北师大版-数学-八年级上册-1.2 一定是直角三角形吗 练习

合集下载

1.2一定是直角三角形吗+课件-2023-2024学年北师大版数学八年级上册

1.2一定是直角三角形吗+课件-2023-2024学年北师大版数学八年级上册

解:(2)设m为大于1的奇数,
将m2 拆分为两个连续正整数
n,n+1的和,则m,n,n+
1构成一组勾股数.理由如
下:
∵m2=n+(n+1),
a
3
5
7
9
11

b
4
12
24
40
60

c
5
13
25
41
61

∴m2+n2=n+(n+1)+n2=n2+2n+1=(n+1)2.
∴m,n,n+1是一组勾股数.
a,b,c之间的关系
A.6
B.8
C.17
D.20
1.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且a2-b2
=c2,则下列说法正确的是( C )
A.∠C是直角
B.∠B是直角
C.∠A是直角
D.∠A是锐角
2.若△ABC 的三边长a,b,c满足|a-5|+|12-b|+(c-13)2=0,
则△ABC是( A )
A.直角三角形
1.2 一定是直角三角形吗
1.勾股定理逆定理:如果三角形的三边长a,b 和
2+b2=c2
a
c满足______________,则这个三角形是直角三角形.
2+b2=c2
a
几何语言:∵______________,
△ABC是直角三角形,且∠C=90°
∴__________________________________.
格:
a
b
c
a,b,c之间的关系
3
4
5
32+42=52
5
12
13
52+122=132
7

北师大版八年级数学上册:1.2 《一定是直角三角形吗》教学设计2

北师大版八年级数学上册:1.2 《一定是直角三角形吗》教学设计2

北师大版八年级数学上册:1.2 《一定是直角三角形吗》教学设计2一. 教材分析《一定是直角三角形吗》这一节内容是北师大版八年级数学上册第1.2节的一部分,主要讲述了直角三角形的定义和性质。

通过这一节的学习,学生能够理解直角三角形的概念,掌握直角三角形的性质,并能运用这些性质解决实际问题。

本节课的内容是学生在学习了三角形的性质之后进一步加深对三角形分类的理解,为后续学习勾股定理打下基础。

二. 学情分析学生在七年级时已经学习了三角形的性质,对三角形有了初步的认识。

但在实际操作中,对直角三角形的识别还存在一定的困难。

因此,在教学过程中,需要结合学生的实际情况,通过具体的例子和实际操作,让学生更好地理解直角三角形的性质。

三. 教学目标1.了解直角三角形的定义和性质。

2.能够识别直角三角形,并运用直角三角形的性质解决实际问题。

3.培养学生的观察能力、操作能力和解决问题的能力。

四. 教学重难点1.直角三角形的定义和性质。

2.如何运用直角三角形的性质解决实际问题。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过实例教学,让学生直观地理解直角三角形的性质;通过小组合作学习,培养学生的合作意识和解决问题的能力。

六. 教学准备1.教学课件。

2.直角三角形的相关实例。

3.练习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾三角形的相关知识,为新课的学习做好铺垫。

例如:“同学们,你们能说出三角形的哪些性质吗?”2.呈现(10分钟)展示直角三角形的实例,引导学生观察和思考。

例如:“请大家看这个图形,你们能发现它有什么特点吗?”3.操练(10分钟)让学生通过实际操作,识别直角三角形。

例如:“请大家拿出自己的三角板,试着找出直角三角形。

”4.巩固(10分钟)通过练习题,让学生巩固直角三角形的性质。

例如:“请同学们完成练习题,加深对直角三角形性质的理解。

”5.拓展(10分钟)引导学生运用直角三角形的性质解决实际问题。

北师大版八年级数学上册:1.2 《一定是直角三角形吗》教案

北师大版八年级数学上册:1.2 《一定是直角三角形吗》教案

北师大版八年级数学上册:1.2 《一定是直角三角形吗》教案一. 教材分析《一定是直角三角形吗》这一节的内容主要让学生了解直角三角形的定义和性质,通过实例让学生判断一个三角形是否为直角三角形。

