1.2.1有理数
数学人教版(2024)7年级上册 1.2.1 有理数的概念 教案02
第一章有理数1.2.1 有理数的概念0.3…负分数:如-52,-23,-17, -0.5, -150.5,… 引导:0.1=110,-0.5=−12, 0.3 = 13 ,事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。
指出:正分数、负分数统称为分数。
想一想:整数能化成分数吗?预设:2=21, 3=31,…正整数可以写成正分数的形式-2=−21, -3=−31,…负整数可以写成负分数的形式0=01,0也可以写成分数的形式 整数可以写成分数的形式指出:可以写成分数形式的数称为有理数。
可以写成正分数形式的数为正有理数,可以写成负分数形式的数为负有理数。
思考:你能试着对有理数进行分类吗?预设:有理数的分类(整分性):有理数的分类(正负性):例1:指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:13,4.3,−38,8.5%,-30,-12%, 19 ,-7.5,20,-60,1.2解:正有理数:13,4.3, 8.5%, 19 ,20,1.2;其中正整数有13,20。
负有理数: −38, -30,-12%, -7.5,-60 ; 其中负整数有-30,-60。
例2:下列说法中,正确的是( ). A .在有理数中,0的意义仅仅表示没有 B .一个有理数,它不是正数就是负数 C .正有理数和负有理数组成有理数 D .0是自然数 答案:D强调:在有理数概念中,“0”很特殊: (1)0既不是正数,也不是负数; (2)0是整数,不是分数; (3)0既是非正数,又是非负数. 活动意图说明:【解析】本题主要考查了有理数的分类,理解有理数的相关定义是解题的关键.先根据正数的定义判断A 的正误,再根据非负数是正数或0判断B 的正误;再根据有理数也可分成整数和分数判断C ,D 的正误即可解答.解:A .由50%,1,2.5是正数,故正确,符合题意; B .由−2,−4为负数,故错误,不符合题意; C .1为整数,故错误,不符合题意; D .因为112是分数,故错误,不符合题意. 故选:A .【综合拓展类作业】5.如图,把下列各数填入相应的各圈里. 100,−99%,0,−2000,5.2,6,−0.3,116,−53【答案】见解析【解析】本题考查了有理数的分类,根据有理数的分类,即可求解. 解:整数为:100,0,−2000,6; 负数为:−99%,−2000,−0.3,−53; 则负整数为:−2000;本节课的主要内容是让学生明确有理数的概念,并能对有理数进行正确。
1.2.1 有理数
探究新知
素养考点 1 有理数分类的能力
1.2 有理数
例1 下列说法: ①0是整数; ③4.2不是正数;
② 2 1 是负分数;
3
④自然数一定是正数;
⑤负分数一定是负有理数.
其中正确的有( C )
A.1个 B.2个
C.3个
D.4个
巩固练习
1.2 有理数
1.下面关于“0”的说法正确的是 ( C ) A.是正数,也是有理数 B.是整数,但不是自然数 C.不是正数,但是自然数 D.不是整数,但是有理数 2.如果一个数不是负数,那么这数可能_正__数__或__零___. 3.如果一个数不是正数,那么这个数可能是__负__数__或__零__.
课堂检测
拓广探索题
1.2 有理数
其中8名男生的成绩如下:+2,-5,0,-2, +4,-1,-1,+3.
解:(1)4 100%=50%,达到标准的男生占
8
50%. (2)2-5+0-2+4-1-1+3+8×10 = 80
(个),他们共做了80个引体向上.
课堂小结
1.2 有理数
1.到现在为止,我们学过的数(π 除外)都是有理数.
A.-1
B.0
C.12
D.1
2. 四个数-3, 0, 1, 2,其中负数是( A )
A. -3
B. 0
C. 1
D. 2
课堂检测
基础巩固题
1. 下列说法中,正确的是( B ) A. 正整数、负整数统称为整数 B. 正分数、负分数统称为分数 C. 零既可以是正整数,也可以是负整数 D. 一个有理数不是正数就是负数
例2 把下列各数填在相应的集合中:
-3, + 1 ,0, 4,,+2.12,-0.65,+300%,-0.6易,错22提. 醒
1.2.1 有理数的概念 课件 2024—2025学年人教版数学七年级上册
事实上,有限小数和无限循环小数都可以化为分数,因此
它们也可以看成分数.
探究新知
整数2,-3,0能否也写成分数的形式?
2
2=
1
3
3
1
整数也可以写成分数的形式.
0
0=
1
有理数
有理数:
形如 (p,q是整数, ≠ 0)
可以写成分数形式的数称为有理数.
其中,可以写成正分数形式的数为正有理数;
15
,200%等能约分成整数的数不能算作分数.
3
3、如
有理数的分类
有理数按定义分类如下:
有理数
正整数
整数 零
负整数
分数
正分数
负分数
注意: ①分类的标准不同,结果也不同;
②分类的结果应无遗漏、无重复;
③零是整数,但零既不是正数,也不是负数.
有理数的分类
有理数按符号(正、负)分类如下:
正整数
正有理数
2022中,正有理数的个数为
为
2
为 2
;负有理数的个数为
.
,其中正整数的个数
5
4
,其中负整数的个数
练习
5、下列说法中,正确的有( C )
①0是整数;
1
②−2 是负分数;
3
③4.2不是正数;
④自然数一定是正数;
⑤负分数一定是负有理数.
A.1个
B.2个
C.3个
D.4个
练习
6、填一填:
负分数
(1)既是分数又是负数的数是_________;
…}
9
练习
课本 第8页 练习 第2题
3、指出下列各数中的正有理数、负有理数、整数;
1.2.1有理数的分类
整数
分
分数 有限小数
小数 无限小数
数 形 无限循环小数 式
无限不循环小数
有理数
2.101001000100001…
有理数还可以分为: 正有理数
有理数 ___0___
数
负有理数
_正__整__数_ 正__分__数__
负__整__数__ _负__分__数_
无限不循环小数 正数和正有理数有什么区别呢?
