24日是中国航天日,为激发青少年崇尚科学、探索未知的热情,航阳中学开展了“航空航天”知识问答系列活动.为了解活动效果,从七、八年级学生的知识问答成绩中,各随机抽取20名学生的成绩进行统计分析(6分及6分以上为合格),数据整理如下:学生成绩统计表七年级八年级平均数7.557.55中位数8c众数a7合格率b85%根据以上信息,解答下列问题:(1)写出统计表中a,b,c的值;(2)若该校八年级有600名学生,请估计该校八年级学生成绩合格的人数;(3)从中位数和众数中任选其一,说明其在本题中的实际意义.23.如图,平分,与相切于点A,延长交于点C,过点O作,垂足为B.(1)求证:是的切线;(2)若的半径为4,,求的长.24.如图,是边长为4的等边三角形,点D,E,F分别在边,,上运动,满足.(1)求证:;(2)设的长为x,的面积为y,求y关于x的函数解析式;(3)结合(2)所得的函数,描述的面积随的增大如何变化.25.【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:.其中秤盘质量克,重物质量m克,秤砣质量M克,秤纽与秤盘的水平距离为l厘米,秤纽与零刻线的水平距离为a厘米,秤砣与零刻线的水平距离为y厘米.【方案设计】目标:设计简易杆秤.设定,,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l和a的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l,a的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l,a的方程;(3)根据(1)和(2)所列方程,求出l和a的值.任务二:确定刻线的位置.(4)根据任务一,求y关于m的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.26.【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片对折,使与重合,展平纸片,得到折痕;折叠纸片,使点B落在上,并使折痕经过点A,得到折痕,点B,E的对应点分别为,,展平纸片,连接,,.请完成:(1)观察图1中,和,试猜想这三个角的大小关系;(2)证明(1)中的猜想;【类比操作】如图2,N为矩形纸片的边上的一点,连接,在上取一点P,折叠纸片,使B,P两点重合,展平纸片,得到折痕;折叠纸片,使点B,P分别落在,上,得到折痕l,点B,P的对应点分别为,,展平纸片,连接,.(3)证明是的一条三等分线.答案1.【答案】C2.【答案】A3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】D8.【答案】B9.【答案】A10.【答案】B11.【答案】B12.【答案】C13.【答案】314.【答案】a(a+5)15.【答案】116.【答案】17.【答案】2118.【答案】19.【答案】解:20.【答案】解:去分母得,移项,合并得,检验:当时,,所以原分式方程的解为21.【答案】(1)解:所作线段如图所示:(2)解:∵,,∴,∵,∴,∴,即点O为的中点,∵,∴,∴,∴22.【答案】(1)解:根据八年级的成绩分布可得:5分的有3人,6分的有2人,7分的有5人,8分的有4人,9分的有3人,10分的有3人,故中位数是,根据扇形统计图可得:5分的有人,6分的有人,7分的有人,8分的有人,9分的有人,10分的有人,故众数是8,合格人数为:人,故合格率为:,故,,(2)解:八年级学生成绩合格的人数为:人,即若该校八年级有600名学生,该校八年级学生成绩合格的人数有510人.(3)解:根据中位数的特征可知七,八年级学生成绩的集中趋势和七,八年级学生成绩数据的中等水平.23.【答案】(1)证明:∵与相切于点A,∴,∵平分,,∴,∴是的切线(2)解:∵的半径为4,∴,∵,,∴,,∵,∴,∴,即,∴.24.【答案】(1)证明:∵是边长为4的等边三角形,∴,,∵,∴,在和中,,∴(2)解:分别过点C、F作,,垂足分别为点H、G,如图所示:在等边中,,,∴,∴,设的长为x,则,,∴,∴,同理(1)可知,∴,∵的面积为y,∴(3)解:由(2)可知:,∴,对称轴为直线,∴当时,y随x的增大而增大,当时,y随x的增大而减小;即当时,的面积随的增大而增大,当时,的面积随的增大而减小.25.【答案】(1)解:由题意得:,∴,∴(2)解:由题意得:,∴,∴(3)解:由(1)(2)可得:,解得:(4)解:由任务一可知:,∴,∴(5)解:由(4)可知,∴当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;∴相邻刻线间的距离为5厘米.26.【答案】(1)解:理由:设AM与EF交于点O,∵将矩形纸片对折,使与重合,折叠纸片,使点B落在上,并使折痕经过点A,得到折痕,点B,E的对应点分别为,,∴AM垂直平分BB′,EF垂直平分AB,∴AB=AB′,OB=OB′=OA,∴AB=AB′=BB′,∴△ABB′是等边三角形,∴∠ABB′=60°,∴∠1=∠2=30°,∴∠3=90°-30°-30°=30°,∴∠1=∠2=∠3.(2)证明:由折叠的性质可得:,,,,∴,,∴是等边三角形,∵,,∴,∵四边形是矩形,∴,∴,∴;(3)证明:设折痕l与线段的交点为M,连接并延长,交于点H,连接,,如图所示:由折叠的性质可知:、折痕分别垂直平分,∴,,∴,∵,点M在上,∴垂直平分,(到线段两端点距离相等的点在线段的垂直平分线上)∴,∴,∴是的一条三等分线.。