学生通过这一节课的学习,可以加深对三角形分类的理解,为后续学习其他类型的三角形打下基础。

二. 学情分析八年级的学生已经学习了三角形的分类,对三角形的性质有了一定的了解。

但学生在判断一个三角形是否为直角三角形时,可能会只关注是否有直角,而忽视了其他性质。

因此,在教学过程中,教师需要引导学生从多个角度去判断一个三角形是否为直角三角形。

三. 教学目标1.让学生理解直角三角形的定义和性质。

2.培养学生运用所学知识解决实际问题的能力。

3.引导学生通过观察、操作、思考、交流等活动,体验探究解决问题的过程。

四. 教学重难点1.重点:直角三角形的定义和性质。

2.难点:如何判断一个三角形是否为直角三角形。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.准备一些三角形模型,以便在课堂上进行展示和操作。

2.准备一些关于直角三角形的案例,以便进行分析和讨论。

3.准备黑板和粉笔,以便进行板书。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学的三角形分类知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示一些三角形模型,让学生观察并说出它们的类型。

然后教师提出问题:“如何判断一个三角形是否为直角三角形?”让学生思考并回答。

3.操练(10分钟)教师引导学生进行小组合作学习,让学生通过观察、操作、思考、交流等活动,探索判断直角三角形的方法。

教师在课堂上进行巡回指导,帮助学生解决问题。

4.巩固(5分钟)教师提出一些关于直角三角形的问题,让学生独立解答。

然后教师选取一些学生的答案进行讲解和分析。

5.拓展(5分钟)教师展示一些生活中的直角三角形实例,让学生判断并解释。

1.2 一定是直角三角形吗 北师大版数学八年级上册同步练习(含解析)

1.2 一定是直角三角形吗 北师大版数学八年级上册同步练习(含解析)

