2019年12区一模理科分类汇编 函数
数学分类汇编(12)三角函数的化简与求值(含答案)
(山东省德州市2019届高三期末联考数学(理科)试题)8.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为,大正方形的面积为,直角三角形中较小的锐角为,则()A. B. C. D.【答案】D【解析】【分析】由图形可知三角形的直角边长度差为a,面积为6,列方程组求出直角边得出sinθ,代入所求即可得出答案.【详解】由题意可知小正方形的边长为a,大正方形边长为5a,直角三角形的面积为6,设直角三角形的直角边分别为x,y且x<y,则由对称性可得y=x+a,∴直角三角形的面积为S xy=6,联立方程组可得x=3a,y=4a,∴sinθ,tanθ=.∴===,故选:D.【点睛】本题考查了解直角三角形,三角恒等变换,属于基础题.(山东省潍坊市2019届高三上学期期末测试数学(理科)试题)3.若,则()A. B. C. D.【答案】C【解析】【分析】本道题化简式子,计算出,结合,即可.【详解】,得到,所以,故选C.【点睛】本道题考查了二倍角公式,难度较小.(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)14.已知,则_______【答案】【解析】原式化为,,所以,,填。
(江西省新余市2019届高三上学期期末考试数学(理)试题)15.已知,则______.【答案】【解析】【分析】根据同角的三角函数的关系和二倍角公式即可求出.【详解】解:,,,,,故答案为:.【点睛】本题考查同角的三角函数关系式和二倍角公式的应用,属于基础题.(湖南省长沙市2019届上学期高三统一检测理科数学试题)15.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边过点,则__________.【答案】【解析】【分析】结合终边过点坐标,计算出,结合二倍角公式和余弦两角和公式,即可。
【详解】,所以【点睛】本道题考查了二倍角公式与余弦的两角和公式,难度中等。
2019年理数高考题及模拟题汇编(函数专题-)与解析
2019年理数高考题及模拟题汇编(函数专题-)与解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN专题:函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷理数】已知0.20.32 log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A .a c b <<B .a b c <<C .b c a <<D .c a b <<3.【2019年高考全国Ⅱ卷理数】若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.15.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为A .B .C .D .7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A 21M R M B 212M R MCD9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)10.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦11.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >012.【2019年高考江苏】函数y =的定义域是 ▲ .13.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.14.【2019年高考北京理数】设函数()e e x xf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.15.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 16.【2019年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.17.【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数()23x f x x =+的零点所在的一个区间是 A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)19.【云南省玉溪市第一中学2019届高三第二次调研考试数学】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y = B .1ln||y x = C .||2x y =D .cos y x =20.【山东省德州市2019届高三第二次练习数学】设函数()()2log 1,04,0xx x f x x ⎧-<=⎨≥⎩,则()3f -+()2log 3f =A .9B .11C .13D .1521.【山东省济宁市2019届高三二模数学】已知是定义在上的周期为4的奇函数,当时,,则A .B .0C .1D .222.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学】函数22()log (34)f x x x =--的单调减区间为 A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞23.【山东省烟台市2019届高三3月诊断性测试(一模)数学】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m =A .1-B .0C .1D .224.【北京市房山区2019届高三第一次模拟测试数学】关于函数,下列说法错误的是A .是奇函数B .在上单调递增C .是的唯一零点D .是周期函数25.【河南省郑州市2019届高三第三次质量检测数学】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数()441x x f x =-的图象大致是A .B .C .D .26.【四川省百校2019届高三模拟冲刺卷】若函数()y f x =的大致图象如图所示,则()f x 的解析式可以是A .()e e x xxf x -=+B .()e e x xxf x -=-C .()e e x xf x x -+=D .()e e x xf x x--=27.【天津市北辰区2019届高考模拟考试数学】已知函数是定义在上的偶函数,且在上单调递增,则三个数,,的大小关系为A .B .C .D .28.【宁夏银川一中2018届高三第二次模拟考试数学】已知不等式对于恒成立,则的取值范围是A .B .C .D .29.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知函数2,(),x x a f x x x a⎧≥=⎨-<⎩,若函数()f x 存在零点,则实数a 的取值范围是A .(),0-∞B .(),1-∞C .()1,+∞D .()0,+∞30.【山东省烟台市2019届高三5月适应性练习(二)数学】已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫+∞ ⎪⎝⎭D .(,1)(8,)-∞+∞31.【重庆西南大学附属中学校2019届高三第十次月考数学】已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是A .2()(2)3-∞+∞,,B .2(2)3,C .22()33-,D .22()()33-∞-+∞,, 32.【山东省德州市2019届高三第二次练习数学】已知定义在R 上的函数()f x 在区间)[0+∞,上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()()2log 2f a f <,则a 的取值范围是 A .10,4⎛⎫⎪⎝⎭B .1,4⎛⎫+∞ ⎪⎝⎭C .1,44⎛⎫ ⎪⎝⎭D .()4,+∞33.【陕西省西安市2019届高三第三次质量检测数学】若定义在上的函数满足且时,,则方程的根的个数是A .B .C .D .34.【广东省汕头市2019届高三第二次模拟考试(B 卷)数学】已知函数()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩,()22g x x x =--,设b 为实数,若存在实数a ,使得()()2g b f a +=成立,则b 的取值范围为A .[]1,2-B .37,22⎡⎫-⎪⎢⎣⎭C .37,22⎡⎤-⎢⎥⎣⎦D .3,42⎛⎤- ⎥⎝⎦35.【云南省玉溪市第一中学2019届高三第二次调研考试数学】若()log ()f x x 12=2+1,则()f x 的定义域为____________.36.【山东省滨州市2019届高三第二次模拟(5月)考试数学】若函数为偶函数,则__________.37.【湖南省长沙市第一中学2019届高三下学期高考模拟卷(一)数学】若函数()f x 称为“准奇函数”,则必存在常数a ,b ,使得对定义域的任意x 值,均有()(2)2f x f a x b +-=,已知1)(-=x xx f 为准奇函数”,则a +b =_________. 38.【广东省深圳市深圳外国语学校2019届高三第二学期第一次热身考试数学】函数()211log 1ax f x x x+=+-为奇函数,则实数a =__________. 39.【东北三省三校(辽宁省实验中东北师大附中、哈师大附中)2019届高三第三次模拟考试数学】若函数在上单调递增,则的取值范围是__________.40.【河南省濮阳市2019届高三5月模拟考试数学】已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31i i i x y =+=∑__________.函数的概念与基本初等函数I答 案 解 析1.【2019年高考全国Ⅰ卷理数】已知0.20.32 log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A .a c b <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5c <=<,即112c <<, 所以a c b <<. 故选A.【名师点睛】本题考查比较大小问题,关键是选择中间量和利用函数的单调性进行比较.3.【2019年高考全国Ⅱ卷理数】若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ; 由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确. 故选C .【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.5.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .【答案】D【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.6.【2019年高考全国Ⅲ卷理数】函数3222xxx y -=+在[]6,6-的图像大致为 A . B .C .D .【答案】B【解析】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A , 故选B .【名师点睛】本题通过判断函数的奇偶性,排除错误选项,通过计算特殊函数值,作出选择.本题注重基础知识、基本计算能力的考查.7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【答案】D【解析】当01a <<时,函数x y a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD【答案】D 【解析】由rRα=,得r R α=, 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得α=,所以.r R α== 故选D.【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形易出错.9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.10.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦ 【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-; ∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤. 则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.【名师点睛】本题考查了函数与方程,二次函数.解题的关键是能够得到(2,3]x ∈时函数的解析式,并求出函数值为89-时对应的自变量的值.11.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.12.【2019年高考江苏】函数276y x x =+-的定义域是 ▲ .【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤,故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.13.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e ax f x =-, 又因为ln 2(0,1)∈,(ln 2)8f =, 所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.14.【2019年高考北京理数】设函数()e e x xf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.15.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤, 可得()2222364233a t t -≤++-≤, 即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解. 16.【2019年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130;②15【解析】①10x =时,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,当120y <元时,李明得到的金额为80%y ⨯,符合要求; 当120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立, 即()87,8y y x y x -≥≤, 因为min158y ⎛⎫=⎪⎝⎭,所以x 的最大值为15. 综上,①130;②15.【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数考查学生的数学建模素养.17.【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .【答案】12,34⎡⎫⎪⎢⎪⎣ 【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--的图象与1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则()(0,2]f x x =∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为11=,解得0)k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴13k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为13⎡⎢⎣. 【名师点睛】本题考查分段函数,函数的图象,函数的性质,函数与方程,点到直线的距离,直线的斜率等,考查知识点较多,难度较大.正确作出函数()f x ,()g x 的图象,数形结合求解是解题的关键因素.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数()23x f x x =+的零点所在的一个区间是 A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)【答案】B【解析】易知函数()23x f x x =+在定义域上单调递增且连续, 且2(2)260f --=-<,1(1)230f --=-<,f (0)=1>0, 所以由零点存在性定理得,零点所在的区间是(-1,0). 故选B.【名师点睛】本题考查函数的单调性和零点存在性定理,属于基础题.19.【云南省玉溪市第一中学2019届高三第二次调研考试数学】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是A .3x y =B .1ln||y x = C .||2x y =D .cos y x =【答案】B【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B.