真题广西南宁市中考数学试卷有Word版

真题广西南宁市中考数学试卷有Word版

中考数学试卷一、选择题(本大题共12小题,每题3分,共36分。

在每题给出的四个选项中只有一项是切合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

)1.(分)﹣3的倒数是()A.﹣3B.3 C.﹣D.【剖析】依据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.应选:C.【评论】主要考察倒数的观点及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(分)以下漂亮的壮锦图案是中心对称图形的是()A.B.C.D.【剖析】依据把一个图形绕某一点旋转180°,假如旋转后的图形能够与本来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;应选:A.【评论】本题主要考察了中心对称图形,重点是掌握中心对称图形的定义.3.(分)2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,此中数据81000用科学记数法表示为()A.81×103B.×104C.×105D.×105【剖析】科学记数法的表示形式为a×10n的形式,此中1≤|a|<10,n为整数.确立n的值时,要看把原数变为a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数同样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.第1页共19页【解答】解:81000用科学记数法表示为×104,应选:B.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中1≤|a|<10,n为整数,表示时重点要正确确立a的值以及n的值.4.(分)某球员参加一场篮球竞赛,竞赛分4节进行,该球员每节得分如折线统计图所示,则该球员均匀每节得分为()A.7分B.8分C.9分D.10分【剖析】依据均匀分的定义即可判断;【解答】解:该球员均匀每节得分==8,应选:B.【评论】本题考察折线统计图、均匀数的定义等知识,解题的重点是理解题意,掌握均匀数的定义;5.(分)以下运算正确的选项是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a3【剖析】依据单项式乘多项式、归并同类项、同底数幂的除法以及幂的乘方的运算法例,分别对每一项进行剖析即可得出答案.【解答】解:A、a(a+1)=a2+a,故本选项错误;B、(a2)3=a6,故本选项错误;C、不是同类项不可以归并,故本选项错误;D、a5÷a2=a3,故本选项正确.应选:D.【评论】本题考察了单项式乘多项式、归并同类项、同底数幂的除法以及幂的乘方,娴熟掌握运算法例是解题的重点.第2页共19页6.(分)如图,∠ACD是△ABC的外角,CE均分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【剖析】依据三角形外角性质求出∠ACD,依据角均分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE均分∠ACD,∴∠ECD=∠ACD=50°,应选:C.【评论】本题考察了角均分线定义和三角形外角性质,能熟记三角形外角性质的内容是解本题的重点.7.(分)若m>n,则以下不等式正确的选项是()A.m﹣2<n﹣2B.C.6m<6nD.﹣8m>﹣8n 【剖析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,依据不等式得基天性质逐个判断即可得.【解答】解:A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误;应选:B.【评论】本题主要考察不等式的性质,解题的重点是掌握不等式的基天性质,特别是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.8.(分)从﹣2,﹣1,2这三个数中任取两个不一样的数相乘,积为正数的概率是()A.B.C.D.第3页共19页【剖析】第一依据题意列出表格,而后由表格即可求得全部等可能的结果与积为正数的状况,再利用概率公式求解即可求得答案.【解答】解:列表以下:积﹣﹣212﹣24﹣2﹣2﹣﹣42由表可知,共有6种等可能结果,此中积为正数的有2种结果,因此积为正数的概率为=,应选:C.【评论】本题考察的是用列表法或画树状图法求概率.列表法或画树状图法能够不重复不遗漏的列出全部可能的结果,合适于两步达成的事件;树状图法合适两步或两步以上达成的事件;注意概率=所讨状况数与总状况数之比..(分)将抛物线y=x2﹣6x+21向左平移2个单位后,获得新抛物线的分析式为()9A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3【剖析】直接利用配方法将原式变形,从而利用平移规律得出答案.【解答】解:y=x2﹣6x+21(x2﹣12x)+21[(x﹣6)2﹣36]+21(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,获得新抛物线的分析式为:y=(x﹣4)2+3.应选:D.第4页共19页【评论】本题主要考察了二次函数图象与几何变换,正确配方将原式变形是解题重点.10.(分)如图,分别以等边三角形ABC的三个极点为圆心,以边长为半径画弧,获得的关闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即暗影部分面积)为()A.B.C.2D.2【剖析】莱洛三角形的面积是由三块同样的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,应选:D.【评论】本题考察了等边三角形的性质好扇形的面积计算,能依据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解本题的重点.11.(分)某栽种基地2016年蔬菜产量为80吨,估计2018年蔬菜产量达到100吨,求蔬菜产量的年均匀增添率,设蔬菜产量的年均匀增添率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80 C.80(1+2x)=100D.80(1+x2)=100【剖析】利用增添后的量=增添前的量×(1+增添率),设均匀每次增添的百分率为x,依据“从第5页共19页80吨增添到100吨”,即可得出方程.【解答】解:由题意知,蔬菜产量的年均匀增添率为x,依据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,估计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.应选:A.【评论】本题考察了一元二次方程的应用(增添率问题).解题的重点在于理清题目的含义,找到2017年和2018年的产量的代数式,依据条件找准等量关系式,列出方程.12.(分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.【剖析】依据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP(AAS),依据全等三角形的性质可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,从而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.【解答】解:依据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,第6页共19页解得:x=,∴DF=4﹣x=,∴cos∠ADF==.应选:C.【评论】本题考察了全等三角形的判断与性质、勾股定理以及解直角三角形,利用勾股定理联合AF=1+x,求出AF的长度是解题的重点.二、填空题(本大题共6小题,每题3分,共18分)13.(分)要使二次根式在实数范围内存心义,则实数x的取值范围是x≥5.【剖析】依据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣5≥0,解得x≥5.故答案为:x≥5.【评论】本题考察的知识点为:二次根式的被开方数是非负数.14.(分)因式分解:2a2﹣2= 2(a+1)(a﹣1).【剖析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(a2﹣1)=2(a+1)(a﹣1).故答案为:2(a+1)(a﹣1).【评论】本题考察了提公因式法与公式法的综合运用,娴熟掌握运算法例是解本题的重点.∴15.(分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是4.【剖析】先依据众数的定义求出x=5,再依据中位数的定义求解可得.【解答】解:∵数据6,x,3,3,5,1的众数是3和5,x=5,第7页共19页数据1、3、3、5、5、6,∴数据=4,故答案:4.【点】本主要考众数和中位数,解的关是掌握众数和中位数的定.16.(分)如,从甲楼底部A得乙楼部C的仰角是30°,从甲楼部B得乙楼底部D的俯角是45°,已知甲楼的高AB是120m,乙楼的高CD是40m(果保存根号)【剖析】利用等腰直角三角形的性得出AB=AD,再利用角三角函数关系得出答案.【解答】解:由意可得:∠BDA=45°,AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°==,解得:CD=40(m),故答案:40.【点】此主要考认识直角三角形的用,正确得出tan∠CDA=tan30°=是解关.17.(分)察以下等式:30=1,31=3,32=9,33=27,34=81,35=243,⋯,依据此中律可得30+31+32+⋯+32018的果的个位数字是3.【剖析】第一得出尾数化律,而得出30+31+32+⋯+32018的果的个位数字.【解答】解:∵30=1,31=3,32=9,33=27,34=81,35=243,⋯,∴个位数4个数一循,∴(2018+1)÷4=504余3,第8页共19页∴1+3+9=13,∴30+31+32+⋯+32018的果的个位数字是:3.故答案:3.【点】此主要考了尾数特点,正确得出尾数化律是解关.18.(分)如,矩形ABCD的点A,B在x上,且对于y称,反比率函数y= x>0)的象点C,反比率函数y=(x<0)的象分与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,k1等于9.【剖析】出点A坐,依据函数关系式分表示各点坐,依据割法表示△BEF的面,结构方程.【解答】解:点B的坐(a,0),A点坐(a,0)由象可知,点C(a,),E(a,),D(a,),F(,)矩形ABCD面:2a? =2k1∴S△DEF=S△BCF=S△ABE=∵S△BEF=7∴2k1++k1=7①k1+3k2=0∴k2=k1代入①式得第9页共19页解得k1=9故答案为:9【评论】本题是反比率函数综合题,解题重点是设出点坐标表示有关各点,应用面积法结构方程.三、解答题(本大题共8小题,共66分,解答题因写出文字说明、证明过程或演算步骤)19.(分)计算:|﹣4|+3tan60﹣°﹣()﹣1【剖析】直接利用特别角的三角函数值以及二次根式的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=4+3﹣2﹣2+2.【评论】本题主要考察了实数运算,正确化简各数是解题重点.20.(分)解分式方程:﹣1=.【剖析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③查验;④得出结论挨次计算可得.【解答】解:两边都乘以3(x﹣1),得:3x﹣3(x﹣1)=2x,解得:,查验:时,3(x﹣1)≠0,因此分式方程的解为.【评论】本题主要考察解分式方程,解题的重点是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③查验;④得出结论.21.(分)如图,在平面直角坐标系中,已知△ABC的三个极点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后获得△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后获得△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为极点的三角形的形状.(不必说明原因)第10页共19页【剖析】(1)利用点平移的坐标特点写出A1、B1、C1的坐标,而后描点即可获得△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而获得△A2B2C2,(3)依据勾股定理逆定理解答即可.【解答】解:(1)以下图,△A1B1C1即为所求:(2)以下图,△A222即为所求:BC(3)三角形的形状为等腰直角三角形,OB=OA1,1B=,=A即因此三角形的形状为等腰直角三角形.【评论】本题考察了作图﹣旋转变换:依据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此能够经过作相等的角,在角的边上截取相等的线段的方法,找到对应点,按序连结得出旋转后的图形.22.(分)某市将展开以“走进中国数学史”为主题的知识凳赛活动,红树林学校正本校100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成以下不完好的统计表第11页共19页和扇形统计图:成绩等级频数(人数)频次A4BmCnD共计1001(1)求m= 51,n=30;(2)在扇形统计图中,求“C等级”所对应心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机精选2名同学代表学校参加全市竞赛,请用树状图法或许列表法求出恰巧选中“1男1女”的概率.【剖析】(1)由A的人数和其所占的百分比即可求出总人数,由此即可解决问题;(2)由总人数求出C等级人数,依据其占被检查人数的百分比可求出其所对应扇形的圆心角的度数;(3)列表得出全部等可能的状况数,找出恰巧抽到一男一女的状况数,即可求出所求的概率;【解答】解:(1)参加本次竞赛的学生有:4÷0.04=100(人);×100=51(人),D组人数=100×15%=15(人),n=100﹣4﹣51﹣15=30(人)故答案为51,30;(2)B等级的学生共有:50﹣4﹣20﹣8﹣2=16(人).∴所占的百分比为:16÷50=32%∴C等级所对应扇形的圆心角度数为:360°×30%=108°.(3)列表以下:男女1女2女3第12页共19页男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)==.【评论】本题考察了列表法与树状图法,用到的知识点为:概率=所讨状况数与总状况数之比.23.(分)如图,在?ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:?ABCD是菱形;(2)若AB=5,AC=6,求?ABCD的面积.【剖析】(1)利用全等三角形的性质证明AB=AD即可解决问题;(2)连结BD交AC于O,利用勾股定理求出对角线的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是平行四边形.(2)连结BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC= AC=×6=3,∵AB=5,AO=3,第13页共19页∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.【评论】本题考察菱形的判断和性质、勾股定理、全等三角形的判断和性质等知识,解题的重点是正确找寻全等三角形解决问题,属于中考常考题型.24.(分)某企业在甲、乙库房共寄存某种原料450吨,假如运出甲库房所存原料的60%,乙库房所存原料的40%,那么乙库房节余的原料比甲库房节余的原料多30吨.(1)求甲、乙两库房各寄存原料多少吨?(2)现企业需将300吨原料运往工厂,从甲、乙两个库房到工厂的运价分别为120元/吨和100元/吨.经磋商,从甲库房到工厂的运价可优惠a元吨(10≤a≤30),从乙库房到工厂的运价不变,设从甲库房运m吨原想到工厂,恳求出总运费W对于m的函数分析式(不要求写出m的取值范围);(3)在(2)的条件下,请依据函数的性质说明:跟着m的增大,W的变化状况.【剖析】(1)依据甲乙两库房原料间的关系,可得方程组;(2)依据甲的运费与乙的运费,可得函数关系式;(3)依据一次函数的性质,要分类议论,可得答案.【解答】解:(1)设甲库房寄存原料 x吨,乙库房寄存原料y吨,由题意,得,解得,甲库房寄存原料240吨,乙库房寄存原料210吨;(2)由题意,从甲库房运m吨原想到工厂,则从乙库房云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)①当10≤a<20时,20﹣a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤a≤30时,则20﹣a<0,W随m的增大而减小.第14页共19页【评论】本题考察了二元一次方程组及一次函数的性质,解(1)的重点是利用等量关系列出二元一次方程组,解(2)的重点是利用运费间的关系得出函数分析式;解(3)的重点是利用一次函数的性质,要分类议论.25.(分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB订交于点E,过点E作EF⊥BC,垂足为F,延伸CD交GB的延伸线于点P,连结BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.【剖析】(1)要证PG与⊙O相切只要证明∠OBG=90°,由∠A与∠BDC是同弧所对圆周角且∠BDC=∠DBO可得∠CBG=∠DBO,联合∠DBO+∠OBC=90°即可得证;(2)求需将BE与OC或OC相等线段放入两三角形中,经过相像求解可得,作OM⊥AC、连结OA,证△BEF∽△OAM得=,由AM=AC、OA=OC 知=,联合=即可得;(3)Rt△DBC中求得BC=8、∠DCB=30°,在Rt△EFC中设EF=x,知EC=2x、FC=x、BF=8 ﹣x,既而在Rt△BEF中利用勾股定理求出x的,从而得出答案.【解答】解:(1)如图,连结OB,则OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠BDC、∠BDC=∠GBC,第15页共19页∴∠GBC=∠BDC,∵CD是⊙O的切线,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)过点O作OM⊥AC于点M,连结OA,则∠AOM=∠COM=∠AOC,=,∴∠ABC=∠AOC,又∵∠EFB=∠OGA=90°,∴△BEF∽△OAM,∴=,∵AM=AC,OA=OC,∴=,又∵=,=2×=2×=;(3)∵PD=OD,∠PBO=90°,∴BD=OD=8,在Rt△DBC中,BC==8,又∵OD=OB,∴△DOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=30°,第16页共19页=,=,∴可设EF=x,则EC=2x、FC= x,∴BF=8﹣x,Rt△BEF中,BE2=EF2+BF2,∴100=x2+(8﹣x)2,解得:x=6±,∵6+>8,舍去,x=6﹣,EC=12﹣2,∴OE=8﹣(12﹣2)=2﹣4.【评论】本题主要考察圆的综合问题,解题的重点是掌握圆周角定理、圆心角定理、相像三角形的判断与性质、直角三角形的性质等知识点.26.(分)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,此中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连结MN,AM,AN.(1)求抛物线的分析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.【剖析】(1)利用待定系数法求抛物线分析式;利用等腰三角形的性质得B(3,0),而后计算自变量为3所对应的二次函数值可获得D点坐标;(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,由于∠MCN=∠OCB,依据相像三角形的判断方法,当=时,△CMN∽△COB,于是有∠CMN=∠COB=90°,即=;当=时,△CMN∽△CBO,于是有第17页共19页∠CNM=∠COB=90°,即=,而后分别求出m的值即可获得M点的坐标;(3)连结DN,AD,如图,先证明△ACM≌△DBN,则AM=DN,因此AM+AN=DN+AN,利用三角形三边的关系获得DN+AN≥AD(当且仅当点A、N、D共线时取等号),而后计算出AD即可.【解答】解:(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,∴抛物线分析式为 y=﹣x2+ x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,x=3时,y=﹣×9+×3+4=5,∴D点坐标为(3,5);(2)在Rt△OBC中,BC=== 5,M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,∵∠MCN=∠OCB,∴当=时,△CMN∽△COB,则∠CMN=∠COB=90°,即=,解得m=,此时M点坐标为(0,);当=时,△CMN∽△CBO,则∠CNM=∠COB=90°,即=,解得m=,此时M点坐标为(0,);综上所述,M点的坐标为(0,)或(0,);(3)连结DN,AD,如图,∵AC=BC,CO⊥AB,∴OC均分∠ACB,∴∠ACO=∠BCO,∵BD∥OC,第18页共19页∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,而DN+AN≥AD(当且仅当点A、N、D共线时取等号),∴DN+AN的最小值==,∴AM+AN的最小值为.【评论】本题考察了二次函数的综合题:娴熟掌握二次函数图象上点的坐标特点、二次函数的性质和相像三角形的判断与性质;会利用待定系数法求函数分析式;理解坐标与图形性质;会运用分类议论的思想解决数学识题.第19页共19页。

