最新2019高中数学1.2.2 函数的表示法 第2课时 分段函数学案 新人教A版必修1

合集下载

高中数学1.2.2函数的表示法第2课时分段函数教案新人教A版必修1

高中数学1.2.2函数的表示法第2课时分段函数教案新人教A版必修1

第2课时分段函数[目标]1. 了解分段函数的概念,会求分段函数的函数值,能画出分段函数的图象,培 养数学运算核心素养;2.能在实际问题中列出分段函数, 并能解决有关问题,培养数学建模核心素养.[重点]分段函数求值、分段函数的图象及应用. [难点]对分段函数的理解.分段函数[填一填]如果函数y = f (x ) ,x € A 根据自变量x 在A 中不同的取值范围,有着不同的对应关系, 则称这样的函数为分段函数.[答一答]1. 分段函数的定义域部分可以相交吗?提示:分段函数的定义域部分是不可以相交的,这是由函数定义中的唯一性决定的. 2. 分段函数各段上的对应关系不同,那么分段函数是由几个函数构成的呢?提示:(1)分段函数是一个函数,切不可把它看成是几个函数,它只不过是在定义域的 不同子集内解析式不一样而已.(2)分段函数在书写时用大括号把各段函数合并写成一个函数的形式,并且必须指明各 段函数自变量的取值范围.3. 已知函数f (x )的图象如图所示,则 f (x )的值域为[—4,3].“要点整合夯基础横mum ■■主学儿 整介知讯・Am*知识点解析:由题图可知,当 x € [ — 2,4]时,f (x ) € [ — 2,3];当 x € [5,8]时,f (x ) €[—4,2.7].故函数f (x )的值域为[—4,3].B. (0,+m)D. ( —s, 0) U (0 ,+口的定义域为 ,值域为 .[分析]分段函数的定义域、值域 ?各段函数的定义域、值域. [答案](1)D(2)( — 1,1)( — 1,1) |x |1, x >0, [解析] ⑴ 由于f (x )= =故定义域为(一s, 0) U (0,+s ).x — 1, x <0,(2)由已知定义域为{x |0<x <1} U {0} U {x | — 1<x <0} = {x | — 1<x <1},即(一1,1),又2 20<x <1 时,0<— x + 1<1, — 1<x <0 时,一1<x — 1<0, x = 0 时,f (x ) = 0,故值域为(一1,0)U {0} U (0,1) = ( — 1,1).1. 分段函数定义域、值域的求法1分段函数的定义域是各段函数定义域的并集 .2分段函数的值域是各段函数值域的并集.2. 绝对值函数的定义域、值域通常要转化为分段函数来解决x , — 1 w x W 1, [变式训练1]已知函数f (x )= ’ 亠|1, x >1 或 x <— 1 ,7典例讲练破题型 ............ 术栏口曲过漏童眇缭兀訪*制析鞘点.全潮^类型一分段函数的定义域、值域|x |A. RC. (—s, 0)”-X? + , 0<x <1,⑵函数 f (x ) = 0, x = 0,x 2 — 1,1<x <0则其定义域为[例1] (1)已知函数f (x ) x,则函数的定义域为R,值域为[0,1].2 解析:由已知定义域为[—1,1]U (1 ,+^) U ( —0, — 1) = R,又x€ [—1,1]时,x€ [0,1],故函数的值域为[0,1].类型分段函数求值[例2]已知函数f(x) = { X(°w x<2》(1) 求f(f(f( —2)))的值.(2) 若f(x) = 2,求x的值.[分析]分段考虑求值即可.1 1(1) 先求f( —2),再求f(f( —R),最后求f(f(f( —2)));2 1(2) 分别令x + 2= 2, x = 2, ^x= 2,分段验证求x.” 1 1 3[解](1) f(—2)=(—2)+ 1 1=2(2)当f(x) = x+ 2= 2 时,x= 0,不符合x<0.当f (x) = x2= 2 时,x=±2,其中x= 2符合0W x<2.1当f (x) = 2x = 2 时,x = 4,符合x>2.综上,x的值是〔2或4.1分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求得•2多层“ f”的问题,要按照“由里到外”的顺序,层层处理• 3已知分段函数的函数值求相对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验分段解析式的适用范围,也可先判断每一段上的函数值的范围,确定解析式再求解•-f(f( —p) = f(p =(2)= 4,f{X — 1 , x >0, [变式训练2] (1)已知函数f (x )=八 x , x <0,则f (1)的值为(D ) A. 1B. 2C. 3D. 0A.— 4 或一2 C.— 2 或 4解析:⑴因为1>0,所以f (1) = f (1 — 1) = f (0) = 0,故选D. (2)当 a <0 时,由 f (a ) =— a = 4,得 a = — 4; 当 a >0 时,由 f (a ) = a = 4, 得a = 2或a = — 2(舍去).a =— 4 或 a = 2.类型三 分段函数的图象[例3]画出下列函数的图象,并写出它们的值域.I 1, 0<x <1(1) y = xi2x , x > 1(2) y = |x + 1| + |x — 3|.[分析]先化简函数式,再画图象,在画分段函数的图象时, 要注意对应关系与自变量范围的对应.卩,0<x <1,[解](1)函数y = x的图象如图所示,观察图象,得函数的值域为(1 ,〔2x , x >1+ ).⑵用零点分段法将原函数式中的绝对值符号去掉,化为分段函数y =—x , x < 0,⑵设函数f (x ) = 2x , x >0,若f (a ) = 4,则实数a = ( B )B.— 4 或 2 D.— 2 或 2它的图象如图所示•观察图象,得函数的值域为 [4 ,+^).作分段函数的图象时,定义域分界点处的函数的取值情况决定着图象在分界点 关键点 处的断开或连接,断开时要分清断开点处是虚还是实f 2小x , x <0,[变式训练3](1)下列图形是函数 yx - 1, x >0的图象的是(C )解析:因为f (o )= 0-1 = - 1,所以函数图象过点(0,- 1);当x <0时,y = x 2,则函数图象是开口向上的抛物线在 y 轴左侧的部分.因此只有选项 C中的图象符合.(2)已知函数 f (x ) = |x -2|( x + 1). ① 作出函数f (x )的图象.② 判断直线y = a 与y = I x — 2|( x +1)的交点的个数. 解:①函数 f (x ) = |x -2|( x + 1),-2x + 2, x w- 1,4,— 1<x w 3, 2x - 2, x >3,x — x — 2, x 》2,去绝对值符号得f (x )=2-x 2+ x + 2, x <2.可得f (x )的图象如图所示.②直线y = a 与y = | x — 2|( x + 1)的图象的交点的个数.作出图象如图:由图象可知.当a <0时,有一个交点; 当a = 0时,有两个交点; 9 、当0<a <4时,有二个交点; 9 、当a = 4时,有两个交点;9 当a>-时,有一个交点. 49 、综上,当a <0或a >4时,有一个交点; 9 、当a = 0或a =;时,有两个交点;4则f (x )的定义域为(C )A. C. "丄「 4484411224 十解析:f (3)= 2X 3 = 3, f ( — 3) = f ( — 3 + 1) = f ( — 3) = f ( — - + 1) = f (3)= 3X 2= 3,所“课堂达标练经典梯目ilil 漏童H ⑴町乩圻・BMft ・ WUfA.B. (—m , 1]C. (—R, 2)D. (1 , +m )2. 已知f (x )= 2x , x >0,f x + 1 , x < 0,4则 f (3)+f (1. B. D.「、— 4 上 48 4以 f (3)+f(_3)=3+ 3= 4.3x + 2, x <1,3.已知函数f (x ) = i 2 若f (f (O)) = 4a ,则实数a =2.x + ax , x > 1,一解析:由题意知 f (0) = 2.又 f (2) = 22+ 2a ,所以 22+ 2a = 4a ,即 a = 2.卩,x >1,54. 设函数f (x ) = S x则f [f (2)] =-,函数f (x )的值域是[—3,+「x — 2, x w 1,8 ).5. 如图所示,函数f (x )的图象是折线段 ABC 其中A 、B C 的坐标分别为(0,4)、(2,0)、 (6,4)(1) 求 f [ f (0)]的值; (2) 求函数f (x )的解析式.解:⑴ 直接由图中观察,可得 f [f (0)] = f (4) = 2. (2)设线段AB 所对应的函数解析式为y = kx + b ,x = 0,x = 2,将与代入,y =4y = 0 4= b ,0 = 2k + b .同理,线段BC 所对应的函数解析式为y = x — 2(2< x w 6).—2x + 4, 0w x w 2,x — 2, 2<x w 6.――本课须掌握的问题(1) 分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域” 的并集.写定义域时,区间的端点需不重不漏.(2) 求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式.(3) 研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先 将各段的图象分别画出来,从而得到整个函数的图象.b = 4, k= — 2.y =— 2x + 4(0 w x w 2).学习至此,请完成课时作业9学科素养培优精品微课堂分段函数在实际中的应用开讲啦对于此类问题,要根据题目的特点选择表示方法,一般情况下用解析法表示.用解析法表示时,首先找出自变量x和函数y,然后利用题干条件用x表示y,最后写出定义域•注意:求实际问题中函数的定义域时,除考虑使函数解析式有意义外,还要考虑使实际问题有意义.[典例]如图所示,已知底角为45°的等腰梯形ABCD底边BC长为7 cm,腰长为2 2 cm当垂直于底边BQ垂足为F)的直线I从左至右移动(与梯形ABCD有公共点)时,直线I 把梯形分成两部分,令BF= x,试写出左边部分的面积y关于x的函数解析式,并画出大致图象.[解]如图,过点A, D分别作AGL BC DH L BC垂足分别是G H因为ABCD1等腰梯形,底角为45°, AB= 2,2 cm,所以BG= AG= DH= HC= 2 cm.又BC= 7 cm,所以AD= GH= 3 cm.1 2⑴当点F在BG上时,即x € [0,2]时,y = ^x ;⑵当点F在GH上时,即x € (2,5]时,y= x+ ;-2 x 2= 2x—2;⑶当点F在HC上时,即x € (5,7]时,y= S 五边形ABFED= S 梯形ABCD—S Rd CEF1 12 1 2 =2(7 + 3) x 2—2(7 —x) = —2(x —7) + 10.综合(1)(2)(3)得函数解析式为1 2* , x € [0 , 2],y= 2x —2, x€ 2, 5],1 2I —2(x—7 2 + 10, x € (5, 7].函数图象如图所示.[对应训练]在函数y = |x|(x € [ —1,1])的图象上有一点P(t ,t|),此函数的图象与x轴、直线x=—1及x= t围成的图形(如图阴影部分)的面积为S,贝U S关于t的函数图象为(B )i t解:当一1< t <0时,S= 2 —-,所以函数图象是开口向下的抛物线的一段,顶点坐标f n i t2(为o, 2 ;当o<t <1时,s= 2+ ,函数图象是开口向上的抛物线的一段,顶点坐标为o,所以选项B满足题意.9 、当0<a<:时,有二个交点.4已知f(x) = F —: x;9 1,x, 1<x<2,。

