第9章 胶体体学
胶体
紧密层
0热力学电势差:
固体表面与溶液本体间的电势差
x
双 电 层 的 Stern 模 型
当溶胶相对静止时,整个溶胶体系是电中性的,但 当分散相粒子和液体介质相对运动时,就会产生电位差, 这种电位差叫电动电势。 胶粒是带电的,由于静电引力使反粒子在表面周围,
又由于分子热运动,使反粒子在表面附近呈扩散分布。
离表面近的一层——紧密层(内层),厚度(约几
1869年,发现了Tyndall效应,可区别溶胶及溶液;
1903年,德国科学家Zsigmondy发明了超显微镜, 肯定溶胶的一个根本问题—体系的多相性,从而明确了 胶体化学是界面化学。
1907年,德国化学家Ostwald创办《胶体化学和工
业杂志》—胶体化学正式成为一门独立的学科。 1941年,前苏联的德查金(Derjaguin B V)和朗道 (Landau L D)以及1948年荷兰的维韦(Werwey E J W)和 奥佛比克(Overbeek J T G)胶体稳定性的DLWO理论。从 70年代起,对高分子稳定胶体的研究逐渐成为热点,其中
φ0
+ + + + + + + + + + + +
δ
φ0
+ + + + + + + + + + + + +
-
A B x -
平板双电层模型
扩散双电层模型
质 点 表面+ + + + + + + + + +
9第九章 胶体分散系
医学化学
上页
下页
回主目录
返回
二、高分子化合物溶液的性质
•
高分子化合物溶液中,溶质和溶剂有较强的亲和力 ,两者之间有没有界面存在,属均相分散系。由于 在高分子溶液中,分散质粒子已进入胶体范围(1100nm),因此,高分子化合物溶液也被列入胶体 体系。它具有胶体体系的某些性质,如扩散速度小 ,分散质粒子不能透过半透膜等,但同时也具有自 己的特征。
•
医学化学
上页
下页
回主目录
返回
C:溶剂化的稳定作用 溶胶的吸附层和扩散层的离子都是水化的(如为非 水溶剂,则是溶剂化的),在水化膜保护下,胶粒 较难因碰撞聚集变大而聚沉。水化膜越厚,胶粒就 越稳定。 (2)溶胶的聚沉 胶体具有巨大的表面积,体系界面能高,胶粒间的 碰撞有使其自发聚集的趋势。减弱或消除胶粒的电 荷,可以促使胶粒聚集成较大的颗粒,这个过程称 为凝聚,当分散相粒子增大到布朗运动克服不了的 重力的作用时,最后从介质中沉淀析出的现象称聚 沉。
医学化学
上页
下页
回主目录
返回
Fe(OH)3胶粒包括胶核(设为m个Fe(OH)3分子组 成)和吸附层。胶粒和扩散层合称为胶团,胶团 分散在介质中乃是胶体体系。
医学化学
上页
下页
回主目录
返回
2. 溶胶的稳定与沉降
(1)影响溶胶稳定性的因素 • A:溶胶动力稳定因素 • Brown 运动:溶胶的胶粒的直径很小,Brown 运动 剧烈,能克服重力引起的沉降作用。 • B:溶胶的电学稳定作用 同一种溶胶的胶粒带有相同电荷,当彼此接近时, 由于静电作用相互排斥而分开。胶粒荷电量越多, 胶粒之间静电斥力就越大,溶胶就越稳定。胶粒带 电是大多数溶胶能稳定存在的主要原因。
胶体
四. 纳米粒子和纳米技术
纳米粒子:尺度为1~100 nm之间的粒子 1. 纳米粒子的结构和特性 (1) 小尺寸效应 (2) 表面效应 (3) 量子尺寸效应 (4) 宏观量子隧道效应 2.纳米粒子的制备方法 基本方法与制备憎液溶胶雷同 纳米组装材料的制备技术 (1)自组织技术 (2) 模板合成法 3.纳米技术在药学中的应用
(1)Browm运动与Einstein方程
Browm运动:溶胶粒子在介质中无规则的运动 原因:粒子受各个方向介质分子的撞击 撞击的动量不能完全抵消而移动 分子热运动的宏观表现。 Einstein公式:Brown运动平均位移的计算 若在时间 t 内观察布朗运动位移 x ,其关系:
x
RT t L 3r
第九章 胶体分散系统
胶
体
胶体是多相系统,一种或多种物质分散在另一 种分子中所形成的体系称为分散体系。被分散的物 质称作分散相,另一种物质称作分散介质。 胶体是一种高度分散的分散系统。胶体化学与 化学其他分支的不同之处是,后者研究对象均属小 分子,胶体化学除了分子之外 ,更注意胶体大小的 粒子 。 在分散系统中,分散相粒子(质点)半径为10-9 ~10-7m的称胶体,通常所说的胶体多指粒子分散在液 体介质中 ,又称溶胶 。
胶
体
由于胶体的高度分散,致使它有很大的相 界面(例如直径为10nm的金溶胶,当其粒子的 总体积为1立方厘米时,其表面积可达600平方 米),从而有很高的界面能。 胶体的许多性质都与界面能有密切关系, 因此对界面性质的研究构成胶体化学的重要内 容之一。 所以,研究表(界)面性质的表面化学是胶 体化学中极其重要和不可分割的一部分,二者常 被联系在一起而命名为胶体和表面化学。
不能透过滤纸,扩散慢,超显微镜下可见。热力学不稳定 体系),但动力学稳定体系----布朗运动。
胶体的性质及其应用知识总结
胶体的性质及其应用经点答疑【学法旨要】1.本章知识的学法旨要是什么?由于胶体知识与学生以前所学化学知识有所不同,它研究的不是某种物质所特有的性质,而是物质的聚集状态表现的性质,对学生来说这是一个观察、研究物质的新角度,是较为陌生的领域。
