北京市各区2016年中考数学一模汇编统计初步(含参考答案)
北京市各区2016年中考数学一模汇编概率初步(含参考答案)
北京市2016年各区中考一模汇编概率初步1.【2016东城一模,第03题】有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是A .15B .25C .35D .452.【2016丰台一模,第03题】五张完全相同的卡片上,分别写上数字-3,-2,-1,2,3,现从中随机抽取一张,抽到写有负数的卡片的概率是 A. 15 B. 25 C. 35 D. 453.【2016平谷一模,第03题】一枚质地均匀的六面骰子,六个面上分别刻有1,2,3,4,5,6点,投掷一次得到的点数为奇数的概率是A .16B .14C .13D .124.【2016朝阳一模,第03题】有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是A .21 B .13 C .29 D .19 5.【2016海淀一模,第03题】一个不透明的口供中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为 A.14 B. 34 C. 15 D. 456.【2016西城一模,第06题】老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是()A.110B.310C.15D.127.【2016通州一模,第06题】在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从中随机摸出一个小球,恰好是红球的概率为15,那么m的值是A.12 B.15 C.18 D.218.【2016朝阳一模,第15题】在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒.详细解答1. C2. C3. D4. C5. C6. B7. B8.1250。
2016北京中考数学各区一模28题汇编
28. (怀柔一模)在正方形ABCD 中,点H 在对角线BD 上(与点B 、D 不重合),连接AH ,将HA 绕点H 顺时针旋转 90º与边CD (或CD 延长线)交于点P ,作HQ ⊥BD 交射线DC 于点Q. (1)如图1:①依题意补全图1;②判断DP 与CQ 的数量关系并加以证明;(2)若正方形ABCD 的边长为3,当 DP=1时,试求∠PHQ 的度数.28.(门头沟一模)在正方形ABCD 中,连接BD .(1)如图1,AE ⊥BD 于E .直接写出∠BAE 的度数.(2)如图1,在(1)的条件下,将△AEB 以A 旋转中心,沿逆时针方向旋转30°后得到△AB'E',AB'与BD 交于M ,AE'的延长线与BD 交于N . ① 依题意补全图1;② 用等式表示线段BM 、DN 和MN 之间的数量关系,并证明. (3)如图2,E 、F 是边BC 、CD 上的点,△CEF 周长是正方形ABCD 周长的一半,AE 、AF 分别与BD 交于M 、N ,写出判断线段BM 、DN 、MN 之间数量关系的思路.(不必写出完整推理过程)图1 图228.(2016延庆一模) 在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果()()0'0y x y y x ⎧⎪=⎨-⎪⎩≥<,那么称点Q 为点P 的“妫川伴侣”.例如:点(5,6)的“妫川伴侣”为点(5,6),点(-5,6)的“妫川伴侣” 为点(-5,-6).EDACBNMEDAC BFCBCB(1)① 点(2,1)的“妫川伴侣”为 ;② 如果点A (3,-1),B (-1,3)的“妫川伴侣”中有一个在函数3y x=的图象上,那么这个点是 (填“点A ”或“点B ”).(2)①点M *(-1,-2)的“妫川伴侣”点M 的坐标为 ;② 如果点N *(m +1,2)是一次函数y = x + 3图象上点N 的“妫川伴侣”, 求点N 的坐标.(3)如果点P 在函数24y x =-+(-2<x ≤a )的图象上,其“妫川伴侣”Q 的纵坐标y ′的取值范围是-4<y ′≤4,那么实数a 的取值范围是 .28. (2016东城一模)如图,等边△ABC ,其边长为1,D 是BC 中点,点E ,F 分别位于AB ,AC 边上,且∠EDF =120°. (1)直接写出DE 与DF 的数量关系;(2)若BE ,DE ,CF 能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE +AF 的长是否为定值?如果是,请求出该值,如果不是,请说明理由.备用图()28.(2016房山一模)如图1,在四边形ABCD 中,BA =BC ,∠ABC =60°,∠ADC =30°,连接对角线BD .(1)将线段CD 绕点C 顺时针旋转60°得到线段CE ,连接AE .①依题意补全图1;②试判断AE 与BD 的数量关系,并证明你的结论;(2)在(1)的条件下,直接写出线段DA 、DB 和DC 之间的数量关系; (3)如图2,F 是对角线BD 上一点,且满足∠AFC =150°,连接FA 和FC ,探究线段FA 、FB 和FC 之间的数量关系,并证明.(图1) (图2)28(2016海淀一模).在△ABC 中,AB =AC ,∠BAC =,点D 在射线BC 上(与B 、C 两点不重合),以AD 为边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G . (1)若点D 在线段BC 上,如图1.①依题意补全图1;②判断BC 与CG 的数量关系与位置关系,并加以证明;(2)若点D 在线段BC 的延长线上,且G 为CF 中点,连接GE ,AB,则GE 的长为_______,并简述求GE 长的思路.图1 备用图90EA CDB 28.(2016平谷一模)如图,在△ABC 中,∠ACB =90°,AC =BC=CD ,∠ACD =α,将线段CD 绕点C 顺时针旋转90°得到线段CE ,连接DE ,AE ,BD . (1)依题意补全图1;(2)判断AE 与BD 的数量关系与位置关系并加以证明;(3)若0°<α≤64°,AB =4,AE 与BD 相交于点G ,求点G 到直线AB 的距离的最大值.请写出求解的思路(可以不写出计算结果.........).28(石景山一模).在正方形ABCD 中,E 为边CD 上一点,连接BE .(1)请你在图1画出△BEM ,使得△BEM 与△BEC 关于直线BE 对称; (2)若边AD 上存在一点F ,使得AF+CE=EF ,请你在图2中探究∠ABF 与∠CBE 的数量关系并证明;(3)在(2)的条件下,若点E 为边CD 的三等分点,且CE<DE ,请写出求cos ∠FED 的思路.(可以不写出计算结果.........).28.(2016顺义一模)已知:在△ABC 中,∠BAC =60°.(1)如图1,若AB =AC ,点P 在△ABC 内,且∠APC =150°,P A =3,PC =4,把△APC 绕着点A 顺时针旋转,使点C 旋转到点B 处,得到△ADB ,连接DP ①依题意补全图1; ②直接写出PB 的长;(2)如图2,若AB =AC ,点P 在△ABC 外,且P A =3,PB =5,PC =4,求∠APC 的度数; (3)如图3,若AB =2AC ,点P 在△ABC 内,且P A =3,PB =5,∠APC =120°,请直接写出PC 的长.αB C A D 图1 备用图αBC A AC DB E A DB28(2016通州一模).△ABC 中,45ABC ∠=︒,AB BC ≠,BE AC ⊥于点E ,AD BC ⊥于点D . (1)如图1,作ADB ∠的角平分线DF 交BE 于点F ,连接AF . 求证:FAB FBA ∠=∠; (2)如图2,连接DE ,点G 与点D 关于直线AC 对称,连接DG 、EG .①依据题意补全图形;②用等式表示线段AE 、BE 、DG 之间的数量关系,并加以证明.28.(2016西城一模)在正方形ABCD 中,点P 是射线CB 上一个动点,连接PA ,PD ,点M ,N 分别为BC ,AP 的中点,连接MN 交PD 于点Q .(1)如图1,当点P 与点B 重合时,QPM 的形状是_____________________; (2)当点P 在线段CB 的延长线上时,如图2. ①依题意补全图2;②判断QPM 的形状,并加以证明;(3)点P '与点P 关于直线AB 对称,且点P '在线段BC 上,连接AP ',若点Q 恰好在直线AP '上,正方形ABCD 的边长为2,请写出求此时BP 长的思路.(可以不写出计算结果)图2图1图1 图2 图328(2016燕山一模).在等边△ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接AD ,BD ,CD ,其中CD 交直线AP 于点E .设∠P AB =α,∠ACE =β,∠AEC =γ.(1) 依题意补全图1;(2) 若α=15°,直接写出β和γ的度数; (3) 如图2,若60°<α<120°,①判断α,β的数量关系并加以证明;②请写出求γ大小的思路.(可以不写出计算结果.........)NA DC图2A BPCABCP图128. (怀柔)(1)①如图1…................................. .....….1分②DP=CQ. 如图2 …................................. .....….2分 ∵HA 绕点H 顺时针旋转 90º与边CD (或CD 延长线)交于点P ∴∠AHP=90°,即∠3+∠4=90°.HA=HP. ∵HQ ⊥BD 交射线DC 于点Q ; ∴∠QHD=90°,即∠QHP+∠4=90°.∴∠QHP=∠3. …................................. .....….3分 ∵四边形ABCD 是正方形; ∴∠1=∠2=45°,DA=CD. ∴∠Q=∠1=∠2=45°. ∴△QHP ≌△DHA.∴DA=QP. …................................. .....….4分 ∴QP=CD.∴QP -PC=CD -PC∴CQ=PD. …................................. .... ..................….5分 (2)①如图3,当点P 在边CD 上时,连接AP. ∵正方形边长为3,PD=1,∠ADP=90°.∴tan ∠APD=3. ∴∠APD=60°.∵HA=HP ,∠AHP=90°. ∴∠APH=45°. ∴∠HPD=105°. ∵∠Q=45°.∴∠PHQ=60°........... …................................. .... ..................….6分 ②如图4,当点P 在边CD 延长线上时,连接AP. ∵正方形边长为3,PD=1,∠ADP=90°.∴tan ∠APD=3. ∴∠APD=60°.∵HA=HP ,∠AHP=90°. ∴∠APH=45°. ∴∠HPD=15°.∵∠HQD=45°.∴∠PHQ=120°综上所述,∠PHQ 的度数为120°或60°. ......... …................................. .... ..................….7分 28.(门头沟一模)(本小题满分7分) 解:(1)∠BAE =45°.…………………………………………………………………1分(2) ① 依题意补全图形(如图1);………………………………………2分② BM 、DN 和MN 之间的数量关系是BM 2+ND 2=MN 2.………………3分 证明:如图1,将△AND 绕点A 顺时针旋转90°,得△AFB .∴∠ADB =∠FBA ,∠1=∠3,DN =BF ,AF =AN . ∵正方形ABCD ,AE ⊥BD ,C BQ PADH图13421CBQPAD H 图2图3图4321F N M B'E'E DA CB ∴∠ADB =∠ABD =45°. ∴∠FBM =∠FBA +∠ABD=∠ADB +∠ABD =90°. ∴由勾股定理得FB 2+BM 2=FM 2.∵旋转△ABE 得到△AB'E', ∴∠E'AB'=45°, ∴∠2+∠3=90°-45°=45°, 又∵∠1=∠3,∴∠2+∠1=45°. 即∠F AM =45°.∴∠F AM =∠E'AB'=45°. 又∵AM =AM ,AF =AN , ∴△AFM ≌△ANM .∴FM =MN .又∵FB 2+BM 2=FM 2,∴DN 2+BM 2=MN 2.………………………………………………5分(3)判断线段BM 、DN 、MN 之间数量关系的思路如下:a .如图2,将△ADF 绕点A 瞬时针旋转90°得△ABG ,推出DF =GB ;b .由△CEF 的周长等于正方形ABCD 周长的一半,得EF =DF +BE ;c . 由DF =GB 和EF =DF +BE 推出EF =GE ,进而得△AEG ≌△AEF ;d .由△AEG ≌△AEF 推出∠EAF =∠EAG =45°;e .与②同理,可证MN 2=BM 2+DN 2.………………………………………7分28.(2016延庆一模) 解:(1)①(2,1);………………………………………………1分② 点B .…………………………………………………………………………2分 (2)① M (-1,2);…………………………………………………………………3分② 当m +1≥0,即m ≥-1时,由题意得N (m +1,2). ∵点N 在一次函数y =x +3图象上, ∴m +1+3=2,解得m =-2(舍). ……………………………………………………………4分 当m +1<0,即m <-1时,由题意得N (m +1,-2). ∵点N 在一次函数y =x +3图象上, ∴m +1+3=-2,解得m =-6. ……………………………………………………………………5分 ∴N (-5,-2).………………………………………………………6分(3)2≤a <22.……………………………………………………………………7分 28.(2016东城一模)解:(1)相等. …………1分 (2)思路:延长FD 至G ,使得GD=DF ,连接GE ,GB .证明△FCD ≌△GBD ,△GED 为等边三角形,图1 G N M E DA CB F图2∴△GED 为所求三角形.最大角为∠GBE=120°. …………4分(3)过D 作DM ,DN 分别垂直AB ,AC 于M ,N .∴∠DMB =∠DNC=∠DMA=∠DNA=90°. 又∵DB=DC ,∠B=∠C , ∴△DBM ≌△DCN. ∴DM =DN .∵∠A=60°,∠EDF=120°, ∴∠AED +∠AFD=180°. ∴∠MED =∠AFD. ∴△DEM ≌△DFN. ∴ME=NF .∴AE+AF=AM -ME+AN+NF=AM+AN =333442+=. …………7分28.(房山一模) (1)①补全图形,如图1 ------------------------------1分 ②判断: AE =BD --------------------2分 证明:如图2,连接AC ∵BA =BC ,且∠ABC =60° ∴△ABC 是等边三角形 ∴∠ACB =60°,且CA =CB∵将线段CD 绕点C 顺时针旋转60°得到线段CE ∴CD =CE ,且∠DCE =60° ∴∠BCD =∠ACE∴△BCD ≌△ACE (SAS )∴AE =BD ------------------------------3分 (2)判断:222DA DC DB += ------------------------4分 (3)判断:222FA FC FB += -------------------------5分 证明:如图3,连接AC∵BA =BC ,且∠ABC =60° ∴△ABC 是等边三角形 ∴∠ACB =60°,且CA =CB将线段CF 绕点C 顺时针旋转60°得到线段CE ,连接EF 、EA ∴CE =CF ,且∠FCE =60°, ∴△CEF 是等边三角形 ∴∠CFE =60°,且FE =FC ∴∠BCF =∠ACE∴△BCF ≌△ACE (SAS )∴AE =BF ---------------------------------6分 ∵∠AFC =150°, ∠CFE =60°ECABD28-图228-图3CB∴∠AFE =90°在Rt △AEF 中, 有:222FA FE AE +=∴222FA FC FB +=. ---------------------------------7分 28.(海淀一模) 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵,∴,. ∵射线、的延长线相交于点, ∴. ∵四边形为正方形,∴,. ∴.∴△≌△.…………………3分 ∴.∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分 (2).…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得︒=∠=90,BAC AC AB ︒=∠=∠45ACB B ︒=∠+∠9021BA CF G ︒=∠=∠90BAC CAG ADEF ︒=∠+∠=∠9032DAF AF AD =31∠=∠ABD ACF ︒=∠=∠45ACF B 10GE =2=ABAD =GE FE AD === ……7分28(2016平谷一模).解:(1)补全图形,如图1所示.........................1 (2)AE 与BD 的数量关系:AE =BD , (2)AE 与BD 的位置关系:AE ⊥BD .…………………3 证明:∵∠ACB =∠DCE =90°,∴∠ACB +α=∠DCE +α. 即∠BCD =∠ACE . ∵BC=AC ,CD=BC ,∴△BCD ≌△ACE . (4)∴AE =BD .∴∠4=∠CBD . ∵∠CBD =∠2, ∴∠2=∠4.∵∠3+∠4=90°,∠1=∠3, ∴∠1+∠2=90°.即AE ⊥BD . (5)(3)求解思路如下:过点G 作GH ⊥AB 于H .由线段CD 的运动可知,当α=64°时GH 的长度最大.………6 由CB =CD ,可知∠CBD =∠CDB ,所以∠CBD =18090642︒-︒-︒=13°,所以∠DBA =32°.由(2)可知,∠AGB =90°,所以∠GAB =58°,分别解Rt △GAH 和Rt △GBH ,即可求GH 的长. (7)28.(石景山一模)(1)补全图形,如图1所示.…………………………………1分(2)与的数量关系:. ………2分证明:连接,,延长到,使得,连接…3分∵四边形为正方形, ∴,∴△≌△.