则该股票上涨的是星期 一、二、四
,
每股最高价格是在星期 四 ,是 31.09 元。
每股最低价格是在星期 一 ,是 30.4 元。
2、粮食每袋标准重量是50千克,先测得甲、乙、 丙三袋粮食重量如下:52千克,49千克,49.8千 克,如果超重部分用正数表示,请用正数和负数 记录甲、乙、丙三袋粮食的超重数和不足数;
例7、下图中的两个圆分别表示正数集合和分数 集合,请你在每个圆中及它们重叠的部分各填 入3个数;
正数集合 分数集合
例8、观察下列各组数,请找出它们的规律,
并在横线上填上相应的数字;
(1) 2, 0, 2, 4,_6__,_8__;
(2) 1,
1 2
,
2 3
,
3 4
,
4 5
,
5 6
,
6;
7
(3)1, 0, 1, 0,1, 0, 1, 0,_1__,_0__,_-_1_,_0__;
探究活动
摩托车厂本周计划每天生产250辆摩托车,由于 工人实行轮休,每天上班的人数不一定相等,实际 每天生产量(与计划量相比)的增长值如下表:
星期 一 二 三 四 五 六 日
增减 -5 +7 -3 +4 +10 -9 -25
1.2.1 有理数(学生版)
1.2 有理数1.2.1有理数知识点1:有理数的概念1.概念:有理数也叫可比数,是指能够写成两个整数比的比例数。
因而,整数和分数统称有理数.2.整数: 正整数、零和负整数统称为整数。
自然数:正整数和零。
3.分数:正分数和负分数统称为分数。
⎧⎪⎧⎨⎨⎪⎩⎩有限小数小数无限循环小数无限小数无限不循环小数 注意:有限小数和无限循环小数都可以化为分数,它们都是有理数。
例:0.333……可以化为.知识点2:有理数的分类知识点3:四非数①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数考点梳理·新认知考点1 有理数的辨别例1在-,π,0,-0.74四个数中,有理数的个数是()A.1B.2C.3D.4总结:1.整数和分数统称为有理数.凡是能写成(p,q为整数,且q≠0)形式的数,都是有理数.2.有限小数与无限循环小数都能表示成分数形式,无限不循环小数不是有理数,如π不是有理数.考点2 有理数的分类例2把下列各数填在相应的集合中:-7,3.5,-3.14,0,1713,0.03%,-314,10.自然数集合:{ …};整数集合:{ …};负数集合:{ …};正分数集合:{ …};正有理数集合:{ …}.总结:对有理数进行分类,首先要理解以下数的概念:1.正数:像3,1.8%,3.5这样大于0的数叫做正数.正数的前面可以加上正号(即加号)“+”来表示2.负数:在正数前加上“-”的数叫做负数;3.整数:像-2,-1,0,1,2这样的数叫做整数;4.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.考点3 带非字的数例3﹣5,0,﹣3.14,,﹣12,0.1010010001…,+1.99,﹣(1)非负数集合:{ …}(2)非负整数数集合:{ …}(3)非正数集合:{ …}(4)非正整数数集合:{ …}总结:1.有理数分为正数、0和负数三类,正数和0统称非负数;负数和0统称非正数.2.一个数不是0,则它可能是正数或负数;若一个数不是正数,则它可能是负数或者0;若一个数不是负数,则它可能是正数或者0.基础训练1.下列各数:-1,,4.112134,0,,3.14,其中有理数有()A.6个B.5个C.4个D.3个2.在下列数,,2.010010001…,25%,3.1415926,0,…中,属于分数的有()A.2个B.3个C.4个D.5个3.下列表述中,正确的是()A.有理数有最大的数,也有最小的数B.有理数有最大的数,但没有最小的数C.有理数有最小的数,但没有最大的数D.有理数既没有最大的数,也没有最小的数4.下列说法正确的是()A.一个有理数不是整数就是分数B.正整数和负整数统称为整数C.正整数、负整数、正分数、负分数统称为有理数D.0不是有理数5.下列说法:①-2.5既是负数、分数,也是有理数;②-7既是负数也是整数,但不是自然数;③0既不是正数也不是负数;④0是非负数.其中正确的个数是()A.1 B.2 C.3 D.46. 把下列各数填在相应的大括号内:5,7-8,-10,0,2.4,+3,227,-3.01.正数集合{…};非负数集合{…};整数集合{…};负分数集合{…}.能力晋升1.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、ba、b的形式,则b的值为()A.0 B.-1 C.1 D.22.下列判断正确的个数是()①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正数就是负数④一个分数不是正数就是负数⑤一个偶数不是正偶数就是负偶数A.1 B.2 C.3 D.43. 在有理数集合中,最小的正整数是,最大的负整数是.4. 在-2,1.5,+,0,27,100,-2.1,18,-,-30中,是非负整数的是.5. 在-2,5,-,0.63,0,7,-0.05,-6,9,,,1中,正分数有个,负分数有个,自然数有个,整数有个.6.把下列各数分别填入相应的集合内:-2,-3.14,0.3,0,,,-0.1212212221….(1)正数集合:{ };(2)负数集合:{ };(3)分数集合:{ };(4)有理数集合:{ }.同步检测·新导向1.(2019•武汉模拟)下列各数中,属于正有理数的是()A.π B.0 C.-1 D.22.(2019•沙坪坝区校级模拟)下列四个数中,是正整数的是()A.-2 B.-1 C.1 D.1 23.(2019•渝中区校级模拟)下列各数中是负整数的是()A.-2 B.5 C.12D.2-54.(2018秋•沈河区期末)在-4,227,0,2,3.14159,1.3,0.1010010001…有理数的个数有()A.2个B.3个C.4个D.5个5.(2018秋•卢龙县期末)下列说法正确的是()A.0是最小的有理数B.一个有理数不是正数就是负数C.分数不是有理数D.没有最大的负数6.(2018秋•门头沟区期末)在有理数-0.2,-3,0,132,-5,1中,非负整数有.7.(2018秋•仪征市期中)有三个有理数,分别是-1、a、a+b,或者写成0、-ba、b,那么数b的值是.8.(2018秋•武邑县校级月考)在数1-13,20%,227,0.3,0,-1.7,21,-2,1.0101001…,+6,π中,分数有个.。
1.2.1有理数的概念(RJ版)
7 , 3.8,0,1 1 ,19,0.04, 56.