2019-2020年高中数学必修一1.2.2《函数的表示法》word导学案

2019-2020年高中数学必修一1.2.2《函数的表示法》word导学案

2019-2020年高中数学必修一1.2.2《函数的表示法》word导学案【温馨寄语】你想获得优异成果的话,请谨慎地珍惜和支配自己的时间。

你爱惜你的生命,从不浪费时间,因为你知道:时间就是塑造生命的材料。

【学习目标】1.了解函数的三种表示法,会根据题目条件不同的表示法表示函数.2.会求简单函数的解析式及画简单函数的图象.3.理解分段函数的意义,并能简单应用.4.了解映射的概念及表示法.5.理解映射与函数的区别与联系.【学习重点】1.函数的三种表示方法2.分段函数的概念【学习难点】1.根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?2.分段函数的表示及其图象【自主学习】1.函数的三种表示法2.映射3.分段函数在函数定义域内,对于自变量的不同取值范围,函数有着不同的 .【预习评价】1.已知函数由下表给出,则A.1B.2C.3D.42.已知反比例函数满足,的解析式为 .3.下列对应是从集合A到集合B映射的是①;②;③;④.A. ①②B.①③C.③④D.②④4.已知则 .5.已知在映射的作用下与对应,则在映射的作用下与对应.知识拓展· 探究案【合作探究】1.函数的表示法——列表法与图象法在一次国际比赛中某三名铅球运动员决赛的成绩如表(单位:m).请根据上表探究下面的问题:(1).上表反映了4个函数关系,这些函数的自变量是什么?定义域是什么?(2).上述函数能用解析式表示吗?(3).若想分析三名运动员的成绩变化情况,采用哪种方法恰当?(4).在同一坐标系内画出上述函数的图象并完成下面的填空:①从图形中分析甲运动员的成绩 .②从图形中分析乙运动员的成绩 .2.根据下面的提示,完成下面的问题:(1)一次函数的解析式可设为;反比例函数可设为;二次函数的一般式可设为 .(2)设出解析式后,如何求解析式?3.若函数满足对任意有,此式子中的换为是否仍然成立?4.分段函数若某分段函数的解析式为,据其探究下列问题:(1)此分段函数由几部分组成,它表示几个函数?(2)根据有关的提示填空,明确分段函数具有的性质.①由分段函数的概念知,此函数的定义域为 .②若给定,则当时,;当时,.5.映射的判断(1)观察上面的四组对应,思考下面的问题:①四组对应中,集合A中元素在集合B中是否都有元素与之对应?②对应(1)与其余三组对应有何不同?③四组对应中哪些能构成从集合到集合的映射?(2)从这几组对应中,你能发现映射有什么特点?【教师点拨】1.求函数解析式的三个关注点(1)换元法求函数的解析式时,要注意换元后自变量的取值范围.(2)用待定系数法求解析式是针对已知函数类型的问题.(3)函数式中若含有自变量的对称形式,如:与或可通过构造对称方程求解.2.对解析法的说明利用解析式表示函数的前提是变量间的对应关系明确,并不是所有的函数都可以用解析式表示,同时利用解析法表示函数要注明函数的定义域.3.对列表法与图像法的说明(1)列表法:采用列表法的前提是函数值对应清楚,选取的自变量要有代表性.(2)图象法:图象既可以是连续的曲线,也可以是离散的点.4.映射的四个特征(1)确定性:集合、集合与对应关系是确定的一个整体.(2)非空性:集合、集合都必须是非空集合.(3)方向性:从集合到集合的映射与从集合到集合的映射是不同的映射.(4)多样性:映射的对应方式可以是多对一,也可以是一对一.5.处理分段函数的求值和作图象时的两个注意点(1)分段函数求值要先找准自变量所在区间及所对应的解析式,然后求值.(2)分段函数的图象是由几段曲线构成,作图时要注意衔接点的虚实.【交流展示】1.已知,则A. B. C. D.2.已知,求.3.作出函数的图象,并说明该函数的图象与的图象之间的关系.4.某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元,经试销调查发现,销售量(件)与销售单价(元)之间的关系可近似看作一次函数,其图象如图所示,求此函数的解析式.5.设则的值为A.10B.11C.12D.136.若函数则 .7.已知集合,集合,按照下列对应法则能构成集合到集合的映射的是A. B.C. D.8.下列各个对应中,构成映射的是A. B. C. D.【学习小结】1.判断一个对应是否为映射的两点主要依据(1)任意性:集合中每一个元素,在集合中是否都有元素与之对应.(2)唯一性:集合中任一元素在集合中是否都有唯一的元素与之对应.2.分段函数图象的特点及画法(1)特点:分段函数的图象可以是光滑的曲线段,也可以是一些孤立的点或几条线段.(2)画法:画分段函数的图象要分段画,当函数式中含有绝对值符号时,首先要根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后再画图象.3.分段函数求函数值的步骤及注意点(1)步骤:①确定要求值的自变量属于哪一段区间;②代入该段的解析式求值,直到求出值为止.(2)注意点:当出现的形式时,应从内到外依次求值.4.列表法表示函数的使用范围及生活中的实例(1)适用范围:列表法主要适用于自变量个数较少,且为有限个,并且自变量的取值为孤立的实数,同时当变量间的关系无规律时,也常采用列表法表示两变量之间的关系.(2)生活中的实例:生活中经常见到的银行利率表、列车时间表、国民生产总值表等都是采用列表法.5.图象平移变换的一般原则(1)左右平移:的图象的图象.(2)上下平移:的图象的图象. 6.作函数图象的三个步骤7.求函数解析式的常见类型及解法(1)已知类型:函数类型已知,一般用待定系数法,但对于二次函数问题要注意一般式:,顶点式:,两根式:的选择.(2)已知型:解答已知求型问题可采用配凑法,也可采用换元法.(3)函数方程问题,需建立关于的方程组,若函数方程中同时出现,则一般用代之;若同时出现,一般用代替,构造另一个方程. 提醒:求函数解析式时要严格考虑函数的定义域.【当堂检测】1.设函数若,则实数A.-4或-2B.-4或2C.一2或4D.-2或22.在给定映射即的条件下,与中元素对应的中元素是A. B.或C. D.或3.函数的图象为A. B.C. D.4.判断下面的对应是否为集合到集合的映射(1).对应关系.(2),对应关系.5.已知,若到的映射满足,求满足的所有映射.答案课前预习· 预习案【自主学习】1.数学表达式图象表格2.非空非空对应关系f任意一个唯一确定f:A→B 3.对应关系【预习评价】1.C2.3.C4.25.(7,12)知识拓展· 探究案【合作探究】1.(1)自变量为投掷的次数;定义域为{1,2,3,4,5}.(2)不能,因为自变量依次取值时,函数值的变化趋势不确定.(3)采用图象法较好,因为图象比较直观形象.(4)在同一坐标系内画出函数的图象如下,①高于平均成绩②低于平均成绩,但成绩每次都有提升2.(1)y=kx+b,k≠0,k≠0y=ax2+bx+c,a≠0(2)①可将已知条件代入解析式,列出含待定系数的方程或方程组;②解方程或方程组,求出待定系数的值;③将所求待定系数的值代回到原式,即得函数的解析式.3.因为对任意的x≠0有,而,所以将上式中的x换为仍然成立.4.(1)此分段函数由两部分组成,它表示一个函数.(2)①D1∪D2②f(x0) g(x0)5.(1)①对于四组对应,集合A中的任何一个元素,按照某种对应关系,在集合B中都有元素和它对应.②对应(1)中A中的元素在B中的对应元素不唯一,而对应(2)(3)(4)中A中的任何一个元素,通过对应关系,在B中都有唯一的元素和它对应.③根据映射的概念,(2)(3)(4)组的对应可以构成从集合A到集合B的映射.(2)(1)映射可以是一对一,也可以是多对一,但不能是一对多.(2)集合B中可以有多余的元素,但集合A中不能有多余的元素.【交流展示】1.A2.设,则,t≠1.则.所以f(x)=x2-x +1(x≠1).3.,作图过程:将的图象沿x轴向右平移1个单位,得到函数的图象,再将函数的图象向上平移2个单位,即可得到函数的图象,如图.4.由图象知,当x=600时,y=400;当x=700时,y=300,代入y=kx+b(k≠0)中,得解得所以y=-x+1000(500≤x≤800).5.B6.27.B8.D【当堂检测】1.B2.B3.C4.(1)集合A中元素6在对应关系f作用下为3,而3∉B,故对应关系f不是集合A到集合B的映射.(2)在对应关系f作用下,集合A中的每一个元素在集合B中都有唯一的元素与之对应,故对应关系f是集合A到集合B的映射.5.将式子f(a)-f(b)=f(c)改为f(a)=f(b)+f(c),由0+0=0,-1+0=-1,0+(-1)=-1,1+0=1,0+1=1,-1+1=0,1+(-1)=0知,满足条件的映射有:。

人教版高中数学必修一1.2.2_函数的表示法_第二课时ppt课件

人教版高中数学必修一1.2.2_函数的表示法_第二课时ppt课件

考点一
课堂互动讲练
考点突破 分段函数图象的画法
根据分段区间及各段解析式.常用描点法画图,注意区间 端点的虚实.
例1 已知函数 f(x)=1+|x|- 2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 【思路点拨】 讨论x的取值范围
→ 化简fx的解析式
例2 从甲同学家到乙同学家的途中有一个公园 甲、乙两家到该公园的距离都是 2 km,甲 10 点钟 发前往乙家,如图表示甲从自家出发到乙家为止 过的路程 y(km)与时间 x(分钟)的关系.依图象回 下列问题:
(1)甲在公园休息了吗?若休息了,休息了多 长时间? (2)甲到达乙家是几点钟? (3)写出函数 y=f(x)的解析式. (4)计算当 x=50 分钟时,甲所走的路程.
x →y=12x.
【思路点拨】 解答本题可由映射定义出发,观察A中任何一 个元素在B中是否都有唯一元素与之对应. 【解】 (1)由于A中元素3在对应关系f作用下其与3的差的绝对 值为0,而0∉B,故不是映射. (2)因为一个圆有无数个内接矩形,即集合A中任何一个元素在 集合B中有无数个元素与之对应,故不是映射.
问题探究
x x≥0 1.y=|x|=-x x<0 可以说 y=|x|是两 个函数吗? 提示:y=|x|,x∈R,仍是一个函数,只是 x ∈[0,+∞)与 x∈(-∞,0)的对应关系不同, 对于具体 x 值,所用的对应关系是唯一的.
2.从定义上看,函数与映射有什么关系? 提示:对比函数定义与映射定义可知,函数是特殊的映射, 是从非空数集到非空数集的映射.并非所有映射都为函数.
将(60,4),(40,2)分别代入,得 k2=110,b=- 2.

