二次函数分小节学习的学习的练习共11分节.doc

合集下载

二次函数基础分类练习题(含答案)

二次函数基础分类练习题(含答案)

练习一 二次函数1、 下列函数:① 23y x ;② 21y x x x ;③ 224y x x x ;④ 21yx x ;⑤ 1yx x ,其中是二次函数的是 ,其中a,b,c3、当m 时,函数2235y mx x (m 为常数)是关于x 的二次函数4、当____m 时,函数2221m m y mm x是关于x 的二次函数5、当____m时,函数2564m m ymx+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm ymx 的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.st O st O stOs t O练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 . 3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 . 4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y .(1)确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224ymx x mm 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x ,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2y ax bx c (0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x 和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,110、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c 。

二次函数练习题及答案

二次函数练习题及答案

二次函数练习题及答案二次函数是高中数学中的一个重要知识点,也是数学建模和应用题中常见的内容。

在学习二次函数的过程中,练习题是必不可少的。

通过大量的练习,可以加深对二次函数的理解,提高解题能力。

本文将给出一些常见的二次函数练习题及答案,希望对读者的学习有所帮助。

题目一:已知二次函数y=ax^2+bx+c的图象过点(1,3),且在x轴上的截距为4,求a,b,c的值。

解答:由已知条件可得方程组:3=a+b+c0=a+4b+16c解方程组得:a=2,b=-6,c=7题目二:已知二次函数y=ax^2+bx+c的图象过点(-2,5),且在x轴上的截距为6,求a,b,c的值。

解答:由已知条件可得方程组:5=4a-2b+c0=36a+6b+c解方程组得:a=-1/6,b=1/3,c=1/2题目三:已知二次函数y=ax^2+bx+c的图象过点(3,2),且在x轴上的截距为5,求a,b,c的值。

解答:由已知条件可得方程组:2=9a+3b+c0=25a+5b+c解方程组得:a=-1/5,b=2/5,c=0题目四:已知二次函数y=ax^2+bx+c的图象过点(-3,4),且在x轴上的截距为7,求a,b,c的值。

解答:由已知条件可得方程组:4=9a-3b+c0=49a+7b+c解方程组得:a=-1/7,b=2/7,c=4/7通过以上四道题目的练习,我们可以发现,已知二次函数的图象经过一个点和在x轴上的截距,可以得到一个含有三个未知数的方程组,通过解方程组可以求解出a,b,c的值。

这是二次函数的基本应用之一。

除了已知图象经过一个点和在x轴上的截距,还有其他常见的二次函数练习题类型,如已知顶点坐标、已知对称轴、已知与其他函数的关系等。

通过大量的练习,可以熟练掌握这些题型,并且在实际应用中能够灵活运用。

二次函数练习题的答案不仅仅是求出a,b,c的值,更重要的是理解解题过程。

在解题过程中,我们需要灵活运用二次函数的性质,如顶点坐标公式、对称性、判别式等。

二次函数基础练习题(含答案)(完整资料).doc

二次函数基础练习题(含答案)(完整资料).doc

【最新整理,下载后即可编辑】二次函数练习题(一)1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式.2、下列函数:① 23yx ;②()21y x x x =-+;③()224y x x x =+-;④21yx x ;⑤()1y x x =-,其中是二次函数的是,其中a,b,c3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数4、当____m =时,函数2221mm ym m x 是关于x 的二次函数5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数 6、若点 A ( 2,m )在函数12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式S=πr2中,s 与r 的关系是()A、一次函数关系B、正比例函数关系C、反比例函数关系D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.9、矩形的长是4cm,宽是3cm,如果将长和宽都增加x cm,那么面积增加ycm2,①求y 与x 之间的函数关系式.②求当边长增加多少时,面积增加8cm2.10、已知二次函数),0(2≠axy当x=1时,y= -1;当x=2时,y=2,求该c=a+函数解析式.11、富根老伯想利用一边长为a米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽AB为x米,则猪舍的总面积S(米2)与x有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数练习题(二)-----函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D 5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm ymx 的图象是开口向下的抛物线,求m 的值.stOstOstOstO7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x的增大而减小?10、如果抛物线2y ax与直线1=-交于点,2b,求这条抛物线所对应的二y x次函数的关系式.二次函数练习题(三)-----函数c=2的图象与性质axy+1、抛物线322-y的开口,对称轴是,顶点坐标-=x是,当x 时, y随x的增大而增大, 当x 时, y随x的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .二次函数练习题(四)-----函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.二次函数练习题(五)-----()k h x a y +-=2的图象与性质 1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大. 4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是 6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( ) A 、x>3 B 、x<3 C 、x>1 D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3)当x 时,y随x的增大而增大;当x 时,y随x的增大而减小.(4)求出该抛物线与x轴的交点坐标及两交点间距离;(5)求出该抛物线与y轴的交点坐标;(6)该函数图象可由23x=的图象经过怎样的平移得到的?y-8、已知函数()412-y.+=x(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)若图象与x轴的交点为A、B和与y轴的交点C,求△ABC的面积;(3)指出该函数的最值和增减性;(4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5)该抛物线经过怎样的平移能经过原点.(6)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0.二次函数练习题(六)-----c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 的对称轴是 . 2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是 6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为___ ____;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-14 9、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223yx x的顶点和坐标原点1)求一次函数的关系式;2)判断点()-是否在这个一次函数的图象上2,514、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?二次函数练习题(七)-----c+=2的性质axy+bx1、函数2y x px q的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数22y mx x m m的图象经过原点,则此抛物线的顶点坐标24是3、如果抛物线2y ax bx c与y轴交于点A(0,2),它的对称轴是1x,那么acb4、抛物线c+=2与x轴的正半轴交于点A、B两点,与y轴交于点C,y+xbx且线段AB的长为1,△ABC的面积为1,则b的值为______.5、已知二次函数c=2的图象如图所示,则a___0,b___0,c___0,y++axbx2-____0;acb46、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2yax bxc (0≠a )的图象如图所示,则下列结论:1),a b 同号; 2)当1x 和3x时,函数值相同;3)40a b;4)当2422b b acy a-±-=-时,x 的值只能为0;其中正确的是 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx axb 中,若0ab,则它的图象必经过点()A ()1,1--B ()1,1-C 1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab111、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ). (A )①② (B )②③ (C )②④ (D )③④ 14、二次函数2y ax bxc 的最大值是3a ,且它的图象经过()1,2--,1,6两点,求a 、b 、c15、试求抛物线2y ax bx c与x轴两个交点间的距离(240b ac)二次函数练习题(八)-----确定二次函数解析式1、抛物线y=ax2+bx+c经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为.3、二次函数有最小值为1,当0x时,1x,y,它的图象的对称轴为1则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过1,1、2,1两点,且与x轴仅有一个交点,求二次函数的解析式6、抛物线y=ax2+bx+c过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x轴交于A(-2,0)、B(3,0)两点,且函数有最大值是2.(1)求二次函数的图象的解析式;(2)设次二次函数的顶点为P,求△ABP的面积.8、以x为自变量的函数)32(2)1(42-mxy中,m为不小于零的整mx-+=m++-数,它的图象与x轴交于点A和B,点A在原点左边,点B在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b的图象经过点A,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.二次函数练习题(九)-----二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( ) A 、0 B 、-1 C 、2 D 、416、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3 B 、x =-2 C 、x =-1 D 、x =17、已知二次函数2y x pxq 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值。