9
2
A.正整数集合:{0,+56,…}
B.负数集合:{ 3.8,1 1 ,19,…}
C.非负数集合:{
7
2 ,0,0.04,
56
,…}
9
D.小数集合:{-3.8,0.04,…}
课堂小结
1.学完本节内容你的收获是什么?
有理数
整数 分数
正整数 零
例题讲解
例1.指出下列各数中的正有理数、负有理数,并分别指出其中 的正整数、负整数:
13,4.3,
3,8.5%,
30,12%,1
,
7.5,20,
•
60,1. 2 .
8
9
解:正有理数:13,4.3,8.5%,1
,20,1.
•
2
.
9
其中正整数有13,20.
负有理数: 3, 30,12%, 7.5, 60. 8
课堂练习
1.下列各数中,正整数是( A )
A.3 B.2.1 C.0
D.-2
2.在数0,2,-3,-1.2中,属于负整数的是( C ) A.0 B.2 C.-3 D.-1.2
3.在-1,0,1,2这四个数中,既不是正数也不是负数的是( B ) A.-1 B.0 C.1 D.2
4.把下列各数填在相应的大括号里,填写正确的是( B )
获取新知
探究点1 整数的概念
正整数:如1,2,3,…; 0; 负整数:如-1,-2,-3,…. 正整数、0、负整数统称为整数.
整数可以写成 分数形式
获取新知
探究点2 分数的概念
正分数:
1
,2
,15
新人教部编版初中七年级数学上册1.2.1 有理数
5
详细答案 点击题序
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
1.0 是( C ) A.正有理数 B.负有理数 C.整数 D.以上都不是 2.在数 0,2,-3,-1.2 中,属于负整数的是( C ) A.0 B.2 C.-3 D.-1.2
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
于有理数. (3)习惯上常把正数和0统称为非
负数,把正整数和0统称为非负整数.
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
例 (教材 P7 练习 T2 变式)把下列各数填在相应集
合的大括号里:13,-2,+1,1 ,-1.5,0,0.3, 2
21 ,-4 2 .
3
3
分析:按照有理数的两种分类将各数分别填入相应
的集合中.
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
正数集合
13, +1,
1, 0.3, 2
21 3
…;
负数集合
2,
1.5,
42 3
…;
整数集合 13, 2,+1, 0 …;
正分数集合
1, 0.3, 2 1
2
3
…;
负分数集合
1.5,
4 2 3
….
长冲中学-“四学一测”活力课堂
整数 0
按数的构
负整数(如 2, 6)
成分类
分数
正分数 负分数
如 如
7 22
,0.1
2.5, 3 4
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
分类
1.2.1有理数解析
3.关于-3.271,下列说法不正确的是( C )
A.是负数,不是整数
B.是分数,不是自然数
C.是有理数,不是分数
D.是负有理数且是负分数
七年级(上)人民教育·数学
4.下列各数一定是有理数的是( D )
A.π
B.a
C.a+2
5.最小的正整数是( C )
A.-1
B.0
C.1
6.(1)是正数而不是整数的有理数是
43
6
七年级(上)人民教育·数学
8.把下列各数填在相应的括号内:
-27,3.3,13,-1.2,0.001,3.14159,0,+7,22 .
7
正整数集合:{ 13,+7
正分数集合:{ 3.3,0.001,3.14159,22
非负数集合:{ 3.3,13,0.001,3.141597,0,+7,22
43
6
解:属于正数的有:5,3 ,5.7,101;
4
属于负数的有:-2,-0.3,- 2 ,-1 1 ,-17;
36
属于整数的有:5,-2,101,-17,0;
属于分数的有:-0.3,3 ,- 2 ,5.7,-1 1 ;
43
6
属于有理数的有:5,-2,-0.3,3 ,- 2 ,5.7,-1 1 ,101,-17,0.
,
3,
36 9
,
0.1,1,
3
102
,
9
2
;
负整数集合{-22 }.
规律总结:正确理解有理数的概念,按要求分类.
七年级(上)人民教育·数学
●跟踪训练
2.下列说法正确的是( A )
A.一个有理数不是整数就是分数
1.2.1_有理数_课件1--171717
正整数集 整数集
课 堂 小 结
这节课我们的收获:
1、有理数的概念。 2、有理数的分类。 3、数学方法:分类思想。
P14
1, 2
是整数;
3 是分数; 5
上面所给的数都是有理数。
探究有理数的分类(二)
小组 探究
古丽在做第1题时,发现了新的分类方法,她 认为:带“+”的数分为一类,带“-”的数 分为一类,数的前面没有符号的作为一类. 你认为她的分类方法对吗?若不对,你发现 什么新的分类方法吗?
小组讨论,合作完成讨论题,集中交流,形成正确分类方法,学生 画出分类示意图
1
2
3
4
5
如果按性质(正数、负数)来分类 又该怎样来分呢?
正有理数
正整数 正分数
正数集合
有理数
零
负整数
负有理数
负数集合
负分数
把所有的正数组成的集合叫正数集合。
知 识 应 用
例2、把下列各数填入相应的集 合内。
12/7,-3.1416,0,2008,-8/5, -0.23456,10%,10.1,0.67,-89
负整数{ 正分数{ 负分数{ 正有理数{ 负有理数{
}; }; }; }; }; };
2.图中两个圆圈分别表示正数集和整数集, 22 请把 18, , 3.14, 6, 0,
7 3 2001, , 2, 95% 5
填入相应的集合,你能说出这两个圆 圈重叠部分表示什么数的集合吗?