为了便于学生了解,我们应结合丁达尔效应的演示实验入手,在学生较熟悉的溶液的基础上引出与溶液性质不同的另一类混合物——胶体。
在此并不用提丁达尔效应一词,只利用丁达尔效应向学生展示溶液与胶体的不同,起到点出课题的作用。
在知道了溶液、胶体、悬浊液和乳浊液等知识的基础上,来理解分散系的概念。
从而得出胶体的定义。
在了解了胶体与溶液的区别这一基础上,我们可通过实验进一步了解布朗运动、电泳、凝聚等胶体所具有的性质。
2.学习本章知识的目标是什么?学习本章知识应达到以下知识目标:(1)了解胶体及分散系的概念;(2)了解胶体与其他分散系的区别;(3)了解胶体的重要性质和应用。
【经点答疑】1.你知道什么是“分散系”吗?我们把一种或几种物质微粒分散在另一种物质中所形成的混合物称之为“分散系”,其中:被分散成微粒的物质为“分散质”,而微粒分布在其中的物质为“分散剂”。
2.你知道胶体体系的分类吗?分散质和分散剂有不同的聚集状态(固态、液态、气态),它们可以组合成不同的分散系。
对于两者都是气态的体系,实际上是气体混合物,其性质不属于胶体的范围,这里不讨论;对于气体分散到固体中或液体中的泡沫,及液体分散到液体中的乳状液,它们虽属粗分散系,但常包含于广义的胶体体系内,这里把它们与胶体一起进行分类、比较:液胶体和亲液胶体,胶体粒子为多个分子聚集体的是憎液胶体。
因其胶粒与分散剂(液体)不亲合(不溶)而得名。
从体系的热力学特点考虑,憎液胶体是热力学不稳定体系,是一相(分散质质点,)分布在另一相(分散剂介质)中的多相分散体系,体系中的界面(质点与介质之间的相界面)总是要减少,胶体质点趋向于聚集在一起,有发生聚沉而使分散体系破坏的倾向(粗分散体系更易如此)。
胶体化学考点
胶体化学考点一、σ的定义:恒温恒压下,可逆地增加单位表面积,环境对体系所做的功,单位J〃m-2定义表面张力(σ):单位长度液体表面的收缩力,单位N〃m-1(或mN〃m-1)表面过剩:表面浓度与体相浓度之差接触角:在固、l、g三相交界处,作l-g界面的切线,由此切线经液体内部与液固界面所成的夹角二、L ap l ace方程:三种特殊情况下的表达式1、曲面为球面,则R1=R2=R,ΔP=2σR2、曲面为柱面,则R1=R,R2=≦,ΔP=σ/R3、气泡存在两个g-l界面,且R1=R2=RΔP=4σ/R三、沾湿、浸湿、铺展,润湿过程的热力学判据,接触角判据。
•热力学判据沾湿 - Wa=σg-l(1+cosθ)≥0 θ≤180°浸湿 A=σg-l cosθ≥0 θ≤90°铺展 S=σg-l(cosθ-1)≥0 θ≤0°•接触角判据:通常真截将θ作为润湿与否的依据,θ>90°时,称为不润湿;θ<90°时,称为润湿;θ≤0°时(或不存在)铺展。
四、吸附等温线的类型类型Ⅰ:单分子层吸附,远低于P时,即吸满单分子层,P上升, 不再增加类型Ⅱ:S型吸附等温线(常见),低压下为单分子层,压力增加,产生多分子层吸附,图中B是低压下曲线的拐点,通常认为吸满了单分子层,B也即计算比表面的依据,如-195℃下氮在铁催化剂上的吸附。
类型Ⅲ:较少见,一开始即为多分子层吸附。
类型Ⅱ、Ⅲ在P→P0时,曲线趋于纵轴平行线的渐近线,表明产生了吸附质的凝聚,如低温下(-137.7~-58℃)溴在硅胶上的吸附。
类型Ⅳ:低压下产生单分层吸附,压力增加,吸附剂的孔隙结构中产生毛细凝聚,急剧上升,毛细孔中装满吸附质后, 不再上升。
如常温下,苯在硅胶上的吸附。
类型Ⅴ:低压下即产生多分子层吸附,压力增加,毛细凝聚五、单分子层吸附理论假设(1)被吸附分子间无作用力,因而分子脱附不受周围分子的影响。
胶体化学复习资料
胶体化学复习资料名词解释表面张力:液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
表面能:物质的表面具有表面张力σ,在恒温恒压下可逆地增大表面积dA,则需功σdA,因为所需的功等于物系自由能的增加,且这一增加是由于物系的表面积增大所致,故称为表面自由能或表面能。
接触角:在固、液、气三相接触达到平衡时,三相接触周边的任一点上,液气界面切线与固体表面间形成的并包含液体的夹角。
高能表面/低能表面:按照不同物体表面的比表面能大小不同,把比表面能大于0.1J/m2的表面称为高能表面,把比表面能小于0.1J/m2的表面称为低能表面。
PS版上空白部分的氧化铝膜,比表面能约为0.7J/m2,属于高能表面。
PS版上图文部分的重氮感光树脂层,比表面能约为0.03~0.04J/m2,属于低能表面。
润湿作用:润湿作用通常是指液体在固体表面上附着的现象。
固体表面的一种流体被另一种流体所取代的过程。
铺展:液体在另外一种不互溶的液体表面自动展开成膜的过程。
吸附热:吸附过程产生的热效应。
在吸附过程中,气体分子移向固体表面,其分子运动速度会大大降低,因此释放出热量。
物理吸附的吸附热等于吸附质的凝缩热与湿润热之和。
表面活性剂:具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。
浊点:油类、清漆等液体样品在标准状态下冷却至开始出现混浊的温度为其浊点。