∴,. ∵,∴. ……………………4分 ∴△≌△.ABF ∠CBE ∠45ABF CBE ∠+∠=︒BF EF DC G AF CG =BG ABCD AB BC =90A BCD ABC ∠=∠=∠=︒BAF BCG BG BF =ABF CBG ∠=∠EF CE AF =+EF GE =BEF BEG MEA C D B∴∠=∠.∴. ………………5分 (3)求解思路如下:a .设正方形的边长为,为,则,;b .在Rt △中,由, 可得 从而得到与的关系;c .根据cos ∠FED ,可求得结果.………7分28、(2016顺义一模)解:(1)PB =5 (2)30° (3)PC =228.(2016通州一模)证明:(1)∵AD BC ⊥,45ABC ∠=︒∴45BAD ∠=︒∴AD BD =,………………… 1分;∵DF 平分ADB ∠ ∴12∠=∠,在△ADF 和△BDF 中∵=,1=2,=,AD BD DF DF ⎧⎪∠∠⎨⎪⎩, ∴△ADF ≌△BDF .∴AF BF =.∴FAB FBA ∠=∠. ………………… 2分;或用“三线合一”(2) 补全图形 ………………… 3分;数量关系是:GD AE BE +=. ………………… 4分;过点D 作DH DE ⊥交BE 于点H ∴90ADE ADH ∠+∠=︒, ∵AD BC ⊥,∴90BDH ADH ∠+∠=︒,FBE CBE ABF MBE ∠+∠=45ABF CBE ∠+∠=︒3a AF x EF x a =+3DF a x =-EFD 222EF DF DE =+()()()22232x a a x a +=-+x a 23x a =2DE aEF x a==+图1∴ADE BDH ∠=∠,∵AD BC ⊥,BE AC ⊥,AKE BKD ∠=∠,∴DAE DBH ∠=∠,在△ADE 和△BDH 中∵=,=,DAE DBH AD BD ADE BDH ∠=∠⎧⎪⎨⎪∠∠⎩, ∴△ADE ≌△BDH .∴DE DH =,AE BH =, ………………… 5分;∵DH DE ⊥,∴45DEH DHE ∠=∠=︒, ∵BE AC ⊥, ∴45DEC ∠=︒,∵点G 与点D 关于直线AC 对称, ∴AC 垂直平分GD ,∴GD ∥BE ,45GEC DEC ∠=∠=︒, ∴90GED EDH ∠=∠=︒,∴GE ∥DH ,………………… 6分; ∴四边形GEHD 是平行四边形∴GD EH =,………………… 7分.∴GD AE BE +=.或过点D 作DH DE ⊥交AC 的延长线于点H. 28(2016燕山一模).(1) 补全图形,如图所示 ………………………1分(2) β=45°,γ=60°. ………………………3分(3) ①α=β+60°. ………………………4分 证明:如图2,∵点D 与点B 关于直线AP 对称, ≌AD =AB ,∠P AD =∠P AB =α. ∵△ABC 是等边三角形, ≌AB =AC ,∠ACB =60°, ≌AD =AB =AC ,≌点B ,C ,D 在以A 为圆心的圆上, ≌∠BAD =2∠BCD .∵∠BAD =∠P AD +∠P AB =2α,H图2KG EA BDC图2HLGEA DBC EDAPBC图2∠BCD=∠ACE+∠BCA=β+60°,≌2α=2(β+60°),即α=β+60°.…………………………6分②由①知∠P AB=∠BCD,≌A,B,C,E四点在同一个圆上,故∠AEC与∠ABC互补.由△ABC是等边三角形,得∠ABC=60°,可求γ=∠AEC=180°-60°=120°.…………………………7分28(2016西城一模)。
北京市通州区2016年中考数学一模试卷含答案解析
2017年北京市通州区中考数学一模试卷一、选择题(本题共30分,每小题3分)1. 2015年9月3日在北京举行了中国人民抗日战争暨世界反法西斯战争胜利70周年纪念活动,正式受阅12000人.将12000用科学记数法表示正确的是()A.12×104B.1.2×105C.1.2×104D.0.12×1042.如图,数轴上有A、B、C、D四点,其中表示互为相反数的两个实数所对应的点是()A.点A与点 D B.点A与点 C C.点B与点D D.点B与点 C3.下列运算的结果为a6的是()A.a3+a3 B.(a3)3C.a3?a3 D.a12÷a24.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.在一定温度下向一定量的水中不断加入食盐(NaCl),那么能表示食盐溶液的溶质质量分数y与加入的食盐(NaCl)的量x之间的变化关系的图象大致是()A.B.C.D.6.在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从中随机摸出一个小球,恰好是红球的概率为,那么m的值是()A.12 B.15 C.18 D.217.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25° C.20° D.15°8.为了弘扬优秀传统文化,通州区30所中学参加了“名著?人生”戏剧展演比赛,最后有13所中学进入决赛,他们的决赛成绩各不相同.某中学已进入决赛且知道自己的成绩,但是否进入前7名,还必须知道这13所中学成绩的()A.中位数B.平均数C.众数 D.方差9.如图,为测量池塘边上两点A、B之间的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,那么A、B间的距离是()A.18米B.24米C.30米D.28米10.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是()A.(0,0) B.(﹣1,1)C.(﹣1,0)D.(﹣1,﹣1)二、填空题(本题共18分,每小题3分)11.已知m+n=3,m﹣n=2,则m2﹣n2= .12.写出图象经过点(﹣1,1)的一个函数的解析式是.13.手机悦动圈是记录步行数和热量消耗数的工具,下表是孙老师用手机悦动圈连续记录的一周当中,每天的步行数和卡路里消耗数(热量消耗,单位:大卡)星期一二三四五六日步行数5025 5000 4930 5208 5080 10085 10000卡路里消耗201 200 198 210 204 405 400孙老师发现每天步行数和卡路里消耗数近似成正比例关系.孙老师想使自己的卡路里消耗数达到300大卡,预估他一天步行约为步.(直接写出结果,精确到个位)14.我们知道,无限循环小数都可以转化为分数.例如,将0.3转化为分数时,可设x=0.,则10x=3.=3+0.,所以10x=3+x,解得x=即0. =.仿此方法,将0.化为分数是.15.在学习“用直尺和圆规作射线OC,使它平分∠AOB”时,教科书介绍如下:*作法:(1)以O 为圆心,任意长为半径作弧,交OA于D,交OB于E;(2)分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点C;(3)作射线OC.则OC就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC就是∠AOB的平分线.小华的思路是连接DC、EC,可证△ODC≌△OEC,就能得到∠AOC=∠BOC.其中证明△ODC≌△OEC的理由是.16.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:|﹣2|+(π﹣2016)0﹣4cos60°+()﹣3.18.解不等式组,并把它的解集在数轴上表示出来.19.已知a2﹣2a﹣1=0,求代数式(a﹣2)2+(a+b)(a﹣b)+b2的值.20.如图,在△ABC中,AC=BC,BD⊥AC于点D,在△ABC外作∠CAE=∠CBD,过点C作CE⊥AE于点E.如果∠BCE=140°,求∠BAC的度数.21.通州区运河两岸的“运河绿道”和步行道是健身的主要场地之一.杨师傅分别体验了60公里的“运河绿道”骑行和16公里的健步走,已知骑行的平均速度是健步走平均速度的4倍,结果健步走比骑行多用了12分钟,求杨师傅健步走的平均速度是每小时多少公里?22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)如果点E是AB的中点,AC=4,EC=2.5,求四边形ABCD的面积.24.已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为5时,求k的值.25.北京市初中开放性实践活动从2015年10月底进入正式实施阶段.资源单位发布三种预约方式:自主选课、团体约课、送课到校,可供约25万人次学生学习.截至2016年3月底,某区统计了初一学生参加自主选课人次的部分相关数据,绘制的统计图如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)据2016年3月底预约数据显示,该区初一学生有12000人次参加自主选课,而团体约课比自主选课多8000人次,送课到校是团体约课的 2.5倍.请在下图中用折线统计图将该区初一学生自主选课、团体约课、送课到校人次表示出来;(3)根据上面扇形统计图的信息,请你为资源单位提一条积极的建议.26.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)连结OC,如果PD=2,∠ABC=60°,求OC的长.。
北京市各区年中考数学一模汇编统计初步
北京市2016年各区中考一模汇编统计初步一、统计初步之基本概念1.【2016东城一模,第04题】甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示2.【2016东城一模,第14题】为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是3.【2016丰台一模,第07题】某班体育委员统计了全班45名同学一周的体育锻炼时间,并绘制了如图所示的折线统计图,则在体育锻炼时间这组数据中,众数和中位数分别是A. 18,18B. 9,9C. 9,10D. 18,94.【2016平谷一模,第07题】A.85和80 B.80和85 C.85和85 D.85.5和805.【2016朝阳一模,第07题】2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,方差依次为2甲s ,2乙s ,下列关系中完全正确的是A .甲x =乙x ,2甲s <2乙sB .甲x =乙x ,2甲s >2乙sC .甲x <乙x ,2甲s <2乙sD .甲x >乙x ,2甲s >2乙s6.【2016海淀一模,第07题】初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B. 9,8.5 C. 8,8D. 8,8.57.【2016西城一模,第07题】李阿姨是一名健步走运动爱好者,她用手机软件记录了某月(30天)每天健步走的步骤(单位:万步),将记录结果绘制成了突入所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是() A .1.2,1.3B .1.4,1.3C .1.4,1.35D .1.3,1.38.【2016通州一模,第08题】为了弘扬优秀传统文化,通州区30所中学参加了“名著·人生”戏剧展演比赛,最后有13所中学进入决赛,他们的决赛成绩各不相同.某中学已进入决赛且知道自己的成绩,但是否进入前7名,还必须知道这13所中学成绩的 A .中位数B .平均数C .众数D .方差二、统计初步之基本应用9.【2016丰台一模,第15题】某地区有36所中学,其中九年级学生共7000名.为了了解该地区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序. ①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据. 排序:.(只写序号)10.【2016平谷一模,第09题】如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体构造学的研究成果表明,一般情况下人的指距d 和身高h 成某种关系.下表是测得的指距与身高的一组数据:根据上表解决下面这个实际问题:姚明的身高是226厘米,可预测他的指距约为 A.25.3厘米 B.26.3厘米 C.27.3厘米 D.28.3厘米11.【2016平谷一模,第15题】在对某次实验数据整理过程中,某个事件出现的频率随实验次数变化折线图如图所示,这个图形中折线的变化特点是,试举一个大致符合这个特点的实物实验的例子(指出关注的结果).12.【2016海淀一模,第15题】北京市2010-2015年高考报名人数统计如图所示,根据统计图中提供的信息,预估2016年北京市高考人数约为万人,你的预估理由是.报名人数/万人13.【2016西城一模,第16题】有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是___,此时按游戏规则填写空格,所有可能出现的结果共有__________________种.14.【2016通州一模,第13题】手机悦动圈是记录步行数和热量消耗数的工具,下表是孙老师用手机悦动圈连续记录的耗数达到300大卡,预估他一天步行约为__________步.(直接写出结果,精确到个位)三、统计初步之复杂应用(大题)15.【2016东城一模,第24题】某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.16.【2016丰台一模,第25题】阅读下列材料:北京市统计局发布了2014年人口抽样调查报告,首次增加了环线人口分布数据.调查数据显示,北京市超过一半的常住人口都住在了远离城区的五环以外. 事实上,北京市的中心城区人口从上世纪80年代起就持续下降,越来越多的人向郊区迁移.根据2014年人口抽样调查结果发现,本市三环至六环间,聚集了1226.9万人的常住人口,占全市的57.1%;四环至六环间聚集了941万人的常住人口,占全市的43.8%;五环以外有1098万人的常住人口,占全市的51.1%.在进行人口分布研究时,北京通常被划分为四个区域,城市功能拓展区包括:朝阳、海淀、丰台、石景山四个区; 城市发展新区包括:通州、顺义、大兴、昌平、房山五个区和亦庄开发区; 首都功能核心区包括:东城区和西城区; 生态涵养发展区包括:门头沟、平谷、怀柔、密云、延庆五个区县.从常住人口分布上看:城市功能拓展区常住人口最多,占全市总量的49%;城市发展新区常住人口约为684万人;首都功能核心区常住人口约为221万人;生态涵养发展区常住人口约为191万人.从常住外来人口分布上看:城市功能拓展区常住外来人口最多,约为436万人;城市发展新区常住外来人口约为297万人;首都功能核心区常住外来人口约为54万人;生态涵养发展区常住外来人口约为32万人.根据以上材料回答下列问题:(1)估算2014年北京市常住人口约为___________万人.(2)选择统计表或.统计图,将2014年北京市按四个区域的常住人口和常住外来人口分布情况表示出来.17.【2016平谷一模,第25题】“世界那么大,我想去看看”是现代很多人追求的生活方式之一.根据北京市旅游发展委员会发布的信息显示, 2012——2015年连续四年,我市国内旅游市场保持了稳定向好的态势.2012年,旅游总人数约2.31亿人次,同比增长8.1%;2013年,旅游总人数约 2.52亿人次,同比增长9%;2014年,旅游总人数约 2.61亿人次,同比增长3.8%;2015年,旅游总人数2.73亿人次,同比增长4.3%;预计2016年旅游总人数与2015年同比增长5%.旅游不仅是亲近自然的好时机,同时也是和家人朋友沟通的好时机,调查显示,中秋国庆黄金假期成为人们选择旅游最佳时期,《2015年中秋国庆长假出游趋势报告》显示,人们出行的方式可以归纳为四种,即乘火车、乘汽车、坐飞机、其他.其中选择乘火车出行的人数约占47%,选择乘汽车出行的人数约占28%,选择坐飞机出行的人数约占17%.根据以上信息解答下列问题:(1)预计2016年北京市旅游总人数约亿人次(保留两位小数);(2)选择其他出行方式的人数约占;(3)请用统计图或统计表,将2012——2015年北京市旅游总人数表示出来.18.【2016朝阳一模,第25题】阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%; 2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张.根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.19.【2016海淀一模,第25题】阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%。
北京市各区2016年中考数学一模汇编整式(含参考答案)
北京市2016年各区中考一模汇编整式一、整式之幂运算1.【2016东城一模,第02题】下列运算中,正确的是A .x ·x 3=x 3B .(x 2)3=x 5C .624x x x ÷=D .(x -y )2=x 2+y 22.【2016通州一模,第03题】下列各式运算的结果为6a 的是A .33a a +B .33()aC .33a a ⋅ D.122a a ÷二、整式之因式分解3.【2016东城一模,第08题】对式子2241a a --进行配方变形,正确的是A .22(1)3a +-B . 23(1)2a --C .22(1)1a --D .22(1)3a --4.【2016东城一模,第11题】分解因式:22ab ac -=.5.【2016丰台一模,第11题】分解因式:2x 3-8x =.6.【2016平谷一模,第11题】分解因式:228x y y -=.7.【2016朝阳一模,第12题】分解因式:22369a b ab b -+=____________.8.【2016海淀一模,第11题】分解因式:22a b ab b -+=9.【2016西城一模,第11题】分解因式:34ab ab -=_______________.二、整式之因式简化10.【2016平谷一模,第18题】已知a+b =﹣1,求代数式()()2122a b a b a -+++的值.11.【2016通州一模,第11题】已知3m n +=,2m n -=,那么22m n -的值是 .详细解答1. C2. C3. D4. ()()a b c b c +-5. 2x (x +2)(x -2)6. ()()222y x x +-7. 2)3(b a b -8. 2(1)b a -9. ab(b+2)(b-2)10. 解:()()2122a b a b a -+++=222122+a a ab b a -+++……………………………………………………2 =2221+a ab b ++ (3)∵a+b =﹣1,∴原式=()21a b ++............................................................4 =2 (5)11. 6。