正数集
⑦
1 4
④
⑧ ② ③
1 , 2
Hale Waihona Puke 1.5, 5 ,2
①
例1 下列给出的各数,哪些是正数?哪些是负数?
121 有理数(解析版)
1.2.1有理数知识点一:有理数的概念 题型一:有理数的概念【例题1】(2020·浙江杭州市·七年级期末)在下列各数中,负分数有( )1-, 3.141559-,2,13-,13,0,12,5%-,34A .1个B .2个C .3个D .4个 【答案】C【分析】根据负分数的意义,可得答案.【详解】解:负分数有: 3.141559-,13-,5%-,共3个, 故选:C .【点睛】本题考查了有理数,熟记有理数的分类是解题关键.变式训练 知识点管理 归类探究 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
【变式1-1】(2020·四川省射洪县射洪中学外国语实验学校七年级月考)下列说法正确的是( ) A .正数和负数统称为有理数B .正整数包括自然数和零C .零是最小的整数D .非负数包括零和正数 【答案】D【分析】按照有理数的分类进行选择.【详解】解:A 、正数、负数和零统称为有理数;故本选项错误;B 、零既不是正整数,也不是负整数;故本选项错误;C 、零是最小是自然数,负整数比零小;故本选项错误;D 、非负数包括零和正数;故本选项正确;故选:D .【变式1-2】(2019·海南鑫源高级中学七年级期中)某人的身份证是 469003************ ,则这个人出生的年、月、日是_____【答案】2007年12月01日【分析】根据题意可直接进行求解.【详解】解:由某人的身份证是 469003************ ,则这个人出生的年、月、日是2007年12月01日;故答案为2007年12月01日.【点睛】本题主要考查有理数的意义,熟练掌握有理数的意义是解题的关键.【变式1-3】(2021·江苏镇江市·七年级期末)下列各数:﹣1,2 ,1.01001…(每两个1之间依次多一个0),0,227,3.14,其中有理数有_____个. 【答案】4.【分析】根据有理数的定义逐一判断即可.【详解】解:在所列实数中,有理数有﹣1、0、227、3.14, 故答案为:4.【点睛】本题考查了有理数,掌握有理数的概念是解题的关键.知识点二:有理数的分类题型二:有理数分类【例题2】20.(2021·全国七年级专题练习)把下列各数填入它所属的括号内:15,−19,-5,512,0,-5.32,37%(1)分数集合{ …};(2)整数集合{ …}.【答案】(1)分数集合{−19,512,-5.32,37%…};(2)整数集合{15,-5,0,…}. 【分析】(1)按照有理数的分类找出分数即可;(2)按照有理数的分类找出整数即可.【详解】解:(1)分数集合{−19,512,-5.32,37%…}; (2)整数集合{15,-5,0,…}.【点睛】本题考查了有理数的分类,解题关键是明确分数和整数的定义,准确进行分类.变式训练【变式2-1】(2020·浙江七年级单元测试)把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3-,①5+,①20%,①0,①27-,①7-,①3--∣∣,①( 1.8)-- 正数集合{ }整数集合{ }分数集合{}有理数集合{}【答案】见解析【分析】根据有理数的分类填空.【详解】解:-|-3|=-3,-(-1.8)=1.8.正数集合{①①①}整数集合{①①①①}分数集合{①①①①}有理数集合{①①①①①①①①}.【点睛】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.【变式2-2】(2020·贵阳市清镇养正学校七年级月考)下列语句中正确的有()① 所有整数都是正数;① 所有正数都是整数;① 自然数都是正数;① 分数是有理数;① 在有理数中除了正数就是负数.A.1个B.2个C.3个D.4个【答案】A【分析】根据有理数的分类及相关概念可直接进行排除选项.【详解】解:①所有整数都是正数,错误,比如-1;①所有正数都是整数,错误,比如0.5;①自然数都是正数,错误,比如0;①分数是有理数,正确;①在有理数中除了正数就是负数,错误,还有零;①正确的有一个;故选A.【变式2-3】(2021·全国七年级专题练习)把下列各数分别填在相应的大括号里.13,3.1415,﹣31,﹣21%,13,0,﹣0.216,﹣2020整数:{…};正整数:{…};负分数:{…};负整数:{…}.【答案】13,﹣31,0,﹣2020;13;﹣21%,﹣0.216;﹣31,﹣2020【分析】依题意,根据整数、正整数、负分数、负整数的定义把有关的数填入相应的集合即可.【详解】由题知:整数:{13,﹣31,0,﹣2020…};正整数:{13…};负分数:{﹣21%,﹣0.216…};负整数:{﹣31,﹣2020…}.故填:13,﹣31,0,﹣2020;13;﹣21%,﹣0.216;﹣31,﹣2020.【点睛】本题考查对数的分类,难点在熟练的理解数分类之间依据【例题3】(2020·广东珠海市·梅华中学七年级期中)在5-,2.3,0,π,123-五个数中,非负的有理数共有( ).A .1个B .2个C .3个D .4个 【答案】B【分析】找出五个数中的非负有理数即可.【详解】在5-,2.3,0,π,123-五个数中,非负的有理数有:2.3,0共两个. 故选:B .【点睛】本题考查了有理数,熟练掌握非负有理数的定义是解本题的关键.变式训练【变式3-1】(2020·宁津县育新中学七年级期中)已知下列各数-8, 2.1,19, 3, 0,﹣2.5, 10, -1中,其中非负数的个数是( )A .2个B .3个C .4个D .5个 【答案】D【分析】非负数包括正数和0,选出即可.【详解】解:非负数有2.1,19,3,0,10,共5个, 故选:D .【点睛】本题考查了有理数,正数、负数,能理解非负数的意义是解此题的关键,注意:非负数包括正数和0.【变式3-2】(2019·海南鑫源高级中学七年级期中)在数-23,5,23,0,4,35,5.2中,是整数的_____;非正数集合____【答案】-23,5,0,4, -23,0【分析】整数和分数统称为有理数,整数包含正整数、0、负整数;比0大的数是正数,非正数即0与负数,据此解题.【详解】解:在数-23,5,23,0,4,35,5.2中,整数的有:-23,5,0,4;非正数的有:-23,0,故答案为:-23,5,0,4;-23,0.【点睛】本题考查有理数的分类、带“非”字的有理数等知识,是重要考点,难度较易,掌握相关知识是解题关键.【变式3-3】知识点三:0表示的意义【例题4】(2021·四川成都市·七年级期中)零一定是()A.整数B.负数C.正数D.奇数【答案】A【分析】0是介于-1和1之间的整数,既不是正数也不是负数,0可以被2整除,所以0是一个特殊的偶数.【详解】0是介于-1和1之间的整数,既不是正数也不是负数,0可以被2整除,所以0是一个特殊的偶数,只有A选项符合.故选:A.【点睛】本题考查了零的相关知识,熟记并理解是解决本题的关键.变式训练【变式4-1】(2020·浙江七年级其他模拟)下面结论错误的是()A.零是整数B.