非离子型表面活性剂,在水溶液中的浓度随温度上升而降低在升至一定温度值时出现浑浊,经放置或离心可得到两个液相,这个温度被称之为该表面活性剂的浊点。
kraft点:阴离子表面活性剂一般在低温下溶解困难,随着水溶液浓度上升,溶解度达到极限时,就会析出水合的活性剂。
但是,当水溶液温度上升到一定值时,由于胶束溶解,溶解度会急剧增大,这时的温度称为临界胶束溶解温度,即Kraft点。
HLB值:表面活性剂为具有亲水基团和亲油基团的两亲分子,表面活性剂分子中亲水基和亲油基之间的大小和力量平衡程度的量,定义为表面活性剂的亲水亲油平衡值。
第9章胶体练习题
第十二章胶体化学练习题一、是非题(对者画√,错者画×)1、溶胶是均相系统,在热力学上是稳定的。
(X)2、长时间渗析,有利于溶胶的净化与稳定。
(X)3、有无丁达尔效应是溶胶和分子分散系统的主要区别之一。
()4、亲液溶胶的丁达尔效应应比憎液胶体强。
(X )5、在外加直流电场中,碘化银正溶胶向负电极移动,而其扩散层向正电极移动。
()6、新生成的Fe(OH)3沉淀中加入少量稀FeCl3溶液,会溶解,再加入一定量的硫酸盐溶液则又会沉淀。
()7、丁达尔效应是溶胶粒子对入射光的折射作用引起的。
(X)8、胶束溶液是高度分散的均相的热力学稳定系统。
()9、胶体粒子的扩散过程和布朗运动本质上都是由粒子的热运动而发生的宏观上的定向迁移现象。
()10、在溶胶中加入电解质对电泳没有影响。
(X)11、溶胶粒子因带有相同符号的电荷而相互排斥,因而在一定时间内能稳定存在。
()12、同号离子对溶胶的聚沉起主要作用。
(X)13、大大过量电解质的存在对溶胶起稳定作用,少量电解质的存在对溶胶起破坏作用。
(X)14、由瑞利公式可知,分散介质与分散相之间折射率相差愈大,则散射作用愈显著。
是不是?()15、溶胶是亲液胶体,而大分子溶液是憎液胶体。
(X)16、乳状液必须有乳化剂存在才能稳定。
()17、晴朗的天空是蓝色,是白色太阳光被大气散射的结果。
()18、加入电解质可以使胶体稳定,加入电解质也可以使肢体聚沉;二者是矛盾的。
(X)19、溶胶在热力学和动力学上都是稳定系统。
(X)20、能产生丁达尔效应的分散系统是溶胶。
(X)二、选择题:1、大分子溶液分散质粒子的线尺寸为:(C)(1)>1μm (2)<1μm (3)1nm- 1μm 2、溶胶和大分子溶液: (C)(1)都是单相多组分系统(2)都是多相多组分系统(3)大分子溶液是单相多组分系统, 溶胶是多相多组分系统(4)大分子溶液是多相多组分系统, 溶胶是单相多组分系统3、下列分散系统中丁达尔效应最强的是: (D ),其次是: (C)(1)空气(2)蔗糖水溶液(3)大分子溶液(4)硅胶溶胶4、向碘化银正溶胶中滴加过量的KI溶液,则所生成的新溶胶在外加直流电场中的移动方向为: ( A )(1)向正极移动(2)向负极移动(3)不移动5、电动现象直接与: (C)有关.(1)固体表面热力学电势(2)斯特恩电势(3)动电电势(4)表面电荷密度6、在两个充满0.001mol.dm-3AgNO3溶液的容器中间是一个由固体制成的多孔塞,塞中细孔充满了AgNO3溶液,在两管口中插入电极,充以直流电,容器中液体( A)移动,当以0.1mol.dm-3AgNO3代替0.001mol.dm-3AgNO3时,加以相同电压后,液体的流动( 5),如果以KCL溶液代替AgNO3溶液时,液体的流动( B)移动。
物理化学表面现象及胶体化学总结
1.压缩因子任何温度下第七章表面现象1.在相界面上所发生的物理化学现象陈称为表面现象。
产生表面现象的主要原因是处在表面层中的物质分子与系统内部的分子存在着力场上的差异。
2.通常用比表面来表示物质的分散度。
其定义为:每单位体积物质所具有的表面积。
3.任意两相间的接触面,通常称为界面(界面层)。
物质与(另一相为气体)真空、与本身的饱和蒸气或与被其蒸汽饱和了的空气相接触的面,称为表面。
4.表面张力:在与液面相切的方向上,垂直作用于单位长度线段上的紧缩力。
5.在恒温恒压下,可逆过程的非体积功等于此过程系统的吉布斯函数变。
6.影响表面及界面张力的因素:表面张力与物质的本性有关、与接触相的性质有关(分子间作用力)、温度的影响、压力的影响。
7.润湿现象:润湿是固体(或液体)表面上的气体被液体取代的过程。
铺展:液滴在固体表面上迅速展开,形成液膜平铺在固体表面上的现象。
8.亚稳状态与新相生成:a.过饱和蒸汽:按通常相平衡条件应当凝结而未凝结的蒸汽。
过热液体:按通常相平衡条件应当沸腾而仍不沸腾的液体。
过冷液体:按相平衡条件应当凝固而未凝固的液体。
过饱和溶液:按相平衡条件应当有晶体析出而未能析出的溶液。
上述各种过饱和系统都不是真正的平衡系统,都是不稳定的状态,故称为亚稳(或介安)状态。
亚稳态所以能长期存在,是因为在指定条件下新相种子难以生成。
9.固体表面的吸附作用:吸附:在一定条件下一种物质的分子、原子或离子能自动地粘附在固体表面的现象。
或者说,在任意两相之间的界面层中,某种物质的浓度可自动发生变化的现象。
吸附分为物理吸附(范德华力)和化学吸附(化学键力)。
具有吸附能力的物质称为吸附剂或基质,被吸附的物质称为吸附质。