广西南宁市兴宁区达标名校2024届中考联考数学试卷含解析

广西南宁市兴宁区达标名校2024届中考联考数学试卷含解析

广西南宁市兴宁区达标名校2024学年中考联考数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.2.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ3.下列计算正确的是().A.(x+y)2=x2+y2B.(-12xy2)3=-16x3y6C.x6÷x3=x2D.2(2)=24.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°5.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A.35°B.60°C.70°D.70°或120°6.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.7.在3,0,-2,-四个数中,最小的数是()A.3 B.0 C.-2 D.-8.下面调查中,适合采用全面调查的是()A.对南宁市市民进行“南宁地铁1号线线路”B.对你安宁市食品安全合格情况的调查C.对南宁市电视台《新闻在线》收视率的调查D.对你所在的班级同学的身高情况的调查9.下列四个几何体中,左视图为圆的是( )A .B .C .D .10.已知一元二次方程ax 2+ax ﹣4=0有一个根是﹣2,则a 值是( ) A .﹣2B .23C .2D .4二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90°,OA 与反比例函数y=kx的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形ABCD =10,则k 的值为 .12.计算a 3÷a 2•a 的结果等于_____. 13.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是 .14.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .15.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.16.如图,在菱形ABCD 中,点E 、F 在对角线BD 上,BE=DF=13BD ,若四边形AECF 为正方形,则tan ∠ABE=_____.17.8的算术平方根是_____. 三、解答题(共7小题,满分69分)18.(10分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里: 三角形数 1 3 6 10 15 21 a … 正方形数 1 4 9 16 25 b 49 … 五边形数151222C5170…(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n 个“正方形数”是________;若第n 个“三角形数”是x ,则用含x 、n 的代数式表示第n 个“五边形数”是___________.19.(5分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?20.(8分)如图,用红、蓝两种颜色随机地对A ,B ,C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A ,C 两个区域所涂颜色不相同的概率.21.(10分)如图,要修一个育苗棚,棚的横截面是Rt ABC ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)22.(10分)在平面直角坐标系xOy 中,将抛物线21:23G y mx =+(m ≠0)向右平移3个单位长度后得到抛物线G 2,点A 是抛物线G 2的顶点. (1)直接写出点A 的坐标;(2)过点(0,3)且平行于x 轴的直线l 与抛物线G 2交于B ,C 两点. ①当∠BAC =90°时.求抛物线G 2的表达式; ②若60°<∠BAC <120°,直接写出m 的取值范围.23.(12分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)24.(14分)如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =55,求BD 的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.【题目详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.2、C【解题分析】根据三角形高线的定义即可解题.【题目详解】解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,故选C.【题目点拨】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.3、D【解题分析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-12xy2)3=-18x3y6,B错误;x6÷x3=x3,C错误;=2,D正确;故选D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.4、C【解题分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【题目详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【题目点拨】本题主要考查平行线的性质,熟悉掌握性质是关键.5、D【解题分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【题目详解】①当点B落在AB边上时,∵,∴,∴,②当点B 落在AC 上时, 在中,∵∠C=90°, ,∴,∴,故选D. 【题目点拨】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论. 6、A 【解题分析】当点F 在MD 上运动时,0≤x <2;当点F 在DA 上运动时,2<x≤4.再按相关图形面积公式列出表达式即可. 【题目详解】解:当点F 在MD 上运动时,0≤x <2,则: y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则: y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A. 【题目点拨】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键. 7、C 【解题分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解. 【题目详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小, 所以,所以最小的数是, 故选C. 【题目点拨】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.8、D【解题分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【题目详解】A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;D、对你所在的班级同学的身高情况的调查适宜采用普查方式;故选D.【题目点拨】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、A【解题分析】根据三视图的法则可得出答案.【题目详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【题目点拨】错因分析较容易题.失分原因是不会判断常见几何体的三视图.10、C【解题分析】分析:将x=-2代入方程即可求出a的值.详解:将x=-2代入可得:4a-2a-4=0,解得:a=2,故选C.点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、﹣1【解题分析】∵OD=2AD,∴23 ODOA=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴23 DC OC ODAB OB OA===,∴22439 ODCOABSS⎛⎫==⎪⎝⎭,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.12、a1【解题分析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【题目详解】解:原式=a3﹣1+1=a1.故答案为a1.【题目点拨】本题考查了同底数幂的乘除法,关键是掌握计算法则.13、n1+n+1.【解题分析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n 个为n 1+n+1.考点:规律型:图形的变化类.14、6或2或12【解题分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【题目详解】由方程2680x x -+=,得x =2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.15、(2019,2)【解题分析】分析点P 的运动规律,找到循环次数即可.【题目详解】分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【题目点拨】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.16、13【解题分析】 利用正方形对角线相等且互相平分,得出EO=AO=12BE ,进而得出答案. 【题目详解】解:∵四边形AECF为正方形,∴EF与AC相等且互相平分,∴∠AOB=90°,AO=EO=FO,∵BE=DF=13 BD,∴BE=EF=FD,∴EO=AO=12 BE,∴tan∠ABE=AOBO=13.故答案为:1 3【题目点拨】此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=12BE是解题关键.17、2.【解题分析】试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.由算术平方根的定义可知:8882,∴8的算术平方根是2故答案为2.考点:算术平方根.三、解答题(共7小题,满分69分)18、1 2 3 n2n2 +x-n【解题分析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.详解:(1)∵前6个“三角形数”分别是:1=122⨯、3=232⨯、6=342⨯、10=452⨯、15=562⨯、21=672⨯,∴第n个“三角形数”是()12n n+,∴a=7×82=17×82=1.∵前5个“正方形数”分别是:1=12,4=22,9=32,16=42,25=52,∴第n个“正方形数”是n2,∴b=62=2.∵前4个“正方形数”分别是:1=()13112⨯⨯-,5=()23212⨯⨯-,12=()33312⨯⨯-,22=()43412⨯⨯-,∴第n个“五边形数”是n(3n−1)2n(3n−1)2,∴c=() 53512⨯⨯-=3.(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,∴第n个“五边形数”是n2+x-n.点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.19、(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【解题分析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量⨯(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据(1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【题目详解】(1)y=300+30(60﹣x)=﹣30x+1.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55时,W最大值=2.∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【题目点拨】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.20、1 2 .【解题分析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,∴P(A,C两个区域所涂颜色不相同)=41 82 =.考点:1.画树状图或列表法;2.概率.21、33.3【解题分析】根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可. 【题目详解】解:∵AC=sin ABACB∠=1.5sin27︒=1.50.45=103∴矩形面积=10⨯103≈33.3(平方米)答:覆盖在顶上的塑料薄膜需33.3平方米【题目点拨】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.<<22、(1);(2)①y=x2+;②m【解题分析】(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;(2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出,从而求出点B的坐标,代入即可得解;②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.【题目详解】(1)∵将抛物线G1:y=mx2+m≠0个单位长度后得到抛物线G2,∴抛物线G2:y=m(x2+∵点A是抛物线G2的顶点.∴点A.(2)①设抛物线对称轴与直线l交于点D,如图1所示.∵点A是抛物线顶点,∴AB=AC.∵∠BAC=90°,∴△ABC为等腰直角三角形,∴CD=AD∴点C的坐标为(.∵点C在抛物线G2上,m(2+解得:m=②依照题意画出图形,如图2所示.同理:当∠BAC=60°时,点C1;当∠BAC=120°时,点C+3.∵60°<∠BAC<120°,1G23G2上方,∴()()22313233333233 mm⎧+-+>⎪⎨⎪+-+<⎩,解得:339m-<<-.【题目点拨】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.23、2.7米【解题分析】解:作BF⊥DE于点F,BG⊥AE于点G在Rt△ADE中∵tan∠ADE=,∴DE="AE" ·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15 ∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF —DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD 的高度为2.7米.24、BD =41【解题分析】作DM ⊥BC ,交BC 延长线于M ,连接AC ,由勾股定理得出AC 2=AB 2+BC 2=25,求出AC 2+CD 2=AD 2,由勾股定理的逆定理得出△ACD 是直角三角形,∠ACD=90°,证出∠ACB=∠CDM ,得出△ABC ∽△CMD ,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD 即可.【题目详解】作DM ⊥BC ,交BC 延长线于M ,连接AC ,如图所示:则∠M =90°,∴∠DCM+∠CDM =90°,∵∠ABC =90°,AB =3,BC =4,∴AC 2=AB 2+BC 2=25,∵CD =10,AD =55,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∠ACD =90°,∴∠ACB+∠DCM =90°,∴∠ACB =∠CDM ,∵∠ABC =∠M =90°,∴△ABC ∽△CMD , ∴12AB CM =, ∴CM =2AB =6,DM =2BC =8,∴BM =BC+CM =10,∴BD =22BM DM +22108+=241【题目点拨】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.。

广西南宁市中考数学试卷(解析版)

广西南宁市中考数学试卷(解析版)