零不是整数C.零是自然数D.零是有理数【答案】B【分析】由于零是有理数,也是整数,还是自然数,由此可分别进行判断.【详解】解:A、零是整数,所以A选项的说法是正确的;B、零不是整数,所以B选项的说法是错误的;C、零是自然数,所以C选项的说法是正确的;D、零是有理数,所以D选项的说法是正确的.0表示的意义:①既不是正数,也还是负数;①是整数;①是最小的自然数;①是正数和负数分界.故选:B.【点睛】本题考查有理数,解题的关键是明确有理数的相关概念.【变式4-2】(2020·苏州市吴江区铜罗中学七年级月考)下列说法错误的是()A.0是最小的自然数B.0既不是正数,也不是负数C.0C 是零上温度和零下温度的分界线D.海拔高度是0米表示没有高度【答案】D【分析】根据有理数0的特殊性质解答.【详解】解:A、0是最小的自然数,正确,故本选项不符合题意,B、0既不是正数,也不是负数,正确,故不符合题意;C、0①是零上温度和零下温度的分界线,正确,故本选项不符合题意,D、海拔高度为0米表示高度和参考高度相等,故本选项符合题意,故选:D.【点睛】本题主要考查0这个数的知识点,①既不是正数,也还是负数;①是整数;①是最小的自然数;①是正数和负数分界.【变式4-3】(2020·武汉市梅苑学校七年级期中)下列结论正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最小的整数D.0既不是正数也不是负数【答案】D【分析】根据0的概念逐项判断即可得.【详解】A、0既不是正数,也不是负数,则此项错误;B、0不是正数,则此项错误;C、整数包括负整数、0和正整数,且没有最小的整数,则此项错误;D、0既不是正数也不是负数,则此项正确;故选:D.【点睛】本题考查了0的概念,掌握理解0的概念是解题关键.【真题1】(2019·湖北咸宁市·中考真题)下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数【答案】C【分析】直接利用有理数、无理数、正负数的定义分析得出答案.【详解】0既不是正数也不是负数,0是有理数.故选C【点睛】此题主要考查了实数,正确把握实数有关定义是解题关键.【真题2】(2019·四川乐山市·中考真题)a一定是()A.正数B.负数C.0D.以上选项都不正确【答案】D【分析】根据题意,a可能为正数,故-a为负数;a可能为0,则-a为0;a可能为负数,-a为正数,由于题中未说明a是哪一种,故无法判断-a.【详解】①a可正、可负、也可能是0①选D.【点睛】本题考查了有理数的分类,解本题的关键是掌握a不确定正负性,-a就无法确定.【真题3】(2018·重庆中考真题)下列四个数中,是正整数的是()A.﹣1B.0C.12D.1【答案】D【分析】正整数是指既是正数还是整数,由此即可判定求解.【详解】A、-1是负整数,故选项错误;B、0既不是正整数,也不是负整数;故选项错误;C、12是分数,不是整数,错误;D、1是正整数,故选项正确.故选D.【点睛】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.【真题4】(2020·长沙中考)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day)”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的链接中考的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;①圆周率是一个无理数;①圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;①圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .①①B .①①C .①①D .①① 【答案】A【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;①π是一个无限不循环小数,因此圆周率是一个无理数,说法正确;①圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;①圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A .【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.【真题3】(2021·福建中考真题)写出一个无理数x ,使得14x <<,则x 可以是_________(只要写出一个满足条件的x 即可),1.010010001π⋅⋅⋅等)【分析】从无理数的三种形式:①开方开不尽的数,①无限不循环小数,①含有π的数,【详解】根据无理数的定义写一个无理数,满足14x <<即可;所以可以写:①①无限不循环小数,1.010010001……,①含有π的数,2π等.只要写出一个满足条件的x 即可.,1.010010001π……等)【点睛】本题考查了无理数的定义,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,①无限不循环小数,①含有π的数.【拓展1】(2017·湖北全国·七年级课时练习)观察下面各数列,研究它们各自的变化规律,并接着填出后面的两个数.(1)1,-1,1,-1,1,-1,1,-1,_________,_________;(2)2,-4,6,-8,10,-12,14,-16,_________,_________;(3)1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,_________,_________.【答案】1, -1; 18, -20; -1, 0.【详解】(1) 在该数列中,1与-1交替出现,故后面的两个数分别为1,-1.(2) 该数列可以看作是先将正整数中的偶数从小到大逐个排列起来再从第二个数开始每隔一个数在原数前面添加负号而得到的. 根据这一规律,后面的两个数分别为:18,-20.(3) 该数列可以看作是以1,0,-1,0为一个基本单元并不断重复而得到的. 根据这一规律,后面的两个数分别为:-1,0.故本题应依次填写:1,-1;18,-20;-1,0.点睛:本题是一道数字规律探索题. 在解决规律探索题的时候,要注意观察题目中已给出的数字的特征以及这些数字和它们所处位置的序数的关系,同时也要注意已知的数字排列的整体特征. 另外,在获得有关规律的初步结论后,要利用已知的数字多次检验相关结论的正确性.【拓展2】(2018·天水期末)阅读下列材料:设x=0.3•=0.333…①,则10x=3.333…①,则由①﹣①得:9x=3,即x=13.所以0.3•=0.333…=13.根据上述提供的方法把下列两个数化成分数.0.7•=_____,1.3•=_____.【答案】7943【详解】试题分析:设0.7=x=0.777…①,则10x=7.777…① 则由①﹣①得:9x=7,即x=79;根据已知条件0.3=0.333…=13.可以得到1.3=1+ 0.3=1+13=43.故答案为79;43.