高中数学第三册2-2 线性规划试题
高中数学332_简单的线性规划问题(有答案)
3.3.2 简单的线性规划问题(1)一、选择题。
1. 若实数x ,y 满足不等式组{x +3y −3≥02x −y −3≤0x −y +1≥0,则x +y 的最大值为( )A.9B.157C.1D.7152. 已知点P (x,y )的坐标满足条件{x +y ≤4,y ≥x ,x ≥1,则x 2+y 2的最大值为( )A.√10B.8C.16D.103. 设变量x ,y 满足约束条件{x −y +2≥0,x −5y +8≤0,x +y −8≤0,则目标函数z =3x −4y 的最大值和最小值分别为( ) A.3,−11 B.−3,−11 C.11,−3 D.11,34. 在坐标平面上有两个区域M 和N ,其中区域M ={(x,y)|y ≥0,y ≤x,y ≤2−x },区域N ={(x,y )|t ≤x ≤t +1,0≤t ≤1},区域M 和N 公共部分的面积用函数f(t)表示,则f(t)的表达式为( ) A.−t 2+t +12B.−2t 2+2tC.1−12t 2D.12(t −2)25. 已知向量a =(x +z,3),b =(2,y −z ),且a ⊥b .若x ,y 满足不等式|x|+|y|≤1,则z 的取值范围为( ) A.[−2,2] B.[−2,3] C.[−3,2] D.[−3,3]6. 设不等式组{x ≥1,x −2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x −4y −9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,则|AB|的最小值为( ) A.285B.4C.125D.2二、填空题。
设变量x ,y 满足约束条件{x +y ≥3,x −y ≥−1,2x −y ≤3.则目标函数z =2x +3y 的最小值为________.已知−1<x +y <4且2<x −y <3,则z =2x −3y 的取值范围是________.(答案用区间表示)已知实数x 、y 满足{2x −y ≤0x +y −5≥0y −4≤0,,若不等式a(x 2+y 2)≥(x +y)2恒成立,则实数a的最小值是________. 三、解答题。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.,满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A.或B.或C.或D.或【答案】D.【解析】如图,画出线性约束条件所表示的可行域,坐出直线,因此要使线性目标函数取得最大值的最优解不唯一,直线的斜率,要与直线或的斜率相等,∴或.【考点】线性规划.2.已知最小值是5,则z的最大值是()A.10B.12C.14D.15【答案】A【解析】首先作出不等式组所表示的平面区域,如图中黄色区域,则直线-2x+y+c=0必过点B(2,-1),从而c=5,进而就可作出不等式组所表示的平面区域,如图部的蓝色区域:故知只有当直线经过点C(3,1)时,z取最大值为:,故选A.【考点】线性规划.3.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.4.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.5.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】作出可行域:oyxA(1,1)由图可知,当直线过点时,目标函数取最小值为3,选B.【考点】线性规划6.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.7.若变量满足约束条件,则的最大值为_________.【答案】【解析】作出不等式组表示的区域如下,则根据线性规划的知识可得目标函数在点处取得最大值,故填.【考点】线性规划8.设x,y满足约束条件,则z=(x+1)2+y2的最大值为()A.80B.4C.25D.【答案】A【解析】作出不等式组表示的平面区域,如图中阴影部分所示.(x+1)2+y2可看作点(x,y)到点P(-1,0)的距离的平方,由图可知可行域内的点A到点P(-1,0)的距离最大.解方程=(3+1)2+82=80.组,得A点的坐标为(3,8),代入z=(x+1)2+y2,得zmax9.已知实数满足,则目标函数的取值范围是.【答案】【解析】可行域表示一个三角形ABC,其中当直线过点A时取最大值4,过点B时取最小值2,因此的取值范围是.【考点】线性规划求取值范围10.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【答案】B【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.11.(2011•浙江)设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14B.16C.17D.19【答案】B【解析】依题意作出可行性区域如图,目标函数z=3x+4y在点(4,1)处取到最小值z=16.故选B.12.若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x-y的最小值为A.-6B.-2C.0D.2【答案】A【解析】的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 且当取点(-2,2)时,2x – y =" -" 6取最小值。
高三数学线性规划试题
高三数学线性规划试题1.若变量、满足约束条件,则的最大值等于()A.B.C.D.【答案】C【解析】作出不等式组所表示的可行域如下图所示,直线交直线于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即,故选C.【考点】本题考查线性规划中线性目标函数的最值,属于中等题.2.满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A.B.C.2或1D.【答案】D【解析】题中的约束条件表示的区域如下图,将化成斜截式为,要使其取得最大值的最优解不唯一,则在平移的过程中与重合或与重合,所以或.【考点】1.线性规划求参数的值.3.若变量满足约束条件且的最大值为,最小值为b,则的值是( ) A.10B.20C.4D.12【答案】C【解析】变量满足约束条件,如图所示,目标函数过点A时z最小,目标函数过点B时z取最大.所以.故选C.【考点】1.线性规划.2.数形结合.4.若,则点必在()A.直线的左下方B.直线的右上方C.直线的右上方D.直线的左下方【答案】A【解析】由基本不等式得,即,因此有,因此点在直线的左下方,故选A.【考点】1.基本不等式;2.线性规划5.已知向量,是平面区域内的动点,是坐标原点,则的最小值是 .【答案】【解析】设,则,所以.令.画出点所在的平面区域及目标函数线如图所示:平移目标函数线使之经过可行域,当目标函数线经过点时,取得最小值为.【考点】1平面向量数量积公式;2线性规划.6. [2014·德州模拟]在平面直角坐标系中,若不等式组 (a为常数)所表示的平面区域的面积等于2,则a的值为()A.-5B.1C.2D.3【答案】D【解析】由题意知不等式组所表示的平面区域为一个三角形区域,设为△ABC,其中A(1,0),=2,所以×(1+a)×1=2,解得a=3.B(0,1),C(1,1+a)且a>-1,因为S△ABC7.(5分)(2011•陕西)如图,点(x,y)在四边形ABCD内部和边界上运动,那么2x﹣y的最小值为.【答案】1【解析】由已知中点(x,y)在四边形ABCD内部和边界上运动,那么2x﹣y取最小值时,点(x,y)一定落在A、B、C、D四个点的某一个点上,我们将四个点的坐标依次代入目标函数的解析式,比较分析后,即可得到答案.解:结合已知的四边形ABCD的图形,我们将四边形的各个顶点坐标依次代入可得:当x=1,y=1时,2x﹣y=1当x=,y=时,2x﹣y=当x=,y=1时,2x﹣y=2﹣1>1当x=1,y=0时,2x﹣y=2>1故2x﹣y的最小值为 1故答案为:1点评:本题考查的知识点是简单线性规划,其中利用角点法是解答线性规划问题的最优解问题是解答线性规划问题最常用,最快捷,最有效的方法,希望大家熟练掌握.8.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8B.8C.12D.13【答案】D【解析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,z=m+k取得最小值,即z=13.min故选D.点评:此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.9.已知,若恒成立, 则的取值范围是 .【答案】【解析】要使不等式成立,则有,即,设,则.作出不等式组对应的平面区域如图,平移直线,由图象可知当直线经过点B时,直线的截距最小,此时最大,由,解得,代入得,所以要使恒成立,则的取值范围是,即,【考点】线性规划.10.设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为( )A.11B.10C.9D.8.5【答案】B【解析】作出不等式组表示的可行域,如图阴影部分所示.又z=2x+3y+1可化为y=-x+-,结合图形可知z=2x+3y+1在点A处取得最大值.由得,故A(3,1).此时z=2×3+3×1+1=10.11.若实数、满足条件,则的最大值为_______.【答案】.【解析】作出不等式组所表示的平面区域如下图所示,直线与直线交于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,此时直线在轴上的截距最大,取最大值,即.【考点】线性规划12.设z=kx+y,其中实数x、y满足,若z的最大值为12,则实数k= .【答案】2【解析】由得.作出不等式组表示的区域如图所示.由图可知,若,则当或时最大,且最大值不超过4. 若,则当时最大,由得.【考点】线性规划.13.已知实数满足,则的最小值是.【答案】4【解析】因为实数满足,如图所示,令=k,所以.由于当k<0时抛物线的开口向下,所以不合条件.所以k>0,有两种情况当k取最小值即抛物线过点.所以的最小值是.当抛物线与直线相切的情况,,即的最小值是4.【考点】1.线性规划问题.2.抛物线的问题.3.分类归纳的思想.4.构建数形结合解题的思想.14.已知点、,直线与线段相交,则的最小值为( )A.B.C.D.【答案】B【解析】由已知有,作出可行域,令,则的最小值为点到直线的距离,此时,所以的最小值为,选B.【考点】线性规划.15.若目标函数在约束条件下仅在点处取得最小值,则实数的取值范围是 .【答案】【解析】约束条件表示一个三角形及其内部.因此直线的斜率在内,即【考点】线性规划16.设变量x,y满足约束条件,则目标函数的最小值为。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.已知实数、满足不等式组,则的最大值是____________.【答案】20【解析】作出不等式组表示的可行域,如图四边形内部(含边界),作直线,平移直线,当过点时,取得最大值20.【考点】线性规划.2.设变量x,y满足约束条件,则的最大值是()A.7B.8C.9D.10【答案】C【解析】画出可行域及直线,如图所示.平移直线,当其经过点时,.选.【考点】简单线性规划3.已知满足不等式设,则的最大值与最小值的差为()A.4B.3C.2D.1【答案】A【解析】作出不等式组所表示的区域,,由图可知,在点取得最小值,在点取得最大值,故的最大值与最小值的差为.【考点】线性规划.4.设变量x、y满足则2x+3y的最大值是________.【答案】55【解析】由得A(5,15),且A为最大解,∴z=2×5+3×15=55max5.已知实数x,y满足则r的最小值为________.【答案】【解析】作出约束条件表示的可行域,如图中的三角形,三角形内(包括边)到圆心的最短距离即为r的值,所以r的最小值为圆心到直线y=x的距离,所以r的最小值为.6.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为 ().A.1B.C.D.【答案】D【解析】由z=ax+by(a>0,b>0)得y=-x+,可知斜率为-<0,作出可行域如图,由图象可知当直线y=-x+经过点D时,直线y=-x+的截距最小,此时z最小为2,由得即D(2,3),代入直线ax+by=2得2a+3b=2,又2=2a+3b≥2,所以ab≤,当且仅当2a=3b=1,即a=,b=时取等号,所以ab的最大值为.7.已知O是坐标原点,点,若点为平面区域上的一个动点,则|AM|的最小值是()A.B.C.D.【答案】A【解析】作出表示的平面区域如图所示,;点A到直线的距离为,选A.【考点】线性规划.8.已知、满足约束条件,则的最小值为()A.B.C.D.【答案】B【解析】作出不等式组所表示的可行域如下图所示,联立,得,作直线,则为直线在轴上的截距的倍,当直线经过可行域上的点时,直线在轴上的截距最小,此时取最小值,即,故选B.【考点】线性规划9.已知实数x,y满足,则r的最小值为()A.B.1C.D.【答案】A【解析】在平面直角坐标系中画出不等式组表示的平面区域D,由于圆经过平面区域D,因此其半径r的最小值为圆心(-1,1)到直线y=x的距离,即.rmin【考点】简单线性规划.10.设变量x,y满足约束条件,则目标函数的最大值为( )A.2B.3C.4D.5【答案】D【解析】画出可行域及直线(如图),平移直线,当其经过时,最大,故选D.【考点】简单线性规划的应用11.设满足条件的点构成的平面区域的面积为,满足条件的点构成的平面区域的面积为(其中,分别表示不大于x,y的最大整数,例如,),给出下列结论:①点在直线左上方的区域内;②点在直线左下方的区域内;③;④.其中所有正确结论的序号是___________.【答案】①③【解析】.如下图所示,当点在A区域时,;当点在B区域时,;当点在C区域时,;当点在D区域时,;当点在E区域时,.所以.,所以点在直线右上方的区域内.所以只有①③正确.【考点】1、新定义;2、平面区域.12.设满足约束条件,则目标函数的最大值是()A.3B.4C.5D.6【答案】D【解析】由约束条件可得区域图像如图所示:则目标函数在点取得最大值6.【考点】线性规划.13.已知非负实数满足,则关于的一元二次方程有实根的概率是()A.B.C.D.【答案】A【解析】关于的一元二次方程有实根,则,又为非负实数,所以,从而.由作出平面区域:由图知,表示非负实数满足的平面区域;表示其中的平面区域. 又,.所以所求概率为.【考点】平面区域、几何概型14.已知约束条件,若目标函数恰好在点处取得最大值,则的取值范围为()A.B.C.D.【答案】A【解析】作不等式组所表示的可行域如图所示,易知点为直线和直线的交点,由于直线仅在点处取得最大值,而为直线在轴上的截距,直线的斜率为,结合图象知,直线的斜率满足,即,解得,故选A.【考点】线性规划15.已知,若向区域上随机投一点P,则点P落入区域A的概率为()A.B.C.D.【答案】A.【解析】因为区域内的点所围的面积是18个单位.而集合A中的点所围成的面积.所以向区域上随机投一点P,则点P落入区域A的概率为.本题是通过集合的形式考察线性规划的知识点,涉及几何概型问题.关键是对集合的理解.【考点】1.集合的知识.2.线性规划问题.3.几何概型问题.16.若、满足约束条件,则目标函数的最大值是 .【答案】.【解析】作不等式组所表示的可行域如下图所示,联立,解得,即点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划17.定义在R上的函数f(x)满足f(4)=1,为函数f(x)的导函数,已知的图像如图所示,若两个正数a,b满足f (2a+b)<1,则的取值范围是()A.B.C.D.【答案】A【解析】由函数的图像可知,时,.时,.所以函数在上单调递减,在上单调递增. 是两个正数,.又f(4)=1,.故.以为横轴,为纵轴,作出由不等式组表示的平面区域.则表示点到点的斜率.由下图可知,点在黄色区域内,则易知,,所以.故选A.【考点】线性规划、斜率公式、导函数与单调性18.在可行域内任取一点,其规则如流程图所示,则能输出数对()的概率是()A.B.C.D.