热加工论坛—Inlet_e
CLC_Guide29
CENELEC Guide 29Temperatures of hot surfaceslikely to be touchedGuidance document forTechnical Committees and manufacturersThe present Guide has been developed in response to EC Standardisation Mandate M/346 in the field of the Low Voltage Directive 2006/95/EC addressing surface temperatures of accessible non-functional surfaces.The CENELEC Technical Board approved this Guide in April 2007.Rue de Stassartstraat, 35B - 1050 BrusselsTel.: + 32 2 519 68 71Fax: + 32 2 519 69 19Temperatures of hot surfaces likely to be touched CENELEC Guide 29ForewordThis Guide was prepared by CENELEC BTTF 120-1, Surface temperatures.The text of the draft was submitted to the vote and was approved by the CENELEC Technical Board as CENELEC Guide 29 on 2007-04-11.This guidance document for Technical Committees and manufacturers has been developed in response to EC Standardisation Mandate M/346 in the field of the Low Voltage Directive 2006/95/EC addressing surface temperatures of accessible non-functional surfaces.CENELEC Guide 29 Temperatures of hot surfaces likely to be touchedContentsPage 1Scope (6)2Normative references (6)3Definitions (6)3.1surface temperature (Ts) (6)3.2contact period (t) (6)3.3thermal inertia (7)3.4material properties of the surface (7)3.5burn threshold (7)3.6hot functional surface (7)3.7adjacent surface (7)3.8handles or control knobs including keypads, keyboards and the like (7)3.9touchable surfaces (7)3.10arms reach (8)3.11skin temperature (T C) (9)4Assessment of the risk of burning (9)4.1Procedure (9)4.2Identification of surfaces (9)4.3Task analysis (10)4.4Measurement of the surface temperatures (10)4.5Choice of applicable burn threshold (10)4.6Comparison between surface temperature and burn threshold (11)4.7Result of the risk assessment (11)5Application of protective measures (11)5.1Touchable surfaces (11)5.2Adjacent surfaces (12)6Burn thresholds (12)6.1Determination of the contact period (12)6.2Selection of the burn threshold (13)6.3Texture of the surface (14)7Documentation (14)Annex A Burn thresholds (15)A.1General (15)A.2Burn threshold data (16)Temperatures of hot surfaces likely to be touched CENELEC Guide 29Annex B (informative) Scientific background (21)Annex C (informative) Thermal properties of selected materials (23)Annex D (informative) Examples for protective measures against burns (24)D.1Protective measures against burns (general) (24)D.2Example for protective measures (24)Bibliography (26)FiguresFigure 1 – Definition of the different touchable parts of an equipment (8)Figure 2 – Arms reach - the distance is interpreted as either a fully stretched person (a) or aperson reaching for an item (b). Worst case of either (a) or (b) to be used (8)Figure A.1 – Illustration of relationship between the burn threshold and contact period when ahot surface is touched by the skin (17)Figure A.2 – Burn threshold spread when the skin is in contact with a hot smooth surfacemade of bare (uncoated) metal (17)Figure A.3a – Rise in the burn threshold spread from Figure A2 for metals which are coated bylac of a thickness of 50 µm, 100 µm and 150 µm (18)Figure A.3b – Rise in the burn threshold spread from Figure A2 for metals which are coated by porcelain enamel (160 µm) / powder (60 µm), powder (90 µm) and polyamide 11 or 12(thickness 400 µm) (18)Figure A.4 – Burn threshold spread when the skin is in contact with a hot smooth surfacemade of ceramics, glass and stone materials (19)Figure A.5 – Burn threshold spread when the skin is in contact with a hot smooth surfacemade of plastics (19)Figure A.6 – Burn threshold spread when the skin is in contact with a hot smooth surfacemade of wood (20)TablesTable 1 – Arms reach (8)Table 2 – Contact period (12)Table A.1 – Burn threshold for longer contact times (20)Table C.1 – Thermal properties of selected materials (taken from [3]) (23)CENELEC Guide 29 Temperatures of hot surfaces likely to be touched1 ScopeThis document provides guidance for assessing the risk of a burn from unintentional contact with readily accessible surfaces of electrical equipment under the scope of the Low Voltage Directive.This document establishes surface temperature limits, where such limits are required, and describes the maximum contact periods with a hot surface that a person may be subjected to without being exposed to a risk of burn. Curves of maximum temperatures versus contact times are described for different types of material with different types of surfaces.This document does not address temperature limits for hot functional surfaces.This document applies to surfaces of products likely to be touched by any person.The limit values may be taken into consideration by Technical Committees in determining surface temperature limits in product standards. Manufacturers may also use the limit values to assist in their risk assessment, if a product standard is not applied.It is not within the scope of this document to set temperature limits for the following zones or surfaces: - hot functional surfaces;- adjacent surfaces;- handles, control knobs including keypads, keyboards and the like;- surfaces not likely to be touched.2 Normative referencesThe following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.EN ISO 13732-1:2006, Ergonomics of the thermal environment – Methods for the assessment of human responses to contact with surfaces – Part 1: Hot surfacesEN 61032:1998, Protection of persons and equipment by enclosures - Probes for verification3 DefinitionsFor the purpose of this guide, the following definitions apply:3.1surface temperature (Ts)temperature of a surface, measured in degrees Celsius, at an ambient temperature of 25°C -5°C/+0°C 3.2contact period (t)time during which contact with the surface occursNOTE In Figures A.2 to A.6 contact duration (D) is used to determine the contact period (t)Temperatures of hot surfaces likely to be touched CENELEC Guide 29 3.3thermal inertiaproduct of the density, thermal conductivity and specific thermal capacity of material3.4material properties of the surfacechemical/physical composition of the material and the characteristics (rough, smooth) of the surface 3.5burn thresholdsurface temperature defining the boundary between no burn and a superficial partial thickness burn, caused by contact of the skin with a hot surface for a specified contact period3.6hot functional surfacesurface which is intentionally heated by an internal heat source and which has to be hot to carry out the function for which the equipment is intended to be used. For example, the soleplate of an iron, or curling tongs.Some equipment have hot surfaces as a consequence of how they generate their output, for example lamps within a luminaire, and are considered in terms of their treatment as equivalent to a hot functional surface3.7adjacent surfacea surface adjacent to a functional surface.The adjacent surface and the functional surface normally consist of the same piece of material or are in direct thermal contact and have similar thermal properties. The adjacent surface is not heated intentionally during use of the product. However, as it is adjacent to the functional surface and may become hot through conduction, its temperature will be in the range between the functional and a touchable surface3.8handles or control knobs including keypads, keyboards and the likepart of the equipment that a user needs to touch to operate or adjust the equipment3.9touchable surfacesall other surfaces that are likely to be touched when the equipment is operated during normal use and foreseeable misuse. The equipment has to be installed according to the manufacturer’s instructions. NOTE This means an oven intended for build in should be installed according to the manufacturer’s instructions before identification of the touchable surfacesCENELEC Guide 29 Temperatures of hot surfaces likely to be touchedFigure 1 – Definition of the different touchable parts of an equipment3.10 arms reachthe distance measured from the floor to the fingertips of a person. As shown in Figure 2, it has to be taken into account that a person can reach not only in a vertical direction as shown in Figure 2 (a), but also in a circle defined approximately in Figure 2 (b).Figure 2 – Arms reach - the distance is interpreted as either a fully stretched person (a)or a person reaching for an item (b). Worst case of either (a) or (b) to be used Table 1 gives guidance on arms reach for different age groups.Table 1 – Arms reachAge yearsArms reach [see Figure 2(a)], calculated from the floormetreChildren less than 2 years1,00 Children from 2 years to less than 6 years 1,50 Children from 6 years