函数的表示法 分段函数学案-2021-2022学年高一上学期数学人教A版(2019)必修第一册

函数的表示法 分段函数学案-2021-2022学年高一上学期数学人教A版(2019)必修第一册

3.1.2函数的表示法第二课时分段函数【学习目标】1.了解分段函数的概念,会求分段函数的函数值,能画出分段函数的图象.(重点,难点)2.能在实际问题中列出分段函数,并能解决有关问题.(重点、难点) 3.通过本节内容的学习,使学生了解分段函数的含义,提高学生数学建模、数学运算的能力.(重点)【自主学习】一.设计问题,创设情境二.学生探索、尝试解决问题1:全年应纳税所得额20000t=时,个税税额是多少?全年应纳税所得额300000t=时,个税税额是多少?思考:当全年应纳税所得额为t时,应纳个税税额()f t如何求?分段函数:问题2:画出()||f x x =的图象(提示:它的解析式是什么?)例1:给定函数()1f x x =+,2()(1)g x x =+,x R ∈(1)在同一直角坐标系中画出函数(),()f x g x 的图象(2)x R ∀∈用()M x 表示(),()f x g x 中较大者,记为()max{(),()}M x f x g x =例如:当2x =时,(2)max{(2),(2)}max{3,9}9M f g ===请分别用图象法和解析法表示()M x变式:求()min{(),()}H x f x g x =例2:在上述()M x的基础上,求:(1)1 (2),(())2 M M M--(2)若1()4M a=,求a的值(3)求()M x的值域题组训练:1.2,0()(1),0x xf xf x x>⎧=⎨+≤⎩,则44()()33f f-+=2.,2()1,243,4x xf x x xx x≤-⎧⎪=+-<<⎨⎪≥⎩,()3f x<-的解集为三.运用规律,解决问题回顾问题1的问题,若应纳个税税额超过1万元,全年应纳税所得额是多少?联系生活:观察一下周围的生活环境,有哪些体现分段函数的例子,请你编一道题目与同学老师交流四、信息交流,教学相长学完本节课,你学到了哪些知识?掌握了哪些方法?还有哪些疑问?当堂检测某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算).如果某条线路的总里程为20公里,请根据题意,设票价为y元,里程为x公里,写出票价与里程之间的函数解析式并作出函数的图象分层作业《课时分层作业》(十六)分段函数P184必做题1-10选做题11-15(A层)函数()[]=的函数值表示不超过x的最大整数,如f x x-=-=∈-时,写出函数解析式,并画出函数的x[ 3.5]4,[2.1]2,( 2.5,3]图象。

高中数学人教A版必修一1.2.2 函数的表示法 第2课时 教案 (1)

高中数学人教A版必修一1.2.2 函数的表示法 第2课时 教案 (1)

1.2函数及其表示1.2.2函数的表示法第2课时分段函数及映射●三维目标1.知识与技能(1)通过具体实例,了解简单的分段函数,并能简单应用;(2)纠正认为“y=f(x)”就是函数的解析式的片面错误认识;(3)了解映射的概念及表示方法.2.过程与方法(1)重视基础知识的教学、基本技能的训练和能力的培养;(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题;(3)通过教师指导发现知识结论,培养学生的抽象概括能力和逻辑思维能力.3.情感、态度与价值观(1)培养辨证地看待事物的观念和数形结合的思想;(2)使学生认识到事物间是有联系的,对应、映射是一种联系方式;(3)激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.●重点难点重点:分段函数的概念.难点:分段函数的表示及映射的概念(1)重点的突破:首先以两个例题为依据,通过学生的研习,组内讨论等活动,让学生先从感性上认识分段函数,再结合生活中的其他实例充分理解分段函数是一个函数,而不是几个函数.最后通过习题,利用师生合作探究的方式,让学生掌握分段函数问题的解法,在此过程中培养学生分析问题和归纳总结的能力,强化训练学生数形结合、分类讨论的思想意识,突出重点的同时化解分段函数的表示这一难点;(2)难点的解决:在映射概念引入时,可先从学生熟悉的对应入手,选择一些具体的生活例子,然后列举一些数学例子,分为一对多、多对一、多对多、一对一四种情况,让学生认真观察、比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识,体会出映射是函数的推广,函数是一种特殊的映射.分段函数【问题导思】在现实生活中,常常使用表格描述两个变量之间的对应关系.比如:国内邮寄信函(本埠),每封信函的重量和对应邮资如下表:(1)邮资M是信函重量m的函数吗?若是,其解析式是什么?【提示】 据函数定义知M 是m 的函数,其解析式为:M =⎩⎪⎨⎪⎧0.80,m ∈ 0,20]1.60,m ∈ 20,40]2.40,m ∈ 40,60]3.20,m ∈ 60,80]4.00,m ∈ 80,100](2)在(1)中有几个函数?为什么?【提示】 一个.因为(1)中的函数虽然有5个不同的部分,但不是5个函数,只不过在定义域的不同子集内,对应关系不同而已.如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.【问题导思】在某次数学测试中,高一 1 班的60名同学都取得了较好的成绩,把该班60名同学的名字构成集合A ,他们的成绩构成集合B .1.A 中的每一个元素,在B 中有且只有一个元素与之对应吗? 【提示】 是的.2.从集合A 到集合B 的对应是函数吗?为什么? 【提示】 不是.因为集合A 不是数集. 映射设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.映射已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-12x ,-1<x <2x22,x ≥2.(1)求f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫32的值;(2)若f (a )=2,求a 的值.【思路探究】 (1)求f ⎝ ⎛⎭⎪⎫32→求f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫32(2)就(a )的取值范围分三种情形分别求解.【自主解答】 (1)∵-1<32<2,∴f ⎝ ⎛⎭⎪⎫32=2×32=3.又3>2,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫32=f (3)=92.(2)当a ≤-1时,由f (a )=2,得a +2=2,a =0,舍去; 当-1<a <2时,由f (a )=2,得2a =2,a =1;当a ≥2时,由f (a )=2,得a 22=2,a =2或a =-2(舍去). 综上所述,a 的值为1或2.1.求分段函数函数值的方法分段函数求值(1)先确定要求值的自变量属于哪一段区间.(2)然后代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.已知函数值求字母取值的步骤 (1)先对字母的取值范围分类讨论. (2)然后代入到不同的解析式中. (3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.已知n ∈N *,且f (n )=⎩⎪⎨⎪⎧n -2, n ≥10f n +5 , n <10 ,则f (4)=________.【解析】 由分段函数定义,f (4)=f (4+5)=f (9)=f (9+5)=f (14)=14-2=12【答案】 12画出函数y =|x +1|+|x -3|的图象,并写出该函数的值域.【思路探究】y =|x +1|+|x -3|――→绝对值定义 零点分段法 去绝对值 ――→分段分段函数―→作图分段函数的图象【自主解答】由y =|x +1|+|x -3|={ -2x +2,x ≤-1 4,-1<x ≤3 2x -2,x >3∴函数图象如图由图象易知函数的值域为[4,+∞)1.对含有绝对值的函数,要作出其图象,首先应根据绝对值的定义脱去绝对值符号,将函数转化为分段函数,然后分段作出函数的图象.2.由于分段函数在定义域的不同区间内解析式不一样,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或几段线段,画图时要特别注意区间端点处对应点的实虚之分.下列图形是函数y =⎩⎪⎨⎪⎧x 2,x <0x -1,x ≥0的图象的是()【解析】 由于f (0)=0-1=-1,所以函数图象过点(0,-1);当x <0时,y =x 2,则函数图象是开口向上的抛物线在y 轴左侧的部分.因此只有图形C 符合.【答案】 C下列对应关系中,哪些是从集合A 到集合B 的映射?映射的判断(1)A =B =N *,对应关系f :x →y =|x -3|;(2)A =R ,B ={0,1},对应关系f :x →y ={ 1,x ≥0 0,x <0; (3)设A ={矩形},B ={实数},对应关系f :矩形的面积.【思路探究】 紧扣映射概念中的“任意一个”“唯一”即可判断. 【自主解答】 (1)集合A 中的3,在f 作用下得0,但0∉B ,即3在集合B 中没有相对应的元素,所以不是映射.(2)对于集合A 中任意一个非负数都唯一对应元素1,对于集合A 中任意一个负数都唯一对应元素0,所以是映射.(3)对于每一个矩形,它的面积是唯一确定的,所以f 是从集合A 到集合B 的映射.判断一个对应是否是映射,关键有两点:(1)对于A 中的任意一个元素,在B 中是否有元素对应; (2)B 中的对应元素是否是唯一的.注意:“一对一”或“多对一”的对应都是映射.已知点(x ,y )在映射f 作用下对应的元素是(2x ,x +y ),则(1,3)在f 作用下对应的元素是( )A.⎝ ⎛⎭⎪⎫12,52 B .(2,4) C .(3,5)D .(4,6)【解析】 由题意知,x →2x ,y →x +y ,故(1,3)在f 作用下对应的元素是(2,4).【答案】 B与分段函数有关的实际问题的解法(12分)如图1-2-4在边长为4的正方形ABCD的边上有一点P,图1-2-4沿着折线BCDA由点B(起点)向A(终点)运动.设点P运动的路程为x,△APB 的面积为y.试求:(1)y与x之间的函数关系式;(2)画出y=f(x)的图象.【思路点拨】当点P在线段BC上时△APB的面积随点P的变化而变化,当点P在线段CD上时,△APB的面积是一个定值,当点P在线段AD上时,△APB 的面积随点P的变化而变化,可见应分三段考虑面积计算.【规范解答】(1)①当点P在线段BC上运动时,S△APB=12×4x=2x(0≤x≤4).2分②当点P在线段CD上运动时,S△APB=12×4×4=8(4<x≤8).4分③当点P在线段AD上运动时,S△APB=12×4×(12-x)=24-2x(8<x≤12).6分∴y 与x 之间的函数关系式为y =⎩⎪⎨⎪⎧2x , 0≤x ≤4 8, 4<x ≤824-2x , 8<x ≤12 .8分(2)画出y =f (x )的图象,如图所示:12分1.本题因点P 所在的位置不同,得到的面积表达式不同,因而应分段计算,得出分段函数表达式.2.解决这类问题的关键点是根据自变量的取值情况决定其对应的运算法则,即保持自变量的取值范围与对应法则的一致性,一般需要分类讨论求解.1.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.2.判断一个对应是不是映射,先看第一集合A :看集合A 中的每一个元素是否都有对应元素,若有,再看对应元素是否唯一;至于集合B 中的元素不作任何要求.1.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是( )【解析】 在映射中允许“多对一”,但不允许“一对多”. 【答案】 C2.下列图形是函数y =-|x |(x ∈[-2,2])的图象的是( )【解析】 ∵x ∈[-2,2],故函数y =-|x |在x =±2处均有意义,排除C 、D 两选项.又当x =1时,y =-1<0,从而排除A 选项,故选B.【答案】 B3.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0-2x +1,x <0,则f (1)+f (-1)=________.【解析】∵f (1)=2×1+1=3,f (-1)=-2×(-1)+1=3,∴f (1)+f (-1)=3+3=6.【答案】 64.已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.【解】 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .∴f (x )={ 1 0≤x ≤2 1-x -2<x <0 . (2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).一、选择题1.设集合A ={x |1≤x ≤2},B ={y |1≤y ≤4},则下述对应法则f 中,不能构成A 到B 的映射的是( )A .f :x →y =x 2B .f :x →y =3x -2C .f :x →y =-x +4D .f :x →y =4-x 2【解析】 当x ∈[1,2]时,y =4-x 2∈[0,3],故选项D 中的“f ”不能构成A 到B 的映射.【答案】 D2.函数f (x )=|x -1|的图象是( )【解析】 f (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x ≥11-x ,x <1.由f (x )的解析式易知应选B.【答案】 B3.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1x 2+x -2,x >1,则f ⎝⎛⎭⎪⎫1f 2 的值为( )A.1516 B .-2716C.89D .18【解析】 ∵f (2)=22+2-2=4,∴f ⎝⎛⎭⎪⎫1f 2 =f ⎝ ⎛⎭⎪⎫14=1-116=1516. 【答案】 A4.映射f :A →B ,在f 作用下A 中元素(x ,y )与B 中元素(x -1,3-y )对应,则与B 中元素(0,1)对应的A 中元素是( )A .(-1,2)B .(0,3)C .(1,2)D .(-1,3)【解析】 由题意可知⎩⎪⎨⎪⎧x -1=03-y =1,∴⎩⎪⎨⎪⎧x =1y =2,∴A 中的元素为(1,2).【答案】 C图1-2-55.已知函数f (x )的图象是两条线段(如图1-2-5,不含端点),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13等于( )A .-13 B.13C .-23D.23【解析】 由图可知,函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x -1, 0<x <1 x +1, -1<x <0 ,∴f ⎝ ⎛⎭⎪⎫13=13-1=-23,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫-23=-23+1=13.【答案】 B 二、填空题6.已知函数f (x )=⎩⎪⎨⎪⎧x +1 x >0 π x =00 x <0 ,则f (f (-2))=________.【解析】 ∵f (-2)=0,∴f (f (-2))=f (0)=π. 【答案】 π7.(2014·镇江高一检测)已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.【解析】 由题意知f (0)=2,又f (2)=22+2a ∴22+2a =4a ∴a =2 【答案】 28.函数y =f (x )的图象如图1-2-6所示,那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是________.图1-2-6【解析】 由图象可知,函数y =f (x )的定义域为[-3,0]∪[2,3],值域为[1,5].其中只与x 的一个值对应的y 值的范围是[1,2)∪(4,5].【答案】 [-3,0]∪[2,3] [1,5] [1,2)∪(4,5]三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧x +a ,x ≤1x 2-2x ,x ≥1.(1)求a 的值; (2)求f (f (2))的值; (3)若f (m )=3,求m 的值.【解】 (1)由函数定义,得当x =1时, 应有1+a =12-2×1, 即a =-2.(2)由(1),得f (x )=⎩⎪⎨⎪⎧x -2,x ≤1x 2-2x ,x ≥1.因为2>1,所以f (2)=22-2×2=0, 因为0<1,所以f (f (2))=f (0)=0-2=-2. (3)当m ≤1时,f (m )=m -2,此时m -2=3得m =5,与m ≤1矛盾,舍去; 当m ≥1时,f (m )=m 2-2m , 此时m 2-2m =3得m =-1或m =3. 又因为m ≥1,所以m =3. 综上可知满足题意的m 的值为3.10.设函数f (x )=⎩⎪⎨⎪⎧2, x >0x 2+bx +c , x ≤0 ,若f (-4)=f (0),f (-2)=-2,求f (x )的解析式.【解】 由题意得⎩⎪⎨⎪⎧16-4b +c =c4-2b +c =-2,解得⎩⎪⎨⎪⎧b =4c =2,∴f (x )=⎩⎪⎨⎪⎧2, x >0x 2+4x +2, x ≤0 .11.为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算.电费每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.(1)设月用电x 度时,应交电费y 元,写出y 关于x 的函数关系式; (2)小明家第一季度缴纳电费情况如下:【解】 (1)由题可得y =⎩⎪⎨⎪⎧0.57x ,0≤x ≤10057+12 x -100 =12x +7,x >100.(2)一月用电12x +7=76,即x =138;二月用电12x +7=63,即x =112;三月用电0.57x =45.6,即x =80; ∴138+112+80=330(度) ∴第一季度共用电330度。