【答案】B【解析】画出可行域,如图所示,正方形内部面积为2,圆内部面积为,由几何概型的面积公式=.【考点】1、二元一次不等式组表示的平面区域;2、圆的方程;3、几何概型.19.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是()A.B.C.D.【答案】A【解析】的两根为,且,,故有,即,作出区域,如图阴影部分,可得,所以.【考点】1.函数的极值;2.线性规划.20.设满足若目标函数的最大值为14,则=()A.1B.2C.23D.【答案】B【解析】题中约束条件的可行域如下图所示,易知目标函数在图中A点取得最大值,所以,故选B.【考点】1.线性规划求参数的值.21.若函数图像上的任意一点的坐标满足条件,则称函数具有性质,那么下列函数中具有性质的是()A.B.C.D.【答案】C【解析】表示的区域为A选项是的切线,经过原点,经过B区域;B选项经过原点,经过B区域,也是其切线;C选项,在和之间,所以其只经过A区域;D选项,经过B区域.所以最终选C.【考点】1.数形结合思想应用;2.函数的切线方程求解.22.已知实数满足:则的取值范围是___________.【答案】.【解析】实数满足的平面区域如图阴影部分所示,令,即,则直线分别通过点时在轴上的截距最小和最大,即最小值为,最大值为1,则,所以,则.【考点】线性规划.23.抛物线在处的切线与两坐标轴围成三角形区域为(包含三角形内部与边界).若点是区域内的任意一点,则的取值范围是__________.【答案】【解析】由得,所以,,抛物线在处的切线方程为.令,则.画出可行域如图,所以当直线过点时,.过点时,.故答案为.【考点】导数的几何意义,直线方程,简单线性规划的应用.24.设满足约束条件,若目标函数的最大值为,则.【答案】2【解析】不等式组表示的平面区域如图,解方程组得,由,则要目标函数取得最大值10,必有直线过,则,解得.【考点】线性规划,目标函数的最值.25.设的两个极值点分别是若(-1,0),则2a+b的取值范围是()A.(1,7)B.(2,7)C.(1,5)D.(2,5)【答案】B.【解析】由可行域知故选B.【考点】1.函数极值与导数;2.一元二次方程根的分布问题.26.已知变量x,y满足则的值范围是( )A.B.C.D.【答案】A【解析】画出约束条件所表示的平面区域可知,该区域是由点所围成的三角形区域(包括边界),,记点,得,,所以的取值范围是.【考点】线性规划.27.设满足约束条件,若目标函数的最大值为8,则的最小值为_______。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.设满足则()A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值.【答案】B【解析】不等式组所表示的平面区域如下图所示:由得,当变化时,它表示一组斜率为-1的平行直线,在轴上的截距为,截距越大越大,截距越小越小,由图可知当直线经过点时在轴上的截距最小,截距不存在最大值;所以,有最小值2,无最大值.故选B.【考点】线性规划.2.设变量满足,则的最大值是 .【答案】3【解析】由约束条件画出可行域如图所示,则目标函数在点取得最大值,代入得,故的最大值为.【考点】线性规划.3.已知满足约束条件,当目标函数在该约束条件下取到最小值时,的最小值为()A.5B.4C.D.2【答案】B【解析】画出可行域(如图所示),由于,所以,经过直线与直线的交点时,取得最小值,即,代人得,,所以,时,,选B.【考点】简单线性规划的应用,二次函数的图象和性质.4.若变量、满足约束条件,则的最大值等于()A.B.C.D.【答案】C【解析】作出不等式组所表示的可行域如下图所示,直线交直线于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即,故选C.【考点】本题考查线性规划中线性目标函数的最值,属于中等题.5.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.6.若实数x,y满足,则的取值范围是________.【答案】[1,5]【解析】由题可知=,即为求不等式组所表示的平面区域内的点与点(0,-1)的连线斜率k的取值范围,由图可知k∈[1,5],即的取值范围是[1,5].7.已知,若恒成立, 则的取值范围是 .【答案】【解析】要使不等式成立,则有,即,设,则.作出不等式组对应的平面区域如图,平移直线,由图象可知当直线经过点B时,直线的截距最小,此时最大,由,解得,代入得,所以要使恒成立,则的取值范围是,即,【考点】线性规划.8.若变量满足约束条件则的最小值为。
高三数学线性规划试题
高三数学线性规划试题1.在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A.2B.1C.D.【答案】C【解析】不等式组为如图所表示的阴影区域.由图可知当M与C重合时,直线OM 斜率最小.解不等式组得C(3,-1),∴直线OM斜率的最小值为2.已知点满足,则的最小值是.【答案】【解析】根据线性规划的知识画出不等式的可行域如图所示,则目标函数在交点处取得最小值为,故填.【考点】线性规划3.设实数满足则的最大值等于________.【答案】2 【解析】实数满足所以x,y 的可行域如图所示.的最大值即为目标函数在y 轴的截距最小.即过点A (2,0),所以的最大值为2. 【考点】1.线性规划.2.截距最大对应的目标函数的最小值. 4. 已知满足不等式设,则的最大值与最小值的差为( )A .4B .3C .2D .1【答案】A【解析】作出不等式组所表示的区域,,由图可知,在点取得最小值,在点取得最大值,故的最大值与最小值的差为.【考点】线性规划.5. 已知实数x ,y 满足若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为__________. 【答案】[-1,1]【解析】作出可行域如图中阴影部分所示,则z 在点A 处取得最大值,在点C 处取得最小值.又k BC =-1,k AB =1,∴-1≤-a≤1,即-1≤a≤1.6. 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1kg 、B 原料2kg ;生产乙产品1桶需耗A 原料2kg ,B 原料1kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12kg.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 【答案】2800元【解析】设公司每天生产甲种产品x 桶,乙种产品y 桶,公司共可获得利润为z 元/天,则由已知,得z=300x+400y,且画可行域如图所示,目标函数z=300x+400y可变形为y=-x+,这是随z变化的一簇平行直线,解方程组∴即A(4,4),∴z=1200+1600=2800(元).max故公司每天生产甲产品4桶、生产乙产品4桶时,可获得最大利润为2800元.7.设变量x.y满足约束条件则目标函数的最大值和最小值分别为()A.3,一11B.-3,一11C.11,—3D.11,3【答案】A【解析】线性约束条件表示三角形及其内部,当目标函数经过点时,取最小值,经过点时取最大值.【考点】线性规划求最值8.若关于的不等式组表示的平面区域是一个三角形,则的取值范围是.【答案】.【解析】当时,,因此根据图象可知,要使得不等式组所表示的平面区域是一个三角形,那么的取值范围是.【考点】线性规划.9.已知x,y满足则z=2x+4y的最小值为().A.5B.-5C.6D.-6【答案】D【解析】画出线性约束条件下的平面区域.由,得点P(3,-3).此时z=2x+4y达到最小值,最小值为-6.10.已知实数满足约束条件,则的最小值是____________.【答案】【解析】因为实数满足约束条件,x,y的可行域如图为三角形ABC围成的区域.又因为目标函数.所以要求z的最小值即为求出的最小值,即过原点直线的斜率的最小值.通过图形可知过点A的最小,由题意得A(3,1).所以z的最小值为.故填.【考点】1.线性规划问题.2.构造的思想.3数形结合的思想.11.已知O是坐标原点,点M的坐标为(2,1),若点N(x,y)为平面区域上的一个动点,则的最大值是________.【答案】3【解析】=2x+y,设z=2x+y,则y=-2x+z,不等式组对应的区域为BCD.平移直线y=-2x+z,由图可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,此时z最大,由,解得,即C(1,1),代入z=2x+y得z=2x+y=3,所以的最大值为3. 12.已知实数,满足约束条件则的最大值为.【答案】【解析】解线性规划问题,不仅要正确确定可行域,本题是直角三角形及其内部,而且要挖出目标函数的几何意义,本题中可理解为坐标原点到可行域中点的距离的平方.要求目标函数最大值,就是求的最小值,即坐标原点到直线的距离的平方,为.【考点】线性规划求最值13.若变量满足线性约束条件,则的最大值为________.【答案】5【解析】由约束条件,得如下图所示的三角形区域,由得直线过点时,取得最大值为5.【考点】线性规划.14.已知变量x,y满足约束条件则z=4x·2y的最大值为。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.已知最小值是5,则z的最大值是()A.10B.12C.14D.15【答案】A【解析】首先作出不等式组所表示的平面区域,如图中黄色区域,则直线-2x+y+c=0必过点B(2,-1),从而c=5,进而就可作出不等式组所表示的平面区域,如图部的蓝色区域:故知只有当直线经过点C(3,1)时,z取最大值为:,故选A.【考点】线性规划.2.在直角坐标系中,已知点,点在三边围成的区域(含边界)上,且.(1)若,求;(2)用表示,并求的最大值.【答案】(1);(2),1.【解析】(1)由,且,即可求出点的坐标,继而求出的值;(2)因为,所以,即,两式相减得:令,点在三边围成的区域(含边界)上,当直线过点时,取得最大值1,故的最大值为1.试题解析:(1),又(2)即两式相减得:令,由图可知,当直线过点时,取得最大值1,故的最大值为1.【考点】平面向量的线性运算;线性规划.3.若变量、满足约束条件,且的最大值和最小值分别为和,则()A.B.C.D.【答案】C【解析】作出不等式组所表示的可行域如下图中的阴影部分所表示,直线交直线于点,交直线于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即;当直线经过可行域上的点时,此时直线在轴上的截距最小,此时取最小值,即.因此,,故选C.【考点】本题考查线性规划中线性目标函数的最值,属于中等题.4.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.5.当实数,满足时,恒成立,则实数的取值范围是________.【答案】【解析】作出不等式组所表示的区域,由得,由图可知,,且在点取得最小值在取得最大值,故,,故取值范围为.【考点】线性规划.6.若,则目标函数的取值范围是()A.B.C.D.【答案】A【解析】作出不等式组所表示的可行域如下图所示,,令,则,为原点与点之间连线的斜率,直线与直线交于点,直线与直线交于点,显然,直线的倾斜角最大,且为锐角,此时取最大值,即,直线的倾斜角最小,且为锐角,此时,取最小值,即,因此,所以,即目标函数的取值范围是,故选A.【考点】1.线性规划;2.斜率7.(2013•天津)设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为()A.﹣7B.﹣4C.1D.2【答案】A【解析】设变量x、y满足约束条件,在坐标系中画出可行域三角形,平移直线y﹣2x=0经过点A(5,3)时,y﹣2x最小,最小值为:﹣7,则目标函数z=y﹣2x的最小值为﹣7.故选A.8.满足约束条件的目标函数的最大值为_______.【答案】【解析】由x,y满足如图可得可行域.目标函数过点A时在y轴上的截距最大,最小值为.【考点】1.线性规划的知识.2.线性的最值问题.9.已知点M(x,y)是平面区域内的动点,则的最大值是( )A.10B.C.D.13【答案】D【解析】解:点M(x,y)所在的平面区域如下图中的阴影部分,设点的坐标为由图可知当最大时,点M应在线段上;而的最大值是13.故应选D.【考点】1、二元一次不等式(组)所表示的平面区域;2、两点间的距离公式.10.已知实数、满足不等式组,且恒成立,则的取值范围是()A.B.C.D.【答案】B【解析】如下图所示,作出不等式组所表示的可行域如下图所示,直线交轴于点,交轴于点,作直线,结合图象可知,当直线经过可行域上的点或点时,取最大值,因此有且有,即,即有,,所以,故选B.【考点】线性规划11.设是定义在上的增函数,且对于任意的都有恒成立.如果实数满足不等式,那么的取值范围是【答案】(9,49)【解析】是定义在上的增函数,且对于任意的都有恒成立.所以可得函数为奇函数.由可得,..满足m,n如图所示.令.所以的取值范围表示以原点O为圆心,半径平方的范围,即过点A,B两点分别为最小值,最大值,即9和49.【考点】1.线性规划的问题.2.函数的单调性.3.函数的奇偶性.4.恒成立的问题.12.已知函数(且)的图象恒过定点,则不等式组所表示的平面区域的面积是.【答案】2【解析】令=0,解得=2,代入得,故恒过的定点为(2,-1),∴m=2,n=-1,∴不等式组为,作出不等式组表示的平面区域如右图阴影部分所示,解得C(1,4),易得A(,0),B(0,2),不等式表示的面积为=2.【考点】1.指数函数图像;2.一元二次不等式组表示的平面区域.13.设变量满足约束条件,则目标函数的最大值为 .【答案】10【解析】作出可行域如图,令,则,作出目标直线,经过平移,当经过点时,取得最大值,联立得,代入得,∴【考点】线性规划。
高二数学线性规划试题答案及解析
高二数学线性规划试题答案及解析1.已知实数满足约束条件,则的最小值为.【答案】3.【解析】如图所示,令,当过A 点时,Z 取到最小值为.【考点】线性规划问题(求线性目标函数的最小值).2.若实数满足条件,则的最大值为【答案】4【解析】满足条件的线性规划如图阴影所示:当经过时,能取到最大值4.【考点】不等式的应用、最值问题.3.某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大。
已知对这两种产品有直接限制的因素是资金和劳动力,经调查,得到关于这两种产品的有关数据如下表:每台单位产品所需资金(百元)试问:怎样确定两种货物的月供应量,才能使总利润最大?最大利润是多少?【答案】当月供应量为空调机4台,洗衣机9台时,可获最大利润9600元。
【解析】这是一个典型的线性规划问题,首先确定变量,设空调机、洗衣机的月供应量分别是,台,总利润是,根据题意列出线性约束条件,写出目标函数表达式,画出可行域,找出最优解。
试题解析:设空调机、洗衣机的月供应量分别是,台,总利润是,可得线性约束条件为:,即 4分目标函数为 5分作出二元一次不等式组所表示的平面区域,即可行域8分考虑,将它变形为,这是斜率为、随变化的一族平行直线,是直线在轴上的截距,当取最大值时,的值最大,当然直线要与可行域相交,由图可得,当直线经过可行域上的点时,截距最大,即最大. 11分解方程组,得的坐标为 12分∴(百元) 13分答:当月供应量为空调机4台,洗衣机9台时,可获最大利润9600元。
14分【考点】线性规划.4.若点位于曲线与所围成的封闭区域, 则的最小值为________.【答案】-4【解析】可行域如图,所以当目标函数直线过点A时,取得最小值为【考点】线性规划问题5.不等式组表示的平面区域是()A.矩形B.三角形C.直角梯形D.等腰梯形【答案】D【解析】依题意可得:或,通过作图可得平面区域是一个等腰梯形.故选D.该题型知识点不难,但要细心,标清楚每个不等式所标示的区域是关键.【考点】线性规划问题.6.设点,,如果直线与线段有一个公共点,那么的最小值为.【答案】【解析】,直线当b=0时,与线段AB有交点,则,所以,所以=,所以的最小值为;当,直线与线段有公共点,即函数f(x)与g(x)在上有交点,等价于方程f(x)-g(x)=0,在上有解.有零点定理。
高中数学线性规划练习题及讲解
高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。