to less than 14 years1,80Adult 2,30NOTE The values in Table 1 are average valuesTouchable surface: Surface which may be touchedAdjacent surfaceHot FUNCTIONALsurfaceHandles or control knobs including keyboards and the likeTemperatures of hot surfaces likely to be touched CENELEC Guide 29 3.11skin temperature (T C)temperature at a depth of 80 µm below the surface of the skin, measured in degrees Celsius4 Assessment of the risk of burningNormally it is sufficient to follow the product standard. The manufacturer only needs to carry out a risk assessment, if the product standard does not take account of the foreseeable use in relation to the temperatures of surfaces likely to be touched, or if no relevant product standard exists.4.1 P rocedureThe different types of surfaces or zones shall be identified according to 4.2.To assess the risk of a cutaneous burn from surfaces likely to be touched, the steps described in 4.3 to 4.7 shall be carried out for surfaces identified in 4.2.4.4.2 Identification of surfacesAll necessary information concerning the surfaces of a product shall be gathered to classify the surfaces according to 4.2.1 to 4.2.4.4.2.1 Identification of hot functional surfacesHot functional surfaces shall be identified when the equipment is installed as for normal use. See 3.6.4.2.2 Identification of adjacent surfacesAdjacent surfaces to hot functional surfaces shall be identified. See 3.7.4.2.3 Identification of handles or control knobs including keypads, keyboards and the like Relevant parts shall be identified. See 3.8.4.2.4 Identification of non-functional touchable surfacesAll necessary information concerning the touchable surfaces of the equipment, including the following, shall be gathered:- accessibility of the surfaces, see 4.2.4.1;- approximate estimation of surface temperatures (hot, moderate, cold);- material and texture of the surfaces;- all normal operating conditions of the equipment including the worst case, i.e the setting which results in maximum temperatures of the surfaces;- the probability of contact.4.2.4.1 Touchable surfacesA surface is considered touchable if parts of the appropriate test probe (EN 61032) can touch the surface. It is the responsibility of the technical committees to decide which test probe shall be used.If the equipment is installed out of reach it is not considered touchable.CENELEC Guide 29 Temperatures of hot surfaces likely to be touched It is up to the manufacturers’ risk assessment, based upon the relevant product standard(s), to define the foreseeable use.NOTE “relevant product standard(s)” means, that the standard(s) covers all risks of the equipment in question.4.3 Task analysisAll necessary information concerning the use of the product shall be collected. By means of analysis or observation, the activities and tasks involved in using the product shall be described. Attention shall be paid to the means of possible contact with hot surfaces and to which persons (users of the product and others) the contact may happen. From the task analysis the following information is obtained:- surfaces which may be touched unintentionally,- users or other persons who will likely touch or may touch the surfaces unintentionally,- range of operation of the product,- probability of touching,- statistical data on relevant incidents, if available,- maximum setting of the temperature of the product.4.4 Measurement of the surface temperaturesThe surface temperatures shall be measured on touchable surfaces.The measurement shall be carried out under normal operating conditions of the product that will result in the maximum surface temperature. The chosen operating conditions should reflect the manufacturer’s intended use of the product while excluding deliberate misuse or unauthorised modifications of the product or its operating parameters by the user.f a technical committee has a specified temperature measurement method, that method shall be used. Otherwise the measurement of the surface temperature shall be carried out by means of an electrical thermometer with a contact sensor made of metal and insignificant heat capacity. The accuracy of the instrument shall be at least ± 1 °C in the range up to 50 °C and at least ± 2 °C in the range above 50 °C.NOTE The data in Annex A is based on measurement methods described in EN ISO 13732-1:2006.4.5 Choice of applicable burn thresholdBased on the identification of the hot surfaces in 4.2, and from the task analysis in 4.3, and by taking account of the surface material and texture, the applicable burn threshold may be chosen using the data in Annex A, if available.NOTE 1 Annex A provides data and curves for some surface material and texture combinations. Further study may be necessary to determine burn thresholds for materials and/or textures not covered in Annex A.The contact period to be used for selecting the burn threshold must be according to Clause 6, and must take into consideration the different groups of persons that are likely to come into contact with the surface.NOTE 2 For products that can be expected to be operated only under supervision or if there is a lower risk of exposure to children and/or people with physical disabilities, applicable contact periods may be reduced.4.6 Comparison between surface temperature and burn thresholdCompare the measured surface temperatures with the applicable burn thresholds:-If the surface temperature is above the burn threshold, cutaneous injury upon contact with the hot surface is to be expected. -If the temperature lies below the burn threshold, the skin will not normally suffer injury. - f the measured surface temperature lies inside the burn threshold spreads of the figures inAnnex A, cutaneous injury may or may not occur. This corresponds to the remaining uncertainty ofthe burn threshold specification.NOTE 1 The burn thresholds in EN SO 13732-1:2006 relate to surface temperatures and not skin temperatures. Therelationship between surface temperatures and resultant skin temperatures is discussed in A.1. The occurrence of a burn basedon skin temperature is discussed in Annex B.NOTE 2 I n some technical committees (e.g. TC 108), it is under consideration to measure a resultant surface temperatureafter contact with the body has been established.4.7 Result of the risk assessmentBased on the analysis in 4.3, the probability of touching a part of the surface of the product which hasa temperature higher than the burn threshold shall be determined. As a result, the risk of burning isdetermined in terms of-exceeding or falling short of the burn threshold for all parts of the touchable surface of the product, - probability of contact.NOTE Hints for the risk assessment are given in Subclause 6.3 of EN ISO 13732-1:2006.5 Application of protective measuresProtective measures shall be considered according to 5.1 and 5.2. Afterwards the process of riskassessment shall be repeated until the risk level is acceptable.5.1 Touchable surfacesI f the risk assessment shows that there is a risk of burning it shall be decided whether protectivemeasures are necessary and, if so, which protective measures are appropriate. In order to reduce orto eliminate any risk of burning, protective measures may be applied to products and may also bespecified in standards for products which are to be produced in the future.In general, engineering, organisational or personal protective measures may be applied. Whether it isnecessary to apply protective measures at all and which specific measures are appropriate willdepend on the context in which a product will be used.I t is outside of the scope of this document to specify protective measures. I t is the task ofmanufacturers and also of standardisation groups to decide upon protective measures appropriate tothe intended use of a product. Protective means should be provided together with the equipment.One of several possible protective measures is the limitation of the surface temperature below theburn threshold. To achieve this, surface temperature limit values may be established at or below theburn threshold in the product standard. It is then the task of the manufacturer of the product to applytechnical solutions in order to comply with the established limit values.Limitation of surface temperatures and establishment of limit values is applicable only for those partsof a product which are not deliberately heated as an integral part of the functioning of the product.5.2 Adjacent surfacesAs the temperature of an adjacent surface may be in excess of the limits of the touchable surfaces,protective measures shall be considered to minimize the risk of burning.Examples