新人教A版必修1高中数学1.2.2函数的表示法教案

新人教A版必修1高中数学1.2.2函数的表示法教案

1.2.2函数的表示法教学目的:(1)明确函数的三种表示方式;(2)在实际情境中,会按照不同的需要选择适当的方式表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用;(4)纠正以为“y=f(x)”就是函数的解析式的片面错误熟悉.教学重点:函数的三种表示方式,分段函数的概念.教学难点:按照不同的需要选择适当的方式表示函数,什么才算“适当”?分段函数的表示及其图象.教学进程:一、引入课题1.温习:函数的概念;2.常常利用的函数表示法及各自的长处:(1)解析法;(2)图象法;(3)列表法.二、新课教学(一)典型例题例1.某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .分析:注意本例的设问,此处“y=f(x)”有三种含义,它能够是解析表达式,能够是图象,也能够是对应值表.解:(略)注意:○1函数图象既能够是持续的曲线,也能够是直线、折线、离散的点等等,注意判断一个图形是不是是函数图象的依据;○2解析法:必需注明函数的概念域;○3图象法:是不是连线;○4列表法:选取的自变量要有代表性,应能反映概念域的特征.巩固练习:讲义P27练习第1题例2.下表是某校高一(1)班三位同窗在高一学年度几回数学测试的成绩及班级及班级平均分表:第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95张城90 76 88 75 86 80赵磊68 65 73 72 75 82班平均分88.278.3 85.4 80.3 75.7 82.6 请你对这三们同窗在高一学年度的数学学习情形做一个分析.分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?解:(略)注意:○1本例为了研究学生的学习情形,将离散的点用虚线连接,如此更便于研究成绩的转变特点;○2 本例可否用解析法?为何? 巩固练习: 讲义P 27练习第2题例3.画出函数y = | x | .解:(略)巩固练习:讲义P 27练习第3题拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f (|x|) 的图象,并尝试简要说明三者(图象)之间的关系.讲义P 27练习第3题例4.某市郊空调公共汽车的票价按下列规则制定:(1) 乘坐汽车5千米之内,票价2元;(2) 5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算). 已知两个相邻的公共汽车站间相距约为1千米,若是沿途(包括起点站和终点站)设20个汽车站,请按照题意,写出票价与里程之间的函数解析式,并画出函数的图象. 分析:本例是一个实际问题,有具体的实际意义.按如实际情形公共汽车到站才能停车,所以行车里程只能取整数值.解:设票价为y 元,里程为x 千米,同按照题意,若是某空调汽车运行线路中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19千米,所以自变量x 的取值范围是{x ∈N *| x ≤19}.由空调汽车票价制定的规定,可取得以下函数解析式:⎪⎪⎩⎪⎪⎨⎧=5432y 1915151010550≤<≤<≤<≤<x x x x (*N x ∈)按照那个函数解析式,可画出函数图象,如下图所示: O x y543215101519注意:○1 本例具有实际背景,所以解题时应考虑其实际意义; ○2 本题可否用列表法表示函数,若是能够,应如何列表? 实践与拓展:请你设计一张搭车价目表,让售票员和乘客超级容易地明白任意两站之间的票价.(能够实地考查一下某公交车线路)说明:象上面两例中的函数,称为分段函数.注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并别离注明各部份的自变量的取值情形.三、归纳小结,强化思想理解函数的三种表示方式,在具体的实际问题中能够选用适当的表示法来表示函数,注意分段函数的表示方式及其图象的画法.四、作业布置讲义P28习题1.2(A组)第8—12题(B组)第二、3题。

最新人教版必修1高中数学1.2.2函数的表示法(2)导学案

最新人教版必修1高中数学1.2.2函数的表示法(2)导学案

122 《函数的表示法》(2)导案【习目标】1 了解映射的概念及表示方法;2 结合简单的对应图示,了解一一映射的概念;3 能解决简单函数应用问题【重点难点】重点、难点:分段函数的理解,分段函数的图象及简单应用。

【知识链接】(预习教材P22~ P23,找出疑惑之处)复习:举例初中已经习过的一些对应,或者日常生活中的一些对应实例:①对于任何一个,数轴上都有唯一的点P和它对应;②对于坐标平面内任何一个点A,都有唯一的和它对应;③对于任意一个三角形,都有唯一确定的面积和它对应;④某影院的某场电影的每一张电影票有唯一确定的座位与它对应你还能说出一些对应的例子吗?讨论:函数存在怎样的对应?其对应有何特点?【习过程】※习探究探究任务:映射概念探究先看几个例子,两个集合A、B的元素之间的一些对应关系,并用图示意[] ①{1,4,9}A={3,2,1,1,2,3}B=---,对应法则:开平方;②{3,2,1,1,2,3}A=---,{1,4,9}B=,对应法则:平方;③{30,45,60}A=︒︒︒1{}2B=对应法则:求正弦新知:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素,在集合B中都有唯一确定的元素y与之对应,那么就称对应:f A B→为从集合A到集合B的一个映射(apping).记作“:f A B→”关键:A中任意,B中唯一;对应法则f试试:分析例1 ①~③是否映射?举例日常生活中的映射实例?反思:①映射的对应情况有、,一对多是映射吗?②函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,即映射※典型例题例1 探究从集合A到集合B一些对应法则,哪些是映射,哪些是一一映射?(1)A={P P是数轴上的点},B=R;(2)A={三角形},B={圆};(3)A ={ P P 是平面直角体系中的点},{(,)|,}B x y x R y R =∈∈;(4) A ={高一生},B = {高一班级}变式:如果是从B 到A 呢?试试:下列对应是否是集合A 到集合B 的映射(1)}}{{1,2,3,4,2,4,6,8A B ==,对应法则是“乘以2”;(2)A = R ,B =R ,对应法则是“求算术平方根”;(3){}|0,A x x B =≠=R ,对应法则是“求倒数”※ 动手试试练1 下列对应是否是集合A 到集合B 的映射?(1)A ={1,2,3,4},B={3,4,5,6,7,8,9},对应法则:21f x x →+;(2)*,{0,1}A N B ==,对应法则:f x x →除以2得的余数;(3)A N =,{0,1,2}B =,:f x x →被3除所得的余数;(4)设111{1,2,3,4},{1,,,}234X Y ==1:f x x→;(5){|2,},A x x x N B N =>∈=,:f x →小于的最大质数练2 已知集合}{}{,,1,0,1,A a b B ==-从集合A 到集合B 的映射,试问能构造出多少映射?【习反思】※习小结1 映射的概念;2 判定是否是映射主要看两条:一条是A集合中的元素都要有对应,但B中元素未必要有对应;二条是A中元素与B中元素只能出现“一对一”或“多对一”的对应形式.※知识拓展在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d是车速v (千米/小时)的平方与车身长s(米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时时,车距恰好等于车身上,试写出d关于v的函数关系式(其中s为常数)※自我评价你完成本节导案的情况为()A 很好B 较好一般 D 较差※当堂检测(时量:5分钟满分:10分)计分:1 在映射:f A B→-+,则与A中的元素f x y x y x y==∈,且:(,)(,)→中,{(,)|,}A B x y x y R-对应的B中的元素为()(1,2)A(3,1)--D(3,1)-B(1,3)(1,3)2下列对应:f A B→:① {},0,:;A R B x R x f x x ==∈>→ ②*,,:1;A N B N f x x ==→- ③{}20,,:.A x R x B R f x x =∈>=→不是从集合A 到B 映射的有( )A ①②③B ①② ②③ D ①③3 已知0(0)()(0)1(0)x f x x x x π<⎧⎪==⎨⎪+>⎩,则{[(1)]}f f f -=( )A 0B π 1π+ D 无法求4 若1()1x f x x=-, 则)(x f = 5 已知f ()=2-1,g1则f [g ()] =1 若函数()y f x =的定义域为[-1,1],求函数11()()44y f x f x =+-的定义域2 中山移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费04元;“神州行”不缴月租,每通话1分钟,付费06元 若一个月内通话分钟,两种通讯方式费用分别为12,y y (元)(1)写出12,y y 与之间的函数关系式?(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,应选择哪种通讯方式?。