以下是一些线性规划的练习题,以及对这些题目的简要讲解。
### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。
工厂每天有机器时间100小时和人工时间80小时。
如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。
设生产产品A的数量为x,产品B的数量为y。
2. 目标函数为:\( P = 50x + 80y \)。
3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。
5. 计算每个顶点的目标函数值,选择最大的一个。
### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。
产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。
公司每月有原材料预算3000元。
如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。
2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。
3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。
6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。
### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.(5分)(2011•天津)设变量x,y满足约束条件则目标函数z=3x﹣y的最大值为()A.﹣4B.0C.D.4【答案】D【解析】作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象知当直线过(2,2)时,z最大.解:画出不等式表示的平面区域将目标函数变形为y=3x﹣z,作出目标函数对应的直线,当直线过(2,2)时,直线的纵截距最小,z最大最大值为6﹣2=4故选D点评:本题考查画不等式组表示的平面区域、考查数形结合求函数的最值.2.在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A.2B.1C.D.【答案】C【解析】不等式组为如图所表示的阴影区域.由图可知当M与C重合时,直线OM斜率最小.解不等式组得C(3,-1),∴直线OM斜率的最小值为3.已知点满足,则的最小值是.【答案】【解析】根据线性规划的知识画出不等式的可行域如图所示,则目标函数在交点处取得最小值为,故填.【考点】线性规划4.设x,y满足若目标函数z=ax+y(a>0)的最大值为14,则a=【答案】2【解析】依题意可得x,y满足如图所示.由于,目标函数过点的截距最大,即z取最大值14.所以可解得.【考点】1.线性规划知识.2.含参数直线方程的确定.5.设变量x,y满足的最大值为.【答案】8【解析】这是如图可行域,目标函数,表示可行域内的点到直线的距离的2倍,很显然点A到直线的距离最大,点,将其代入点到直线的距离公式得到【考点】1.线性规划;2.点到直线的距离公式.6.某公司计划2013年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?【答案】该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.【解析】设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟,总收益为z元.由题意,得目标函数为z=3000x+2000y.二元一次不等式组等价于作出二元一次不等式组所表示的平面区域,即可行域.作直线l:3000x+2000y=0,即3x+2y=0.联立解得x=100,y=200.记点M的坐标为(100,200).平移直线l,易知,当直线l过M点时,目标函数取得最大值.∴z=3000x+2000y=700000(元).max答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.7.若关于的不等式组表示的平面区域是一个三角形,则的取值范围是.【答案】.【解析】当时,,因此根据图象可知,要使得不等式组所表示的平面区域是一个三角形,那么的取值范围是.【考点】线性规划.8.如果实数x,y满足那么z=2x+y的范围是().A.(-3,9)B.[-3,9]C.[-1,9]D.[-3,9)【答案】B【解析】作出约束条件的可行域,由可行域知:目标函数z=2x+y过点A(4,1)时,取最大值9,过点B(-2,1)时,取最小值-3,故z∈[-3,9].9.已知,若恒成立,则的取值范围是()A.B.C.D.【答案】【解析】由得.作出该不等式组表示的区域,由图可知:.选.【考点】1、线性规划;2、不等关系.10.已知x,y满足约束条件则目标函数z=2x+y的最大值___.【答案】2【解析】由z=2x+y,得y=-2x+z,作出不等式对应的区域,平移直线y=-2x+z,由图象可知,当直线y=-2x+z与圆在第一象限相切时,直线y=-2x +z的截距最大,此时z最大.直线与圆的距离d==2,即z=±2,所以目标函数z=2x+y的最大值是2.11.设变量x、y满足约束条件且不等式x+2y≤14恒成立,则实数a的取值范围是________.【答案】[8,10]【解析】不等式组表示的平面区域如图中阴影部分所示,显然a≥8,否则可行域无意义.由图可知x+2y在点(6,a-6)处取得最大值2a-6,由2a-6≤14得,a≤10,故8≤a≤10.12.曲线y=在点M(π,0)处的切线与两坐标轴围成的三角形区域为D(包含三角形内部与边界).若点P(x,y)是区域D内的任意一点,则x+4y的最大值为.【答案】4【解析】,,,所以曲线在点处的切线方程为:,即:,它与两坐标轴所围成的三角形区域如下图所示:令,将其变形为,当变化时,它表示一组斜率为,在轴上的截距为的平行直线,并且该截距越在,就越大,由图可知,当直线经过时,截距最大,所以=,故答案为:4.【考点】1、导数的几何意义;2、求导公式;3、线必规划.13.如果实数满足,若直线将可行域分成面积相等的两部分,则实数的值为______.【答案】【解析】画出可行域,如图所示的阴影部分,直线过定点(1,0),要使得其平分可行域面积,只需过线段的中点(0,3)即可,故.【考点】1、二元一次不等式组表示的平面区域;2、直线的方程.14.若变量x,y满足约束条件则的最大值为A.4B.3C.2D.1【答案】A【解析】由画出可行域及直线.平移直线,当其经过点时,取到最大值4,选A.【考点】简单线性规划的应用15.设变量x,y满足约束条件,则目标函数的最大值为( )A.2B.3C.4D.5【答案】D【解析】画出可行域及直线(如图),平移直线,当其经过时,最大,故选D.【考点】简单线性规划的应用16.若实数满足条件则的最大值是()A.B.C.D.【答案】C【解析】由约束条件作出可行域如图中阴影部分,将化为,作出直线并平移,使之经过可行域,易知经过点时,纵截距最小,同时z最大为,故C正确.【考点】线性规划的相关知识,考察考生的基础运算能力和数形结合思想的应用.17.设满足约束条件,则目标函数最大值为______【答案】14【解析】作出约束条件所表示的范围,由范围可知,目标函数在B点取得最大值,最大值为.【考点】线性规划.18.若在区间[0,2]中随机地取两个数,则这两个数中较大的数大于的概率是( ) A.B.C.D.【答案】C【解析】设这两个数为:,则.若两数中较大的数大于,则还应满足:或(只需排除),作出以上不等式组表示的区域,由几何概型的概率公式得.选C.【考点】1、几何概型;2、不等式组表示的区域.19.已知满足,则的最大值为 .【答案】2【解析】设,则,做出不等式对应的平面区域如图BCD,平移直线,由图象可知当直线经过点C时,直线的截距最小,此时最大,把C代入直线得,所以的最大值为为2.【考点】简单线性规划20.若x,y满足约束条件目标函数z=ax+2y仅在点(1,0)处取得最小值,则的a取值范围是()A.B.(-4,2)C.D.(-4,1)【答案】B【解析】画出可行域,如果所示,目标函数为,当取到最小值时,直线的纵截距最小,故只需将直线尽可能地向下移,当时,,∴;当时,,∴;当时,满足,综上所述:.【考点】线性规划.21.在平面直角坐标系xoy中,为不等式组所表示的区域上一动点,则直线斜率的最小值为( )A.2B.1C.D.【答案】C【解析】不等式组表示的区域如图,当取得点时,直线斜率取得最小,最小值为.故选C.【考点】线性规划.22.实数、满足,若目标函数取得最大值,则实数的值为________.【答案】.【解析】作不等式组所表示的可行域如下图所示,联立,解得,即点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划23.若直线上存在点满足约束条件,则实数的取值范围 .【答案】【解析】与的交点为,要使直线上存在点满足约束条件,需要.【考点】线性规划.24.已知是正数,且满足.那么的取值范围是( )A.B.C.D.【答案】B【解析】不等式组表示的平面区域(不包括边界)如图所示:可见求的取值范围,即是求原点到阴影区域的距离的平方的取值范围,最小值是原点到到直线的距离的平方:;最大值是原点到点的距离的平方:.【考点】1.线性规划;2.点到直线的距离;3.数形结合思想25.设二元一次不等式组所表示的平面区域为M,使函数y=a x(a>0, a≠1)的图象过区域M的a的取值范围是()A.[1, 3]B.[2, ]C.[2, 9]D.[, 9]【答案】C【解析】画出题设中的线性区域如图中的阴影部分.可求得A(1, 9), B(3, 8),当y=a x过A、B时,函数y=a x的图象过区域M,分别解得a=9和a=2,∴a的取值范围是[2,9],故选C.【考点】线性规划.26.实数x、y满足若目标函数取得最大值4,则实数的值为( )A.B.2C.1D.【答案】B【解析】作出不等式组表示的区域如图所示,由图可知,直线系过点时,取最大值,所以.【考点】线性规划.27.不等式组表示的平面区域的面积是()A.B.C.D.【答案】A【解析】在平面直角坐标系中作出不等式组所表示的可行域如下图中的阴影部分区域所表示,该区域为直角三角形,且,,,故选A.【考点】二元一次方程组与可行域28.对两个实数,定义运算“”,.若点在第四象限,点在第一象限,当变动时动点形成的平面区域为,则使成立的的最大值为()A.B.C.D.【答案】C.【解析】根据题意定义和点所在象限可得,当变动时动点形成的平面区域如图阴影部分所示,由点到直线的距离公式得圆心到直线的距离都为,到直线的距离,又,所以使题意成立的的最大值为.【考点】线性规划问题及点到直线的距离公式.29.已知满足约束条件则的最小值为()A.1B.2C.3D.4【答案】B【解析】题中所给约束条件的可行域如下图:由图可知,经过点时取最小,且,故选B.【考点】1.线性规划求最值.30.已知,、满足约束条件,若的最小值为,则()A.B.C.D.【答案】A【解析】作出不等式组所表示的可行域如下图中阴影部分,联立与得点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最小,此时,取最小值,即,解得,故选A.【考点】线性规划31.设的两个极值点分别是若(-1,0),则2a+b的取值范围是()A.(1,7)B.(2,7)C.(1,5)D.(2,5)【答案】B.【解析】由可行域知故选B.【考点】1.函数极值与导数;2.一元二次方程根的分布问题.32.已知变量满足约束条件,则的最小值为()A.55B.-55C.5D.-5【答案】D【解析】画出可行域得知,当过点时,取得最小值5.【考点】线性规划.33.设、满足约束条件,若目标函数的最大值为,则的最小值为 .【答案】2【解析】有可行域可知:在点取得最大值,故,即,,所以,.【考点】线性规划,基本不等式,对数运算,考查学生的运算能力、以及数形结合的能力.34.若实数x,y满足约束条件,则目标函数的最大值为( )A.10B.12C.13D.14【答案】C【解析】先画出线性区域如下图,将目标函数化为斜截式,目标函数经过线性区域时在y 轴上截距最大时恰好经过点,此时目标函数的最大值是13.【考点】线性规划问题.35.若实数满足则的最大值是A.0B.C. 2D.3【答案】D【解析】平面区域如图,三个“角点”坐标分别为,所以36.实数满足不等式组,那么目标函数的最小值是()A.-15B.-6C.-5D.-2【答案】B【解析】因为实数满足不等式组,那么可知当过点(3 ,-3)时,目标函数取得最小值为-6,选B37.已知变量满足约束条件,则的最小值为()A.B.C. 8D.【答案】C【解析】因为变量x,y满足约束条件作图可知,则过点(2,2)z=x+3y的最小值为8,选C【题型】选择题38.当实数满足约束条件时,有最大值,则实数的值是 .【答案】【解析】解:因为实数满足约束条件时,过点(-),有最大值,得到k的值为-9.39.实数满足条件,则的最小值为A.16B.4C.1D.【答案】C【解析】解:因为实数满足条件作出可行域可知,当过点(2,2)时,最小为1,选C40.在平面直角坐标系中,不等式组表示的区域为M,表示的区域为N,若,则M与N公共部分面积的最大值为【答案】【解析】解:因为先根据题意中的条件画出约束条件所表示的图形,再结合图形求公共部分的面积为f(t)即可,注意将公共部分的面积分解成两个图形面积之差,那么可知公共部分的面积为,借助于二次函数得到最大值41.若实数x,y满足不等式的取值范围是()A.B.C.D.【答案】C【解析】解:因为根据不等式组表示的区域,作图可知所求解的为点(x,y)与(-1,1)构成的斜率的范围,利用图像法可知选C42.已知变量满足约束条件,则目标函数的取值范围是A.B.C.D.【答案】A【解析】:画出可行域知该区域为点形成的三角形,所以【考点】本题考查线性规划知识,此类问题处理方式单一,但要注意过原点的直线平移对目标函数取值带来的影响,本题考查的目标函数是,要区别于课本中的累似目标函数的问题43.已知点(5,4),动点(,)满足,则||的最小值为A.5B.C.2D.7【答案】A【解析】如图所示的可行域,直线AB为过Q点与直线AB垂直的直线为与的交点为,而B(1,1),A(0,2),因故点Q在的射影不在AB上,则最短距离为即为Q点到B距离44.设,满足约束条件则的最大值为()A.2B.3C.4D.1【答案】A【解析】满足约束条件的平面区域如下图所示:平移直线y=-2x,由图易得,当x=1,y=0时,目标函数z=2x+y的最大值为2故选A.45.设二元一次不等式组所表示的平面区域为M,则过平面区域M的所有点中能使取得最大值的点的坐标是 .【答案】(1,9)【解析】略46.设变量满足约束条件,则目标函数的最小值为()A.9B.4C.3D.2【答案】C.【解析】如图,画出线性约束条件所表示的区域,即可行域,作直线:,平移直线,从而可知当,时,.【考点】线性规划.47.已知,若的最小值是,则()A.1B.2C.3D.4【答案】B.【解析】由已知得线性可行域如图所示,则的最小值为,若,则为最小值最优解,∴,若,则为最小值最优解,不合题意,故选B.【考点】简单的线性规划.48.已知在平面直角坐标系上的区域由不等式组给定.目标函数的最大值为()A.B.C.D.【答案】A【解析】作出区域D:,由于,显然平移到经过点D(2,2)时取得最大值为:;故选C.【考点】1.向量数量积的坐标运算;2.线性规划.49.若,满足约束条件,则的取值范围是()A.B.C.D.【答案】D【解析】由题意可知,在处取得最小值,在处取得最大值,即. 故选D.【考点】线性规划的应用50.已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2x-y的最大值是()A.6B.0C.2D.【答案】A【解析】由作出可行域,如图,由图可得,,,由,得,∴,化目标函数为,∴当过A点时,z最大,.【考点】线性规划.。
高中数学3.3.2 简单的线性规划问题同步练习题