of applicable protective measures in this case include limiting the dimensions to thesmallest possible area, use of alternative materials or surface structures to limit the likelihood oftouching of adjacent surface, reduction of the temperature flow by de-coupling or insulation from thefunctional surface.It is the responsibility of the technical committee or manufacturer to define the size, the temperaturelimits and any other relevant aspects of this surface, where necessary.6 Burn thresholds6.1 Determination of the contact period6.1.1 GeneralFor the selection of appropriate contact periods, a minimum contact period of 0,5 s – 1 s shall beused. I f extended reaction time is to be expected (e.g. for people who need special precautions), alonger contact period of up to 15 s should be selected. See Table 2.I t is essential that when selecting the contact periods, a distinction is made based upon those whomay come into contact with the hot surface. See Table 1, Table 2 and 6.1.2:- adults,- children,- elderly people,- people with physical disabilities.Table 2 – Contact periodGroup Contact period insecondsAdults 0,5-1Children less than 2 years 15Children from 2 years to less than 6 years 4Children from 6 years to less than 14 years 2Elderly people 1-4Physical disabilities According to nature ofdisabilityNOTE The exact value for adults shall be chosen based on the nature of the products and where they are intended to be used.6.1.2 Selection of contact periods6.1.2.1 AdultsFor adults a minimum contact period of 0,5 s - 1 s shall be used.6.1.2.2 ChildrenI f children may touch the touchable surfaces, an extended reaction time due to their age is to be expected, and at least 4 s shall be selected.I f children aged between 6 and 14 may touch a touchable surface, a contact period of 2 s may be used.Until 24 months of age, children do not have reflexes fast enough to respond to contact with a hot surface. Thus, the contact period may be up to 15 s for very young children.6.1.2.3 Elderly peopleI f elderly people may touch the touchable surface, 1 s shall be selected as the minimum contact period. If an extended reaction time due to their age is to be expected, at least 4 s shall be selected. NOTE The majority of products covered by the Low Voltage Directive are commonly used by elderly people.6.1.2.4 People with physical disabilitiesWhere people with physical disabilities may come in contact with hot surfaces, 1 s shall be selected as the minimum contact period. Special consideration shall be made by the technical committee taking into account the nature of the disabilities and the use of the product.6.2 Selection of the burn thresholdWith the aid of the established contact period, the burn threshold shall be determined from the graphs in the figures in Annex A or from Table A.1.For contact periods between 10 s and 1 min, an interpolation can be made between the burn threshold value indicated for the specific material in the figures in Annex A for 10 s and the value in Table A.1 corresponding to the contact period of 1 min.For contact periods longer than 1 min, lying between the time periods specified in Table A.1, it is convenient to interpolate between the burn threshold values set for the next shorter and for the next longer contact period. Figures for thresholds to be adapted for 0,5 s to 15 s (see A.2).For the purpose of setting temperature limit values, it is recommended to proceed in the following way: inside the spread of burn threshold values for material group in the figures in Annex A it is recommended to choose a temperature value lying nearer the lower end of the spread if the probability of touching the hot surface is high, and to choose a temperature value nearer the higher end of the spread when the probability of touching the surface is less.Materials not expressly mentioned in the figures in Annex A and Table A.1 can in some cases be evaluated according to their heat conductivity properties. The thermal inertia (see Annex B and Annex C) of the respective material has to be compared to the thermal inertia of the following groups of materials: metals, ceramics and glass materials, plastics or wood. The material can then be accorded a burn threshold value from the material group with the same thermal inertia. The prerequisite for that is that the order of the thermal inertia for the material in question may be measured or estimated with sufficient accuracy compared to the thermal inertia of the material groups given in this guideline. If the order of thermal inertia of the material in question is not known at all, no burn threshold values can be derived from this standard. This may especially apply to plastics (e.g. styropor), where heat conductivity properties may deviate considerably from that of the plastic materials described in Annex A. I n case of doubt about specific materials technical committees can use the procedure defined in EN ISO 13732.When a product in normal use can be touched by children a value towards the lower end of the burn threshold spreads in the figures in Annex A shall be selected for contact periods between 1 s and 10 s. For products specifically for children the values on the lower end of the spreads are recommended. For contact periods between 10 s and 1 min an interpolation shall be made between the lower end in the spread for a contact period of 10 s and the burn threshold for 1 min. For contact periods of 1 min and longer Table A.1 applies also to children.6.3 Texture of the surfaceThe texture of the surface will affect the nature of the contact. For rough surfaces, values more towards the upper end of the burn threshold spreads in the figures of Annex A could be taken and for smooth surfaces values more towards the lower end of the spreads could be taken.7 DocumentationThe result of the assessment, data that was used to carry out the risk assessment, measurement values, drawings, data sheets and the like have to be documented.NOTE Applying a harmonised or other recognised relevant standard is an acceptable means of carrying out a risk assessment (as in Clause 4).Annex ABurn thresholdsA.1 GeneralThis annex provides surface temperature data for burn thresholds. An estimate of the risk of burning is possible by measuring the surface temperature and by comparison with the values specified in A.2.NOTE The occurrence of burning depends on the temperature of the skin and on the duration of raised skin temperature. The connection between skin temperature, duration of its influence and occurrence of burning has been scientifically studied and is known (see Annex B). But it is not practicable by simple means to measure the temperature of the skin during its contact with a hot surface. Therefore in this guidance it is not the temperature values of the skin which are specified but the temperature values of hot surfaces which, when in contact with the skin, lead to burns (the burn thresholds). The temperature of a surface is simply measurable by appropriate measuring facilities.The surface temperatures which lead to burns during contact of the skin with a hot surface depend on the material of which the surface consists, and on the duration of the contact of the skin with the surface. This relationship is presented in Figure A.1. Figure A.1 shows this relationship for several groups of materials which have similar heat conductivity properties and therefore similar burn thresholds.A point on a burn threshold curve indicates, for a particular contact period, that surface temperature which lies between non-injury of the skin and the onset of a superficial partial thickness burn when the skin comes into contact with the hot surface.Surface temperature values lying below the curve in general do not lead to a burn. Surface temperature values lying above the curve will lead to a burn of the skin (see also Annex B).The illustrative Figure A.1 only serves to provide better understanding and does not accurately represent the burn threshold data. The exact burn threshold values have to be taken from Figures A.2 to A.6 and Table A.1.For short contact periods the burn thresholds are not drawn as lines in the illustrative Figure A.1 and the detailed Figures A.2 to A.6, but are drawn as spreads. This takes into account the fact that for short contact periods the knowledge of the temperature boundary between non-burning and the onset of burning is not complete. The burn threshold depends on several factors which include: thickness of the skin at the touching point, moisture of the skin’s surface (sweating), contamination of the skin (e.g. grease), touching force; differences between the