1.2 一定是直角三角形吗一、单选题(在下列各题的四个选项中,只有一项是符合题意的.本题共8个小题)1.下列长度的三条线段能组成直角三角形的是()A.B.C.D.2.在三角形中,,,的对边分别为,,,且满足,则这个三角形中互余的一对角是()A.与B.与C.与D.以上都不正确3.在中,若,,,则()A.B.C.D.4.在△ABC中,AB﹦12,BC﹦16,AC﹦20,则△ABC的面积是( )A.120B.160C.216D.965.三角形的三边长a、b、c满足,则此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形6.适合下列条件的△ABC中,直角三角形的个数为()①a,b,c②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个7.如果△ABC的三边分别为m2-1,2 m,m2+1(m>1)那么()A.△ABC是直角三角形,且斜边长为m2+1B.△ABC是直角三角形,且斜边长为2mC.△ABC是直角三角形,但斜边长需由m的大小确定D.△ABC不是直角三角形8.如图所示,在的正方形网格中,的顶点,,均在格点上,则是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题9.一个三角形的三边长分别为3,4,5,则这个三角形中最短边上的高为______.10.在没有直角工具之前,聪明的古埃及人用如图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中5这条边所对的角便是直角.依据是____.10题图 11题图 14题图11.如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成_________个直角三角形.12.若一个三角形的三边长分别为m+1,m+2,m+3,那么当m=____时,这个三角形是直角三角形.13.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是______.14.三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD 是由4个全等的直角三角形再加上中间的一个小正方形EFGH组成的.已知小正方形的边长是2,每个直角三角形的短直角边长是6,则大正方形ABCD的面积是________.15.小白兔每跳一次为1米,先沿直线跳12次后左拐,再沿直线向前跳5次后左拐,最后沿直线向前跳13次正好回到原来的地方,则小白兔第一次左拐的角度是______________.16.观察下列勾股数:3,4,5;5,12,13;7,24,25;,,.根据你的发现,与之间的关系是_______,_______.三、解答题17.如图:在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.18.在中,D是边上的点,,,,.(1)求证:是直角三角形;(2)求的长.19.如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=20.求:△ABD的面积.20.已知a,b,c为△ABC三边,且满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.21.星期天,两组同学从学校出发去郊游.分组后,第一组同学以1.8千米/时的速度向正北方向直线前进,第二组同学以2.4千米/时的速度向另一个方向直线前进半小时后,两组同学同时停了下来,此时他们相距1.5千米,试回答下面的问题:(1)第二组同学行走的方向如何?(2)如果接下来两组同学以原来的速度相向而行,多长时间后相遇?22.观察下列勾股数:6,8,10;8,15,17;10,24,26;…;,,.根据你的发现,求出当时,,的值.参考答案1.C【思路点拨】运用勾股定理的逆定理逐一判断即可.【详细解答】∵,,,∴4,6,8不能组成直角三角形.,故A不符合题意;∵,,,∴6,8,9不能组成直角三角形,故B不符合题意;∵,,,∴5,12,13能组成直角三角形,故C符合题意;∵,,,∴5,11,12不能组成直角三角形,故D不符合题意;故选:C.【方法总结】本题考查了勾股定理的逆定理,熟记勾股定理的逆定理是解决本题的关键.2.B【思路点拨】先由勾股定理的逆定理得出∠B=90°,再根据直角三角形两锐角互余即可求解.【详细解答】解:∵b2-a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,且∠B=90°,∴∠C与∠A互余.故选:B.【方法总结】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,且最长边所对的角是直角.同时考查了直角三角形两锐角互余的性质.3.C【思路点拨】根据勾股定理的逆定理即可求解.【详细解答】解:∵在△ABC中,BC2+AC2=32+42=25,AB2=52=25,∴BC2+AC2=AB2,∴△ABC为直角三角形,∠C=90°.故选:C.【方法总结】本题考查了勾股定理的逆定理,解答本题的关键是掌握勾股定理的逆定理.【详细解答】.①,故不是成为直角三角形的必要条件,故=58°,∠C=180°-∠A-【思路点拨】首先依据勾股定理,结合图中每个小方格的边长,求得AC2,AB2,BC2的值;接下来,依据勾股定理的逆定理可判断出△ABC的形状.【详细解答】∵BC2=42+22=20,AB2=22+12=5,AC2=32+42=25,∴BC2 +AB2= AC2,∴△ABC是直角三角形.故选B.【方法总结】本题考查勾股定理和勾股定理的逆定理,解题的关键是掌握勾股定理和勾股定理的逆定理. 9.4【思路点拨】根据勾股定理的逆定理,可以判断题目中三角形的形状,然后即可得到这个三角形中最短边上的高的长度,本题得意解决.【详细解答】解:,三边长分别为3,4,5的三角形是直角三角形,这个三角形中最短边上的高为4,故答案为:4.【方法总结】本题考查勾股定理的逆定理,会用勾股定理的逆定理判断三角形的形状是解答本题的关键.10.如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形【思路点拨】根据勾股定理的逆定理即可判断.【详细解答】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故答案为:如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形.【方法总结】此题考查了勾股定理的逆定理,属于基础题,注意仔细阅读题目所给内容,得到解题需要的信息,比较简单.11.2【详细解答】试题分析:根据小正方形的边长可分别求,,,,,,根据勾股定理的逆定理,由知△ADB是直角三角形,由知△ABC是直角三角形.共2个.考点:勾股定理的逆定理,化简得:,m=2,,或(舍去).【思路点拨】设这个三角形的三边长分别为,再根据周长可求出边长,然后利用勾股定理的逆定理可得这个三角形是直角三角形,最后利用直角三角形的面积公式即可【详细解答】由题意,设这个三角形的三边长分别为则解得则这个三角形的三边长分别为又这个三角形是直角三角形,且两直角边长分别为则它的面积是故答案为:.【方法总结】本题考查了勾股定理的逆定理的应用等知识点,依据勾股定理的逆定理判定出这个三角形为【详细解答】因为大正方形ABCD中4个直角三角形全等,根据全等三角形的性质可得:BE=AH=DG=CF=3,又因为小正方形的边长是1,所以BF=AE=DH=CG=3+1=4,根据勾股定理可得:AB=AD=CD=BC==5,所以大正方形ABCD的面积是25,故答案为25.15.【详细解答】由题意得:小白兔第一次跳12米,第二次跳5米,第三次跳13米;∵米,而13 ²=169,刚好符合直角三角形中勾股定理的逆定理,且第一次和第二次跳的距离为直角边.故小白兔第一次左拐的角度是90°.16.【解析】【思路点拨】仔细观察可发现给出的勾股数中,斜边与较大的直角边的差是1,通过代入3,4,5;5,12,13;7,24,25计算可得.【详细解答】观察得给出的勾股数中,斜边与较大直角边的差是1,即c−b=1;通过代入3,4,5;5,12,13;7,24,25计算可得52-42=32,132-122=52,252-242=72,即可得到.【方法总结】本题考查勾股数、规律和勾股定理,解题的关键是掌握勾股定理.17.四边形ABCD的面积是36【思路点拨】根据勾股定理求出AC的长度,再根据勾股定理逆定理计算出,然后根据四边形ABCD的面积的面积+的面积,列式进行计算即可得解.【详细解答】解:连接,∵AB=3,BC=4,,∴在Rt△ABC中,根据勾股定理得:AC===5.=AB+AC =×3×4+×5×12=36ABCD的面积是36==9【方法总结】本题考查了勾股定理及勾股定理的逆定理,属于基础题,解答本题的关键是判断出BC===16=×7×12=42勾股定理的逆定理即可判断△ABC的形状.由已知得(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0(a-5)2+(b-12)2+(c-13)2=0由于(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.所以a-5=0,得a=5;b-12=0,得b=12;c-13=0,得c=13.又因为132=52+122,即a2+b2=c2所以△ABC是直角三角形.考点:本题考查的是勾股定理的逆定理,非负数的性质点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.21.(1)正东或正西;(2)小时.【解析】【思路点拨】对于(1),先分别求出两个小组走的路程,再根据勾股定理的逆定理即可作出判断;对于(2),根据“路程和÷速度和=相遇的时间”列式计算即可求解.【详细解答】(1)因为,所以两组同学行走的方向成直角.因此,第二组同学行走的方向为正东或正西.(2)根据题意,得(小时).即两组同学经过小时后相遇.【方法总结】此题考查勾股定理的逆定理的运用,牢记定理是解题的关键.22.,.【思路点拨】n=3时,a=2×3=6,b=32-1=8,c=32+1=10;n=4时,a=2×4=8,b=42-1=15,c=42+1=17…得出a=2n,b=n2-1,c=n2+1(n≥3,n为正整数),满足勾股数.【详细解答】∵n=3时,a=2×3=6,b=32−1=8,c=32+1=10,n=4时,a=2×4=8,b=42−1=15,c=42+1=17,故答案为,.【方法总结】本题考查勾股数、规律和勾股定理,解题的关键是掌握勾股定理,由题意得到规律。