13.3.2 简单的线性规划问题一、选择题1、已知满足,x y 约束条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则24z x y =+的最小值是 ( )A 、5B 、6-C 、10D 、10-2、在ABC 中,三顶点(2,4),(1,2),(1,0)A B C -,点(,)P x y 在ABC 的内部及边界上运动,则z x y=-的最大值为 ( )A 、1B 、3-C 、1-D 、33、线性目标函数z x y =-在2102101x y x y x y -+≥⎧⎪--≤⎨⎪+≤⎩的线性约束条件下,取得最大值的可行解为 ( )A 、(0,1)B 、(1,1)--C 、(1,0)D 、(0.5,0.5)4、设集合{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|0}B x y x y n =+-≤,那么点(2,3)()U P A B ∈ð的等价条件是( ) A 、1,5m n >-< B 、1,5m n <-<C 、1,5m n >->D 、1,5m n <->二、填空题5、设2()f x ax bx =+,且1(1)2f ≤-≤,2(1)4f ≤≤,则(2)f -的取值范围为________________6、线性目标函数z x y =+,在线性约束条件3020x y x y y a +-≤⎧⎪-≤⎨⎪≤⎩下,取得最大值时的最优解只有一个,实数a 的取值范围是________________7、若250350250x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则22(1)(1)x y +++的最大值为________________三、解答题8、要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示,每张钢板的面积情况是:第一种为21m ,第二种为22m ,今需要A 、B 、C 三种规格的钢板成品12、15、27块,问各截这两种钢板多少张,可得所需三种规格的成品,9、设实数,x y 满足不等式组142|23|x y y x ≤+≤⎧⎨+≥-⎩,(1)求点(,)x y 所在的平面区域;(2)设1a >-,求函数(,)f x y y ax =-的最大值和最小值.。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.已知变量满足约束条件若目标函数的最大值为1,则 .【答案】3【解析】约束条件所满足的区域如图所示,目标函数过B(4,1)点是取得最大值,所以,所以.【考点】线性规划.2.由不等式组围成的三角形区域内有一个内切圆,向该区域内随机投一个点,该点落在圆内的概率是关于t的函数P(t),则( )A.P′(t)>0B.P′(t)<0C.P′(t)=0D.P′(t)符号不确定【答案】C【解析】如图所示,A(2,7),B(t-5,t),C(2,t),因此围成的区域为腰长为7-t的等腰直角三角形ABC.由于圆内切,所以AE=AD=(7-t),所以内切圆半径DC=(7-t)-(7-t)= (7-t)(1-)∴P(t)==∴P′(t)=03.已知实数满足不等式组则目标函数的最小值与最大值的积为() A.B.C.D.【答案】A【解析】如图,约束条件表示的可行域为内部(含边界),再作出直线,平移直线,当直线过点时,分别取得最小值和最大值,计算得,,积为.【考点】线性规划.4.已知点是平面区域内的动点,点,O为坐标原点,设的最小值为,若恒成立,则实数的取值范围是()A.B.C.D.【答案】【解析】由已知,,其几何意义是可行域内的任意一点与点的距离不小于,因为,恒成立,所以,到直线上点距离的最小值不大于.由于可行域的边界过定点,解得,所以,时,如图1,由解得,即;图1 图2时,如图2,显然符合题意;时,如图3,显然符合题意.图3综上知,,故选.【考点】简单线性规划,平面向量的模,点到直线的距离.5.某公司计划2013年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?【答案】该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.【解析】设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟,总收益为z元.由题意,得目标函数为z=3000x+2000y.二元一次不等式组等价于作出二元一次不等式组所表示的平面区域,即可行域.作直线l:3000x+2000y=0,即3x+2y=0.联立解得x=100,y=200.记点M的坐标为(100,200).平移直线l,易知,当直线l过M点时,目标函数取得最大值.∴z=3000x+2000y=700000(元).max答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.6.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:为使一年的种植的总利润最大,那么黄瓜和韭菜的种植面积分别为________.【答案】30亩、20亩【解析】设黄瓜、韭菜的种植面积分别为x、y,则总利润z=(4×0.55-1.2)x+(6×0.3-0.9)y=x +0.9y,此时x、y满足条件画出可行域知,最优解为(30,20).7.某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?【答案】4个单位的午餐和3个单位的晚餐,【解析】设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,则依题意得z=2.5x+4y,且x、y满足即作出线性约束条件所表示的可行域,如图中阴影部分的整数点.让目标函数表示的直线2.5x+4y=z在可行域上平移,由此可知z=2.5x+4y在B(4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.8.设实数满足向量,.若,则实数的最大值为.【答案】;【解析】因为,所以,故根据线性规划的知识画出可行域如图,则目标函数在点(1,8)处取得最大值6.【考点】向量平行线性规划9.已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a等于().,A.B.C.1D.2【答案】B【解析】由已知约束条件,作出可行域如图中△ABC内部及边界部分,由目标函数z=2x+y的几何意义为直线l:y=-2x+z在y轴上的截距,知当直线l过可行域内的点B(1,-2a)时,目标函数z=2x+y的最小值为1 ,则2-2a=1,解得a=,故选B10.设不等式组表示的平面区域为D.若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是().A.(1,3]B.[2,3]C.(1,2]D.[3,+∞)【答案】A【解析】画出不等式组表示的平面区域如图中阴影部分所示(包括边界).当a>1时才能够使函数y=a x的图象上存在区域D上的点,由图可知当函数y=a x的图象经过点A时a取得最大值,由方程组解得x=2,y=9,即点A(2,9) ,代入函数解析式得9=a2,即a=3 ,故1<a≤3.11.已知变量满足,则的最大值为()A.2B.3C.4D.6【答案】C【解析】画出约束条件所确定的可行区域为图中的:.由图可知,最大值在点A处取得,而A(2,2),可知最大值为4.【考点】线性规划.12.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为 ().A.1B.C.D.【答案】D【解析】由z=ax+by(a>0,b>0)得y=-x+,可知斜率为-<0,作出可行域如图,由图象可知当直线y=-x+经过点D时,直线y=-x+的截距最小,此时z最小为2,由得即D(2,3),代入直线ax+by=2得2a+3b=2,又2=2a+3b≥2,所以ab≤,当且仅当2a=3b=1,即a=,b=时取等号,所以ab的最大值为.13.已知实数满足则的最大值为_________.【答案】16【解析】如图实数满足满足的可行域是三角形OAB的阴影部分. 由可化为.所以求z的最大值即求出的最小值.目标函数,如图所示.过点B即为m所求的最小值.因为B(-2,0)所以m=-4.所以.故填16.【考点】1.线性规划问题.2.指数函数的运算.14.如图,,且,若,(其中),则终点落在阴影部分(含边界)时,的取值范围是 .【答案】【解析】如下图所示①当点P是线段AB的中点时,过点P分别作PE∥OB,PF∥OA,交点分别是点E,F,则点E,F分别是OA,OB的中点.由平行四边形法则可得:,又,(其中),∴.当点P位于线段AB上其它位置时,也有此结论.②当点P是线段MN的中点时,连接PA,PB.∵AB∥MN,且2OA=OM,∴B点是线段ON的中点.由平行四边形法则可得:,此时,当点P位于线段AB上其它位置时,也有此结论.综上可知:.又,令,化为,可知此直线过定点P(﹣1,﹣1).由约束条件,作出可行域,如下图:作直线l:y=x,把此直线上下平移,当l经过点A(2,0)时,t取得最小值,当点l经过点B(0,2)时,t取得最大值.∴.∴,即的取值范围是.故答案为:.【考点】 1、平面向量运算和性质;2.线性规划.15.实数满足若恒成立,则实数的最大值是.【答案】【解析】由线性约束条件画出可行域如图,直线过定点B。
高三数学线性规划试题
高三数学线性规划试题1.若点满足线性约束条件,则的取值范围是.【答案】【解析】作出不等式组所表示的平面区域,如图:作出直线x-y=0,对该直线进行平移,可以发现当直线经过点(0,0)时,Z取得最大值0,当直线经过点(-2,0)时,Z取得最小值-2,所以Z的取值范围为[-2,0).故答案为:[-2,0).【考点】简单线性规划.2.已知点、的坐标满足不等式组,若,则的取值范围是()A.B.C.D.【答案】D【解析】作出不等式组所表示的可行域如下图所示,假设点为上的一点,过点作直线的垂线,需使得垂线与与可行域有公共点,结合图象知,当点,时,在方向上的投影最大,此时,且取最大值,此时;同理当点,,此时,此时取最小值,,故的取值范围是,故选D.【考点】线性规划3.已知变数满足约束条件目标函数仅在点处取得最大值,则的取值范围为_____________.【答案】【解析】由题意知满足条件的线性区域如图所示:,点,而目标函数仅在点处取得最大值,【考点】线性规划、最值问题.4.已知实数满足:,,则的取值范围是( )A.B.C.D.【答案】C【解析】画出约束条件限定的可行域为如图阴影区域,令,则,先画出直线,再平移直线,当经过点,时,代入,可知,∴,故选.【考点】线性规划.5.设是定义在上的增函数,且对于任意的都有恒成立.如果实数满足不等式,那么的取值范围是【答案】(9,49)【解析】是定义在上的增函数,且对于任意的都有恒成立.所以可得函数为奇函数.由可得,..满足m,n如图所示.令.所以的取值范围表示以原点O为圆心,半径平方的范围,即过点A,B两点分别为最小值,最大值,即9和49.【考点】1.线性规划的问题.2.函数的单调性.3.函数的奇偶性.4.恒成立的问题.6.已知实数满足,则的取值范围是【答案】【解析】由不等式,得,在平面直角坐标系中用虚线画出圆,再作出虚线,则的可行域是由虚线与此虚线的右半圆围成的区域(不包括边界),又目标函数可化为,则当直线过可行域的上顶点时,有,当直线与半圆相切于点时,目标函数有最大值,将目标函数化为,则此时有,解得,如图所示,所以正确答案为.【考点】直线与圆、线性规划.7.已知点满足约束条件,为坐标原点,则的最大值为_______________.【答案】5【解析】作出可行域,得到当位于时,最大,其值为5.【考点】线性规划.8.设实数x、y满足,则的取值范围是( ) A.B.C.D.【答案】B【解析】作出可行域如图,当平行直线系在直线BC与点A间运动时,,此时,平行直线线在点O与BC之间运动时,,此时,. .选B【考点】线性规划9.不等式组所表示的平面区域的面积是________.【答案】25【解析】直线x-y+4=0与直线x+y=0的交点为A(-2,2),直线x-y+4=0与直线x=3的交点为B(3,7),直线x+y=0与直线x=3的交点为C(3,-3),则不等式组表示的平面区域是=×5×10=25.一个以点A(-2,2)、B(3,7)、C(3,-3)为顶点的三角形,所以其面积为S△ABC10.已知点A(a,b)与点B(1,0)在直线3x-4y+10=0的两侧,给出下列说法:①3a-4b+10>0;②当a>0时,a+b有最小值,无最大值;③>2;④当a>0且a≠1,b>0时,的取值范围为∪.其中正确的个数是( )A.1B.2C.3D.4【答案】B【解析】因为点A(a,b),B(1,0)在直线3x-4y+10=0的两侧,所以(3a-4b+10)(3-0+10)<0,即3a-4b+10<0,故①错误;因为a>0时,点(a,b)对应的平面区域如图(不含边界),所以a+b既没有最小值,也没有最大值,故②错误;因为原点到直线3x-4y+10=0的距离为=2,而点(a,b)在直线3x-4y+10=0的左上方,所以>2,故③正确;的几何意义是点(a,b)与(1,0)的连线的斜率,由图可知,取值范围是∪,故④正确.11.若x,y满足条件当且仅当x=y=3时,z=ax-y取最小值,则实数a的取值范围是________.【答案】【解析】画出可行域,如图所示,得到最优解(3,3).把z=ax-y变为y=ax-z,即研究-z的最大值.当a∈时,y=ax -z均过(3,3)时截距-z最大.12.若满足,则的最小值为 .【答案】3【解析】由已知不等式得出区域如图所示,目标函数在点处取得最小值,且最小值为3.【考点】线性规划.13.设实数满足约束条件,若目标函数的最大值为9,则的最小值为__ ___.【答案】【解析】有可行域与目标函数形式可知,只能在点取得最大值,即,整理得:,所以,故.【考点】1、线性规划, 2、基本不等式.14.若,满足约束条件,则的最大值是.【答案】1【解析】根据题意,作出,满足约束条件的平面区域,那么结合三角形区域可知当过点(1,1)点时,则目标函数平移过程中截距最小,此时函数值最大,故答案为1.【考点】线性规划知识点评:本题主要考查了利用线性规划知识的简单应用,属于基础试题,解题的关键是明确目标函数的几何意义15.已知变量x、y,满足的最大值为【答案】3【解析】由复合对数函数的性质,欲使函数最大,即最大。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】根据约束条件画出可行域如下图所示由得:当变化时,它表示一组平行直线,在轴上的截距是,截距越小越小,由图可知,当直线经过点截距最小,从而最小,所以故选B.【考点】线性规划.2.若变量满足约束条件则的最小值为________【答案】1【解析】依题意如图可得目标函数过点A时截距最大.即.【考点】线性规划.3.由不等式组确定的平面区域记为,不等式组,确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为()A.B.C.D.【答案】D【解析】依题意,不等式组表示的平面区域如图,易求得,,,,由几何概型公式知,该点落在内的概率为,故选D.【考点】不等式组表示的平面区域,面积型的几何概型,中等题.4.若变量x,y满足约束条件,则z=2x+y-4的最大值为()A.-4B.-1C.1D.5【答案】C【解析】画出不等式组表示的平面区域(如图中的阴影部分所示)及直线2x+y=0,平移该直线,当平移到经过该平面区域内的点(2,1)(该点是直线x+y-3=0与y=1的交点)时,相应直线在y轴上的截距最大,此时z=2x+y-4取得最大值,最大值为z=2×2+1-4=1,因此选C.max5.已知α,β是三次函数f(x)=x3+ax2+2bx(a,b∈R)的两个极值点,且α∈(0,1),β∈(1,2),求动点(a,b)所在的区域面积S.【答案】【解析】解:由函数f(x)=x3+ax2+2bx(a,b∈R)可得,f′(x)=x2+ax+2b,由题意知α,β是方程x2+ax+2b=0的两个根,且α∈(0,1),β∈(1,2),因此得到可行域即,画出可行域如图.∴动点(a,b)所在的区域面积S=.6.若不等式组表示的平面区域是一个钝角三角形,则实数的取值范围()A.B.C.D.【答案】B【解析】不等式组表示的平面区域如图由图可知:故选【考点】线性规划.7.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.8. (2014·孝感模拟)已知实数x,y满足若z=x2+y2,则z的最大值为________.【答案】13【解析】画出可行域,z=x2+y2=()2,表示可行域内的点(x,y)和原点(0,0)距离的平方,可知点=13.B(2,3)是最优解,zmax9.