【名师点睛】本题考查函数的奇偶性和单调性,属于基础题.20.【山东省德州市2019届高三第二次练习数学】设函数()()2log 1,04,0xx x f x x ⎧-<=⎨≥⎩,则()3f -+()2log 3f =A .9B .11C .13D .15【答案】B【解析】∵函数()()2log 1,04,0x x x f x x ⎧-<=⎨≥⎩,∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11. 故选B .【名师点睛】本题考查分段函数、函数值的求法,考查对数函数的运算性质,是基础题.21.【山东省济宁市2019届高三二模数学】已知是定义在上的周期为4的奇函数,当时,,则A .B .0C .1D .2【答案】A【解析】由题意可得:.故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.22.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学】函数22()log (34)f x x x =--的单调减区间为 A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞【答案】A【解析】函数()()22log 34f x x x =--,则2340(4)(1)04x x x x x -->⇒-+>⇒>或1x <-, 故函数()f x 的定义域为4x >或1x <-,由2log y x =是单调递增函数,可知函数()f x 的单调减区间即234y x x =--的单调减区间,当3(,)2x ∈-∞时,函数234y x x =--单调递减,结合()f x 的定义域,可得函数()()22log 34f x x x =--的单调减区间为(),1-∞-. 故选A.【名师点睛】本题考查了复合函数的单调性,要注意的是必须在定义域的前提下,去找单调区间.23.【山东省烟台市2019届高三3月诊断性测试(一模)数学】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m =A .1-B .0C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =,且0x <时,2()log ()f x x m =-+,∴211log 2144f m m ⎛⎫-=+=-+=- ⎪⎝⎭,∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.24.【北京市房山区2019届高三第一次模拟测试数学】关于函数,下列说法错误的是A .是奇函数B .在上单调递增C .是的唯一零点D .是周期函数【答案】D 【解析】,则为奇函数,故正确;由于,故在上单调递增,故正确; 根据在上单调递增,,可得是的唯一零点,故正确;根据在上单调递增,可知它一定不是周期函数,故错误.故选D.【名师点睛】本题考查函数性质的综合应用,关键是能够利用定义判断奇偶性、利用导数判断单调性、利用单调性判断零点.25.【河南省郑州市2019届高三第三次质量检测数学】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数()4 41 xxf x=-的图象大致是A.B.C.D.【答案】D【解析】因为函数()4 41 xxf x=-,44()()()4141x xx xf x f x----==≠--,所以函数()f x不是偶函数,图象不关于y轴对称,故排除A、B选项;又因为9256(3),(4),7255f f==所以(3)(4)f f>,而选项C在0x>时是递增的,故排除C. 故选D.【名师点睛】本题考查了函数的图象和性质,利用函数的奇偶性和取特值判断函数的图象是解题的关键,属于基础题.26.【四川省百校2019届高三模拟冲刺卷】若函数()y f x =的大致图象如图所示,则()f x 的解析式可以是A .()e e x xxf x -=+B .()e e x xxf x -=-C .()e e x xf x x -+=D .()e e x xf x x--=【答案】C【解析】当x →0时,f (x )→±∞,而A 中的f (x )→0,排除A ; 当x <0时,f (x )<0,而选项B 中x <0时,()e ex x xf x -=->0, 选项D 中,()e e x xf x x--=>0,排除B ,D ,故选C .【名师点睛】本题考查了函数的单调性、函数值的符号,考查数形结合思想,利用函数值的取值范围可快速解决这类问题.27.【天津市北辰区2019届高考模拟考试数学】已知函数是定义在上的偶函数,且在上单调递增,则三个数,,的大小关系为A .B .C .D .【答案】C【解析】∵,,,∴,为偶函数,,又在上单调递增,,即.故选C.【名师点睛】本题考查利用函数的单调性比较大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系.28.【宁夏银川一中2018届高三第二次模拟考试数学】已知不等式对于恒成立,则的取值范围是A.B.C.D.【答案】C【解析】不等式对于恒成立,等价于对于恒成立,令,则,在上恒成立,,时,,,故的取值范围是.故选C.【名师点晴】本题主要考查二次函数的性质以及不等式恒成立问题,不等式恒成立问题的常见解法:①分离参数,恒成立,即,或恒成立,即;②数形结合,的图象在图象的上方;③讨论最值,或恒成立.29.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知函数2,(),x x a f x x x a⎧≥=⎨-<⎩,若函数()f x 存在零点,则实数a 的取值范围是A .(),0-∞B .(),1-∞C .()1,+∞D .()0,+∞【答案】D【解析】函数2,(),x x af x x x a⎧≥=⎨-<⎩的图象如图:若函数()f x 存在零点,则实数a 的取值范围是(0,+∞). 故选D .【名师点睛】本题考查分段函数,函数的零点,考查数形结合思想以及计算能力.30.【山东省烟台市2019届高三5月适应性练习(二)数学】已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫+∞ ⎪⎝⎭D .(,1)(8,)-∞+∞【答案】A【解析】因为对121x x ∀<≤,满足()()01212<--x x x f x f ,所以()y f x =当1≤x 时,是单调递减函数,又因为)1(+x f 为偶函数,所以()y f x =关于直线1x =对称,所以函数()y f x =当1>x 时,是单调递增函数,又因为(3)1f =,所以有1)1(=-f , 当2log 1x ≤,即当02x <≤时,()()222log 1log (11lo 1g ,22)12f x f x x x f x <⇒<-⇒>-⇒>∴<≤; 当2log 1x >,即当2x >时,()()222log 1log (3)log 38,28x x f x f x x f <<⇒⇒<∴<⇒<<,综上所述:不等式()2log 1f x <的解集为1,82⎛⎫⎪⎝⎭.故选A .【名师点睛】本题考查了抽象函数的单调性、对称性、分类讨论思想. 对于()y f x =来说,设定义域为I ,D I ⊆,1212,,x x D x x ∀∈≠, 若21212121()()(()())()0(0)f x f x f x f x x x x x --⋅->>-,则()y f x =是D 上的增函数;若21212121()()(()())()0(0)f x f x f x f x x x x x --⋅-<<-,则()y f x =是D 上的减函数.31.【重庆西南大学附属中学校2019届高三第十次月考数学】已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是A .2()(2)3-∞+∞,,B .2(2)3,C .22()33-,D .22()()33-∞-+∞,, 【答案】D【解析】因为(2)f x +是偶函数,所以()f x 的图象关于直线2x =对称, 因此,由(0)0f =得(4)0f =,又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增,所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->,解得23x <-;当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<,解得23x >, 因此,(23)0f x ->的解集是22()()33-∞-+∞,,. 故选D.【名师点睛】本题考查函数的奇偶性和单调性,不等式的求解,先根据函数的奇偶性得到函数在定义域上的单调性,从而分类讨论求解不等式.32.【山东省德州市2019届高三第二次练习数学】已知定义在R 上的函数()f x 在区间)[0+∞,上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()()2log 2f a f <,则a 的取值范围是 A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞ ⎪⎝⎭C .1,44⎛⎫ ⎪⎝⎭D .()4,+∞【答案】C【解析】根据题意,()1y f x =-的图象关于直线1x =对称,则函数()f x 的图象关于y 轴对称,即函数()f x 为偶函数,又由函数()f x 在区间)[0+∞,上单调递增, 可得()()2log 2||f a f <,则2log |2|a <, 即22log 2a -<<,解得144a <<, 即a 的取值范围为1,44⎛⎫⎪⎝⎭.故选C .【名师点睛】本题考查函数的单调性与奇偶性的应用,考查对数不等式的解法. 33.【陕西省西安市2019届高三第三次质量检测数学】若定义在上的函数满足且时,,则方程的根的个数是A .B .C .D .【答案】A 【解析】因为函数满足,所以函数是周期为的周期函数.又时,,所以函数的图象如图所示.再作出的图象,如图,易得两函数的图象有个交点, 所以方程有个根.故选A .【名师点睛】本题考查函数与方程,函数的零点、方程的根、函数图象与轴交点的横坐标之间是可以等价转化的.34.【广东省汕头市2019届高三第二次模拟考试(B 卷)数学】已知函数()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩,()22g x x x =--,设b 为实数,若存在实数a ,使得()()2g b f a +=成立,则b 的取值范围为A .[]1,2-B .37,22⎡⎫-⎪⎢⎣⎭C .37,22⎡⎤-⎢⎥⎣⎦D .3,42⎛⎤- ⎥⎝⎦【答案】A【解析】因为()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩, 所以当0x ≥时,()12x f x +=单调递增,故()122x f x +=≥;当0x <时,()()21112x f x x x x x x ⎡⎤+⎛⎫⎛⎫=-=-+=-+-≥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 当且仅当1x x-=-,即1x =-时,取等号,综上可得,.又因为存在实数,使得成立,所以只需,即,解得.故选A.【名师点睛】本题主要考查分段函数的值域,将存在实数,使得成立,转化为是解题的关键,属于常考题型.35.【云南省玉溪市第一中学2019届高三第二次调研考试数学】若()log ()f x x 121=2+1,则()f x 的定义域为____________.【答案】1(,0)2-【解析】要使函数有意义,需12210log (21)0x x +>⎧⎪⎨+>⎪⎩,解得102x -<<.则()f x 的定义域为1(,0)2-.【名师点睛】本题考查函数的定义域,属于基础题.36.【山东省滨州市2019届高三第二次模拟(5月)考试数学】若函数为偶函数,则__________.【答案】-2 【解析】函数为偶函数,则, 即:恒成立,.则.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.37.【湖南省长沙市第一中学2019届高三下学期高考模拟卷(一)数学】若函数()f x 称为“准奇函数”,则必存在常数a ,b ,使得对定义域的任意x 值,均有()(2)2f x f a x b +-=,已知1)(-=x xx f 为准奇函数”,则a +b =_________. 【答案】2【解析】由()(2)2f x f a x b +-=知“准奇函数”()f x 关于点),(b a 对称.。
高三数学一模理科试题(附答案)
2019届高三数学一模理科试题(附答案)2019届高三数学一模理科试题(附答案)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则A. B. C. D.2.已知是虚数单位,则在复平面中复数对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.设随机变量服从正态分布,若,则A. B. C. D.4.设,则是的A.充分不必要条件B. 必要不充分条件C.充分必要条件D.既不充分也不必要条件5.已知两个不同的平面和两个不重合的直线m、n,有下列四个命题:①若;②若;③若;④若.其中正确命题的个数是A.0B.1C.2D.36.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度7. 已知双曲线的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是A. B. C. D.8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为A.360B.520C.600D.7209.设函数若,则关于的方程的解的个数为A.4B.3C.2D.110.已知向量的夹角为时取得最小值,当时,夹角的取值范围为A. B. C. D.第II卷(非选择题共100分)二、填空题:本大题共5个小题,每小题5分,共25分..11.若对任意的恒成立,则实数k的取值范围为_________.12.如图给出的是计算的值的程序框图,其中判断框内应填入的是_______.13.已知圆C过点,且圆心在轴的负半轴上,直线被该圆所截得的弦长为,则圆C的标准方程为________________.]14.定义:,在区域内任取一点的概率为__________.15.已知恒成立,则实数m的取值范围是_______.三、解答题:本大题共6个小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)在△ABC中,角A,B,C所对的边分别为,且..(I)求的值;(II)若面积的最大值.17.(本小题满分12分)如图,在七面体ABCDMN中,四边形ABCD是边长为2的正方形,平面ABCD,平面ABCD,且(I)在棱AB上找一点Q,使QP//平面AMD,并给出证明;(II)求平面BNC与平面MNC所成锐二面角的余弦值18.(本小题满分12分)某高校自主招生选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某同学能正确回答第一、二、三轮的问题的概率分别为,且各轮问题能否正确回答互不影响。
2019年高考数学试题分类汇编函数附答案详解
2019年高考数学试题分类汇编函数一、选择题.1、(2019年高考全国卷1文理科3)已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b <<C .c a b <<D .b c a <<答案:B解析: 001log 2.0log 22<⇒=<=a a ,112202.0>⇒=>=b b ,1012.02.003.0<<⇒=<=c c ,b c a <<∴,故选B2、(2019年高考全国卷1文理科5)函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .答案:D解析:因为)()(x f x f -=-,所以)(x f 为奇函数又01)(2>-=πππf ,124412)2(22>+=+=πππππf ,故选D 3、(2019年高考全国卷1理科11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④C .①④D .①③答案:C解析:由)(|sin |||sin |)sin(|||sin )(x f x x x x x f =+=-+-=-,故①正确;),2(ππ∈x 时,x x x x f sin 2sin sin )(=+=,函数递减,故②错误;],0[π∈x 时,x x x x f sin 2sin sin )(=+=,函数有2个零点,0)()0(==πf f ,而],0[π∈x 时0)()0(=-=πf f ,所以函数有且只有3个零点,故③错误;函数为偶函数,只需讨论0>x ,N k k k x ∈+∈),2,2(πππ时,x x x x f sin 2sin sin )(=+=,最大值为2,N k k k x ∈++∈),22,2(ππππ时,0sin sin )(=-=x x x f ,故函数最大值为2,故④正确。
成都石室中学2019届12月份一诊模拟试卷数学(理科解析)
A. 1 2
B. 2 2
C. 3 2
D.1
理科数学答题解析版 第 2 页 共 14 页
【答案】A.