heat conductivity properties of materials which have been combined in one group; uncertainties of the scientific determination of the burn threshold values (see also Annex B). However, these influences are considered to be small compared to the influence of the heat conductivity properties of the different material groups.For longer contact periods the uncertainties are less than for short contact periods. So for long contact periods exact values for burn thresholds are specified. The differences in the values for different groups of materials also disappear for long contact periods.A.2Burn threshold data A.2.1 Burn thresholds for a contact period between 1 s and 10 sA.2.1.1 GeneralIn the case of short contacts (contact periods of 1 s to 10 s), the burn threshold spreads are not set innumbers but are reflected in graphs in dependence upon the contact period. The burn thresholds ofmaterials with similar heat conductivity properties were combined to represent one range.A.2.1.2 Uncoated metalsThe burn thresholds presented in Figure A.2 are valid for smooth surfaces of uncoated metal. In thecase of rough metal surfaces however, the values may lie above those for smooth surfaces but notmore than 2 ºC above the upper limit of the indicated burn threshold spread.A.2.1.3 Coated metalsThe values for the effect of coating a metal are shown in Figures A.3a and A.3b. The values arepresented as temperature rise above the burn threshold for uncoated metal. To obtain a burnthreshold for coated metal itself, the value for the temperature rise ∆T s in Figure A.3a or A.3b and theburn threshold for the uncoated metal T s in Figure A.2 have to be added.A.2.1.4 Ceramics, glass and stone materialsThe burn threshold spread for ceramics, glass ceramics, glass, porcelain and stone materials (marble,concrete) is shown in Figure A.4.The burn thresholds for marble and concrete lie towards the lower limit of the spread. Burn thresholdsfor glass lie towards the upper limit of the spread.A.2.1.5 P lasticsThe burn threshold spread for plastics (polyamide, acrylglass, polytetrafluorethylene, duroplastic) isindicated in Figure A.5.NOTE Plastics have very different levels of thermal conductivity, depending on the chemical composition. The burn thresholdspread for most solid plastics is indicated in Figure A.5. However, for plastics with heat conductivity properties which differmarkedly from those of the materials given in A.2.1.5, burn thresholds as indicated in Figure A.5 cannot be used. For thesematerials burn thresholds have to be calculated, estimated or measured as indicated in Annex B.A.2.1.6 WoodThe burn threshold spread for wood is shown in Figure A.6.For soft woods with low moisture content the values at the upper limit of the spread are applicable. Forhard woods with high moisture content the values at the lower limit of the spread are relevant.A.2.2 Burn thresholds for contact periods of 1 min and longerTable A.1 presents burn thresholds when a surface is touched for contact periods of 1 min and longer.。
CoCrFeNi_系高熵合金研究进展
精密成形工程第15卷第8期孟爽,国栋,赵冬凤,余青,林毛毛(天津职业技术师范大学机械工程学院,天津 300222)摘要:高熵合金具有独特的微观结构和特性,作为一种新型的高性能材料,逐渐获得了国内外研究人员的广泛关注。
高熵合金具备多元化的元素组成方式,不但没有形成传统概念中复杂的相结构,反而展现出了更优异的性能,在诸多领域均具有良好的应用前景。
在当前的高熵合金体系中,CoCrFeNi系研究最为广泛,其研究内容主要体现在通过添加不同元素或进行退火热处理对原合金体系改性进而获得优异性能的材料。
首先,结合CoCrFeNi体系对高熵合金的定义和性能特点进行了分析和总结;其次,从热力学和动力学角度论述了CoCrFeNi系高熵合金的结构预测、层错能计算及缺陷动力学分析;再次,总结了Al、Ti、Cu、Mn 和C元素对CoCrFeNi系高熵合金显微组织和力学性能的影响;最后,分析了当前的研究现状并进行了展望。
关键词:高熵合金;CoCrFeNi系;模拟计算;合金元素;力学性能DOI:10.3969/j.issn.1674-6457.2023.08.019中图分类号:TG139 文献标识码:A 文章编号:1674-6457(2023)08-0156-13Research Progress of CoCrFeNi High Entropy AlloyMENG Shuang, GUO Dong, ZHAO Dong-feng, YU Qing, LIN Mao-mao(Faculty of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China)ABSTRACT: As a new high performance material, high entropy alloy has gradually got the attention of the world in recent years due to its distinctive microstructure and properties. The diversified element composition not only avoids the formation of complex phase structures in the traditional concept, but also exhibits superior performance to conventional alloys and has a wide range of potential applications. The CoCrFeNi system is now the mostly studied high entropy alloy system, which is mostly seen in the modification of the original alloy system through the addition of other elements and annealing treatment to produce supe-rior material properties. The definition and characteristics of a high entropy alloy combined with the CoCrFeNi system were firstly examined and summarized. Then, the structure prediction, calculation of layer fault energy and defect dynamics analysis of CoCrFeNi high entropy alloy were discussed from the perspective of thermodynamics and dynamics. Next, the effect of Al, Ti, Cu, Mn and C elements on the microstructure and mechanical properties of CoCrFeNi high entropy alloy was summarized. Fi-收稿日期:2023-04-21Received:2023-04-21基金项目:国家自然科学基金(52074193);天津市自然科学基金科技计划重点项目(22JCZDJC00770);天津市教委科研计划重点项目(2022ZD022)Fund:National Natural Science Foundation of China(52074193); Key Project of Tianjin Natural Science Foundation Science and Technology Program(22JCZDJC00770); Key Projects of the Tianjin Education Commission's Research Program(2022ZD022)作者简介:孟爽(1995—),女,硕士生,主要研究方向为高熵合金。
热加工对TB3钛合金棒材组织的影响
2 2 01
2月
T i
F_ 0 Vm 21 e2 o br 1 o9 . ny l N
热 加 工 对 T 3钛 合 金 棒 材 组 织 的 影 响 B
张英 明 ,段 启 辉 ,韩 明 臣 ,倪 沛彤 ,朱 梅 生 ,董 亚 军
( 西北有 色金 属研 究院 ,陕西 西安 70 1) 10 6
关键 词 :T 3 B ;钛 合 金 ;热 加 工 ;组 织
1 前 言
T 3钛 合 金是 西 北 有 色 金 属 研 究 院 自主 研 制 的 B 亚 稳 钛 合 金 ,其 名 义 成 分 为 T—O o8 一F一 i M 一V 1e l 35 1 . A ,主要用 于航 空 航天 紧 固件 ,其 交 货 状 态 主要 是 固溶状 态 。T 3钛合金 具有优 良的冷加 工性 能和 时 B
在 固溶状 态下 的主 要 相 为 相 ,基 本 上 没有 析 出相
上进 行 两火次 轧 制 ,第 一火 轧制 成 6 om 3 m,第 二火 轧制 成 8m m轧 条 。然后 , 8m m轧 条 经 3道 次热
拉拔 至 3 m m。在 生 产 过 程 中 ,分 别 在 4 5 、西 0 , 5 3、
大 的合 金元 素外 ,固溶 时 ,在 保 证 固溶 充 分 的前 提 下 ,尽 量 降低 固溶 温 度 和 减 少 保 温 时 间 ,从 而 达 到
细 化 晶粒 、提 高 强 度 的 目的 。本 研 究 并 未 对 锻 造 过 程 对 于 晶粒 细 化 的影 响 进 行 考 虑 ,但 是 锻 造 过 程 不 同于 轧制 和拉 拔 工 艺 ,对 于 晶粒 的 晶粒 取 向有 更 大 的影 响 ,将 是值得 研 究 的方 向 。
SAEAMSE高温测定法中英文对照版
FIGURE 3 INSTRUMENTATION TYPE REQUIREMENTS
图3
仪表类型要求........................................................................................................................................................................... 27
Байду номын сангаасAE
AMS 2750E 中文译版
Page: 2 / 73
8. NOTES
注释.................................................................................................................................................................................................... 70
3.7 Records 记录............................................................................................................................................................................................. 52
AEROSPACE MATERIAL SPECIFICATION 航空航天材料规范
(R)高温测定法
AMS2750 REV. E
DIN 4754 有机热载体加热系统
Seite 30
10 No.2 1 2 3
4
litres
Designation Manufacturer/supplier Serial number Year of construction Allowable working pressure Permissible operating temperature Capacity Component identification mark litres
DIN 4754
Seite 34
including associated safety devices copies
C.7 Documents required for acceptance inspection
The following documents shall be submitted for the acceptance inspection:
C.5.2 Temperature-relief valves 1 2 3 4 Number Manufacturer Shut-off temperature Component identification mark
C.5.3 Flue gas temperature limiters 1 2 3 4 Number Manufacturer Shut-off temperature Component identification mark
DIN 4754 Seite 32
C.5.5 Liquid level limiters (expansion vessel)
1 2 Manufacturer Component identification mark
219455622_选区激光熔化AlSi10Mg显微组织及力学性能研究