二次函数分节练习基础练习小篇

二次函数分节练习基础练习小篇

一、填空题1.形如____________的函数叫做二次函数,其中______是目变量,a ,b ,c 是______且______≠0.2.函数y =x 2的图象叫做______,对称轴是______,顶点是______.3.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______.4.当a >0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______.5.当a <0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______. 6.写出下列二次函数的a ,b ,c .(1)23x x y -= a =______,b =______,c =______. (2)y =x 2a =______,b =______,c =______.(3)105212-+=x x y a =______,b =______,c =______. (4)2316x y --=a =______,b =______,c =______.7.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______.8.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)y =2x 2如图( );(2)221x y =如图( );(3)y =-x 2如图( ); (4)231x y -=如图( );(5)291x y =如图( );(6)291x y -=如图( ). 9.已知函数,232x y -=不画图象,回答下列各题. (1)开口方向______; (2)对称轴______; (3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______;一、填空题1.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答:(1)______的图象是直线,______的图象是抛物线.(2)函数______y 随着x 的增大而增大.函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称. 函数______的图象关于原点对称. (4)函数______有最大值为______.函数______有最小值为______. 2.已知函数y =ax 2+bx +c (a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______. (3)若它是正比例函数,则系数应满足条件______.3.已知函数y =(m 2-3m )122--m mx 的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______,对称轴为直线______,开口______. 4.已知函数y =m 222+-m m x+(m -2)x .(1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限.(2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 5.已知函数y =m mm x+2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m =______时抛物线的开口向下.二、选择题6.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )A .y =x (x +1)B .xy =1C .y =2x 2-2(x +1)2D .132+=x y7.在二次函数①y =3x 2;②2234;32x y x y ==③中,图象在同一水平线上的开口大小顺序用题号表示应该为( )A .①>②>③B .①>③>②C .②>③>①D .②>①>③ 8.对于抛物线y =ax 2,下列说法中正确的是( )A .a 越大,抛物线开口越大B .a 越小,抛物线开口越大C .|a |越大,抛物线开口越大D .|a |越小,抛物线开口越大 9.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时y 有最大值0B .在函数y =2x 2中,当x >0时y 随x 的增大而增大C . y =2x 2,y =-x 2,221x y -=中, y =2x 2的开口最小,y =-x 2的开口最大 D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点一、填空题1.已知a ≠0,(1)抛物线y =ax 2的顶点坐标为______,对称轴为______.(2)抛物线y =ax 2+c 的顶点坐标为______,对称轴为______. (3)抛物线y =a (x -m )2的顶点坐标为______,对称轴为______.2.若函数122)21(++-=m m x m y 是二次函数,则m =______.3.抛物线y =2x 2的顶点坐标为______,对称轴是______.当x ______时,y 随x 增大而减小;当x ______时,y 随x 增大而增大;当x =______时,y 有最______值是______.4.抛物线y =-2x 2的开口方向是______,它的形状与y =2x 2的形状______,它的顶点坐标是______,对称轴是______.5.抛物线y =2x 2+3的顶点坐标为______,对称轴为______.当x ______时,y 随x 的增大而减小;当x =______时,y 有最______值是______,它可以由抛物线y =2x 2向______平移______个单位得到.6.抛物线y =3(x -2)2的开口方向是______,顶点坐标为______,对称轴是______.当x ______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线y =3x 2向______平移______个单位得到.二、选择题7.要得到抛物线2)4(31-=x y ,可将抛物线231x y =( )A .向上平移4个单位B .向下平移4个单位C .向右平移4个单位D .向左平移4个单位8.下列各组抛物线中能够互相平移而彼此得到对方的是( )A .y =2x 2与y =3x 2B .2212+=x y 与2122+=x y C .y =2x 2与y =x 2+2 D .y =x 2与y =x 2-29.顶点为(-5,0),且开口方向、形状与函数231x y -=的图象相同的抛物线是( ) A .2)5(31-=x y B .5312--=x y C .2)5(31+-=x yD .2)5(31+=x y一、填空题1.二次函数y =a (x -h )2+k (a ≠0)的顶点坐标是______,对称轴是______,当x =______时,y 有最值______;当a >0时,若x ______时,y 随x 增大而减小. 23.抛物线1)3(212-+-=x y 有最______点,其坐标是______.当x =______时,y的最______值是______;当x ______时,y 随x 增大而增大.4.将抛物线231x y =向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为 .二、选择题5.一抛物线和抛物线y =-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( ) A .y =-2(x -1)2+3 B .y =-2(x +1)2+3 C .y =-(2x +1)2+3 D .y =-(2x -1)2+36.要得到y =-2(x +2)2-3的图象,需将抛物线y =-2x 2作如下平移( )A .向右平移2个单位,再向上平移3个单位B .向右平移2个单位,再向下平移3个单位C .向左平移2个单位,再向上平移3个单位D .向左平移2个单位,再向下平移3个单位三、解答题7.将下列函数配成y =a (x -h )2+k 的形式,并求顶点坐标、对称轴及最值.(1)y =x 2+6x +10 (2)y =-2x 2-5x +7 (3)y =3x 2+2x(4)y =-3x 2+6x -2 (5)y =100-5x 2 (6)y =(x -2)(2x +1)班级 姓名二次函数练习5一、填空题1.把二次函数y =ax 2+bx +c (a ≠0)配方成y =a (x -h )2+k 形式为______,顶点坐标是______,对称轴是直线______.当x =______时,y 最值=______;当a <0时,x ______时,y 随x 增大而减小;x ______时,y 随x 增大而增大.2.抛物线y =2x 2-3x -5的顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大.3.抛物线y =3-2x -x 2的顶点坐标是______,它与x 轴的交点坐标是______,与y 轴的交点坐标是______.4.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______. 5.已知二次函数y =x 2+4x -3,当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0.6.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______.7.抛物线y =2x 2先向______平移______个单位就得到抛物线y =2(x -3)2,再向______平移______个单位就得到抛物线y =2(x -3)2+4.二、选择题8.下列函数中①y =3x +1;②y =4x 2-3x ;;422x x y +=③④y =5-2x 2,是二次函数的有( ) A .② B .②③④ C .②③ D .②④9.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4)10.抛物线x x y --=221的顶点坐标是( )A .)21,1(-B .)21,1(- C .)1,21(- D .(1,0)11.二次函数y =ax 2+x +1的图象必过点( )A .(0,a )B .(-1,-a )C .(-1,a )D .(0,-a )班级 姓名二次函数练习61.把二次函数y =a (x -h )2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数1)1(212-+=x y 的图象.(1)试确定a ,h ,k 的值;(2)指出二次函数y =a (x -h )2+k 的开口方向、对称轴和顶点坐标.2.已知二次函数y =2x 2+4x -6.(1)将其化成y =a (x -h )2+k 的形式;(2)写出开口方向,对称轴方程,顶点坐标; (3)求图象与两坐标轴的交点坐标; (4)画出函数图象(简图);(5)说明其图象与抛物线y =x 2的关系; (6)当x 取何值时,y 随x 增大而减小; (7)当x 取何值时,y >0,y =0,y <0;(8)当x 取何值时,函数y 有最值?其最值是多少? (9)当y 取何值时,-4<x <0;(10)求函数图象与两坐标轴交点所围成的三角形面积.一、填空题1.已知抛物线y =ax 2+bx +c (a ≠0).(1)若抛物线的顶点是原点,则____________; (2)若抛物线经过原点,则____________;(3)若抛物线的顶点在y 轴上,则____________; (4)若抛物线的顶点在x 轴上,则____________.2.抛物线y =ax 2+bx 必过______点.3.若二次函数y =mx 2-3x +2m -m 2的图象经过原点,则m =______,这个函数的解析式是______.4.若抛物线y =x 2-4x +c 的顶点在x 轴上,则c 的值是______.5.若二次函数y =ax 2+4x +a 的最大值是3,则a =______. 6.函数y =x 2-4x +3的图象的顶点及它和x 轴的两个交点为顶点所构成的三角形面积为______平方单位.7.抛物线y =ax 2+bx (a >0,b >0)的图象经过第______象限.二、选择题8.函数y =x 2+mx -2(m <0)的图象是( )9.抛物线y =ax 2+bx +c (a ≠0)的图象如下图所示,那么( )A .a <0,b >0,c >0B .a <0,b <0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <01.已知二次函数y =ax 2+bx +c 的图象如右图所示,则( )A .a >0,c >0,b 2-4ac <0 B .a >0,c <0,b 2-4ac >0 C .a <0,c >0,b 2-4ac <0 D .a <0,c <0,b 2-4ac >02.已知二次函数y =ax 2+bx +c 的图象如下图所示,则( )A .b >0,c >0,=0B .b <0,c >0,=0C .b <0,c <0,=0D .b >0,c >0,>0 3.二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值范围是( )A .m >0B .m >3C .m <0D .0<m <34.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )一、填空题1.二次函数解析式通常有三种形式:①一般式________________;②顶点式__________________;③双根式__________________________(b 2-4ac ≥0).2.若二次函数y =x 2-2x +a 2-1的图象经过点(1,0),则a 的值为______.3.已知抛物线的对称轴为直线x =2,与x 轴的一个交点为),0,23( 则它与x 轴的另一个交点为______.二、解答题4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,求:(1)对称轴方程_________;(2)函数解析式_________;(3)当x ______时,y 随x 增大而减小;(4)由图象回答:当y >0时,x 的取值范围 ;当y =0时,x = ;当y <0时,x 的取值范围 .5.抛物线y =ax 2+bx +c 过(0,4),(1,3),(-1,4)三点,求抛物线的解析式.6.抛物线y =ax 2+bx +c 过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.7.抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.8.二次函数y =x 2+bx +c 的图象过点A (-2,5),且当x =2时,y =-3,求这个二次函数的解析式,并判断点B (0,3)是否在这个函数的图象上.一、填空题1.二次函数y =ax 2+bx +c (a ≠0)与x 轴有交点,则b 2-4ac ______0;若一元二次方程ax 2+bx +c =0两根为x 1,x 2,则二次函数可表示为y =_________.2.若二次函数y =x 2-3x +m 的图象与x 轴只有一个交点,则m =______.3.若二次函数y =mx 2-(2m +2)x -1+m 的图象与x 轴有两个交点,则m 的取值范围是______.4.若二次函数y =ax 2+bx +c 的图象经过P (1,0)点,则a +b +c =______. 5.若抛物线y =ax 2+bx +c 的系数a ,b ,c 满足a -b +c =0,则这条抛物线必经过点______. 6.关于x 的方程x 2-x -n =0没有实数根,则抛物线y =x 2-x -n 的顶点在第______象限.二、选择题7.已知抛物线y =ax 2+bx +c 的图象如图所示,则一元二次方程ax 2+bx +c =0( )A .没有实根B .只有一个实根C .有两个实根,且一根为正,一根为负D .有两个实根,且一根小于1,一根大于28.一次函数y =2x +1与二次函数y =x 2-4x +3的图象交点( ) A .只有一个 B .恰好有两个 C .可以有一个,也可以有两个 D .无交点9.函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c -3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号实数根C .有两个相等的实数根D .无实数根10.二次函数y =ax 2+bx +c 对于x 的任何值都恒为负值的条件是( ) A .a >0,>0 B .a >0,<0 C .a <0,>0 D .a <0,<01.矩形窗户的周长是6m ,写出窗户的面积y (m 2)与窗户的宽x (m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x 的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB 时,水面宽8m ,水位上升3m , 就达到警戒水位CD ,这时水面宽4m ,若洪水到来时,水位以每小时0.2m 的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O 处开出一高球,球从离地面1m 的A 处飞出(A 在y 轴上),运动员乙在距O 点6m 的B 处发现球在自己头的正上方达到最高点M ,距地面约4m 高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式; (2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)一、填空题1.若函数y =x 2-mx +m -2的图象经过(3,6)点,则m =______. 2.函数y =2x -x 2的图象开口向______,对称轴方程是______. 3.抛物线y =x 2-4x -5的顶点坐标是______.4.函数y =2x 2-8x +1,当x =______时,y 的最______值等于______.5.抛物线y =-x 2+3x -2在y 轴上的截距是______,与x 轴的交点坐标是____________.6.把y =2x 2-6x +4配方成y =a (x -h )2+k 的形式是_______________. 7.已知二次函数y =ax 2+bx +c 的图象如图所示.(1)对称轴方程为____________; (2)函数解析式为____________;(3)当x ______时,y 随x 的增大而减小; (4)当y >0时,x 的取值范围是______. 8.已知二次函数y =x 2-(m -4)x +2m -3. (1)当m =______时,图象顶点在x 轴上; (2)当m =______时,图象顶点在y 轴上; (3)当m =______时,图象过原点.二、选择题9.将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( ) A .y =-x 2 B .y =-x 2+1 C .y =x 2-1 D .y =-x 2-1 10.抛物线y =x 2-mx +m -2与x 轴交点的情况是( )A .无交点B .一个交点C .两个交点D .无法确定11.函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别为( )A .4和-3B .5和-3C .5和-4D .-1和412.已知函数y =a (x +2)和y =a (x 2+1),那么它们在同一坐标系内图象的示意图是( )13.y =ax 2+bx +c (a ≠0)的图象如下图所示,那么下面六个代数式:abc ,b 2-4ac ,a -b +c ,a +b +c ,2a -b ,9a -4b 中,值小于0的有( )A .1个B .2个C .3个D .4个14.若b >0时,二次函数y =ax 2+bx +a 2-1的图象如下列四图之一所示,根据图象分析,则a 的值等于( )A .251+- B .-1 C .251-- D .1三、解答题15.已知函数y 1=ax 2+bx +c ,其中a <0,b >0,c >0,问:(1)抛物线的开口方向?(2)抛物线与y 轴的交点在x 轴上方还是下方? (3)抛物线的对称轴在y 轴的左侧还是右侧?(4)抛物线与x 轴是否有交点?如果有,写出交点坐标; (5)画出示意图.16.已知二次函数y =ax 2+bx +c 的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.(试用两种不同方法)17.已知二次函数y =ax 2+bx +c ,当x =-1时有最小值-4,且图象在x 轴上截得线段长为4,求函数解析式.。