【解析】根据题意, AB cos22 ,sin22 , AC 2sin38 , 2cos38 ,
有| AB | 1,| AC | 2 ,
则 AB AC 2 cos 22 sin 38 sin 22 cos38 2sin 60 3 ,
理科数学答题解析版 第 6 页 共 14 页
【答案】①②③ 【解析】如图所示,几何体可补形为正方体,
以 D 为原点, DA 为 x 轴正方向, DC 为 y 轴正方向,
DE 为 z 轴正方向建立空间直角坐标系 O xyz ,①由正方体性质易得 EC AF ;②该几何体的外接球与
正 方 体 外 接 球 相 同 , 外 接 球 半 径 为 3 , 故 外 接 球 表 面 积 为 3 ; ③ 已 知 平 面 AEF 的 法 向 量 为 2
C7r
(
a x2
)7r
(
3
x )r
C7r
(1)r
a7r
(
x)
7 3
r
14
,
取
7 3
r
14
0
,得
r
6
,则
C76a
14
,即
a
2
,故选:D
7.已知定义在 R 上的奇函数 f (x) 满足 f (x 2)=f (x 2) ,且当 x (2, 0) 时, f (x) log2 (x 3) a ,
S9
9(a1 2
a9 )
2019年上海市高三数学一模分类汇编:函数
1(2019静安一模). 函数22log (4)y x =-的定义域是1(2019普陀一模). 函数2()1f x x x=-的定义域为 3(2019奉贤一模). 设函数()2x y f x c ==+的图像经过点(2,5),则()y f x =的反函数1()f x -=3(2019普陀一模). 设11{,,1,2,3}32α∈--,若()f x x α=为偶函数,则α= 3(2019松江一模). 已知函数()y f x =的图像与函数x y a =(0,1)a a >≠的图像关于直线y x =对称,且点(4,2)P 在函数()y f x =的图像上,则实数a =4(2019闵行一模). 方程110322x =-的解为4(2019宝山一模). 方程ln(931)0x x +-=的根为4(2019虹口一模). 设常数a ∈R ,若函数3()log ()f x x a =+的反函数的图像经过点(2,1),则a =5(2019黄浦一模). 若函数()y f x =是函数x y a =(0a >且1a ≠)的反函数,且(2)1f =,则()f x =5(2019静安一模). 若α、β是一元二次方程2230x x ++=的两个根,则11αβ+=5(2019浦东一模). 若函数()y f x =的图像恒过点(0,1),则函数1()3y f x -=+的图像一定经过定点6(2019长嘉一模). 已知幂函数()a f x x =的图像过点2),则()f x 的定义域为 6(2019金山一模). 已知函数2()1log f x x =+,则1(5)f -=6(2019虹口一模). 函数8()f x x x=+,[2,8)x ∈的值域为 8(2019闵行一模). 已知函数()|1|(1)f x x x =-+,[,]x a b ∈的值域为[0,8],则a b +的取值范围是8(2019杨浦一模). 若函数1()ln 1xf x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆,则实数a 的取值范围为8(2019宝山一模). 函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x = 8(2019长嘉一模). 已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是9(2019崇明一模). 若函数2()log 1x af x x -=+的反函数的图像经过点(3,7)-,则a = 9(2019奉贤一模). 函数()g x 对任意的x ∈R ,有2()()g x g x x +-=,设函数2()()2x f x g x =-,且()f x 在区间[0,)+∞上单调递增,若2()(2)0f a f a +-≤,则实数a的取值范围为9(2019徐汇一模). 已知函数()f x 是以2为周期的偶函数,当01x ≤≤时,()lg(1)f x x =+,令函数()()g x f x =([1,2]x ∈),则()g x 的反函数为 9(2019松江一模). 若|lg(1)|0()sin 0x x f x xx ->⎧=⎨≤⎩,则()y f x =图像上关于原点O 对称的点共有 对9(2019杨浦一模). 在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则1()y f x =+的零点是10(2019浦东一模). 已知函数()2||1f x x x a =+-有三个不同的零点,则实数a 的取值范围为10(2019奉贤一模). 天干地支纪年法,源于中国,中国自古便有十天干与十二地支. 十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后, 天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为 “丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙 亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年, 那么到改革开放100年时,即2078年为 年 11(2019徐汇一模). 已知λ∈R ,函数24()43x x f x x x x λλ-≥⎧=⎨-+<⎩,若函数()f x 恰有2个零点,则λ的取值范围是11(2019静安一模). 集合12{|log ,12}A y y x x x ==-≤≤,2{|510}B x x tx =-+≤,若A B A =I ,则实数t 的取值范围是11(2019金山一模). 设函数21()lg(1||)1f x x x =+-+,则使(2)(32)f x f x <-成立的x 取值范围是11(2019青浦一模).已知函数()2f x +=,当(0,1]x ∈时,2()f x x =,若在区间[1,1]-内()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是 11(2019崇明一模). 设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上单调递减,且满足()1f π=,(2)2f π=,则不等式组121()2x f x ≤≤⎧⎨≤≤⎩的解集为12(2019浦东一模). 已知函数2||2416()1()22x a x x x f x x -⎧≥⎪⎪+=⎨⎪<⎪⎩,若对任意的1[2,)x ∈+∞,都存在唯一的2(,2)x ∈-∞,满足12()()f x f x =,则实数a 的取值范围为12(2019静安一模). 若定义在实数集R 上的奇函数()y f x =的图像关于直线1x =对称,且当01x ≤≤时,13()f x x =,则方程1()3f x =在区间(4,10)-内的所有实根之和为 12(2019松江一模). 已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和(1)(1)4f x f x +⋅-=对任意的x ∈R 都成立,若当[0,1]x ∈时,()f x 的值域为[1,2],则当[100,100]x ∈-时,函数()f x 的值域为12(2019普陀一模). 记a 为常数,记函数1()log 2a xf x a x=+-(0a >且1a ≠,0x a <<)的反函数为1()f x -,则11111232()()()()21212121af f f f a a a a ----+++⋅⋅⋅+=++++12(2019长嘉一模). 已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123||||||||||||x a x a x a x b x b x b -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素13(2019黄浦一模). 设函数()y f x =,“该函数的图像过点(1,1)”是“该函数为幂函数”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件13(2019杨浦一模). 下列函数中既是奇函数,又在区间[1,1]-上单调递减的是( ) A. ()arcsin f x x = B. ()lg ||f x x = C. ()f x x =- D. ()cos f x x = 15(2019宝山一模). 关于函数23()2f x x =-的下列判断,其中正确的是( ) A. 函数的图像是轴对称图形 B. 函数的图像是中心对称图形C. 函数有最大值D. 当0x >时,()y f x =是减函数 15(2019闵行一模).已知函数y =x a ≥,0a >,0b >)与其反函数有交点,则下列结论正确的是( )A. a b =B. a b <C. a b >D. a 与b 的大小关系不确定15(2019虹口一模). 已知函数2()1f x ax x =-+,1,1(),111,1x g x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,若函数()()y f x g x =-恰有两个零点,则实数a 的取值范围为( )A. (0,)+∞B. (,0)(0,1)-∞UC. 1(,)(1,)2-∞-+∞U D. (,0)(0,2)-∞U 15(2019徐汇一模). 对于函数()y f x =,如果其图像上的任意一点都在平面区域{(,)|()()0}x y y x y x +-≤内,则称函数()f x 为“蝶型函数”,已知函数:①sin y x =;②y =)A. ①、②均不是“蝶型函数”B. ①、②均是“蝶型函数”C. ①是“蝶型函数”,②不是“蝶型函数”D. ①不是“蝶型函数”,②是“蝶型函数”15(2019杨浦一模). 已知sin ()log f x x θ=,(0,)2πθ∈,设sin cos ()2a f θθ+=,b f =,sin 2()sin cos c f θθθ=+,则a 、b 、c 的大小关系是( )A. a c b ≤≤B. b c a ≤≤C. c b a ≤≤D. a b c ≤≤16(2019青浦一模). 记号[]x 表示不超过实数x的最大整数,若2()[]30x f x =+,则(1)(2)(3)(29)(30)f f f f f +++⋅⋅⋅++的值为( )A. 899B. 900C. 901D. 90216(2019金山一模). 已知函数52|log (1)|1()(2)21x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则方程1(2)f x a x +-=(a ∈R )的实数根个数不可能为( )A. 5个B. 6个C. 7个D. 8个 16(2019普陀一模). 设()f x 是定义在R 上的周期为4的函数,且2sin 201()2log 14x x f x x x π≤≤⎧=⎨<<⎩,记()()g x f x a =-,若102a <<,则函数()g x 在区间[4,5]-上零点的个数是( )A. 5B. 6C. 7D. 816(2019杨浦一模). 已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( ) A. [0,4) B. [1,4)- C. [3,5]- D. [0,7)16(2019虹口一模). 已知点E 是抛物线2:2C y px =(0)p >的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线C 上,在△EFP 中,若sin sin EFP FEP μ∠=⋅,则μ的最大值为( )A.B. C.D. 16(2019长嘉一模). 某位喜欢思考的同学在学习函数的性质时提出了如下两个命题:已知函数()y f x =的定义域为D ,12,x x D ∈,① 若当12()()0f x f x +=时,都有120x x +=,则函数()y f x =是D 上的奇函数;② 若当12()()f x f x <时,都有12x x <,则函数()y f x =是D 上的增函数.下列判断正确的是( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ①和②都是假命题D. ①是假命题,②是真命题16(2019崇明一模). 函数()f x x =,2()2g x x x =-+,若存在129,,,[0,]2n x x x ⋅⋅⋅∈,使得121121()()()()()()()()n n n n f x f x f x g x g x g x g x f x --++⋅⋅⋅++=++⋅⋅⋅++,则n 的最大值 是( )A. 11B. 13C. 14D. 18 18(2019松江一模). 已知函数2()21xf x a =-+(常数a ∈R ) (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,若对任意的[2,3]x ∈,都有()2x mf x ≥成立,求m 的最大值.18(2019徐汇一模). 已知函数2()2ax f x x -=+,其中a ∈R . (1)解关于x 的不等式()1f x ≤-;(2)求a 的取值范围,使()f x 在区间(0,)+∞上是单调减函数.18(2019虹口一模). 已知函数16()1x f x a a+=-+(0a >且1)a ≠是定义在R 上的奇函数.(1)求实数a 的值及函数()f x 的值域;(2)若不等式()33x t f x ⋅≥-在[1,2]x ∈上恒成立,求实数t 的取值范围.18(2019青浦一模). 如图,某广场有一块边长为1()hm 的正方形区域ABCD ,在点A 处装有一个可转动的摄像头,其能够捕捉到图像的角PAQ ∠始终为45°(其中点P 、Q 分别在边BC 、CD 上),设PAB θ∠=,记tan t θ=.(1)用t 表示PQ 的长度,并研究△CPQ 的周长l 是否为定值?(2)问摄像头能捕捉到正方形ABCD 内部区域的面积S 至多为多少2hm ?19(2019黄浦一模). 已知函数()21xaf x b =+-,其中a 、b ∈R . (1)当6a =,0b =时,求满足(||)2x f x =的x 的值; (2)若()f x 为奇函数且非偶函数,求a 与b 的关系式.19(2019奉贤一模). 