吸附的逆过程,即被吸附的物质脱离吸附层返回到介质中的过程,称为脱附(或解吸)。
10.吸附平衡:对于一个指定的吸附系统,当吸附速率等于脱附速率时所对应的状态。
当吸附达到平衡时的吸附量,称为吸附量。
气体在固体表面的吸附量与气体的平衡压力及系统的温度有关。
9胶体化学详解
(emulsion),泡沫
(二)胶体的基本特征 (1)多相(multiphase)性 在胶体系 统中,分散相粒子由众多分子或离子 组成,粒子内部与外部分散介质的许 多物理和化学性质都不相同,所以性 质是不均匀的,因而是多相系统。包 围胶体粒子的界面是相界面。
(一)分散(dispersion)法
直接将大块物质粉碎为小颗粒,并
使之分散于介质中。
机械分散法; 超声波(ultrasonic)
分散法; 电分散法; 胶溶法。
(二)凝聚(agglomeration)法
将分子或离子凝聚成胶体颗粒。
化学凝聚法
通过化学反应(如复分解反应、水解反应、氧化或还原反 应等)使生成物呈过饱和状态,然后粒子再结合成溶胶。
(二)沉降(sedimentation)平衡
当溶胶中颗粒的密度大 于介质时,颗粒在重力场作 用下有向下沉降的趋势;沉 降的结果使底部粒子浓度大 于上部,即造成上下的浓差, 而粒子的扩散将促使浓度趋 于均一。当沉降与扩散达平 衡时,称为沉降平衡;此时, 颗粒浓度自下而上降低,有 一个分布。
沉降平衡中粒子的分布
热力学电势ф0 :固体表面与溶液本体间的电势差 斯特恩电势фδ :斯特恩面同溶液本体之间的电势差 ξ电势:滑动面与溶液本体之间的电势差
ξ 电势的特点:
ξ 电势的绝对值小于热力学电势 的绝对值ф 0 •ξ 电势是衡量胶粒所带净电荷多 少的物理量; •ξ 电势的符号由胶粒所吸附离子
的电荷决定
•胶粒表面吸附正离子,ξ 电势为 正;胶粒表面吸附负离子,ξ 电 势为负 •少量外加电解质会对ξ 电势产生 很大的影响 •处于等电态的胶体质点不带电
(3)斯特恩双电层模型
胶体化学教案中的胶体的流变性与粘度特性
胶体化学教案中的胶体的流变性与粘度特性胶体化学是一门研究胶体体系的科学,它涉及到物理、化学、材料科学等多个学科领域。
在胶体化学的教学过程中,理解胶体的流变性和粘度特性是非常重要的。
本文将针对胶体在流变学和粘度方面的特性进行分析和讨论。
一、胶体的流变学特性流变学是研究物质变形和流动的科学,而胶体作为一种介于溶液和悬浮液之间的体系,具有其特殊的流变学特性。
1. 过渡频率与弹性模量胶体的过渡频率是指胶体转变为固体的频率范围。
在低频情况下,胶体表现出液体的流体特性,而在高频情况下则表现为固体的弹性特性。
弹性模量是衡量胶体固态特性的重要参数,它反映了胶体在受力下的变形程度。
过渡频率与弹性模量的测试可以通过动态力学分析仪进行。
2. 剪切应力与剪切应变剪切应力是指胶体在受到外力作用下产生的剪切变形所需的力。
而剪切应变则是胶体单位长度内的剪切变形。
胶体的剪切应力与剪切应变之间的关系可以用流变学模型来描述,常见的流变学模型包括牛顿流体模型、受限变形模型等。
3. 流动类型胶体的流动类型可以分为牛顿流体和非牛顿流体两种。
牛顿流体是指胶体的流动速率与施加的剪切应力成正比,流动规律符合牛顿定律。
而非牛顿流体则包括剪切稀化流体和剪切增稠流体。
剪切稀化流体在剪切条件下表现出阻力减小的特性,而剪切增稠流体则表现为阻力增加的特性。
二、胶体的粘度特性胶体的粘度是指胶体在受力作用下阻碍流动的程度。
胶体的粘度直接影响到其在实际应用中的流动性能。
1. 粘度的测定方法常见的胶体粘度测定方法包括旋转粘度计法、滴定法和流淌法等。
旋转粘度计法是通过测量胶体在旋转器转动下的扭矩和转速来计算粘度值,滴定法是通过滴定器滴入胶体溶液的滴数和时间来计算粘度值,流淌法是通过测量胶体溶液从容器中流出所需的时间来计算粘度值。
2. 粘度与浓度的关系胶体的浓度对其粘度有重要影响。
在胶体浓度低时,胶体颗粒之间的相互作用力较小,流动性较好,粘度较低;而在浓度较高时,胶体颗粒之间的相互作用力增大,流动性变差,粘度增加。
物理化学-第九章 胶体-教案
稳定性等特征决定了其基本性质。本章重点介绍了其光学性质(丁达尔效应)、动力学性质(布朗运动、扩散)
和电学性质(电泳、电渗);此外还介绍了溶胶的稳定与聚沉,电解质对溶胶稳定与聚沉的影响。
溶胶的特征:1)特定分散度:1~100nm。2)高度分散多相性。3)热力学不稳定性。
第二部分、简介:本章主要内容(多媒体介绍)1mi;溶胶的基本特征及重要性质(动力性质、
光学性质、电学性质)
本章目的要求:(多媒体介绍)1min
掌握胶体的概念、基本类型;溶胶的基本特征;溶胶的动力性质、光学性质、电学性质。
熟悉溶胶的分类;憎液溶胶相对稳定的原因。
通过两个实验来观察胶体的电学性质。电泳以及电渗。
电动现象说明:溶胶质点与介质分别带电,在电场中发生移动(流动电势),或移动时产生电场(流动电势)
并介绍电泳的应用。
四、溶胶的稳定性与聚沉
说明:溶胶是热力学不稳定系统,但在动力学上又是稳定的原因。
强调:溶胶稳定的原因:
1.动力稳定性(扩散力)。2.胶粒表面带电(静电斥力)。3.溶剂化作用。4.添加高分子保护。
3.溶胶有哪些性质?4.胶粒发生布朗运动的实质是什么?