高中数学 1.2.2 函数的表示法教案 新人教A版必修1(2)

高中数学 1.2.2 函数的表示法教案 新人教A版必修1(2)

1.2.2函数的表示法一、教材分析教材从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.教材将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.二、三维目标1.知识与技能(1)理解函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,掌握简单的分段函数及应用.2.过程与方法:学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.3.情态与价值让学生感受到学习函数表示的必要性,渗透数形结合思想方法.三、教学重点:函数的三种表示方法,映射的概念.四﹑教学难点:分段函数的概念,分段函数的表示及其图象.五﹑教学策略:通过实例分析比较三种函数表示法的特点,分析比较映射与函数的区别与联系.六﹑教学准备教学手段:多媒体辅助教学,增强直观性,增大课容量,提高效率七﹑教学环节1、课堂导入⑴.语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute Zum Geburtstag!西班牙中称iFeliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd met jeverj aardag!在俄语中则是Сднемрождения!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.⑵.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).2、课堂讲授⑴提出问题初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?讨论结果:①解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.②图象法:以自变量x 的取值为横坐标,对应的函数值y 为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.③列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.⑵明确三种方法各自的特点?解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域.列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值、图像法的特点是:能直观形象地表示出函数的变化情况. 总结为下表:⑶例题讲解:例3.1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y 元,试用三种表示法表示函数y=f(x).分析:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素. 解:这个函数的定义域是数集{1,2,3,4,5}, 用解析法可将函数y=f(x)表示为 y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1例4.2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势. 解:把“成绩”y 看成“测试序号”x 的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大; 赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高. 例5.1.画出函数y=|x|的图象. 分析:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.解法一:由绝对值的概念,我们有y=⎩⎨⎧<≥0.x x,-0,x x,所以,函数y=|x|的图象如图1-2-2-10所示.图1-2-2-10解法二:画函数y=x 的图象,将其位于x 轴下方的部分对称到x 轴上方,与函数y=x 的图象位于x 轴上方的部分合起来得函数y=|x|的图象如图1-2-2-10所示.归纳总结:带有绝对值问题的处理方法…………………………去掉绝对值符号. 例6.某市“招手即停”公共汽车的票价按下列规则制定: (1)乘坐汽车5千米以内(含5千米),票价2元;(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 分析:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.解:设里程为x 千米时,票价为y 元,根据题意得x∈(0,20]. 由空调汽车票价制定的规定,可得到以下函数解析式:图1-2-2-13y=⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<.2015,5,1510,4,105,3,50,2x x x x根据这个函数解析式,可画出函数图象,如图1-2-2-13所示. 归纳总结分段函数:① 研究分段函数的性质时,应根据“先分后合”的原则,尤其是在作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象. ② 分段函数是一个函数.③ 定义域是各段自变量求值的并集,写定义域时区间端点需不重不漏. ④ 值域是各段函数值的并集.⑤ 最大值是各段最大值的最大者,最小值是各段最小值的最小者,求最值时先分段求,再比较.⑥ 求分段函数的函数值时,关键是看自变量的取值属于哪一段,就用哪一段的解析式.⑷映射的概念①.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).②.先看几个例子,两个集合A 、B 的元素之间的一些对应关系: (ⅰ)开平方; (ⅱ)求正弦; (ⅲ)求平方; (ⅳ)乘以2.归纳引出映射概念:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.记作“f :A →B ” 说明:(1)这两个集合有先后顺序,A 到B 的映射与B 到A 的映射是截然不同的,其中f 表示具体的对应法则,可以用多种形式表述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思. 例7.下列哪些对应是从集合A 到集合B 的映射?(1)A={|P P 是数轴上的点},B=R ,对应关系f :数轴上的点与它所代表的实数对应; (2)A={|P P 是平面直角坐标中的点},}{(,)|,,B x y x R y R =∈∈对应关系f :平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={|},x x 是圆对应关系f :每一个三角形都对应它的内切圆; (4)A={|x x 是新华中学的班级},}{|,B x x =是新华中学的学生对应关系f :每一个班级都对应班里的学生.解:⑴⑵⑶中的对应f : A →B 是从集合A 到集合B 的一个映射,⑷中的对应f : A →B 不是从集合A 到集合B 的一个映射.课堂练习:1.如图为一分段函数的图象,则该函数的定义域为__________,值域为__________.解析:由图象可知,第一段的定义域为[-1,0),值域为[0,1); 第二段的定义域为[0,2],值域为[-1,0].因此该分段函数的定义域为[-1,0)[0,2]=[-1,2],值域为[0,1)[-1,0]=[-1,1).答案:[-1,2] [-1,1)2.已知函数f (x )=2000x x x ⎧>⎨≤⎩,,,,求f (2),f (-3)的值.解:∵2>0,∴f (2)=22=4.∵-3≤0,∴f (-3)=0. 3.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ).(2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析: (1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9,∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1, f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2. 【探究提升】求下列函数解析式.(1)已知2f ⎝ ⎛⎭⎪⎫1x +f (x )=x (x ≠0),求f (x );(2)已知f (x )+2f (-x )=x 2+2x ,求f (x ).解析: (1)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,将原式中的x 与1x互换,得f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.于是得关于f (x )的方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).(2)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x ,∴将以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .3﹑课堂活动:1.教师引导学生完成三种函数表示法的比较,并且归纳它们的优缺点. 2.教师引导学生完成教材例3﹑例4﹑例5﹑例6. 4﹑课堂小结:①分段函数的表示,求值等问题. ②表示函数的三种方法,映射的概念.5﹑作业布置:课本P 28 习题1.2(A 组) 第7题 (B 组)第3题 四、板书设计函数及其表示1.2.2函数的表示法一﹑教材分析二﹑三维目标三﹑教学重点四﹑教学难点五﹑教学策略六﹑教学准备七﹑教学环节九﹑教学反思:1.通过5个例题让学生体会三种表示函数的方法,掌握分段函数及其的概念.2.通过例5例6逐步培养学生分类讨论的数学思想,通过例4培养学生分析问题的能力.。

(新课程)高中数学2.1.2《函数表示法》(2)教案新人教B版必修1

(新课程)高中数学2.1.2《函数表示法》(2)教案新人教B版必修1

2.1.2函数的表示方法教案⑵一、教学目标1、 知识目标:(1) 进一步理解函数的三种表示方法; (2) 了解简单的分段函数,并能简单应用. 2、 能力目标:(1) 进一步提高对函数本质的理解;(2) 初步培养学生运用函数知识解决实际问题的能力 3、 情感目标:通过本节课的教学, 使学生进一步认识到,数学源于生活,数学也可应用于生活, 能够解决生活中的实际问题.二、 教学重点: 函数解析式的求法. 三、 教学难点:对函数分段解析式的理解. 四、教学过程: 资费为P 元,能否建 立函数P = f (vy 的解 析式?教 学环教学内容师生互动设计意图节 ___________________________________________问题1 :函「数有哪三种常见的表示方教师提出问 通过对旧知识 习引 入法?它们各有何优缺点?题,学生思考后回 答问题.投影出如下实例.教师提出问 题,学生思考后回 答,导出分段函数 的概念.的回顾,为新知识的 学习做好认知铺垫.通过生活中的 实际问题,使学生进 认识到,数学源于生 活.问题3:分段函数是“一个函数”,槪念深 化还是“几个函数”?问题4:分段函数中的“段”是不是 _宀毕/ ° 定等长? 问题5:以前我们见过分段函数吗? 教师提 出问题,让学生充 分思考、探讨、交 流,然后发表意 见.通过讨论、交 流,使学生初步理解 分段函数是“一个函 数”,还是“几个函 数”;分段函数中的 “段”不一定等长.问题2 :由实际生活中,上海至港、 澳、台地区信函部分资费表:槪 念形 成若设信函的重量为 W 克),应支付的附思考题参考答案:根据图象能得到甲、乙两人旅游的以下一些信息:1 •甲骑自行车从A城去B城用了8个小时•乙骑摩托车从A城去B城用了2个小时.2.甲比乙早4个小时出发,晚2个小时到达.3•甲骑自行车在出发后第一个2小时内行驶了40千米,第二个2小时内行驶了20千米,然后停留了1个小时,又在1个小时内行驶了20千米,最后用2个小时行驶了20千米完成全程到达B城.4•乙骑摩托车在2小时内行驶了100千米路程到达B城.5.甲、乙在距A城60多千米的地方相遇一次.。

人教新课标版数学高一必修1学案 函数的表示法(二)

人教新课标版数学高一必修1学案   函数的表示法(二)

1.2.2 函数的表示法(二)自主学习1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题. 2.了解映射的概念及含义,会判断给定的对应关系是否是映射.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.(3)作分段函数图象时,应分别作出每一段的图象. 2.映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。