入秋以来,某市多有雾霾天气,空气污染较为严重,市环保研究所对近期每天的空气污染情况进行调查研究后发现,每一天中空气污染指数()f x 与时刻x (时)的函数关系为25()|log (1)|21f x x a a =+-++,[0,24]x ∈,其中a 为空气治理调节参数,且(0,1)a ∈.(1)若12a =,求一天中哪个时刻该市的空气污染指数最低; (2)规定每天中()f x 的最大值最为当天空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a 应控制在什么范围内?19(2019青浦一模). 对于在某个区间[,)a +∞上有意义的函数()f x ,如果存在一次函数()g x kx b =+使得对于任意的[,)x a ∈+∞,有|()()|1f x g x -≤恒成立,则称函数()g x 是函数()f x 在区间[,)a +∞上的弱渐近函数. (1)若函数()3g x x =是函数()3mf x x x=+在区间[4,)+∞上的弱渐近函数,求实数m 的 取值范围;(2)证明:函数()2g x x =是函数()f x =[2,)+∞上的弱渐近函数.19(2019金山一模). 设函数()21x f x =-的反函数为1()f x -,4()log (31)g x x =+. (1)若1()()f x g x -≤,求x 的取值范围D ; (2)在(1)的条件下,设11()()()2H x g x f x -=-,当x D ∈时,函数()H x 的图像与直线 y a =有公共点,求实数a 的取值范围.19(2019浦东一模). 某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下: ① 3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++; ② 3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0 (即累积经验值.....不变); ③ 超过5小时为不健康时间,累积经验....值.开始损失,损失的经验值与不健康时间成 正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ; 若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24, 求实数a 的取值范围.19(2019杨浦一模). 上海某工厂以x 千克/小时的速度匀速生产某种产品,每一小时可获得的利润是3(51)x x+-元,其中110x ≤≤.(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.19(2019宝山一模). 某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工人作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时间t (单位:小时,[0,20]t ∈)近似地满足函数关系|13|2b y t t =-++,其中,b 为大棚内一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度 (精确到0.1C ︒);(2)若要保持大棚一天中保温时段的最低温度不小于17C ︒,求大棚一天中保温时段通风 量的最小值.19(2019崇明一模). 某创业投资公司拟投资开发某种新能源产品,估计能获得25万元~1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[25,1600]x ∈时,①()f x 是增函数;②()75f x ≤恒成立;③()5xf x ≤恒成立.) (1)判断函数()1030xf x =+是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数()5g x =(1a ≥)符合公司奖励方案函数模型要求,求实数a 的取值 范围.20(2019闵行一模). 对于函数()y f x =,若函数()(1)()F x f x f x =+-是增函数,则称函数()y f x =具有性质A .(1)若2()2x f x x =+,求()F x 的解析式,并判断()f x 是否具有性质A ; (2)判断命题“减函数不具有性质A ”是否真命题,并说明理由;(3)若函数23()f x kx x =+(0)x ≥具有性质A ,求实数k 的取值范围,并讨论此时函数()(sin )sin g x f x x =-在区间[0,]π上零点的个数.21(2019普陀一模). 已知函数()2x f x =(x ∈R ),记()()()g x f x f x =--. (1)解不等式:(2)()6f x f x -≤;(2)设k 为实数,若存在实数0(1,2]x ∈,使得200(2)()1g x k g x =⋅-成立,求k 取值范围;(3)记()(22)()h x f x a f x b =++⋅+(其中a 、b 均为实数),若对于任意[0,1]x ∈,均 有1|()|2h x ≤,求a 、b 的值.。
2019年高三下学期一模考试数学(理)试题含答案
2019年高三下学期一模考试数学(理)试题含答案一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知复数,则等于()A. B. C. D.2、设集合{0,1},{|1}==∈=-,则()M N x Z y xA. B. C. D.3、给定函数①②③④,其中在区间上单调递减的函数序号是()A.①② B.②③ C.③④ D.①④4、在中,若sin sin cos cos sin-=,则的形状是()A A C A CA.等腰三角形 B.正三角形 C.直角三角形 D.等腰直角三角形5、为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)的频率分布直方图如图所示,假设得分值的中位数为,众数,平均数为,则()A. B.C. D.6、某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有()A.192种 B.216种 C.240种 D.288种7、若函数的图象如图所示,则的范围为()A. B. C. D.8、设双曲线的离心率为2,且一个焦点与抛物线的交点相同,则此双曲线的方程为()A. B. C. D.9、已知函数()0()210x e a x f x a R x x ⎧+≤=∈⎨->⎩,若函数在R 上有两个零点,则的取值范围是( )A .B .C .D .10、若函数,并且,则下列各结论正确的是( )A .()()()2a b f a f ab f +<<B .()()()2a bf ab f f b +<< C .()()()2a b f ab f f a +<< D .()()()2a bf b f ab f +<<二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
. 11、如图,正方体的棱长为1,E 为棱上的点, 为AB 的中点,则三棱锥的体积为12、已知满足不等式组22y x x y x ≤⎧⎪+≥⎨⎪≤⎩,则的最大值与最小值的比为 13、定义在实数集R 上的函数满足, 且现有以下三种叙述①8是函数的一个周期; ②的图象关于直线对称;③是偶函数。
2019届高三年级(一模)考试数学试题分类汇编--函数(K12教育文档)
2019届高三年级(一模)考试数学试题分类汇编--函数(word版可编辑修改) 2019届高三年级(一模)考试数学试题分类汇编--函数(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高三年级(一模)考试数学试题分类汇编--函数(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高三年级(一模)考试数学试题分类汇编--函数(word版可编辑修改)的全部内容。
12上海市2019届高三年级(一模)考试数学试题分类汇编--函数 一、填空、选择题1、(宝山区2019届高三)方程ln(931)0x x +-=的根为 .2、(崇明区2019届高三)若函数2()log 1x a f x x -=+的反函数的图像经过点(3,7)-,则a =3、(奉贤区2019届高三)设函数()2xy f x c ==+的图像经过点(2,5),则()y f x =的反函数1()f x -=4、(虹口区2019届高三)设常数a ∈R ,若函数3()log ()f x x a =+的反函数的图像经过点(2,1),则a =5、(金山区2019届高三)已知函数2()1log f x x =+,则1(5)f -=6、(浦东新区2019届高三)若函数()y f x =的图像恒过点(0,1),则函数1()3y f x -=+的图像一定经过定点7、(普陀区2019届高三)函数2()f x x=的定义域为8、(青浦区2019届高三)已知函数()2f x +=,当(0,1]x ∈时,2()f x x =,若在区间[1,1]-内()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是 9、(松江区2019届高三)已知函数()y f x =的图像与函数xy a =(0,1)a a >≠的图像关于直线y x =对称,且点(4,2)P 在函数()y f x =的图像上,则实10、(徐汇区2019届高三)已知函数()f x 是以2为周期的偶()lg(1)f x x =+,令函数[]()()(1,2)g x f x x =∈,则g______________________. 11、(杨浦区2019届高三)下列函数中既是奇函数,又在区间( )A 。
2019年北京市13区高三一模(3、4月)数学理分类汇编-导数及其应用
2019北京市12区高三一模(3、4月)数学理分类汇编--导数及其应用1、(朝阳区2019届高三一模)已知函数ln()()ax f x x=(R a ∈且0)a ≠. (Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)当1a =-时,求证:()1f x x ≥+; (Ⅲ)讨论函数()f x 的极值.2、(东城区2019届高三一模)设函数2()(2)ln f x ax a x x =+--的极小值点为0x . (I )若01x =,求a 的值()f x 的单调区间;(II )若001x <<,在曲线()y f x =上是否存在点P ,使得点P 位于x 轴的下方?若存在,求出一个P 点坐标,若不存在,说明理由.3、(丰台区2019届高三一模)已知函数3211()(2)e 32x f x x ax ax =--+.(Ⅰ)当0a =时,求函数()f x 的单调区间;(Ⅱ)当e a ≤时,求证:1x =是函数()f x 的极小值点.4、(海淀区2019届高三一模) 已知函数2()ln(1)f x x x ax =+-. (I)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0a <时,求证:函数()f x 存在极小值; (Ⅲ)请直接写出函数()f x 的零点个数.5、(怀柔区2019届高三一模)已知函数()ln ()=-∈f x x ax a R . (Ⅰ)当2=a 时,求在点处的切线方程;(Ⅱ)若对于任意的(0,)x ∈+∞,都有()0f x <,求a 的取值范围.6、(门头沟区2019届高三一模)已知()=xf x axe 在点(0,0)处的切线与直线2y x =-平行。
(Ⅰ)求实数a 的值;(Ⅱ)设2()()()2x g x f x b x =-+(i )若函数()0g x ≥在[0,)+∞上恒成立,求实数b 的最大值; (ii )当0b ≤时,判断函数()g x 有几个零点,并给出证明.()f x (1,(1))f7、(石景山区2019届高三一模)设函数()1x f x e ax =-+,0a >. (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线与x 轴平行,求a ; (Ⅱ)当1x <时,函数()f x 的图象恒在x 轴上方,求a 的最大值.8、(顺义区2019届高三第二次统练(一模))设函数()ln ,f x x a R =∈.(I )若点()1,1在曲线()y f x =上,求在该点处曲线的切线方程; (II )若()f x 有极小值2,求a .9、(西城区2019届高三一模)设函数2()e 3x f x m x =-+,其中∈m R . (Ⅰ)当()f x 为偶函数时,求函数()()h x xf x =的极值;(Ⅱ)若函数()f x 在区间[2,4]-上有两个零点,求m 的取值范围.10、(延庆区2019届高三一模) 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值; (Ⅱ)令()()f x g x x=,求函数()g x 的单调区间. 11、(房山区2019届高三一模)已知函数()221()ln (1).2f x mx x x mx m =-+≤ (Ⅰ)当0m =时,求曲线()y f x =在1x =处的切线方程; (Ⅱ)若函数()f x 的图象在x 轴的上方,求m 的取值范围.12、(大兴区2019届高三一模)已知函数()e x f x a =图象在0x =处的切线与函数()ln g x x =图象在1x =处的切线互相平行. (Ⅰ)求a 的值;(Ⅱ)设()()()h x f x g x =-,求证:()2h x >.数学试题答案1、解:(Ⅰ)当1a =时,ln ()x f x x =.所以21ln ()xf x x -'=. 因为(1)1,(1)0f f '==,所以曲线()y f x =在(1,(1))f 处的切线方程为1y x =-.……………….3分(Ⅱ)当1a =-时,ln()()x f x x-=. 函数()f x 的定义域为(,0)-∞.不等式()1f x x ≥+成立⇔ln()1x x x-≥+成立⇔2ln()0x x x ---≤成立. 设2()ln()g x x x x =---((,0))x ∈-∞,则2121(21)(1)()21x x x x g x x x x x--+-++'=--==.当x 变化时,()g x ',()g x 变化情况如下表:所以()(1)g x g ≤-.因为(1)0g -=,所以()0g x ≤,所以ln()1x x x-≥+.………………………………………………………………….8分 (Ⅲ)求导得21ln()()ax f x x -'=. 令()0f x '=,因为0a ≠可得ex a=. 当0a >时,()f x 的定义域为()0,+∞.当x 变化时,()f x ',()f x 变化情况如下表:此时()f x 有极大值e ()eaf a =,无极小值. 