北京市各区2016年中考数学一模汇编一元方程
北京市2016年各区中考一模汇编一元方程一、一元二次方程求解1.【2016平谷一模,第08题】已知,关于x 的一元二次方程()22210m x x -++=有实数根,则m 的取值范围是 A .m <3 B .m ≤3 C .m <3且m ≠2 D .m ≤3且m ≠22.【2016西城一模,第05题】关于x 的一元二次方程21302x x k ++=有两个不相等的实数根,则k 的取值范围是() A .92k <B .94k =C .92k ≥D .94k >3.【2016丰台一模,第13题】关于x 的一元二次方程x 2+ 2 ( m + 1 ) x + m 2- 1 = 0有实数根,则实数m 的取值范围 是.4.【2016朝阳一模,第13题】关于x 的方程04222=-++k x x 有两个不相等实数根,写出一个满足条件的k 的值:k =____________.5. 【2016丰台一模,第16题】小明同学用配方法推导关于x 的一元二次方程ax 2+ bx + c = 0的求根公式时,对于b 2-4ac >0的情况,他是这样做的:小明的解法从第步开始出现错误;这一步的运算依据应是.二、一元二次方程简化6.【2016东城一模,第19题】已知230x x --=,求代数式(x +1)2﹣x (2x +1)的值.7.【2016丰台一模,第18题】已知2270x x --=,求2(2)(3)(3)x x x -++-的值.8.【2016朝阳一模,第18题】 已知11m m-=,求(21)(21)(5)m m m m +-+-的值.9.【2016海淀一模,第19题】已知250x x +-=,求代数式()()()()21322x x x x x ---++-的值10.【2016西城一模,第18题】已知:230a a --=,求代数式()()()232a a b a b a b ---+-的值.11.【2016通州一模,第19题】已知2210a a --=,求代数式()()()222a a b a b b -++-+的值.三、一元一/二次方程应用 12.【2016通州一模,第14题】我们知道,无限循环小数都可以化成分数.例如:将0.3g化成分数时,可设0.3x =g,则有3.310x =g,1030.3x =+g,103x x =+,解得13x =,即0.3g 化成分数是13.仿此方法,将0.45g g化成分数是____________.13.【2016朝阳一模,第14题】《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x人,可列方程为____________.14.【2016海淀一模,第13题】埃及《纸草书》中记载:“一个数,它的三分之一,它的一半,它的七分之一,它的全部,加起来总共是33”,设这个数为x,可列方程为15.【2016海淀一模,第21题】目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量水泵,对比手机数据发现小琼步行12000步与小博步行9000步水泵的能量相同,若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多少步?16.【2016东城一模,第21题】列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?17.【2016丰台一模,第21题】根据《中国铁路中长期发展规划》,预计到2020年底,我国建设城际轨道交通的公里数是客运专线的2倍. 其中建设城际轨道交通约投入8000亿元,客运专线约投入3500亿元. 据了解,建设每公里城际轨道交通与客运专线共需1.5亿元. 预计到2020年底,我国将建设城际轨道交通和客运专线分别约多少公里?18.【2016平谷一模,第21题】列方程或方程组解应用题:某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,求经典著作的单价是多少元?19.【2016通州一模,第21题】通州区运河两岸的“运河绿道”和步行道是健身的主要场地之一. 杨师傅分别体验了60公里的“运河绿道”骑行和16公里的健步走,已知骑行的平均速度是健步走平均速度的4倍,结果健步走比骑行多用了12分钟,求杨师傅健步走的平均速度是每小时多少公里?20.【2016西城一模,第23题】上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:三、一元二次方程复杂应用(大题)21.【2016通州一模,第24题】已知关于x 的一元二次方程22(21)0x k x k k -+++=. (1)求证:方程有两个不相等的实数根; (2)当方程有一个根为5时,求k 的值.22.【2016东城一模,第27题】已知关于x 的一元二次方程mx 2+(3m +1)x +3=0. (1)当m 取何值时,此方程有两个不相等的实数根;(2)当抛物线y =mx 2+(3m +1)x +3与x 轴两个交点的横坐标均为整数,且m 为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象直接写出实数a 的取值范围.详细解答1. D2. A3. -1m ³4. 1=k (52k <的任意实数)5. 四;平方根的定义.6. 解:21)(21)x x x +-+( = 22212x x x x ++--=21x x -++. …………3分 ∵ 230x x --=,∴23x x -+=-. …………4分 ∴原式= -2. …………5分7. 解:原式22449x x x =-++- 2245x x =--.------------ 3分∵2270x x --=,∴227x x -=. ------------ 4分 ∴原式22(2)5x x =--=2´7-5=9. ------------ 5分8. 解:原式=22415m m m -+-…………………………………………… 2分 =2551m m --…………………………………………………… 3分 =25()1m m --.11m m-=, 21m m ∴-=. …………………………………………………… 4分 ∴原式=4. …………………………………………………………… 5分9. 解:原式2322134x x x x x =-+-++- 3分23x x =+- 4分∵230x x +-=∴25x x +=∴原式=5-3=25分10.11. 解:原式=222244a a a b b -++-+, ………………… 2分;=2244a a -+, ………………… 3分; ∵2210a a --=,∴221a a -=, …… 4分; ∴2242a a -=∴原式=246+=. …… 5分.12.511或4599; 13. 65413121=++x x x 14. 21133327x x x x +++=15. 解:设小博每消耗1千卡能量需要行走x 步。
2016年北京市西城区中考数学一模试题含答案
2016年北京市西城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.2016年春节假期期间,我市接待旅游总人数达到9186000人次,比去边同期增长1.9%,将9186000用科学记数法表示应为()A.9186×103B.9.186×105C.9.186×106D.9.186×1072.如图,实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最大的数对应的点是()A.点M B.点NC.点P D.点Q3.如图,直线AB∥CD,直线EF分别于AB,CD交于点E,F,FP⊥EF于点F,且与∠BEF的平分线交于点P,若∠1=20°,则∠2的度数是()A.35°B.30°C.25°D.20°4.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.5.关于x的一元二次方程+3x+k=0有两个不相等的实数根,则k的取值范围是()A.k B.k=C.k D.k6.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将枝条混合在一起.游戏时叫儿童随意抽取一张,然后放入水罐中浸湿,即出现白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块塘的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是()A.B.C.D.7.李阿姨是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成如图所示的统计图,在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.4,1.3C.1.4,1.35D.1.3,1.38.在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径,如图,直角角尺,∠AOB=90°,将点O放在圆周上,分别确定OA、OB与圆的交点C、D,读得数据OC=8,OD=9,则此圆的直径约为()A.17B.14C.12D.109.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为()A.300米B.150米C.900米D.米10.如图,在等边三角形ABC中,AB=2,动点P从点A出发,沿三角形边界按顺时针方向匀速运动一周,点Q在线段AB上,且满足AQ+AP=2.设点P运动的时间为x,AQ的长为y,则y与x的函数图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.分解因式:ab3﹣4ab=.12.在平面直角坐标系xOy中,将点(﹣2,3)绕原点O旋转180°,所得到的对应点的坐标为.13.已知函数满足下列两个条件:①x>0时,y随x的增大而增大;②它的图象经过点(1,2).请写出一个符合上述条件的函数的表达式.14.已知⊙O,如图所示.(1)求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法);(2)若⊙O的半径为4,则它的内接正方形的边长为.15.阅读下面材料:如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI 和正方形ODEF,且点I、F在OC上,点H、E在半圆上,求证:IG=FD.小云发现连接已知点得到两条线段,使可证明IG=FD.请回答:小云所作的两条线段分别是和,证明IG=FD的依据是.16.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是,此时按游戏规则填写空格,所有可能出现的结果共有种.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程17.计算:2sin45°+||﹣(π﹣2016)0+()﹣2.18.已知a2﹣a﹣3=0,求代数式a(3a﹣2)﹣b2﹣(a+b)(a﹣b)的值.19.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.20.解不等式组.21.如图,在▱ABCD中,过点A作AE⊥DC交DC的延长线于点E过点D作DF⊥BA,交BA 的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.22.在平面直角坐标系xOy中,直线y=x+1与x轴交于点A,且与双曲线y=的一个交点为B(,m).(1)求点A的坐标和双曲线y=的表达式;(2)若BC∥y轴,且点C到直线y=x+1的距离为2,求点C的纵坐标.23.上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:1.如果选择住在乐园内,会比住在乐园外少用1天的时间就能体验完他们感兴趣的项目;2.一家三口住在乐园内的日均支出是在乐园外的日均支出的1.5倍;3.无论住在乐园内还是乐园外,一家三口这次旅行的总费用都是9810元.请问:如果小芳家选择住在乐园内,那么他们预计在迪士尼乐园游玩多少天?24.如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在上,连接DE,AE,连接CE并延长交AB于点F,∠AED=∠ACF.(1)求证:CF⊥AB;(2)若CD=4,CB=4,cos∠ACF=,求EF的长.25.阅读下列材料:据报道,2014年北京市环境空气中PM2.5年平均浓度为85.9微克/立方米.PM2.5一级优天数达到93天,较2013年大幅度增加了22天,PM2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京缓解空气中PM2.5年均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题,市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM2.5一级优的天数增加了13天.2015年本市PM2.5重污染天数占全年总天数的11.5%,其中在11﹣12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天.根据以上材料解答下列问题:(1)2014年本市空气质量达标天数为天;PM2.5年平均浓度的国家标准限值是微克/立方米;(结果保留整数)(2)选择统计表或统计图,将2013﹣2015年PM2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11﹣12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天”,他由此推断“2015年全年的PM2.5重污染天数比2014年要多”你同意他的结论吗?并说明理由.26.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形,请探究筝形的性质和判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质时:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等.请将下面证明此猜想的过程补充完整:已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:.由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线,结合图形,写出筝形的其他性质(一条即可):(3)筝形的定义是判定一个四边形为筝形的方法之一,试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是”是否成立?如果成立,请给出证明;如果不成立,请举出一个反例,画出图形,并加以证明.27.在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c经过点A(2,﹣3),且与x轴的一个交点为B(3,0).(1)求抛物线C1的表达式;(2)D是抛物线C1与x轴的另一个交点,点E的坐标为(m,0),其中m>0,△ADE的面积为.①求m的值;②将抛物线C1向上平移n个单位,得到抛物线C2.若当0≤x≤m时,抛物线C2与x轴只有一个公共点,结合函数的图象,求n的取值范围.28.在正方形ABCD中,点P是射线CB上一个动点,连接PA,PD,点M、N分别为BC、AP 的中点,连接MN交PD于点Q.(1)如图1,当点P与点B重合时,△QPM的形状是;(2)当点P在线段CB的延长线上时,如图2.①依题意补全图2;②判断△QPM的形状并加以证明;(3)点P′于点P关于直线AB对称,且点P′在线段BC上,连接AP′,若点Q恰好在直线AP′上,正方形ABCD的边长为2,请写出求此时BP长的思路(可以不写出计算结果).29.在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;②线段A1B1∥AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,),⊙C与y轴相切于点D,若⊙E的半径为,圆心E在直线l:y=﹣x+4上,且⊙E的所有点都是关于⊙C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,⊙M的半径为3,点M到原点的结距离为5,点N是⊙M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且⊙M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.2016年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.2016年春节假期期间,我市接待旅游总人数达到9186000人次,比去边同期增长1.9%,将9186000用科学记数法表示应为()A.9186×103B.9.186×105C.9.186×106D.9.186×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9186000=9.186×106,故选:C.2.如图,实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最大的数对应的点是()A.点M B.点NC.点P D.点Q【考点】实数与数轴.【分析】先相反数确定原点的位置,再根据点的位置确定绝对值最大的数即可解答.【解答】解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最大的数对应的点是点Q,故选:D.3.如图,直线AB∥CD,直线EF分别于AB,CD交于点E,F,FP⊥EF于点F,且与∠BEF的平分线交于点P,若∠1=20°,则∠2的度数是()A.35°B.30°C.25°D.20°【考点】平行线的性质.【分析】根据平行线的性质求得∠BEF=180°﹣90°﹣20°,再进一步根据角平分线的定义求解.【解答】解:∵AB∥CD,FP⊥EF于点F,∠1=20°,∴∠BEF=180°﹣90°﹣20°=70°,∵∠BEF的平分线,∴∠2=35°,故选A4.