3.映射与函数由映射的定义可以看出,映射是函数概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A ,B 必须是非空数集.对点讲练分段函数的求值问题【例1】 已知函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤-1),x 2 (-1<x <2),2x (x ≥2).(1)求f [f (3)]的值; (2)若f (a .)=3,求a . 的值.分析 本题给出的是一个分段函数,函数值的取得直接依赖于自变量x 属于哪一个区间,所以要对x 的可能范围逐段进行讨论. 解 (1)∵-1<3<2,∴f (3)=(3)2=3. 而3≥2,∴f [f (3)]=f (3)=2×3=6.(2)当a .≤-1时,f (a .)=a .+2,又f (a .)=3,∴a .=1(舍去);当-1<a .<2时,f (a .)=a .2,又f (a .)=3,∴a .=±3,其中负值舍去,∴a .=3;当a .≥2时,f (a .)=2a .,又f (a .)=3, ∴a .=32(舍去).综上所述,a .= 3.规律方法 对于f (a .),究竟用分段函数中的哪一个对应关系,与a . 所在范围有关,因此要对a .进行讨论.由此我们可以看到: (1)分段函数的函数值要分段去求;(2)分类讨论不是随意的,它是根据解题过程中的需要而产生的.变式迁移1 设f (x )=⎩⎨⎧12x -1 (x ≥0),1x (x <0),若f (a .)>a .,则实数a .的取值范围是________.答案 a .<-1解析 当a .≥0时,f (a .)=12a .-1,解12a .-1>a .,得a .<-2与a .≥0矛盾,当a .<0时,f (a .)=1a ,解1a>a .,得a .<-1.∴a .<-1.分段函数的图象及应用【例2】 已知函数f (x )=1+|x |-x2(-2<x ≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 化简f (x )的解析式 →化简f (x )的解析式 →把f (x )表示为分段函数形式→画出f (x )的图象→求f (x )的值域 解 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .∴f (x )=⎩⎨⎧1 (0≤x ≤2)1-x (-2<x <0).(2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).规律方法 对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时要特别注意区间端点处对应点的实虚之分.变式迁移 2 设函数f (x )=⎩⎪⎨⎪⎧|x +1| (x <1)-x +3 (x ≥1),使得f (x )≥1的自变量x 的取值范围是______________________. 答案 (-∞,-2]∪[0,2] 解析在同一坐标系中分别作出f (x )及y =1的图象(如图所示),观察图象知,x 的取值范围是(-∞,-2]∪[0,2].映射概念及运用【例3】 判断下列对应关系哪些是从集合A 到集合B 的映射,哪些不是,为什么?(1)A={x|x 为正实数},B={y|y ∈R[},f :x →y=±x(2)A=R ,B={0,1},对应关系f :x,→y =⎩⎪⎨⎪⎧1, x ≥0;0, x<0;(3)A=Z ,B=Q ,对应关系f :x →y=1x;(4)A={0,1,2,9},B={0,1,4,9,64},对应关系f:a →b=()21a -解 (1)任一个x 都有两个y 与之对应,∴不是映射.(2)对于A 中任意一个非负数都有唯一的元素1和它对应,任意一个负数都有唯一的元素0和它对应, ∴是映射.(3)集合A 中的0在集合B 中没有元素和它对应,故不是映射. (4)在f 的作用下,A 中的0,1,2,9分别对应到B 中的1,0,1,64,∴是映射.规律方法 判断一个对应是不是映射,应该从两个角度去分析:(1)是否是“对于A 中的 每一个元素”;(2)在B 中是否“有唯一的元素与之对应”.一个对应是映射必须是这两个方面都具备;一个对应对于这两点至少有一点不具备就不是映射.说明一个对应不是映射,只需举一个反例即可. 变式迁移3 下列对应是否是从A 到B 的映射,能否构成函数? (1)A=R ,B=R,f:x →y =1x +1;(2)A ={a.|a.=n ,n ∈N +},B =⎩⎨⎧⎭⎬⎫b|b =1n ,n ∈N +,f :a.→b =1a;(3)A=[)0,+∞,B=R ,f:x→y 2=x ;(4)A ={x|x 是平面M 内的矩形},B ={x|x 是平面M 内的圆},f :作矩形的外接圆. 解 (1)当x =-1时,y 的值不存在, ∴不是映射,更不是函数.(2)是映射,也是函数,因A 中所有的元素的倒数都是B 中的元素.(3)∵当A 中的元素不为零时,B 中有两个元素与之对应,∴不是映射,更不是函数. (4)是映射,但不是函数,因为A ,B 不是数集.1.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.2.判断一个对应是不是映射,主要利用映射的定义:(1)集合A 到B 的映射,A 、B 必须是非空集合(可以是数集,也可以是其他集合); (2)对应关系有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;(3)与A 中元素对应的元素构成的集合是集合B 的子集.课时作业一、选择题1.下列集合A 到集合B 的对应f 是映射的是( ) A .A ={-1,0,1},B ={-1,0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =N *,f :a .→b =(a .+1)2D .A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ) A . f:x→y =12x B. f:x→y =13xC. f:x→y =14xD. f:x→y =16x答案 A由f:x →y =12x ,集合A 中的元素6对应3∉{y |0≤y ≤2},故选项A 不是映射.3.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6)(x ∈N ),那么f (3)等于( )A .2B .3C .4D .5 答案 A解析 由题意知f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.4.已知f (x )=⎩⎪⎨⎪⎧ x 2 (x ≥0)x (x <0),g (x )=⎩⎪⎨⎪⎧x (x ≥0)-x 2 (x <0),则当x <0时,f [g (x )]等于( )A .-xB .-x 2C .xD .x 2 答案 B解析 当x <0时,g (x )=-x 2<0, ∴f [g (x )]=-x 2. 二、填空题5.已知f (x )=⎩⎪⎨⎪⎧0 (x <0)π (x =0)x +1 (x >0),则f (f (f (-1)))的值是__________.答案 π+1解析 f (-1)=0,f (0)=π,f (π)=π+1 ∴f (f (f (-1)))=f (f (0))=f (π)=π+1.6.已知f (x )=⎩⎪⎨⎪⎧1,x ≥00,x <0,则不等式xf (x )+x ≤2的解集是__________.答案 {x |x ≤1}解析 当x ≥0时,f (x )=1,代入xf (x )+x ≤2, 解得x ≤1,∴0≤x ≤1;当x <0时,f (x )=0,代入xf (x )+x ≤2, 解得x ≤2,∴x <0. 综上可知x ≤1. 三、解答题7.若[x ]表示不超过x 的最大整数,画出y =[x ] (-3≤x <3)的图象. 解 作出y =[x ]的图象如下图所示.8.已知函数y =f (x )的图象是由图中的两条射线和抛物线的一部分组成,求函数的解析式.解 根据图象,设左侧射线对应的函数解析式为y =kx +b (x <1).∵点(1,1)、(0,2)在射线上,∴⎩⎪⎨⎪⎧ k +b =1,b =2, 解得⎩⎪⎨⎪⎧k =-1,b =2.∴左侧射线对应的函数解析式为y =-x +2 (x <1). 同理,x >3时,函数的解析式为y =x -2 (x >3). 又抛物线对应的二次函数的解析式为 y =a .(x -2)2+2 (1≤x ≤3,a .<0),∵点(1,1)在抛物线上,∴a .+2=1,a .=-1, ∴当1≤x ≤3时,函数的解析式为 y =-x 2+4x -2 (1≤x ≤3). 综上所述,函数的解析式为 y =⎩⎪⎨⎪⎧-x +2 (x <1),-x 2+4x -2 (1≤x ≤3),x -2 (x >3).【探究驿站】9.已知函数f (x )=⎩⎪⎨⎪⎧1, x ∈[0,1],x -3, x ∉[0,1],求使等式f [f (x )]=1成立的实数x 构成的集合.解 当x ∈[0,1]时,恒有f [f (x )]=f (1)=1, 当x ∉[0,1]时,f [f (x )]=f (x -3),若0≤x -3≤1,即3≤x ≤4时,f (x -3)=1, 若x -3∉[0,1],f (x -3)=(x -3)-3, 令其值为1,即(x -3)-3=1,∴x =7. 综合知:x 的值构成的集合为 {x |0≤x ≤1或3≤x ≤4或x =7}.。

2019高中数学1.2.2 函数的表示法 第2课时 分段函数学案 新人教A版必修1

2019高中数学1.2.2 函数的表示法 第2课时 分段函数学案 新人教A版必修1

第2课时 分段函数学习目标:1.了解分段函数的概念,会求分段函数的函数值,能画出分段函数的图象.(重点,难点)2.能在实际问题中列出分段函数,并能解决有关问题.(重点、难点)3.通过本节内容的学习,使学生了解分段函数的含义,提高学生数学建模、数学运算的能力.(重点)[自 主 预 习·探 新 知]分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数对于自变量x 的不同取值区间对应关系不同,那么分段函数是一个函数还是几个函数?分段函数的定义域和值域分别是什么?[提示] 分段函数是一个函数,而不是几个,各段定义域的并集即为分段函数的定义域,各段值域的并集即为分段函数的值域.[基础自测]1.思考辨析(1)分段函数由几个函数构成.( )(2)函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤1,-x +3,x >0是分段函数.( )(3)函数f (x )=|x |可以用分段函数表示( ) [答案] (1)× (2)× (3)√ 2.f (x )=|x -1|的图象是( )B [∵f (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,当x =1时,f (1)=0,可排除A ,C.又x =-1时,f (-1)=2,排除D.]3.函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤1,-x +3,x >1,则f (f (4))=________.【导学号:37102111】0 [∵f (4)=-4+3=-1,f (-1)=-1+1=0, ∴f (f (4))=f (-1)=0.]4.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3]B [当0≤x ≤1时,0≤2x ≤2,即0≤f (x )≤2;当1<x <2时,f (x )=2;当x ≥2时,f (x )=3.综上可知f (x )的值域为[0,2]∪{3}.][合 作 探 究·攻 重 难]分段函数的求值问题已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫-52的值; (2)若f (a )=3,求实数a 的值.【导学号:37102112】[解] (1)由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2×(-3)=3-2 3.∵f ⎝ ⎛⎭⎪⎫-52=-52+1=-32, 而-2<-32<2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-32=⎝ ⎛⎭⎪⎫-322+2×⎝ ⎛⎭⎪⎫-32=94-3=-34.(2)当a ≤-2时,a +1=3, 即a =2>-2,不合题意,舍去.当-2<a <2时,a 2+2a =3,即a 2+2a -3=0. ∴(a -1)(a +3)=0,解得a =1或a =-3. ∵1∈(-2,2),-3(-2,2),∴a =1符合题意. 当a ≥2时,2a -1=3,即a =2符合题意. 综上可得,当f (a )=3时,a =1或a =2.1.函数f (x )=⎩⎪⎨⎪⎧x -3,x ≥10,f f x +,x <10,则f (7)=________.8 [∵函数f (x )=⎩⎪⎨⎪⎧x -3,x ≥10,f f x +,x <10,∴f (7)=f (f (12))=f (9)=f (f (14))=f (11)=8.]分段函数的解析式如图1­2­7所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 关于x 的函数解析式,并画出大致图象.【导学号:37102113】图1­2­7思路探究:可按点E 所在的位置分E 在线段AB ,E 在线段AD 及E 在线段CD 三类分别求解.[解] 过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H . 因为四边形ABCD 是等腰梯形,底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm , 又BC =7 cm ,所以AD =GH =3 cm.(1)当点F 在BG 上,即x ∈[0,2]时,y =12x 2;(2)当点F 在GH 上,即x ∈(2,5]时,y =x +x -22×2=2x -2;(3)当点F 在HC 上,即x ∈(5,7]时,y =S 五边形ABFED =S 梯形ABCD -S Rt△CEF =12(7+3)×2-12(7-x )2=-12(x -7)2+10.综合(1)(2)(3),得函数的解析式为y =⎩⎪⎨⎪⎧12x 2,x ∈[0,2],2x -2,x,5],-12x -2+10,x ,7].图象如图所示.[跟踪训练]2.某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.[解] 设票价为y 元,里程为x 公里,定义域为(0,20]. 由题意得函数的解析式如下:y =⎩⎪⎨⎪⎧2,0<x ≤5,3,5<x ≤10,4,10<x ≤15,5,15<x ≤20.函数图象如图所示:分段函数的图象及应用 [探究问题]1.函数f (x )=|x -2|能用分段函数的形式表示吗?能否作出其图象?提示:能.f (x )=⎩⎪⎨⎪⎧x -2,x ≥2,2-x ,x <2.函数f (x )的图象如图所示.2.结合探究点1,你能说一下画含有绝对值的函数图象的方法吗?提示:含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示f (x ); (2)画出f (x )的图象; (3)写出函数f (x )的值域.思路探究:(1)分-2<x <0和0≤x ≤2两种情况讨论,去掉绝对值可把f (x )写成分段函数的形式; (2)利用(1)的结论可画出图象;(3)由(2)中得到的图象,找到图象最高点和最低点的纵坐标,可得值域. [解] (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x , ∴f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).,+∞). [当 堂 达 标·固 双 基]1.下列图形是函数y =x |x |的图象的是( )【导学号:37102114】A B C DD [∵f (x )=x |x |=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,∴图象D 符合.]2.已知f (x )=⎩⎪⎨⎪⎧1-x ,x ≤1,x ,1<x <2,则f (x )的定义域为( )A .RB .(-∞,1]C .(-∞,2)D .(1,+∞)C [f (x )的定义域为(-∞,1]∪(1,2)=(-∞,2).]3.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( )【导学号:37102115】A.15 B .3 C.23D.139D [∵f (3)=23≤1,∴f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.] 4.函数y =f (x )的图象如图1­2­8所示,则其解析式为________.图1­2­8f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2 [当0≤x ≤1时,设f (x )=kx ,又过点(1,2),故k =2,∴f (x )=2x ;当1<x <2时,f (x )=2;当x ≥2时,f (x )=3. 综上f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2.]5.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1.(1)画出f (x )的图象; (2)求f (x )的定义域和值域.【导学号:37102116】[解] (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x>1或x<-1时,f(x)=1,所以f(x)的值域为[0,1].。