当0a <时,()f x 的定义域为(),0-∞,当x 变化时,()f x ',()f x 变化情况如下表:此时()f x 有极小值e ()eaf a =,无极大值.……………………………………………….13分 2、解:(Ⅰ)()f x 定义域为(0,)+∞.212(2)1(21)(1)'()2(2)ax a x x ax f x ax a x x x+--+-=+--==.由已知,得(1)0f '=,解得1a =.当1a =时,(21)(1)'(),x x f x x+-=当01x <<时,()0f x '<;当1x >时,()0f x '>. 所以()f x 的递减区间为(0,1),单调递增区间为(1,).+? 所以1a =时函数()f x 在1x =处取得极小值.即()f x '的极小值点为1时a 的值为1. ......................6分 (II ) 当001x <<时,曲线()y f x =上不存在点P 位于x 轴的下方,理由如下:由(I )知(21)(1)'(),x ax f x x +-=当0a ≤时,'()0f x <,所以()f x 在(0,)+∞单调递减,()f x 不存在极小值点;当0a >时,令(21)(1)'()0x ax f x x +-==,得1x a=.当1(0,)x a ∈时,()0f x '<,()f x 在区间1(0,)a上单调递减; 当1(,)x a ∈+∞时,()0f x '>,()f x 在区间1(,)a +∞上单调递增. 所以11()ln 1f a aa=+-是()f x 在(0,)+∞上的最小值. 由已知,若001x <<,则有101a<<,即1a >. 当1a >时,ln 0a >,且101a <<,110a->. 所以1()0.f a>当001x <<时,曲线()y f x =上所有的点均位于x 轴的上方.故当001x <<时,曲线()y f x =上不存在点P 位于x 轴的下方. ...............13分3、解:(Ⅰ)因为,所以,故,令,得,所以单调递增区间为; 令,得,所以单调递区间为.(Ⅱ)由题可得.① 当0a ≤时,对任意,都有恒成立, 所以当时,;当时,. 所以函数在处取得极小值,符合题意.② 当0e a <≤时,设,依然取. 则,令,得,所以在上单调递减,在区间上单调递增, 所以.因为0e a <≤,所以min ()(1ln )0g x a a =-≥(当且仅当=e a 时,等号成立,此时1x =).0a =R x ∈()(2)e xf x x =-()(1)e xf x x '=-()0f x '>1x >(1,)+∞()0f x '<1x <(,1)-∞()(1)(e )xf x x ax '=--(0,+)x ∈∞e 0x ax ->01x <<()0f x '<1x >()0f x '>()f x 1x =g()=e xx ax -(0,+)x ∈∞g ()=e xx a '-g ()=0x '=ln x a g()x (0,ln )a (ln ,)a +∞min g()(ln )(1ln )x g a a a ==-所以对任意(0,1)(1,)x ∈+∞,都有恒成立.所以当时,;当时,. 所以函数在处取得极小值,符合题意. 综上①②可知:当e a ≤时1x =是函数()f x 的极小值点. 4、解:(Ⅰ)2()ln(1)f x x x ax =+-的定义域为{|1}x x >-因为2(0)0ln(01)00f a =+-⋅=所以切点的坐标为(0,0) 因为()ln(1)+21xf x x ax x '=+-+ 0(0)ln(01)+20001f a '=+-⋅=+ 所以切线的斜率0k =,所以切线的方程为0y = (Ⅱ)方法一:令()()ln(1)21xg x f x x a x x '==++-+ 211()+21(1)g x a x x '=-++ 因为1x >-且0a <,所以101x >+,210(1)x >+,20a -> 从而得到()0g x '>在(1,)-+∞上恒成立 所以()0f x '>在(1,)-+∞上单调递增且(0)0f '=, 所以x ,'()f x ,()f x 在区间(1,)-+∞ 的变化情况如下表:e 0x ax ->01x <<()0f x '<1x >()0f x '>()f x 1x =所以0x =时,()f x 取得极小值,问题得证 方法二:因为()ln(1)21xf x x a x x '=++-+ 当0a <时,当0x <时, ln(1)0,0,201xx a x x +<<-<+,所以()0f x '< 当0x >时, ln(10,0,201xx a x x +>>->+,所以()0f x '> 所以x ,'()f x ,()f x 在区间(1,)-+∞ 的变化情况如下表:所以0x =时,函数()f x 取得极小值,问题得证 (Ⅲ)当0a ≤或1a =时,函数()f x 有一个零点当0a >且1a ≠时,函数()f x 有两个零点5、解:(Ⅰ)当时,因为, 所以. f ’(1)= -1, f(1)= -2,所以在点处的切线方程是x+y+1=0------------------------------------5分 (Ⅱ)函数()f x 的定义域是{0}>x x ,因为, (ⅰ) 当a 时,>0恒成立,所以f (x )在(0,+)单调递增,又因为(1)0=-≥f a ,不合题意,舍.2a =(ln 2f xx x =-)112'(2x f xx x-=-=)()f x (1,(1))f 11'(ax f xa x x-=-=)0≤f ()x '∞(ⅱ)当0a >时,当时,,函数在上单调递增;当时,,函数在单调递减. 所以函数在时,取得最大值. 因为对于任意,都有,所以只需令,即,即. 所以当的取值范围是----------------------------------------------13分6、解:(Ⅰ)由题意得://()(1)(0)1x f x ae x f a a =+⇒=⇒=(Ⅱ)(i )22/()()()()()(1)()22xx x x g x f x b x xe b x g x x e b =-+=-+⇒=+-当[0,)x ∈+∞时,若/1,0()0x b e b g x ≤-≥⇒≥,()g x 递增,则()(0)0g x g ≥≥ 当[0,)x ∈+∞时,若/121,()01,ln 0b g x x x b >=⇒=-=>(舍),()g x 在(0,ln )b 递减,则(ln )(0)()0g b g g x <⇒≥不恒成立,所以,b 的最大值为1.(ii )2()()[(1)]22=-+=-+xxx x g x xe b x x e b ,显然()g x 有一个零点0;设/()(1)()22x xx b t x e b t x e =-+⇒=-当0b =时,()t x 无零点;所以()g x 只有一个零点0 当0b <时,有/()0>t x ,所以)(x t 在R 上单增,又222(0)10,(2)10bt b t eb-=->-=-<,由零点存在定理可知, 所以()t x 在(,0)-∞上有唯一一个零点0x ,所以()g x 有二个零点综上所述,0b =时,()g x 只有一个零点0,0b <时,()g x 有二个零点. 7、解:(Ⅰ)()e 1=-+xf x ax Qa e x f x -='∴)(,10x a <<'()0f x >(f x )1(0,)a 1x a>'()0f x <(f x)1(,)a+∞(f x )1x a =11(ln 1f a a=-)(0,)x ∈+∞()0f x <1(0f a<)1ln10a -<1ea >1(,)e+∞a e f -='∴)1(,由题设知(1)0f '=,即0=-a e ,解得e a =.经验证e a =满足题意。
2019年山东省各地市一模试题分类汇编(理科)——三角函数
2019年山东省各地市一模数学试题分类汇编理科三角函数一、选择题1.(临沂一模4)把函数的图象上各点的横坐标缩短为原来的 (纵坐标不变),再将图象向右平移个单位长度得到函数,则下列说法正确的是A. 在上单调递增B. 的图象关于对称C.的最小正周期为D.的图象关于y 轴对称【答案】A【分析】根据函数图像伸缩平移变换,可得函数,再根据性质即可判断出选项。
【解析】函数的图象上各点的横坐标缩短为原来的可得再将图象向右平移个单位长度得到函数,则=周期为T= 对称中心为k ∈Z 对称轴为x=k ∈Z单调递增区间为k ∈Z所以选A【点评】本题考查了三角函数平移变化,对称轴、对称中心、单调区间和周期的求法,属于基础题。
2.(青岛一模4)已知函数)2,0)(sin()(πϕωϕω<>+=x x f 图象的相邻两对称中心的距离为2π,且对任意R ∈x 都有)4()4(x f x f -=+ππ,则函数)(x f y =的一个单调递增区间可以为( ) (A )]02[,π-(B )]326[ππ, (C )]434[ππ, (D )]44[ππ,-【答案】D3.(烟台一模5)在平面直角坐标系xOy中,角θ的顶点在原点,始边与x轴的非负半轴重合,终边经过点(﹣3,1),则cos2θ=()A.B.C.D.【分析】由任意角的三角函数的定义求得sinθ,然后展开二倍角公式求cos2θ.【解析】∵角θ的顶点在原点,始边与x轴的非负半轴重合,终边经过点(﹣3,1),∴|OP|=,∴sinθ=.则cos2θ=1﹣2sin2θ=.故选:D.【点评】本题考查三角函数的化简求值,考查任意角的三角函数的定义,是基础题.4.(菏泽一模6)在区间上随机取一个数,则的值介于0到之间的概率为()A. B. C. D.【答案】A【分析】结合题意,计算满足条件的x的范围,结合几何概型计算公式,计算,即可。
【解析】在区间内满足关系的x的范围为,故概率为,故选A。
2019年山东省各地市一模试题分类汇编(理科)——不等式选讲
2019年山东省各地市一模试题分类汇编不等式选讲1.(烟台一模23)已知函数f (x )=|2x ﹣1|﹣m |x +2|. (1)当m =1时,求不等式f (x )≥2的解集;(2)若实数m 使得不等式f (x ﹣2)>m 在x ∈[﹣1,1]恒成立,求m 的取值范围. 【分析】(1)分3种情况去绝对值,解不等式组可得; (2)将不等式分离参数m 后构造函数求最小值可得. 【解析】(1)当m =1时,|2x ﹣1|﹣|x +2|≥2,当x ≤﹣2时,原不等式转化为1﹣2x +x +2≥2,解得x ≤﹣2;………………(1分) 当﹣2<x ≤时,原不等式转化为1﹣2x ﹣x ﹣2≥2,解得﹣2<x ≤﹣1;…(2分) 当x >时,原不等式转化为2x ﹣1﹣x ﹣2≥2,解得x ≥5; ………………(3分) 综上,不等式的解集为{x |x ≤﹣1或x ≥5}.………………(4分) (2)由已知得:f (x ﹣2)=|2x ﹣5|﹣m |x |>m ,即.,由题意m <g (x )min .………………(5分) 当x ∈[0,1]时,为减函数,此时最小值为; ………………(7分)当x ∈[﹣1,0)时,为增函数,此时最小值为.………………(9分)又,所以.所以m 的取值范围为.………………(10分)【点评】本题考查了绝对值不等式的解法,属中档题. 2.(青岛一模23)已知函数a x x x f +--=2)(,R ∈a 。
(Ⅰ)若1=a ,解不等式0)(>+x x f ;(Ⅱ)对任意R ∈x ,3)(≤x f 恒成立,求实数a 的取值范围。
【解析】3.(济南一模23)已知函数.(1)求不等式的解集;(2)若不等式的解集为空集,求实数的取值范围.【分析】(1)解法一:零点分区间,分类讨论,解绝对值不等式;解法二:画出图像,数形结合找到的解集.(2)解法一:数形结合,图像恒在图像上方;解法二:不等式的解集为空集可转化为对任意恒成立,分类讨论,去掉绝对值,利用一次函数保号性解决恒成立问题.【解析】(1)【解法一】由题意,当时,,解得,即,当时,,解得,即,当时,,解得,即.综上所述,原不等式的解集为.【解法二】由题意作出的图象注意到当或时,,结合图象,不等式的解集为;(2)【解法1】由(1)可知,的图象为不等式的解集为空集可转化为对任意恒成立,即函数的图象始终在函数的图象的下方,如图当直线过点以及与直线平行时为临界点,所以.【解法2】不等式的解集为空集可转化为对任意恒成立,(i)当时,,即恒成立,若,显然不合题意,若,即,则恒成立,符合题意,若,即,只需即可,解得,故,所以;(ii)当时,,即恒成立,若,即,恒成立,符合题意,若,即,则恒成立,符合题意,若,即,只需即可,解得,故,所以;(iii)当时,,即恒成立,若,即,只需即可,解得,故,若,即,则,不合题意,若,即,则恒成立,不合题意,所以;综上所述,.【点评】利用分类讨论,数形结合都可以解决含绝对值的不等式,本题还涉及到划归与转化的数学思想,利用保号性解决恒成立问题,属于中档题.4.(菏泽一模23)已知函数.(1)求的解集;(2)若,恒成立,求实数的取值范围.【分析】(1)根据绝对值定义去掉绝对值符号,即可得到不等式得解集;(2)不等式恒成立,等价于,根据绝对值定义去掉绝对值即可求得最大值,从而可得t的范围.【解析】(1),即,所以所以,所以,所以的解集为.(2)“”等价于“”,,成立,等价于令,则所以,即,解得故实数的取值范围是.【点评】本题考查绝对值不等式的解法,考查不等式恒成立问题的处理方法,属于基础题.5.(济宁一模23)已知函数.(1)当时,解不等式;(2)若的值域为[2,+∞),求证:.【分析】(1)代入a,b的值,通过讨论x的范围,求出不等式的解集即可;(2)求出a+b =2,根据绝对值不等式的性质证明即可.【解析】(1)解:当a=b=1时,i)当时,不等式可化为:,即,所以ii)当时,不等式可化为:2>x+2,即x<0,所以iii)当x>1时,不等式可化为:2x>x+2,即x>2,所以x>2综上所述:不等式的解集为(2)证明,∵f(x)的值域为,∴a+b=2,∴a+1+b+1=4∴,当且仅当,即a=b=1时取“=”即.【点评】本题考查了解绝对值不等式问题,考查基本不等式的性质以及分类讨论思想,转化思想,熟练利用绝对值三角不等式得到a,b的关系是关键,是一道中档题.6.(泰安一模23)已知函数.当时,求不等式的解集;当时,不等式恒成立,求m的取值范围.【分析】代入m的值,得到关于x的不等式组,解出即可;问题转化为恒成立,当时,,令,求出的最大值,求出m的范围即可.【解析】解:当时,,由,得或或,解得:或,故不等式的解集是;当时,,恒成立,即恒成立,整理得:,当时,成立,当时,,令,,,,,故,故【点评】本题考查了解绝对值不等式问题,考查分类讨论思想以及转化思想,是一道常规题.7.(潍坊一模23)已知函数的最大值为.(1)求实数的值;(2)若,设,,且满足,求证:. 【分析】(1)通过讨论x的范围化简函数的解析式,根据函数的性质求出函数的最值,即可求出t的值,(2)根据三角不等式和基本不等式的性质求出g(m+2)+g(2n)≥2.