课后作业:P342—7, 10
附:指导教师意见
指导教师签名:年月日
昆明医科大学海源学院基础教学部化学教研室
溶胶的性质:1)光学性质:丁达尔现象。2)动力学性质:布朗运动。3)电学性质:溶胶胶粒和介质都带电。
热力学不稳定,动力学稳定的原因:1)热力学因素:高分散度,比表面能大,有自发聚集倾向。2)动力学因素:动力稳定性,表面带电,溶剂化,添加高分子保护。
胶体化学
胶体的制备
分散法
凝聚法
机械法 电分散法 超声分散法 胶溶法
化学凝聚法 物理凝聚法
采用物理手段
采用化学手段
胶体化学的应用领域
轻工业:造纸、织物、陶瓷、涂料、黏合剂 等。 油田开发:钻井液中颗粒大小的控制、流变 性、稳定性、絮凝作业、粘土分散雨防塌等。 农业:土壤中的离子交换、土壤团粒、农药 的乳化与分散等。 生物学与医学:生物流变学、血液学、电泳、 渗透与膜、各种凝胶、病毒、蛋白质等。
日用品的生产与使用:洗涤剂、化妆品等。
环境科学:气溶胶、烟雾、水净化、 污水处理等。 分析化学:离子交换、胶束增溶、 浊度、吸附指示剂、脱色等。 材料:水泥、纤维、橡胶等。
海洋科学:稀有元素的吸附提取、 污染油膜的处理。
胶体前沿
碟状胶体:软物质的新兴前沿
微纳米碟状胶体的研究发展近况,侧重于合成、自组装和 它们在软凝聚态物质及材料科学中的角色.
胶体未来发展着重方向
添加剂、助剂以及表面活性剂的多品种开发
涂浮剂的分散稳定 胶体与界面现象的深入研究 与产品外观提高相关的产品在胶体领悟的相关研究
谢谢观看
胶体化学
应化144
胶体的发现
胶体这个名词史由英国科学家 Thomas Graham(1861 年 ) 提出来的。
他用的仪器极为简单,将一块羊皮纸缚在一个玻璃筒上, 筒里装着要试验的溶液,并把筒浸在水中。Graham 用此 种装置研究许多物质的扩散速度,发现有些物质,如糖、 无机盐、尿素等扩散快,很容易自羊皮纸渗析出来;另一 下物质,如明胶、氢氧化铝、硅酸等扩散很慢,不能或很 难透过羊皮纸。前一类物质当溶剂蒸发时易于形成晶体析 出,后一类物质则不能结晶,大多成无定形胶状物质。于 是, Graham 把后一类物质称为胶体( Colloid ),其 溶液称之为溶胶。胶体源自希腊文的 κολλα(胶)。
胶体化学
的形状对胶体性质有重要影响。
胶粒的形状
例如:(1)聚苯乙烯胶乳是球形质点
(2) V2O5 溶胶是带状的质点 (3) Fe(OH)3 溶胶是丝状的质点
§14.5 溶胶的稳定和聚沉
溶胶是热力学不稳定系统,但有些溶胶却能在相 当长时间内稳定存在。 1、溶胶的经典稳定理论—DLVO理论 胶体带电是其稳定存在的主要原因 (1)胶团之间既存在引力势能,也存在斥力势能。
例1:AgNO3 + KI→KNO3 + AgI↓ 过量的 KI 作稳定剂 胶团的结构表达式 : [(AgI)m n I – (n-x)K+]x– xK+ 胶核 胶粒(带负电) 胶团的图示式: 胶核 胶粒
胶团
胶团(电中性)
例2:AgNO3 + KI → KNO3 + AgI↓
过量的 AgNO3 作稳定剂
溶胶的电动现象体现在以下四个方面: 电泳:在外电场作用下,胶体粒子在分散介质中定 向移动的现象。
1、溶胶的电动现象 电渗:在多孔膜(或毛细管)两端施加一定电压,
液体将通过多孔膜而定向移动。在外电场作用下,胶
体粒子相对静止,分散介质定向移动的现象。 流动电势:在外力的作用下,迫使液体通过多孔膜 (或毛细管)定向流动,多孔膜两端所产生的电势差 沉降电势:分散相粒子在重力场或离心力场的作用
的最简便的方法。
光散射现象 当光束通过分散系统时,一部分自由地通过,一 部分被吸收、反射或散射。 入射光频率与分子的固有频率相同时,吸收 入射光波长小于分散粒子尺寸时,反射
入射光波长大于分散粒子尺寸时,散射
散射光的强度可利用瑞利公式进行计算
2、瑞利公式 I=
9π2V 2C
2λ4l 2
2 n2 - n 0 2 ( 2 ) (1 + cos2α)I0 2 n + 2n 0
表面化学和胶体化学
注意:表面自由能与表面张力的代表符相同,均 为σ,量纲相通,但两者的概念不同!! 表面自由能是单位表面积的能量,标量;