广西南宁市中考2021 年数学试卷一、选择题〔本大题共12 小题,每题 3 分,共 36 分〕每题都给出代号〔A〕、〔B〕、〔C〕、〔D 〕四个结论,其中只有一个是正确的,请考上用2B 铅笔在答题卡上将选定答案标号涂黑.1.〔 3 分〕〔 2021?南宁〕在﹣ 2, 1,5, 0 这四个数中,最大的数是〔〕A.﹣ 3B.1C.5D. 0考点:有理数大小比拟.分析:根据有理数大小比拟的法那① 正数都大于0;②负数都小于0;③ 正数大于一切么:负数进行比拟即可.解答:解:在﹣2, 1,5, 0 这四个数中,大小顺序为:﹣2< 0< 1< 5,所以最大的数是5.应选 C.点评:此题主要考查了有理数的大小的比拟,解题的关键利用熟练掌握有理数的大小比拟法那么,属于根底题.2.〔 3 分〕〔 2021?南宁〕如下图,将平面图形绕轴旋转一周,得到的几何体是〔〕A.B.C.D.考点:点、线、面、体.分析:根据半圆绕它的直径旋转一周形成球即可得出答案.解答:解:半圆绕它的直径旋转一周形成球体.应选: A.点评:此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.3.〔 3 分〕〔 2021?南宁〕 2021 年 6 月 11 日,神舟十号飞船发射成功,神舟十号飞船身高米,重约 8 吨,飞行速度约每秒7900 米,将数 7900 用科学记数法表示,表示正确的选项是〔9 〕A.0.79 ×104 B.×104 C.×103 D.×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为 a×10n的形式,其中 1≤|a< 10, n 为整数.确定 n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答:解:将应选:7900 用科学记数法表示为:C.7.9 ×103.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为<10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.a×10n的形式,其中 1≤|a4.〔 3 分〕〔 2021?南宁〕小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是〔〕A.三角形B.线段C.矩形D.正方形考点:平行投影.分析:根据平行投影的性质分别分析得出即可即可.解答:解:将矩形木框立起与地面垂直放置时,形成的影子为线段;将矩形木框与地面平行放置时,形成的影子为矩形;将木框倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且矩形对边相等,故得到的投影不可能是三角形.应选: A.点评:此题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.〔 3 分〕〔 2021?南宁〕甲、乙、丙、丁四名选手参加四个跑道,选手以随机抽签的方式决定各自的跑道,率是〔〕A.1B.C.100 米决赛,赛场只设假设甲首先抽签,那么甲抽到D.1、 2、 3、 41 号跑道的概考点:概率公式.分析:由设1、2、3、4四个跑道,甲抽到1号跑道的只有 1 种情况,直接利用概率公式求解即可求得答案.解答:解:∵ 设1、2、3、4四个跑道,甲抽到 1 号跑道的只有 1 种情况,∴甲抽到 1 号跑道的概率是:.应选 D .点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.〔 3 分〕〔 2021?南宁〕假设分式的值为0,那么x 的值为〔〕A.﹣ 1B.0 C.2 D.﹣ 1 或2考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣2=0 ,再解方程即可.解答:解:由题意得:x﹣ 2=0,且 x+1≠0,解得: x=2,应选: C.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零〞这个条件不能少.7.〔 3 分〕〔 2021?南宁〕如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是〔〕2 2 2 2A.150πcm B.300π cm C.600π cm D. 150π cm考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:烟囱帽所需要的铁皮面积=×20×2π×15=300π〔cm2〕.应选 B.点评:此题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.8.〔 3 分〕〔 2021?南宁〕以下各式计算正确的选项是〔〕A.3a3+2a2=5a6 B.C.a4?a2=a8 D.〔 ab2〕3=ab6考点:二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:分别根据合并同类项、同底数幂的乘法法那么及幂的乘方与积的乘方法那么对各选项进行逐一判断即可.解答:解: A、 3a 3与 2a2不是同类项,不能合并,故本选项错误;B、 2 + =3 ,故本选项正确;C、a 4?a2=a6,故本选项错误;D 、〔 ab 2〕3=a3b6,故本选项错误.应选 B.点评:此题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.9.〔 3 分〕〔 2021?南宁〕陈老师打算购置气球装扮学校 “六一 〞儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购置时以一束〔 4 个气球〕为单位,第一、二束气球的价格如下图,那么第三束气球的价格为〔〕A .19B .18C .16D . 15考点 : 二元一次方程组的应用.分析: 要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.解答: 解:设笑脸形的气球x 元一个,爱心形的气球 y 元一个,由题意,得,解得: 2x+2y=16 .应选 C .点评: 此题考查了学生观察能力和识图能力,体思想的运用,解答此题时根据单价列二元一次方程组解实际问题的运用和数学整×数量 =总价的数量关系建立方程是关键.10.〔 3 分〕〔 2021?南宁〕二次函数y=ax 2+bx+c 〔 a ≠0〕的图象如下图,以下说法错误的是〔〕A . 图象关于直线 x=1 对称B . 函数 ax 2+bx+c 〔 a ≠0〕的最小值是﹣ 4C .﹣ 1 和 3 是方程 ax 2+bx+c 〔a ≠0〕的两个根 D . 当 x <1 时, y 随 x 的增大而增大考点:二次函数的性质.分析:根据对称轴及抛物线与x 轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,那么图象关于直线 x=1 对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为〔1,﹣ 4〕,又抛物线开口向上,所以函数ax2+bx+c〔 a≠0〕的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x 轴的一个交点为〔﹣1, 0〕,而对称轴为直线x=1,所以抛ax2+bx+c〔 a≠0〕的两个根,物线与x 轴的另外一个交点为〔3,0〕,那么﹣ 1 和 3 是方程正确,故本选项不符合题意;D、由抛物线的对称轴为x=1 ,所以当xx< 1 时, y 随x 的增大而减小,错误,故本选项符合题意.应选 D .点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.〔3 分〕〔 2021?南宁〕如图, AB 是⊙ O 的直径,弦CD 交 AB 于点 E,且 AE=CD =8,∠BAC =∠ BOD,那么⊙ O的半径为〔〕A.4B.5C.4D. 3考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据∠ BAC=∠ BOD可得出=,故可得出AB⊥ CD,由垂径定理即可求出DE 的长,再根据勾股定理即可得出结论.解答:解:∵ ∠ BAC=∠BOD,∴= ,∴AB ⊥CD ,∵AE =CD =8,∴DE = CD=4,设OD=r,那么 OE =AE﹣r =8﹣ r,在RtODE 中, OD=r, DE=4,OE=8﹣ r ,22222 2∵OD =DE +OE ,即 r =4 +〔 8﹣r 〕,解得 r =5.点评:此题考查的是垂径定理及圆周角定理,熟知平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.12.〔 3 分〕〔 2021?南宁〕如图,直线y=与双曲线y=〔k>0,x>0〕交于点A,将直线y=向上平移 4 个单位长度后,与y 轴交于点 C,与双曲线y=〔k>0,x>0〕交于点B,假设 OA=3BC,那么 k 的值为〔〕A.3B.6C.D.考点:反比例函数综合题.专题:探究型.分析:先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B 作 AD ⊥ x 轴,BE⊥ x 轴,CF⊥ BE 于点 F ,再设 A〔 3x, x〕,由于 OA=3BC,故可得出B〔 x, x+4〕,再根据反比例函数中k=xy 为定值求出x解答:解:∵将直线 y= 向上平移 4 个单位长度后,与∴平移后直线的解析式为 y= x+4,y 轴交于点C,分别过点 A、 B 作 AD ⊥ x 轴, BE⊥ x 轴, CF⊥ BE 于点 F,设 A〔 3x,x〕,∵OA=3BC, BC∥ OA, CF ∥ x 轴,∴C F = OD ,∵点 B 在直线 y= x+4 上,∴B〔 x,x+4〕,∵点 A、B 在双曲线y=上,∴3x? x=x?〔 x+4〕,解得 x=1,∴k=3 ×1 × ×1= .应选 D .点评:此题考查的是反比例函数综合题,根据题意作出辅助线,设出根据 k=xy 的特点求出k 的值即可.A、B 两点的坐标,再二、填空题〔本大题共 6 小题,每题 3 分,共 18 分〕13.〔 3 分〕〔 2021?南宁〕假设二次根式有意义,那么x 的取值范围是x≥2 .考点:二次根式有意义的条件.分析:根据二次根式有意义的条件,可得解答:解:根据题意,使二次根式x﹣ 2≥0,解不等式求范围.有意义,即x﹣ 2≥0,解得 x ≥2;故答案为 x ≥2.点评: 此题考查二次根式的意义,只需使被开方数大于或等于0 即可.14.〔 3 分〕〔 2021?南宁〕一副三角板如下图放置,那么 ∠ AOB= 105°.考点 : 角的计算.分析: 根据三角板的度数可得:∠ 1=45°, ∠ 2=60°,再根据角的和差关系可得∠AOB =∠ 1+∠ 2,进而算出角度.解答: 解:根据三角板的度数可得:∠1=45°, ∠ 2=60°,∠AOB =∠ 1+∠ 2=45 °+60 °=105 ,°故答案为: 105.点评: 此题主要考查了角的计算,关键是掌握角之间的关系.15.〔 3 分〕〔 2021?南宁〕分解因式:x 2﹣ 25=〔 x+5 〕〔 x ﹣ 5〕 .考点 : 因式分解-运用公式法.分析: 直接利用平方差公式分解即可.解答: 解: x 2﹣ 25=〔 x+5〕〔 x ﹣5〕.故答案为:〔 x+5〕〔 x ﹣ 5〕.点评: 此题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.16.〔 3 分〕〔 2021?南宁〕某中学定:学生的学期体育合成分100 分,其中,期中考成占40% ,期末考成占60%,小海个学期的期中、期末成〔百分制〕分是 80 分、 90 分,小海个学期的体育合成是86 分.考点:加平均数.分析:利用加平均数的公式直接算.用80 分, 90 分分乘以它的百分比,再求和即可.解答:解:小海学期的体育合成=〔 80×40%+90× 60% 〕 =86〔分〕.故答案86.点:本考的是加平均数的求法.本易出的是求80、90 两个数的平均数,平均数的理解不正确.17.〔 3 分〕〔 2021?南宁〕有一数据 a ,a , a ,⋯ a ,足以下律:123 n,〔 n≥2且 n 正整数〕, a2021的 1 〔果用数字表示〕.考点:律型:数字的化.:律型.分析:求出前几个数便不,每三个数一个循依次循,用 2021 除以 3,根据商和余数的情况确定答案即可.解答:解: a1= ,2=2,a =a3== 1,a4= =,⋯,依此推,每三个数一个循依次循,∵2021 ÷3=671,∴a2021为第671 循环组的最后一个数,与a3相同,为﹣1.故答案为:﹣1.点评:此题是对数字变化规律的考查,根据计算得到每三个数为一个循环组依次循环是解题的关键.18.〔 3 分〕〔 2021?南宁〕如图,在边长为2 的正三角形中,将其内切圆和三个角切圆〔与角两边及三角形内切圆都相切的圆〕的内部挖去,那么此三角形剩下局部〔阴影局部〕的面积为﹣π .考点:三角形的内切圆与内心.分析:连接OB,以及⊙ O与BC的切点,在构造的直角三角形中,通过解直角三角形易求得⊙ O 的半径,然后作⊙O 与小圆的公切线 EF ,易知△ BEF 也是等边三角形,那么小圆的圆心也是等边△ BEF 的重心;由此可求得小圆的半径,即可得到四个圆的面积,从而由等边三角形的面积减去四个圆的面积和所得的差即为阴影局部的面积.