【解析】(1)由得,所以,即.(2)因为,由,知=,当且仅当,即时取等号.所以.【点评】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及基本不等式的性质,属于基础题.8.(枣庄一模23)已知函数(I )当时,求不等式的解集;(II )当时,恒成立,求的取值范围.【分析】(I )由题意,当a=1,代入可得,再用零点分段法,讨论x 的取值,解不等式得到答案; (II )当时,恒成立,转化为的最小值大于1即可,只需求出的最小值,再利用绝对值不等式,整理求得最小值即可.【解析】(I )解:当a=1时,当时,,即,即 当时,,即,即当时,,即,此时无解综上:的解集为(II )当时,即>1,,当且紧当x=-2时取等号,恒成立即解得或所以a 的取值或【点评】本题考查了解绝对值不等式以及绝对值不等式恒成立问题,属于较易题. 9.(日照一模23)设函数()()20f x x a x a a=-++>. (1)若不等式()24f x x x a=-+≥的解集为{}1x x ≤,求实数a 的值;(2)证明:()f x ≥【解析】(1)由2()4f x x x a-+≥, 可得4(0)x a x a -≥>, 当x a ≥时,4x a x -≥,解得:3ax ≤-,这与0x a ≥>矛盾,故不成立, ……………2分 当x a <时,4a x x -≥,解得:5ax ≤,又不等式的解集是{}1x x ≤,故15a=,解得:5a =. ……………6分(2)证明:222()()f x x a x x a x a a a a=-++≥--+=+ ……………8分220,a a a a a >∴+=+≥=Q ……………10分10.(聊城一模23)已知函数f (x )=|x ﹣a |+2|x +1|. (1)当a =1时,求不等式f (x )≤4的解集;(2)设不等式f (x )≤|2x +4|的解集为M ,若[0,3]⊆M ,求a 的取值范围. 【解析】(1)a =1时,f (x )=|x ﹣1|+2|x +1|, 若f (x )≤4,x ≥1时,x ﹣1+2x +2≤4,解得:x ≤1,故x =1, ﹣1<x <1时,1﹣x +2x +2≤4,解得:x ≤1,故﹣1<x <1, x ≤﹣1时,1﹣x ﹣2x ﹣2≤4,解得:x ≥﹣,故﹣≤x ≤﹣1, 综上,不等式的解集是[﹣,1]; (2)若[0,3]⊆M ,则问题转化为|x ﹣a |+2|x +1|≤|2x +4|在[0,3]恒成立, 即|x ﹣a |≤2x +4﹣2x ﹣2=2, 故﹣2≤x ﹣a ≤2,故﹣2﹣x ≤﹣a ≤2﹣x 在[0,3]恒成立, 即x ﹣2≤a ≤x +2在[0,3]恒成立,故1≤a≤2,即a的范围是[1,2].11.(淄博一模23)已知.(Ⅰ)当m=-3时,求不等式的解集;(Ⅱ)设关于x的不等式的解集为M,且,求实数m的取值范围. 【分析】(1)通过分段讨论的方式,在三段区间上分别得到不等式,求出对应的取值范围;(2)根据,将转化为的形式,通过解不等式得到满足的关系式,再利用恒成立的方式得到的取值范围.【解析】(1)当时,原不等式等价于故有或或解得:或或综上,原不等式的解集(2)由题意知在上恒成立,即在上恒成立所以即在上恒成立所以即在上恒成立由于,所以,即的取值范围是【点评】本题考查含绝对值不等式的解法以及与不等式有关的恒成立问题的处理.处理绝对值不等式的关键是能够利用自变量的范围,通过讨论的方式去掉绝对值.12.(临沂一模23)已知函数.(1)求的最小值m;(2)若正实数满足.【分析】(1) 对x分类讨论去绝对值,画出函数图像即可求得最小值m。
2019年山东省各地市一模试题分类汇编(理科)——不等式选讲
2019年山东省各地市一模试题分类汇编不等式选讲1.(烟台一模23)已知函数f (x )=|2x ﹣1|﹣m |x +2|. (1)当m =1时,求不等式f (x )≥2的解集;(2)若实数m 使得不等式f (x ﹣2)>m 在x ∈[﹣1,1]恒成立,求m 的取值范围. 【分析】(1)分3种情况去绝对值,解不等式组可得; (2)将不等式分离参数m 后构造函数求最小值可得. 【解析】(1)当m =1时,|2x ﹣1|﹣|x +2|≥2,当x ≤﹣2时,原不等式转化为1﹣2x +x +2≥2,解得x ≤﹣2;………………(1分) 当﹣2<x ≤时,原不等式转化为1﹣2x ﹣x ﹣2≥2,解得﹣2<x ≤﹣1;…(2分) 当x >时,原不等式转化为2x ﹣1﹣x ﹣2≥2,解得x ≥5; ………………(3分) 综上,不等式的解集为{x |x ≤﹣1或x ≥5}.………………(4分) (2)由已知得:f (x ﹣2)=|2x ﹣5|﹣m |x |>m ,即.,由题意m <g (x )min .………………(5分) 当x ∈[0,1]时,为减函数,此时最小值为; ………………(7分)当x ∈[﹣1,0)时,为增函数,此时最小值为.………………(9分)又,所以.所以m 的取值范围为.………………(10分)【点评】本题考查了绝对值不等式的解法,属中档题. 2.(青岛一模23)已知函数a x x x f +--=2)(,R ∈a 。
(Ⅰ)若1=a ,解不等式0)(>+x x f ;(Ⅱ)对任意R ∈x ,3)(≤x f 恒成立,求实数a 的取值范围。
【解析】3.(济南一模23)已知函数.(1)求不等式的解集;(2)若不等式的解集为空集,求实数的取值范围.【分析】(1)解法一:零点分区间,分类讨论,解绝对值不等式;解法二:画出图像,数形结合找到的解集.(2)解法一:数形结合,图像恒在图像上方;解法二:不等式的解集为空集可转化为对任意恒成立,分类讨论,去掉绝对值,利用一次函数保号性解决恒成立问题.【解析】(1)【解法一】由题意,当时,,解得,即,当时,,解得,即,当时,,解得,即.综上所述,原不等式的解集为.【解法二】由题意作出的图象注意到当或时,,结合图象,不等式的解集为;(2)【解法1】由(1)可知,的图象为不等式的解集为空集可转化为对任意恒成立,即函数的图象始终在函数的图象的下方,如图当直线过点以及与直线平行时为临界点,所以.【解法2】不等式的解集为空集可转化为对任意恒成立,(i)当时,,即恒成立,若,显然不合题意,若,即,则恒成立,符合题意,若,即,只需即可,解得,故,所以;(ii)当时,,即恒成立,若,即,恒成立,符合题意,若,即,则恒成立,符合题意,若,即,只需即可,解得,故,所以;(iii)当时,,即恒成立,若,即,只需即可,解得,故,若,即,则,不合题意,若,即,则恒成立,不合题意,所以;综上所述,.【点评】利用分类讨论,数形结合都可以解决含绝对值的不等式,本题还涉及到划归与转化的数学思想,利用保号性解决恒成立问题,属于中档题.4.(菏泽一模23)已知函数.(1)求的解集;(2)若,恒成立,求实数的取值范围.【分析】(1)根据绝对值定义去掉绝对值符号,即可得到不等式得解集;(2)不等式恒成立,等价于,根据绝对值定义去掉绝对值即可求得最大值,从而可得t的范围.【解析】(1),即,所以所以,所以,所以的解集为.(2)“”等价于“”,,成立,等价于令,则所以,即,解得故实数的取值范围是.【点评】本题考查绝对值不等式的解法,考查不等式恒成立问题的处理方法,属于基础题.5.(济宁一模23)已知函数.(1)当时,解不等式;(2)若的值域为[2,+∞),求证:.【分析】(1)代入a,b的值,通过讨论x的范围,求出不等式的解集即可;(2)求出a+b =2,根据绝对值不等式的性质证明即可.【解析】(1)解:当a=b=1时,i)当时,不等式可化为:,即,所以ii)当时,不等式可化为:2>x+2,即x<0,所以iii)当x>1时,不等式可化为:2x>x+2,即x>2,所以x>2综上所述:不等式的解集为(2)证明,∵f(x)的值域为,∴a+b=2,∴a+1+b+1=4∴,当且仅当,即a=b=1时取“=”即.【点评】本题考查了解绝对值不等式问题,考查基本不等式的性质以及分类讨论思想,转化思想,熟练利用绝对值三角不等式得到a,b的关系是关键,是一道中档题.6.(泰安一模23)已知函数.当时,求不等式的解集;当时,不等式恒成立,求m的取值范围.【分析】代入m的值,得到关于x的不等式组,解出即可;问题转化为恒成立,当时,,令,求出的最大值,求出m的范围即可.【解析】解:当时,,由,得或或,解得:或,故不等式的解集是;当时,,恒成立,即恒成立,整理得:,当时,成立,当时,,令,,,,,故,故【点评】本题考查了解绝对值不等式问题,考查分类讨论思想以及转化思想,是一道常规题.7.(潍坊一模23)已知函数的最大值为.(1)求实数的值;(2)若,设,,且满足,求证:. 【分析】(1)通过讨论x的范围化简函数的解析式,根据函数的性质求出函数的最值,即可求出t的值,(2)根据三角不等式和基本不等式的性质求出g(m+2)+g(2n)≥2.【解析】(1)由得,所以,即.(2)因为,由,知=,当且仅当,即时取等号.所以.【点评】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及基本不等式的性质,属于基础题.8.(枣庄一模23)已知函数(I )当时,求不等式的解集;(II )当时,恒成立,求的取值范围.【分析】(I )由题意,当a=1,代入可得,再用零点分段法,讨论x 的取值,解不等式得到答案; (II )当时,恒成立,转化为的最小值大于1即可,只需求出的最小值,再利用绝对值不等式,整理求得最小值即可.【解析】(I )解:当a=1时,当时,,即,即 当时,,即,即当时,,即,此时无解综上:的解集为(II )当时,即>1,,当且紧当x=-2时取等号,恒成立即解得或所以a 的取值或【点评】本题考查了解绝对值不等式以及绝对值不等式恒成立问题,属于较易题. 9.(日照一模23)设函数()()20f x x a x a a=-++>. (1)若不等式()24f x x x a=-+≥的解集为{}1x x ≤,求实数a 的值;(2)证明:()f x ≥【解析】(1)由2()4f x x x a-+≥, 可得4(0)x a x a -≥>, 当x a ≥时,4x a x -≥,解得:3ax ≤-,这与0x a ≥>矛盾,故不成立, ……………2分 当x a <时,4a x x -≥,解得:5ax ≤,又不等式的解集是{}1x x ≤,故15a=,解得:5a =. ……………6分(2)证明:222()()f x x a x x a x a a a a=-++≥--+=+ ……………8分220,a a a a a >∴+=+≥=Q ……………10分10.(聊城一模23)已知函数f (x )=|x ﹣a |+2|x +1|. (1)当a =1时,求不等式f (x )≤4的解集;(2)设不等式f (x )≤|2x +4|的解集为M ,若[0,3]⊆M ,求a 的取值范围. 【解析】(1)a =1时,f (x )=|x ﹣1|+2|x +1|, 若f (x )≤4,x ≥1时,x ﹣1+2x +2≤4,解得:x ≤1,故x =1, ﹣1<x <1时,1﹣x +2x +2≤4,解得:x ≤1,故﹣1<x <1, x ≤﹣1时,1﹣x ﹣2x ﹣2≤4,解得:x ≥﹣,故﹣≤x ≤﹣1, 综上,不等式的解集是[﹣,1]; (2)若[0,3]⊆M ,则问题转化为|x ﹣a |+2|x +1|≤|2x +4|在[0,3]恒成立, 即|x ﹣a |≤2x +4﹣2x ﹣2=2, 故﹣2≤x ﹣a ≤2,故﹣2﹣x ≤﹣a ≤2﹣x 在[0,3]恒成立, 即x ﹣2≤a ≤x +2在[0,3]恒成立,故1≤a≤2,即a的范围是[1,2].11.(淄博一模23)已知.(Ⅰ)当m=-3时,求不等式的解集;(Ⅱ)设关于x的不等式的解集为M,且,求实数m的取值范围. 【分析】(1)通过分段讨论的方式,在三段区间上分别得到不等式,求出对应的取值范围;(2)根据,将转化为的形式,通过解不等式得到满足的关系式,再利用恒成立的方式得到的取值范围.【解析】(1)当时,原不等式等价于故有或或解得:或或综上,原不等式的解集(2)由题意知在上恒成立,即在上恒成立所以即在上恒成立所以即在上恒成立由于,所以,即的取值范围是【点评】本题考查含绝对值不等式的解法以及与不等式有关的恒成立问题的处理.处理绝对值不等式的关键是能够利用自变量的范围,通过讨论的方式去掉绝对值.12.(临沂一模23)已知函数.(1)求的最小值m;(2)若正实数满足.【分析】(1) 对x分类讨论去绝对值,画出函数图像即可求得最小值m。
2019届四川省成都石室中学高三12月一诊模拟数学(理)试题(解析版)
2019届四川省成都石室中学高三12月一诊模拟数学(理)试题一、单选题1.已知全集,集合,集合,那么集合()A.[0,1)B.C.D.【答案】C【解析】可以求出集合A,B,然后进行补集、交集的运算即可.【详解】解得,;;;;;;.故选:C.【点睛】考查对数函数和幂函数的单调性,描述法、区间的定义,以及交集和补集的运算.2.若向量,是非零向量,则“”是“,夹角为”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】根据充分条件和必要条件的定义结合向量的运算进行判断即可.【详解】,向量,是非零向量,,夹角为“”是“,夹角为”的充要条件.故选:C.【点睛】本题主要考查充分条件和必要条件的判断,根据向量的运算是解决本题的关键.3.已知等差数列中,前n项和,满足,则()A.54 B.63 C.72 D.81【答案】B【解析】利用等差数列前n项和公式得,求出,再由,能求出结果.【详解】等差数列中,前n项和,满足,,,.故选:B.【点睛】本题考查等差数列的前9项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.对于等差数列的小题,常用到的方法,其一是化为基本量即首项和公差,其二是观察各项间的脚码关系,即利用数列的基本性质.4.已知双曲线C:,其焦点F到C的一条渐近线的距离为2,该双曲线的离心率为()A.B.C.D.【答案】A【解析】求出双曲线的焦点坐标以及双曲线的渐近线方程,然后利用已知条件求解即可.【详解】双曲线C:,其焦点到C的一条渐近线的距离为2,可得,可得,,所以,所以双曲线的离心率为:.故选:A.【点睛】本题考查双曲线的简单性质的应用,渐近线方程以及离心率求法,考查计算能力.双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围.基本的解题思路是建立椭圆和双曲线中的关系式,求值问题就是建立关于的等式,求取值范围问题就是建立关于的不等式.5.下列结论正确的是()A.当且时,B.当时,C.当时,无最小值D.当时,【答案】B【解析】讨论,,结合对数的性质,以及基本不等式可判断A;由的导数,判断单调性和最小值,可判断B;由当时,递增,可判断C;由当时,递增,可判断D.