秋八年级数学上册第一章勾股定理1.2一定是直角三角形吗同步练习课件新版北师大版

秋八年级数学上册第一章勾股定理1.2一定是直角三角形吗同步练习课件新版北师大版

2 一定是直角三角形吗
10.如图 1-2-3,在 B 港有甲、乙两艘渔船,若甲船沿北偏东 60°方向以每小时 12 海里的速度前进,乙船沿南偏东某方向以每小 时 16 海里的速度前进,2 小时后甲船到 M 岛,乙船到 P 岛,两岛相 距 40 海里,你知道乙船沿哪个方向航行吗?
图 1-2-3
2 一定是直角三角形吗
2 一定是直角三角形吗
9.观察以下几组勾股数,并寻找规律:①4,3,5;②6,8, 10;③8,15,17;④10,24,26;…,根据以上规律,第⑦组勾 股数是_1_6_,__6_3_,__6_5__.
[解析] 根据题目给出的前几组数的规律可得:这组数中的第一个数是 2(n+1), 第二个数是 n(n+2),第三个数是(n+1)2+1,故可得第⑦组勾股数是 16,63,65.
2 一定是直角三角形吗
8.教材习题 1.3 第 4 题变式如图 1-2-2,正方形 ABCD 是由 9 个边长为 1 的小正方形组成的,每个小正方形的顶点都叫格点, 连接 AE,AF,则∠EAF=__4_5_____°.
图 1-2-2
[解析] 如图,连接 EF.根据勾股定理可以得到:AE2=EF2 =5,AF2=10.因为 5+5=10,所以 AE2+EF2=AF2,所以△AEF 是等腰直角三角形,所以∠EAF=45°.
2.教材习题 1.3 第 2 题变式在△ABC 中,∠A,∠B,∠C 的对
边分别为 a,b,c,且 a2-b2=c2,则下列说法正确的是( C )
A.∠C 是直角
B.∠B 是直角
C.∠A 是直角
D.∠A 是锐角
[解析] 由 a2-b2=c2 可得 a2=c2+b2,可知△ABC 是直角三角形,且 a 的对 角是直角,即∠A 是直角.