已知,满足约束条件,且的最小值为6,则常数.【答案】-3【解析】画出可行域及直线,如图所示.平移直线,当其经过直线的交点时,,所以,.【考点】简单线性规划的应用.10.设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2B.﹣4C.﹣6D.﹣8【解析】根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选D.11.若,满足约束条件,则的最大值是( )A.B.C.D.【答案】(C)【解析】,满足约束条件如图所示. 目标函数化为.所以z的最大值即为目标函数的直线在y轴的截距最小.所以过点A最小为1.故选(C).【考点】1.线性规划的知识.2.数学结合的数学思想.12.原点和点(2,﹣1)在直线x+y﹣a=0的两侧,则实数a的取值范围是()A.0≤a≤1B.0<a<1C.a=0或a=1D.a<0或a>1【答案】B【解析】∵原点和点(2,﹣1)在直线x+y﹣a=0两侧,∴(0+0﹣a)(2﹣1﹣a)<0,即a(a﹣1)<0,解得0<a<1,故选:B.13.点在不等式组表示的平面区域内,到原点的距离的最大值为,则的值为.【答案】3.【解析】由题意,不等式组表示的平面区域如下图:当点在点时,到原点的距离最大为5,则,解得.【考点】1.线性规划求参数范围.14.已知为坐标原点,两点的坐标均满足不等式组设与的夹角为,则的最大值为()A.B.C.D.【答案】C【解析】画出可行域,如图所示,当点A,B分别与点重合时,向量与的夹角最大,且是锐角,,则,又,故当时,取到最大值为.【考点】1、二元一次不等式表示的平面区域;2、向量的夹角;3、同角三角函数基本关系式. 15.设关于x,y的不等式组表示的平面区域内存在点,满足.求得m的取值范围是()A.(-∞,)B.(-∞,)C.(-∞,)D.(-∞,)【答案】C【解析】作出不等式组表示的平面区域(如图)若存在满足条件的点在平面区域内,则只需点A(-m,m)在直线x-2y-2=0的下方,即-m-2m-2>016.若、满足约束条件,则的取值范围是()A.B.C.D.【答案】D【解析】作出不等式组所表示的平面区域如下图所示,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,此时直线在轴上的截距最小,此时取最小值,即,当直线经过可行域上的点,此时直线在轴上的截距最大,此时取最大值,即,因此的取值范围是,故选D.【考点】线性规划17.已知实数满足,则的取值范围是______.【答案】【解析】不等式组所表示的区域如下图:,其中即为的斜率,由图像计算得,观察可知,令,则,故是的增函数,因此,没有最大值,所以的取值范围是.【考点】1、线性规划;2、函数的单调性与值域;3、数形结合的思想.18.实数、满足则=的取值范围是( )A.[-1,0]B.-∞,0]C.[-1,+∞D.[-1,1【答案】D【解析】作出满足不等式组约束条件的平面区域,如下图所示:∵表示区域内点与点连线的斜率,又∵当,时,,直线与平行时,,∴的取值范围为,故选D.【考点】1、简单的线性规划;2、直线斜率.19.已知变量、满足条件,则的最大值是______.【答案】.【解析】作出不等式组所表示的平面区域如下图的阴影部分所表示,设,联立,解得,即点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划20.设满足约束条件,则的最大值为_____________.【答案】【解析】画出对应的平面区域,直线,如图所示.令则平移直线,当直线经过点时,;当直线经过点时,,所以的最大值为.【考点】简单线性规划的应用21.设实数x,y满足则点(x,y)在圆面x2+y2≤内部的概率为() A.B.C.D.【答案】B=2.x2+y2≤恰好【解析】不等式组表示的可行域是边长为的正方形,所以S正在正方形的内部,且圆的面积为πr2=π,所以点(x,y)在圆面x2+y2≤内部的概率为=.22.已知正数a,b,c满足:5c-3a≤b≤4c-a,cln b≥a+cln c,则的取值范围是________.【答案】[e,7]【解析】由题意知作出可行域(如图所示).由得a=,b= c.=7.此时max由得a=,b=.==e.所以∈[e,7].此时min23.设实数x,y满足约束条件,若目标函数()的最大值为8,则的最小值为 .【答案】4【解析】约束条件所表示的区域如图所示:目标函数在处取得最大值,所以,即,所以,当且仅当时取等号.【考点】线性规划.24.设变量满足约束条件,则的最大值为_________.【答案】6【解析】不等式组表示的平面区域如图所示,当目标函数对应的直线过点时;的值最大,即.【考点】线性规划.25.已知点在不等式表示的平面区域上运动,则的最大值是 .【答案】【解析】如下图所示,不等式组所表示的可行域如下图中的阴影部分表示,在直线方程,令,解得,得点的坐标为,作直线,其中可视为直线在轴上的截距,当直线经过区域中的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划26.设平面区域是由双曲线的两条渐近线和抛物线的准线所围成的三角形(含边界与内部).若点,则目标函数的最大值为.【答案】【解析】约束条件为画出可行域,的最大值在点(2,1)处取得最大值为3..【考点】双曲线和抛物线的基础知识、线性规划.27.已知实数满足,若该不等式组所表示的平面区域是一个面积为的直角三角形,则的值是 ( )A.B.-2C.2D.【答案】A【解析】实数满足所表示的区域如上图,当直线与直线垂直时,此时,直线方程变为,与轴交点坐标为,与直线交点的纵坐标为,而三角形面积,解得,当直线与轴或与直线时,求出的值不符合.【考点】二元一次不等式所表示的区域.28.已知是由不等式组所确定的平面区域,则圆在区域内的弧长为________.【答案】【解析】作出可行域及圆如图所示,图中阴影部分所在圆心角所对的弧长即为所求.易知图中两直线的斜率分别是,得,,得得弧长 (为圆半径).【考点】1.线性规划;2.两角和的正切公式;3.弧长公式.29.不等式组表示的平面区域的面积是 .【答案】【解析】不等式组表示的可行域如图所示,故面积为.【考点】考查线性规划.30.设x,y满足约束条件,则z=2x-3y的最小值是()A.B.-6C.D.【答案】B【解析】画出不等式组表示的平面区域可知,平面区域为三角形,当目标函数表示的直线经过点(3,4)时,取得最小值,所以的最小值为,故选B.【考点】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.31.已知点在不等式组表示的平面区域上运动,则的取值范围是( )A.B.C.D.【答案】C【解析】做出线性约束条件下的可行域,可行域为由直线围成的三角形,三角形的三个顶点分别为,结合可行域可知的最大值为2,最小值为-1,所以范围是【考点】线性规划问题点评:线性规划问题求最值的题目取得最值的位置一般位于可行域的顶点或边界值处32.设x,y满足约束条件,若目标函数的最小值为2,则ab的最大值()A.1B.C.D.【答案】D【解析】因为目标函数,故,,由目标函数的最小值为2,则,即,则,故的最大值为.选C.【考点】简单线性规划点评:本题考查的知识点是简单线性规划,基本不等式,是不等式的综合应用,难度中档.33.若变量满足约束条件,则的最大值为A.B.C.D.【答案】C【解析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x-y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可解:画出可行域(如下图),L:z=2x-y,由图可知,当直线l经过点A(2,1)时, z最大,且最大值为z=2×1-1=3.故答max【考点】线性规划点评:本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题34. x,y满足约束条件,目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是_________.【答案】(-4,2)【解析】解:可行域为△ABC,如图,=-1,a<2.当a<0时,当a=0时,显然成立.当a>0时,直线ax+2y-z=0的斜率k=->kAC=2,a>-4.综合得-4<a<2,故答案为(-4,2)k=-<kAB【考点】线性规划点评:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定35.若实数,满足条件则的最大值为()A.B.C.D.【答案】A【解析】根据约束条件画出可行域,可行域为一个等腰梯形,画出目标函数,通过平移可知在点处取到最大值,最大值为9.【考点】本小题主要考查利用线性规划知识求最值.点评:解决线性规划问题的前提是正确画出可行域,其次要注意适当转化.36.设变量满足约束条件,线性目标函数的最大值为,则实数的取值范围是。
高三数学线性规划试题
高三数学线性规划试题1.设、满足约束条件,若目标函数的最大值为4,则的最小值为 .【答案】【解析】不等式表示的平面区域如图所示阴影部分,当直线过直线与直线的交点时,目标函数取得最大,即.而=,故的最小值为.【考点】1.简单线性规划;2.基本不等式.2.若、满足和,则的取值范围是________.【答案】【解析】不等式组表示的平面区域如图中,令,解方程组得,解方程组得,平移直线经过点使得取得最大值,即,当直线经过点使得取得最小值,即,故的取值范围是.【考点】不等式组表示的平面区域,求目标函数的最值,容易题.3.若变量满足约束条件且的最大值为,最小值为b,则的值是( ) A.10B.20C.4D.12【答案】C【解析】变量满足约束条件,如图所示,目标函数过点A时z最小,目标函数过点B时z取最大.所以.故选C.【考点】1.线性规划.2.数形结合.4.设变量满足的约束条件,则目标函数的最大值为.【答案】11【解析】如图不等式组表示可行域为的内部及边界其中,,因为是斜率等于的一组平行线,的几何意义是直线在轴的截距,所以在点处取得最大值11故答案为11【考点】线性规划.5. (2013·宿州模拟)如果实数x,y满足条件那么2x-y的最大值为()A.2B.1C.-2D.-3【答案】B【解析】先根据约束条件画出可行域:当直线2x-y=t过点A(0,-1)时,t取得最大值1,故答案为B.6.已知实数满足,,则z的取值范围是()A.B.C.D.【答案】C【解析】画出约束条件限定的可行域为如图阴影区域,令,则,先画出直线,再平移直线,当经过A,B时,代入,可知,,故选C。
【考点】线性规划。
7.某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为是()A. 31200元B. 36000元C. 36800元D. 38400元【答案】C【解析】设租A型车x辆,B型车y辆时租金为z元则z=1600x+2400yx、y满足画出可行域观察可知,直线过点A(5,12)时纵截距最小,∴z=5×1 600+2 400×12=36800,min故租金最少为36800元.选C.8.设x、y满足则( )A.有最小值2,最大值3B.有最小值2,无最大值C.有最小值3,无最大值D.既无最小值,也无最大值【答案】B【解析】作出可行域如图(阴影部分),由得,做直线,平移直线由图可知当直线经过点C(2,0)时,直线的截距最小,此时z最小为2,没有最大值,选B.9.实数、满足则=的取值范围是( )A.[-1,0]B.-∞,0]C.[-1,+∞D.[-1,1【答案】D【解析】作出满足不等式组约束条件的平面区域,如下图所示:∵表示区域内点与点连线的斜率,又∵当,时,,直线与平行时,,∴的取值范围为,故选D.【考点】1、简单的线性规划;2、直线斜率.10.在平面直角坐标系xOy中,为不等式组所表示的区域上一动点,则的最小值为()A.B.C.1D.2【答案】B【解析】作出不等式组表示的平面区域如图所示,表示直线OP的斜率,由图可知,当点P在处斜率最小,所以的最小值为.【考点】不等式组表示的平面区域及直线的斜率.11.设变量x、y满足约束条件:则z=x-3y的最小值为________.【答案】-8【解析】画出可行域与目标函数线,如图可知,目标函数在点(-2,2)处取最小值-8.12.已知实数满足则的最大值为( )A.4B.6C.8D.10【答案】C【解析】区域如图所示,目标函数在点处取得最大值,最大值为8.【考点】线性规划.13.已知实数、满足约束条件,则的取值范围是()A.B.C.D.【答案】D【解析】作出不等式组所表示的可行域如下图的阴影部分所示,联立得点,联立得点,作直线,则为直线在轴上截距的倍,当直线经过可行域上点时,此时直线在轴上的截距最小,此时取最小值,即;当直线经过可行域上的点时,此时直线在轴上的截距最大,此时取最大值,即,故的取值范围是,故选D.【考点】简单的线性规划问题14.已知实数x,y满足且不等式axy恒成立,则实数a的最小值是.【答案】.【解析】由画出如图所示平面区域,因为区域中,恒成立得恒成立, 令则,函数在上是减函数,在上是增函数所以函数最大值为要使恒成立只要,所以的最小值是.【考点】线性规划,不等式及函数极值.15.已知实数满足不等式,若的最大值与最小值分别为和,则实数的取值范围是。
高中线性规划练习含详细解答
线性规划练习1. “截距”型考题在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.1.【2019年高考·广东卷 理5】已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )2. (2019年高考·辽宁卷 理8)设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .553.(2019年高考·全国大纲卷 理13) 若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y =-的最小值为 。