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别确定四个几何体从正面和上面看所得到的视图即可.【解答】解:A、此几何体的主视图是等腰三角形,俯视图是圆,故此选项错误;B、此几何体的主视图是矩形,俯视图是矩形,故此选项正确;C、此几何体的主视图是矩形,俯视图是圆,故此选项错误;D、此几何体的主视图是梯形,俯视图是矩形,故此选项错误;故选:B.5.关于x的一元二次方程+3x+k=0有两个不相等的实数根,则k的取值范围是()A.k B.k=C.k D.k【考点】根的判别式.【分析】根据判别式的意义得到△=32﹣4×k>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4×k>0,解得k<.故选A.6.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将枝条混合在一起.游戏时叫儿童随意抽取一张,然后放入水罐中浸湿,即出现白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块塘的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共有10张质地均匀的纸条,能得到三块塘的纸条有3张,∴从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是;故选B.7.李阿姨是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成如图所示的统计图,在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.4,1.3C.1.4,1.35D.1.3,1.3【考点】众数;条形统计图;中位数.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第四组,7环,故众数是1.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是1.3(万步),故中位数是1.3(万步).故选B.8.在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径,如图,直角角尺,∠AOB=90°,将点O放在圆周上,分别确定OA、OB与圆的交点C、D,读得数据OC=8,OD=9,则此圆的直径约为()A.17B.14C.12D.10【考点】圆周角定理.【分析】连接CD,根据圆周角定理得到CD为圆的直径,根据勾股定理计算即可.【解答】解:连接CD,∵∠AOB=90°,∴CD为圆的直径,CD=≈12,故选:C.9.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为()A.300米B.150米C.900米D.米【考点】解直角三角形的应用﹣仰角俯角问题.【分析】由题意可得在Rt△ACD中,∠A=30°,CD=300米,在Rt△BCD中,∠B=45°,然后利用三角函数,求得AD与BD的长,继而求得答案.【解答】解:∵在Rt△ACD中,∠A=30°,CD=300米,∴AD===300(米),∵在Rt△BCD中,∠B=45°,CD=300米,∴BD=CD=300米,∴AB=AD+BD=米.故选D.10.如图,在等边三角形ABC中,AB=2,动点P从点A出发,沿三角形边界按顺时针方向匀速运动一周,点Q在线段AB上,且满足AQ+AP=2.设点P运动的时间为x,AQ的长为y,则y与x的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意可以得到各段y随x的变化如何变化,从而可以得到哪个选项比较符合y与x的函数图象.【解答】解:由题意可得,当点P从点A运动到C时,y随着x的增大而减小;当点P从点C到点B的过程中,y随x的增大先增大,再减小,y的最大值是2﹣;当点P从点C运动到点A的过程中,y随x的增大而增大;故选D.二、填空题(本题共18分,每小题3分)11.分解因式:ab3﹣4ab=ab(b+2)(b﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答】解:ab3﹣4ab,=ab(b2﹣4),=ab(b+2)(b﹣2).故答案为:ab(b+2)(b﹣2).12.在平面直角坐标系xOy中,将点(﹣2,3)绕原点O旋转180°,所得到的对应点的坐标为(2,﹣3).【考点】坐标与图形变化﹣旋转.【分析】利用关于原点中心对称的点的坐标特征求解.【解答】解:点(﹣2,3)绕原点O旋转180°,所得到的对应点的坐标为(2,﹣3).故答案为(2,﹣3).13.已知函数满足下列两个条件:①x>0时,y随x的增大而增大;②它的图象经过点(1,2).请写出一个符合上述条件的函数的表达式y=2x(答案不唯一).【考点】一次函数的性质;正比例函数的性质.【分析】根据y随着x的增大而增大推断出k与0的关系,再利用过点(1,2)来确定函数的解析式.【解答】解:∵y随着x的增大而,增大∴k>0.又∵直线过点(1,2),∴解析式为y=2x或y=x+1等.故答案为:y=2x(答案不唯一).14.已知⊙O,如图所示.(1)求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法);(2)若⊙O的半径为4,则它的内接正方形的边长为4.【考点】正多边形和圆;作图—复杂作图.【分析】(1)作出直径AC,再过点O作AC的垂线,进而得出答案;(2)利用正方形的性质结合勾股定理得出正方形ABCD的边长.【解答】解:(1)如图所示:正方形ABCD即为所求;(2)∵⊙O的半径为4,四边形ABCD是正方形,∴AC⊥BD,OA=OB=4,∴AB===4.故答案为:4.15.阅读下面材料:如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI 和正方形ODEF,且点I、F在OC上,点H、E在半圆上,求证:IG=FD.小云发现连接已知点得到两条线段,使可证明IG=FD.请回答:小云所作的两条线段分别是OH和DF,证明IG=FD的依据是等量代换.【考点】矩形的判定与性质;圆的认识.【分析】连接OH、OE,由矩形OGHI和正方形ODEF的性质得出IG=OH,OE=FD,由OH=OE,即可得出结论.【解答】解:连接OH、OE,如图所示:∵在矩形OGHI和正方形ODEF中,IG=OH,OE=FD,∵OH=OE,∴IG=FD;故答案为:OH、OE,等量代换.16.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是2,此时按游戏规则填写空格,所有可能出现的结果共有6种.【考点】规律型:数字的变化类.【分析】每一行从左到右、每一列从上到下分别依次增大,1、2、9只有一种填法,5只能填右上角或左下角,有2种方法,5之后与之相邻的空格可填6、7、8任意一个,有3种选择;余下的两个数字按从小到大只有一种方法,根据分步计数原理可得结果.【解答】解:根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程17.计算:2sin45°+||﹣(π﹣2016)0+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=2×+3﹣﹣1+9=11.18.已知a2﹣a﹣3=0,求代数式a(3a﹣2)﹣b2﹣(a+b)(a﹣b)的值.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,平方差公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=3a2﹣2a﹣b2﹣a2+b2=2a2﹣2a=2(a2﹣a),由a2﹣a﹣3=0,得到a2﹣a=3,则原式=6.19.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【考点】等腰三角形的性质;角平分线的性质.【分析】根据等腰三角形的性质得到BD=BC,AD⊥BC根据角平分线的判定定理即可得到结论..【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.20.解不等式组.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+2(1﹣2x)≥﹣4,得:x≤2,解不等式>x﹣1,得:x>﹣,故不等式组的解集为:﹣<x≤2.21.如图,在▱ABCD中,过点A作AE⊥DC交DC的延长线于点E过点D作DF⊥BA,交BA 的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.【考点】平行四边形的性质;勾股定理;矩形的判定与性质.【分析】(1)由四边形ABCD是平行四边形,AE⊥DC,DF⊥BA,易证得四边形AEDF是平行四边形,继而证得四边形AEDF是矩形;(2)由四边形AEDF是矩形,可得在Rt△AFD中,tan∠FAD==,继而求得BF的长,然后由勾股定理求得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AF∥ED,∵AE⊥DC,DF⊥BA,∴DF∥EA,∴四边形AEDF是平行四边形,∵AE⊥DE,∴∠E=90°,∴四边形AEDF是矩形;(2)如图,连接BD,∵四边形AEDF是矩形,∴FD=AE=2,∠F=90°,∵在Rt△AFD中,tan∠FAD==,∵AF=5,∴AB=2,∴BF=AB+AF=7,在Rt△BFD中,BD==.22.在平面直角坐标系xOy中,直线y=x+1与x轴交于点A,且与双曲线y=的一个交点为B(,m).(1)求点A的坐标和双曲线y=的表达式;(2)若BC∥y轴,且点C到直线y=x+1的距离为2,求点C的纵坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)令直线y=x+1中y=0,解关于x的一元一次方程即可得出A点的坐标,由点B在直线y=x+1上,可求出m的值,再将点B坐标代入双曲线y=中,解关于k的一元一次方程即可求出双曲线y=的表达式;(2)令直线y=x+1与y轴的交点为D,过点C作CE⊥直线y=x+1于点E,由BC∥y轴结合B点坐标即可找出直线BC的函数表达式,设C点的坐标为(,n),由平行线的性质可得出∠CBE=∠ADO,结合∠CEB=∠AOD=90°即可得出△BEC∽△DOA,根据相似三角形的性质可得出,由此即可得出关于n的函数绝对值符号的一元一次方程,解方程即可得出n值.【解答】解:令y=0,则有0=x+1,解得x=﹣,即点A的坐标为(﹣,0).令x=,则m=+1=3,即点B的坐标为(,3).将点B(,3)代入到双曲线y=中得3=,解得k=8,∴双曲线的表达式为y=.(2)依照题意画出图形,令直线y=x+1与y轴的交点为D,过点C作CE⊥直线y=x+1于点E,如图所示.∵BC∥y轴且点B的坐标为(,3),∴直线BC的表达式为x=,设点C的坐标为(,n).令y=x+1中x=0,则y=1,∴点D(0,1),∴AD==,OA=.∵BC∥y轴,∴∠CBE=∠ADO,∵∠CEB=∠AOD=90°,∴△BEC∽△DOA,∴.∵CE=2,BC=|n﹣3|,∴,解得:n=或n=.故点C的纵坐标为或.23.上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:1.如果选择住在乐园内,会比住在乐园外少用1天的时间就能体验完他们感兴趣的项目;2.一家三口住在乐园内的日均支出是在乐园外的日均支出的1.5倍;3.无论住在乐园内还是乐园外,一家三口这次旅行的总费用都是9810元.请问:如果小芳家选择住在乐园内,那么他们预计在迪士尼乐园游玩多少天?【考点】分式方程的应用.【分析】根据题意可以列出相应的分式方程,然后根据解分式方程的方法即可解答本题.【解答】解:设小芳家选择住在乐园内,预计在迪士尼乐园游玩x天,,解得,x=2,经检验,x=2是原分式方程的根,答:小芳家选择住在乐园内,那么他们预计在迪士尼乐园游玩2天.24.如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在上,连接DE,AE,连接CE并延长交AB于点F,∠AED=∠ACF.(1)求证:CF⊥AB;(2)若CD=4,CB=4,cos∠ACF=,求EF的长.【考点】垂径定理;勾股定理;解直角三角形.【分析】(1)连接BD,由AB是⊙O的直径,得到∠ADB=90°,根据余角的性质得到∠CFA=180°﹣(DAB+∠3)=90°,于是得到结论;(2)连接OE,由∠ADB=90°,得到∠CDB=180°﹣∠ADB=90°,根据勾股定理得到DB==8解直角三角形得到CD=4,根据勾股定理即可得到结论.【解答】解:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠1=90°,∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴∠DAB+∠3=90°,∴∠CFA=180°﹣(DAB+∠3)=90°,∴CF⊥AB;(2)连接OE,∵∠ADB=90°,∴∠CDB=180°﹣∠ADB=90°,∵在Rt△CDB中,CD=4,CB=4,∴DB==8,∵∠1=∠3,∴cos∠1=cos∠3==,∴AB=10,∴OA=OE=5,AD==6,∵CD=4,∴AC=AD+CD=10,∵CF=AC•cos∠3=8,∴AF==6,∴OF=AF﹣OA=1,∴EF==2.25.阅读下列材料:据报道,2014年北京市环境空气中PM2.5年平均浓度为85.9微克/立方米.PM2.5一级优天数达到93天,较2013年大幅度增加了22天,PM2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京缓解空气中PM2.5年均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题,市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM2.5一级优的天数增加了13天.2015年本市PM2.5重污染天数占全年总天数的11.5%,其中在11﹣12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天.根据以上材料解答下列问题:(1)2014年本市空气质量达标天数为172天;PM2.5年平均浓度的国家标准限值是35微克/立方米;(结果保留整数)(2)选择统计表或统计图,将2013﹣2015年PM2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11﹣12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天”,他由此推断“2015年全年的PM2.5重污染天数比2014年要多”你同意他的结论吗?并说明理由.【考点】统计图的选择;加权平均数.【分析】(1)根据:“2015年本市空气质量达标天数为186天,较2014年增加14天“可知2014年本市空气质量达标天数,根据:“2015年北京缓解空气中PM2.5年均浓度为80.6微克/立方米,约为国家标准限值的2.3倍“可知PM2.5年平均浓度的国家标准限值;(2)列统计表即可;(3)通过计算知2015年重污染天数约为42天,而2014年重污染天数为45天,故不同意.【解答】解:(1)2014年本市空气质量达标天数为186﹣14=172(天);PM2.5年平均浓度的国家标准限值是80.6÷2.3≈35(微克/立方米);(2)填表如下:年份2013年2014年2015年一级优天数7193106(3)不同意,因为通过计算2015年重污染天数约为42天,而2014年重污染天数为45天,所以2015年全年的PM2.5重污染天数比2014年少.故答案为:(1)172,35.26.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形,请探究筝形的性质和判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质时:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等.请将下面证明此猜想的过程补充完整:已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:∠B=∠C.由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线,结合图形,写出筝形的其他性质(一条即可):筝形的两条对角线互相垂直(3)筝形的定义是判定一个四边形为筝形的方法之一,试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是”是否成立?如果成立,请给出证明;如果不成立,请举出一个反例,画出图形,并加以证明.。
2016北京各区一模27题汇编及答案