点睛:此题主要考查了无限循环小数和分数的转换,正确题意,读懂阅读材料是解决本题的关键,这类题目可以训练学生的自学能力,是近几年出现的一类新型的中考题.此题比较难,要多次慢慢读懂题目.满分冲刺【拓展3】(2017·湖北全国·七年级课时练习)(1)有一列数:1,-2,-3,4,-5,-6,7,-8,….那么接下来的3个数分别是______,_____,______;(2)有一列数:12,25,310,417,….那么接下来的第7个数是______________. 【答案】-9, 10, -11;750 【详解】(1) 这一列数可以看作是先将正整数从小到大逐个排列起来再从第二个数开始每隔一个数在原数前面添加负号而得到的. 根据这一规律,接下来的3个数分别为:-9,10,-11.(2) 对这一列数的分子与分母的规律分别进行讨论.①这一列数的分子可以看作是将正整数从小到大逐个排列起来而得到的.①观察这列数的分母可以看出,2111=⨯+,5221=⨯+,10331=⨯+,17441=⨯+,…因此,这列数的分母可以看作是该分数的分子与其自身之积再加上1而得到的.根据上述规律,第7个数的分子应为7,第7个数的分母应为77150⨯+=,即第7个数应为750. 故本题应依次填写:-9,10,-11;750. 点睛:本题的难点在于第(2)小题,而第(2)小题的难点在于确定分数分母的变化规律. 在寻找这一规律时要特别注意这些分数的分母与相应的分数在整列数中的位置序数(在本题中相当于相应的分子的数值)的关系. 另外,在探索规律时,一般需要对各个数字进行一定的运算,要特别注意根据已知数的位置序数构造算式的形式,这常常是解决问题的突破口.【拓展4】(2017·湖北全国·七年级课时练习)把下列各数分别填在相应的横线上:1,-0.20,135,325,-789,0,-23.13,0.618,-2014,π,0.1010010001…. 正数有:______________________________________________________;分数有:______________________________________________________;负数有:______________________________________________________;正整数有:____________________________________________________;非正数有:_____________________________________________________;负整数有:_____________________________________________________;非负数有:_____________________________________________________;负分数有:_____________________________________________________;非负整数有:___________________________________________________.【答案】1,13 5,325,0.618,π,0.1010010001…;-0.20,135,-23.13,0.618;-0.20,-789,-23.13,-2014;1,325;-0.20,-789,0,-23.13,-2014;-789,-2014;1,135,325,0,0.618,π,0.1010010001…;-0.20,-23.13;1,325,0.【详解】按照本题中给出的分类,结合各类型数的定义依次分析各个数的特征,得(1) 1是正数;1是正整数;1是非负数;1是非负整数.(2) -0.20是分数;-0.20是负数;-0.20是非正数;-0.20是负分数.(3)135是正数;135是分数;135是非负数.(4) 325是正数;325是正整数;325是非负数;325是非负整数.(5) -789是负数;-789是非正数;-789是负整数.(6) 0是非正数;0是非负数;0是非负整数.(7) -23.13是分数;-23.13是负数;-23.13是非正数;-23.13是负分数.(8) 0.618是正数;0.618是分数;0.618是非负数.(9) -2014是负数;-2014是非正数;-2014是负整数.(10) π是正数;π是非负数.(11) 0.1010010001…是正数;0.1010010001…是非负数.故本题应进行如下填写:(正数) 1,135,325,0.618,π,0.1010010001…;(分数) -0.20,135,-23.13,0.618;(负数) -0.20,-789,-23.13,-2014;(正整数) 1,325;(非正数) -0.20,-789,0,-23.13,-2014;(负整数) -789,-2014;(非负数) 1,135,325,0,0.618,π,0.1010010001…;(负分数) -0.20,-23.13;(非负整数) 1,325,0.。
人教版七年级数学上册:1.2.1《有理数》教学设计3
人教版七年级数学上册:1.2.1《有理数》教学设计3一. 教材分析《有理数》是人教版七年级数学上册的重要内容,主要介绍了有理数的定义、分类、运算和性质。
本节课的内容是对小学阶段数学知识的拓展和深化,为学生以后学习更高级的数学知识打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学概念和运算规则有一定的了解。
但他们对有理数的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.让学生理解有理数的定义和性质,能够正确运用有理数进行运算。
2.培养学生的逻辑思维能力和数学表达能力。
3.培养学生自主学习的能力和合作精神。
四. 教学重难点1.有理数的定义和性质。
2.有理数的运算规则。
五. 教学方法1.采用问题驱动法,引导学生通过思考和讨论来理解有理数的概念和性质。
2.使用实例和练习,让学生通过实际操作来掌握有理数的运算规则。
3.采用小组合作学习,培养学生的合作精神和团队意识。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备练习题和测试题。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,引导学生思考和讨论,激发学生的兴趣。
2.呈现(10分钟)通过PPT展示有理数的定义和性质,让学生初步了解有理数的概念。
3.操练(15分钟)让学生进行有理数的运算练习,引导学生通过实际操作来掌握有理数的运算规则。
4.巩固(10分钟)让学生进行小组讨论,总结有理数的运算规则,并用自己的语言进行表达。
5.拓展(10分钟)引导学生思考有理数在实际生活中的应用,如财务管理、工程计算等,拓展学生的思维。
6.小结(5分钟)让学生总结本节课所学的内容,对自己的学习情况进行反思。
7.家庭作业(5分钟)布置相关的练习题,让学生巩固所学知识。
8.板书(5分钟)板书本节课的重点内容和运算规则,方便学生复习和记忆。
教学设计中每个环节的时间安排仅供参考,具体时间根据实际情况可以进行调整。
1.2.1有理数的概念和分类
和 负整数 .