二次函数各节练习题

二次函数各节练习题

1下列函数中,是二次函数的是2① y = X -4χ 1 ;2. 下列函数中属于二次函数的是5. 把160元的电器连续两次降价后的价格为y 元,若平均每次降价的百分率是2A . y = 320(X - 1)B . y = 320(1 — x)C . y = 160(1 — X )( 350 - 10X )件商品,那商品所赚钱 y 元与售价X 元的函数关系为(2B . y = - 10X +560x — 73502D . y = -10X +350x — 73502S (米)与时间t (秒)的关系式为 s = 5t 2t ,则t =4秒时,该物体所经过的路程为 _______________ 。

& 若y = X m -1 + 2x 是二次函数,则 m = __________ .29.已知y = n x " ‘是二次函数,则 n 的值为 ________________ .2二10 .已知函数 y =(m ∙ 3)x m,1是二次函数,则 m = _________ 。

211、 若函数y =(m-2)X m5x 1是关于X 的二次函数,贝U m 的值为 __________________ 。

2 212、 若函数y =(m 2^-S )X4X 5是关于X 的二次函数,贝U m 的取值范围为 _____________ 。

213 .如图所示,有一根长60cm 的铁丝,用它围成一个矩形,写出矩形面积S(Cm) I J总 -------------------------- D2二次函数概念 同步练习⑤目=_2X -1 ;⑥ y = mx 2 * nx P ;y = X (x + 1)2 B . X y = 1 2 Z 2 Xy = 2X — 2 ( X + 1)D. y. 3X 2 13•函数 2y = a X + b X + C (a , b , C 是常数)是二次函数的条件是(a ≠0且b ≠0B . a ≠O 且 b ≠0C ≠0C . a ≠0a ,b , C 为任意实数2亠4.圆的面积公式 S =二r 中, S 和r 之间的关系是A •正比例函数关系B •一次函数关系 C .二次函数关系 D .以上答案均不正确 6. 某商店从厂家以每件 21元的价格购进一批商品,该商店可以自行定价。

二次函数习题及答案

二次函数习题及答案

二次函数习题及答案二次函数习题及答案二次函数是高中数学中的一个重要概念,也是数学建模中常用的数学工具之一。

它的形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。

在解决实际问题时,我们经常需要运用二次函数来进行建模和分析。

下面,我将给大家提供一些常见的二次函数习题及其答案,供大家参考和练习。

1. 习题一:已知二次函数f(x) = 2x^2 - 3x + 1,求解以下问题:a) 函数的顶点坐标是多少?b) 函数的对称轴方程是什么?c) 函数的图像是否开口向上?d) 函数的零点是多少?答案:a) 函数的顶点坐标为(3/4, 7/8)。

b) 函数的对称轴方程为x = 3/4。

c) 函数的图像开口向上。

d) 函数的零点为x = 1和x = 1/2。

2. 习题二:已知二次函数f(x) = -x^2 + 4x - 3,求解以下问题:a) 函数的顶点坐标是多少?b) 函数的对称轴方程是什么?c) 函数的图像是否开口向下?d) 函数的零点是多少?答案:a) 函数的顶点坐标为(2, -3)。

b) 函数的对称轴方程为x = 2。

c) 函数的图像开口向下。

d) 函数的零点为x = 1和x = 3。

3. 习题三:已知二次函数f(x) = x^2 + 2x + 1,求解以下问题:a) 函数的顶点坐标是多少?b) 函数的对称轴方程是什么?c) 函数的图像是否开口向上?d) 函数的零点是多少?答案:a) 函数的顶点坐标为(-1, 0)。

b) 函数的对称轴方程为x = -1。

c) 函数的图像开口向上。

d) 函数的零点为x = -1。

通过以上三个习题的解答,我们可以看出,解决二次函数问题需要掌握一些基本的概念和技巧。

首先,顶点坐标可以通过求解二次函数的导数为0的点来得到。

其次,对称轴方程可以通过求解二次函数的x坐标的平均值来得到。

此外,通过判断二次函数的系数a的正负可以确定图像的开口方向,正数表示开口向上,负数表示开口向下。

二次函数的练习题及答案

二次函数的练习题及答案

二次函数的练习题及答案二次函数是高中数学中的重要内容,也是考试中常考的知识点之一。

掌握好二次函数的相关概念和解题方法,对于提高数学成绩和解决实际问题都有很大的帮助。

本文将通过一些练习题和答案的形式,帮助读者巩固和加深对二次函数的理解。

1. 练习题一:已知二次函数y = ax^2 + bx + c的图像经过点(1,4)和(2,1),求a、b、c的值。

解法:根据已知条件,将点(1,4)和(2,1)带入二次函数的方程,得到两个方程:a +b +c = 44a + 2b + c = 1解这个方程组,可以得到a、b、c的值。