表面张力是单位长度上的力,矢量。 讨论:dU =TdS – pdV +σdAs+Σidni dH =TdS + Vdp +σdAs+Σidni
dA =-SdT –pdV +σdAs+Σidni
s
σ= 58.85×10-3N.m-1, ps= 2 /r =11.77×103kPa
h = 0.02m,ρ=958.1kg· m-3
p静=gh = 958.1×9.8×0.02=0.1878kPa p大气=100kPa
p =100 + 0.1878 + 11.77×103 = 11.87×103kPa pr 2M 1 007127 根据开尔文公式 ln 得: p0 RT r
◆ 过饱和蒸气
降温过程:
p
微小
pB
A:不能凝出微小液滴 pA B:凝出微小液滴 AB:过饱和蒸气 pB> pA
l
B 大块
A
g TA T
消除:如人工降雨,加AgI颗粒
◆ 过冷液体
原因:凝固点下降。如纯净水可到-40℃不结冰。
◆过热液体 液体在正常沸腾温度不沸腾,要温度超过正 常沸腾温度才沸腾。 原因:液体表面气化,液体内部的极微小气泡 (新相)不能长大逸出(气泡内为凹液面)。 小气泡受到的压力为: p大气 p = p大气+ ps+ p静 p静=ρgh ps = 2σ/r h 如 r =-10-8m,T = 373.15K时, p
dG =-SdT +Vdp +σdAs+Σidni
胶体化学
胶体化学一.填空题1.溶胶系统所具有的三个基本特点是;;。
2.在超显微镜下看到的光点是,比实际胶体的体积大数倍之多,能真正观测胶体颗粒的大小与形状的是_。
3.溶胶的动力性质包括。
4.用和反应制备溶胶当过量时胶团结构式为。
当过量时,胶团结构式为,在电泳实验中该溶胶的颗粒向移动。
5.关于胶体稳定性的D L V O理论认为,胶团之间的吸引力势能产生于;而排斥力势能产生于。
6.当用等体积的溶液制备A g B r溶胶,其胶体结构为,请标出胶核,胶粒,胶团,上述溶胶在中,聚沉值最大的是。
7.在外加电场作用下,胶粒在分散介质中的移动称为。
8.胶体系统的光学性质表现为,电学性质表现为。
9在胶体的制备中常常需要渗析等方法进行净化,其目的主要是。
10.高分子化合物可作为溶胶的聚沉剂。
其产生聚沉的三种效应分别为引起憎液溶胶的最主要因素是。
1.多相性,搞分散性和热力学不稳定性2.粒子的散色光;电子显微镜3.布朗运动,扩散作用,沉降作用4.;向负极移动。
5.远程范德华力,双电层重叠所引起的静电斥力势能与渗透性斥力势能6.胶核胶粒胶团7.电泳8.丁达尔效应;电泳;电渗;流动电势;沉降电势9.除去制备过程中过剩的电解质,以利于溶胶的稳定性10.搭桥效应,脱水效应,电中和效应,外加中解质二.选择题1.下列亲液溶胶与憎液溶胶具有的共同特性中不正确的是()A.分散相粒子半径为:B.在介质中扩散慢C.不透过半透膜D.具有很大相界面2.丁达尔现象是光照射到溶胶粒子上发生的()现象。
A.反射B.折射C.散射D.透射3.某溶胶在重力场中沉降达平衡时,应有()A.各不同高度处的浓度相等B.各不同高度处粒子大小相等C.沉降速率与扩散速率相等D.不同大小粒子的沉降速度相等4.某带负电的溶胶中加入下列电解质,其中聚沉值最大的是();聚沉能力最强的是()A. B. C. D.5.下列哪一种不属于电动现象?A.电泳B.电渗C.电导D.流动电势6.在电泳实验中,观察到胶粒向阳极移动,表明()A.胶粒带正电荷B.胶团的扩散层带负电荷C.胶体的扩散层带正电荷D.电位向对于溶液本体为正值。
第9章 溶胶 凝胶法
1、实验原理: 钛酸四丁脂在酸性条件下,水解产物为含钛离子溶胶
Ti(O-C4H9)4 + 4H2O
Ti(OH)4 + 4C4H9OH
含钛离子溶液中钛离子通常与其它离子相互作用形成复 杂的网状基团,最后形成稳定凝胶
Ti(OH)4+Ti(O-C4H9)4 Ti(OH)4 + Ti(OH)4
2TiO2 + 4C4H9OH 2TiO2 + 4H2O
优点:溶胶一凝胶法因反应条件温和、通常不需要高温高 压,对设备技术要求不高;体系化学均匀性好;可以通过溶 胶凝胶过程的参数裁剪控制纳米材料的显微结构等诸多优 点.