2016北京各区中考数学一模27题汇编及答案延庆27. 已知:抛物线y=x²+bx+c 经过点A (2,-3)和B (4,5). (1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G 1,求图象G 1的表达式; (3)设B 点关于对称轴的对称点为E ,抛物线G 2:y =ax 2(a≠0) 与线段EB 恰有一个公共点,结合函数图象,求a 的取值范围怀柔27.在平面直角坐标系中,二次函数y=x 2+mx+2m-7的图象经过点(1,0). (1)求抛物线的表达式;(2)把-4<x<1时的函数图象记为H ,求此时函数的取值范围;(3)在(2)的条件下,将图象H 在x 轴下方的部分沿x 轴 翻折,图象H 的其余部分保持不变,得到一个新图象M .若直线y=x+b 与图象M 有三个公共点,求b 的取值范围.丰台27. 已知抛物线21(2)262y x m x m =+-+-的对称轴为直线x =1,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求m 的值;(2)求A ,B ,C 三点的坐标;(3)过点C 作直线l ∥x 轴,将该抛物线在y 轴左侧的部分沿直线l 翻折,抛物线的其yxyO余部分保持不变,得到一个新的图象,记为G当直线b x y +21=与图象G 只有一个公共点时,求b门头沟27.已知关于x 的一元二次方程mx 2+(3m +1)x +3=0. (1)求证该方程有两个实数根;(2)如果抛物线y =mx 2+(3m +1)x +3与x 轴交于A 、B两个整数点(点A 在点B 左侧),且m 为正整数, 求此抛物线的表达式;(3)在(2)的条件下,抛物线y =mx 2+(3m +1)x +3与y 轴交于点C ,点B 关于y 轴的对称点为D ,设此抛物线在-3≤x ≤12-之间的部分为图象G ,如果图象G 向右平移n (n >0)个单位长度后与直线CD 有公共点,求n 的取值范围.石景山27.在平面直角坐标系xOy 中,抛物线C :142++=x mx y . (1)当抛物线C 经过点()5,6-A 时,求抛物线的表达式及顶点坐标; (2)当直线1+-=x y 与直线3+=x y 关于抛物线C 的对称轴对称时,求m 的值;(3)若抛物线C :142++=x mx y )0(>m 与x 轴的交点的横坐标都在1-和0之间(不包括1-和0),结合函数的图象,求m海淀27.在平面直角坐标系中,抛物线(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标;(2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含 C ,D 两点).若过点A 的直线 与图象G 有两个交点,结合函数的图象,求k 的取值范围.西城27.在平面直角坐标系xOy 中,抛物线21C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,. (1)求抛物线1C 的表达式;(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE V 的面积为214. ①求m 的值;②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴只有一个公共点,结合函数的图象,求n 的取值范围.xOy 224y mxmx m =-+-+(0)y kx b k =≠平谷27.已知:直线l :2y x =+与过点(0,﹣2),且与平行于x 轴的直线交于点A ,点A 关于直线1x =-的对称点为点B .(1)求,A B 两点的坐标; (2)若抛物线2y x bx c =-++经过A ,B 两点,求抛物线解析式;(3)若抛物线2y x bx c =-++的顶点在直线l 上移动,当抛物线与线段AB 有一个公共点时,求抛物线顶点横坐标t 的取值范围.通州27.已知二次函数2y x mx n =++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C . (1)求二次函数的表达式及顶点坐标;(2)将二次函数2y xmx n =++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G . 已知直线l :y kx b =+经过点M (2,3),且直线l 总位于图象G 的上方,请直接写出b 的取值范围;(3)如果点()1,P x c 和点()2,Q x c 在函数2y x mx n =++的图象上,且12x x <,2PQ a =. 求21261x ax a -++的值;朝阳25.(本小题6分)在平面直角坐标系中,已知抛物线22y x mx =-与x 轴的一个交点为A (4,0). (1)求抛物线的表达式及顶点B 的坐标; (2)将05x ≤≤时函数的图象记为G ,点P 为G 上一动点,求P 点纵坐标n 的取值范围; (3)在(2)的条件下,若经过点C (4,-4)的直线()0y kx b k =+≠与图象G 有两个公共点,结合图象直接写出b 的取值范围.东城27.已知关于x 的一元二次方程mx 2+(3m +1)x +3=0.(1)当m 取何值时,此方程有两个不相等的实数根;(2)当抛物线y =mx 2+(3m +1)x +3与x 轴两个交点的横坐标均为整数,且m 为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象直接写出实数a 的取值范围.顺义27.在平面直角坐标系xOy 中,抛物线x ax 2y 2-=的对称轴x = - 1 . (1)求a 的值及x ax 2y 2-=与x 轴的交点坐标;(2)若抛物线m 2y 2+-=x ax 与x 轴有交点,且交点都在点A (-4 ,0),B (1,0)之间,求m 的取值范围.燕山27.抛物线1C :)3)(1(a x x a y -+=(0>a )与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C (0,-3).(1) 求抛物线1C 的解析式及A ,B 点坐标;(2) 将抛物线1C 向上平移3个单位长度,再向左平移n (0n >)个单位长度,得到抛物线2C .若抛物线2C 的顶点在△ABC 内,求n 的取值范围.yx11O房山27. 如图,二次函数c bx x ++-=2y 的图象(抛物线)与x 轴交于A(1,0), 且当0x =和2x -=时所对应的函数值相等. (1)求此二次函数的表达式;(2)设抛物线与x 轴的另一交点为点B ,与y 轴交于点C ,在这条抛物线的对称轴上是否存在点D ,使得△DAC 的周长最小?如果存在,求出D 点的坐标;如果不存在,请说明理由.(3)设点M 在第二象限,且在抛物线上,如果△MBC 的面积最大,求此时点M 的坐标及△MBC 的面积.答案延庆27.解:(1)把A (2,-3)和B (4,5)分别代入y=x²+bx+c 得:3425164b c b c -=++⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩,∴抛物线的表达式为:y=x²-2x-3. …………………………………2分.∵y=x²-2x-3=(x-1)2-4.∴顶点坐标为(1,-4). …………………………………3分.(2)∵将抛物线沿x 轴翻折,得到图像G 1与原抛物线图形关于x 轴对称,∴图像G 1的表达式为:y=-x²+2x +3. ………………………5分. (3)∵B (4,5),对称轴:X=1∴B 点关于对称轴的对称点E 点坐标为(-2,5)………………………6分如图,当G 2过E 、B 点时为临界代入E (-2,5),则a=45代入B (4,5),则a=165∴45a 165〈≤………………………7分 怀柔 27.解:(1)将(1,0)代入,得m=2.∴抛物线的表达式为y=x 2+2x-3. ………………………1分(2)抛物线y=x 2+2x-3开口向上,且在-4<x<1范围内有最低点,∴当x=-1时,y 有最小值为-4. …………………………2分当x=-4时,............... ........ ...............................3分∴的取值范围是-4≤y<5.………............. .................…4分(3)当直线y=x+b 经过(-3,0)时,b=3. ...............................5分变换后抛物线的表达式为y=-x 2-2x+3.联立可得:-x 2-2x+3=x+b,令判别式为零可得b=......................................................6分由图象可知,5y =y 421b 的取值范围是 :3<b<.…................................. .....….7分丰台27. 解:(1)∵抛物线的对称轴为直线1x =, ∴21m -+=.∴1m =. ----------------- 1分(2)令0y =, ∴2140.2x x --=解得122, 4.x x =-= ∴(2,0),(4,0).A B - 令0x =,则 4.y =-∴(0,4).C - ----------------- 4分 (3)由图可知,①当直线过(0,4)C -时, 4.b =- ∴ 4.b >- ----------------- 5分 ②当直线与抛物线只有一个交点时, ∴2114.22x x x b --=+ 整理得23820.x x b ---=∵94(82)0,b =++=V∴41.8b =- ∴41.8b <------------------ 6分 结合函数图象可知,b 的取值范围为4>-b 或418<-b .------------------- 7分门头沟27.(本小题满分7分)(1)证明:∵ △= (3m +1)2-4×m ×3,=(3m -1)2. ……………………………………………………………1分∵ (3m -1)2≥0, ∴ △≥0,∴ 原方程有两个实数根.………………………………………………2分 (2)解:令y =0,那么 mx 2+(3m +1)x +3=0.421xO 12345–7–6–5–4–3–2–112345解得 13x =-,21x m=-. …………………………………………………3分 ∵抛物线与x 轴交于两个不同的整数点,且m 为正整数, ∴m =1.∴抛物线的表达式为243y x x =++.…………………………………………4分 (3)解:∵当x =0时,y =3,∴C (0,3).∵当y =0时,x 1=-3,x 2=-1. 又∵点A 在点B 左侧, ∴A (-3,0),B (-1,0).∵点D 与点B 关于y 轴对称,∴D (1,0). 设直线CD 的表达式为y =kx +b . ∴03k b b ⎧+=⎪⎨=⎪⎩, 解得33.k b =-⎧⎨=⎩,∴直线CD 的表达式为y =-3x +3. …………………………………………5分 又∵当12x =-时,211543224y ⎛⎫⎛⎫=-+⨯-+= ⎪ ⎪⎝⎭⎝⎭. ∴A (-3,0),E (12-,54), ∴平移后,点A ,E 的对应点分别为A'(-3+n ,0),E'(12n -+,54). 当直线y =-3x +3过点A'(-3+n ,0)时, ∴-3(-3+n )+3=0, ∴n =4.当直线y =-3x +3过点E'(12n -+,54)时,∴153324n ⎛⎫--++= ⎪⎝⎭, ∴n =1312. ∴n 的取值范围是1312≤n ≤4. ………………………………………………7分 石景山27.解:(1)∵抛物线:经过点 ∴∴ ……………………………1分 ∴∴∴抛物线的顶点坐标是.……………………3分 (2)∵直线与直线相交于点 ∴两直线的对称轴为直线 .……………………4分∵直线与直线关于抛物线:C 142++=x mx y ()65-,A 120256+-=m 1=m 142++=x x y ()322-+=x y ()3,2--1y x =-+3y x =+()2,1-1x =-1y x =-+3y x =+C 142++=x mx y的对称轴对称∴ ∴.………………………………5分 (3) . …………………………………………7分海淀27. 解:(1).∴ 点的坐标为. ………………………2分 (2)①由(1)得,抛物线的对称轴为x =1.∵ 抛物线与轴交于,两点(点B 在点C 左侧),BC =4,∴ 点的坐标为 ,点的坐标为 .………………………3分 ∴ . ∴ .∴ 抛物线的解析式为.……4分 ② 由①可得点的坐标为 .当直线过点,时,解得.………5分 当直线过点,时,解得. ………6分 结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分124-=-m2=m 43≤<m 224y mx mx m =-+-2(21)4m x x =-+-2(1)4m x =--A (1,4)-x B C B (1,0)-C (3,0)240m m m ++-=1m =223y x x =--D (0,3)-A D 1k =-A C 2k=平谷27.解:(1) 由题可知A 点的纵坐标为2-,点A 在直线l 上,∴()4,2A --.……………………………………………………………………1 由对称性可知()2,2B -.…………………………………………………………2 (2) 抛物线2y x bx c =-++过点,A B ,∴1642422b c b c --+=-⎧⎨-++=-⎩解得26b c =-⎧⎨=⎩∴抛物线解析式为226y x x =--+……………………………………………4 (3) 抛物线2y x bx c =-++顶点在直线l 上由题可知,抛物线顶点坐标为(),2t t +……………………………………………5 ∴抛物线解析式可化为()22y x t t =--++. 把()4,2A --代入解析式可得()2242t t -=---++解得123,4t t =-=-.∴43t -≤<-.………………………………………………………………………6 把()2,2B -代入解析式可得()2222t t --++=-.解得340,5t t ==∴05<≤t .综上可知t 的取值范围时43t -≤<-或05<≤t . (7)通州27. 解:(1)根据题意得:1413m n m n +=-⎧⎨+=-⎩解得:43m n =-⎧⎨=⎩二次函数的表达式为243y x x =-+. ………………… 2分;顶点坐标为(2,-1) ………………… 3分;(2)39b <<. ………………… 5分; (3)∵()1,P x c 和点()2,Q x c 在函数243y x x =-+的图象上,∴PQ ∥x 轴,∵二次函数243y x x =-+的对称轴是直线2x =,又∵12x x <,2PQ a =.∴12x a =-,22x a =+. ………………… 6分;∴()()2212612261x ax a a a a a -++=--+++ =5.朝阳 25.解:(1)∵A (4,0)在抛物线22y x mx =-上,∴1680m -=.解得 2m =.∴24y x x =-. …………………………………………………1分 即 ()224y x =--.∴顶点坐标为()2,4B -. ……………………………………………2分(2)当2x =时,y 有最小值–4;当5x =时,y 有最大值5.∴点P 纵坐标的n 的取值范围是45n -≤≤. ……………………………4分 (3)40b -<≤. …………………………………………………………………6分………………… 7分东城27.解:(1)由题意可知,2224(31)43(31)0b ac m m m ∆=-=+-⨯=->,∴当13m ≠且0m ≠时,此方程有两个不相等的实数根. …………2分(2)2b x a -==∴1213,x x m=-=-. ∵抛物线与x 轴两个交点的横坐标均为整数,且m 为正整数, ∴m =1.∴ 抛物线的解析式为243y x x =++. …………5分 (3)a >1或a <-5. …………7分顺义27.解:(1)抛物线的对称轴2112x a a-=-==--,∴1a =-即抛物线解析式²2y x x =--,∴与x 轴交点坐标为(0,0),(2,0)-; (2)-1≤m <3;;燕山27.解:(1) ∵抛物线)3)(1(a x x a y -+=与y 轴交于点C (0,-3),∴3)30)(10(-=-+a a ,∴332-=-a , 12=a ,∴1±=a . ∵0>a ,∴1=a .∴抛物线1C 的解析式为)3)(1(-+=x x y =322--x x . ………………1分 在)3)(1(-+=x x y 中,令0=y ,得1-=x ,或3=x ,∴A (-1,0),B (3,0). ………………………3分 (2) ∵322--=x x y =4)1(2--x ,∴抛物线1C 的顶点坐标为(1,-4). ………………………4分 将抛物线1C 向上平移3个单位长度后,得1)1(2--=x y ,其顶点为(1,-1) 在△ABC 内, ………………………5分 再向左平移n (0n >)个单位长度,要想仍在△ABC 内,则顶点需在直线AC 的右侧.设直线AC 的解析式为b x k y +=,∵A (-1,0),C (0,-3),∴⎩⎨⎧+⋅-+⋅,=,=-b k b k 0310 解得⎩⎨⎧-,=,=-33b k∴直线AC 的解析式为33-=x y -, ………………………6分当1-=y 时,32-=x .∴35)32(1=<--n . ∴n 的取值范围是350<<n . ………………………7分房山27.解:(1)∵二次函数c bx x ++-=2y , 当0x =和2x -=时所对应的函数值相等,∴二次函数c bx x ++-=2y 的图象的对称轴是直线1-=x . ∵二次函数c bx x ++-=2y 的图象经过点A (1,0),∴⎪⎩⎪⎨⎧-=++-=1210bc b ----------------------1分解得⎩⎨⎧=-=32c b ∴二次函数的表达式为:32y 2+--=x x . --------------------2分 (2)存在由题知A 、B 两点关于抛物线的对称轴x=﹣1对称∴连接BC ,与x=﹣1的交于点 D ,此时△DAC 周长最小 --------------3分 ∵32y 2+--=x x∴C 的坐标为:(0,3)直线BC 解析式为:y=x+3 --------------------4分 ∴D (﹣1,2); ---------- 5分 (3) 设M 点(x ,322+--x x )(﹣3<x <0) 作过点M 作M E ⊥x 轴于点E ,则E(x,0) ∵S △MBC =S 四边形BMCO ﹣S △BOC =S 四边形BMCO ﹣29, S 四边形BMCO =S △BME +S 四边形MEOC)(2121OC ME OE ME BE +⨯⨯+⨯⨯= =21(x+3)(322+--x x )+21(﹣x )(322+--x x +3) =8272923232++⎪⎭⎫ ⎝⎛+-x∵要使△MBC 的面积最大,就要使四边形BMCO 面积最大 当x=23-时,四边形BMCO 在最大面积=82729+ ∴△BMC 最大面积=8272982729=-+ --------------------------------6分当x=23-时,32y 2+--=x x =415 ∴点M 坐标为(23-,415) --------------------------------7分。
北京市各区2016年中考数学一模汇编平面几何初步