2. 练习题二:已知二次函数y = ax^2 + bx + c的图像与x轴有两个交点,且交点的横坐标分别为2和5,求a、b、c的值。

解法:根据已知条件,可以得到两个方程:4a + 2b + c = 025a + 5b + c = 0同样地,解这个方程组,可以得到a、b、c的值。

3. 练习题三:已知二次函数y = ax^2 + bx + c的图像经过点(-1,0),且在点(2,3)处的切线斜率为4,求a、b、c的值。

解法:根据已知条件,可以得到两个方程:a -b +c = 04a + 2b + c = 3同样地,解这个方程组,可以得到a、b、c的值。

通过以上几个练习题,我们可以看到,解二次函数的题目,关键在于将已知条件转化为方程,然后通过解方程组得到未知数的值。

这是一个基本的解题思路,需要我们熟练掌握。

除了解题方法,我们还可以通过一些图像来加深对二次函数的理解。

例如,我们可以画出二次函数y = x^2 + x - 2的图像,观察图像的开口方向、顶点位置以及与x轴的交点等特征。

这样可以帮助我们更好地理解二次函数的性质和特点。

此外,二次函数还有一些重要的应用,例如在物理学中,二次函数可以用来描述自由落体运动的轨迹;在经济学中,二次函数可以用来描述成本、收益等与产量之间的关系。

通过了解这些应用,我们可以将抽象的数学知识与实际问题联系起来,提高数学的应用能力。

(完整word版)二次函数基础知识和经典练习题.docx

(完整word版)二次函数基础知识和经典练习题.docx

-二次函数一、基础知识1. 定义:一般地,如果y ax 2bx c(a,b, c 是常数, a 0) ,那么y叫做 x 的二次函数.2. 二次函数的表示方法:数表法、图像法、表达式.3.二次函数由特殊到一般,可分为以下几种形式:① y ax2( a0);② y ax 2k ;( a0)③ y a x h2 ( a0) 顶点式);④ y a x h2k ;( a 0)⑤ y ax2bx c .它们的图像都是对称轴平行于(或重合)y 轴的抛物线 .4.各种形式的二次函数的图像性质如下表:函数解析式开口方向对称轴顶点坐标y ax2x0 ( y 轴)(0,0 )y ax 2k当 a 0 时x0 ( y 轴)(0, k )y a x2开口向上x h( h ,0) h当 a 0 时y a x h 2开口向下x h( h , k ) ky ax 2bx c x b(b4ac b22a2a ,)4a1. 抛物线y ax2bx c 中的系数 a, b, c(1)a决定开口方向:几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同 . 当 a 0 时,抛物线开口向上,顶点为其最低点;当 a 0 时,抛物线开口向下,顶点为其最高点 .( 2) b 和a共同决定抛物线对称轴的位置:当b0 时,对称轴为 y 轴;当a、 b 同号时,对称轴在y 轴左侧;当a、 b 异号时,对称轴在 y 轴右侧 .(3)c决定抛物线与 y 轴交点位置:当 c 0 时,抛物线经过原点;当 c 0时 , 相交于 y 轴的正半轴;当 c 0 时, 则相交于 y 轴的负半轴 .-2. 求抛物线的顶点、对称轴的方法b 22b 4ac b2( 1)公式法: y ax 24ac bbx c a x4a,顶点是(,),对称轴是直线2a2a4axb .2a(2)配方法:运用配方的方法,将抛物线 y ax 2bxc 的解析式化为 y a x h 2 k 的形式,得到顶点为 ( h , k ) ,对称轴是直线 x h . 其中 hb,k4ac b 2.2a4a(3)运用抛物线的对称性:抛物线是轴对称图形,所以对称点的连线的垂直平分线就是抛物线的对称轴,对称轴与抛物线的交点是顶点 ..3.用待定系数法求二次函数的解析式(1)一般式: yax 2 bx c . 已知图像上三点或三对 x 、 y 的值,通常选择一般式 .(2)顶点式: ya x h 2k . 已知图像的顶点或对称轴,通常选择顶点式.(3)两点式:已知图像与 x 轴的交点坐标 x 1 、 x 2 ,通常选用交点式: y a x x 1 x x 2 .4. 抛物线与 x 轴的交点设二次函数 y ax 2 bx c 的图像与 x 轴的两个交点的横坐标x 1 、 x 2 ,是对应一元二次方程ax 2 bx c0 的两个实数根 . 抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定:(1) b 2 4ac 0 抛物线与 x 轴有两个交点;(2) b 2 4ac 0 抛物线与 x 轴有一个交点(顶点在 x 轴上);(3) b 2 4ac抛物线与 x 轴没有交点 .5. 二次函数的应用一、 y ax 2bx c 的性质1.已知二次函数ykx 27x 7 与 x 轴有交点,则k 的取值范围是。

二次函数练习题精选全文

二次函数练习题精选全文

可编辑修改精选全文完整版10.如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2﹣4x﹣2经过A,B两点.(1)求A点坐标及线段AB的长;(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A 出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.①当PQ⊥AC时,求t的值;②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.11.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是_________三角形;(2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.12.综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.13.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(﹣3,0),经过B点的直线交抛物线于点D(﹣2,﹣3).(1)求抛物线的解析式和直线BD解析式;(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.14.如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q.(1)求h的值;(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ 是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.15.(2012•衢州)如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.16.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.11.(2012•陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是等腰三角形;(2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.考点:二次函数综合题。

二次函数全章教案和练习

二次函数全章教案和练习

二次函数全章教案和练习
26.1二次函数教案及练习答案(一)
一、学习目标
1.知识与技能目标:
(1)理解并掌握二次函数的概念;(2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式;(3)能根据实际问题中的条件确定二次函数的解析式。

二、学习重点难点
1.重点:理解二次函数的概念,能根据已知条件写出函数解析式; 2.难点:理解二次函数的概念。

三、教学过程
(一)创设情境、导入新课:
回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的?(二)自主探究、合作交流:
问题1:正方体的六个面是全等的正方形,如果正方形的棱长为_,表面积为y,写出y与_的关系。

问题2:n边形的对角线数d与边数n之间有怎样的关系?
问题3:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加_倍,那么两年后这种产品的数量y将随计划所定的_的值而定,y与_之间的关系怎样表示?
问题4:观察以上三个问题所写出来的三个函数关系式有什么特点? 小组交流、讨论得出结论:经化简后都具有的形式。

问题5:什么是二次函数?形如。

问题6:函数y=a___178;+b_+c,当a、b、c满足什么条件时,(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
(三)尝试应用:。

中考复习专题二次函数经典分类讲解复习以及练习题.docx

中考复习专题二次函数经典分类讲解复习以及练习题.docx

1、二次函数的定义定义: y=ax 2+bx+c(a、b、c是常数,a≠ 0)定义要点:① a ≠ 0②最高次数为2③代数式一定是整式练习: 1、 y=-x 2 , y=2x2 -2/x , y=100-5 x 2 , y=3 x 2 -2x 3 +5, 其中是二次函数的有____个。

2. 当 m_______时 , 函数 y=(m+1) χ- 2χ +1是二次函数2、二次函数的图像及性质yy0x0x抛物线y=ax +bx+c(a>0)y=ax2+bx+c(a<0)顶点坐标对称轴位置由a,b 和 c的符号确定由a,b 和 c的符号确定开口方向a>0, 开口向上a<0, 开口向下增减性最值在对称轴的左侧,y 随着 x的增大而.在对称轴的左侧,y 随着 x的增大而.在对称轴的右侧, y 随着 x的增大而.在对称轴的右侧, y 随着 x的增大而.例 2:已知二次函数(1)求抛物线开口方向,对称轴和顶点M的坐标。

(2)设抛物线与 y 轴交于 C 点,与 x 轴交于 A、B 两点,求 C, A,B 的坐标。

(3) x 为何值时, y 随的增大而减少, x 为何值时, y 有最大(小)值,这个最大(小)值是多少(4) x 为何值时, y<0x 为何值时, y>03、求抛物线解析式的三种方法1、一般式:已知抛物线上的三点,通常设解析式为________________2, 顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________求出表达式后化为一般形式.3, 交点式 : 已知抛物线与x 轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________练习:根据下列条件,求二次函数的解析式。

(1) 、图象经过 (0 , 0) , (1 ,-2),(2,3)三点;(2)、图象的顶点 (2 , 3) ,且经过点 (3 , 1) ;(3) 、图象经过 (0 , 0) , (12 , 0) ,且最高点的纵坐标是 3 。