4.【2019年高考·陕西卷 理14】 设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 .5.【2019年高考·江西卷 理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,506. (2019年高考·四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克. 每桶甲产品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A 、1800元B 、2400元C 、2800元D 、3100元7. (2019年高考·安徽卷 理11) 若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的取值范围为_____.8.(2019年高考·山东卷 理5)的约束条件2441x y x y +≤⎧⎨-≥-⎩,则目标函数z=3x-y 的取值范围是A . [32-,6]B .[32-,-1]C .[-1,6]D .[-6,32] 9.(2019年高考·新课标卷 理14) 设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为 .2 . “距离”型考题10.【2019年高考·福建卷 理8】 设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( )A.285 B.4 C. 125D.2 11.( 2019年高考·北京卷 理2) 设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A 4πB22π- C 6π D44π- 3. “斜率”型考题12.【2019年高考·福建卷 理8】 若实数x 、y 满足10,0x y x -+≤⎧⎨>⎩则y x 的取值范围是 ( )A.(0,1)B.(]0,1C.(1,+∞)D.[)1,+∞13.(2019年高考·江苏卷 14)已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则b a的取值范围是 .4. “平面区域的面积”型考题14.【2019年高考·重庆卷 理10】设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x yB x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则AB 所表示的平面图形的面积为A 34π B 35π C 47π D2π 15.(2019年高考·江苏卷 理10)在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2B .1C .12D .1416.(2019年高考·安徽卷 理15) 若A 为不等式组02x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 . 17.(2009年高考·安徽卷 理7) 若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是(A )73(B ) 37(C )43(D ) 34高18.(2019年高考·浙江卷 理17)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b为坐标点(,)P a b 所形成的平面区域的面积等于__________.5. “求约束条件中的参数”型考题规律方法:当参数在线性规划问题的约束条件中时,作可行域,要注意应用“过定点的直线系”知识,使直线“初步稳定”,再结合题中的条件进行全方面分析才能准确获得答案.19.(2009年高考·福建卷 文9)在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为A. - 5B. 1C. 2D. 320.【2019年高考·福建卷 理9】若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A .21 B .1 C .23 D .221.(2019年高考·山东卷 理12)设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩,,≥≥≤所表示的平面区域为M ,使函数(01)x y a a a =>≠,的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10] C .[2,9] D .[10,9]22.(2019年高考·北京卷 理7)设不等式组 110330530x y x y x y 9+-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数y=x a 的图像上存在区域D 上的点,则a 的取值范围是A (1,3]B [2,3]C (1,2]D [ 3,+∞]23.(2019年高考·浙江卷 理17)设m 为实数,若{250(,)300x y x y x mx y -+≥⎧⎪-≥⎨⎪+≥⎩}22{(,)|25}x y x y ⊆+≤,则m 的取值范围是___________.24.(2019年高考·浙江卷 理7) 若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =( )A 2-B 1-C 1D 26. “求目标函数中的参数”型考题规律方法:目标函数中含有参数时,要根据问题的意义,转化成“直线的斜率”、“点到直线的距离”等模型进行讨论与研究. 25.(2009年高考·陕西卷 理11)若x ,y满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围是 ( )A .(1-,2)B .(4-,2)C .(4,0]-D . (2,4)- 26.(2019年高考·湖南卷 理7)设m >1,在约束条件下,⎪⎩⎪⎨⎧≤+≤≥1y x mx y xy 目标函数z=x+my 的最大值小于2,则m 的取值范围为 A .)21,1(+B .),21(+∞+C .(1,3)D .),3(+∞7. 其它型考题27. (2009年高考·山东卷 理12) 设x ,y满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数(0,0)z ax by a b =+>> 的值是最大值为12,则23a b+的最小值为( )A.625 B. 38 C. 311D. 4 28. (2019年高考·安徽卷 理13)设,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z abx y a b =+>> 的最大值为8,则a b +的最小值为________.线性规划问题 答案解析1. “截距”型考题在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.1、选B 【解析】约束条件对应ABC ∆内的区域(含边界),其中53(2,2),(3,2),(,)22A B C 画出可行域,结合图形和z的几何意义易得3[8,11]z x y =+∈2、选D ; 【解析】作出可行域如图中阴影部分所示,由图知目标函数过点()5,15A 时,2+3x y 的最大值为55,故选D.3、答案:1-【解析】利用不等式组,作出可行域,可知区域表示的为三角形,当目标函数过点(3,0)时,目标函数最大,当目标函数过点(0,1)时最小为1-.] 4、答案2; 【解析】当x > 0时,()xx f 1'=,()11'=f ,∴曲线在点(1,0)处的切线为1-=x y ,则根据题意可画出可行域D 如右图:目标函数z x y 2121-=, ∴当0=x ,1-=y 时,z 取得最大值25、选B ;【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力. 设黄瓜和韭菜的种植面积分别为x 、y 亩,总利润为z 万元, 则目标函数为(0.554 1.2)(0.360.9)0.9z x x y y x y =⨯-+⨯-=+. 线性约束条件为50,1.20.954,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即50,43180,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩作出不等式组表示的可行域,易求得点()()()0,50,30,20, 0,45A B C . 平移直线0.9z x y =+,可知当直线0.9z x y =+,经过点()30,20B ,即30,20x y ==时 z 取得最大值,且max 48z =(万元). 故选B. 点评:解答线性规划应用题的一般步骤可归纳为:(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么? (2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系;(4)作答——就应用题提出的问题作出回答.6、答案C 【解析]】 设公司每天生产甲种产品X 桶,乙种产品Y 桶,公司共可获得利润为Z 元/天,则由已知,得 Z=300X+400Y ,且⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122Y X Y X Y X,画可行域如图所示,目标函数Z=300X+400Y 可变形为Y=400z x 43+- 这是随Z 变化的一族平行直线,解方程组⎩⎨⎧=+=+12y 2x 12y x 2 ,⎩⎨⎧==∴4y 4x ,即A (4,4)280016001200max =+=∴Z7、答案[3,0]-; 【解析】约束条件对应ABC ∆内的区域(含边界),其中3(0,3),(0,),(1,1)2A B C ,画出可行域,结合图形和t 的几何意义易得[3,0]t x y =-∈-8、选A ; 【解析】 作出可行域和直线l :03=-y x ,将直线l 平移至点)0,2(处有最大值,点)3,21(处有最小值,即623≤≤-z . ∴应选A.9、答案[-3,3];【解析】约束条件对应区域为四边形OABC 内及边界,其中(0,0),(0,1),(1,2),(3,0)O A B C ,则2[3,3]z x y =-∈-2 . “距离”型考题10、选B ;【命题意图】本题考查不等式中的线性规划以及两个图形间最小距离的求解、基本公式(点到直线的距离公式等)的应用,考查了转化与化归能力。
高中数学3.3.2-2简单的线性规划问题(第二课时)复习试题
课时作业(二十七)1.如果实数x ,y 满足条件⎩⎨⎧x -y +1≥0,y +1≥0,x +y +1≤0,那么2x -y 的最大值为()A .2B .1C .-2D .-3答案 B解析 如图所示可行域中,2x -y 在点C 处取得最大值,即在C(0,-1)处取得最大值,最大值为1.2.若实数x ,y 满足不等式组⎩⎨⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0且x +y 的最大值为9,则实数m=( ) A .-2 B .-1 C .1 D .2答案 C解析 如图,设x +y =9,显然只有在x +y =9与直线2x -y -3=0的交点处满足要求,解得此时x =4,y =5,即点(4,5)在直线x -my +1=0上,代入得m =1.3.已知x ,y ∈Z ,则满足⎩⎨⎧x -y ≥0,x +y ≤5,y ≥0的点(x ,y)的个数为( ) A .9 B .10 C .11 D .12答案 D解析 画出不等式组对应的可行域,共12个点.4.若实数x 、y 满足⎩⎨⎧x -y +1≤0,x>0,则yx 的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)答案 C解析 在平面内作出x 、y 满足的可行域,设P(x ,y)为可行域内任一点,则直线PO 的斜率k PO =y x ,由数形结合得,k PO >1,故yx 的取值范围是(1,+∞),选C.5.在如下图所示的可行域内(阴影部分且包括边界),目标函数z =x -y ,则使z 取得最小值的点的坐标为( )A .(1,1)B .(3,2)C .(5,2)D .(4,1)答案 A解析 对直线y =x +b 行平移,注意b 越大,z 越小.6.设变量x ,y 满足约束条件⎩⎨⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( ) A .[-32,6]B .[-32,-1]C .[-1,6]D .[-6,32]答案 A解析 利用线性规划的知识求解.作出不等式组表示的可行域,如图阴影部分所示,作直线3x -y =0,并向上、下平移,又直线y =3x -z 的斜率为3.由图像知当直线y =3x -z 经过点A(2,0)时z 取最大值6,当直线y =3x -z 经过点B(12,3)时,z 取最小值-32.∴z =3x -y 的取值范围为[-32,6].故选A.7.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表菜的种植面积(单位:亩)分别为( ) A .50,0 B .30,20 C .20,30 D .0,50答案 B解析 设黄瓜的种植面积为x 亩,韭菜的种植面积为y 亩,则由题意知其满足的条件为⎩⎨⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0,化简得⎩⎨⎧x +y ≤50,4x +3y ≤180,x ≥0,y ≥0.目标函数z =0.55×4x +0.3×6y -1.2x -0.9y =x +0.9y.目标函数z =x +0.9y 的几何意义是直线x +0.9y -z =0在x 轴上的截距,由图可知当直线经过点B(30,20)时,目标函数z =x +0.9y 取得最大值. 8.已知以x ,y 为自变量的目标函数ω=kx +y(k>0)的可行域如下图阴影部分(含边界),若使ω取最大值时的最优解有无穷多个,则k 的值为( ) A .1B.32C .2D .4答案 A解析 目标函数可变形为y =-kx +ω,又∵k>0,结合图像可知,当ω最大时,-k =k DC =4-22-4=-1.即k =1.9.已知x ,y满足约束条件⎩⎨⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y2的最小值为( ) A.10 B .2 2 C .8 D .10答案 D解析 画出可行域(如图所示).(x +3)2+y 2即点A(-3,0)与可行域上点(x ,y)间距离的平方.显然|AC|长度最小,所以|AC|2=(0+3)2+(1-0)2=10.故选D.10.点P(1,a)到直线x -2y +2=0的距离为355,且P 在3x +y -3>0表示的区域内,则a =________. 答案 3 解析|1-2a +2|5=355,∴a =0或3.又点P 在3x +y -3>0表示区域内,∴3+a -3>0,∴a>0,∴a =3.11.在坐标平面内,点的纵、横坐标都是整数时,称该点为整点,则由不等式组⎩⎨⎧x +y ≤2,x -y ≥-2,y ≥0所表示的区域内整点的个数是________.答案 9解析 首先画出不等式组表示的平面区域(如图),再用打网格法找出区域内整点,部分靠近边界的点代入验证,共9个点.12.记不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域为D.若直线y =a(x +1)与D 有公共点,则a 的取值范围是________. 答案 [12,4]解析 作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y =a(x +1)过定点C(-1,0),由图并结合题意可知k BC =12,k AC =4,∴要使直线y =a(x +1)与平面区域D 有公共点,则12≤a ≤4.13.已知变量x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,求:(1)z =x 2+y 2-10y +25的最小值; (2)z =2y +1x +1的取值范围. 解析 (1)作出可行域如图,计算得点A(1,3),B(3,1),C(7,9).z =x 2+(y -5)2,表示可行域内任一点(x ,y)到点M(0,5)的距离的平方. 过点M 作AC 的垂线,易知垂足N 在AC 上,故|MN|=|0-5+2|1+(-1)2=32=322, ∴|MN|2=(322)2=92,∴z 的最小值为92. (2)z =2·y -(-12)x -(-1),表示可行域内的点(x ,y)与定点Q(-1,-12)连线的斜率的2倍. 连接QA ,QB.∵k QA =74,k QB =38,∴z 的取值范围是[34,72].14.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? 解析 设投资人分别用x 万元,y 万元投资甲、乙两个项目,由题意知⎩⎨⎧x +y ≤10,0.3x +0.1y ≤1.8,x ≥0,y ≥0.目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.作直线l 0:x +0.5y =0,并作平行于直线l 0的一组直线x +0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的M 点,且与直线x +0.5y =0的距离最大,这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点. 解方程组⎩⎨⎧x +y =10,0.3x +0.1y =1.8,得x =4,y =6.此时z =1×4+0.5×6=7(万元). ∵7>0,∴当x =4,y =6时z 取得最大值.所以,投资人用4万元投资甲项目,6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.15.有一批同规格的钢条,每根钢条有两种切割方式,可截成长度为a 的钢条2根,长度为b 的钢条1根;或截成长度为a 的钢条1根,长度为b 的钢条3根.现长度为a 的钢条至少需要15根,长度为b 的钢条至少需要27根.问:如何切割可使钢条用量最省?解析 设按第一种切割方式需钢条x 根,按第二种切割方式需钢条y 根,根据题意得约束条件是⎩⎨⎧2x +y ≥15,x +3y ≥27,x>0,x ∈N ,y>0,y ∈N ,目标函数是z =x +y ,画出不等式组表示的平面区域如图阴影部分.由⎩⎨⎧2x +y =15,x +3y =27,解得⎩⎨⎧x =3.6,y =7.8. 