郡
长 例题精讲 JUN WEI 例1.请将下列数字填入对应的位置中。
正 整数
非正整 数
负整 数
非负整 数
郡
长 点点精讲 JUN WEI
正 分数 负分数
非正数
非负数
郡
长 点点精讲 JUN WEI
例2. 下列说法中,正确的个数是( B )个
①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正整数就是负整数 ④一个分数不是正分数就是负分数
1.2.1有理数
主讲:杨添之
长 思考 JUN WEI 思考: 回想一下,到目前为止,我们认识了哪些数?
郡
长 有理数的概念 JUN WEI 整数
有理数
-4
-3
-2
-1
分数
0
+1
+2
+3
+4
总结:整数和分数统称为有理数
郡
长 有理数的分类 JUN WEI
1、按定义分类
整数
负整数 -4 -3 -2
零
-1 0 +1
A.1
B.2
C.3
D.4
郡
长 练习巩固 JUN WEI
1.既是分数又是负数的数是__负__分___数_____;既是非负数又是整数的数是非__负___整__数_______.
2.在下列的说法中,正确的是( D ) A.带“+”号的数是正ⅹ数 ;+0 C.自然数都大于零ⅹ;0也是自然数
D.负B.数带一“定-”小号于的正数数是ⅹ负;数-0
3.关于0的再认识,下列说法中错误的有( D )个
①0既不是正数,也不是负数;√ ②0既不是整数,也不是分数;ⅹ
1.2.1 有理数
正整数、0、负整数统称整数, 正分数和负分数统称分数. 整数和分数统称有理数
正整数 整数零 负整数 有理数 分数正分数 负分数
问题2:上面的分类标准是什么?我们还可 以按其它标准分类吗?
正整数 正有理数 正分数 有理数零 负整数 负有理数 负分数
-4,0.001,0,-1.7,15,+1.5. 正数集合{ …},负数集合{ …}, 正整数集合{ …},分数集合{ …}
练习
1.把下列各数填入它所属于的集合的 1 13 2 圈内:1Biblioteka , , -5, , , 0.1,
9
15
8
-5.32,
-80, 123, 2.333.
… …
正整数集合
…
负整数集合
…
正分数集合
负分数集合
小结
到现在为止我们学过的数是有理数(圆周率 π除),有理数可以按不同的标准进行分类,标 准不同时,分类的结果也不同.
… … …
正数集合
整数集合
拓展题
观察下列排列的每一列数,研究它的排 列有什么规律?并填出空格上的数. (1)1,-2,1,-2,1,-2, , , ,… (2)-2,4,-6,8,-10, , , ,… (3)1,0,-1,1,0,-1, , , ,…
今日作业
作业
教科书第18页习题1.2第1题 2.把下列给数填在相应的大括号里:
跟踪练习1
下列各数,哪些是整数?哪些是分数? 哪些是正数?哪些是负数? 1 1 +7, -5, 7 , , 79, 0, 6 2
2 0.67, 1 ,+5.1 3
跟踪练习2
人教版七年级数学上册:1.2.1《有理数》教学设计1
人教版七年级数学上册:1.2.1《有理数》教学设计1一. 教材分析《有理数》是初中数学的重要内容,为学生今后学习代数、几何等数学分支打下基础。
人教版七年级数学上册1.2.1《有理数》教学设计,主要让学生了解有理数的定义、分类和性质,会进行有理数的运算。
通过本节课的学习,学生能够理解有理数的概念,掌握有理数的加、减、乘、除运算方法,为后续学习更高级的数学知识奠定基础。
二. 学情分析七年级的学生已初步掌握了实数的概念,对数学运算有一定的了解。
但部分学生对实数的概念仍模糊不清,对有理数的定义、性质和运算方法认识不足。
因此,在教学过程中,要关注学生的个体差异,针对不同学生进行有针对性的引导和讲解,提高他们的数学素养。
三. 教学目标1.理解有理数的定义,掌握有理数的分类和性质。
2.学会有理数的加、减、乘、除运算方法,能熟练进行计算。
3.培养学生的逻辑思维能力和数学运算能力。
4.激发学生学习数学的兴趣,提高他们的数学素养。
四. 教学重难点1.有理数的定义、分类和性质。
2.有理数的加、减、乘、除运算方法。
3.运用有理数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的定义和性质。
2.运用实例讲解法,让学生通过具体例子理解有理数的运算方法。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
4.运用练习法,巩固所学知识,提高学生的数学运算能力。
六. 教学准备1.准备相关课件、教案、练习题。
2.准备多媒体教学设备。
3.准备学生分组合作的材料。
七. 教学过程1.导入(5分钟)利用实例引入有理数的概念,如分数、整数等,让学生初步感知有理数。
2.呈现(10分钟)讲解有理数的定义、分类和性质,通过PPT展示相关知识点,引导学生主动探究。
3.操练(10分钟)让学生进行有理数的加、减、乘、除运算练习,教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示一些有关有理数的应用题,让学生运用所学知识解决问题,巩固所学内容。
1.2.1 有理数的概念 教学设计 2023-2024学年人教版七年级数学上册
章节名称人教版(2024版)初中数学七年级上册第一章有理数 1.2.1 有理数的概念学科数学授课班级授课时数设计者所属学校教学目标知识与技能目标:使学生理解有理数的定义,掌握有理数的分类及大小比较方法。
过程与方法目标:通过自主学习、合作探讨,培养学生分析问题、解决问题的能力。
情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