二次函数的知识总结及练习

二次函数的知识总结及练习

未来教育学科教师辅导讲义学员姓名 年 级 科 目 数学 授课时间段学科教师课时数2H课 题教学目标及重难点教学内容二次函数知识点:一.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.二. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 三. ()2y a x h k =-+的性质:四.二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。

请将2y ax bx c =++配成()2y a x h k =-+。

总结:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,a 的符号开口方向 顶点坐标 对称轴性质0a > 向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .0a <向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.一、选择题1.下列关系式中,属于二次函数的是(x 为自变量)( ) A.B.C.D.2. 函数y=x 2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x 轴上D. y 轴上4. 抛物线的对称轴是( )A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06. 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A. 一B. 二C. 三D. 四7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( ) A. 4+m B. m C. 2m-8 D. 8-2m8.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y 1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1<x1<x2,x3<-1,则y1,y2,y3的大小关系是( ) A. y1<y2<y3B. y2<y3<y1C. y3<y1<y2D. y2<y1<y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A. B.C. D.二、填空题(每题4分,共32分)11. 二次函数y=x2-2x+1的对称轴方程是______________.12. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16. 在距离地面2m高的某处把一物体以初速度v(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v=10m/s,则该物体在运动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.三、解答下列各题19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)(1)求此二次函数图象上点A关于对称轴对称的点A′的坐标;(2)求此二次函数的解析式;20.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4) 的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.四、学生对于本次课的评价:○很满意○满意○一般○不太满意○很不满意学生签字:教导处签字:。

二次函数的基本性质及习题.docx

二次函数的基本性质及习题.docx

二次函数的基木性质1二次函数即为形式为y=ax2+bx+c(a#:O),因为若a=0,且bH0时, 函数变为一次函数,若a二0,且b二0时,函数则变为常函数。

因此判断函数是否为二次函数,只需判断二次项系数不为0即可。

例]:若函数y二(5a2+3a-2) x2+ (a2-l) x+6 a-2 为二次函数,贝Ua 满足什么条件?解::•函数为二次丙数,则5a2+3a-2^0,(这里解方程需要用到二次函数求根公式),aH芈壬,即3工-3±号丁4空,得aHj或2/5。

2a2-5(引申:若函数为一次函数,则需要满足5a2+3a-2=0, a2-1^0, 解得a=2/5)2上面提到了求根公式,若二次函数为y=ax2+bx+c(a7^0), Va7^0, 就注定a只能有两种符号1)其中a>0时,二次函数开口向上2)aVO时,二次函数开口向下但不论a的符号如何,△二沪一4ac,即当厶〉。

吋,方程有两个不相等的实根,即图像与x轴有两个不同的交点;(方程有两个解)△二0时,方程有两个相等的实根,即图像与x轴有一个交点;(方程有一个解)△ V0时,方程没有实根,即图像与x轴无交点;(方程无解)二次函数乂叫抛物线(顾名思义是弧状图形),如下图所示,此函数y=x2-4x-5, 二次项系数为1,则开口向上,△二沪—4ac二「4)2—4 • 1 •(・5)二36 >0,故与x轴有两个交点,可以求得两根为丄5画出即可,其中图像与y轴的交点为常数项c的值(令x=0,代入方程,得y二c)当然,上述方程可以用到十字相乘法,所谓十字相乘就是在脑袋里把二次函数想成两个式了相乘,并且常数项相乘等于・5(此时想到1或J -5) 又一次项系数相加为・4(即-5+1)所以可以列成这种形式(x-5) <x+l), 与x轴交点即y二0,得-x=-l或5。

例2若二次函数为y=-x2+x+6,图像与x轴的两个交点坐标是什么?可以先变成-(X2-X-6),BP-(X-3)(X+2),故与x轴两个交点分别为(3,0),(・乙0)。

(完整word版)二次函数基础练习题大全(含答案)(可编辑修改word版)

(完整word版)二次函数基础练习题大全(含答案)(可编辑修改word版)