过程:制备陶瓷粉体时,采用适当的无机或有机盐配制成溶 液,然后加入能使之成核、凝胶化的溶液,控制其凝胶化过 程即可制得球形颗粒的凝胶体,经一定温度煅烧分解得到所 需的粉体。采用溶胶-凝胶法制得的粉体具有高度的化学组 成均匀性、高纯度超细性(凝胶颗粒一般小于100nm)、易烧 结等特点。
b、醇凝胶
2)干凝胶 3)气凝胶
溶胶-凝胶法就是用含高化学活性组分的化合 物作前驱体,在液相下将这些原料均匀混合,并进 行水解、缩合化学反应,在溶液中形成稳定的透明 溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维 空间网络结构的凝胶,凝胶网络间充满了失去流动 性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制 备出分子乃至纳米亚结构的材料。
均匀性 高活性 可控性 分子尺度
Sol-gel应用
复合材料 难制备物质 薄膜、多孔材料 纳米材料
纳米颗粒
纤维 前驱体 溶胶 湿凝胶 气凝胶
多孔材料
涂层、薄膜
干凝胶
致密块体 纳米颗粒
1、原料成本较高,特别是有机醇盐,成本更高;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②胶体分散体系(1 nm-1000 nm) 高度分散性,目测是均匀的,但实际是多相不均匀体系。 扩散慢、不能透过半透膜、热力学不稳定系统。 ③粗分散体系(d>1000nm) 目测是混浊不均匀体系,放置后会沉淀或分层,如黄 河水。多相、热力学不稳定系统。
胶体系统通常还可分为三类:
1)溶胶 — 分散相不溶于分散介质,有很大的相界面, 很高的界面能,因此是热力学不稳定系统; 2)高分子溶液— 以分子形式溶于介质,没有相界面,为
真溶液
均相
稳定
胶体系统 粗分散系统
1<d<1000nm d > 1000nm
多,均, 各种溶胶 不稳定, 稳, 稳 均 如 AgI、Al(OH)3 水溶胶等 多相 不稳定 乳状液、悬浮液、泡沫 如牛奶、豆浆、泥浆等
胶体系统的三个主要特点: 高度分散性、多相性、热力学不稳定性。
§9-1分散系统的分类及其主要特征
§9-1分散系统的分类及其主要特征
胶体是一种分散系统
分散系统:一种或几种物质分散在另一种物 质之中所构成的系统;
分 散 相:被分散的物质; 分散介质:另一种连续分布的物质
我们常说的溶液是不是分散系统? 例:NaCl水溶液
§9-1分散系统的分类及其主要特征
分散系统的分类: •分子分散系统 分散相线度d<1nm
两边放接直流电源的电极。通电时溶液将向哪一极 方向移动?
§9-5-1 电动现象
溶胶是一个高度分散的、多相、具有较高的表面
自由焓的热力学不稳定系统,粒子有自动聚结变大
的趋势,但事实上很多溶胶可以在相当长的时间内 稳定存在而不聚结,有时竟可长达几年甚至几十年。 像法拉第于1858年制成的红色金溶胶,一直保存到 20世纪20年代才沉淀下来。 经研究表明与胶粒带电有直接关系,粒子带电是 溶胶稳定的主要原因。
I :单位体积散射光强度 ; I0 :入射光强度; :入射光波长;V :每个分散相粒子的体积; C :单位体积中的粒子数; n2 :分散相的折射率; n1:分散介质的折射率;
θ :散射角(观察方向与入射方向夹角); r : 观测距离(观察者与散射中心的距离)。
§9-3-2 瑞利(Rayleigh) 公式
布朗运动是分子热运动的必然结果
§ 9-4-2 扩散
在有浓度梯度存在时,因分子的热运动和胶粒的布 朗运动而发生宏观上的定向迁移现象,称为扩散。 粒子扩散的定向推动力是浓度梯度。 例下图: C1>C2。胶粒从C1区向C2区迁移的现象
C A F
C1
C2
D
B
F
§ 9-4-3 沉降与沉降平衡
多相分散系统中的粒子,因受重力作用而下沉 的过程,称为沉降。 沉降与布朗运动所产生的扩散 为一对矛盾的两个方面。 沉降 真溶液 粗分散系统 主 扩散 主 分散相分布 均相 沉于底部
(3)当光束通过分子溶液,因溶液均匀,散射光因相互 干涉而完全抵消,或散射光太弱,看不见散射光。
§9-3-2 瑞利(Rayleigh) 公式
9π CV I 2 λ4 r 2
2 2
n2 n 2 n2 2n
2
2 1 2 1
2 I 1 cos 0
2
12 -1
§9-5 溶胶的电学性质
1、电动现象
2、胶体的带电的原因 3、双电层理论 4、溶胶的胶团结构
问题
1、贮油罐中通常要加入少量有机电解质,否则有
爆炸的危险,这是为什么?为什么输油管要接地?