教学重难点教学重点:1.有理数的概念2.会把所给的有理数填入表示它所在的集合圈内教学难点:理解有理数的分类及其分类标准、分类原则,分类时要做到不重复不遗漏教学问题诊断分析通过小学阶段的学习,学生对数已经有了比较全面深刻的的认识,不过同时思维也造成了一定程度的定势,这就容易与数的概念的扩充发生冲突,另外,刚刚步入初中的学生年龄小,对概念的理解能力不强,对枯燥的数字不如具体事物感兴趣,抽象思维能力弱,好奇、好动、好表现,不能长时间集中精力,因此,他们更喜欢参与生动有趣的教学活动,更容易接受形象直观的教学模型,更渴望得到教师的表扬与鼓励,本节课还初步渗透了集合的思想和分类的方法,所以本堂课不仅是发展学生原有的认知结构,形成新的知识体系的主要通道,而且是渗透数学思想方法,感受数的应用价值以及增强学生数感的有效载体,学情分析鉴于初一年级生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。
我决定采取启发式教法及情感教,创设问题情境,引导生主动思考,用大量的实例和生动的语言激发生习兴趣,调节习情绪。
本节课通过创设问题情境,理解有理数产生的必然性、合理性,通过合作探索,理解有理数的分类,精心设问,适时、适度采用激励性语言,提高生习积极性,从而较好地完成有理数概念的建构,达到教目标。
课堂教学过程结构设计教学教学过程设计意图环节1、复习、导入大于0 的数叫正数,小于0的数叫负数0既不是正数,也不是负数正数的符号用+ 表示,书写时可以省略负数的符号用-表示,书写时不能省略(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.1 有理数
教学目标:
知识技能:1、能把给出的有理数按要求分类.
2、了解数0在有理数分类中的应用.
数学思考:经历从实际中抽出数学模型,从数形结合两个侧面理解问题;并
能选择处理 数学信息,做出大胆猜测,感受数学活动的乐趣.
情感态度:理解有理数的概念,会判断一个数是整数还是分数,是正数还是
负数;懂得 有理数的两种分类方法,体会数学知识与现实世界的
联系,激起学习数学的探索性.
教学重点:有理数的分类方法。
教学难点:有理数的分类方法
教学过程:
活动一
1.填空:
①正常水位为0m ,水位高于正常水位0.2m 记作-----------,低于正常水位0.3m 记作---------。
②乒乓球比标准重量重0.039g 记作---------,比标准重量轻0.019g 记作----------,标准重量记作------------。
2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m 记作4m ,向西运动8m 记作--------;如果―7m 表示物体向西运动7m ,那么6m 表明物体怎样运动?
活动二
1.数的扩充:
数1,2,3,4,…叫做正整数;―1,―2,―3,―4,…叫做负整数;正整数、负整数和零统称为整数;数32,41,854,+5.6,…叫做正分数;―9
7,―7
6,―3.5,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。
2.思考并回答下列问题:
①“0”是整数吗?是正数吗?是有理数吗?
②“―2”是整数吗?是正数吗?是有理数吗?
③自然数就是整数吗?是正数吗?是有理数吗?
要求学生区分“正”与“整”;小数可化为分数。
3.有理数的分类
不同的分类标准可以将有理数进行不同的分类:
①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:
{负分数正分数
分数负整数正整数整数有理数0⎩⎨⎧⎩⎨⎧
②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:
{{负分数负整数
负有理数正分数正整数
正有理数有理数0⎩⎨⎧
【注:①“0”也是自然数。
②“0”的特殊性。
】
4.把一些数放在一起,就组成一个数的集合,简称数集(set of number )。
所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。
5.例题;
例1:把下列各数填入表示它所在的数集的圈里:
―18,722,3.1416,0,2001,5
3-,―0.142857,95℅.
正数集 负数集
正整数集 负整数集
例2:把下列各数填入相应集合的括号内:
29,―5.5,2002,,―1,90%,3.14,0,―2,―0.01,―2,1
(1)整数集合:{ …}
(2)分数集合:{ …}
(3)正数集合:{ …}
(4)负数集合:{ …}
(5)正整数集合:{ …}
(6)负整数集合:{ …}
活动三:课堂练习:
(1)下列说法正确的是( )
①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数;⑥零是非负数。
A :①②③⑥
B :①②⑥
C :①②③
D :②③⑥
(2)下列说法正确的是( )
A :在有理数中,零的意义表示没有
B :正有理数和负有理数组成全体有
理数
C:0.5既不是整数,也不是分数,因而它不是有理数
D:零是最小的非负整数,它既不是正数,又不是负数
(3)―100不是()
A:有理数 B:自然数 C:整数
D:负有理数
(4)判断:
(1)0是正数()
(2)0是负数()
(3)0是自然数()
(4)0是非负数()
(5)0是非正数()
(6)0是整数()
(7)0是有理数()
(8)在有理数中,0仅表示没有。
()
(9)0除以任何数,其商为0 ()
(10)正数和负数统称有理数。
()
(11)―3.5是负分数()
(12)负整数和负分数统称负数()
(13)0.3既不是整数也不是分数,因此它不是有理数()
(14)正有理数和负有理数组成全体有理数。
()
活动四:课堂小结:
1,教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
2,由学生小结有理数的定义和两种分类方法。
活动五: 1、课堂作业:p6 1、2题
2、课外练习
教学反思:。