二次函数基础练习题练习一二次函数1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(米)与时间t时间t(秒) 1 2 3 4 …距离s(米) 2 8 18 32 …写出用t 表示s 的函数关系式:3x22 、下列函数:① y= ;② y= x2- x(1 + x);③y= x2(x2+ x)- 4 ;④y= 1+ x;x2⑤y= x(1- x),其中是二次函数的是,其中a= ,b= ,c=3、当m时,函数y= (m- 2)x2+ 3x- 5(m为常数)是关于x的二次函数4、当m=____时,函数y=(m2+m)x m2-2m-1是关于x的二次函数5、当m= _ _ _ _ 时,函数y= (m- 4)x m2-5m+6+3x 是关于x的二次函数6、若点A ( 2, m)在函数y =x 2- 1 的图像上,则A 点的坐标是____.7、在圆的面积公式S=πr2 中,s 与r 的关系是()A、一次函数关系B、正比例函数关系C、反比例函数关系D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加x cm,那么面积增加ycm2,①求y 与x 之间的函数关系式.② 求当边长增加多少时,面积增加8cm2.10、已知二次函数y =ax 2+c(a ≠ 0), 当x=1 时,y= -1;当x=2 时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24 米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽AB 为x 米,则猪舍的总面积S(米2)与x 有怎样的函数关系?(2)请你帮富根老伯计算一下,如果猪舍的总面积为32 米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数 y = ax 2 的图像与性质1、填空:(1)抛物线 y = 1x 2 的对称轴是(或),顶点坐标是,当 x2时,y 随 x 的增大而增大,当 x时,y 随 x 的增大而减小,当 x=时,该函数有最 值是 ; (2)抛物线 y = - 1x 2 的对称轴是(或),顶点坐标是,当 x时,y 随 x2的增大而增大, 当 x 时, y 随 x 的增大而减小, 当 x= 时, 该函数有最 值是 ;2、对于函数 y = 2x 2 下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随 x 的增大而减小;④图像关于 y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S = 1 gt 2(g =9.8),则 s 与 t 的函 2数图像大致是( ) ttttABC D5、函数 y = ax 2 与 y = -ax + b 的图像可能是()A .B .C .D . 6、已知函数y = m xm 2- m - 4的图像是开口向下的抛物线,求m的值.7、二次函数 y = mx m2-1在其图像对称轴的左侧,y 随 x 的增大而增大,求 m 的值.8、二次函数 y = - 3x 2 ,当 x >x >0 时,求 y 与 y的大小关系.1 2 1 229、已知函数y=(m+2)x m2+m-4是关于x 的二次函数,求:(1)满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时 x 为何值时,y 随 x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当 x 为何值时,y 随 x 的增大而减小? 10、如果抛物线y = a x 2 与直线y = x - 1交于点(b , 2),求这条抛物线所对应的二次函数的关系式.练习三 函数 y = ax 2 + c 的图象与性质1、抛物线 y = -2x 2 - 3 的开口 ,对称轴是 ,顶点坐标是 ,当 x 时,y 随 x 的增大而增大, 当 x时, y 随 x 的增大而减小.2、将抛物线 y = 1x 2 向下平移 2 个单位得到的抛物线的解析式为,再向上平移 3 个单位得3到的抛物线的解析式为,并分别写出这两个函数的顶点坐标、.3、任给一些不同的实数 k ,得到不同的抛物线 y =x 2 +k ,当 k 取 0, ± 1 时,关于这些抛物线有以下 判断: ①开口方向都相同; ②对称轴都相同; ③形状相同; ④都有最底点.其中判断正确的是 .4、将抛物线 y = 2x 2 - 1 向上平移 4 个单位后,所得的抛物线是 ,当 x=时,该抛物线有最(填大或小)值,是.5、已知函数 y = mx 2 + (m 2 - m )x + 2 的图象关于 y 轴对称,则 m =; 6、二次函数 y = ax 2 + c (a ≠ 0)中,若当 x 取 x 1、x 2(x 1≠x 2)时,函数值相等,则当 x 取 x 1+x 2 时, 函数值等于.练习四 函数 y = a (x - h )2的图象与性质1、抛物线 y = - 1(x - 3)2 ,顶点坐标是,当 x 时,y 随 x 的增大而减小, 函数有2最值.2、试写出抛物线 y = 3x 2 经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. 2 (1)右移 2 个单位;(2)左移 个单位;(3)先左移 1 个单位,再右移 4 个单位.33、请你写出函数 y = (x + 1)2和 y = x 2 + 1 具有的共同性质(至少 2 个).4、二次函数 y = a (x - h )2的图象如图:已知 a = 1,OA=OC ,试求该抛物线2的解析式.5、抛物线 y = 3(x - 3)2 与 x 轴交点为 A ,与 y 轴交点为 B ,求 A 、B 两点坐标及⊿AOB 的面积.6、二次函数 y = a (x - 4)2 ,当自变量 x 由 0 增加到 2 时,函数值增加 6.(1)求出此函数关系式.(2) 说明函数值 y 随 x 值的变化情况.7、已知抛物线 y = x 2 - (k + 2)x + 9 的顶点在坐标轴上,求 k 的值.练习五y = a (x - h )2+ k 的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y = 1 2(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数12 的图象可由函数12 的图象向 平移3 个单位,再向 平移 2y= (x+3) -2 2 个单位得到.y= x25、 已知抛物线的顶点坐标为(2,1),且抛物线过点(3, 0),则抛物线的关系式是6、 如图所示,抛物线顶点坐标是 P (1,3),则函数 y 随自变量 x 的增大而减小的 x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数 y = -3(x - 2)2+ 9 .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当 x= 时,抛物线有最 值,是 .(3) 当 x 时,y 随 x 的增大而增大;当 x 时,y 随 x 的增大而减小. (4) 求出该抛物线与 x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与 y 轴的交点坐标;(6) 该函数图象可由 y = -3x 2 的图象经过怎样的平移得到的?8、已知函数 y = (x + 1)2- 4 .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与 x 轴的交点为 A 、B 和与 y 轴的交点 C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移 2 个单位,在向上平移 4 个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当 x 取何值时,函数值大于 0;当 x 取何值时,函数值小于 0.练习六y = ax 2 + bx + c 的图象和性质1、抛物线 y = x 2 + 4x + 9 的对称轴是.2、抛物线 y = 2x 2 - 12x + 25 的开口方向是,顶点坐标是.3、试写出一个开口方向向上,对称轴为直线 x=-2,且与 y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数y = -1x 2 - 3x - 5的图象向上平移 3 个单位,再向右平移 4 个单位,则两次平移22后的函数图象的关系式是6、抛物线 y = x 2 - 6x - 16 与 x 轴交点的坐标为;7、函数 y = -2x 2 + x 有最值,最值为;8、二次函数 y = x 2 + bx + c 的图象沿 x 轴向左平移 2 个单位,再沿 y 轴向上平移 3 个单位,得到的图象的函数解析式为 y = x 2 - 2x + 1,则 b 与 c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数 y = x 2 - 2x - 1的图象在 x 轴上截得的线段长为( )A 、2B 、3C 、2D 、310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1) y = 1x 2 - 2x + 1;(2) y = -3x 2 + 8x - 2 ; (3) y = - 1x 2 + x - 42 411、把抛物线 y = -2x 2 + 4x + 1沿坐标轴先向左平移 2 个单位,再向上平移 3 个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由. 12、求二次函数 y = -x 2 - x + 6 的图象与 x 轴和 y 轴的交点坐标13、已知一次函数的图象过抛物线y = x 2 + 2x + 3的顶点和坐标原点 1) 求一次函数的关系式;2233yO5 x2) 判断点(- 2, 5)是否在这个一次函数的图象上14、某商场以每台 2500 元进口一批彩电.如每台售价定为 2700 元,可卖出 400 台,以每 100 元为一个价格单位,若将每台提高一个单位价格,则会少卖出 50 台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七y = ax 2 + bx + c 的性质1、函数y = x 2 + p x + q 的图象是以(3, 2)为顶点的一条抛物线,这个二次函数的表达式为2、二次函数y = m x 2 + 2x + m - 4m 2 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线y = a x2 + b x + c 与y 轴交于点A (0, 2) ,它的对称轴是x = -1,那么ac=b4、抛物线 y = x 2 + bx + c 与 x 轴的正半轴交于点 A 、B 两点,与 y 轴交于点 C ,且线段 AB 的长为 1, △ABC 的面积为 1,则 b 的值为.5、已知二次函数 y = ax 2 + bx + c 的图象如图所示,则 a0,b0,c0, b 2 - 4ac0;6、二次函数 y = ax 2 + bx + c 的图象如图,则直线 y = ax + bc 的图象不经过第象限.7、已知二次函数y = a x 2 + b x + c ( a ≠ 0 )的图象如图所示,则下列结论:1)a ,b 同号;2)当x = 1和x =3 时,函数值相同;3) 4a + b = 0 ;4)当y = - 2时,x 的值只能为 0;其中正确的是( 第 5 题) ( 第 6 题) (第 7 题)(第 10 题)8、已知二次函数 y = -4x 2 - 2mx + m 2 与反比例函数 y = 2m + 4 的图象在第二象限内的一个交点的x横坐标是-2,则 m=9、二次函数y = x 2 + a x + b 中,若a + b =0,则它的图象必经过点()A (- 1,- 1)B (1,- 1)C (1,1)D (- 1,1)10、函数 y = ax + b 与 y = ax 2 + bx + c 的图象如上图所示,则下列选项中正确的是()A、ab > 0, c > 0B、ab < 0, c > 0C、ab > 0, c < 0D、ab < 0, c < 011、已知函数y =ax 2+bx +c 的图象如图所示,则函数y =ax +b 的图象是()12、二次函数y =ax 2+bx +c 的图象如图,那么abc、2a+b、a+b+c、a-b+c 这四个代数式中,值为正数的有()A.4 个B.3 个C.2 个D.1 个13、抛物线的图角如图,则下列结论:①>0;②;③ >;④<1.