第38卷第2期2023年4月安㊀徽㊀工㊀程㊀大㊀学㊀学㊀报J o u r n a l o fA n h u i P o l y t e c h n i cU n i v e r s i t y V o l .38N o .2A pr .2023文章编号:1672G2477(2023)02G0007G07收稿日期:2022G06G30㊀基金项目:安徽省科技计划重点实验室基金资助项目(1106C 0805011);安徽省高校自然科学研究重点基金资助项目(K J 2015A 239)作者简介:许㊀杨(1994G),男,安徽马鞍山人,硕士研究生.通信作者:余小鲁(1978G),男,浙江江山人,副教授,博士.选区激光熔化A l S i 10M g 显微组织及力学性能研究许㊀杨1,余小鲁1,2∗(1.安徽工程大学材料科学与工程学院,安徽芜湖㊀241000;2.安徽工程大学高性能有色金属材料安徽省重点实验室,安徽芜湖㊀241000)摘要:利用选区激光熔化(S L M )制备出A l S i 10M g 试样,分析工艺参数对合金致密度的影响,并研究了S L M 成形A l S i 10M g 合金不同温度退火前后的组织演变㊁力学性能㊁织构及物相变化.结果表明,激光功率和扫描间距改变引起的熔池微观组织的变化对S L M 成形A l S i 10M g 合金成形质量及性能有着显著的影响,在350W 和0 13mm 参数下试样致密度最高可达99 82%.退火前后A l S i 10M g 试样A l (200)晶面织构系数(T C )皆高于其他晶面,为S L M 成形的A l S i 10M g 合金中的αGA l 基体的择优取向.在100~200ħ下退火1h ,S L M 成形A l S i 10M g 合金组织中共晶S i 大体上仍连续网状分布,依旧可以起到固溶强化和第二相强化作用,硬度小幅度从131 5HV 0 2降低至117 5HV 0 2.在300~400ħ下退火1h ,合金试样中共晶S i 发生断裂球化且部分发生聚结以颗粒状分布在A l 基体中,显微硬度降低至55 4HV 0 2.关㊀键㊀词:选区激光熔化;A l S i 10M g ;工艺参数;退火;显微硬度;微观组织中图分类号:T G 146.21;T B 32㊀㊀㊀㊀文献标志码:A随着几何结构复杂的轻型零部件制造需求的增加,现代工业对制造成本和时间的减少导致了快速成形的开发.选区激光熔化(S e l e c t i v eL a s e rM e l t i n g ,S L M )是一种新兴的增材制造技术,是直接从三维计算机辅助设计数据实现金属零件成形的粉末层熔化工艺.相对于传统制造工艺,具有生产周期短㊁高分辨率和精度㊁几乎没有任何材料损失等优势.A l S i 10M g 属于Al GS i 系铸造铝合金,具有铸件性能好㊁导热性好㊁密度低㊁工艺系数好等优点,广泛应用于汽车㊁仪表㊁航空工业等各个领域[1G2].Z h o u 等[3]发现S L M 样品经300ħ退火处理后残余应力基本消除,延伸率上升但强度急剧下降.L i u 等[4]通过研究不同扫描速度下成形样品中的αGA l (200)强度因晶粒取向和尺寸的不同而存在差异.G i r e l l i 等[5]通过研究对比S L M成形和铸造成形,表明由于晶粒细化及纳米S i 颗粒的存在,使得S L M 成形件相对于铸造件具有更好的力学性能.因此,本文采用S L M 技术通过不同工艺参数组合打印出成形件,择优选取综合性能最佳的试样㊀㊀图1㊀A l S i 10M g 粉末S E M 图进行退火处理,并对沉积态和不同退火温度下的微观组织及力学性能进行分析,为铝合金的S L M 成形提供参考.1㊀试验1.1㊀试验材料试验原材料购于某公司气雾化法制备的A l S i 10M g 合金粉末,在进行S L M 实验之前,A l S i 10M g 粉末进行烘干处理.表1为各元素含量,粉末S E M 图如1所示.从图1可以看出,粉末颗粒表面相对光滑,整体球形度高,有利于粉层的均匀性和平整性.表1㊀A l S i 10M g 合金粉末化学成分表元素S iM gF eC uM nA lW t .%9.0~11.00.2~0.45<0.55<0.05<0.45B a l .Copyright ©博看网. All Rights Reserved.1.2㊀试验参数及设备本次试验采用德国S o l u t i o n 公司研发的型号为S L M 125H L 的设备,基于现有的文献和相关工作[6G7],本次试验工艺参数如表2所示,旋转角为67ʎ,在此参数下分别打印出尺寸为8mmˑ8mmˑ10mm 的小方块.1.3㊀表征与测试采用德国布鲁克公司D 8型X 射线衍射仪(X R D )对合金进行物相检测,常温工作环境,测试环境要求电流为40m A ,电压为40k V ,C u 靶,K α衍射角为25ʎ~95ʎ,步长为0 02.首先将S L M 成形A l S i 10M g试样抛光,再使用凯勒试剂(1m L H F +1 5m L H C L +2 5m L H N O 3+95m L H 2O )腐蚀16s .利用日立S G4800型扫描电镜观察显微组织,利用T MV S G1显微维氏硬度计测量硬度.为减少实验误差,避免缺陷处选8个样点取平均值.表2㊀S L M 成形A l S i 10M g 的工艺参数工艺参数设置值激光功率/W250~350扫描速度/(mm /s )1200扫描间距/mm 0.08~0.13工艺参数设置值扫描角度/ʎ67层厚/μm 302㊀结果与讨论2.1㊀致密度分析金相法测得不同参数下选区激光熔化A l S i 10M g 沉积态致密度如图2所示.根据试样的致密度测定以及试样表面的观察得出,在S L M 形成A l S i 10M g 合金的过程中,激光功率和扫描间距变化产生的温度梯度会影响熔池的微观结构和熔池的冷却速率,从而影响成形件质量.当激光功率为300W ,扫描间距为0 13mm 时,试样致密度达最高99 82%.研究分析表明,影响A l S i 10M g 合金致密度的主要因素一是A l S i 10M g 合金粉末密度小,当细粉含量过高时粉末流动性变差,激光在扫描过程中会对粉末产生一定影响导致粉末颗粒发生碰撞,造成飞溅.其次是铝合金高导热系数,同时在成形过程中处于快速受热快速冷却的状态,因此熔池在充分流动融合之前已经凝固,产生气孔等少量缺陷[8].2.2㊀微观组织分析不同参数下制备的A l S i 10M g 试样纵截面的光学显微镜照片如图3所示.由图3可知,当激光功率为250W 和350W 时,试样表面中的孔洞缺陷较为明显.而当激光功率为300W 时,孔洞缺陷最少,成形件表面质量更高.此外,当激光功率为300W 时,随着扫描距离的增加,孔洞等缺陷逐步减少.因为激光功率过低时输入能量不足,无法充分熔化粉末从而造成缺陷.而当激光功率过高时,对熔池输入能量过高,使熔池的凝固时间延长,甚至会产生严重的反冲效应.在完全熔化粉末的同时会产生过多的液相,造成部分溶液飞溅出来,在周围未熔化的粉末表面形成球形颗粒,会导致熔体不稳定和球化现象.这也会影响下一层的铺粉效果,因而孔洞缺陷明显.当激光功率固定为300W 时,扫描距离过小,熔池之间的重熔面积过大,能量输入过多.二次重熔会使晶粒结构变得粗大,应用过多的能量会导致各种类型的缺陷,其中最明显的缺陷是由金属蒸发和高温梯度造成的孔洞和金属液滴飞溅,从而影响样品的性能.然而,当扫描距离过大,两个相邻熔池的重熔面积过小,在熔池界处可能有未熔化的粉末,会降低相邻熔道的搭接紧密性,最终影响沉积态的密度状态,导致成形质量差.试样金相组织如图4所示.图4a ㊁4b 为纵向截面,图4c ㊁4d 为横向截面,横向和纵向均可清晰观察熔池宽度约为60~80μm ,以及第n -1与n 道次的激光扫描搭接区.观察图4a ㊁4b 可知,纵向熔池主要为山峰状,S L M 成形的A l S i 10M g 合金独特的微观组织是其高冷却速率(高达106K /s )和S L M 凝固过程中热梯度造成的.由于熔池顶部冷却速度远大于熔池底部,枝晶受热影响区温度梯度影响,会沿温度梯度逆向生长,因而αGA l 相在纵向上呈细长的树枝状.由于激光热源对前一层冷却凝固平面再加热,使熔池边缘重熔区凝固速度减缓,相对于熔池中心部位,枝晶更易于生成粗大柱状晶.此外,从图4c ㊁4d 可以清晰地看出,层与层之间激光扫描夹角为67ʎ.单道熔池和多道熔池示意图如图5所示.300W ,1200mm /s ,0 13mm 参数下成形A l S i 10M g 沉积8 安㊀徽㊀工㊀程㊀大㊀学㊀学㊀报第38卷Copyright ©博看网. All Rights Reserved.态X O Y 平面(与基板平行面)的S E M 图如图6所示.在观察金相的基础上,采用扫描电镜(S E M )进一步观察了熔池内部及熔池边界的显微组织以及相位角搭接区.图2㊀不同工艺参数下沉积态致密度图3㊀不同工艺参数下成形A l S i 10M g试样纵截面表面的光学显微镜照片图4㊀截面熔池OM图图5㊀熔池示意图由图6a 可以看出,白色共晶S i 相以连续网格状将深色αGA l 相包围并分割为一个个岛屿状,分布比较均匀未出现宏观偏析现象.此外还会有M g 2S i 析出相,可能因为M g 元素含量较少并且在成形过程中容9 第2期许㊀杨,等:选区激光熔化A l S i 10M g 显微组织及力学性能研究Copyright ©博看网. All Rights Reserved.01 安㊀徽㊀工㊀程㊀大㊀学㊀学㊀报第38卷易气化损失,所以在显微组织中并未观察到明显的M g2S i相.由图6b可见,为X O Y平面熔道搭接区.熔池温度从激光热源接触到基本金属粉末时开始下降,当温度高于液相线时,粉末被融化成液体.热梯度和增长率都在熔池中部均为最大,并往熔池边界处逐渐减少引起不同程度的热循环,因而呈现出3个不同微观形貌的区域:细晶区㊁粗晶区及热影响区.此外,合金的生长速率取决于温度梯度(G)和熔池增长率(R),GˑR得到系统的冷却速率:速率越高,组织越细[9].图6㊀300W和0 13mm参数下试样S E M图由于S L M成型过程中熔池中部快速熔化凝固冷却的特点,抑制了共晶S i的生长.此外熔池中部并未受到主要热传导的影响,使得液相快速固化为细小的网状共晶S i并最终形成细晶区,主要表现为向外延展的狭长树枝状晶.在显微形貌细晶区中的共晶S i区域比其他区域更为密集细小,且晶粒分布更加均匀,细晶区占整个熔池的大部分,S i晶粒细化可以大幅度提高合金的强度.一般来说,晶粒细化主要有俩种方法,即适当的微合金化和提高凝固过程中的冷却速度[10].合金化晶粒细化越多,S i颗粒之间的距离越小,A l和S i之间的相互作用越大,外部载荷可以分散到更多的晶粒中,可以有效地阻止位错运动和滑移变形.因为激光能量呈高斯分布,G的值在熔池中心线达到最大值,最小值则在熔池边界处.对于熔池边界粗晶区,第n层熔池边界与第n-1层熔池接触,热量以热传导方式传递,二次受热延缓了n-1层熔池边界的冷却速率,使得共晶S i有充分的时间析出长大.共晶S i的长大粗化决定了结构的精细程度,即熔池边界粗晶区的形成.观察图6(a)可知粗晶区的宽度约为7μm,αGA l的长度小于细晶区,但是它的宽度却大于细晶区.与粗晶区和细晶区不同的是,热影响区是原位热处理的结果.即打印过程中激光热源输入在第n层铺粉时,对n-1层熔池边界产生重熔导致第n-1层已凝固的一部分会成为热影响区,然后原位热处理效应会导致原有网状共晶S i由连续状网状转变为无规则间断颗粒状,导致热影响区的形成[11].两次加热使得熔池边界的冷却速率相对于熔池内部减缓,不同的热分布会导致熔池中的微观结构不均匀,因而晶粒尺寸和形貌也会产生差异.2.3㊀退火温度对微观组织的影响为研究不同退火温度下选区激光熔化A l S i10M g显微组织变化规律,对试样分别进行保温时间为1h㊁温度为100~400ħ的退火处理.A l S i10M g合金试样退火处理后横截面熔池微观组织的S E M照片如图7所示.由图7可以看出,热处理很大程度改变了其微观组织,消除了所有微观结构差异,如不同的晶粒尺寸㊁热影响区和熔池等,从而获得了均匀分布在αGA l基体内的共晶球状S i颗粒.由图7a㊁7b可知,成形态经过100ħ退火处理后,合金的组织形貌未发生明显变化,熔池内部共晶S i组织仍为连续网状结构,依旧可以看出热影响区和基体区.当退火温度为200ħ时,大体上维持原貌.由图7c㊁7d可知,当退火温度为300ħ时,S i从过饱和A l中析出,树枝状共晶S i组织全部分解并熔断,完全转变为细小的颗粒状分散于A l基体中.随着退火温度增加至400ħ时,此时共晶S i颗粒不断粗化长大,大尺寸共晶S i颗粒明显增多.同时小尺寸S i颗粒逐渐消失且整体分布密度明显下降并伴有明显的球化和粗化现象.2.4㊀物相分析通过对S L M成形试样及退火试样X射线衍射分析,根据公式计算出对应晶面的织构系数T C(T e xGt u r eC o e f f i c e n t)来分析所选晶面的择优取向程度,公式为:Copyright©博看网. All Rights Reserved.图7㊀不同退火温度下熔池S E M 图T C (h k l )=I n (h k l )I o (h k l )ðni =1I n (h k l )Io (h k l )式中,I (h k l ),I o (h k l )分别为沉积试样和Al S i 10M g 粉末(h k l )晶面的衍射强度;n 为衍射峰数量.当各衍射面的T C 值相同时,晶面取向是无序的;相反,T C 值越大,表明晶面择优程度越高.各试样晶面T C 值如表3所示.S L M 成形试样A l (200)晶面的T C 值大于其余4个晶面,表明该试样晶粒在(200)晶面择优取向程度最高.但随退火温度升高A l (222)晶面T C 值为逐渐降低的趋势,分别降低了55 22%㊁58 46%㊁59 21%㊁62 47%.退火试样A l (111)晶面和A l (222)晶面T C 值指数皆有增加,但低于A l (200),由此可㊀㊀图8㊀不同退火温度A l S i 10M g 合金XR D 图谱判断A l (200)晶面为S L M 成形的A l S i 10M g 合金中的αGA l 基体的择优取向.不同退火温度下的X R D 图如图8所示.从图8中可以看出,退火处理后,选区激光熔化后A l S i 10M g 合金物相组织依旧主要为A l 基体相和S i 相.但随着退火温度的增加,S i 的衍射峰明显增加,这说明S i 在αGA l 基体中的固溶强度降低.此外A l 基体衍射峰向左发生偏移,晶格常数减小.由文献[12G13]可知,S i 以置换固溶体形式存在于A l 基体中且S i 原子半径(R S i =0 1172n m )小于A l 原子半径(R A l =0 1431n m ).在经过退火处理后,S i 原子从A l 基体中持续析出,退火温度越高,S i 原子析出量也随之增加,所以导致A l 晶格常数降低,从而峰值向左偏移.可能由于M g 含量较少,所以未发现M g 2S i 衍射峰.2.5㊀退火前后的硬度性能变化S L M 制备的A l S i 10M g 零件之所以比传统铸造的零件具有更高的硬度,主要有3个因素:形成有利于晶界强化的超细晶粒组织㊁位错相互作用的强化以及负责固溶强化的第二相元素[14].不同工艺参数S L M 成形A l S i 10M g 试样硬度图如图9所示.由图9a 可知,当激光功率为300W ,扫描间距为0 13mm 时,试样硬度达最高131 5H V .由图9b 可知,相同保温时间,随着退火温度的增加,S L M 制备A l S i 10M g11 第2期许㊀杨,等:选区激光熔化A l S i 10M g 显微组织及力学性能研究Copyright ©博看网. All Rights Reserved.试样的硬度最终降至55 4H V .当退火温度为100~200ħ时,硬度分别降低至121 7H V 和117 5H V .在此退火温度下,A l S i 10M g 试样微观组织并未发生明显变化,共晶S i 大体上仍是连续网状分布,试样在该退火温度下硬度只出现小幅度的降低.当退火温度为300ħ时,硬度相较于200ħ退火时降低至69 1HV ,此时固溶在αGA l 基体中的共晶S i 开始不断析出,使固溶强化减弱直至消失[15].而当退火温度升高至400ħ时,硬度进一步降低为55 4H V .因为当退火温度升高,会发生O s t w a l d 熟化,在熟化过程中共晶S i 相的生长速率逐渐加大,分布在A l 基体中的二次S i 粒子也逐渐减少[16].二次S i 颗粒继续被S i 相吸收,导致较小尺寸S i 颗粒数量持续减少而大尺寸S i 颗粒数量逐渐增加,总体S i 颗粒分布密度下降,导致S i 相的强化作用不断减弱.即网状共晶S i 的溶解㊁断裂,减弱了对位错滑移的阻碍作用,导致合金整体硬度下降.表3㊀S L M 成形试样及退火试样各晶面T C 值晶面S i (111)A l (111)A l (200)S i (220)S i (311)A l (220)A l (311)A l (222)S L M0.21360.02380.66410.38590.40060.27390.24720.0381100ħ/1h 0.21220.19770.29740.45720.33060.17390.22640.1046200ħ/1h 0.36290.19710.27580.26060.37650.20610.22030.1006300ħ/1h 0.40510.16650.27090.42120.17360.19260.25610.1139400ħ/1h 0.31410.17750.24790.38670.29920.21390.22150.1122图9㊀不同工艺参数下试样及不同退火温度硬度图3㊀结论激光功率及扫描间距等参数的改变,引起不同的温度梯度导致微观结构组织的不均匀,晶粒尺寸和形貌也将产生差异.S i 晶粒细化越多,越能大幅提高合金的强度.在300W 和0 13mm 参数下成形试样显微硬度达131 5HV .退火前后A l (200)晶面为S L M 成形的A l S i 10M g 合金中的αGA l 基体的择优取向.退火过程中,S i 颗粒的析出和聚结降低了S i 在基体中的密集度.试样经100~200ħ退火1h 后,长条状共晶S i 发生断裂,球化,显微硬度由131 5H V 0 2下降至117 5H V 0 2,经300~400ħ退火1h 后,二次S i 颗粒逐步减少直至消失,此时共晶S i 颗粒不断粗化,整体分布密度明显下降,硬度大幅下降至55 4H V 0 2.退火温度越高,成形件硬度下降越明显.参考文献:[1]㊀Y A N Q ,S O N GB ,S H IY.C o m p a r a t i v e s t u d y o f p e r f o r m a n c e c o m p a r i s o n o fA l S i 10M g a l l o yp r e p a r e db y s e l e c t i v e l a s e r m e l t i n g a n d c a s t i n g [J ].J o u r n a l o fm a t e r i a l s s c i e n c e&t e c h n o l o g y,2020,41(6):199G208.[2]㊀C H SR ,R A J A A ,N A D I GP ,e t a l .I n f l u e n c eo fw o r k i n g e n v i r o n m e n t a n db u i l t o r i e n t a t i o no n t h e t e n s i l e p r o p e r t i e so f s e l e c t i v e l a s e rm e l t e dA l S i 10M g a l l o y [J ].M a t e r i a l s s c i e n c e a n de n g i n e e r i n g :A ,2019,750:141G151.[3]㊀Z HU O L ,WA N GZ ,Z HA N G H ,e t a l .E f f e c t o f p o s t Gp r o c e s s h e a t t r e a t m e n t o nm i c r o s t r u c t u r e a n d p r o p e r t i e s o f s e l e c Gt i v e l a s e rm e l t e dA l S i 10M g a l l o y[J ].M a t e r i a l s l e t t e r s ,2019,234:196G200.[4]㊀D O N GZ ,X U M ,G U O H ,e t a l .M i c r o s t r u c t u r a l e v o l u t i o na n d c h a r a c t e r i z a t i o no fA l S i 10M g a l l o y m a n u f a c t u r e db y se G21 安㊀徽㊀工㊀程㊀大㊀学㊀学㊀报第38卷Copyright ©博看网. All Rights Reserved.l e c t i v e l a s e rm e l t i n g [J ].J o u r n a l o fm a t e r i a l s r e s e a r c ha n d t e c h n o l o g y,2022,17:2343G2354.[5]㊀G I R E L L IL ,T O C C IM ,G E L F IM ,e t a l .S t u d y o f h e a t t r e a t m e n t p a r a m e t e r s f o r a d d i t i v e l y m a n u f a c t u r e dA l S i 10M g i n c o m p a r i s o nw i t hc o r r e s p o n d i n g c a s t a l l o y [J ].M a t e r i a l s s c i e n c e a n de n g i n e e r i n g:A ,2019,739:317G328.[6]㊀梁恩泉,代宇,白静,等.退火态激光选区熔化成形A l S i 10M g 合金组织与力学性能[J ].材料工程,2022,50(5):156G165.