高中数学 1.2.2函数的表示法教学设计2 新人教A版必修1

高中数学 1.2.2函数的表示法教学设计2 新人教A版必修1

1.2.2函数的表示法(2)(教学设计)教学目的:(1) 了解映射的概念及表示方法。

(2) 会利用映射的概念来判断“对应关系”是否是映射,感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的进一步认识。

教学重点:映射的概念教学难点:映射概念的理解教学过程:一、 复习回顾,新课引入1、 函数的常用表示法2、 分段函数分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,而不是几个函数;(2)分段函数的定义域是所有区间的并集,值域是各段函数值域的并集;(3)分段函数的求解策略:分段函数分段解。

3、复习初中常见的对应关系(1)对于任何一个实数a ,数轴上都有唯一的点P 和它对应。

(2)对于坐标平面内任何一个点A ,都有唯一的有序数对(x,y)和它对应。

(3)对于任意一个三角形,都有唯一确定的面积和它对应。

(4)班级的座位都有唯一的同学与之对应。

4、函数的定义设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数。

二、师生互动,新课讲解:函数是“两个数集间的一种确定的对应关系”.当我们将数集扩展到任意的集合时,就可以得到映射的概念. 例如,欧洲的国家构成集合A ,欧洲各国的首都构成集合B ,对应关系f :国家a 对应它的首都b .这样,对于集合A 中的任意一个国家,按照对应关系f ,在集合B 中都有唯一确定的首都与之对应.我们将对应B A f →:称为映射.一般地,我们有:映射定义:设A ,B 是两个非空集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有惟一确定的元素y 与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射(mapping),记作 :f A B →.练习 判断下列对应是不是从A 到B 的映射?解:图甲不是映射,因为集合A 中的一个元素对应了集合B 中的两个元素;图乙是映射,符合映射的定义;图丙是映射,虽然,集合B 中有的元素没有A 中的元素与之对应,但仍符合映射的定义;图丁不是映射,因为集合A 中的每一个元素都要对应集合B 中的元素,但是A 中的元素1,2--没有对应B 中的元素.说明:①函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射②这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.③“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。

高中数学 1.2.2第2课时分段函数及映射学案 新人教A版必修1-新人教A版高一必修1数学学案

高中数学 1.2.2第2课时分段函数及映射学案 新人教A版必修1-新人教A版高一必修1数学学案

第2课时 分段函数及映射[学习目标] 1.掌握简单的分段函数,并能简单应用.2.了解映射概念及它与函数的联系.[知识链接]1.函数的定义:设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .2.作函数的图象通常分三步,即列表、描点、连线. [预习导引] 1.分段函数在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数. 2.映射的概念映射的定义:设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.要点一 分段函数求值例1 已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f [f (-52)]的值;(2)若f (a )=3,求实数a 的值.解 (1)由-5∈(-∞,-2],-3∈(-2,2), -52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2(-3)=3-2 3.∵f ⎝ ⎛⎭⎪⎫-52=-52+1=-32,而-2<-32<2, ∴f [f (-52)]=f ⎝ ⎛⎭⎪⎫-32=⎝ ⎛⎭⎪⎫-322+2×⎝ ⎛⎭⎪⎫-32=94-3=-34.(2)当a ≤-2时,a +1=3, 即a =2>-2,不合题意,舍去.当-2<a <2时,a 2+2a =3,即a 2+2a -3=0. 所以(a -1)(a +3)=0,得a =1,或a =-3. ∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意. 当a ≥2时,2a -1=3,即a =2符合题意. 综上可得,当f (a )=3时,a =1,或a =2.规律方法 1.分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求值.2.已知分段函数的函数值求相对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验分段解析式的适用范围;也可先判断每一段上的函数值的范围,确定解析式再求解.跟踪演练1 已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <1,x -1,x >1,则f (2)等于( )A .0 B.13 C .1 D .2答案 C解析 f (2)=2-1=1. 要点二 分段函数的图象及应用例2 已知f (x )=⎩⎪⎨⎪⎧x 2-1≤x ≤1,1 x >1或x <-1,(1)画出f (x )的图象; (2)求f (x )的定义域和值域.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].规律方法 1.分段函数的解析式因其特点可以分成两个或两个以上的不同解析式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或几段线段或射线,而分段函数的定义域与值域的最好求法也是“图象法”.2.对含有绝对值的函数,要作出其图象,首先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数来画图象.3.画分段函数图象时还要注意端点是“实心点”还是“空心点”. 跟踪演练2 作出y =⎩⎪⎨⎪⎧-7,x ∈-∞,-2],2x -3,x ∈-2,5],7,x ∈5,+∞ 的图象,并求y 的值域.解 y =⎩⎪⎨⎪⎧-7,x ∈-∞,-2],2x -3,x ∈-2,5],7,x ∈5,+∞. 值域为y ∈[-7,7].图象如下图.要点三 映射的概念例3 以下给出的对应是不是从集合A 到集合B 的映射?(1)集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应;(2)集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;(3)集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;(4)集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.解 (1)按照建立数轴的方法可知,数轴上的任意一个点,都有唯一的实数与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有唯一的一个实数对与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射.(4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f :A →B 不是从集合A 到集合B 的一个映射.规律方法 映射是一种特殊的对应,它具有:(1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的;(2)唯一性:集合A 中的任意一个元素在集合B 中都有唯一元素关系,可以是:一对一,多对一,但不能一对多. 跟踪演练3 下列对应是从集合M 到集合N 的映射的是( )①M =N =R ,f :x →y =1x,x ∈M ,y ∈N ;②M =N =R ,f :x →y =x 2,x ∈M ,y ∈N ;③M =N =R ,f :x →y =1|x |+x,x ∈M ,y ∈N ;④M =N =R ,f :x →y =x 3,x ∈M ,y ∈N . A .①② B.②③ C.①④ D.②④ 答案 D解析 对于①,集合M 中的元素0在N 中无元素与之对应,所以①不是映射.对于③,M 中的元素0及负实数在N 中没有元素与之对应,所以③不是映射.对于②④,M 中的元素在N 中都有唯一的元素与之对应,所以②④是映射.故选D.1.下列集合A 到集合B 的对应中,构成映射的是( )答案 D解析 在A 、B 选项中,由于集合A 中的元素2在集合B 中没有对应的元素,故构不成映射,在C 选项中,集合A 中的元素1在集合B 中的对应元素不唯一,故构不成映射,只有选项D 符合映射的定义,故选D. 2.函数y =|x |的图象是( )答案 B解析 ∵y =|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0, ∴B 选项正确.3.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤12x,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 ∵f (3)=23,∴f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.4.设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0.若f (α)=4,则实数α等于( )A .-4或-2B .-4或2C .-2或4D .-2或2 答案 B解析 当α≤0时,f (α)=-α=4,∴α=-4; 当α>0时,f (α)=α2=4,∴α=2或-2(舍去).5.某客运公司确定车票价格的方法是:如果行程不超过100千米,票价是每千米0.5元;如果超过100千米,超过部分按每千米0.4元定价,则客运票价y (元)与行程x (千米)之间的函数关系式是________.答案 y =⎩⎪⎨⎪⎧0.5x ,0≤x ≤10010+0.4x ,x >100解析 由题意得,当0≤x ≤100时,y =0.5x ;当x >100时y =100×0.5+(x -100)×0.4=10+0.4x .1.对映射的定义,应注意以下几点:(1)集合A 和B 必须是非空集合,它们可以是数集、点集,也可以是其他集合. (2)映射是一种特殊的对应,对应关系可以用图示或文字描述的方法来表达. 2.理解分段函数应注意的问题:(1)分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域”的并集.写定义域时,区间的端点需不重不漏.(2)求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式.(3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象.一、基础达标 1.以下几个论断①从映射角度看,函数是其定义域到值域的映射; ②函数y =x -1,x ∈Z 且x ∈(-3,3]的图象是一条线段;③分段函数的定义域是各段定义域的并集,值域是各段值域的并集; ④若D 1,D 2分别是分段函数的两个不同对应关系的值域,则D 1∩D 2=∅. 其中正确的论断有( )A .0个B .1个C .2个D .3个 答案 C解析 函数是特殊的映射,所以①正确;②中的定义域为{-2,-1,0,1,2,3},它的图象是直线y =x -1上的六个孤立的点;因此②不正确;由分段函数的概念可知③正确,④不正确.2.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-100 答案 A解析 ∵f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,∴f (-7)=10.f [f (-7)]=f (10)=10×10=100.3.函数f (x )=x +|x |x的图象是( )答案 C 解析 f (x )=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0,画出f (x )的图象可知选C.4.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为( ) A .(1,3) B .(1,6) C .(2,4) D .(2,6) 答案 A 解析 由题意得⎩⎪⎨⎪⎧x +y =4,x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =3.5.设f :x →ax -1为从集合A 到B 的映射,若f (2)=3,则f (3)=________. 答案 5解析 由f (2)=3,可知2a -1=3,∴a =2, ∴f (3)=3a -1=3×2-1=5.6.函数f (x )=⎩⎪⎨⎪⎧x 2+1x ≥0,2-x -2≤x <0的值域是________.答案 [1,+∞)解析 当x ≥0时,f (x )≥1, 当-2≤x <0时,2<f (x )≤4,∴f (x )≥1或2<f (x )≤4,即f (x )的值域为[1,+∞).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f [f (2)]的值; (2)若f (x 0)=8,求x 0的值. 解 (1)∵0≤x ≤2时,f (x )=x 2-4, ∴f (2)=22-4=0,f [f (2)]=f (0)=02-4=-4.(2)当0≤x 0≤2时, 由x 20-4=8, 得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4. ∴x 0=4. 二、能力提升 8.已知f (x )=⎩⎪⎨⎪⎧x -5,x ≥6,fx +2, x <6,则f (3)为( )A .2B .3C .4D .5 答案 A解析 f (3)=f (3+2)=f (5),f (5)=f (5+2)=f (7),∴f (7)=7-5=2.故f (3)=2.9.已知函数f (x )的图象是两条线段(如图所示,不含端点),则f [f ⎝ ⎛⎭⎪⎫13]等于( )A .-13 B.13C .-23 D.23答案 B解析 由图可知,函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x -1,0<x <1,x +1,-1<x <0,∴f ⎝ ⎛⎭⎪⎫13=13-1=-23,∴f [f ⎝ ⎛⎭⎪⎫13]=f ⎝ ⎛⎭⎪⎫-23=-23+1=13.10.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1, 则f ⎝⎛⎭⎪⎫1f 2的值是________.答案1516解析 f (2)=22+2-2=4,∴1f 2=14, ∴f ⎝⎛⎭⎪⎫1f 2=f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516.11.已知函数y =|x -1|+|x +2|. (1)作出函数的图象; (2)写出函数的定义域和值域.解 (1)首先考虑去掉解析式中的绝对值符号,第一个绝对值的分段点x =1,第二个绝对值的分段点x =-2,这样数轴被分为三部分:(-∞,-2],(-2,1],(1,+∞), 所以已知函数可写为分段函数形式:y =|x -1|+|x +2|=⎩⎪⎨⎪⎧-2x -1 x ≤-2,3 -2<x ≤1,2x +1 x >1.在相应的x 取值范围内,分别作出相应函数的图象,即为所求函数的图象,如图.(2)根据函数的图象可知:函数的定义域为R ,值域为[3,+∞). 三、探究与创新12.“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应交的水费y (单位:元).解 由题意知,当0<x ≤5时,y =1.2x , 当5<x ≤6时,y =1.2×5+(x -5)×1.2×2=2.4x -6.当6<x ≤7时,y =1.2×5+(6-5)×1.2×2+(x -6)×1.2×4=4.8x -20.4.所以y =⎩⎪⎨⎪⎧1.2x ,0<x ≤5,2.4x -6,5<x ≤6,4.8x -20.4,6<x ≤7.13.如图所示,在边长为4的正方形ABCD 边上有一点P ,由点B (起点)沿着折线BCDA ,向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数解析式.解 当0≤x ≤4时,S △APB =12×4x =2x ;当4<x ≤8时,S △APB =12×4×4=8;当8<x ≤12时,S △APB =12×4×(12-x )=24-2x .∴y =⎩⎪⎨⎪⎧2x 0≤x ≤4,8 4<x ≤8,24-2x 8<x ≤12.。