北京市2016年各区中考一模汇编平面几何初步一、平面几何之对称性1.【2016平谷一模,第05题】根据《北京日报》报道,到2017年年底,55公里长的长安街及延长线的市政设施、道路及附属设施等,将全部实现“中国风”设计风格.在下列设计图中,轴对称图形的个数为A.1个 B.2个 C.3个D.4个2.【2016朝阳一模,第04题】下列图形选自历届世博会会徽,其中是轴对称图形的是A B C D3.【2016海淀一模,第04题】下列图形中,是轴对称图形但不是中心对称图形的是A. B. C. D.4.【2016通州一模,第04题】下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是A.B.二、平面几何之角度5.【2016东城一模,第05题】如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=A .52°B .38°C .42°D .62°6.【2016丰台一模,第05题】如图,直线AB ∥CD ,BE 平分∠ABC ,交CD 于点D , ∠CDB =30°,那么∠C 的度数为 A. 150° B. 130°C. 120°D. 100°7.【2016丰台一模,第12题】重合,则∠1=°.8.【2016平谷一模,第04题】如图,直线a // b ,△ABC 为等腰直角三角形,∠则∠1的度数为A .90°B .60°C .45°D .30°9.【2016东城一模,第13题】已知一个正多边形的每个外角都等于7210.【2016西城一模,第03题】如图,直线CD AB //,直线EF 分别与AB ,CD 交于点E ,F ,FP EF ⊥,且与BEF ∠的平分线交于P ,若120∠=︒,则2∠的度数是()A .35°B .30°C .25°D .20°DA BCE详细解答1. B2. B3. C4. D5. A6. C7.488. C9. 510.A。
北京市东城区2016年初三一模数学试卷及答案
东城区2016年初三数学一模试卷2016.5F面各题均有四个选项,其中只有一个..是符合题意的.1 .数据显示,2015年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果•将数据51 660 000用科学记数发表示应为()7 8A. 5.166 10B. 5.166 106 8C. 51.66 10D. 0.5166 10A. xx3 *=x3B. (x2)3=x5 6 2 4C. x x xD. (x_y)2=x2+y21 ,2 , 3, 4, 5,现把它们的正4 .甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙方差0.030 0.019 丙0.121则这四人中发挥最稳定的是()B.乙丁0.022D. 丁5.如图,将一块三角板的直角顶点放在直尺的一边上,当/A . 52 °B . 38 °C . 42 °6 .如图,有一池塘,要测池塘两端 A , B 间的距离,可先在平地上取一个不经过池塘可以直接到达点 A 和B 的点C ,连接AC 并延长至D ,使CD = CA ,连接BC 延长至E ,使CE =CB ,连接ED .若量出DE =58米,则A , B 间的距离为( B . 58 米 D . 116 米7 .在平面直角坐标系中,将点A (-1 , 2 )向右平移 的坐标是( )A . ( -4 , -2 )B . ( 2 , 2)C . 8. 对式子2a 2 4a 1进行配方变形,正确的是(223 A . 2(a 1) 3 B . (a 1)- C 93个单位长度得到点 B ,则点B 关于x 轴的对称点C(-2 , 2) D . ( 2, -2 ))2 22(a 1) 1 D . 2(a 1) 3个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过.200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是( ) A . 5B . 6C . 7D . 8如图,已知△ ABC , AB<BC ,用尺规作图的方 法在BC 上取一点P ,使得PA+PC=BC.A . 29 米 C . 60 米10. 如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使/BAC=90设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )15 •《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架•它的代数成就主要包括 开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数•甲得乙半而钱五十,乙得甲太半而钱亦五十•问 甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱•若乙把自己一半的钱给甲,则甲的钱数为 50 ; 而2甲把自己—的钱给乙,则乙的钱数也能为50 •问甲、乙各有多少钱?”3设甲持钱为x ,乙持钱为y ,可列方程组为 ____________ 16 .阅读下面材料: 在数学课上,老师提出如下问题:11 . 12 . 13. 是_14. 分解因式:ab 2 ac 2=请你写出一个一次函数,满足条件:O 1经过第一、三、四象限;O 2与y次函数的解析式可以是 ______________________ . 已知一个正多边形的每个外角都等于 72。
北京市大兴区2016年中考一模数学试题(含答案)
北京大兴区2016年初三检测试题数 学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.北京新国际机场采用“海星”设计方案,航站楼主体与五座向外伸展的指廊总建筑面积为1 030000平方米,将1 030 000用科学记数法表示应为A .103×104B .10.3×105C .1. 03×105D .1.03×1062. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是A . a B. b C. c D. d 3.下列各图中,是中心对称图形的为A B C D 4.若正多边形的一个内角是120°,则这个正多边形的边数为A .8B .7C .6D .5 5.如图,AB CD ∥,56B =∠,22E =∠,则D ∠的度数为 A .22° B .34° C .56° D .78°6. 某班派9名同学参加红五月歌咏比赛,他们的身高分别是(单位:厘米): 167,159,161,159,163,157,170,159,165这组数据的众数和中位数分别是 A.159,163 B .157,161 C.159,159D.159,1617.把多项式32x xy-分解因式,下列结果正确的是A .2()x x y + 、B . 2()x x y - C .()()x x y x y -+D .22()x x y -8.如图,AB 是⊙O 直径,弦CD ⊥AB 于点E .若CD =6,OE =4,则⊙O 的直径为 A . 5 B . 6 C .8 D . 109. 如图,若在象棋盘上建立直角坐标系xOy ,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“炮”位于点A. (-2,-1)B.(0,0)C. (1,-2)D.(-1,1)10.在五边形ABCDE 中,90B =o∠,AB = BC = CD =1,AB CD ∥,M 是CD 边的中点,点P 由点A 出发,按A →B →C →M 的顺序运动.设点P 经过的路程x 为自变量,∆APM 的面积为y ,则函数y 的大致图象是二、填空题(本题共18分,每小题3分)11.若2(2)0m += 则m n -= .12.半径为6cm ,圆心角为40°的扇形的面积为 cm 2.13. 将函数y =x 2 −2x + 4化为()2y a x h k =-+的形式为 .14.一个不透明的盒子中装有2个白球,5个红球和3个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为 .15. ΔABC 中,AB =AC ,30=o∠A ,以B 为圆心,BC 长为半径画弧,分别交AC ,AB 于D ,E 两点,并连结BD ,DE . 则∠BDE 的度数为 . “今有竹高一丈,未折抵地,去根三尺,问折者高几何?”译文:有一根三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 0211)()4sin 452-+-︒.18. 已知a 是一元二次方程2320x x +-=的实数根,求代数式235222a a a a a -⎛⎫÷+- ⎪--⎝⎭的值.19. 解不等式2151132x x -+-≥,并把它的解集在数轴上表示出来.20. 已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 相交于点F .求证:BF AC =.21. 列方程或方程组解应用题:某校师生开展读书活动. 九年级一班和九年级二班的学生向学校图书馆借课外读物共196本,一班每位学生借3本,二班每位学生借2本,一班借的课外读物数量比二班借的课外读物数量多44本,求九年级一班和二班各有学生多少人? 22.在□ABCD 中,过点D 作对DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连结AF ,BF .(1)求证:四边形BFDE 是矩形.(2)若CF =6,BF =8,DF =10,求证:AF 是∠DAB 的角平分线.23. 已知:如图,一次函数3y x m =+与反比例函数y x=的图象 在第一象限的交点为(1)A n ,.(1)求m 与n 的值;(2)设一次函数的图象与x 轴交于点B ,连结OA ,求sin ∠BAO 的度数.24. 如图,已知AB 是⊙O 的直径,点H 在⊙O 上,连结AH , E 是 »HB的中 点,过点E 作EC ⊥AH ,交AH 的延长线于点C .连结AE ,过点E 作EF ⊥AB 于点F .(1)求证:CE 是⊙O 的切线;(2)若FB=2, tan ∠CAE =22,求OF 的长.25.为了更好地贯彻落实国家关于“强化体育课和课外锻炼,促进青少年身心健康、体魄强健”的精神,某校大力开展体育活动.该校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:(1)求该班学生人数; (2)请你补全条形图;(3)求跳绳人数所占扇形圆心角的度数.26.研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定方法. 我们给出如下定义:如图,四边形ABCD 中,AB AD =,CB CD =像这样 两组邻边分别相等的四边形叫做 “筝形”;(1)小文认为菱形是特殊的“筝形”,你认为他的判断正确吗?(2)小文根据学习几何图形的经验,通过观察、实验、归纳、类比、猜想、证明等方法,对AB ≠BC 的“筝形”的性质和判定方法进行了探究.下面是小文探究的过程,请补充完成:① 他首先发现了这类“筝形”有一组对角相等,并进行了证明,请你完成小文的证明过程.已知:如图,在”筝形”ABC D 中,AB AD =,CB CD = 求证:∠ABC=∠ADC. 证明:② 小文由①得到了这类“筝形”角的性质,他进一步探究发现这类“筝形”还具有其它性质,请再写出这类“筝形”的一条性质 (除“筝形”的定义外);27.抛物线21(3)3(0)y mx m x m=+--与x 轴交于A 、B 两点,且点A 在点B 的左侧,与y 轴交于点C ,OB=OC .(1)求这条抛物线的表达式;(2)将抛物线y 1向左平移n (n >0)个单位, 记平移后y 随着x 的增大而增大的部分为P , 若点C 在直线23=-+y x t 上,直线2y 向下平移n 个单位,当平移后的直线 与P 有公共点时,求n 的取值范围.28.已知正方形ABCD,E为平面内任意一点,连结DE,将线段DE绕点D顺时针旋转90°得到DG,连结EC,AG.(1)当点E在正方形ABCD内部时,①依题意补全图形;②判断AG与CE的数量关系与位置关系并写出证明思路.(2)当点B, D, G在一条直线时,若AD=4,求CE的长.29. 设在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值和它对应,那么就说y 是x 的函数,记作()=y f x .在函数()=y f x 中,当自变量=x a 时,相应的函数值y 可以表示为()f a .例如:函数2()23=--f x x x ,当4=x 时,2(4)42435=-⨯-=f 在平面直角坐标系xOy 中,对于函数的零点给出如下定义:如果函数()=y f x 在≤≤a x b 的范围内对应的图象是一条连续不断的曲线,并且().()0f a f b ,那么函数()=y f x 在≤≤a x b 的范围内有零点,即存在c (≤≤a c b ),使()f c =0,则c 叫做这个函数的零点,c 也是方程()0=f x 在≤≤a x b 范围内的根.例如:二次函数2()23=--f x x x 的图象如图所示 观察可知:(2)0-f ,(1)0,f 则(2).(1)0-f f .所以函数2()23=--f x x x 在21-≤≤x 范围内有零点. 由于(1)0-=f ,所以,1-是2()23=--f x x x 的零点,1-也是方程2230--=x x 的根.(1) 观察函数1()=y f x 的图象,回答下列问题: ①()().f a f b ______0(“<”“>”或“=”)②在≤≤a x b 范围内1()=y f x 的零点的个数是 _____.(2)已知函数222()1)2)==----y f x a x a a 的零点为1x ,2x且121x x .①求零点为1x ,2x (用a 表示);②在平面直角坐标xOy 中,在x 轴上A, B 两点表示的数是零点1x ,2x ,点 P 为线段AB 上的一个动点(P 点与A 、B 两点不重合),在x 轴上方作等边△APM 和等边△BPN ,记线段MN 的中点为Q ,若a 是整数,求抛物线2y 的表达式并直接写出线段PQ 长的取值范围.北京市大兴区2016年初三检测试题数学参考答案及评分标准一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=14+- 4分 = 3. ……………………………………………….……………………………5分18. 解: 原式=⎥⎦⎤⎢⎣⎡----+÷--252)2)(2()2(3a a a a a a a ………………………………………2分=29)2(32--÷--a a a a a=)3)(3(2)2(3-+-⨯--a a a a a a …………………………………………………………3分=aa a a 31)3(12+=+………………………………………………………………4分∵ a 是方程2320x x +-=的实数根,∴ 232a a += ∴ 原式=2131)3(12=+=+a a a a …………………………………………… 5分19. 解:2(21)3(51)6x x --+≥ ……………………………………………………1分421536x x ---≥ ……………………………………………………… 2分1111x -≥ …………………………………………………………………… 3分1x ≤- ……………………………………………………………………… 4分所以,此不等式的解集为1x ≤- ,在数轴上表示如图所示…………………… 5分20. 证明: ∵ CD AB ⊥∴ 90BDC CDA ∠=∠=︒ ……………………1分∵ 45ABC ∠=︒∴ 45DCB ABC ∠=∠=︒∴ DB DC = ………………………………2分 ∵ BE AC ⊥ ∴ 90AEB ∠=︒∴ 90A ABE ∠+∠=︒ ∵ 90CDA ∠=︒∴ 90A ACD ∠+∠=︒∴ ABE ACD ∠=∠ ………………………3分 在BDF ∆和CDA ∆中BDC CDA DB DCABE ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BDF ∆≌CDA ∆ …………………………4分 ∴BF AC = ………………………………… 5分21. 解:设九年级一班有x 名学生,二班有y 名学生. …………………………1分 根据题意列方程组,得321963244x y x y +=⎧⎨-=⎩………………………………………………… 3分解此方程组,得 4038x y =⎧⎨=⎩答:九年级一班有40名学生,二班有38名学生. …………………………… 5分22.证明:(1)在ABCD 中,AB ∥CD ,AB=CD∵C F=AE , ∴BE=DF.∴四边形BFDE 为平行四边形. …………………2分 ∵DE ⊥AB , ∴∠DEB = 90° .∴四边形BFDE 是矩形. ……………………… 3分 (2)由(1)可得,∠BFC = 90°.在Rt △BFC 中,由勾股定理可得BC =10. ∴ AD=BC =10 . ∵DF =10∴ AD=DF . ……………………………………4分 ∴∠DAF =∠DF A . ∵ AB ∥CD ,∴∠DF A =∠F AB . ∴∠DAF =∠F AB .∴ AF 平分∠DAB .即AF 是∠DAB 的平分线 ……………………… 5分23.解:(1)∵点(1,)A n 在双曲线y x=上,∴n =………………………………………………………1分又∵A 在直线3y x m =+上,∴ 3m =.……………………………………………………2分 (2)过点A 作AM ⊥x 轴于点M . ∵ 直线33233+=x y 与x 轴交于点B ,∴0x =. 解得 2x =-. ∴ 点B 的坐标为-20(,). ∴ 2=OB .………………………………………………………3分∵点A 的坐标为, ∴1,3==OM AM .在Rt △AOM 中,︒=∠90AMO , ∴tan 3==∠OMAMAOM . ∴︒=∠60AOM .……………………………………………… 4分 由勾股定理,得 2=OA . ∴.OA OB = ∴BAO OBA ∠=∠. ∴︒=∠=∠3021AOM BAO .∴sin 21=∠BAO . ……………………………………………5分 24.(1)证明:连结OE .………………………………1分 ∵ 点E为 的中点,∴ ∠1=∠2. ∵ OE =OA ,∴ ∠3=∠2. ∴ ∠3=∠1. ∴ OE ∥AC , ∴∠OEC +∠C=180°. ∵ AC ⊥CE , ∴∠C=90°, ∴∠OEC=90°,∴ OE ⊥CE . ………………………………………… 2分 ∵ 点E 在⊙O 上,∴ CE 是⊙O 的切线. ……………………………… 3分 (2)解:连结EB . ∵ AB 是⊙O 的直径, ∴ ∠AEB =90°. ∵ EF ⊥AB 于点F , ∴ ∠AFE =∠EFB =90°.∴ ∠2+∠AEF =∠4+∠AEF =90°. ∴ ∠2=∠4=∠1. ∵ tan ∠CAE =22, ∴ tan ∠4 =22. 在R t △EFB 中,∠EFB =90°,FB=2, tan ∠4 =22, ∴ EF =…………………………………………… 4分设 OE =x ,则OB= x . ∵ FB=2, ∴ OF =x -2.