解答:解:如图,连接OB、 OD;设小圆的圆心为P,⊙ P 与⊙ O 的切点为 G;过 G 作两圆的公切线EF,交交 BC 于 F ,AB 于E,那么∠ BEF=∠ BFE =90°﹣ 30°=60°,所以△ BEF 是等边三角形.在Rt△ OBD 中,∠ OBD=30°,那么 OD=BD ?tan30°=1×=,OB=2 OD=,BG=OB﹣OG=;由于⊙ P 是等边△BEF 的内切圆,所以点P 是△BEF 的内心,也是重心,故 PG= BG=;∴S⊙O=π×〔〕2=π,S⊙P=π×〔〕2=π;∴S 阴影 =S △ABC ﹣S ⊙O ﹣ 3S ⊙P = ﹣ π﹣ π=﹣π.故答案为﹣π.点评: 此题主要考查了等边三角形的性质、相切两圆的性质以及图形面积的计算方法,难度适中.三、〔本大题共 2 小题,每题6 分,共 12 分〕19.〔 6 分〕〔 2021?南宁〕计算: 20210﹣+2cos60°+〔﹣ 2〕考点 : 实数的运算;零指数幂;特殊角的三角函数值.分析: 分别进行零指数幂、二次根式的化简,然后代入特殊角的三角函数值合并即可得出答案.解答:解:原式 =1﹣ 3 +2× ﹣ 2=﹣ 3 .点评: 此题考查了实数的运算,属于根底题,关键是掌握零指数幂的运算法那么及一些特殊角的三角函数值.20.〔 6 分〕〔 2021?南宁〕先化简,再求值:,其中 x=﹣ 2.考点 : 分式的化简求值.专题 : 计算题.分析: 先算括号里面的,再把除式的分母分解因式,并把除法转化为乘法,然后进行约分,最后把 x 的值代入进行计算即可得解.解答:解:〔+〕 ÷=÷=?=x﹣ 1,当 x=﹣ 2 时,原式 =﹣2﹣ 1=﹣ 3.点评:此题考查了分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.四、本大题共 2 小题,每题 8 分,共21.〔 8 分〕〔 2021?南宁〕如图,△ABC 16 分三个定点坐标分别为A〔﹣ 1, 3〕, B〔﹣ 1, 1〕,C〔﹣ 3, 2〕.〔1〕请画出△ ABC 关于y 轴对称的△ A1B1C1;〔2〕以原点 O 为位似中心,将△A1B1C1放大为原来的 2 倍,得到△ A2B2C2,请在第三象限内画出△ A2B2C2,并求出S△A1B1C1: S△A2B2C2的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:〔1〕根据网格结构找出点 A、 B、 C 关于 y 轴的对称点 A1、 B1、 C1的位置,然后顺次连接即可;(2〕连接 A1O 并延长至 A2,使 A2O=2 A1O,连接 B1O 并延长至 B2,使 B2O=2B1O,连接 C1O 并延长至 C2,使 C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.解答:解:〔1〕△A1B1C1如下图;〔2〕△ A2B 2C2 如下图,∵△ A1B1C1 放大为原来的 2 倍得到△A2B2C2,∴△ A B C ∽ △A B C ,且相似比为,1 1 12 2 2∴S△A1B1C1: S△A2B2C2=〔〕2 =.点评:此题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键,还利用了相似三角形面积的比等于相似比的平方的性质.22.〔8 分〕〔 2021?南宁〕 2021 年 6 月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍〞为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图 1 和图 2 提供的信息,解答以下问题:(1〕在这次抽样调查中,一共调查了多少名学生?(2〕请把折线统计图〔图 1〕补充完整;(3〕求出扇形统计图〔图 2〕中,体育局部所对应的圆心角的度数;(4〕如果这所中学共有学生 1800 名,那么请你估计最喜爱科普类书籍的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.专题:图表型.分析:〔1〕用文学的人数除以所占的百分比计算即可得解;(2〕根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3〕用体育所占的百分比乘以360°,计算即可得解;(4〕用总人数乘以科普所占的百分比,计算即可得解.解答:解:〔1〕90÷30%=300〔名〕,故,一共调查了300 名学生;(2〕艺术的人数: 300×20%=60 名,其它的人数: 300×10%=30 名;补全折线图如图;(3〕体育局部所对应的圆心角的度数为:×360°=48°;(4〕 1800×=480〔名〕.答: 1800 名学生中估计最喜爱科普类书籍的学生人数为480.点评:此题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每局部占总局部的百分比等于该局部所对应的扇形圆心角的度数与 360°的比.五、〔本大题总分值8 分〕中, AC 为对角线,点E、 F 分别是边BC、23.〔 8 分〕〔 2021?南宁〕如图,在菱形ABCDAD 的中点.(1〕求证:△ ABE≌ △CDF ;(2〕假设∠B=60°, AB=4,求线段 AE 的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:〔1〕首先根据菱形的性质,得到AB=BC=AD =CD ,∠ B=∠ D,结合点 E、F 分别是边BC、 AD 的中点,即可证明出△ ABE≌ △CDF;(2〕首先证明出△ ABC 是等边三角形,结合题干条件在 Rt△AEB 中,∠ B=60°,AB=4,即可求出 AE 的长.解答:解:〔1〕∵四边形ABCD是菱形,∴AB =BC =AD=CD,∠ B=∠ D,∵点 E、F 分别是边BC、 AD 的中点,∴BE =DF ,在△ ABE 和△ CDF 中,∵,∴△ ABE≌ △ CDF 〔 SAS〕;(2〕∵ ∠B=60°,∴△ ABC 是等边三角形,∵点 E 是边 BC 的中点,∴AE ⊥BC,在Rt△ AEB 中,∠ B=60°, AB=4,sin60°= =,解得 AE=2.点评:此题主要考查菱形的性质等知识点,解答此题的关键是熟练掌握菱形的性质、全等三角形的证明以及等边三角形的性质,此题难度不大,是一道比拟好的中考试题.六、〔本大题总分值10 分〕24.〔 10 分〕〔 2021?南宁〕在一条笔直的公路上有A、 B 两地,甲骑自行车从 A 地到B 地;乙骑自行车从 B 地到 A 地,到达 A 地后立即按原路返回,如图是甲、乙两人离 B 地的距离y〔km〕与行驶时x〔 h〕之间的函数图象,根据图象解答以下问题:(1〕写出 A、 B 两地直接的距离;(2〕求出点 M 的坐标,并解释该点坐标所表示的实际意义;(3〕假设两人之间保持的距离不超过3km 时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x 的取值范围.考点:一次函数的应用.分析:〔1〕x=0时甲的y值即为A、B两地的距离;(2〕根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点 M 的坐标以及实际意义;〔3〕分相遇前和相遇后两种情况求出x 的值,再求出最后两人都到达 B 地前两人相距3 千米的时间,然后写出两个取值范围即可.解答:解:〔 1〕 x=0 时,甲距离 B 地 30 千米,所以, A、 B 两地的距离为 30 千米;〔2〕由图可知,甲的速度:30÷2=15 乙的速度: 30÷1=30 千米 /时,30÷〔 15+30〕 =,×30=20 千米,所以,点M 的坐标为〔,20〕,表示千米 /时,小时后两车相遇,此时距离 B 地20 千米;〔3〕设 x 小时时,甲、乙两人相距3km,①假设是相遇前,那么15x+30x=30 ﹣ 3,解得 x=,②假设是相遇后,那么15x+30x=30+3 ,解得 x=,③假设是到达 B 地前,那么 15x﹣ 30〔 x﹣ 1〕=3,解得 x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.点评:此题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于〔 3〕要分情况讨论.七、〔本大题总分值10 分〕25.〔 10 分〕〔 2021?南宁〕如图,在△ ABC 中,∠ BAC=90 °,AB=AC, AB 是⊙ O 的直径,⊙O 交 BC 于点 D, DE ⊥ AC 于点 E, BE 交⊙O 于点 F ,连接 AF , AF 的延长线交 DE 于点P.(1〕求证: DE 是⊙ O 的切线;(2〕求 tan∠ ABE 的值;(3〕假设 OA=2,求线段 AP 的长.考点:切线的判定;圆周角定理;解直角三角形.专题:证明题.分析:〔1〕连结 AD 、OD ,根据圆周角定理得∠ ADB=90°,由 AB=AC,根据等腰三角形的直线得 DC =DB ,所以 OD 为△ BAC 的中位线,那么 OD ∥ AC,然后利用 DE ⊥AC 得到OD⊥ DE ,这样根据切线的判定定理即可得到结论;〔2〕易得四边形OAED 为正方形,然后根据正切的定义计算tan∠ ABE 的值;〔3〕由 AB 是⊙ O 的直径得∠ AFB=90°,再根据等角的余角相等得∠ EAP=∠ ABF,那么tan∠ EAP=tan∠ ABE=,在Rt△EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出AP.解答:〔1〕证明:连结AD 、 OD,如图,∵AB 是⊙ O 的直径,∴∠ ADB =90 °,∵AB =AC ,∴AD 垂直平分BC,即 DC =DB ,∴OD 为△ BAC 的中位线,∴OD ∥ AC,而DE⊥AC,∴OD ⊥ DE ,∴DE 是⊙ O 的切线;(2〕解:∵ OD⊥ DE , DE⊥ AC,∴四边形 OAED 为矩形,而OD=OA,∴四边形 OAED 为正方形,∴AE =AO ,∴t an ∠ABE= = ;(3〕解:∵ AB 是⊙ O 的直径,∴∠ AFB=90 °,∴∠ABF+∠FAB=90 °,而∠EAP+∠FAB=90°,∴∠ EAP=∠ ABF ,∴tan ∠EAP=tan∠ ABE= ,在Rt△ EAP 中, AE =2,∵tan ∠EAP= = ,∴EP =1,∴AP ==.点评:此题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和解直角三角形.八、〔本大题总分值10 分〕226.〔 10 分〕〔 2021?南宁〕如图,抛物线 y=ax +c〔 a≠0〕经过 C〔 2,0〕,D〔 0,﹣ 1〕两点,并与直线 y=kx 交于 A、B 两点,直线 l 过点 E〔 0,﹣ 2〕且平行于 x 轴,过 A、 B 两点分别作直线 l 的垂线,垂足分别为点 M、N.(1〕求此抛物线的解析式;(2〕求证: AO=AM;(3〕探究:①当 k=0 时,直线y=kx 与 x 轴重合,求出此时的值;②试说明无论k 取何值,的值都等于同一个常数.考点:二次函数综合题.专题:代数几何综合题.分析:〔1〕把点 C、 D 的坐标代入抛物线解析式求出a、 c,即可得解;〔2〕根据抛物线解析式设出点 A 的坐标,然后求出AO、 AM 的长,即可得证;〔3〕① k=0 时,求出 AM、 BN 的长,然后代入+ 计算即可得解;②设点 A〔x1, x12﹣1〕, B〔 x2, x22﹣ 1〕,然后表示出+ ,再联立抛物线与直线解析式,消掉未知数y 得到关于 x 的一元二次方程,利用根与系数的关系表示出x 1+x2, x1?2,并求出 x12 2 2 2+x2,x1 ?x2 ,然后代入进行计算即可得解.解答:〔1〕解:∵ 抛物线y=ax2+c〔a≠0〕经过C〔2,0〕,D〔0,﹣1〕,∴,解得,所以,抛物线的解析式为y=x2﹣ 1;〔2〕证明:设点 A 的坐标为〔 m,m2﹣ 1〕,那么 AO= = m 2+1,∵直线 l 过点 E〔 0,﹣ 2〕且平行于x 轴,∴点 M 的纵坐标为﹣2,∴AM = m 2﹣ 1﹣〔﹣ 2〕=m2+1 ,∴AO=AM;(3〕解:① k=0 时,直线 y=kx 与 x 轴重合,点 A、 B 在 x 轴上,∴AM =BN=0﹣〔﹣ 2〕 =2,∴ + = + =1;② k 取任何值时,设点A〔 x1,x12﹣ 1〕, B〔 x2,x22﹣ 1〕,那么 += + = = ,联立,消掉 y 得, x 2﹣ 4kx ﹣ 4=0,由根与系数的关系得,所以, x 12+x 22=〔 x 1+x 2〕 2﹣ 2x 1 ?x 2=16k 2+8,2 2x 1 ?x 2 =16 ,∴+ = = =1,∴无论 k 取何值,+ 的值都等于同一个常数 1.点评: 此题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离, 根与系数的关系, 根据抛物线上点的坐标特征设出点A 、B 的坐标,然后用含有 k 的式子表示出+ 是解题的关键,也是此题的难点,计算量较大,要认真仔细. x 1+x 2=4k , x 1?x 2=﹣ 4,。