[7]㊀L I U M ,W E IK ,Z E N G X.H i g h p o w e r l a s e r p o w d e rb e d f u s i o no fA l S i 10M g a l l o y :e f f e c t o f l a y e r t h i c k n e s so nd e f e c t ,m i c r o s t r u c t u r e a n dm e c h a n i c a l p r o p e r t y [J ].M a t e r i a l s s c i e n c e a n de n g i n e e r i n g :A ,2022,842:143107.[8]㊀柯宇,马盼,马永超,等.激光选区熔化A l S i 10M g 合金微观组织及力学性能研究[J ].应用激光,2019,39(2):198G203.[9]㊀K A R A K O E S EE ,K E S K I N M.E f f e c t o f s o l i d i f i c a t i o n r a t e o n t h em i c r o s t r u c t u r e a n dm i c r o h a r d n e s s o f am e l t Gs p u nA l G8S i G1S ba l l o y [J ].J o u r n a l o f a l l o y s a n d c o m po u n d s ,2009,479(1G2):230G236.[10]L IXP ,WA N G XJ ,S A U N D E R S M ,e t a l .As e l e c t i v e l a s e rm e l t i n g a n ds o l u t i o nh e a t t r e a t m e n t r e f i n e dA l G12S i a l l o y w i t ha c o n t r o l l a b l eu l t r a f i n e e u t e c t i cm i c r o s t r u c t u r e a n d25%t e n s i l e d u c t i l i t y[J ].A c t am a t e r i a l i a ,2015,95:74G82.[11]T H I J SL ,K E M P E N K ,K R U T HJP ,e t a l .F i n e Gs t r u c t u r e da l u m i n i u m p r o d u c t sw i t hc o n t r o l l a b l e t e x t u r eb y s e l e c t i v e l a s e rm e l t i n g o f p r e Ga l l o y e dA l S i 10M gpo w d e r [J ].A c t am a t e r i a l i a ,2013,61(5):1809G1819.[12]L A S A G N IF ,M I N G L E RB ,D UMO N T M ,e t a l .P r e c i p i t a t i o nk i n e t i c so fS i i na l u m i n i u ma l l o y s [J ].M a t e r i a l ss c i e n c e a n de n g i n e e r i n g:A ,2008,480(1G2):383G391.[13]K O N GD ,D O N GC ,N IX ,e t a l .M e c h a n i c a l p r o p e r t i e s a n dc o r r o s i o nb e h a v i o ro f s e l e c t i v e l a s e rm e l t e d316Ls t a i n l e s s s t e e l a f t e r d i f f e r e n t h e a t t r e a t m e n t p r o c e s s e s [J ].J o u r n a l o fm a t e r i a l s s c i e n c e&t e c h n o l o g y ,2019,35(7):1499G1507.[14]L AM LP ,Z HA N G D Q ,L I U Z H ,e t a l .P h a s ea n a l y s i sa n d m i c r o s t r u c t u r ec h a r a c t e r i s a t i o no fA l S i 10M gp a r t s p r o Gd u c e db y s e l e c t i v e l a s e rm e l t i n g [J ].V i r t u a l p h y s .p r o t o t y p,2015,10(4):207G215.[15]程志瑶,沈显峰,王国伟.退火工艺对选区激光熔化成形A l S i 10M g 合金组织和力学性能的影响[J ].热加工工艺,2022,51(2):121G125.[16]闫泰起,唐鹏钧,陈冰清,等.退火温度对激光选区熔化A l S i 10M g 合金微观组织及拉伸性能的影响[J ].机械工程学报,2020,56(8):37G45.M i c r o s t r u c t u r e a n dH a r d n e s sP r o p e r t i e s o f A l S i 10M g b y S e l e c t i v eL a s e rM e l t i n gX U Y a n g 1,Y U X i a o l u 1,2∗(1.S c h o o l o fM a t e r i a l sS c i e n c e a n dE n g i n e e r i n g ,A n h u i P o l y t e c h n i cU n i v e r s i t y,W u h u241000,C h i n a ;2.A n h u iK e y L a b o r a t o r y o fH i g h Gpe rf o r m a n c eN o n Gf e r r o u sM e t a lM a t e r i a l s ,A n h u i P o l y t e c h n i cU n i v e r s i t y,W u h u241000,C h i n a )A b s t r a c t :A l S i 10M g s a m p l e sw e r e p r e p a r e db y s e l e c t i v e l a s e rm e l t i n g (S L M ).T h e e f f e c t so f p r o c e s s p a Gr a m e t e r s o n t h e d e n s i t y o fA l S i 10M g a l l o y w e r e a n a l y z e d .T h em i c r o s t r u c t u r e e v o l u t i o n ,m e c h a n i c a l p r o p Ge r t i e s ,t e x t u r e a n d p h a s e c h a n g e s o fA l S i 10M g a l l o y f o r m e db y S L Mb e f o r e a n d a f t e r a n n e a l i n g a t d i f f e r Ge n t t e m p e r a t u r e sw e r e s t u d i e d .T h e r e s u l t s s h o wt h a t t h e c h a n g e o fm o l t e n p o o lm i c r o s t r u c t u r e c a u s e d b y t h e c h a n g e o f l a s e r p o w e r a n d s c a n n i n g s p a c eh a s a s i g n i f i c a n t e f f e c t o n t h e f o r m i n gq u a l i t y a n d p r o pe r Gt i e s o fA l S i 10M g a l l o yf o r m e db y S L M.A t 350W a n d0 13mm ,t h eh igh e s t d e n si t y ca nr e a c h99 82%.T h e t e x t u r e c o e f f i c i e n t (T C )o fA l (200)c r y s t a l p l a n e o fA l S i 10M g s p e c i m e nb e f o r e a n d a f t e r a n n e a l i n gi s h i g h e r t h a n t h a t o f o t h e r c r y s t a l p l a n e s ,w h i c h i s t h e p r e f e r r e d o r i e n t a t i o no f αGA lm a t r i x i nA l S i 10M g a l l o y f o r m e db y S L M.A f t e ra n n e a l i n g a t100~200ħf o r1h ,t h e m i c r o s t r u c t u r eo fA l S i 10M g a l l o yf o r m e db y S L Ms t i l l h a s a c o n t i n u o u s n e t w o r kd i s t r i b u t i o n o f e u t e c t i c S i ,w h i c h c a n p l a y t h e r o l e o f s o l u Gt i o n s t r e ng th e ni n g a n ds e c o n d p h a s es t r e n g t h e n i n g .T h eh a r d n e s so fA l S i 10M g a l l o y d e c r e a s e ss l i g h t l yf r o m131 5HV 0 2t o 117 5HV 0 2.A f t e r a n n e a l i ng a t 300~400ħf o r 1h ,t h e e u t e c ti cS i i n t h e a l l o ys a m p l e e x h i b i t s f r a c t u r es ph e r o i d i z a t i o na n ds o m eo f t h e m c o a l e s c ea n dd i s t r i b u t e i nt h eA lm a t r i xa s pa r t i c l e s ,a n d t h em i c r o h a r d n e s s d e c r e a s e s t o 55 4H V 0 2.K e y wo r d s :s e l e c t i v e l a s e rm e l t i n g ;A l S i 10M g ;t e c h n o l o g i c a l p a r a m e t e r ;a n n e a l i n g ;m i c r o h a r d n e s s ;m i c r o Gs t r u c t u r a l31 第2期许㊀杨,等:选区激光熔化A l S i 10M g 显微组织及力学性能研究Copyright ©博看网. All Rights Reserved.。
ODS-310合金的热变形行为及热加工图
ODS-310合金的热变形行为及热加工图邹雷;周张健【摘要】采用Gleeble-1500D热模拟试验机研究机械合金化制备的ODS-310合金在变形温度为1050~1150℃、应变速率为0.001~1 s-1条件下的高温变形行为,测定其真应力-应变曲线,分析其流变应力与应变速率及变形温度三者之间的关系,并采用Zener-Hollomon参数法建立ODS-310合金的高温变形本构方程,基于动态材料模型,构造 ODS-310合金的热加工图。
结果表明:ODS-310合金的流变应力随变形温度降低或应变速率提高而增大;该合金热变形过程中的流变行为可用双曲线正弦模型来描述,在实验条件下的平均变形激活能为828.384 kJ/mol;真应变为0.4的热加工图表明,ODS-310合金在高温变形时存在2个加工失稳区,即变形温度为1050~1070℃、变形速率为0.01~1s-1的区域,和变形温度为1130~1150℃、变形速率为0.1~1 s-1的区域;ODS-310合金的最佳变形温度和应变速率分别为1150℃和0.001 s-1。
%Hot deformation behavior of ODS-310 alloy was investigated by conducting hot compression deformation tests on Gleeble-1500D simulator at the temperatures range of 1 050~1 150℃and the strain rate range of 0.001~1 s-1. True stress-true strain curves were obtained. The effects of strain rate and deformation temperature on flow stress were analyzed. The constitutive equation of the ODS-310 alloy at high temperatures was obtained by introducing Zener-Hollomom parameter. The processing map of ODS-310 was proposed on basis of dynamic materials model. The results show that the flow stress increases with the decrease of the deformation temperature and the increase of the strain rate. The flow behavior of ODS-310 alloy can bedescribed by the hyperbolic sine model and the activation energy is about 828.384 kJ/mol. The processing map established at the true strain of 0.4 shows that there are two flow instability zones, including the zone at temperatures range of 1 050~1 070℃and strain rate range of 0.01~1s-1,and the other zone at temperatures range of 1 130~1 150 ℃ and strain rate range of 0.1~1 s-1. The optimal processing parameters are the temperature of 1 150 ℃ and strain rate of 0.001 s-1.【期刊名称】《粉末冶金材料科学与工程》【年(卷),期】2014(000)002【总页数】7页(P177-183)【关键词】ODS-310合金;热变形行为;变形激活能;本构方程;热加工图【作者】邹雷;周张健【作者单位】北京科技大学材料科学与工程学院,北京 100083;北京科技大学材料科学与工程学院,北京 100083【正文语种】中文【中图分类】TF124超临界水堆作为第4代核反应概念堆中唯一的水冷堆,具有热效率高、结构简单、成本低等优点,但堆内高温、高压、强腐蚀以及强烈的中子辐照等苛刻环境给堆内关键材料带来很大的挑战,尤其是核燃料包壳材料的选择成为其发展的主要障碍[1]。
循环经济下的绿色材料及加工国际论坛2017年6月22日-焊接
报告主题
新型绿色材料,包括高强韧、耐热、耐蚀、 耐辐照、耐磨及耐低温的各类新型实芯焊丝、 药芯焊丝、金属粉芯焊丝和焊条等焊接材料, 绿色钎焊材料及焊剂,焊接电弧物理和组织
会议地点
会议召开地点北京工大建国饭店, 位于北京市朝阳区平乐园100号。 北京是首批国家历史文化名城和世 界上拥有世界文化遗产数最多的城市, 三千多年的历史孕育了故宫、天坛、八 达岭长城、颐和园等众多名胜古迹,也 诞生了“鸟巢”、“水立方” 等新时
Researcher Tianhu Song Researcher Zhiling Tian Prof. Long Kang Prof. Hongyang Jing Prof. Dongpo Wang Prof. Haidou Wang Prof. Guisheng Zou Prof. Kehong Wang Prof. Peng He Researcher Shi He Researcher Huaping Xiong Researcher Weimin Long Prof. Jinshu Wang Prof. Changjiu Li Mr. Mingqiang Ye Mr. Zebing Ou Mr. Zihang Zheng Mr. Bo Meng Mr. Hongxiang Cai Chinese Mechanical Engineering Society, CN China Iron & Steel Research Institute Group, CN Lanzhou University of Technology, CN Tianjin University of Technology, CN Tianjin University, CN National Key Lab for Remanufacturing, CN Tsinghua University, CN Nanjing University of Science and Technology, CN Harbin Institute of Technology, CN Harbin Welding Institute, CN Beijing Institute of Aeronautical Materials, CN Zhengzhou Research Institute of Mechanical Engineering, CN Beijing University of Technology, CN Xi'an Jiaotong University, CN Kaitian Enviornmental Technology Co. Ltd, CN Group 3M China, CN Tianjin Bridge Welding Materials Group Co., Ltd., CN Shangdong Juli Welding Co., Ltd., CN Kunshan Gintune Welding Co., Ltd., CN
ISPE HVAC(翻译版)国际制药工程协会对空调系统的基准指南
原位拉伸研究热处理对激光选区熔化GH4169_合金组织及650_℃_力学性能的影响