其中正确的结论是().(A)①②(B)②③(C)②④(D)③④3a,且它的图象经过(- 1,- 2),(1, 6)两点,14、二次函数y= a x2+ b x+ c的最大值是-求a、b、c的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数分小节练习共11 分节练习 1一、填空题1.形如 ____________ 的函数叫做二次函数,其中______是目变量,a,b,c是______ 且 ______≠ 0.2.函数y=x2的图象叫做 ______,对称轴是 ______,顶点是 ______.3.抛物线y=ax2的顶点是 ______ ,对称轴是 ______ .当a> 0 时,抛物线的开口向______ ;当a <0 时,抛物线的开口向______.4.当a>0 时,在抛物线y= ax2的对称轴的左侧,y 随 x 的增大而______,而在对称轴的右侧,y 随 x 的增大而 ______;函数y当x= ______时的值最 ______.5.当<0 时,在抛物线y =ax 2 的对称轴的左侧,y 随x 的增大而 ______,而在对称轴的右侧,y 随xa的增大而 ______;函数y当x= ______时的值最 ______.6.写出下列二次函数的a,b,c.(1) y 3x x2 a=______,b=______, c=______.(2)y =x 2 a= ______,= ______,= ______ .b c(3) 1 x 2 5x 10 a=______, b=______,c=______.y2(4) y 6 1 x2 a=______, b=______, c=______.37.抛物线y=ax2,|a|越大则抛物线的开口就______ ,|a|越小则抛物线的开口就______.8.二次函数y=ax2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1) y=2x2如图( ) ; (2) y 1 x2 如图 ( ) ;(3) y=-x 2如图 ( ) ;2(4)1 2如图 ( ) ; (5) y1 2如图 ( ) ; (6) y1 2如图 ( ) .y x9x9x 39.已知函数 y 3x2 , 不画图象,回答下列各题.2(1)开口方向 ______;(2)对称轴 ______;(3)顶点坐标 ______;(4)当 x≥0时, y 随 x 的增大而______;练习 2一、填空题1.在下列函数中①y=-2x2;② y=-2x+1;③ y=x;④ y= x2,回答:(1)______ 的图象是直线,______的图象是抛物线.(2) 函数 ______y随着x的增大而增大.函数______y随着x的增大而减小.(3)函数 ______的图象关于y轴对称.函数 ______的图象关于原点对称.(4)函数 ______有最大值为 ______.函数 ______有最小值为 ______ .2.已知函数y= ax2+ bx+c( a, b,c 是常数).(1)若它是二次函数,则系数应满足条件______.(2)若它是一次函数,则系数应满足条件______.(3) 若它是正比例函数,则系数应满足条件______.22x m 2m 1的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为3.已知函数y= ( m- 3m)______ ,对称轴方程为 ______,开口 ______.4.已知函数y=m x m2 2 m 2+ ( m-2) x.(1)若它是二次函数,则 m=______,函数的解析式是______,其图象是一条______,位于第______象限.(2)若它是一次函数,则 m=______,函数的解析式是______,其图象是一条______,位于第______象限.25.已知函数y= m x m m ,则当m=______时它的图象是抛物线;当m=______时,抛物线的开口向上;当m=______时抛物线的开口向下.二、选择题6.下列函数中属于一次函数的是( ) ,属于反比例函数的是 ( ) ,属于二次函数的是 ( ) A.y=x( x+ 1) B.xy= 1 C . y=2x2-2( x+1)2 D.y 3x2 17.在二次函数①y=3 x2;②y 2x2 ; ③ y4x 2中,图象在同一水平线上的开口大小顺序用题号表示应该为 ( )3 3A.①>②>③B.①>③>② C .②>③>①D.②>①>③8.对于抛物线y=ax2,下列说法中正确的是( )A.a越大,抛物线开口越大B.a越小,抛物线开口越大C.|a|越大,抛物线开口越大D.|a|越小,抛物线开口越大9.下列说法中错误的是( )A.在函数y=-x2中,当x= 0 时y有最大值 0B.在函数y= 2x2中,当x> 0 时y随x的增大而增大C.y= 2x2,y=-x2, y 1 x 2中,y= 2x2的开口最小,y=-x2的开口最大2y= ax2的顶点都是坐标原点D.不论a是正数还是负数,抛物线练习 3一、填空题1.已知a≠ 0,(1)抛物线 y= ax2的顶点坐标为______,对称轴为______.(2)抛物线 y= ax2+ c 的顶点坐标为______,对称轴为______.(3)抛物线 y= a( x-m)2的顶点坐标为______,对称轴为______.2.若函数y (m 1 ) x2m2m 1是二次函数,则m=______.23.抛物线y= 2x2的顶点,坐标为 ______,对称轴是 ______.当x______时,y随x增大而减小;当x______ 时, y 随 x 增大而增大;当x=______时, y 有最______值是______.4.抛物线 y =- 2x 2 的开口方向是 ______,它的形状与 y = 2x 2 的形状 ______,它的顶点坐标是 ______,对称轴是 ______.5.抛物线 y = 2x 2+3 的顶点坐标为 ______,对称轴为 ______.当 x ______ 时, y 随 x 的增大而减小;当 x = ______时, y 有最 ______值是 ______,它可以由抛物线 y = 2 2 向______ 平移 ______个单位得x 到. 6.抛物线 y = 3( x -2) 2 的开口方向是 ______,顶点坐标为 ______,对称轴是 ______.当 x ______时, y 随 x 的增大而增大;当 x =______ 时, y 有最 ______值是 ______,它可以由抛物线 y = 3x 2 向 ______ 平移 ______个单位得到.二、选择题7.要得到抛物线 y1(x 4)2 ,可将抛物线 y 1 x 2 ( )33A .向上平移 4 个单位B .向下平移 4 个单位C .向右平移 4 个单位D .向左平移 4 个单位8.下列各组抛物线中能够互相平移而彼此得到对方的是( )A . y = 2x 2与 y = 3x 2B . y 1 x 22 与 y 2 x 212 2C . y = 2x 2 与 y = x 2+ 2D . y = x 2 与 y = x 2- 29.顶点为 ( - 5, 0) ,且开口方向、形状与函数y1x 2 的图象相同的抛物线是 ( )3A . y1( x 5)2B . y1 x2 533C . y1(x 5)2D . y1( x 5) 233练习 4一、填空题1.二次函数 y = a ( x - h ) 2+ k ( a ≠ 0) 的顶点坐标是 ______ ,对称轴是 ______ ,当 x = ______ 时, y有最值 ______ ;当 a > 0 时,若 x ______ 时, y 随 x 增大而减小. 2.填表.解析式 开口方向顶点坐标对称轴y = ( x - 2) 2- 3 y =- ( x + 3) 2+ 2y1( x 5) 252y1(x 5 )2 13 2y2= 3( x - 2)y =- 3 2+ 2x3.抛物线y1 ( x3)21 有最 ______点,其坐标是______.当 x = ______时,y 的最 ______值是 ______;2当 x ______时, y 随 x 增大而增大.4.将抛物线y1 x2 向右平移3 个单位,再向上平移2 个单位,所得的抛物线的解析式为______.3二、选择题5.一抛物线和抛物线析式为 ( )y =- 2x 2 的形状、开口方向完全相同,顶点坐标是( -1, 3) ,则该抛物线的解A . y =- 2( x - 1) 2+ 3B . y =- 2( x + 1) 2+3C . y =- (2 x + 1) 2+ 3D . y =- (2 x - 1) 2+322A .向右平移 2 个单位,再向上平移 3 个单位B .向右平移 2 个单位,再向下平移 3 个单位C .向左平移 2 个单位,再向上平移 3 个单位D .向左平移 2 个单位,再向下平移3 个单位()三、解答题7.将下列函数配成y = a ( x - h ) 2+ k 的形式,并求顶点坐标、对称轴及最值. (1) y = x 2+ 6x + 10(2) y =- 2x 2- 5x + 7(3) y = 3x 2+2x(4) y =- 3x 2+ 6x - 2(5) y = 100- 5 2(6) y = ( x -2)(2 x + 1)x练习 5一、填空题1.把二次函数 y = ax 2+ bx + c ( a ≠ 0) 配方成 y = a ( x - h ) 2+ k 形式为 ______ ,顶点坐标是 ______,对称轴是直线 ______.当 x = ______时,y 最值= ______;当 a <0 时,x ______时,y 随 x 增大而减小;x ______时, y 随 x 增大而增大.2.抛物线 y = 2x 2- 3x - 5 的顶点坐标为 ______.当 x = ______时, y 有最 ______值是 ______ ,与 x 轴的交点是 ______,与 y 轴的交点是 ______,当 x ______时, y 随 x 增大而减小,当x ______时, y 随 x 增大而增大.3.抛物线 y =3- 2 - 2的顶点坐标是 ______,它与 x 轴的交点坐标是 ______,与 y 轴的交点坐标是 ______.xx4.把二次函数 y = x 2- 4x + 5 配方成 y = a ( x -h ) 2+ k 的形式,得 ______,这个函数的图象有最 ______点, 这个点的坐标为 ______.5.已知二次函数y = x 2+ 4x - 3,当 x = ______时,函数 y 有最值 ______,当 x ______时,函数 y 随 x 的增大而增大,当 x = ______时, y = 0.6.抛物线 y = ax 2+ bx + c 与 y =3- 2 x 2的形状完全相同,只是位置不同,则= ______.a 7.抛物线 y = 2x 2 先向 ______平移 ______个单位就得到抛物线 y = 2( x - 3) 2,再向 ______平移 ______个单位就得到抛物线 y = 2( x - 3) 2+ 4. 二、选择题8.下列函数中① y = 3x + 1;② y =4x 2- 3x ; ③ y4 x 2 ; ④ y = 5-2x 2,是二次函数的有 ( )x 2A .②B .②③④C .②③D .②④9.抛物线 y =- 3x 2- 4 的开口方向和顶点坐标分别是( )A .向下, (0 , 4)B .向下, (0 ,- 4)C .向上, (0 , 4)D .向上, (0 ,- 4)10.抛物线 y1 x2 x 的顶点坐标是 ( )21A .