2024年广西中考数学试卷

2024年广西中考数学试卷

1.下列哪个数集包含的元素全是无理数?A.{√2, -3, 0}B.{π, √3, e}(答案)C.{1/2, √4, 3.14}D.{√25, -√16, 2/3}2.在平面直角坐标系中,点A(2,3)关于x轴的对称点B的坐标是?A.(2,-3)(答案)B.(-2,3)C.(-2,-3)D.(3,2)3.下列哪个选项的表述是正确的?A.所有的等腰三角形都是等边三角形。

B.所有的等边三角形都是等腰三角形。

(答案)C.所有的直角三角形都是等腰三角形。

D.所有的等腰三角形都是直角三角形。

4.若a和b是实数,且a < b,则下列哪个不等式一定成立?A.a2 < b2B.ab < b2C. a + c < b + c(答案)D.ac < bc5.下列哪个函数图像是经过原点的直线?A.y = x2B.y = 1/xC.y = 2x(答案)D.y = x + 16.下列哪个选项的表述是关于平行四边形的正确性质?A.平行四边形的对角线相等。

B.平行四边形的对角线互相垂直。

C.平行四边形的对边平行且相等。

(答案)D.平行四边形的所有角都是直角。

7.若一个圆的半径为r,则它的面积S与r的关系是?A.S = πrB.S = 2πrC.S = πr2(答案)D.S = 2πr28.下列哪个选项的表述是错误的?A.0是整数。

B.0是正数。

C.0是偶数。

(答案)D.0不是负数。

9.在直角三角形ABC中,∠C = 90°,若AC = 3,BC = 4,则AB的长度为?A.5(答案)B.7C.25D.不能确定10.下列哪个选项的表述是关于实数的正确性质?A.实数包括有理数和无理数。

(答案)B.实数只有正数和负数。

C.实数不包括0。

D.实数不能进行比较大小。

2023年广西壮族自治区中考数学真题(解析版)

2023年广西壮族自治区中考数学真题(解析版)