北师大版八年级数学上册:1.2《一定是直角三角形吗》教案

北师大版八年级数学上册:1.2《一定是直角三角形吗》教案

北师大版八年级数学上册:1.2《一定是直角三角形吗》教案一. 教材分析《一定是直角三角形吗》这一节内容,主要让学生了解直角三角形的性质,能够通过实例判断一个三角形是否为直角三角形。

本节课内容是学生在学习了三角形的分类、三角形的性质等知识的基础上进行学习的,对于学生掌握三角形的相关知识,培养学生的空间想象能力、逻辑思维能力具有重要意义。

二. 学情分析学生在八年级上学期已经学习了三角形的分类、三角形的性质等知识,对于三角形的基本概念、性质有一定的了解。

但学生的知识水平、学习习惯、动手操作能力等方面存在差异,因此在教学过程中要关注学生的个体差异,引导每个学生都能积极参与到课堂活动中来。

三. 教学目标1.知识与技能目标:让学生了解直角三角形的性质,能够通过实例判断一个三角形是否为直角三角形。

2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力、逻辑思维能力。

3.情感态度与价值观目标:让学生体验到数学与生活的紧密联系,增强学生对数学的兴趣。

四. 教学重难点1.重点:直角三角形的性质。

2.难点:如何判断一个三角形是否为直角三角形。

五. 教学方法采用问题驱动法、启发式教学法、小组合作学习法等,引导学生观察、操作、思考,培养学生的空间想象能力、逻辑思维能力。

六. 教学准备1.准备一些直角三角形、锐角三角形、钝角三角形的图片。

2.准备一些三角板,让学生进行操作。

七. 教学过程导入(5分钟)1.向学生提出问题:“你们知道什么是直角三角形吗?”2.让学生举例说明生活中见到的直角三角形。

呈现(10分钟)1.向学生呈现一些直角三角形、锐角三角形、钝角三角形的图片,让学生进行观察。

2.引导学生发现直角三角形的特征。

操练(10分钟)1.让学生拿出三角板,进行操作,尝试找出直角三角形。

2.让学生小组内交流,分享找直角三角形的方法。

巩固(10分钟)1.让学生尝试判断一些给定的三角形是否为直角三角形。

2.教师进行点评,纠正学生的错误。

八年级数学北师大版上册课时练第1章《一定是直角三角形吗》 练习测试卷 含答案解析(1)

八年级数学北师大版上册课时练第1章《一定是直角三角形吗》 练习测试卷 含答案解析(1)

课时练第1单元一定是直角三角形吗一.选择题1.下列各组数中能作为直角三角形三边长的是()A .1,2,2B .3,4,5C .4,5,6D .13,14,152.一个三角形的三边长分别是cm cm cm 25,20,15,则这个三角形的面积是()A 2502cm B1502cm C2002cm D 不能确定3.由下列线段组成的三角形中,不是直角三角形的是()A .a=7,b=25,c=24B .a=2.5,b=2,c=1.5C .a=45,b=1,c=32D .a=15,b=20,c=254.在△ABC 中,若AC 2﹣BC 2=AB 2,则()A .∠A =90°B .∠B =90°C .∠C =90°D .不能确定5.下列各组数据不是勾股数的是()A .2,3,4B .3,4,5C .5,12,13D .6,8,106.满足下列条件的△ABC ,不是直角三角形的是()A .b 2=c 2-a 2B .a ∶b ∶c=3∶4∶5C .∠C=∠A -∠BD .∠A ∶∠B ∶∠C=12∶13∶157.下列各组线段中,能构成直角三角形的是()A .2,3,4B .3,4,6C .4,6,7D .5,12,138.如果△ABC 的三边分别为m 2-1,2m ,m 2+1(m >1)那么()A .△ABC 是直角三角形,且斜边长为m 2+1B .△ABC 是直角三角形,且斜边长2为mC .△ABC 是直角三角形,但斜边长需由m 的大小确定D .△ABC 不是直角三角形9.分别以下列四组数为一个三角形的边长:(1)6、8、10;(2)5、12、13;(3)8、15、17;(4)4、5、6,其中能构成直角三角形的有()A .四组B .三组C .二组D .一组10.已知一轮船以18n mile/h 的速度从港口A 出发向西南方向航行,另一轮船以24n mile/h 的速度同时从港口A 出发向东南方向航行,离开港口1.5h 后,两轮船相距()A .30n mileB .35n mileC .40n mileD .45n mile二.填空题11.请写出一组勾股数(三个数都要大于10).12.在⊿ABC 中,若5,7,252222==-=+c b a b a ,则最大边上的高为.13.在如图所示的方格中,连接格点AB 、AC ,则∠1+∠2=度.14.小白兔每跳一次为1米,先沿直线跳12次后左拐,再沿直线向前跳5次后左拐,最后沿直线向前跳13次正好回到原来的地方,则小白兔第一次左拐的角度是.15.已知一个三角形的三边分别为3k ,4k ,5k (k 为自然数),则这个三角形为,理由是.16.以ABC D 的三条边向外作正方形,16.依次得到的面积为25,144,169,则这个三角形是________三角形.17.在△ABC 中,AB =15,AC =20,D 是BC 边所在直线上的点,AD =12,BD =9,则BC =.18.观察下列各组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26……请根据你发现的规律写出第⑦组勾股数:.三.解答题19.判断满足下列条件的三角形是否是直角三角形.(1)在△ABC 中,∠A =20°,∠B =70°;(2)在△ABC 中,AC =7,AB =24,BC =25;(3)△ABC 的三边长a 、b 、c 满足(a +b)(a -b)=c 2.20.一个零件的形状如图1所示,按规定这个零件中DBC A ÐÐ,都应是直角。