【详解】当时,,可得;当时,,,故A错误;由的导数为,当时,函数y递增;当时,函数y递减,可得函数y的最小值为1,即,即,故B正确;当时,递增,可得时,取得最小值,故C错误;当时,递增,可得最小值为,故D错误.故选:B.【点睛】本题考查函数的最值求法,注意运用基本不等式和导数判断单调性,考查分类讨论思想方法,以及运算能力,属于中档题.6.的展开式中,常数项为14,则A.B.14 C.D.2【答案】D【解析】写出二项展开式的通项,由x的指数为0求得r值,再由常数项为14求得a 值.【详解】的展开式的通项为.取,得.则,即.故选:D.【点睛】本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题.求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.7.已知定义在R上的奇函数满足,且当时,,若,则()A.B.C.D.【答案】A【解析】根据题意,分析可得函数的周期为4,进而可得,,据此可得,则有,结合函数的周期性可得,结合函数的解析式可得答案.【详解】根据题意,函数满足,则有,即函数的周期为4,故,,若,则有,又由函数为奇函数,则有,变形可得,又由当时,,则有,解可得;故选:A.【点睛】本题考查函数的周期性与奇偶性的应用,注意分析函数的周期,属于基础题.8.已知,则的面积为()A.B.C.D.1【答案】A【解析】根据向量数量积和面积公式可求得.【详解】根据题意,,,有,,则可得,则则故选:A.【点睛】本题考查了平面向量数量积的性质及其运算,属基础题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).9.如图,已知底面为直角三角形的直三棱柱,其三视图如图所示,则异面直线与所成角的余弦值为()A.B.C.D.【答案】D【解析】由题意,可以将四三棱柱补形为长方体,得到异面直线与所成角,再由余弦定理求解.【详解】如图所示,可以将四三棱柱补形为长方体,可得,则异面直线与所成角为,由三视图可知,,.即异面直线与所成角的余弦值为.故选:D.【点睛】本题考查空间几何体的三视图,考查异面直线所成角的求法,关键是找出异面直线所成角,是中档题.异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.10.已知函数,将图象上各点的横坐标伸长为原来的2倍纵坐标不变,再向左平移个单位,得到函数的图象,已知分别在,处取得最大值和最小值,则的最小值为()A.B.C.D.【答案】B【解析】利用三角恒等变换化简的解析式,再利用函数的图象变换规律求得的解析式,根据正弦函数的最值条件求得的最小值.【详解】函数,将图象上各点的横坐标伸长为原来的2倍纵坐标不变,可得的图象;再向左平移个单位,得到函数的图象.已知分别在,处取得最大值和最小值,,.则,故当时,取得最小值为,故选:B.【点睛】本题主要考查三角恒等变换,函数的图象变换规律,正弦函数的最值,属于中档题.三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.11.已知抛物线C:的焦点坐标为,点,过点P作直线l交抛物线C于A,B两点,过A,B分别作抛物线C的切线,两切线交于点Q,则面积的最小值为()A.B.C.D.【答案】C【解析】先求出抛物线的方程,再分别表示出两个切线方程,联立可求得Q的坐标表示出点Q到直线AB的距离,设直线AB的方程,抛物线联立求,根据韦达定理和弦长公式求出AB,利用三角形面积公式表示出三角形面积,即可求出面积的最大值.【详解】抛物线C:的焦点坐标为,,,抛物线C:,设,,,,过点A的切线方程为,过点B的切线方程为,则两切线的交点为,由AB过点,设直线方程为,由,消y可得,,,,,点Q到直线AB的距离当时,此时面积最小,最小值为,故选:C.【点睛】本题主要考查了抛物线与直线的位置关系,点到直线距离公式的应用考查了学生分析推理和运算的能力,属于中档题;本题所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.12.已知函数,,且,则方程的实数根的个数不可能为()A.3 B.4 C.5 D.6【答案】D【解析】利用换元法设,则,结合t的范围,以及,的根的个数,利用数形结合进行判断即可.【详解】设,则,由题意知有两个根,,且,,不妨设,则,,当或时,,当时,,则在时,取得极小值,在处取得极大值,当,,,,则由图象知,当,时,方程,有5个不同的解,当,时,方程,有4个不同的解,当,时,方程,有3个不同的解,即方程的实数根的个数为3或4或5,不可能是6个,故选:D.【点睛】本题主要考查函数与方程的应用,利用换元法转化为两个函数图象交点个数,结合数形结合是解决本题的关键综合性较强.二、填空题13.若x,y满足约束条件,则的最大值______.【答案】12【解析】先画出x,y满足约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数的最小值.【详解】x,y满足约束条件的可行域如图,由图象可知:目标函数过点时z取得最大值,,故答案为:12.【点睛】在解决线性规划的问题时,我们常用“角点法”,其步骤为:由约束条件画出可行域求出可行域各个角点的坐标将坐标逐一代入目标函数验证,求出最优解.14.执行如图所示的程序框图,若输入,则输出y的值为______.【答案】-【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得当时,,此时;当时,,此时;当时,,此时;当时,,此时;故输出的y的值为:.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.已知数列中,,,设其前n项和为,若对任意的,恒成立,则k的最小值为____.【答案】【解析】由,变形为:,,利用等比数列的通项公式可得,利用求和公式可得代入,化简,通过作差利用数列的单调性即可得出最小值.【详解】由,变形为:,,数列是公比为2,首项为1的等比数列...对任意的,恒成立,.令,则时,.时,.,数列的前3项单调递增,从第3项开始单调递减.时,数列取得最大值,.【点睛】本题考查了等比数列的通项公式与求和公式、转化法、作差法,考查了推理能力与计算能力,属于中档题.数值最值的求解方法如下:1.邻项比较法,求数列的最大值,可通过解不等式组求得的取值范围;求数列的最小值,可通过解不等式组求得的取值范围;2.数形结合,数列是一特殊的函数,分析通项公式对应函数的特点,借助函数的图像即可求解;3.单调性法,数列作为特殊的函数,可通过函数的单调性研究数列的单调性,必须注意的是数列对应的是孤立的点,这与连续函数的单调性有所不同;也可以通过差值的正负确定数列的单调性.16.如图,四边形ABCD是边长为1的正方形,平面ABCD,平面ABCD,且,G为线段EC上的动点,则下列结论中正确的是______;该几何体外接球的表面积为;若G为EC中点,则平面AEF;的最小值为3.【答案】【解析】以D为原点,DA所在直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系,分别求得D,A,B,C,F,E的坐标,由,的坐标表示,可判断;确定球心为矩形BDEF的对角线交点,求得半径,可判断;求得G的坐标,求得平面AEF的法向量,计算可判断;设出G的坐标,由两点的距离公式,结合二次函数的最值求法,可判断.【详解】以D为原点,DA所在直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系,可得0,,0,,1,,1,,1,,0,,即有1,,1,,由,可得,故正确;由球心在过正方形ABCD的中心的垂面上,即为矩形BDEF的对角线的交点,可得半径为,即有该几何体外接球的表面积为,故正确;若G为EC中点,可得1,,0,,0,,1,,设平面AEF的法向量为y,,可得,且,可设,可得一个法向量为,由,可得则平面AEF,故正确;设t,,,当时,取得最小值,故错误.故答案为:.【点睛】本题考查空间线面的位置关系和空间线线角的求法,以及向量法解决空间问题,考查运算能力,属于中档题.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题17.的内角A,B,C的对边分别为a,b,c,已知,,的面积为,F为边AC上一点.求c;若,求.【答案】(1)c=2(2)【解析】由已知利用三角形的面积公式可求b的值,根据余弦定理可得c的值;由可得,可求,,由已知根据正弦定理,由,可求,根据两角和的正弦函数公式即可计算得解的值.【详解】,,的面积为,解得:,由余弦定理可得:,由可得,,,在中,由正弦定理,可得:,,,,,【点睛】本题主要考查了三角形的面积公式,余弦定理,正弦定理,两角和的正弦函数公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.18.如图,在四棱锥中,底面为菱形,已知,,求证:平面平面ABCD;求直线AE与平面CED的所成角的正弦值.【答案】(1)见证明;(2)【解析】过D作,连结EO,推导出≌,,,从而面ABE,由此能证明平面平面ABCD;由,,,以O为坐标原点,分别以OE,OB,OD为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出直线AE与平面CED的所成角的正弦值.【详解】如图,过D作,连结EO,,,≌,,,,,由勾股定理逆定理得,,,,面ABE,面ABE,面ABE,面ABCD,平面平面ABCD.由知,,,如图,以O为坐标原点,分别以OE,OB,OD为x轴,y轴,z轴,建立空间直角坐标系,由已知得0,,,0,,2,,,,,设面CED的法向量y,,则,取,得0,,设直线AE与平面CED所成角为,则,直线AE与平面CED的所成角的正弦值为.【点睛】本题考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系;求y关于x的线性回归方程,并预测该公司2018年2月份的市场占有率;根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元辆和800元辆的A,B两款车型报废年限各不相同考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:经测算,平均每辆单车每年可以为公司带来收入500元不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据如果你是该公司的负责人,你会选择采购哪款车型?参考数据:,,.参考公式:相关系数,回归直线方程为其中:,.【答案】(1)见解析;(2),估计2018年2月的市场占有率为.(3)见解析【解析】(1)画出散点图,求出相关系数,判断线性相关性即可;(2)求出回归方程的系数,求出回归方程,代入函数值检验即可;(3)求出分布列,求出数学期望比较即可判断.【详解】散点图如图所示,,,所以两变量之间具有较强的线性相关关系,故可用线性回归模型拟合两变量之间的关系.,又,,回归直线方程为,2018年2月的月份代码,,所以估计2018年2月的市场占有率为.用频率估计概率,A款单车的利润X的分布列为:元.B款单车的利润Y的分布列为:元以每辆单车产生利润的期望值为决策依据,故应选择B款车型.【点睛】本题考查了散点图,考查回归方程以及分布列和数学期望,是一道中档题.在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.20.已知圆:,点,C为圆上任意一点,点P在直线OC上,且满足,,点P的轨迹为曲线E.求曲线E的方程;若直线l:不与坐标轴重合与曲线E交于M,N两点,O为坐标原点,设直线OM、ON的斜率分别为、,对任意的斜率k,若存在实数,使得,求实数的取值范围.【答案】(1)(2)【解析】由题意可得点P的轨迹是以为焦点的椭圆,即可求出曲线E的方程;设,根据韦达定理结合斜率公式,以及,可得,再分类讨论,根据判别式即可求出的取值范围.【详解】由,可得,则点P的轨迹是以为焦点的椭圆,则,,,则曲线E的方程为,设,,则,消y可得,,,当时,,当时,,由于对任意k恒成立,则,,,综上所述.【点睛】本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要灵活运用圆锥曲线性质,注意合理地进行等价转化,是中档题.其中涉及方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21.已知函数,其中,,.若是的一条切线,求a的值;在间的前提下,对任意的实数,若存在正实数,,使得,求的最小正整数值.【答案】(1)(2)最小值为4【解析】求得的导数,设出切点,可得切线的斜率,可得a,m的方程,解得m,a;由题意可得可得,即,设,令,求得导数和单调性,可得最小值,再由不等式恒成立和一次函数的单调性,解不等式可得所求最小值.【详解】的导数为,设与相切于,可得,,化为,设,导数为,当时,递增;时,递减,可得处取得最小值0,则,;,可得,即,设,令,,时,递减;时,递增,可得,即有,设,对恒成立,令,,在递减,可得,可得舍去,由n为正整数,可得n的最小值为4,即的最小值为4.【点睛】本题考查导数的运用:求切线的斜率和单调性、极值和最值,考查构造函数法,以及化简整理的运算能力,属于中档题.在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.22.在平面直角坐标系xOy中,直线的参数方程为:为参数,在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为:,直线与曲线交于A,B两点,求曲线的普通方程及的最小值;若点,求的最大值.【答案】(1)曲线的普通方程为.的最小值为.(2)最大值70【解析】由曲线的极坐标方程,能求出曲线的普通方程由最小时,圆心距最大为,能求出的最小值;将直线与方程联立方程,得,从而,,进而,由此能求出的最大值.【详解】曲线的极坐标方程为:,,曲线的普通方程为,即.直线的参数方程为:为参数,直线与曲线交于A,B两点,最小时,圆心距最大为,的最小值为:.设直线上点A,B对应参数方程为参数的参数分别为,,将直线与方程联立方程,得:,,,,,当时,取最大值70.【点睛】本题考查曲线的普通方程的求法,考查弦长的求法,考查两线段平方和的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,是中档题.23.已知函数,当时,解不等式;若存在,使得不等式的解集非空,求b的取值范围.【答案】(1)(2)【解析】时不等式化为,根据绝对值的定义求出解集即可;由不等式得,构造函数,不等式的解集非空等价于,利用绝对值不等式求出在上的最大值即可.【详解】当时,函数,解不等式化为,即,,解得,不等式的解集为;由,得,设,则不等式的解集非空,等价于;由,;由题意知存在,使得上式成立;而函数在上的最大值为,;即b的取值范围是【点睛】本题考查了绝对值不等式的解法与应用问题,也考查了函数在某一区间上的最值问题,是中档题.。