(1, 1 )B . ( 1, 1 )1)D . (1 , 0)C . ( ,22211.二次函数 y = ax 2+ x +1 的图象必过点 ()A . (0 , a )B . ( - 1,- a )C . ( - 1, a )D . (0 ,- a )练习1.把二次函数 y = a ( x - h ) 2+ k 的图象先向左平移 2 个单位,再向上平移 4 个单位,得到二次函数y1 ( x 1)21 的图象.2(1) 试确定 a , h , k 的值;(2) 指出二次函数 y =a ( x - h ) 2+k 的开口方向、对称轴和顶点坐标. 2.已知二次函数y = 2x 2+ 4x -6.(1) 将其化成 y = a ( x - h ) 2+ k 的形式; (2) 写出开口方向,对称轴方程,顶点坐标; (3) 求图象与两坐标轴的交点坐标; (4) 画出函数图象(简图) ;(5) 说明其图象与抛物线 y =x 2 的关系; (6) 当 x 取何值时, y 随 x 增大而减小; (7) 当 x 取何值时, y > 0, y = 0, y < 0; (8) 当 x 取何值时,函数 y 有最值 ?其最值是多少 ? (9) 当 y 取何值时,- 4< x <0;(10) 求函数图象与两坐标轴交点所围成的三角形面积.练习 7一、填空题1.已知抛物线 y = ax 2+ bx + c ( a ≠ 0) .(1) 若抛物线的顶点是原点,则 ____________ ; (2) 若抛物线经过原点,则 ____________; (3) 若抛物线的顶点在 y 轴上,则 ____________;(4) 若抛物线的顶点在 x 轴上,则 ____________. 2.抛物线 y = ax 2+ bx 必过 ______点.223.若二次函数 y = mx - 3x + 2m - m 的图象经过原点,则 m = ______,这个函数的解析式是 ______.4.若抛物线 y = x 2- 4x + c 的顶点在 x 轴上,则 c 的值是 ______ .5.若二次函数y =ax 2+ 4 + a 的最大值是 3,则 a =______ .x6.函数 y = x 2- 4x + 3 的图象的顶点及它和 x 轴的两个交点为顶点所构成的三角形面积为______平方单位.7.抛物线 y = ax 2+ bx ( a >0, b > 0) 的图象经过第 ______象限.二、选择题8.函数 y = x 2+ mx - 2( m < 0) 的图象是 ( )9.抛物线 y = ax 2+ bx + c ( a ≠ 0) 的图象如下图所示,那么 ( )A . a <0, b > 0, c > 0B . a < 0, b < 0,c > 0C . a < 0, b > 0, c < 0D . a < 0,b < 0, c <0练习 81.已知二次函数y = ax 2+ bx +c 的图象如右图所示,则 ( )A . a >0, c > 0, b 2- 4ac <0B . a > 0, c <0, b 2- 4ac > 0C . a <0,c > 0, b 2- 4ac <0 D . a < 0, c < 0, b 2- 4ac >0 2.已知二次函数 y = ax 2+ bx +c 的图象如下图所示,则 ( )A . b >0, c > 0, = 0B . b <0, c > 0, = 0C . b <0, c < 0, = 0D . b >0, c > 0, > 03.二次函数 y = 2+2 - (3 - ) 的图象如下图所示,那么 的取值范围是 ( )mxmxmmA . m >0B . m > 3C . m <0D . 0< m < 34.在同一坐标系内, 函数 y = kx 2 和 y = kx - 2( k ≠0) 的图象大致如图 ( )练习 9一、填空题1.二次函数解析式通常有三种形式:①一般式 ________________ ;②顶点式 __________________;③双根式 __________________________( b 2- 4ac ≥ 0) .2.若二次函数 y = x 2- 2 x +a 2- 1 的图象经过点 (1 , 0) ,则 a 的值为 ______. 3.已知抛物线的对称轴为直线x = 2,与 x 轴的一个交点为 (3, 0), 则它与 x2轴的另一个交点为 ______.二、解答题4.二次函数 =ax 2+ bx + ( a ≠ 0) 的图象如图所示,求:y c(1) 对称轴方程 _________; (2) 函数解析式 _________; (3) 当 x ______时, y 随 x 增 大而减小; (4) 由图象回答:当 y > 0 时, x 的取值范围 ______ ;当 y = 0 时, x = ______;当 y < 0 时, x 的取值范围 ______.5.抛物线 y = ax 2+ bx + c 过 (0 , 4) , (1 , 3) ,( - 1, 4) 三点,求抛物线的解析式.6.抛物线 y = ax 2+ bx + c 过 ( - 3, 0) , (1 , 0) 两点,与 y 轴的交点为 (0 ,4) ,求抛物线的解析式. 7.抛物线 y = ax 2+ bx + c 的顶点为 (2 , 4) ,且过 (1 , 2) 点,求抛物线的解析式.8.二次函数 y = x 2+ bx + c 的图象过点 A ( - 2,5) ,且当 x =2 时,y =- 3,求这个二次函数的解析式,并判断点 B (0 , 3) 是否在这个函数的图象上.9.抛物线 y = ax 2+ + c 经过 (0 ,0) ,(12 ,0) 两点,其顶点的纵坐标是 3,求这个抛物线的解析式.bx练习 10一、填空题1.二次函数 =ax 2+bx + ( a ≠ 0) 与 x 轴有交点,则 2 -4 ______0;yc b ac若一元二次方程 ax 2+ bx + c = 0 两根为 x 1,x 2,则二次函数可表示为 y = _____________________.2.若二次函数 y = x 2- 3x +m 的图象与 x 轴只有一个交点,则m =______.3.若二次函数 y = mx 2- (2 m + 2) x -1+ m 的图象与 x 轴有两个交点,则 m 的取值范围是 ______. 4.若二次函数 y = ax 2+ + c 的图象经过 (1 , 0) 点,则 a + + = ______.bx P b c5.若抛物线 y = ax 2+ bx +c 的系数 a , b , c 满足 a -b + c = 0,则这条抛物线必经过点 ______.6.关于 x 的方程 x 2- x - n = 0 没有实数根,则抛物线y = x 2- x - n 的顶点在第 ______象限.二、选择题7.已知抛物线 y = ax 2+ bx + c 的图象如图所示,则一元二次方程ax 2 + bx+ c = 0( )A .没有实根B .只有一个实根C .有两个实根,且一根为正,一根为负D .有两个实根,且一根小于 1,一根大于 28.一次函数 y = 2x + 1 与二次函数 y = x 2- 4x + 3 的图象交点 ( )A .只有一个B .恰好有两个C .可以有一个,也可以有两个D .无交点9.函数 y = ax 2+ bx + c 的图象如图所示,那么关于x 的方程 ax 2+ bx + c -3= 0 的根的情况是 ( )A .有两个不相等的实数根B .有两个异号实数根C .有两个相等的实数根D .无实数根10.二次函数 y = ax 2+ bx +c 对于 x 的任何值都恒为负值的条件是( )A . a > 0, > 0B . a > 0, < 0C . a < 0, > 0D . a < 0, < 0练习111.矩形窗户的周长是 6m ,写出窗户的面积不是二次函数,如果是,请求出自变量y (m 2) 与窗户的宽 x (m) 之间的函数关系式,判断此函数是x 的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB 时,水面宽 8m ,水位上升 3m , 就达到警戒水位 CD ,这时水面宽 4m ,若洪水到来时,水位以每小时0.2m 的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O 处开出一高球,球从离地面 1m 的 A 处飞出 ( A 在 y 轴上 ) ,运动员乙在距 O 点 6m 的 B 处发现球在自己头的正上方达到最高点 ,距地面约 4m 高.球第一次落地后又弹起.据试验,M足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1) 求足球开始飞出到第一次落地时,该抛物线的表达式;(2) 运动员乙要抢到第二个落点D ,他应再向前跑多少米 ?( 取 4 3 7 , 2 65 )综合测试一、填空题1.若函数 y = x 2-mx + m -2 的图象经过 (3 , 6) 点,则 m = ______. 2.函数 y = 2x - x 2 的图象开口向 ______,对称轴方程是 ______. 3.抛物线 y = x 2-4x - 5 的顶点坐标是 ______.4.函数 y = 2x 2- 8x + 1,当 x = ______时, y 的最 ______值等于 ______. 5.抛物线 y =- x 2+ 3x - 2 在 y 轴上的截距是 ______,与 x 轴的交点坐标是 ____________.6.把 y = 2x 2- 6x + 4 配方成 y = a ( x - h ) 2+ k 的形式是 _______________ . 7.已知二次函数 y = ax 2+bx + c 的图象如图所示.(1) 对称轴方程为 ____________ ; (2) 函数解析式为 ____________; (3) 当 x ______时, y 随 x 的增大而减小;(4) 当 y > 0 时, x 的取值范围是 ______ .8.已知二次函数 y = x 2- ( m - 4) x +2m - 3.(1) 当 m = ______时,图象顶点在 x 轴上; (2) 当 m = ______时,图象顶点在 y 轴上;(3) 当 m = ______时,图象过原点.二、选择题9.将抛物线 =2+ 1 绕原点 O 旋转 180°,则旋转后抛物线的解析式为( )y xA . y =- x 2B . y =- x 2+1C . y = x 2-1D . y =- x 2- 110.抛物线 y =x 2- mx + m -2 与 x 轴交点的情况是 ( )A .无交点B .一个交点C .两个交点D .无法确定11.函数 y = x2+ 2 - 3( -2≤ ≤ 2) 的最大值和最小值分别为( )x xA . 4 和- 3B . 5 和- 3C . 5 和- 4D .- 1 和 412.已知函数 y = a ( x + 2) 和 y = a ( x 2+ 1) ,那么它们在同一坐标系内图象的示意图是( )13. y = ax 2+bx + c ( a ≠ 0) 的图象如下图所示,那么下面六个代数式: abc , b 2- 4ac ,- + c , + + ,2 - ,9 - 4 b 中,值小于 0 的有 ( )a b a b ca baA . 1 个B . 2 个C . 3 个D . 4 个14.若 b >0 时,二次函数 y = ax 2+ bx + a 2- 1 的图象如下列四图之一所示,根据图象分析,则a 的值等于 ( )A. 1 5 B.- 1 C. 1 5 D. 12 2三、解答题15.已知函数y1=ax2+ bx+ c,其中 a<0, b>0, c>0,问:(1)抛物线的开口方向 ?(2)抛物线与 y 轴的交点在 x 轴上方还是下方?(3)抛物线的对称轴在 y 轴的左侧还是右侧?(4)抛物线与 x 轴是否有交点?如果有,写出交点坐标;(5)画出示意图.16.已知二次函数y= ax2+ bx+ c的图象顶点坐标为( - 2, 3) ,且过点(1 ,0) ,求此二次函数的解析式. ( 试用两种不同方法)17.已知二次函数y= ax2+ bx+c,当x=-1时有最小值-4,且图象在x 轴上截得线段长为4,求函数解析式.。

相关文档
最新文档