2024 年第 44 卷航 空 材 料 学 报2024,Vol. 44第 1 期第 93 – 103 页JOURNAL OF AERONAUTICAL MATERIALS No.1 pp.93 – 103引用格式:朱嘉冕,吕国森,姜文祥,等. 原位拉伸研究热处理对激光选区熔化GH4169合金组织及650 ℃力学性能的影响[J]. 航空材料学报,2024,44(1):93-103.ZHU Jiamian,LYU Guosen,JIANG Wenxiang,et al. Effect of heat treatment on microstructure and mechanical properties of selective laser melting GH4169 alloy at 650 ℃: in-situ SEM investigation[J]. Journal of Aeronautical Materials,2024,44(1):93-103.原位拉伸研究热处理对激光选区熔化GH4169合金组织及650 ℃力学性能的影响朱嘉冕1, 吕国森1, 姜文祥1, 程晓鹏1, 贾泽一1, 吕俊霞1*,黄 帅2, 张学军2(1.北京工业大学 材料与制造学部,北京 100124;2.中国航发北京航空材料研究院,北京 100095)摘要:研究热处理制度对激光选区熔化成形GH4169合金组织及高温力学性能的影响。
通过自主研发的SEM原位加热拉伸测试平台,探究热处理前后650 ℃合金力学性能变化与动态组织演变的关系。
结果表明:热处理后合金的晶粒形态由柱状晶转化为等轴晶,Laves相溶解,析出大量γ′和γ′′强化相;在650 ℃下,沉积态合金的屈服强度和抗拉强度分别为574 MPa和740 MPa,热处理态(HSA态)合金的屈服强度和抗拉强度分别为818 MPa和892 MPa,较沉积态分别提升了42.5%和20.1%;沉积态合金表面晶粒起伏更大,协调变形能力更强,塑性流动能力好;裂纹在Laves相周围萌生沿枝状晶向最大切应力方向扩展,样品颈缩后发生剪切断裂;HSA态裂纹在碳化物周围萌生沿晶界扩展,断裂方式为沿晶和穿晶相结合的混合断裂。
AWSD11D11M钢结构焊接规范中文版PDF
AWSD11D11M钢结构焊接规范中文版PDF篇一:AWS_D1.1焊接工艺评定记录中英文焊接工艺规程(WPS)WELDING PROCEDURE SPECIFICATION (WPS)公司名称 Company Name:焊接方法 Welding Process(es):PQR辅助文件号 Supporting PQR No.(s):采用的接头设计JOINT DSIGN USED 类型 Type:单面焊缝 Single [ ]双面焊缝 Double Weld [ ] 衬垫Backing:是 Yes [ ] 否 No[ ] 衬垫材料Backing Material:根部间隙 Rooting opening:钝边尺寸 Root Face Dimension:坡口角度 Groove Angle:半径 Radius (J-U):背部清根 Backing:是 Yes [ ] 否 No[ ] 方法 Method:母材 BACE METALS 材料规格 Material Spec.:类型或级别Type or Grade:厚度 Thickness:坡口 Groove:角焊缝 Fillet:直径(圆管) Diameter (Pipe):填充金属 FILLER METALS AWS 规格 AWS Specification: AWS 类别AWS Classification:保护 SHIELDING焊剂 Flux:气体 Gas:焊丝—焊剂(等级) Electrode-Flux(Class):预热 PREHEAT预热温度,最低 Preheat Temp,Min:道间温度,最低 Interpass Temp,Min:最高 Max:标识编号 Identification #修改 Revision:日期Date:修改人By:批准人 Authorized by:日期Date:类型 Type—手工 Manual[ ]半自动 semi-Automatic[ ]机械Machine[ ] 自动Automatic[ ] 位置 POSITION坡口位置 Position of Groove:角焊缝 Fillet:立焊方向Vertical Progression:上行 Up[ ] 下行 Down[ ] 电特性ELECTRICAL CHARACTERISTICS 过渡形式(GMAW) Transfer Mode(GMAW)短路 Short-Circuiting:[ ]熔滴 Globular:[ ] 喷射Spray:[ ]电流 Current:交流 AC:[ ]直流反接 GCEP:[ ] 脉冲Pulsed:[ ] 直流正接 DCEN:[ ] 钨极(GTAW) Tungsten Electrode 尺寸 Size:类型 Type:技术 TECHNIQUE直线或横向摆动喊道 Stringer or Weave Bead:多道或单道(每边) Multi-pass or Single Pass(per side):焊丝数 Number of Electrodes:焊丝间隔 Electrode Spacing纵向 Longitudinal:横向Lateral:角度 Angle:导电咀到工件距离 Contact Tube to Work Distance:锤击 Peening:道间清理 Interpass Cleaning:焊后热处理 POSTWELD HEAT TREATMENT 温度 Temp.:时间Time :焊接工艺评定记录(PQR)PROCEDURE QUALIFICATION RECORDS (PQR)公司名称 Company Name:焊接方法 Welding Process(es): PQR辅助文件号Supporting PQR No.(s):采用的接头设计 JOINT DSIGN USED 类型 Type:单面焊缝 Single [ ]双面焊缝 Double Weld [ ] 衬垫Backing:是 Yes [ ] 否 No[ ] 衬垫材料Backing Material:根部间隙 Rooting opening:钝边尺寸 Root Face Dimension:坡口角度 Groove Angle:半径 Radius (J-U):背部清根 Backing:是 Yes [ ] 否 No[ ] 方法 Method:母材 BACE METALS 材料规格 Material Spec.:类型或级别Type or Grade:厚度 Thickness:坡口 Groove:角焊缝 Fillet:直径(圆管) Diameter(Pipe):填充金属FILLER METALS AWS 规定 AWS Specification: AWS 类别AWS Classification:保护 SHIELDING焊剂 Flux:气体 Gas:焊丝—焊剂(等级) Electrode-Flux(Class):预热 PREHEAT预热温度,最低 Preheat Temp,Min:道间温度,最低 Interpass Temp,Min:最高 Max:标识编号 Identification #修改 Revision:日期Date:修改人By:批准人 Authorized by:日期Date:类型 Type—手工 Manual[ ]半自动 semi-Automatic[ ]机械Machine[ ] 自动Automatic[ ] 位置 POSITION坡口位置 Position of Groove:角焊缝 Fillet:立焊方向Vertical Progression:上行 Up[ ] 下行 Down[ ] 电特性ELECTRICAL CHARACTERISTICS 过渡形式(GMAW) Transfer Mode(GMAW)短路 Short-Circuiting:[ ]熔滴 Globular:[ ] 喷射Spray:[ ]电流 Current:交流 AC:[ ]直流反接 GCEP:[ ] 脉冲Pulsed:[ ] 直流正接 DCEN:[ ] 钨极(GTAW) Tungsten Electrode 尺寸 Size:类型 Type:技术 TECHNIQUE直线或横向摆动喊道 Stringer or Weave Bead:多道或单道(每边) Multi-pass or Single Pass(per side):焊丝数 Number of Electrodes:焊丝间隔 Electrode Spacing纵向 Longitudinal:横向Lateral:角度 Angle:导电咀到工件距离 Contact Tube to Work Distance:锤击 Peening:道间清理 Interpass Cleaning:焊后热处理 POSTWELD HEAT TREATMENT 温度 Temp.:时间Time :焊接工艺评定试验结果(PQR)PROCEDURE QUALIFICATION RECORDS (PQR) Test Results拉伸试验TENSILE TEST定形弯曲试验GUIDED BEND TEST外观检查VISUAL INSPECTION外观Appearance__________________________射线照相或超声波检查Radiographic-ultrasonic examination 咬边Undercut ____________________________射线报告号 RT report no.: ________ 结果Result________长形不连续气孔Piping porosity ___________超声报告号 UT report no.: ________ 结果Result____________ 凸面Convexity______________________________ 角焊缝的检测结果FILLET WELD TEST RESULTS 检测日期Test date_________________________检测人Witnessed by________________________其他测试Other Tests 全焊金属的焊缝拉力试验 All-weld-metal tension test抗拉强度Tensile strength, psi_____________________________ 屈服强度Yieldpoint/strength, psi __________________________ 延伸率Elongation in 2 in, % ____________________________实验室测试编号Laboratory test no.________________________焊工名称Welder’s name ___________ 记录编号Clock no. ______________ 标记号Stamp no.____________ 检测Tests conducted by______________________________________________________ _实验室Laboratory检测编号Test number___________________________________我们证明测试焊接这个记录是正确的,焊接,测试均符合AWS D1.1 / D1.1M钢结构焊接条款4的要求。
热加工工艺 轮廓法测量镍基高温合金单晶叶片内部残余应力分布
热加工工艺轮廓法测量镍基高温合金单晶叶片内部残余应力分布-概述说明以及解释1.引言1.1 概述热加工工艺是一种广泛应用于材料加工领域的工艺方法。
它通过对材料进行加热和塑性变形,以改变材料的形状和性能。
在镍基高温合金单晶叶片的制造过程中,热加工工艺起着至关重要的作用。
本文旨在探讨轮廓法测量在镍基高温合金单晶叶片内部残余应力分布研究中的应用。
轮廓法测量是一种常用的非破坏性测量方法,通过测量材料表面的轮廓变化,可以获得材料内部的残余应力分布情况。
文章的正文将分为几个主要部分进行介绍。
首先,我们将对热加工工艺进行定义和背景介绍,包括其作用和分类。
其次,我们将详细探讨轮廓法测量的原理、步骤和优势,并阐述轮廓法测量在镍基高温合金单晶叶片中的应用。
接着,我们将深入研究镍基高温合金单晶叶片内部残余应力分布的形成原因和影响因素,并介绍测量方法和研究进展。
最后,我们将阐述实验方法和结果,并总结主要发现、研究意义、不足之处以及进一步的研究方向。
通过本文的研究,我们可以更好地理解热加工工艺在镍基高温合金单晶叶片制造中的作用,并且可以利用轮廓法测量技术来研究材料内部的残余应力分布情况。
这将有助于优化叶片的设计和制造过程,提高材料的性能和可靠性。
同时,本文也将为进一步的研究提供了一些重要的方向和思路。
写文章1.1 概述部分的内容1.2 文章结构本文共包括四个部分,分别为引言、正文、实验方法和结果以及结论。
引言部分(Chapter 1)主要介绍了本文的背景和目的。
首先,对热加工工艺在材料加工中的重要性进行了概述,并指出了热加工工艺在提高材料性能和改善材料结构方面的作用。
接着,简要介绍了文章的结构和各个章节的内容安排,以便读者对整个文章有一个整体的了解。
最后,总结了本文的主要内容和观点。
正文部分(Chapter 2)是本文的重点,包括热加工工艺、轮廓法测量、镍基高温合金单晶叶片内部残余应力分布等内容。
在2.1节中,将介绍热加工工艺的定义和背景、热加工工艺的作用以及在镍基高温合金单晶叶片中的应用。
TMG热分析
何模型实体上。
超大规模的辐射模型。 个分析一次完成。
高分析效率
由于采用了高度自动的、集成的 求解流程,不需要额外的输入文 件,整个分析一次完成
对于装配分析,TMG提供 了强大的工具,可以连结
不同部件或组件的不匹
.
I-deas NX 系列
可以直接获得承载结构模型的热分析结果,并可以映射到不同的网格上,这些特点 加上多种接口和客户化选项使得TMG热分析成为各种工程环境的理想解决方案。 综合的热分析建模工具 热问题是一个复杂的对流或辐射效应问题,所以在机械和电子系统中通常是很难发 现和解决,TMG提供了一个用于确定这些效应的广泛的工具,它的先进仿真模拟技 术可以快速准确地获得结果。 传导 TMG热分析采用保守的、基于单元控制体积算法来对任意的、非结构网格获得精确 的传导和热容项,这项拥有专利的算法是基于限制在边界上的和几何形心的计算点 的单元温度函数,导出的求解矩阵非常精确、稳定,并和有限差分求解器如Sinda完 全兼容,这种方法也支持用户计算的传导项直接插入和用户子程序得到的求解矩阵 运算。
2
I-deas NX 系列
热/流耦合 你可以精确地模拟共轭传热问题中的强迫或自然对流。TMG的管流模块可以快速、 方便地模拟一维网络,而I-deas中电子系统冷却(ESC)提供了模拟3D复杂流动系统的 CFD功能,其中的热耦合工具能将流动模型和TMG模型耦合在一起,即使是不一致 的网格,并根据耦合计算结果得到对流换热系数。 焦耳热 TMG可以模拟焦耳热效应,电流密度是根据电压边界条件和电阻率来计算的,电特 性可以随温度变化并且与热模型完全耦合。 模型缩减 可以使用模型简化工具在求解之前简化或调整热模型矩阵,包括单元去激活、传导 减薄、单元合并和模型子结构等,对于较大规模的辐射模型,可以采用一种基于单 元簇的自动匹配算法在保证精度前提下对求解矩阵进行有效缩减。 模型管理 TMG提供了一套模型管理的综合工具,包括:
我国急需解决的热处理技术问题
我国急需解决的热处理技术问题在美国的发展规划中提出:“能源消耗减少80%”,这确实是一个惊人的指标。
目前美国的热处理能耗是400kW.h/t,如减少80%,就得降至80 kW.h/t,这令人很难想象。
要降低热处理能耗,无非就是降低热损耗和采取节能工艺。
热处理时消耗的能量有二部分,一部分是加热炉炉墙散失的热量以及工装夹具带走的热量,这部分可以设法尽量减少;第二部分是加热工件所消耗的热量,这部分必不可少,通过采用表面淬火等节能工艺可以使之减少,但大部分工件仍需采用整体热处理。
粗略计算整体热处理所需热量约为200 kW.h/t(将20Cr2Ni4WA从0℃加热到900℃所需热量)由此可见,如排除能耗转嫁等因素外,热处理能耗要降到80 kW.h/t恐难实现,除非主要采用非整体热处理。
对美国指标的怀疑绝不意味着对我们惊人的浪费可以漠然视之。
我们目前热处理能耗较美国高一倍,即800 kW.h/t。
我国热处理能耗如此高的原因有以下一些:1)空炉时间长由于生产管理落后,许多热处理炉依然停留在早上开炉、下午干活、下班停炉状态,大大增加了炉子散失的热能;2).设备落后在“小车不倒只管推”的错误思想影响下,到目前为止许多应该淘汰的能耗大的加热炉外壁温度在70℃左右的加热炉依然在使用,特别是一些小热处理厂,这些厂依靠其管理成本低及不正当竞争手段依然能大量存在;3).热处理工艺落后由于思想保守,设备落后,许多节能工艺很难推广。
以热锻模为例,国外钢厂将锻造与热处理合并在一起,供应已淬、回火的标准模块,用户只需将模块加工成模具后按需要进行一次回火即可使用。
但在国内未见大量推广;4).产品质量低下这是一个被长期忽略的重要因素。
众所周知,目前我国制造业的要害是质量低下,特别是质量不稳定。
不难理解,同样一个产品,如果美国产品的使用寿命是我们的2倍,我们生产2个产品才相当于美国生产一个产品,这就意味着我们的实际能耗又翻了一翻。
我们热处理能耗比美国高一倍,而GDP能耗是美国的4.3倍、日本的11.5倍原因恐即在此。
《SnTe-In2Te3体系热电材料的制备与性能研究》范文
《SnTe-In2Te3体系热电材料的制备与性能研究》篇一一、引言随着能源危机和环境污染问题的日益严重,开发高效、环保、可再生的能源材料成为了当前科研的重要方向。
热电材料作为一种能够将热能直接转化为电能的新型材料,在能源转换领域具有重要的应用价值。
SnTe-In2Te3体系热电材料具有较高的热电性能和稳定的物理化学性质,成为了近年来研究的热点。
本文将介绍SnTe-In2Te3体系热电材料的制备方法、性能研究及其应用前景。
二、文献综述SnTe和In2Te3是两种重要的热电材料,它们具有优异的热电性能和良好的稳定性。
近年来,许多研究者对SnTe-In2Te3体系热电材料的制备、性能和应用进行了研究。
制备方法包括熔融法、机械合金法、溶液法等。
此外,许多研究表明,通过调节材料的组成和微观结构,可以显著提高其热电性能。
因此,深入研究SnTe-In2Te3体系热电材料的制备工艺和性能,对于提高其热电转换效率和拓宽其应用领域具有重要意义。
三、实验方法1. 材料制备本文采用熔融法制备SnTe-In2Te3体系热电材料。
首先,将高纯度的Sn、Te和In2Te3按照一定比例混合,然后在高温下熔融并冷却结晶,得到SnTe-In2Te3体系热电材料。
2. 性能测试采用X射线衍射仪(XRD)对制备得到的材料进行物相分析;利用扫描电子显微镜(SEM)观察材料的微观形貌;采用热电性能测试仪测试材料的热电性能。
四、结果与讨论1. 物相分析通过XRD分析,我们可以得到SnTe-In2Te3体系热电材料的物相组成。
结果表明,随着In2Te3含量的增加,材料的物相逐渐发生变化。
当In2Te3含量达到一定值时,材料形成固溶体结构,有利于提高材料的热电性能。
2. 微观形貌分析通过SEM观察,我们可以看到SnTe-In2Te3体系热电材料的微观形貌。
结果表明,随着In2Te3含量的增加,材料的晶粒尺寸逐渐减小,晶界增多,有利于提高材料的热电性能。
精密热加工技术的现状与发展趋势.doc
精密热加工技术的现状与发展趋势来源:中国传动机械网发布时间:2008-2-26 0:00:00近十年来,美国十分注重发展精密热加工和提高性能一体化技术。
如:铝锂合金粉制件精密热成形可使零件比刚度提高30%;碳化硅/铝复合材料可使零件的比刚度提高30%一75%;单晶叶片精铸可以提高涡轮温度55℃、节省燃料10%;快速凝固粉末层压式涡轮叶片,可使发动机涡轮温度提高220℃、油耗降低8.4%、飞机起飞质量降低7.4%,发动机推重比提高30%一50%。
发展精密热加工技术,并与提高零部件性能研究一体化,符合我国国防科技发展对关键基础加工技术研究所提出的要求。