2019北京各区一模数学理试题分类解析-函数
2019北京各区一模数学理试题分类解析-函数注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!7.〔2018年海淀一模理7〕函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩假设1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,那么实数a 的取值范围是〔A 〕A 、2a <B 、2a >C 、22a -<<D 、2a >或2a <-6.〔2018年西城一模理6〕假设2log 3a =,3log 2b =,4log 6c =,那么以下结论正确的选项是〔D 〕A 、b a c <<B 、a b c <<C 、c b a <<D 、b c a <<13.〔2018年西城一模理13〕函数122,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩其中0c >、那么()f x 的零点是_____;假设()f x 的值域是1[,2]4-,那么c 的取值范围是_____、 答案:1-和0;(0,4]。
6、〔2018年房山一模理6〕函数⎪⎩⎪⎨⎧≥-+<--=0,120,12)(22x x x x x x x f ,那么对任意R ∈21,x x ,假设120x x <<,以下不等式成立的是(D)A.12()()0f x f x +<B.12()()0f x f x +>C.12()()0f x f x ->D.12()()0f x f x -<8、〔2018年东城一模理8〕函数21,0,()(1),0.x x f x f x x -⎧-≤=⎨->⎩假设方程()f x x a =+有且只 有两个不相等的实数根,那么实数a 的取值范围是〔A 〕A 、(),1-∞B 、(],1-∞C 、()0,1D 、[)0,+∞8、〔2018年丰台一模理8〕定义在R 上的函数y=f(x)满足f(x+2)=f(x),当-1<x ≤1 时,f(x)=x 3、假设函数()()log a g x f x x =-恰有6个零点,那么〔D 〕A.a=5或a=15B.1(0,)[5,)5a ∈+∞C.11[,][5,7]75a ∈D.11[,)[5,7)75a ∈ 6.〔2018年朝阳一模理6〕函数()f x 是定义在R 上的偶函数,且对任意的x ∈R ,都有(2)()f x f x +=.当01x ≤≤时,2()f x x =.假设直线y x a =+与函数()y f x =的图象在[0,2]内恰有两个不同的公共点,那么实数a 的值是〔D 〕A.0B.0或12- C.14-或12- D.0或14- 13.〔2018年朝阳一模理13〕函数213(),2,()24log ,0 2.x x f x x x ⎧+≥⎪=⎨⎪<<⎩假设函数 ()()g x f x k =-有两个不同的零点,那么实数k 的取值范围是. 答案:3(,1)412.〔2018年石景山一模理12〕设函数21,,2()1log ,2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩的最小值为1-,那么实数a的取值范围是、 答案:21-≥a 。
2019年山东省各地市一模试题分类汇编(理科)——函数与导数
2019年山东省各地市一模试题分类汇编函数与导数一、选择题1.(菏泽一模3)函数的一个零点所在的区间是()A. B. C. D.【答案】B【分析】零点所在单调区间满足,依次判定,即可。
【解析】,,故其中一个零点位于区间内,故选B。
【点评】考查了函数零点所在区间的判定,关键抓住零点所在区间满足,即可,难度中等。
2.(济宁一模5)已知函数是定义在R上的奇函数,且若则()A. B. 9C. D. 0【答案】A【分析】由函数的奇偶性可知f(﹣x)=﹣f(x),将f(1+x)=f(1﹣x)变形可得f(﹣x)=f(2+x),综合分析可得f(x+4)=f(x),即函数f(x)是周期为4的周期函数,据此可得f(2019)=﹣f(1),即可得答案.【解析】根据题意,函数f(x)是定义在R上的奇函数,则f(﹣x)=﹣f(x),又由f(1+x)=f(1﹣x),则f(﹣x)=f(2+x),则有f(x+2)=﹣f(x),变形可得f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,则f(2019)=f(﹣1+505×4)=f(﹣1)=﹣f(1)=﹣9;故选:A.【点评】本题考查抽象函数的应用,涉及函数的周期性,奇偶性,关键是分析函数f(x)的周期性,是中档题.3.(枣庄一模6)有如下命题:①函数,,,中有三个在上是减函数;②函数有两个零点;③若,则其中真命题的个数为()A. B. C. D.【答案】D【分析】①根据函数的单调性可得,,三个函数在上是减函数,在R上递增的,故①正确;②令函数=0化简:=x+2,作出图像,看交点个数得出结果②正确;③若,因为为单调递减函数,所以故③正确.【解析】由题①函数,,,中,根据函数的单调性易知,,,三个函数在上是减函数,在R上递增的,故①正确;②令函数=0化简:=x+2,作出图像有两个交点,故由两个零点;②正确;③若,因为为单调递减函数,所以故③正确.故选D【点评】本题考查了函数的性质(单调性)以及函数与方程,借助数形结合思想,属于较易题.4.(聊城一模8)设函数f(x)=+a,若f(x)为奇函数,则不等式f(x)>1的解集为()A.(0,1)B.(﹣∞,1n3)C.(0,ln3)D.(0,2)【答案】C【解析】解:根据题意,函数f(x)=+a,其定义域为{x|x≠0}若f(x)为奇函数,则f(﹣x)+f(x)=0,即(+a)+(+a)=﹣1+2a=0,解可得a=,则f(x)=+又由y=e x﹣1在(0,+∞)为增函数其y>0,则f(x)=+在(0,1)上为减函数且f(x)>0,则f(x)在(﹣∞,0)上减函数且f(x)<0,又由f(ln3)=+=1,则f(x)>1⇒f(x)>f(ln3),则有0<x<ln3,即不等式的解集为(0,ln3);故选:C.5.(济南一模8)若,则()A. B. C. D.【答案】B【分析】利用,把用表示,并得到,构造幂函数,利用幂函数的单调性,得到结果.【解析】设,则,则则设函数,在单调递减即,因此故选B项.【点评】本题考查对数与指数关系,构造函数,幂函数的特点等,属于中档题.6.(泰安一模9)已知函数等于A. 2B.C.D. 3【答案】A【分析】利用已知推导出,由此能求出结果.【解析】解:函数,.故选:A.【点评】本题考查函数值值的求法,考查函数性质等基础知识,考查运算求解能力,是中档题.7.(潍坊一模8)函数的图象可能是()A. B. C. D.【答案】A【分析】计算函数与y轴的交点坐标,再判断函数的单调性,即可判断出答案.【解析】当x=0时,y=4﹣1=3>0,排除C,当>x>0时,是单调递减的,当x>时,导函数为-4sinx-<0,所以也是单调递减的,又函数连续,故当x>0时,函数时递减的,故选A.故选:A.【点评】本题考查了函数图象的判断,一般从奇偶性,单调性,特殊值等方面判断,属于基础题.8.(潍坊一模9)已知偶函数,当时,,若,为锐角三角形的两个内角,则()A. B.C. D.【答案】B【分析】根据题意,由函数的解析式可得f(x)在(-1,0)上为减函数,结合函数的奇偶性可得f(x)在(0,1)上为增函数,又由α,β为锐角三角形的两个内角分析可得sin α>sin(90°﹣β)=cosβ,结合函数的单调性分析可得答案.【解析】根据题意,当x∈(﹣1,0)时,f(x)=2﹣x=()x,则f(x)在(0,1)上为减函数,又由f(x)为偶函数,则f(x)在(0,1)上为增函数,若α,β为锐角三角形的两个内角,则α+β>90°,则α>90°﹣β,则有sinα>sin(90°﹣β)=cosβ,则有f( sinα)>f(cosβ),故选:B.【点评】本题考查函数的单调性与奇偶性的综合应用,涉及三角函数的诱导公式的运用,属于基础题.9.(淄博一模10)已知,,设,,,则的大小关系是()A. B. C. D.【答案】A【分析】判断出单调性之后,将的自变量转化为同底的对数的形式比较大小,结合单调性可确定的大小关系.【解析】在上单调递减.可得:本题正确选项:【点评】本题考查利用函数单调性比较大小问题,关键在于能够将自变量变换成同底对数的形式,比较出自变量的大小关系.10.(德州一模9)设是定义在R上周期为2的函数,且,记,若,则函数在区间上零点的个数是A. 5B. 6C. 7D. 8【答案】D【分析】根据函数的周期性和解析式,作出函数的图象,利用函数零点与方程之间的关系转化为两个图象交点个数,利用数形结合进行求解即可.【解析】是定义在R上周期为2的函数,且,作出是在区间上图象如图:由,得,,作出的图象,由图象知两个函数共有8个交点,即的零点个数为8个,故选:D.【点评】本题主要考查函数与方程的应用,利用数形结合转化为两个函数图象的交点问题是解决本题的关键.11.(烟台一模11)若函数f(x)=e x﹣e﹣x+sin2x,则满足f(2x2﹣1)+f(x)>0的x的取值范围为()A.B.C.D.【答案】B【分析】判断函数f(x)为定义域R上的奇函数,且为增函数;把f(2x2﹣1)+f(x)>0化为2x2﹣1>﹣x,求出解集即可.【解析】解:函数f(x)=e x﹣e﹣x+sin2x,定义域为R,且满足f(﹣x)=e﹣x﹣e x+sin(﹣2x)=﹣(e x﹣e﹣x+sin2x)=﹣f(x),∴f(x)为R上的奇函数;又f′(x)=e x+e﹣x+2cos2x≥2+2xos2x≥0恒成立,∴f(x)为R上的单调增函数;又f(2x2﹣1)+f(x)>0,得f(2x2﹣1)>﹣f(x)=f(﹣x),∴2x2﹣1>﹣x,即2x2+x﹣1>0,解得x<﹣1或x>,所以x的取值范围是(﹣∞,﹣1)∪(,+∞).故选:B.【点评】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,是中档题.12.(临沂一模11)函数上不单调的一个充分不必要条件是A. B.C. D.【答案】A【分析】先求出函数的导函数,再根据函数f (x )在(1,3)上不单调,得g (1)·g (3)<0且△≥0,从而可求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市12区2019届高三第一次模拟(3、4月)数学理试题分类汇编
函数
1、(朝阳区2019届高三一模)若函数22,1,()log ,1x x f x x x ⎧<=⎨-≥⎩,
则函数()f x 的值域是
A .(,2)-∞
B .(,2]-∞
C .[0,)+∞
D .(,0)(0,2)-∞
2、(东城区2019届高三一模)已知函数3()4f x x x =-,若1212,[,],,x x a b x x ∀∈≠都
有12122()(2)
(2)f x x f x f x +>+成立,则满足条件的一个区间是________. 3、(丰台区2019届高三一模)下列函数中,同时满足:①图象关于y 轴对称;②1212,(0,)()x x x x ∀∈+∞≠,2121
()()0f x f x x x ->-的是 (A )1()f x x -=
(B )2()log ||f x x = (C )()cos f x x =
(D )1()2x f x += 4、(海淀区2019届高三一模)已知函数()f x x =,2()g x ax x =-,其中0a >.若12[1,2],[1,2]x x ∀∈∃∈,使得1()f x 2()f x 1()g x =2()g x 成立,则a =____.
5、(怀柔区2019届高三一模)若函数()22-=-x x f x ,则()f x
A .是奇函数,且在R 上是增函数
B .是偶函数,且在R 上是增函数
C .是奇函数,且在R 上是减函数
D .是偶函数,且在R 上是减函数
6、(门头沟区2019届高三一模) 若函数()f x 图象上存在两个点A ,B 关于原点对称,
则点对(),A B 称为函数()f x 的“友好点对”,且点对(),A B 与(),B A 可看作同一个“友好点对”.若函数
()f x =22
21,0,0x ex m x e x x x ⎧++-≤⎪⎨+>⎪⎩
(其中e 为自然对数的底数, 2.718e ≈)恰好有两个“友好点对”,则实数m 的取值范围为
A .2(1)m e ≤-
B . 2(1)m e >-
C .2(1)m e <-
D . 2
(1)m e ≥-
7、(石景山区2019届高三一模)若1x y a b >>>>,则下列各式中一定正确的是
2 A. x y a b > B. ln ln x y < C. sin sin x y > D. a b x y
< 8、(顺义区2019届高三第二次统练(一模))“当1c >时,能使不等式log log a b c c >”成立的一组正数,a b 的值依次为________________
9、(延庆区2019届高三一模)设()f x 是定义在R 上的单调递减函数,能说明“一定存在0x R ∈使得0()1f x <”为假命题 的一个函数是()f x =_____.
10、(房山区2019届高三一模)已知函数()2(0)x f x x =< 与()ln()g x x a =+的图象上存在关于y 轴对称的点,则a 的取值范围是
(A) (,2)-∞
(B) (,e)-∞ (C) (2,e) (D) (e,+)∞
11、(房山区2019届高三一模)函数(),[1,)y f x x =∈+∞,数列{}n a 满足*(),n a f n n =∈N ,
①函数()f x 是增函数;
②数列{}n a 是递增数列.
写出一个满足①的函数()f x 的解析式 .
写出一个满足②但不满足①的函数()f x 的解析式 .
12、(平谷区2019届高三一模)下列函数中,在区间(0,+∞)上为增函数的是( )
A 、1y x
= B 、y =lnx C 、y =sinx D 、y =2-x 13、(朝阳区2019届高三一模)能说明“函数()f x 的图象在区间[]0,2上是一条连续不断的曲线.若(0)(2)0f f ⋅>,则()f x 在(0,2)内无零点”为假命题的一个函数是 .
参考答案
1、A
2、(0,1) (答案不唯一)
3、B
4、32
5、A
6、C
7、A
8、)21,2( (答案不唯一)
9、1()12x f x ⎛⎫=+ ⎪⎝⎭
10、B 11、224()()()3f x x f x x ==-;答案不唯一 12、B 13、2
(1)y x =-(答案不唯一)。