此时z =11.4,但x ,y ,z 都应当为正整数, 所以点(3.6,7.8)不是最优解.经过可行域内的整点且使z 最小的直线是y =-x +12,即z =12,满足该约束条件的(x ,y)有两个:(4,8)或(3,9),它们都是最优解. 即满足条件的切割方式有两种,按第一种方式切割钢条4根,按第二种方式切割钢条8根;或按第一种方式切割钢条3根,按第二种方式切割钢条9根,可满足要求.1.已知实数x ,y 满足⎩⎨⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0,则yx 的最大值为________.答案 2解析 画出不等式组⎩⎨⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0对应的平面区域Ω,y x =y -0x -0表示平面区域Ω上的点P(x ,y)与原点的连线的斜率.A(1,2),B(3,0),∴0≤yx≤2.2.若实数x 、y 满足不等式组⎩⎨⎧y ≥0,x -y ≥0,2x -y -2≥0,则ω=y -1x +1的取值范围是()A .[-1,13]B .[-12,13]C .[-12,+∞)D .[-12,1)答案D解析 所求问题转化为求动点(x ,y)与定点(-1,1)连线的斜率问题.不等式组表示的可行域如图所示.目标函数ω=y -1x +1表示阴影部分的点与定点(-1,1)的连线的斜率,由图可见,点(-1,1)与点(1,0)连线的斜率为最小值,最大值趋近于1,但永远达不到,故-12≤ω<1.3.若目标函数z =x +y +1在约束条件⎩⎨⎧x +y -2≤0,x -y +2≤0,y ≤n ,x ≥-3下取得最大值的最优解有无穷多个,则n 的取值范围是________. 答案 n>2解析先根据⎩⎨⎧x +y -2≤0,x -y +2≤0,x ≥-3作出如图所示阴影部分的可行域,欲使目标函数z=x +y +1取得最大值的最优解有无穷多个,需使目标函数对应的直线平移时达到可行域的边界直线x +y -2=0,且只有当n>2时,可行域才包含x +y -2=0这条直线上的线段BC 或其部分.4.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( ) A .12万元B .20万元C .25万元D .27万元答案 D解析 设生产甲产品x 吨,生产乙产品y 吨,获得利润为z ,则有下列关系:则有⎩⎨⎧ y>0, 3x +y ≤13, 2x +3y ≤18.目标函数z =5x +3y ,作出可行域后(如图所示阴影区域)求出可行域边界上各端点的坐标,可知当x =3,y =4时可获得最大利润为27万元,故选D.。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.已知实数满足约束条件,则的最小值是()A.B.C.D.【答案】A【解析】作出可行域如图中阴影部分所示,作出直线:,平移直线,由图知,当直线:过点A时,z取最小值,解得A(,),故=-14,故选A.考点: 简单线性规划2.不等式组的解集为D,有下面四个命题:,,,其中的真命题是()A.B.C.D.【答案】B【解析】画出可行域,如图所示,设,则,当直线过点时,取到最小值,,故的取值范围为,所以正确的命题是,选B.【考点】1、线性规划;2、存在量词和全称量词.3.设x,y满足约束条件,则z=(x+1)2+y2的最大值为()A.80B.4C.25D.【答案】A【解析】作出不等式组表示的平面区域,如图中阴影部分所示.(x+1)2+y2可看作点(x,y)到点P(-1,0)的距离的平方,由图可知可行域内的点A到点P(-1,0)的距离最大.解方程组,得A点的坐标为(3,8),代入z=(x+1)2+y2,得z=(3+1)2+82=80.max4.已知实数满足则的最小值为_____ .【答案】【解析】作出可行域如图中阴影部分,将化为,作出直线并平移,使之经过可行域,易知经过点时,纵截距最小,此时。
【考点】线性规划问题。
5.已知,满足约束条件,且的最小值为6,则常数.【答案】-3【解析】画出可行域及直线,如图所示.平移直线,当其经过直线的交点时,,所以,.【考点】简单线性规划的应用.6.若,满足约束条件,则的最大值是( )A.B.C.D.【答案】(C)【解析】,满足约束条件如图所示. 目标函数化为.所以z的最大值即为目标函数的直线在y轴的截距最小.所以过点A最小为1.故选(C).【考点】1.线性规划的知识.2.数学结合的数学思想.7.曲线在点处的切线分别为,设及直线x-2y+2=0围成的区域为D(包括边界).设点P(x,y)是区域D内任意一点,则x+2y的最大值为________.【答案】【解析】因为,,,所以,切线得到斜率分别为,它们的方程分别为.画出区域、直线(如图所示);平移直线,当其经过点时,【考点】导数的几何意义,直线方程,简单线性规划.8.点在不等式组表示的平面区域内,到原点的距离的最大值为,则的值为.【答案】3.【解析】由题意,不等式组表示的平面区域如下图:当点在点时,到原点的距离最大为5,则,解得.【考点】1.线性规划求参数范围.9.已知实数满足,,则z的取值范围是()A.B.C.D.【答案】C【解析】画出约束条件限定的可行域为如图阴影区域,令,则,先画出直线,再平移直线,当经过A,B时,代入,可知,,故选C。
数学必修Ⅴ人教新课标A版3-3-2-2简单线性规划的应用同步练习-3
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(二十三)简单线性规划的应用(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·杭州高二检测)已知x,y满足约束条件则z=2x+4y的最小值为()A.-14B.-15C.-16D.-17【解析】选B.作出不等式组表示的平面区域如图阴影所示,由图可知当目标函数z=2x+4y经过y=x与x+y+5=0的交点时取得最小值,联立解得交点坐标为(-2.5,-2.5),故z min=-15.2.(2015·济宁高二检测)某所学校计划招聘男教师x名,女教师y名,x和y需满足约束条件则该校招聘的教师最多为() A.10名 B.11名 C.12名 D.13名【解析】选D.设z=x+y,作出可行域如图阴影中的整点部分,可知当直线z=x+y过A点时z最大,由得故z最大值为7+6=13.【补偿训练】(2015·安康高二检测)配置A,B两种药剂都需要甲、乙两种原料,用料要求如表所示(单位:kg):原料甲乙药剂A 2 5B 5 4药剂A,B至少各配一剂,且药剂A,B每剂售价分别为100元、200元,现有原料甲20kg,原料乙25 kg,那么可以获得的最大销售额为()A.600元B.700元C.800元D.900元【解析】选C.设配制药剂A为x剂,药剂B为y剂,则有不等式组成立,即求u=100x+200y在上述线性约束条件下的最大值.借助于线性规划图可得选C.3.车间有男工25人,女工20人,要组织甲、乙两种工作小组,甲组要求有5名男工,3名女工,乙组要求有4名男工,5名女工,并且要求甲种组数不少于乙种组数,乙种组数不少于1组,则要使组成的组数最多,甲、乙各能组成的组数为()A.甲4组、乙2组B.甲2组、乙4组C.甲、乙各3组D.甲3组、乙2组【解析】选D.设甲种x组,乙种y组.则总的组数z=x+y,作出该不等式组表示的平面区域如图中阴影部分所示的整点,寻找整点分析,选D.4.(2015·泸州高二检测)某厂生产甲、乙两种产品,生产甲种产品每单位需A种原料8克,B种原料24克,每单位利润60元;生产乙种产品每单位需A种原料和B种原料各16克,每单位利润80元,现有A 种原料2400克,B种原料2880克,如果企业合理搭配甲、乙两产品的生产单位,工厂可获得最大利润为()A.12600元B.12630元C.12680元D.13600元【解析】选A.设生产甲、乙两种产品分别为x单位、y单位,所获利润为z元,则z=60x+80y.由题意得等价于作出不等式组表示的平面区域如图,由求得M(30,135),将直线60x+80y=z平移过点M,即x=30,y=135时,z取到最大值,因此,甲、乙两种产品分别生产30单位和135单位时,工厂可获得最大利润为60×30+80×135=12600元.5.(2015·蚌埠高二检测)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3t,B原料2t;生产每吨乙产品要用A原料1t,B原料3t.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13t,B原料不超过18t,那么该企业可获得最大利润是()A.12万元B.20万元C.25万元D.27万元【解析】选D.设生产甲产品xt,乙产品yt,则获得的利润为z=5x+3y.由题意,得可行域如图阴影所示:由图可知当x,y在A点取值时,z取得最大值,此时x=3,y=4,z=5×3+3×4=27(万元).二、填空题(每小题5分,共15分)6.已知变量x,y满足条件则2x-y的最大值为________.【解析】在坐标平面内画出题中的不等式组表示的平面区域及直线2x-y=0,平移该直线,当平移到经过该平面区域内的点时,相应直线在y轴上的截距达到最小,此时2x-y取得最大值,最大值是2x-y=2×-=.答案:【补偿训练】一批长400cm的条形钢材,需要将其截成518mm与698mm 的两种毛坯,则钢材的最大利用率为________.【解析】设截518mm和698mm的两种毛坯分别为x个、y个(x,y∈N*).由题意知,即求z=518x+698y的最大值.由得又由z≤4000,得当x=5,y=2时,z max=518×5+698×2=3 986.故最大利用率为×100%=99.65%.答案:99.65%7.(2015·四平高二检测)某工厂家具车间造A,B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A,B型桌子分别需要1h和2h,漆工油漆一张A,B型桌子分别需要3h和1h;又知木工、漆工每天工作分别不得超过8h和9h,而工厂造一张A,B型桌子分别获利润2千元和3千元,试问要使获得利润最大,每天应生产A型桌子与B型桌子的张数应分别为__________.【解析】设每天生产A型桌子x张,B型桌子y张,则目标函数z=2x+3y.作出可行域如图阴影部分的整点.作直线l0:2x+3y=0,平移直线l0,当l0经过可行域内的点M时,目标函数z=2x+3y取最大值.由得M(2,3).答案:2张,3张8.投资生产A产品时,每生产100吨需要资金200万元,需场地200m2,获利300万元;投资生产B产品时,每生产100米需要资金300万元,需场地100m2,获利200万元.现某单位可使用资金1400万元,场地900m2,为使获利最大,应生产A产品________百吨,生产B产品________百米.【解析】设生产A产品x百吨,生产B产品y百米,利润为z万元,则目标函数为z=3x+2y,作出可行域,使目标函数z=3x+2y取最大值的(x,y)是直线2x+3y=14与2x+y=9的交点(3.25,2.5),此时z=3×3.25+2×2.5=14.75,生产A产品3.25百吨,生产B产品2.5百米,可使获利最大.答案:3.25 2.5三、解答题(每小题10分,共20分)9.某工厂生产甲、乙两种产品.已知生产甲产品每单位质量可获利10元,生产乙产品每单位质量可获利12元,甲、乙两种新产品的生产都要经过厂里完成不同任务的三个车间,每单位质量的产品在每个车间里所需要的加工的总工时数如表:如何安排生产,才能使本月获得利润最大?最大利润是多少?【解析】设生产甲种产品的质量为x,乙种产品的质量为y,本月厂方获利z=10x+12y,则如图所示.解方程组得点M(300,300),z max=10×300+12×300=6600(元).所以安排生产甲种产品、乙种产品各300时,本月厂方获利最大,为6600元.10.(2015·海口高二检测)某人承揽一项业务,需做文字标牌2个,绘画标牌3个,现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个,乙种规格每张2 m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使总的用料面积最小.【解析】设用甲种规格原料x张,乙种规格原料y张,所用原料的总面积是zm2,目标函数z=3x+2y,线性约束条件作出可行域如图中阴影部分所示的整点.解得A.A不是整点,A不是最优解.在可行域内的整点中,点B(1,1)使z取得最小值.z min=3×1+2×1=5.答:用甲种规格的原料1张,乙种规格的原料1张,可使所用原料的总面积最小为5m2.(20分钟40分)一、选择题(每小题5分,共10分)1.(2015·晋城高二检测)已知平面区域D由以点A(1,3),B(5,2),C(3,1)为顶点的三角形内部以及边界组成.若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则实数m的值为() A.-2 B.-1 C.1 D.4【解析】选C.依题意,作出符合条件的可行域如图中阴影部分所示.将目标函数变形,可得y=-x+.当m>0时,欲使最优解有无数个,则需-=k AC=-1.所以m=1.当m<0时,直线过点A时,z取得最小值,但仅在A点时取得最小值,不满足题意.所以m=1.2.(2015·衡水高二检测)某厂生产的甲、乙两种产品每件可获利润分别为30元、20元,生产甲产品每件需用A原料2千克、B原料4千克,生产乙产品每件需用A原料3千克、B原料2千克.A原料每日供应量限额为60千克,B原料每日供应量限额为80千克.要求每天生产的乙种产品不能比甲种产品多10件以上,则合理安排生产可使每日获得的最大利润为()A.500元B.700元C.400元D.650元【解析】选D.设每日生产甲、乙两种产品分别为x,y件,则x,y满足每日获得的利润z=30x+20y.不等式组所表示的平面区域如图阴影部分所示(取阴影部分中横坐标、纵坐标均为整数的点),根据目标函数的几何意义,z在直线2x+3y=60和4x+2y=80的交点B 处取得最大值,由解得B(15,10),代入目标函数得z max=30×15+20×10=650.【补偿训练】(2014·南阳高二检测)某学校用800元购买两种教学用品,A种用品每件100元,B种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A,B应各买的件数为()A.2,4B.3,3C.4,2D.不确定【解析】选B.设买A种用品x件,B种用品y件,剩下的钱为z元. 则z=800-100x-160y最小时的整数解(x,y)即为所求,由可行域可得【误区警示】解答本题时易出现不考虑实际意义的错误.二、填空题(每小题5分,共10分)3.(2015·萍乡高二检测)已知O为坐标原点,点M(3,2),若点N(x,y)满足不等式组则·的最大值为________.【解析】因为·=3x+2y,在坐标平面内画出题中的不等式组表示的平面区域及直线3x+2y=0(图略),平移该直线,当平移到经过该平面区域内的点(4,0)时,相应直线在y轴上的截距达到最大,此时·=3x+2y取得最大值,最大值是3×4+2×0=12.答案:124.某实验室需购某处化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格是120元.在满足需要的条件下,最少的花费应为____________. 【解析】设需要购买35千克的x袋,24千克的y袋,总的花费为z元,故有z=140x+120y.由图解法求出z min=500,此时x=1,y=3.答案:500元三、解答题(每小题10分,共20分)5.某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需要煤、电力、劳动力,获得利润及每天资源限额(最大供应量)如表所示:问:每天生产甲、乙两种产品多少吨,获得利润总额最大?【解析】设此工厂每天应分别生产甲、乙两种产品x吨,y吨,获得利润z万元.根据题意可得x,y满足利润目标函数z=6x+12y.如图,作出可行域,作直线l:z=6x+12y,把直线l向右上方平移至l1位置,直线经过可行域上的点M,且与原点距离最大,此时z=6x+12y 取得最大值.解方程得M(20,24).所以每天生产甲种产品20吨,乙种产品24吨,才能使此工厂获得最大利润.6.(2015·北京高二检测)某赛事组委会要为获奖者定做某工艺品作为奖品,其中一等奖奖品3件,二等奖奖品6件,制作一等奖和二等奖奖品所用原料完全相同,但工艺不同,故价格有所差异.现有甲、乙两家工厂可以制作奖品(一等奖、二等奖奖品均符合要求),甲厂收费便宜,但原料有限,最多只能制作4件奖品,乙厂原料充足,但收费较贵,其具体收费情况如表:求组委会定做该工艺品至少需要花费多少元钱.【解题指南】设甲工厂制作一等奖奖品x件,二等奖奖品y件,总费用为z元,由题意列出约束条件,得到总费用z关于x,y的目标函数,再由约束条件作出可行域,数形结合得到使目标函数取得最小值的最优解,代入目标函数得答案.【解析】设甲工厂制作一等奖奖品x件,二等奖奖品y件,总费用为z元,那么:目标函数为z=500x+400y+800(3-x)+600(6-y)=-300x-200y+6000. 作出可行域如图中的整点所示,联立方程组解得即B(3,1).所以z min=-300×3-200×1+6000=4900.答:组委会定做该工艺品至少需要花费4900元钱.【拓展延伸】线性规划中的最优解问题(1)解线性规划问题的关键步骤是在图上完成的,所以作图应尽可能精确,假若图上的最优点并不明显时,不妨将几个有可能是最优点的坐标都求出来,然后逐一检验,以“验明正身”.(2)另外对最优整数解问题,可使用“局部微调法”,其步骤可用以下十二个字概括:微调整、求交点、取范围、找整解.关闭Word文档返回原板块感谢您的阅读,祝您生活愉快。