∵ 在Rt △OEF 中,∠EFO =90°, ∴ x 2=(x -2)2+(2. ∴ x =3(负值舍去).∴ OF =1. ……………………………………………… 5分HBA25.解:(1)由扇形图可知,乒乓球小组人数占全班人数的14. 由条形图可知,乒乓球小组人数为12. 故全班人数为112484÷=.………………………………………………… 1分 (2)3分 (3)因为跳绳小组人数占全班人数的486=, 所以,它所占扇形圆心角的大小为1360606⨯=°°.………………5分26.证明:(1)正确 ………………………………………………………………………… 1分(2) ①连结BD ,在△ABD 和△BCD 中, ∵AB=AD, BC=CD ∴∠ABD=∠ADB ∠DBC=∠BDC∴∠ABC=∠ADC ……………………………………………………………………… 3分 ② “筝形”有一条对角线平分一组对角(答案不唯一) …………………………… 4分 ③有一条对角线垂直平分另一条对角线的四边形是筝形(答案不唯一)………5分27.解:(1)∵抛物线)0(3)3(21>--+=m x m mx y 与y 轴交于点C ,∴(0,3)C -. ……………………………………………………………………………1分 ∵抛物线与x 轴交于A 、B 两点,OB=OC ,∴B (3,0)或B (-3,0).∵点A 在点B 的左侧,0m >,∴抛物线经过点B (3,0). …………………………………………………………… 2分 ∴093(3)3m m =+--. ∴1m =.∴抛物线的表达式为2123y x x =--. ……………………………………………3分(2)y 1=x 2﹣2x ﹣3=(x ﹣1)2﹣4,y 2=﹣3x ﹣3,y 1向左平移n 个单位后,则表达式为:y 3=(x ﹣1+n )2﹣4,则当x ≥1﹣n 时,y 随x 增大而增大,…………………………………………………… 4分 y 2向下平移n 个单位后,则表达式为:y 4=﹣3x ﹣3﹣n ,要使平移后直线与P 有公共点,则当x =1﹣n ,y 3≤y 4,………………………………… 5分即(1﹣n ﹣1+n )2﹣4≤﹣3(1﹣n )﹣3﹣n ,解得:n ≥1,………………………………………………………………………………… 7分28.证明:(1) ①………………………………………………………………1分 ②AG CE =,CE AG ⊥.…………………………………… 2分 证明思路如下:由正方形ABCD ,可得AD=CD ,∠ADC=90°, 由DE 绕着点D 顺时针旋转90°得DG , 可得∠GDE =∠90ADC =︒,GD=DE 故有∠GDA =∠EDC . 可证△AGD ≌△CED可得AG CE =.………………………………………………3分延长CE 分别交AG 、AD 于点F 、H,由△AGD ≌△CED ,可得∠GAD =∠ECD 又因为∠AHF =∠CHD 可得∠AFH =∠HDC= 90︒即可证得.AG CH ⊥…………………………………………4分(2) 当点G 在线段BD 的延长线上时,如图1所示.过G 作GM AD ⊥于M . ∵ BD 是正方形ABCD 的对角线, ∴ 45ADB GDM ∠=∠=︒. ∵ GM AD ⊥,DG∴MD=MG=1在Rt △AMG 中 ,由勾股定理,得AG图1∴ CE =AG……………………………………………6分当点G 在线段BD 上时,如图2所示. 过G 作GM ⊥AD 于M .∵ BD 是正方形ABCD 的对角线, ∴∠ADG =45° ∵ GM AD ⊥,DG∴ MD =MG =1在Rt △AMG 中 ,由勾股定理,得 10132222=+=+=MG AM AG∴ CE =AG =10故CE…………………………………… 7分29.(1)①< ;………………………………………………… 1分②1个 ………………………………………………… 2分(2)①∵ x 1、x 2是零点∴令221)2)0a x a a ---=. 方程可化简为 222(1)(2)0x a x a a +-+-=. 解方程,得x a =- 或2x a =-+. ∵ x 1 < x 2 ,2a a -<-+,∴ 1x a =- ,22x a =-+.………………………… 4分 ②∵ x 1 < 1 < x 2 ,∴ 12a a -<<-+.∴ 11a -<<.∵ a 是整数,∴ a = 0 ,所求抛物线的表达式为x x y 32322+-=. …………………………5分线段PQ 的长的取值范围为:≤PQ <1. (8)图2。
(完整word版)2016年北京中考数学试卷和参考答案
2016年北京市高级中等学校招生考试数学试卷学校 姓名 准考证号 考生须知1. 本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟.2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3. 试题答案一律填涂在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束后,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。
1. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 (A ) 45° (B ) 55° (C ) 125° (D ) 135°2。
神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里.将28 000用科学计数法表示应为 (A )(B ) 28 (C ) (D )3. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A ) a (B ) (C ) (D )4。
内角和为540的多边形是5. 右图是某个几何体的三视图,该几何体是BAO(A)圆锥(B)三棱锥(C) 圆柱 (D)三棱柱6。
如果,那么代数的值是(A) 2 (B)-2 (C)(D)7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是A B C D8. 在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A) 3月份(B) 4月份(C) 5月份(D) 6月份第8题图第9题图9. 如图,直线,在某平面直角坐标系中,x轴m,y轴n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为(A)(B)(C)(D)10. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增。
计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:),绘制了统计图,如图所示,下面有四个推断:①年用水量不超过180的该市居民家庭按第一档水价交费②年用水量超过240的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150—180之间④该市居民家庭年用水量的平均数不超过180(A) ①③(B)①④(C)②③(D)②④二、填空题(本题共18分,每小题3分)11。
北京市各区2016年中考数学一模汇编平面几何初步
北京市2016年各区中考一模汇编平面几何初步一、平面几何之对称性1.【2016平谷一模,第05题】根据《北京日报》报道,到2017年年底,55公里长的长安街及延长线的市政设施、道路及附属设施等,将全部实现“中国风”设计风格.在下列设计图中,轴对称图形的个数为A.1个 B.2个 C.3个D.4个2.【2016朝阳一模,第04题】下列图形选自历届世博会会徽,其中是轴对称图形的是A B C D3.【2016海淀一模,第04题】下列图形中,是轴对称图形但不是中心对称图形的是A. B. C. D.4.【2016通州一模,第04题】下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是A.B.二、平面几何之角度5.【2016东城一模,第05题】如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=A .52°B .38°C .42°D .62°6.【2016丰台一模,第05题】如图,直线AB ∥CD ,BE 平分∠ABC ,交CD 于点D , ∠CDB =30°,那么∠C 的度数为 A. 150° B. 130°C. 120°D. 100°7.【2016丰台一模,第12题】重合,则∠1=°.8.【2016平谷一模,第04题】如图,直线a // b ,△ABC 为等腰直角三角形,∠则∠1的度数为A .90°B .60°C .45°D .30°9.【2016东城一模,第13题】已知一个正多边形的每个外角都等于7210.【2016西城一模,第03题】如图,直线CD AB //,直线EF 分别与AB ,CD 交于点E ,F ,FP EF ⊥,且与BEF ∠的平分线交于P ,若120∠=︒,则2∠的度数是()A .35°B .30°C .25°D .20°DA BCE详细解答1. B2. B3. C4. D5. A6. C7.488. C9. 510.A。
北京市朝阳区2016年中考一模数学试题(含答案)
北京市朝阳区九年级综合练习(一)数学试卷2016.5一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人, 将264000用科学计数法表示应为A .B .C .D . 2.实数a ,b ,c ,d 在数轴上对应的位置如图所示,绝对值相等的两个实数是A .与B .与C .与D .与3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是 A .B .C .D . 4.下列图形选自历届世博会会徽,其中是轴对称图形的是A B C D5.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点,∠A =50º,则∠BCE 的度数为A .40ºB .50ºC .60ºD .130º326410⨯42.6410⨯52.6410⨯60.26410⨯a b b c c d a d 21132919图16.某地需要开辟一条隧道,隧道AB 的长度无法直接测量.如图所示, 在地面上取一点C ,使C 到A 、B 两点均可直接到达,测量找到AC 和BC 的中点D 、E ,测得DE 的长为1100m ,则隧道AB 的长度为A .3300mB .2200mC .1100mD .550m7.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm )如下表所示:设两队队员身高的平均数依次为,,方差依次为,,下列关系中完全正确的是 A .=,<B .=,>C .<,<D .>,>8.如图,△内接于⊙,若⊙的半径为6,, 则的长为A .2πB .4πC .6πD .12π9.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为A .(–2,–4)B .(–1,–4)C .(–2,4)D .(–4,–1)10.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且°.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的A .线段CGB .线段AGC .线段AHD .线段CH甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s ABC O O ︒=∠60A BC 30=∠AGH 1–112O图2三、填空题(本题共18分,每小题3分)11.若二次根式有意义,则x 的取值范围是____________.12.分解因式:____________.13.关于x 的方程有两个不相等实数根,写出一个满足条件的k 的值:k =____________.14.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?” 译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为____________.15.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒. 16.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.2x -22369a b ab b -+=04222=-++k x x 尺规作图:经过已知直线上一点作这条直线的垂线.已知:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C .如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点; (2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ; (3)作直线CF .所以直线CF 就是所求作的垂线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:1(2)1)4cos 45---+︒. 18.已知11m m-=,求(21)(21)(5)m m m m +-+-的值. 19.解不等式组3(1)6,1.2x x x x -<⎧⎪⎨+≤⎪⎩并写出它的所有整数解. 20.如图,E 为AC 上一点,EF ∥AB 交AF 于点F ,且AE = EF . 求证:= 2∠1.21.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.如图,四边形ABCD 是矩形,点E 在BC 边上,点F 在BC 延长线上,且∠CDF =∠BAE . (1)求证:四边形AEFD 是平行四边形; (2)若DF =3,DE =4,AD =5,求CD 的长度.BAC ∠FEDCB A1FECBA23.在平面直角坐标xOy 中,直线与双曲线的一个交点为A (2,4),与y 轴交于点B .(1) 求m 的值和点B 的坐标; (2) 点P 在双曲线上,△OBP 的面积为8,直接写出点P 的坐标.24.如图,点D 在⊙O 上,过点D 的切线交直径AB 延长线于点P ,DC ⊥AB 于点C . (1) 求证:DB 平分∠PDC ; (2) 若DC =6,3tan 4P ∠=,求BC 的长.25.阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%;2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张. 根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.26.观察下列各等式:y x b =+my x=my x=P,,, ……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)请你写一个实数,使它具有上述等式的特征:-3=3;(3)请你再写两个实数,使它们具有上述等式的特征:-=;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.在平面直角坐标系xOy 中,抛物线经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.28.在等腰三角形ABC 中, AC =BC ,点P 为BC 边上一点(不与B 、C 重合),连接P A ,222=233-⨯( 1.2)6( 1.2)6--=-⨯11()(1)()(1)22---=-⨯-⨯⨯c bx x y ++=2c bx x y ++=2以P 为旋转中心,将线段P A 顺时针旋转,旋转角与∠C 相等,得到线段PD ,连接DB . (1)当∠C =90º时,请你在图1中补全图形,并直接写出∠DBA 的度数; (2)如图2,若∠C =α,求∠DBA 的度数(用含α的代数式表示);(3)连接AD ,若∠C =30º,AC =2,∠APC =135º,请写出求AD 长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy 中,A (t ,0),B (,0),对于线段AB 和x 轴上方的点P 给出如下定义:当∠APB=60°时,称点P 为AB 的“等角点”.(1)若,在点302C ⎛⎫ ⎪⎝⎭,,2D ⎛⎫ ⎪ ⎪⎝⎭,3,22E ⎛⎫- ⎪ ⎪⎝⎭中,线段AB 的“等角点”是; (2)直线MN 分别交x 轴、y 轴于点M 、N ,点M 的坐标是(6,0),∠OMN=30°.①线段AB 的“等角点”P 在直线MN 上,且∠ABP =90°,求点P 的坐标; ②在①的条件下,过点B 作BQ ⊥P A ,交MN 于点Q ,求∠AQB 的度数; ③若线段AB 的所有“等角点”都在△MON 内部,则t 的取值范围是.t+t =-图1PC B APCBA图2北京市朝阳区九年级综合测试(一)数学试卷评分标准及参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17─26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=11422--+⨯……………………………………………… …4分=12.……………………………………………………………………… 5分18.解:原式=22415m m m-+-………………………………………………………… 2分=2551m m--………………………………………………………………… 3分=25()1m m--.11mm-=,21m m∴-=.…………………………………………………………… 4分∴原式=4.…………………………………………………………………… 5分19.解:3(1)6,1.2x xxx-<⎧⎪⎨+≤⎪⎩解不等式①,得x>-1.……………………………………………………………2分解不等式②,得x≤1.………………………………………………………… 3分∴不等式组的解集是<≤1.………………………………………………… 4分∴原不等式组的所有整数解为0,1.……………………………………………5分1-x①②20.证明:∵EF ∥AB ,∴∠1=∠FAB .