高中数学 第一章1.2.2 函数的表示法(第2课时)学案 新人教A版必修1

高中数学 第一章1.2.2 函数的表示法(第2课时)学案 新人教A版必修1

高中数学第一章1.2.2 函数的表示法(第2课时)学案新人教A版必修1目标要求1.通过具体实例,了解简单的分段函数,并能简单应用。

2.了解映射的概念。

热点提示分段函数求值是本课时的一个重点考查内容,通过分段函数的学习体会分类讨论的思想。

基础梳理1.分段函数如果函数y=ƒ(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考讨论»分段函数是一个函数还是几个函数?其定义域、值域各是什么?2.映射设A、B是两个的集合,如果按某一个确定的对应关系ƒ,使对于集合A中的元素x,在集合B中都有的元素y与之对应,那么就称对应为从集合A到集合B的一个映射。

思考讨论»函数是映射吗?自测自评1.设函数ƒ(x)=1xx⎧-⎪⎨-⎪⎩(1)(1)xx≥<,则ƒ(ƒ(1))= ()(A)0 (B)1 (C)2 (D)32.已知集合A={a,b},B={0,1},则下列对应不是从A到B的映射是()3.函数y=∣x-1∣,x∈[-1,4],则些函数的值域为。

4.在映射ƒ:A→B中,A=B={(x,y)∣x,y∈R},且ƒ:(x,y)→(x-y,x+y),则与A中的元素(-1,2)对应的B 中的元素为 。

5.作出函数ƒ(x )=11⎧⎨-⎩ (0,)(,0)x x ∈+∞∈-∞的图象。

【例1】(2009·杭州第一检测)已知ƒ(x )=10x +⎧⎪π⎨⎪⎩(0)(0)(0)x x x >=<,求ƒ(ƒ(ƒ(-3)))。

【思路点拨】由题目可获取以下主要信息:① 函数ƒ(x )是分段函数;② 本例是求值问题。

解答本题需确定ƒ(ƒ(-3))的范围,为此又需确定ƒ(-3)的范围,然后根据所在定义域代入相应解析式逐步求解。

【互动探究】题设条件不变,若ƒ(a )=2,求a 的值。

【例2】(12分)(2009·徐州高一检测)已知函数ƒ(x )=1+2x x ||-(-2<x ≤2). (1) 用分段函数的形式表示该函数;(2) 画出该函数的图象;(3) 写出该函数的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 分段函数学习目标:1.了解分段函数的概念,会求分段函数的函数值,能画出分段函数的图象.(重点,难点)2.能在实际问题中列出分段函数,并能解决有关问题.(重点、难点)3.通过本节内容的学习,使学生了解分段函数的含义,提高学生数学建模、数学运算的能力.(重点)[自 主 预 习·探 新 知]分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数对于自变量x 的不同取值区间对应关系不同,那么分段函数是一个函数还是几个函数?分段函数的定义域和值域分别是什么?[提示] 分段函数是一个函数,而不是几个,各段定义域的并集即为分段函数的定义域,各段值域的并集即为分段函数的值域.[基础自测]1.思考辨析(1)分段函数由几个函数构成.( )(2)函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤1,-x +3,x >0是分段函数.( )(3)函数f (x )=|x |可以用分段函数表示( ) [答案] (1)× (2)× (3)√ 2.f (x )=|x -1|的图象是( )B [∵f (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,当x =1时,f (1)=0,可排除A ,C.又x =-1时,f (-1)=2,排除D.]3.函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤1,-x +3,x >1,则f (f (4))=________.【导学号:37102111】0 [∵f (4)=-4+3=-1,f (-1)=-1+1=0, ∴f (f (4))=f (-1)=0.]4.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3]B [当0≤x ≤1时,0≤2x ≤2,即0≤f (x )≤2;当1<x <2时,f (x )=2;当x ≥2时,f (x )=3.综上可知f (x )的值域为[0,2]∪{3}.][合 作 探 究·攻 重 难]分段函数的求值问题已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫-52的值; (2)若f (a )=3,求实数a 的值.【导学号:37102112】[解] (1)由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2×(-3)=3-2 3.∵f ⎝ ⎛⎭⎪⎫-52=-52+1=-32, 而-2<-32<2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-32=⎝ ⎛⎭⎪⎫-322+2×⎝ ⎛⎭⎪⎫-32=94-3=-34.(2)当a ≤-2时,a +1=3, 即a =2>-2,不合题意,舍去.当-2<a <2时,a 2+2a =3,即a 2+2a -3=0. ∴(a -1)(a +3)=0,解得a =1或a =-3. ∵1∈(-2,2),-3(-2,2),∴a =1符合题意. 当a ≥2时,2a -1=3,即a =2符合题意. 综上可得,当f (a )=3时,a =1或a =2.1.函数f (x )=⎩⎪⎨⎪⎧x -3,x ≥10,f f x +,x <10,则f (7)=________.8 [∵函数f (x )=⎩⎪⎨⎪⎧x -3,x ≥10,f f x +,x <10,∴f (7)=f (f (12))=f (9)=f (f (14))=f (11)=8.]分段函数的解析式如图1­2­7所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 关于x 的函数解析式,并画出大致图象.【导学号:37102113】图1­2­7思路探究:可按点E 所在的位置分E 在线段AB ,E 在线段AD 及E 在线段CD 三类分别求解.[解] 过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H . 因为四边形ABCD 是等腰梯形,底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm , 又BC =7 cm ,所以AD =GH =3 cm.(1)当点F 在BG 上,即x ∈[0,2]时,y =12x 2;(2)当点F 在GH 上,即x ∈(2,5]时,y =x +x -22×2=2x -2;(3)当点F 在HC 上,即x ∈(5,7]时,y =S 五边形ABFED =S 梯形ABCD -S Rt△CEF =12(7+3)×2-12(7-x )2=-12(x -7)2+10.综合(1)(2)(3),得函数的解析式为y =⎩⎪⎨⎪⎧12x 2,x ∈[0,2],2x -2,x,5],-12x -2+10,x ,7].图象如图所示.[跟踪训练]2.某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.[解] 设票价为y 元,里程为x 公里,定义域为(0,20]. 由题意得函数的解析式如下:y =⎩⎪⎨⎪⎧2,0<x ≤5,3,5<x ≤10,4,10<x ≤15,5,15<x ≤20.函数图象如图所示:分段函数的图象及应用 [探究问题]1.函数f (x )=|x -2|能用分段函数的形式表示吗?能否作出其图象?提示:能.f (x )=⎩⎪⎨⎪⎧x -2,x ≥2,2-x ,x <2.函数f (x )的图象如图所示.2.结合探究点1,你能说一下画含有绝对值的函数图象的方法吗?提示:含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示f (x ); (2)画出f (x )的图象; (3)写出函数f (x )的值域.思路探究:(1)分-2<x <0和0≤x ≤2两种情况讨论,去掉绝对值可把f (x )写成分段函数的形式; (2)利用(1)的结论可画出图象;(3)由(2)中得到的图象,找到图象最高点和最低点的纵坐标,可得值域. [解] (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x , ∴f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).,+∞). [当 堂 达 标·固 双 基]1.下列图形是函数y =x |x |的图象的是( )【导学号:37102114】A B C DD [∵f (x )=x |x |=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,∴图象D 符合.]2.已知f (x )=⎩⎪⎨⎪⎧1-x ,x ≤1,x ,1<x <2,则f (x )的定义域为( )A .RB .(-∞,1]C .(-∞,2)D .(1,+∞)C [f (x )的定义域为(-∞,1]∪(1,2)=(-∞,2).]3.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( )【导学号:37102115】A.15 B .3 C.23D.139D [∵f (3)=23≤1,∴f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.] 4.函数y =f (x )的图象如图1­2­8所示,则其解析式为________.图1­2­8f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2 [当0≤x ≤1时,设f (x )=kx ,又过点(1,2),故k =2,∴f (x )=2x ;当1<x <2时,f (x )=2;当x ≥2时,f (x )=3. 综上f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2.]5.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1.(1)画出f (x )的图象; (2)求f (x )的定义域和值域.【导学号:37102116】[解] (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x>1或x<-1时,f(x)=1,所以f(x)的值域为[0,1].。

相关文档
最新文档