一、精密铸造精密铸造成形工艺不但可以缩短新型武器的研制周期、降低成本,还可以提高武器的灵活性、可靠性。
如美国波音公司生产的巡航导弹的舱体采用铝合金精密铸造工艺后,弹体成本降低3 0%,每枚导弹所需工时从8000小时减少到5500小时,且可靠性提高,重量有所降低。
美国橡树岭国家实验室、美国精密铸造公司和NASA刘易斯研究中心等单位对A1系金属间化合物和Ti、Ni基等特种合金的精密铸造进行了大量研究。
他们采用整体一次成形精铸工艺加工涡喷、涡扇导向器,减少机加工时40%,成本降低30%。
我国军工系统的精密铸造工艺与国外相比差距较大。
如导弹舱体主要采用低、差压铸造法。
普通粘土砂铸型生产舱段,尺寸精度低,表面质量较差,内部缺陷多,合金液二次氧化严重,力学性能不高,废品率高达20%一30%,目前国内仅能铸造1.4m以下的舱段。
另外象导弹尾翼、飞机部分器件等仍采用机械加工方法,不但生产周期长、成本高,而且可靠性也较差。
在特种合金精密铸造工艺方面,同样存在很大差距,象单品空心无余量叶片精铸工艺,在国外已应用于军工生产,而国内尚处于研究阶段。
至于A1系金属间化合物的精密铸造工艺的研究目前还未开始。
综上所述,与国外相比,我国在精密铸造工艺方面约落后10一15年。
为了缩短新型武器的研制和生产周期、降低成本、提高可靠性,必须加强精密铸造工艺的研究。
热处理工艺及水冷炉冷空冷的比较
热处理工艺及水冷炉冷空冷的比较————————————————————————————————作者: ————————————————————————————————日期:以共析鋼為例:共析鋼從高溫爐冷變成粗波來鐵空冷變成中波來鐵ﻫ油冷變成細波來鐵+麻田散鐵+殘留沃斯田鐵水冷變成麻田散鐵+殘留沃斯田鐵ﻫ產生殘留沃斯田鐵主要是因為冷卻速度不夠快,及冷卻液的冷卻能力。
钢在冷却时的组织转变[连续冷却转变]:过冷奥氏体在一个温度范围内,随温度下降发生组织转变,同样可用“连续冷却转变曲线”“CCT曲线,C—continuous;C —cooling;T—transformation”分析组织转变过程和产物。
共析钢的“CCT曲线”测量过程示意图如下图。
图中V1(炉冷)、V2(空冷)、V3(油冷)、V4(水冷)代表热处理中四种常用的连续冷却方式。
共析钢的连续转变图建立过程示意图(CCT曲线)炉冷V1:随炉冷却(相当于退火),比较缓慢,它分别与C曲线的转变开始和转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估计它的转变产物为珠光体,硬度170~220HBS。
(珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。
得名自其珍珠般(pearl-like)的光泽。
其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。
)空冷V2:在空气中冷却(相当于正火),它分别与C曲线的转变开始线和转变终了线相交于3、4点,位于C 曲线珠光体转变区域中下部分,故可判断其转变产物为索氏体,硬度25~35HRC。
在中等硬度情況下,洛氏硬度HRC與布氏硬度HBS之間關系約為1:10。
(索氏体:钢经正火或等温转变所得到的铁素体与渗碳体的机械混合物。
属于珠光体类型的组织,但其组织比珠光体组织细。
将淬火钢在450-600℃进行回火,所得到的索氏体称为回火索氏体(tempered sorbite)。
β型γ-TiAl合金热变形过程中组织演化及动态再结晶行为研究现状
第14卷第1期精密成形工程2022年1月JOURNAL OF NETSHAPE FORMING ENGINEERING11β型γ-TiAl合金热变形过程中组织演化及动态再结晶行为研究现状强凤鸣,寇宏超,贾梦宇,唐斌,李金山(西北工业大学凝固技术国家重点实验室,西安 710072)摘要:TiAl合金以其低密度、高比强和良好的抗蠕变性等优点,已在航空发动机上获得应用。
先进的β型γ-TiAl合金通过引入一定量的β/B2相,显著改善了合金的热加工能力,该类合金更适合热机械加工。
对β型γ-TiAl合金热机械加工过程中的组织演化和变形行为形成完整的认识是制定和优化热加工工艺的前提。
综述了β型γ-TiAl合金的不同初始组织在热机械加工过程中的组织演变及其动态再结晶机制,指出当热加工温度低于Tγ,solv时,组织演化主要与(α/α2+γ)片层团的破碎有关;当热加工温度高于Tγ,solv时,主要与α相的动态再结晶有关,同时分析了β相的存在对(α/α2+γ)片层团以及α相动态再结晶的影响,最后对β型γ-TiAl合金热变形过程中的基础问题进行了总结和展望。
关键词:TiAl合金;热机械加工;变形行为;再结晶;组织演化DOI:10.3969/j.issn.1674-6457.2022.01.002中图分类号:TG146 文献标识码:A 文章编号:1674-6457(2022)01-0011-08. All Rights Reserved.Microstructure Evolution and Dynamic Recrystallization Behavior in β-Solidifyingγ-TiAl during Thermomechanical ProcessingQIANG Feng-ming, KOU Hong-chao, JIA Meng-yu, TANG Bin, LI Jin-shan(State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China)ABSTRACT: Due to the low density, high specific strength and good creep resistance at high temperature, TiAl alloys havebeen successfully used in aero-engines. Through introduction of high content of β-stabilizing alloying elements, the advancedβ-type γ-TiAl alloys possess improved thermal workability and are more suitable for thermomechanical processing. A thoroughunderstanding of the microstructure evolution and deformation mechanism of the β-type γ-TiAl alloys during thermomechanicalprocessing is the prerequisite for formulating and optimizing the processing parameters. Therefore, the microstructure evolutionand dynamic recrystallization mechanism of β-type γ-TiAl alloys with different initial microstructures during thermomechanicalprocessing were reviewed and discussed. It was pointed out that when the thermal processing temperature was lower than Tγ,solv,the microstructure evolution was mainly related to the fragmentation of the α2/γ lamellar colonies. When the thermal processingtemperature was higher than Tγ,solv, the microstructure evolution was mainly related to the dynamic recrystallization of the αphase. Besides, the effects β phase on the α2/γ lamellar colonies and the dynamic recrystallization of the α phase were analyzed.The fundamental issues related to β-type γ-TiAl alloys during thermomechanical processing are summarized prospected.KEY WORDS: TiAl alloys; thermomechanical processing; deformation behavior; recrystallization; microstructure evolution收稿日期:2021-12-09作者简介:强凤鸣(1992—),女,博士生,主要研究方向为钛铝合金及其组织调控技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1The inlet – or: How to define the mold filling?During the simulation, the inlet represents the melt flow into the mold. Therefore, an inlet has to be defined for each filling simulation. Due to the simulation process there are certain requirements the inlet has to meet, and the mold filling process must be defined in a physically sensible way.1.1The suitable inlet for simulationTo efficiently carry out the simulation, the inlet has to fulfil the following requirements:•The inlet diameter should be a little smaller than the downsprue diameter.•After the enmeshment, the inlet should consist of at least 2 layers. The program will automatically assign one of these layers to the material group of the ingate system.•The inlet must not project into the downsprue, Array because in that case two different pouring directionswould result (see sketch). Using the overlay principle(first the inlet, then the ingate system) you can avoidthis problem.•The cross section of the ingate system‘s next 2 to 3 layers in the flow direction must be at least as big as the inlet cross section.The best way to check if the inlet fulfils these requirements is to calculate its geometry in the postprocessor using the function ‘3D-mesh‘.1.2Physically sensible fillingThe two basic equations for the calculation of mold filling are::hg p gh v ⋅⋅==ρ2High pressure die casting (HPDC)In low pressure die casting (LPDC) as well as in high pressure die casting (HPDC)processes, the inlet cross section is defined by the geometry. The inlet cross section corresponds to the cross sections of the shot chamber and the stalk respectively.The mold filling is defined considering the pouring rate. This way the first and second phases can be displayed exactly.The piston’s velocity and cross section are known values. From these, the pouring rate is calculated,e. g.:A piston = 25 cm²v piston = 100 cm/s⇒ =V& A piston ⋅ v piston = 2500 cm³/s p o u r i n g r a t e1.2.2Gravity castingAs with this casting method a time dependent pouring rate only appears in very few cases,either a pouring time or a pressure boundary condition must be defined.Defining the pouring timeFrom the total volume and the pouring time, MAGMASOFT ® calculates a constant volume flow at the inlet, e. g.:scm s cm Vdefined s t cm V full total 333500105000)(105000====&Possibly occuring problems Filling time is too shortIn this case, the pressure at the inlet is going to increase during the mold filling. This will cause a “forced filling“, similar to that known from high pressure die casting processes.In reality, the melt would flow out of the pouring basin on these conditions, butMAGMASOFT ® does not consider the basin as “open“. Therefore, the amount of liquid metal being lead into the mold through the inlet is higher than the amount that can flow off through the downsprue.Because of this, the pressure and velocity values inside the melt increase to such an extent that they do not correspond to physically sensible values anymore.Inlet cross section is too largeThe melt velocity calculated by MAGMASOFT ® can decrease to a very low level, at which it is outside the physically sensible range. In extreme cases MAGMASOFT ® opens a dialogue box with a warning.Checking the filling conditionsBy observing the melt velocity underneath the inlet, you can check if the filling conditionshave been set in a physically sensible way.AdvantagesDisadvantages• In most cases, the pouring time is aknown value.• If a pouring time is defined, the inlet cross section will be less important than if you define a pressure boundary condition.A constant pouring rate does not correspond exactly to the real conditions:• Quick casting, to fill the pouring basin withliquid metal as early as possible.• During mold filling, the pouring ratedecreases because of the increasing counterpressure inside the mold.Table 1: Estimating the definition of a pouring timeDefining a pressure boundary conditionThe definition of a pressure gh p ρ=at the inlet leads to the physically most exact display ofthe mold filling. The initial pouring phase can be simulated, and the increasing counterpressure inside the cavity is considered as the pouring rate is calculated. The pressure at the inlet does not increase.Instead the melt velocity at the inlet is calculated from the defined pressure. Here, the inlet cross section is of decisive significance. The larger the inlet cross section is, the higher the volume flow in the melt and the shorter the filling time will be as well.Pouring basinThe inlet cross section A Inlet corresponds to the downsprue cross section.The following pressure results at the inlet:hg p ⋅⋅=ρh。