2023年广西初中学业水平考试数 学(全卷满分120分,考试时间120分钟)注意事项:1. 答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2. 考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3. 不能使用计算器.4. 考试结束后,将本试卷和答题卡.......一并交回. 一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 若零下2摄氏度记为2C −°,则零上2摄氏度记为( )A. 2C −°B. 0C °C. 2C +°D. 4C +°【答案】C【解析】【分析】根据正负数的实际意义可进行求解.【详解】解:由题意可知零上2摄氏度记为2C +°;故选C .【点睛】本题主要考查正负数的意义,熟练掌握正负数的意义是解题的关键.2. 下列数学经典图形中,是中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据中心对称图形的概念:一个图形如果绕某个点旋转180度后能与原图形完全重合的图形;由此问题可求解.【详解】解:选项中符合中心对称图形的只有A 选项;故选A .【点睛】本题主要考查中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.3. 若分式11x +有意义,则x 的取值范围是( ) A. 1x ≠−B. 0x ≠C. 1x ≠D. 2x ≠ 【答案】A【解析】【分析】根据分式有意义的条件可进行求解.【详解】解:由题意得:10x +≠,∴1x ≠−;故选A .【点睛】本题主要考查分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.4. 如图,点A 、B 、C 在O 上,40C ∠=°,则AOB ∠的度数是( )A. 50°B. 60°C. 70°D. 80°【答案】D【解析】【分析】根据圆周角定理的含义可得答案.【详解】解:∵40C ∠=°,∴280AOB C ∠=∠=°,故选:D .【点睛】本题考查的是圆周角定理的应用,熟记圆周角定理是解题的关键.5. 2x ≤在数轴上表示正确的是( )A.B. C.D.【答案】C【解析】【分析】在数轴上表示不等式的解集,需要确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;确定“方向”:对边界点a 而言,x a >或x a ≥向右画,x a <或x a ≤向左画.【详解】解:2x ≤在数轴上表示为:故选:C .【点睛】本题考查了在数轴上表示不等式的解集,熟知表示的方法是解题的关键.6. 甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:22.1S =甲,2 3.5S =乙,29S =丙,20.7S =丁,则成绩最稳定的是( )A. 甲B. 乙C. 丙D. 丁【答案】D【解析】【分析】根据方差可进行求解.【详解】解:由题意得:2222S S S S <<<丁乙丙甲;∴成绩最稳定的是丁;故选D .【点睛】本题主要考查方差,熟练掌握方差是解题的关键.7. 如图,一条公路两次转弯后又回到与原来相同的方向,如果130A ∠=°,那么B ∠的度数是()A. 160°B. 150°C. 140°D. 130°【答案】D【解析】【分析】根据题意得到AC BD ∥,即可得到130B A ∠=∠=°.【详解】解:∵公路两次转弯后又回到与原来相同的方向,∴AC BD ∥,∴130B A ∠=∠=°.故选:D【点睛】本题考查了平行线的性质“两直线平行,内错角相等”,熟知平行线的性质定理,根据题意得到AC BD ∥是解题关键.8. 下列计算正确的是( )A. 347a a a +=B. 347a a a ⋅=C. 437a a a ÷=D. ()437a a = 【答案】B【解析】【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A. 347a a a +≠,故该选项不符合题意;B. 347a a a ⋅=,故该选项符合题意;C. 437a a a a ÷=≠,故该选项不符合题意;D. ()43127a a a =≠,故该选项不符合题意;故选:B .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.9. 将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线是( )A. 2(3)4y x =−+B. 2(3)4y x =++C. 2(3)4y x =+−D. 2(3)4y x =−− 【答案】A【解析】【分析】根据“左加右减,上加下减”的法则进行解答即可.【详解】解:将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线的函数表达式为:2(3)4y x =−+.故选:A .【点睛】本题考查了二次函数图象的平移,熟知二次函数图象平移的法则是解答此题的关键.10. 赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A. 20mB. 28mC. 35mD. 40m【答案】B【解析】 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R , ()7m OD OC CD R ∴=−=−,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===, 在Rt △ADO 中,222AD OD OA +=,()2223772R R ∴+−= , 解得:156528m 56R =≈, 故选B【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.11. 据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,依题意可列方程为( )A. 23.2(1) 3.7x −=B. 23.2(1) 3.7x +=C. 23.7(1) 3.2x −=D. 23.7(1) 3.2x +=【答案】B【解析】 【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,根据题意列出一元二次方程即可.【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,根据题意得,23.2(1) 3.7x +=.故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.12. 如图,过(0)k y x x =>的图象上点A ,分别作x 轴,y 轴的平行线交1y x=−的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ++=,则k 的值为( )A. 4B. 3C. 2D. 1【答案】C【解析】 【分析】设(),A a b ,则1,B b b− ,1,D a a − ,11,C b a −−,根据坐标求得1S ab k ==,241S S ==,推得31211S b a =−×− = ,即可求得. 详解】设(),A a b ,则1,B b b− ,1,D a a −,11,C b a −− 【∵点A 在(0)k y x x=>的图象上 则1S ab k ==, 同理�B ,D 两点在1y x=−的图象上, 则241S S == 故3511122S −−==, 又�31211S b a =−×−= , 即112ab =, 故2ab =,∴2k =,故选:C .【点睛】本题考查了反比例函数的性质,矩形的面积公式等,熟练掌握反比例函数的性质是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13.=______.【答案】3【解析】【分析】根据算术平方根的概念求解即可.【详解】解:因32=9,.故答案为:3.【点睛】此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.14. 分解因式:a 2 + 5a =________________.【答案】a (a+5)【解析】【分析】提取公因式a 进行分解即可.【详解】a 2+5a=a �a+5��故答案是:a �a+5��【点睛】考查了因式分解-提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而为将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.15. 函数3y kx =+的图象经过点()2,5,则k =______. 【答案】1【解析】【分析】把点()2,5代入函数解析式进行求解即可.【详解】解:由题意可把点()2,5代入函数解析式得:235k +=,解得:1k =;故答案为1.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键. 16. 某班开展“梦想未来、青春有我”主题班会,第一小组有2位男同学和3位女同学,现从中随机抽取1位同学分享个人感悟,则抽到男同学的概率是______. 【答案】25##0.4 【解析】【分析】根据概率公式,即可解答.【详解】解:抽到的同学总共有5种等可能情况,抽到男同学总共有2种可能情况, 故抽到男同学的概率是25, 故答案为:25. 【点睛】本题考查了根据概率公式求概率,熟知概率公式是解题的关键.17. 如图,焊接一个钢架,包括底角为37°的等腰三角形外框和3m 高的支柱,则共需钢材约______m (结果取整数).(参考数据:sin 370.60°≈,cos370.80°≈,tan 370.75°≈)【答案】21【解析】【分析】根据解直角三角形及等腰三角形的性质可进行求解.【详解】解:∵ABC 是等腰三角形,且CD AB ⊥,∴AD BD =,∵3m CD =, ∴5m,4m sin 37tan 37CD CD AC BC AD BD ======°°, ∴共需钢材约为2221m AC AD CD ++=;故答案为21.【点睛】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键.18. 如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为______.【解析】【分析】首先证明出MN 是AEF △的中位线,得到12MN AE =,然后由正方形的性质和勾股定理得到AE BE 最大时,AE 最大,此时MN 最大,进而得到当点E 和点C 重合时,BE 最大,即BC 的长度,最后代入求解即可.【详解】如图所示,连接AE ,�M ,N 分别是EF AF ,的中点,�MN 是AEF △的中位线, �12MN AE =, ∵四边形ABCD 是正方形,�90B ?,�AE�当BE 最大时,AE 最大,此时MN 最大,�点E 是BC 上的动点,�当点E 和点C 重合时,BE 最大,即BC 长度,�此时AE ==�12MN AE ==,�MN.故答案.【点睛】此题考查了正方形的性质,三角形中位线的性质,勾股定理等知识,解题的关键是熟练掌握以上知识点.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 19. 计算:2(1)(4)2(75)−×−+÷−.【答案】6【解析】【分析】根据有理数的混合运算法则求解即可.【详解】2(1)(4)2(75)−×−+÷−442=+÷42=+6=.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.20. 解分式方程:211x x =−. 【答案】=1x −【解析】【分析】去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】解:211x x=− 去分母得,21x x =−移项,合并得,=1x −检验:当=1x −时,()120x x −=≠,的为所以原分式方程的解为=1x −.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21. 如图,在ABC 中,30A ∠=°,90B ??.(1)在斜边AC 上求作线段AO ,使AO BC =,连接OB ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)若2OB =,求AB 的长.【答案】(1)图见详解(2)AB =【解析】【分析】(1)以A 为圆心,BC 长为半径画弧,交AC 于点O ,则问题可求解;(2)根据含30度直角三角形的性质可得2AC BC =,则有OC AO =,进而问题可求解.【小问1详解】解:所作线段AO 如图所示:【小问2详解】解:∵30A ∠=°,90ABC ∠=°,∴2AC BC =,∵AO BC =,∴2AC AO =,∴OC AO =,即点O 为AC 的中点,∵2OB =,∴24AC OB ==,∴2BC =,∴AB =.【点睛】本题主要考查含30度直角三角形的性质、直角三角形斜边中线定理及勾股定理,熟练掌握含30度直角三角形的性质、直角三角形斜边中线定理及勾股定理是解题的关键.22. 4月24日是中国航天日,为激发青少年崇尚科学、探索未知的热情,航阳中学开展了“航空航天”知识问答系列活动.为了解活动效果,从七、八年级学生的知识问答成绩中,各随机抽取20名学生的成绩进行统计分析(6分及6分以上为合格),数据整理如下:学生成绩统计表七年级 八年级 平均数7.55 7.55 中位数8 c 众数a 7 合格率b 85%根据以上信息,解答下列问题:(1)写出统计表中a ,b ,c 的值;(2)若该校八年级有600名学生,请估计该校八年级学生成绩合格的人数;(3)从中位数和众数中任选其一,说明其在本题中的实际意义.【答案】(1)8a =,80%b =,7.5c =(2)510人 (3)用中位数的特征可知七,八年级学生成绩的集中趋势,表示了七,八年级学生成绩数据的中等水平.【解析】【分析】(1)根据中位数,众数的定义求解即可,根据合格率=合格人数÷总人数即可求得;(2)根据八年级抽取人数的合格率进行求解即可;(3)根据中位数和众数的特征进行说明即可.【小问1详解】根据八年级的成绩分布可得:5分的有3人,6分的有2人,7分的有5人,8分的有4人,9分的有3人,10分的有3人, 故中位数是787.52+=, 根据扇形统计图可得:5分的有2020%4×=人,6分的有2010%2×=人,7分的有2010%2×=人,8分的有2030%6×=人,9分的有2015%3×=人,10分的有2015%3×=人, 故众数是8,合格人数为:2263316++++=人, 故合格率为:1680%20=, 故8a =,80%b =,7.5c =.【小问2详解】八年级学生成绩合格的人数为:60085%510×=人,即若该校八年级有600名学生,该校八年级学生成绩合格的人数有510人.【小问3详解】根据中位数的特征可知七,八年级学生成绩的集中趋势和七,八年级学生成绩数据的中等水平.【点睛】本题考查了中位数,众数,合格率,用样本估计总体等,熟练掌握中位数和众数的定义是解题关键.23. 如图,PO 平分APD ∠,PA 与O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是O 的切线;(2)若O 的半径为4,5OC =,求PA 的长.【答案】(1)见解析 (2)12AP =【解析】【分析】(1)首先根据切线的性质得到OA PA ⊥,然后根据角平分线的性质定理得到OA OB =即可证明;(2)首先根据勾股定理得到3BC =,然后求得459AC OA OC =+=+=,最后利用tan tan BCO ACP ∠=∠,代入求解即可.【小问1详解】�PA 与O 相切于点A ,�OA PA ⊥,�PO 平分APD ∠,OB PD ⊥,�OA OB =,�PB 是O 的切线;【小问2详解】�O 的半径为4,�4OA OB ==,�OB PD ⊥,5OC =,�3BC =,459AC OA OC =+=+=,�BCO ACP ∠=∠,�tan tan BCO ACP ∠=∠, �BO AP BC AC =,即439AP =, �12AP =.【点睛】此题考查了圆切线的性质和判定,勾股定理,三角函数等知识,解题的关键是熟练掌握以上知识点.24. 如图,ABC 是边长为4的等边三角形,点D ,E ,F 分别在边AB ,BC ,CA 上运动,满足AD BE CF ==.(1)求证:ADF BED ≌;(2)设AD 的长为x ,DEF 的面积为y ,求y 关于x 的函数解析式;(3)结合(2)所得的函数,描述DEF 的面积随AD 的增大如何变化.【答案】(1)见详解 (2)2y x =−+ (3)当24x <<时,DEF 的面积随AD 的增大而增大,当02x <<时,DEF 的面积随AD 的增大而减小【解析】【分析】(1)由题意易得AF BD =,60A B ∠=∠=°,然后根据“SAS ”可进行求证;(2)分别过点C 、F 作CH AB ⊥,FG AB ⊥,垂足分别为点H 、G ,根据题意可得ABC S = 4AF x =−,然后可得)4FG x =−,由(1)易得ADF BED CFE≌≌,则有()4ADF BED CFE S S S x x ===− ,进而问题可求解;(3)由(2)和二次函数的性质可进行求解.【小问1详解】证明:∵ABC 是边长为4的等边三角形,∴60∠=∠=∠=°A B C ,4AB BC AC ===,∵AD BE CF ==,∴AF BD CE ==,在ADF △和BED 中,AF BDA B AD BE= ∠=∠= ,∴()SAS ADF BED ≌;【小问2详解】解:分别过点C 、F 作CH AB ⊥,FG AB ⊥,垂足分别为点H 、G ,如图所示:在等边ABC 中,60A B ACB ∠=∠=∠=°,4AB BC AC ===,∴sin 60CH AC =⋅°=∴12ABC S AB CH =⋅= 设AD 的长为x ,则AD BE CF x ===,4AF x =−,∴)sin 604FG AF x =⋅°=−,∴()142ADF S AD FG x x =⋅=− , 同理(1)可知ADF BED CFE ≌≌,∴()4ADF BED CFES S S x x ===− , ∵DEF 的面积为y ,∴()234ABC ADF y S S x x x =−=−=−+ 【小问3详解】解:由(2)可知:2y x =−+,∴0a =>,对称轴为直线2x =, ∴当2x >时,y 随x 的增大而增大,当2x <时,y 随x 的增大而减小;即当24x <<时,DEF 的面积随AD 的增大而增大,当02x <<时,DEF 的面积随AD 的增大而减小.【点睛】本题主要考查锐角三角函数、二次函数的综合及等边三角形的性质,熟练掌握锐角三角函数、二次函数的综合及等边三角形的性质是解题的关键.25. 【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:()0()m m l M a y +⋅=⋅+.其中秤盘质量0m 克,重物质量m 克,秤砣质量M 克,秤纽与秤盘的水平距离为l 厘米,秤纽与零刻线的水平距离为a 厘米,秤砣与零刻线的水平距离为y 厘米.【方案设计】目标:设计简易杆秤.设定010m =,50M =,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l 和a 的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l ,a 的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l ,a 的方程;(3)根据(1)和(2)所列方程,求出l 和a 的值.任务二:确定刻线的位置.(4)根据任务一,求y 关于m 的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.【答案】(1)5l a =(2)1015250l a −=(3) 2.5,0.5l a =(4)120y m =(5)相邻刻线间的距离为5厘米【解析】【分析】(1)根据题意可直接进行求解;(2)根据题意可直接代值求解;(3)由(1)(2)可建立二元一次方程组进行求解;(4)根据(3)可进行求解;(5)分别把0m =,100m =,200m =,300m =,400m =,500m =,600m =,700m =,800m =,900m =,1000m =代入求解,然后问题可求解.【小问1详解】解:由题意得:0,0m y ==, ∴1050l a =,∴5l a =;【小问2详解】解:由题意得:1000,50m y ==, ∴()()1010005050l a +=+, ∴1015250l a −=;【小问3详解】解:由(1)(2)可得:51015250l a l a = −=, 解得: 2.50.5l a = = ; 【小问4详解】解:由任务一可知: 2.5,0.5l a =,∴()()2.510500.5my +=+, ∴120y m =; 【小问5详解】解:由(4)可知120y m =, ∴当0m =时,则有0y =;当100m =时,则有5y =;当200m =时,则有10y =;当300m =时,则有15y =;当400m =时,则有20y =;当500m =时,则有25y =;当600m =时,则有30y =;当700m =时,则有35y =;当800m =时,则有40y =;当900m =时,则有45y =;当1000m =时,则有50y =;∴相邻刻线间的距离为5厘米.【点睛】本题主要考查一次函数的应用,解题的关键是理解题意.26. 【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD 对折,使AD 与BC 重合,展平纸片,得到折痕EF ;折叠纸片,使点B 落在EF 上,并使折痕经过点A ,得到折痕AM ,点B ,E 对应点分别为B ′,E ′,展平纸片,连接AB ′,BB ′,BE ′.请完成:(1)观察图1中1∠,2∠和3∠,试猜想这三个角的大小关系....; (2)证明(1)中的猜想;【类比操作】如图2,N 为矩形纸片ABCD 的边AD 上的一点,连接BN ,在AB 上取一点P ,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ′,P ′,展平纸片,连接,P B ′′.请完成:(3)证明BB ′是NBC ∠的一条三等分线.【答案】(1)123∠=∠=∠(2)见详解 (3)见详解【解析】【分析】(1)根据题意可进行求解;(2)由折叠的性质可知AB BB ′′=,AB AB ′=,然后可得AB BB AB ′′==,则有ABB ′ 是等边三角形,的进而问题可求证;(3)连接PB ′,根据等腰三角形性质证明12PB E BB E BB P ′′′==∠∠∠,根据平行线的性质证明12BB E CBB BB P ′′′==∠∠∠,证明()SAS PBB P B B ′′′ ≌,得出P BB PB B ′′′=∠∠,即可证明13CBB CBN ′=∠∠.【小问1详解】解:由题意可知123∠=∠=∠;【小问2详解】证明:由折叠的性质可得:AB BB ′′=,AB AB ′=,AE AE ′=,AE BE =, ∴AB BB AB ′′==,AE B E ′′′=,∴ABB ′ 是等边三角形,∵AE B E ′′′=,60ABB ′∠=°, ∴1302ABE B BE ABB ′′′′∠=∠=∠=°,∵四边形ABCD 是矩形,∴90ABC ∠=°,∴330∠°,∴123∠=∠=∠;【小问3详解】证明:连接PB ′,如图所示:由折叠的性质可知:BB PB ′′=,PB P B ′′=,PBB P B B ′′′=∠∠, ∵折痕B E AB ′⊥,BB PB ′′=,∴12PB E BB E BB P ′′′==∠∠∠, ∵四边形ABCD 为矩形,∴90EBC ∠=°,∴CB AB ⊥,∵B E AB ′⊥,∴B E BC ′∥, ∴12BB E CBB BB P ′′′==∠∠∠, ∵在PBB ′△和P B B ′′ 中,PB P B PBB P B B BB B B ′′′′′′′= ∠=∠ =, ∴()SAS PBB P B B ′′′ ≌,∴P BB PB B ′′′=∠∠, ∴12CBB NBB ′′=∠∠, ∴13CBB CBN ′=∠∠, ∴BB ′是NBC ∠的一条三等分线.