…………………… 2分 ∵AE =EF ,∴∠EAF =∠EFA . ……………… 3分∵∠1=∠EFA ,∴∠EAF =∠1.…………………… 4分∴∠BAC =2∠1. …………………5分21.解:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.. …… 1分 依题意,列方程组得 245250.x y x y +=⎧⎨=+⎩,…………………………………………………………………………3分解得18065.x y =⎧⎨=⎩, ………………………………………………………………………………5分答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 22.(1)证明:∵四边形ABCD 是矩形,∴,=90º. ∵BAE CDF ∠=∠,∴△≌△.………………1分 ∴. ∴. ∵,∴.………………………2分 又∵EF ∥AD ,∴四边形AEFD 是平行四边形.………………………3分 (2)解:由(1)知,EF =AD = 5.在△EFD 中,DF =3,DE =4,EF =5,∴222DE DF EF +=.∴∠EDF =90º.……………………………………………………………………4分∴1122ED DF EF CD ⋅=⋅. ∴125CD =. ……………………………………………………………………5分DC AB =DCF B ∠=∠ABE DCF CF BE =EF BC =AD BC =AD EF =FEDCB A1FEC BA23.解:(1)∵双曲线经过点,A (2,4), ∴.………………………………………………………………………1分 ∵直线y x b =+经过点A (2,4),∴2b =.…………………………………………………………………………2分∴此直线与y 轴交点B 的坐标为(0,2). …………………………………3分(2)(8,1),(-8,-1). .…………………………………………………… 5分 24.(1)证明:如图,连接OD . ∵DP 是⊙O 的切线, ∴OD ⊥DP .∴90ODP ∠=︒. ………………………………………………………1分 ∴90.ODB BDP ∠+∠=︒ 又∵DC ⊥OB , ∴90DCB ∠=︒.∴90BDC OBD ∠+∠=︒. ∵OD =OB ,∴.ODB OBD ∠=∠ ∴BDP BDC ∠=∠.∴DB 平分∠PDC .……………………………………………………………2分 (2)解:过点B 作BE ⊥DP 于点E . ∵,BDP BDC ∠=∠BC ⊥DC , ∴BC =BE . ……………………………………3分 ∵DC =6,, ∴DP =10,PC =8.……………………………… 4分 设CB=x , 则BE=x ,BP=8- x .∵△PEB ∽△PCD ,∴8610x x-= .∴.∴ ……………………………………………………………………… 5分 25.(1)296.7. ………………………………………………………………………………1分xmy =8=m 3tan 4P ∠=3=x .3=BCAA(2)统计表如下:2013–2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例统计表……………………………………………………………………………………3分 (3)14; ……………………………………………………………………………………4分能满足老年人的入住需求. 理由:根据2013–2015年老年人口数量增长情况,估计到2016年老年人口约有340万人,有4%的老年人入住养老服务机构,即约有13.6万人入住养老服务机构,到2016年北京市养老服务机构的床位数约14万张,所以能满足老年人的入住需求. ……………….…………….…………….…………………………………………5分 26.解:(1)差,积;…………………………………………………………………………1分分 分(4)存在. 设这两个实数分别为x ,y .可以得到 ……………………………………………………4分 ∴.∴111y x =-+.∵ 要满足这两个实数x ,y 都是整数,∴ x +1的值只能是1±.∴当时,;当时,.∴满足两个实数都是整数的等式为,.…5分27.解:(1)把(0,–3)代入,∴把(2,–3)代入.xy y x =-1+=x xy 0=x 0=y 2-=x 2=y 0000⨯=-222)2(⨯-=--c bx x y ++=2.3-=c ,32-+=bx x y∴. ………………2分 (2)由(1)得2(1)4y x =--. ∴顶点坐标为(1,–4).……………3分 由2230x x --=解得123,1x x ==-.∴抛物线与x 轴交点的坐标为(–1,0),(3,0).…………………………5分 (3). .……………………………………………………………………7分28.解:(1)如图,补全图1. …………….………………………………………………1分∠DBA=. ……………….………………………………………………2分(2) 过点P 作PE ∥AC 交AB 于点E . ………………………………………………3分 ∴PEB CAB ∠=∠.∵ AC =BC ,∴CAB CBA ∠=∠. ∴PEB PBE ∠=∠. ∴PE PB =.又∵BPD DPE EPA DPE α∠+∠=∠+∠=, ∴BPD EPA ∠=∠. ∵PD PA =,∴△PDB ≌△PAE .…………………………………………………………4分 ∵11(180)9022PBA PEB αα∠=∠=︒-=︒-, ∴180PBD PEA PEB ∠=∠=︒-∠=α2190+︒.∴DBA PBD PBA α∠=∠-∠=. …………………………………………5分 (3)求解思路如下:a .作AH ⊥BC 于H ;.2-=b 322--=x x y 6±︒90PEC BACPb .由∠C =30º,AC =2,可得AH =1,CH,BH=2, 勾股定理可求AB ; ………………………………………6分 c .由∠APC =135 º,可得∠APH =45 º,AP; d .由∠APD =∠C =30º,AC =BC ,AP =DP ,可得△PAD ∽△CAB ,由相似比可求AD 的长. ……………7分 29.解:(1)C ,D . ……….…………….………….…….………….………………2分 (2)①如图,∵∠APB=60°,∠ABP =90°, ∴∠PAB =30°,又∵∠OMN=30°,∴,.PA PM AB BM == ……………3分∵∴BM =∴∴P(61). .………..……….….………….………….…………4分 ②∵BQ ⊥AP ,且∠APB =60º,∴∠PBQ =30º. ∴∠ABQ =60º.∴∠BMQ =∠MQB =30º. ……5分 ∴BQ = BM =AB .∴△ABQ 是等边三角形.∴∠AQB =60º. ………………………………………………………6分同理,当点N 在x 轴下方时,可得P(1),∠AQB =90º. ………7分③142t -<<-…………………………………………………8分说明:各解答题的其他正确解法请参照以上标准给分.,3=AB .1=PB NMNM。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市2016年各区中考一模汇编统计初步一、统计初步之基本概念1.【2016东城一模,第04题】甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示2.【2016东城一模,第14题】为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是3.【2016丰台一模,第07题】某班体育委员统计了全班45名同学一周的体育锻炼时间,并绘制了如图所示的折线统计图,则在体育锻炼时间这组数据中,众数和中位数分别是A. 18,18B. 9,9C. 9,10D. 18,94.【2016平谷一模,第07题】A.85和80 B.80和85 C.85和85 D.85.5和805.【2016朝阳一模,第07题】2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,方差依次为2甲s ,2乙s ,下列关系中完全正确的是A .甲x =乙x ,2甲s <2乙sB .甲x =乙x ,2甲s >2乙s C .甲x <乙x ,2甲s <2乙sD .甲x >乙x ,2甲s >2乙s6.【2016海淀一模,第07题】初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B. 9,8.5 C. 8,8D. 8,8.57.【2016西城一模,第07题】李阿姨是一名健步走运动爱好者,她用手机软件记录了某月(30天)每天健步走的步骤(单位:万步),将记录结果绘制成了突入所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是() A .1.2,1.3B .1.4,1.3C .1.4,1.35D .1.3,1.38.【2016通州一模,第08题】为了弘扬优秀传统文化,通州区30所中学参加了“名著·人生”戏剧展演比赛,最后有13所中学进入决赛,他们的决赛成绩各不相同.某中学已进入决赛且知道自己的成绩,但是否进入前7名,还必须知道这13所中学成绩的 A .中位数B .平均数C .众数D .方差二、统计初步之基本应用9.【2016丰台一模,第15题】某地区有36所中学,其中九年级学生共7000名.为了了解该地区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序. ①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据. 排序:.(只写序号)10.【2016平谷一模,第09题】如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体构造学的研究成果表明,一般情况下人的指距d 和身高h 成某种关系.下表是测得的指距与身高的一组数据:根据上表解决下面这个实际问题:姚明的身高是226厘米,可预测他的指距约为 A.25.3厘米 B.26.3厘米 C.27.3厘米 D.28.3厘米11.【2016平谷一模,第15题】在对某次实验数据整理过程中,某个事件出现的频率随实验次数变化折线图如图所示,这个图形中折线的变化特点是,试举一个大致符合这个特点的实物实验的例子(指出关注的结果).12.【2016海淀一模,第15题】北京市2010-2015年高考报名人数统计如图所示,根据统计图中提供的信息,预估2016年北京市高考人数约为万人,你的预估理由是.报名人数/万人13.【2016西城一模,第16题】有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是___,此时按游戏规则填写空格,所有可能出现的结果共有__________________种.14.【2016通州一模,第13题】手机悦动圈是记录步行数和热量消耗数的工具,下表是孙老师用手机悦动圈连续记录的耗数达到300大卡,预估他一天步行约为__________步.(直接写出结果,精确到个位)三、统计初步之复杂应用(大题)15.【2016东城一模,第24题】某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.16.【2016丰台一模,第25题】阅读下列材料:北京市统计局发布了2014年人口抽样调查报告,首次增加了环线人口分布数据.调查数据显示,北京市超过一半的常住人口都住在了远离城区的五环以外. 事实上,北京市的中心城区人口从上世纪80年代起就持续下降,越来越多的人向郊区迁移.根据2014年人口抽样调查结果发现,本市三环至六环间,聚集了1226.9万人的常住人口,占全市的57.1%;四环至六环间聚集了941万人的常住人口,占全市的43.8%;五环以外有1098万人的常住人口,占全市的51.1%.在进行人口分布研究时,北京通常被划分为四个区域,城市功能拓展区包括:朝阳、海淀、丰台、石景山四个区; 城市发展新区包括:通州、顺义、大兴、昌平、房山五个区和亦庄开发区; 首都功能核心区包括:东城区和西城区; 生态涵养发展区包括:门头沟、平谷、怀柔、密云、延庆五个区县.从常住人口分布上看:城市功能拓展区常住人口最多,占全市总量的49%;城市发展新区常住人口约为684万人;首都功能核心区常住人口约为221万人;生态涵养发展区常住人口约为191万人.从常住外来人口分布上看:城市功能拓展区常住外来人口最多,约为436万人;城市发展新区常住外来人口约为297万人;首都功能核心区常住外来人口约为54万人;生态涵养发展区常住外来人口约为32万人.根据以上材料回答下列问题:(1)估算2014年北京市常住人口约为___________万人.(2)选择统计表或.统计图,将2014年北京市按四个区域的常住人口和常住外来人口分布情况表示出来.17.【2016平谷一模,第25题】“世界那么大,我想去看看”是现代很多人追求的生活方式之一.根据北京市旅游发展委员会发布的信息显示, 2012——2015年连续四年,我市国内旅游市场保持了稳定向好的态势.2012年,旅游总人数约2.31亿人次,同比增长8.1%;2013年,旅游总人数约 2.52亿人次,同比增长9%;2014年,旅游总人数约 2.61亿人次,同比增长3.8%;2015年,旅游总人数2.73亿人次,同比增长4.3%;预计2016年旅游总人数与2015年同比增长5%.旅游不仅是亲近自然的好时机,同时也是和家人朋友沟通的好时机,调查显示,中秋国庆黄金假期成为人们选择旅游最佳时期,《2015年中秋国庆长假出游趋势报告》显示,人们出行的方式可以归纳为四种,即乘火车、乘汽车、坐飞机、其他.其中选择乘火车出行的人数约占47%,选择乘汽车出行的人数约占28%,选择坐飞机出行的人数约占17%.根据以上信息解答下列问题:(1)预计2016年北京市旅游总人数约亿人次(保留两位小数);(2)选择其他出行方式的人数约占;(3)请用统计图或统计表,将2012——2015年北京市旅游总人数表示出来.18.【2016朝阳一模,第25题】阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%; 2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张.根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.19.【2016海淀一模,第25题】阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%。
2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元,而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》,其中,《大圣归来》以9.55亿元票房夺完,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿,另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼睛》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入。
2015年中国内地动画电影市场中,国产动画电影共上映4 1部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟。
根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;万元万~1000万元万元以下(2)右图为2015年国产动画电影票房金字塔,则B=;(3)选择统计表或统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来20.【2016西城一模,第25题】阅读下列材料:据报导,2014年北京市环境空气中PM2.5年平均浓度为85.9微克/立方米,PM2.5一级优天数达到93天,较2013年大辅度增加了22天.PM2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京市环境空气中PM2.5年平均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题.市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM2.5一级优的天数增加了13天.2015年本市PM2.5重污染天数占全年总天数的11.5%,其中在11-12月中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天.根据以上材料解答下列问题:(1)2014年本市空气质量达标天数为____________天;PM2.5年平均浓度的国家标准限值是______________微克/立方米;(结果保留整数)(2)选择统计表或.统计图,将2013—2015年PM2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11—12月当中发生重污染22天,占11月和12月天数的36%与去年同期相比增加15天”,他由此推断“2015年全年的PM2.5重污染天数比2014年要多”,你同意他的结论吗?并说明你的理由.21.【2016通州一模,第25题】北京市初中开放性实践活动从2015年10月底进入正式实施阶段.资源单位发布三种预约方式:自主选课、团体约课、送课到校,可供约25万人次学生学习. 截至2016年3月底,某区统计了初一学生参加自主选课人次的部分相关数据,绘制的统计图如下:截至2016年3月底,某区初一学生 自主选课人次分布统计图其他类 12%电子与控制 m %能源与材料 6%结构与机械 22%健康与安全 18%自然与环境 10%信息与数据 2%根据以上信息解答下列问题:(1)直接写出扇形统计图中m 的值;(2)据2016年3月底预约数据显示,该区初一学生有12000人次参加自主选课,而团体约课比自主选课多8000人次,送课到校是团体约课的2.5倍. 请在下图中用折线统计图将该区初一学生自主选课、团体约课、送课到校人次表示出来; (3)根据上面扇形统计图的信息,请你为资源单位提一条积极的建议.详细解答1. B2. 703. B4. C5. A6. A7. B8. A9. ②①④⑤③;截至201610. C11. 随着实验次数增加,频率趋于稳定;答案不唯一,如:抛掷硬币实验中关注正面出现的频率;12. 预估理由需包含统计图提供的信息,且支撑预估的数据。