人教版高中数学必修三单元测试线性规划及答案
人教版高中数学必修三单元测试线性规划及答案 The document was prepared on January 2, 2021(6)线性规划一、选择题(本大题共10小题,每小题5分,共50分) 1.设直线l 的方程为:01=-+y x ,则下列说法不.正确的是 ( )A .点集{01|),(=-+y x y x }的图形与x 轴、y 轴围成的三角形的面积是定值B .点集{01|),(>-+y x y x }的图形是l 右上方的平面区域C .点集{01|),(<+--y x y x }的图形是l 左下方的平面区域D .点集{)(,0|),(R m m y x y x ∈=-+}的图形与x 轴、y 轴围成的三角形的面积有最小值2.已知x , y 满足约束条件,11⎪⎩⎪⎨⎧-≥≤+≤y y x xy y x z +=2则的最大值为( )A .3B .-3C .1D .23 3.如果函数a bx ax y ++=2的图象与x 轴有两上交点,则点(a ,b )在a Ob 平面上的区域(不包含边界)为 ( )A .B .C .D . 4.图中的平面区域(阴影部分包括边界)可用不等式组表示为 ( ) A .20≤≤x B .⎩⎨⎧≤≤≤≤1020y xC .⎪⎩⎪⎨⎧>≤-+yx y x 022D .⎪⎩⎪⎨⎧≥≥≤-+00022y x y x x1201-y5.不等式组⎪⎩⎪⎨⎧-≥≤+<31y y x xy ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则( )A .D P D P ∉∉21且B .D P D P ∈∉21且C .D P D P ∉∈21且D .D P D P ∈∈21且6.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则( )A .02300>+y xB .<+0023y x 0C .82300<+y xD .82300>+y x7.已知点P (0,0),Q (1,0),R (2,0),S (3,0),则在不等式063≥-+y x 表示的平面区域内的点是( )A .P 、QB .Q 、RC .R 、SD .S 、P8.在约束条件⎪⎩⎪⎨⎧≥≤+≤--011x y x y x 下,则目标函数y x z +=10的最优解是( ) A .(0,1),(1,0) B .(0,1),(0,-1) C .(0,-1),(0,0)D .(0,-1),(1,0)9.满足2≤+y x 的整点的点(x ,y )的个数是( )A .5B .8C .12D .1310.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A 、B 两种规格的金属板,每张面积分别为2m 2、3 m 2,用A 种金属板可造甲产品3个,乙产品5个,用B 种金属板可造甲、乙产品各6个,则A 、B 两种金属板各取多少张时,能完成计划并能使总用料面积最省 ( )A .A 用3张,B 用6张 B .A 用4张,B 用5张C .A 用2张,B 用6张D .A 用3张,B 用5张二、填空题(本题共4小题,每小题6分,共24分)11.表示以A (0,0),B (2,2),C (2,0)为顶点的三角形区域(含边界)的不等式组是12.已知点P (1,-2)及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是 . 13.已知点(x ,y )在不等式组⎪⎩⎪⎨⎧≥+≤≤222y x y x 表示的平面区域内,则y x +的取值范围为.14.不等式1≤+y x 所表示的平面区域的面积是三、解答题(本大题共6题,共76分)15.画出不等式组⎪⎩⎪⎨⎧≥+≤≥+-02042x yx y x 所表示的平面区域.(12分)16. 求由约束条件⎪⎩⎪⎨⎧≥≥≤+≤+0,0625y x y x y x 确定的平面区域的面积阴影部分S 和周长阴影部分C .(12分)17.求目标函数y x z 1510+=的最大值及对应的最优解,约束条件是⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+01001232122y x y x y x . (12分)18.设y x z +=2,式中变量y x ,满足条件⎪⎪⎩⎪⎪⎨⎧≤+≥+≥≥66311y x y x y x ,求z 的最小值和最大值.(12分)19.A 市、B 市和C 市分别有某种机器10台、10台和8台.现在决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机到D 市、E 市的运费分别为200元和800元;从B 市调运一台机器到D 市、E 市的运费分别为300元和700元;从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器全部调运完毕后,用x 、y 表示总运费W (元),并求W 的最小值和最大值.(14分)20.某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1 吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大(14分)参考答案一.选择题(本大题共10小题,每小题5分,共50分)二.填空题(本大题共4小题,每小题6分,共24分)11.⎪⎩⎪⎨⎧≥≤≥-020y x y x 12.)21,23(-- 13.[2,4] 14. 2三、解答题(本大题共6题,共76分) 15.(12分)16.(12分)[解析]:由约束条件作出其所确定的平面区域(阴影部分),其四个顶点为O (0,0),B (3,0),A (0,5),P (1,4).过P 点作y 轴的垂线,垂足为C . 则AC=|5-4|=1,PC=|1-0|=1,OC=4,OB=3,AP=2,PB=52)31()04(22=-+-得PC AC S ACP ⋅=∆21=21,8)(21=⋅+=OC OB CP S COBP 梯形所以阴影部分S =ACP S ∆+COBP S 梯形=217,阴影部分C =OA+AP+PB+OB=8+2+5217.(12分)[解析]:作出其可行域如图所示,约束条件所确定的平面区域的五个顶点为(0,4),(0,6),(6,0)(10,0),(10,1),作直线l 0:10 x +15 y =0,再作与直线l 0平行的直线l :10 x +15 y =z , 由图象可知,当l 经过点(10,1)时使y x z 1510+=取得最大值,显然1151151010max=⨯+⨯=z ,此时最优解为(10,1). 18.(12分)[解析]:作出其可行域如图所示,约束条件所确定的平面区域的四个顶点为(1,35),(1,5),(3,1),(5,1), 作直线l 0:2 x + y =0,再作与直线l 0平行的直线l :2 x + y =z , 由图象可知,当l 经过点(1,35)时 使y x z+=2取得最小值,31135112min =⨯+⨯=z 当l 经过点(5,1)时使y x z +=2取得最大值,111152max =⨯+⨯=z 19.(14分)[解析]:由题意可得,A 市、B 市、C 市调往D 市的机器台数分别为x 、y 、(18- x - y ),调往E市的机器台数分别为(10- x )、(10- y )、[8-(18- x - y )].于是得 W=200 x +800(10- x )+300 y +700(10- y )+400(18- x - y )+500[8-(18- x - y )]=-500 x -300 y +17200设W=17200-100T ,其中T=5 x +3 y , 又由题意可知其约束条件是⎪⎩⎪⎨⎧≤+≤≤≤≤≤⇒⎪⎩⎪⎨⎧≤--≤≤≤≤≤1810100100818*******y x y x y x y x 作出其可行域如图: 作直线l 0:5 x +3 y =0,再作直线l 0的平行直线l : 5 x +3 y =T 当直线l 经过点(0,10)时,T取得最小值, 当直线l 经过点(10,8)时,T取得最大值, 所以,当x =10,y =8时,W min =9800(元)xy O 1166x+3y=6x+y=6y=1x=1l当x =0,y =10时,W max =14200(元). 答:W的最大值为14200元,最小值为9800元.20.(14分)分析:将已知数据列成下表:解:设生产甲、乙两种棉纱分别为x 吨、y 吨,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0025023002y x y x y xz =600x +900y .作出以上不等式组所表示的平面区域(如图),即可行域.作直线l :600x +900y =0,即直线l :2x +3y =0,把直线l的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =600x +900y 取最大值.解方程组⎩⎨⎧=+=+25023002y x y x ,得M 的坐标为x =3350≈117,y =3200≈67. 答:应生产甲种棉纱117吨,乙种棉纱67吨,能使利润总额达到最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x ≧ 0 y≧0 4.在條件 的限制下,P=3x+y 的最大值為【 5 x+3 y ≦ 30 x+2 y ≦10
】
5.不等式|x-1|+2|y-2|≦4 所表區域面積為【
】 。
6.欲將兩種大小不同的鋼板,截成 A,B,C 三種規格,各種鋼板可截得這三種規格的件數如下,如欲得 A ,B,C 三種規格的產品各 15,24,27 件,現在希望使需用到的鋼板總片數最少,則第一種鋼板要取【 】片,第二種鋼板要取【 】片。
將可行解區域的四個頂點代入 (x,y) (0,0) (0,5) (6,0)
3x+y 0 5 18
→最小值 →最大值
高中數學第三冊 2-2 線性規劃試題
( ∴最大值為 18,最小值為 0 5.答案:16 解析:將坐標軸平移(1,2)後可知 |x-1|+2|y-2|≦4 之面積,即|x|+2|y|≦4 所圍之面積
由
(x,y) x+2y (0,8) 16 (1 ,4 ) 9 (3,2) (10,0) 7 10
故 x+2y 之最小值為 7
8.答案:- 3 <a<0 解析:因 y-ax=k 表示斜率為 a,y 截距為 k 之直線,
高中數學第三冊 2-2 線性規劃試題
當直線往右上移時 k 值愈大, 下圖中∠EAC=120°
答:
解析:
y=x-k ⇒ 斜率為 1,且 y 截距為-k 的直線 故分別作過 A,B,C,D,E 五點
且斜率為 1 的直線如上圖 其中 E 點的 y 截距-k 最小 ∴k 值最大 故選(E) 4.答案:18;0 解析:滿足聯立不等式的區域如下圖
30 x= 5 x+3 y=30 7 L1,L2 的交點為 ⇒ 10 x+2 y= y= 20 7
ห้องสมุดไป่ตู้
x y 共 9+6+4+1=20 個格子點
0 1~9
1 1~6
2 0~3
3 0
3x+y ≦ 9 x+2 y ≧ 2 10.畫出二元一次聯立不等式 的圖形,並求此圖形內有多少個 x,y 坐標皆為整數的點。 (又稱 ,y ≧ 0 x ≧ 0
為格子點) 解:
高中數學第三冊 2-2 線性規劃試題
1.答案:將 A(1,-1) ,B(3,2)代入(1+1+k) (3-2+k)<0 ⇒ (k+2) (k+1)<0 ⇒ -2<k<-1 答:-2<k<-1 2.答案: OA 通過原點,其方程式必為 x+ay=0
可行解區域之頂點為(0,
185 15 55 50 ) , ( , ) , ( ,0)代入附近之格子點 8 2 4 3
(x,y) (0,23) (7,14) (8,13)
1800x+1400y 32200 32200
32600 因此(x,y)=(8,13)時有最大收益,即數對(a,b)=(8,13)答: (8,13) 10.答案:如下圖所示,
9.睿睿在景美女高附近有樓房一幢,室內占地 100 坪,想分租給學生;房間分兩類,大房每間占地 6 坪, 可住 3 名學生,月租每人 600 元;小房每間占地 4 坪,可住 2 名學生,月租每人 700 元。但大房裝潢費 用每間需 10000 元,小房間要 8000 元,如果睿睿現有 185000 元準備用於裝潢且學生來源不用顧慮,假 設隔出大房 a 間,小房 b 間時,可得最大月租收益,求數對(a,b)=?【景美女高】 解:
A規格
第一種鋼板 第二種鋼板
B規格 1 2
C規格 1 3
2 1
高中數學第三冊 2-2 線性規劃試題
4 x+y ≧ 8 x+y ≧ 5 7.試在聯立不等式 2 x+7 y ≧ 20 的條件下,求 x+2y 之最小值為【 x ≧ 0 y ≧0
姓名:
得分:
】 。
8.設一線性規劃的可行解區域為如下圖之正六邊形內部(含邊界) ,而目標函數為 y-ax;若已知 A 點是此 目標函數取得最大值之唯一的點,則 a 值的範圍為何?答: 【 】 。
姓名:
得分:
° AB斜率= tan 120 =- 3 ° AD斜率= tan 0 =0
所以目標函數 y-ax 之斜率 a 必須介於- 3 與 0 才能接觸到 A 點,故- 3 <a<0 9.答案:設大、小房間分別隔出 x 間、y 間,則 ,x ∈ Z x ≧ 0 y ≧0 ,y ∈ Z 6 x+4 y ≦100 10000 x+8000 y ≦185000 目標函數為 1800x+1400y
AB 的直線方程式只好是 bx+cy=3
姓名:
得分:
又 OA 通過 A(1,2) ,代入 x+ay=0 ∴1+2a=0 ⇒ a=-
1 2
又 AB 通過 A(1,2)與 B(3,0) ,代入 bx+cy=3 3b=3 ∴ 解得 b=1,c=1 b+2c=3
1 3 故 a+b+c=- +1+1= 2 2 3 2 3、答案:(E)
30 20 , ) 7 7 110 7
姓名:
得分:
∴面積為
1 ×8×4=16 2
6.答案:2;11 解析:設第一種鋼板要取 x 片,第二種鋼板要取 y 片 x ≧ 0,y ≧ 0 2 x+y ≧ 15 x+2 y ≧ 24 x+3 y ≧ 27
欲求 P=x+y 的最小值 (x,y) (0,15) (2,11) (18,3) (27,0) ∴第一種鋼板取 2 片,第二種鋼板取 11 片 7.答案:7 解析:不等式之圖形如下所示 x+y 15 13 21 27 →最小值
高中數學第三冊 2-2 線性規劃試題
1.若兩點 A(1,-1) ,B(3,2)在直線 x-y+k=0 的異側,求 k 值之範圍。 解:
姓名:
得分:
x+ay ≧ 0 2.已知下圖為聯立不等式 bx+cy ≦ 3 的可行解區域,求 a+b+c 的值。 y ≧0
解: ( )3.下圖中,A,B,C,D,E 為坐標平面上的五個點,將這五點的坐標(x,y)分別代入 x-y=k,問 哪一點所得的 k 值最大? (A) A (B) B (C) C (D) D (E) E。