【点睛】本题主要考查折叠的性质、线段垂直平分线的性质、等腰三角形的性质与判定及矩形的性质,三角形全等的判定和性质,作出辅助线,熟练掌握折叠的性质,证明,PBB P B B ′′′ ≌是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年广西南宁市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,其中只有一是正确的.1.(3分)(2014•南宁)如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m2.(3分)(2014•南宁)下列图形中,是轴对称图形的是()A.B.C.D.3.(3分)(2014•南宁)南宁东高铁火车站位于南宁青秀区凤岭北路,火车站总建筑面积约为267000平方米,其中数据267000用科学记数法表示为()A.26.7×104B.2.67×104C.2.67×105D.0.267×1064.(3分)(2014•南宁)要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2 C.x>﹣2 D.x≥﹣25.(3分)(2014•南宁)下列运算正确的是()A.a2•a3=a6B.(x2)3=x6C.m6÷m2=m3D.6a﹣4a=26.(3分)(2014•南宁)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm7.(3分)(2014•南宁)数据1,2,3,0,5,3,5的中位数和众数分别是()A.3和2 B.3和3 C.0和5 D.3和58.(3分)(2014•南宁)如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形9.(3分)(2014•南宁)“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A.B.C.D.10.(3分)(2014•南宁)如图,已知二次函数y=﹣x2+2x,当﹣1<x<a时,y随x的增大而增大,则实数a的取值范围是()A.a>1 B.﹣1<a≤1 C.a>0 D.﹣1<a<211.(3分)(2014•南宁)如图,在▱ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,EC.若AB=5,AD=8,sinB=,则DF的长等于()A.B.C.D.212.(3分)(2014•南宁)已知点A在双曲线y=﹣上,点B在直线y=x﹣4上,且A,B两点关于y轴对称.设点A的坐标为(m,n),则+的值是()A.﹣10 B.﹣8 C.6D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2014•南宁)比较大小:﹣5_________3(填>,<或=).14.(3分)(2014•南宁)如图,已知直线a∥b,∠1=120°,则∠2的度数是_________°.15.(3分)(2014•南宁)分解因式:2a2﹣6a=_________.16.(3分)(2014•南宁)第45届世界体操锦标赛将于2014年10月3日至12日在南宁隆重举行,届时某校将从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是_________.17.(3分)(2014•南宁)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东40°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于_________海里.18.(3分)(2014•南宁)如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为_________.三、解答题:(本大题共2小题,每小题满分12分,共12分)要求写出解答过程.如果运算结果含有根号,请保留根号.19.(6分)(2014•南宁)计算:(﹣1)2﹣4sin45°+|﹣3|+.20.(6分)(2014•南宁)解方程:﹣=1.四、解答题:(本大题共2小题,每小题满分16分,共16分)要求写出解答过程.如果运算结果含有根号,请保留根号.21.(8分)(2014•南宁)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周小最小,请画出△PAB,并直接写出P的坐标.22.(8分)(2014•南宁)考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.学校收集整理数据后,绘制了图1和图2两幅不完整的统计图,请根据统计图中信息解答下列问题:(1)这次抽样调查中,一共抽查了多少名学生?(2)请补全条形统计图;(3)请计算扇形统计图中“享受美食”所对应扇形的圆心角的度数;(4)根据调查结果,估计该校九年级500名学生中采用“听音乐”来减压方式的人数.五、解答题:(本大题满分8分)要求写出解答过程.如果运算结果含有根号,请保留根号.23.(8分)(2014•南宁)如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.六、解答题:(本大题满分10分)要求写出解答过程.如果运算结果含有根号,请保留根号.24.(10分)(2014•南宁)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?七、解答题:(本大题满分10分)要求写出解答过程.如果运算结果含有根号,请保留根号.25.(10分)(2014•南宁)如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1)试判断BE与FH的数量关系,并说明理由;(2)求证:∠ACF=90°;(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求的长.八、解答题:(本大题满分10分)要求写出解答过程.如果运算结果含有根号,请保留根号.26.(10分)(2014•南宁)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P 的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.2014年广西南宁市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,其中只有一是正确的.1.(3分)(2014•南宁)如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m考点:正数和负数.分析:首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.解答:解:因为上升记为+,所以下降记为﹣,所以水位下降3m时水位变化记作﹣3m.故选:A.点评:考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)(2014•南宁)下列图形中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2014•南宁)南宁东高铁火车站位于南宁青秀区凤岭北路,火车站总建筑面积约为267000平方米,其中数据267000用科学记数法表示为()A.26.7×104B.2.67×104C.2.67×105D.0.267×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于267000有6位,所以可以确定n=6﹣1=5.解答:解:267 000=2.67×105.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2014•南宁)要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2 C.x>﹣2 D.x≥﹣2考点:二次根式有意义的条件.分析:直接利用二次根式的概念.形如(a≥0)的式子叫做二次根式,进而得出答案.解答:解:∵二次根式在实数范围内有意义,∴x+2≥0,解得:x≥﹣2,则实数x的取值范围是:x≥﹣2.故选:D.点评:此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.5.(3分)(2014•南宁)下列运算正确的是()A.a2•a3=a6B.(x2)3=x6C.m6÷m2=m3D.6a﹣4a=2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的乘法法则,幂的乘方法则,同底数幂的除法法则和合并同类项的方法计算.对各选项分析判断后利用排除法求解.解答:解:A、a2•a3=a5≠a6错误,B、(x2)3=x6,正确,C、m6÷m2=m4≠m3,错误D、6a﹣4a=2a≠2,错误故选:B.点评:本题主要考查了同底数幂的乘法法则,幂的乘方法则,同底数幂的除法法则和合并同类项,是基础题,熟记各性质是解题的关键.6.(3分)(2014•南宁)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm考点:垂径定理的应用;勾股定理.分析:连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.解答:解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选A.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.(3分)(2014•南宁)数据1,2,3,0,5,3,5的中位数和众数分别是()A.3和2 B.3和3 C.0和5 D.3和5考点:众数;中位数.分析:根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;一组数据中出现次数最多的数据叫做众数可得答案.解答:解:把所有数据从小到大排列:0,1,2,3,3,5,5,位置处于中间的是3,故中位数为3;出现次数最多的是3和5,故众数为3和5,故选:D.点评:此题主要考查了众数和中位数,关键是掌握两种数的概念.8.(3分)(2014•南宁)如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形剪纸问题.考点:专题:操作型.分析:先求出∠O=60°,再根据直角三角形两锐角互余沿折痕展开依次进行判断即可得解.解答:解:∵平角∠AOB三等分,∴∠O=60°,∵90°﹣60°=30°,∴剪出的直角三角形沿折痕展开一次得到底角是30°的等腰三角形,再沿另一折痕展开得到有一个角是30°的直角三角形,最后沿折痕AB展开得到等边三角形,即正三角形.故选A.点评:本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.9.(3分)(2014•南宁)“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A.D.B.C.考点:函数的图象.分析:根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x 的增大而增大,不过增加的慢了选择即可.解答:解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的慢了,故选:B.点评:本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.10.(3分)(2014•南宁)如图,已知二次函数y=﹣x2+2x,当﹣1<x<a时,y随x的增大而增大,则实数a的取值范围是()A.a>1 B.﹣1<a≤1 C.a>0 D.﹣1<a<2考点:二次函数与不等式(组).分析:先求出二次函数的对称轴,再根据二次函数的增减性列式即可.解答:解:二次函数y=﹣x2+2x的对称轴为直线x=1,∵﹣1<x<a时,y随x的增大而增大,∴a≤1,∴﹣1<a≤1.故选B.点评:本题考查了二次函数与不等式,求出对称轴解析式并准确识图是解题的关键.11.(3分)(2014•南宁)如图,在▱ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,EC.若AB=5,AD=8,sinB=,则DF的长等于()A.B.C.D.2考点:平行四边形的判定与性质;勾股定理;解直角三角形.分析:由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CFDE的对边平行且相等(DE=CF,且DE∥CF),即四边形CFDE是平行四边形.如图,过点C作CH⊥AD于点H.利用平行四边形的性质、锐角三角函数定义和勾股定理求得CH=4,DH=1,则在直角△EHC中利用勾股定理求得CE的长度,即DF的长度.解答:证明:如图,在▱ABCD中,∠B=∠D,AB=CD=5,AD∥BC,且AD=BC=8.∵E是AD的中点,∴DE=AD.又∵CF:BC=1:2,∴DE=CF,且DE∥CF,∴四边形CFDE是平行四边形.∴CE=DF.过点C作CH⊥AD于点H.又∵sinB=,∴sinD===,∴CH=4.在Rt△CDH中,由勾股定理得到:DH==3,则EH=4﹣3=1,∴在Rt△CEH中,由勾股定理得到:EC===,则DF=EC=.故选:C.点评:本题考查了平行四边形的判定与性质、勾股定理和解直角三角形.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.12.(3分)(2014•南宁)已知点A在双曲线y=﹣上,点B在直线y=x﹣4上,且A,B两点关于y轴对称.设点A的坐标为(m,n),则+的值是()A.﹣10 B.﹣8 C.6D.4考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.分析:先根据A、B两点关于y轴对称用m、n表示出点B的坐标,再根据点A在双曲线y=﹣上,点B在直线y=x﹣4上得出mn与m+n的值,代入代数式进行计算即可.解答:解:∵点A的坐标为(m,n),A、B两点关于y轴对称,∴B(﹣m,n),∵点A在双曲线y=﹣上,点B在直线y=x﹣4上,∴n=﹣,﹣m﹣4=n,即mn=﹣2,m+n=﹣4,∴原式===﹣10.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2014•南宁)比较大小:﹣5<3(填>,<或=).考点:有理数大小比较.专题:计算题.分析:根据正数大于0,0大于负数,正数大于负数,可解答;解答:解:∵﹣5是负数,3是正数;∴﹣5<3;故答案为<.点评:本题考查了有理数大小的比较,牢记正数大于0,0大于负数,正数大于负数.14.(3分)(2014•南宁)如图,已知直线a∥b,∠1=120°,则∠2的度数是60°.考点:平行线的性质.分析:求出∠3的度数,根据平行线的性质得出∠2=∠3,代入求出即可.解答:解:∵∠1=120°,∴∠3=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°,故答案为:60.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.15.(3分)(2014•南宁)分解因式:2a2﹣6a=2a(a﹣3).考点:因式分解-提公因式法.分析:观察原式,找到公因式2a,提出即可得出答案.解答:解:2a2﹣6a=2a(a﹣3).故答案为:2a(a﹣3).点评:此题主要考查了因式分解的基本方法一﹣﹣﹣提公因式法.本题只要将原式的公因式2a提出即可.16.(3分)(2014•南宁)第45届世界体操锦标赛将于2014年10月3日至12日在南宁隆重举行,届时某校将从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出选出的2名同学恰好是一男一女的情况数,即可求出所求的概率.解答:解:列表得:男男女男﹣﹣﹣(男,男)(女,男)男(男,男)﹣﹣﹣(女,男)女(男,女)(男,女)﹣﹣﹣所有等可能的情况有6种,其中选出的2名同学恰好是一男一女的情况有4种,则P==,故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2014•南宁)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东40°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于10海里.考点:解直角三角形的应用-方向角问题.分析:根据方向角的定义及余角的性质求出∠CAD=30°,∠CBD=60°,再由三角形外角的性质得到∠CAD=30°=∠ACB,根据等角对等边得出AB=BC=20,然后解Rt△BCD,求出CD即可.解答:解:根据题意可知∠CAD=30°,∠CBD=60°,∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=20海里,在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC=,∴sin60°=,∴CD=12×sin60°=20×=10海里,故答案为:10.点评:本题考查了解直角三角形的应用,难度适中.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.18.(3分)(2014•南宁)如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为a.考点:切线的性质.分析:连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.解答:解:如图,连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°∴OECF是正方形∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a∵由切割线定理可得BF2=BH•BG∴a2=BH(BH+a)∴BH=a或BH=a(舍去)∵OE∥DB,OE=OH∴△OEH∽△BDH∴=∴BH=BD,CD=BC+BD=a+a=a.故答案为 a点评:考查了切线的性质,本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题.三、解答题:(本大题共2小题,每小题满分12分,共12分)要求写出解答过程.如果运算结果含有根号,请保留根号.19.(6分)(2014•南宁)计算:(﹣1)2﹣4sin45°+|﹣3|+.考点:实数的运算;特殊角的三角函数值.分析:本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1﹣2+3+2=4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)(2014•南宁)解方程:﹣=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x+2)﹣2=x2﹣4,去括号得:x2+2x﹣2=x2﹣4,解得:x=﹣1,经检验x=﹣1是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.四、解答题:(本大题共2小题,每小题满分16分,共16分)要求写出解答过程.如果运算结果含有根号,请保留根号.21.(8分)(2014•南宁)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周小最小,请画出△PAB,并直接写出P的坐标.考点:作图-旋转变换;轴对称-最短路线问题;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,P(2,0).点评:本题考查了利用旋转变换作图,利用平移变换作图,轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(8分)(2014•南宁)考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.学校收集整理数据后,绘制了图1和图2两幅不完整的统计图,请根据统计图中信息解答下列问题:(1)这次抽样调查中,一共抽查了多少名学生?(2)请补全条形统计图;(3)请计算扇形统计图中“享受美食”所对应扇形的圆心角的度数;(4)根据调查结果,估计该校九年级500名学生中采用“听音乐”来减压方式的人数.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)利用A“流谈心”的人数除以所占的百分比计算即可得解;(2)用总人数乘以B“体育活动”所占的百分比计算求出体育活动的人数,然后补全统计图即可;(3)用360°乘以“享受美食”所占的百分比计算即可得解;(4)用总人数乘以“听音乐”所占的百分比计算即可得解.解答:解:(1)一共抽查的学生:8÷16%=50人;(2)参加“体育活动”的人数为:50×30%=15,补全统计图如图所示:(3)“享受美食”所对应扇形的圆心角的度数为:360°×=72°;(4)该校九年级500名学生中采用“听音乐”来减压方式的人数为:500×=120人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题:(本大题满分8分)要求写出解答过程.如果运算结果含有根号,请保留根号.23.(8分)(2014•南宁)如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.考点:相似三角形的判定与性质;全等三角形的判定与性质.分析:(1)由平行线的性质可得:∠A=∠FCE,再根据对顶角相等以及全等三角形的判定方法即可证明:△ADE≌△CFE;(2)由AB∥FC,可证明△GBD∽△FCF,根据给出的已知数据可求出CF的长,即AD的长,进而可求出AB的长.解答:(1)证明:∵AB∥FC,∴∠A=∠FCE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS);(2)解:∵AB∥FC,∴△GBD∽△FCF,∴GB:GC=BD:CF,∵GB=2,BC=4,BD=1,∴2:6=1:CF,∴CF=3,∵AD=CF,∴AB=AD+BD=4.点评:本题考查了全等三角形的判定和性质、相似三角形的判定和性质以及平行线的性质,题目的设计很好,难度一般.六、解答题:(本大题满分10分)要求写出解答过程.如果运算结果含有根号,请保留根号.24.(10分)(2014•南宁)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1200万元,”和“10辆公交车在该线路的年均载客总和不少于680万人次,”列出不等式组探讨得出答案即可.解答:解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得答:设购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:6≤a≤8,所以a=6,7,8;则10﹣a=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.点评:此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.七、解答题:(本大题满分10分)要求写出解答过程.如果运算结果含有根号,请保留根号.25.(10分)(2014•南宁)如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1)试判断BE与FH的数量关系,并说明理由;(2)求证:∠ACF=90°;(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求的长.考点:圆的综合题.。

相关文档
最新文档