2 、在一个 U 型管中间,放用 AgCl 晶体组成的多孔
塞,管中放浓度为0.001mol.dm-3的 KCl溶液。多孔塞
§9-1分散系统的分类及其主要特征
粗分散系统 d>1000nm
粗 分 散 系 统
乳状液:液体分散在液体中 高度分散的; 泡沫:气体分散在液体中
多相的;
热力学不稳定
悬浮液:固体分散在液体中
胶体的制备及性质
§ 9-2溶胶的制备与净化
粗分散系统 (d>1000nm)
分子分散系统 (d<1nm)
胶体系统 (1<d<1000nm)
极移动,产生了电泳和电渗的电动现象,因电而动。
胶粒在重力场作用下发生沉降,产生沉降电势;带电
的介质发生流动,产生流动电势。因动而产生电。
以上四种现象都称为电动现象。
故电动现象证明胶体粒子是带电的。
问题解答
1、贮油罐中通常要加入少量有机电解质,否则有爆 炸的危险,这是为什么?为什么输油管要接地? 答:因为油中常含有小水滴,形成油包水的乳状液, 水滴带有电荷。进入贮油罐后,由于重力的作用, 小水滴下沉,会产生一定的沉降电势,给油罐带来 危险。所以加入一定量的有机电解质,增加油的电 导,减小沉降电势,防止事故的发生。在用泵输送 石油或其它碳氢化合物时,由于压差迫使液体流动, 在扩散层和管道表面会产生电势差,这是流动电势, 在高压下会产生火花。为了防止事故发生,都将这 种管道接地或加入有机电解质。
入射光频率 = 分子固有频率—— 吸收 入射光波长 > 分散粒子尺寸——散射 (可见光波长 400 -760 nm; 胶粒 1-1000nm) 无作用 ——— 透过
§ 9-3-1 Tyndall(丁铎尔)效应
(1)当光束通过粗分散体系,由于粒子大于入射光 的波长,主要发生反射,使体系呈现混浊。 (2)当光束通过胶体溶液,由于胶粒直径小于可见 光波长,主要发生散射,可以看见光柱,溶胶是多相 不均匀体系,在胶粒和介质分子上产生的散射光不能 完全抵消。
问题答案
3、为什么在做旋光分析时,光源用的是钠光灯? 答:因为在蔗糖水解时,主要测定其旋光度的变化, 而不希望有散射因素干扰。钠光灯放出的是单一的、 波长较长的黄色光,不容易发生散射。
§ 9-4溶胶的动力性质
1、Brown 运动 2、扩散
3、沉降与沉降平衡
§ 9-4-1 Brown 运动
1827年,植物学家布朗( Brown)在显微镜下,看到悬浮 在水中的花粉粒子处于不停息的无规则运动状态。 以后发现,线度<4000nm 的粒子,都有这种运动。 (胶体 1 ~ 1000nm) 实验结果表明:粒子 越小,介质粘度越小,温 度的升高, 布朗运动越激 烈。
图10-8 电渗
+
–
V
毛细管
气体
逆现象)。
图10-9流动电势
§9-5-1 电动现象
沉降电势 —由于固体粒子或液滴在分散介质中 沉降使流体的表面层与底层之间产生的电势差叫沉 降电势(它是电泳的逆现象)。
+ + + + + +++
V
图沉降电势
+ + + + + +++
§9-5-1 电动现象
在外电场作用下,胶粒和介质分别向带相反电荷的电
§9-5-1 电动现象
电渗 在外加电场作用 下,分散介质(由过剩反离
子所携带)通过多孔膜或极
细的毛细管移动的现象(此 时带电的固相不动) 流动电势在外加压力下, 迫使液体流经相对静止的固 体表面(如毛细管)而产生的 电势叫流动电势(它是电渗的
压力
+++++++++++++++ ––––––––––––––– +++++++++++++++ –––––––––––––––
胶体系统
平衡
形成浓梯
当扩散力和重力相等时达沉降平衡
§ 9-4-3 沉降与沉降平衡
沉降平衡:分散相粒子本身的重力使粒 子沉降;而介质的粘度及布朗运动引起 的扩散作用阻止粒子下沉; 当扩散速率等于沉降速率时,体系达到 沉降平衡。
d h h
2
h
1
达沉降平衡时,粒子的浓度随高度不同
有一定的梯度,且这种浓度梯度不随时 间而变。
胶体化学是物理化学的一个重要分支。它所研究 的领域是化学、物理学、材料科学、生物化学等诸多 学科的交叉与重叠,它已成为这些学科的重要基础理 论。 胶体化学的理论和技术现在已广泛应用于化工、 石油开采、催化、涂料、造纸、农药、纺织、食品、 化妆品、染料、医药和环境保护等工业部门和技术领 域。
基本概念
用丁达尔效应可鉴别真溶液、高分子溶液、和溶胶。
真溶液------无丁达尔效应(V太小)
高分子溶液------丁达尔效应微弱(n和n0相差太小)
粗分散系统----由于<分散相粒子的尺寸,无散射
溶胶----丁达尔效应显著
散色光称为乳光,乳光的 强度又称为浊度。
问题答案
1、为什么晴天的天空呈蓝色?为什么日出、日落时 云彩特别红? 答:太阳光由七色光组成。空气中有灰层微粒和小水 滴,当阳光照射地球时,其中,波长较短的蓝光、紫 光被微粒散射后的散射光较强,所以,看到的天空呈 蓝色,实际上看到的是这种散射光。而在日出、日落 时,太阳接近地平线,阳光要穿过厚厚的大气层我们 才能看到。阳光中短波长的青色、蓝色、紫色光被大 气层中的微粒散射掉了,我们看到的是散射较弱的红 色、橙色的透射光,所以特别绚丽多彩。
2). 按分散相和介质的聚集状态分:
表 9-1-2 分散系统按聚集状态分类 分散介质 分散相 名称 实例 液 云、雾、喷雾 气 气溶胶 固 烟、粉尘 气 泡沫 肥皂泡沫 液 液 乳状液 牛奶、含水原油 固 液溶胶或悬浮液 金溶胶、油墨、泥浆 气 泡沫塑料 固 液 固溶胶 珍珠、蛋白石 固 有色玻璃、某些合金
按分散相粒 子的大小分:
•胶体分散系统 分散相线度1nm-1000nm