北师大版八年级(上)数学《一定是直角三角形吗》课堂练习(含答案)

北师大版八年级(上)数学《一定是直角三角形吗》课堂练习(含答案)

1.2 一定是直角三角形吗1.做一做作一个三角形,使三边长分别为3 cm,4 cm,5 cm,哪条边所对的角是直角?为什么?2. 设三角形的三边分别等于下列各组数:①7,8,10 ②7,24,25③12,35,37 ④13,11,10(1)请判断哪组数所代表的三角形是直角三角形,为什么?(2)把你判断是Rt△的哪组数作出它所表示的三角形,并用量角器来进行验证.3.想一想一个零件的形状如图1所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?4.思维拓展若△ABC的三边长为a,b,c,根据下列条件判断△ABC的形状. (1)a2+b2+c2+200=12a+16b+20c(2)a3-a2b+ab2-ac2+bc2-b3=0参考答案1.做一做:5 cm 所对的角是直角,因为在直角三角形中直角所对边最长.2.断一断:(1)②③ ∵72+242=252, 122+352=372 (2)略3.想一想:∵42+32=52,52+122=132,即AB 2+BC 2=AC 2,故∠B =90°,同理,∠ACD =90° ∴S 四边形ABCD =S △ABC +S △ACD =21×3×4+21×5×12=6+30=36.4.思维拓展(1)∵a 2+b 2+c 2+100=12a +16b +20c∴(a 2-12a +36)+(b 2-16b +64)+(c 2-20c +100)=0即(a -6)2+(b -8)2+(c -10)2=0∴a -6=0,b -8=0,c -10=0即a =6,b =8,c =10而62+82=100=102,∴a 2+b 2=c 2∴△ABC 为直角三角形.(2)(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0a 2(a -b )+b 2(a -b )-c 2(a -b )=0∴(a -b )(a 2+b 2-c 2)=0∴a -b =0或a 2+b 2-c 2=0∴此三角形ABC 为等腰三角形或直角三角形.。

八年级数学北师大版上册课时练第1章《一定是直角三角形吗》 练习测试卷 含答案解析

八年级数学北师大版上册课时练第1章《一定是直角三角形吗》 练习测试卷 含答案解析

课时练第1单元一定是直角三角形吗一.选择题1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25B.14C.7D.7或252.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3B.7,24,25C.6,8,10D.9,12,15 3.下列四组数据,不是勾股数的是()A.3,4,5B.5,6,7C.6,8,10D.9,40,41 4.在△ABC中,∠A,∠C的对边分别记为a,b,c,下列条件中,能判定△ABC是直角三角形的是()A.a2=(c﹣b)(c+b)B.a=1,b=2,c=3C.∠A=∠C D.∠A:∠B:∠C=3:4:55.如图所示的网格是正方形网格,A,B,C,D是网格线交点,则∠BAC与∠DAC的大小关系为()A.∠BAC>∠DAC B.∠BAC<∠DAC C.∠BAC=∠DAC D.无法确定6.在△ABC中,∠A,∠B,∠C的对应边长分别为a,b,c,若a,b,c满足b2=a2+c2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.无法确定7.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果a2=b2﹣c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形D.如果∠A﹣∠B=∠C,那么△ABC是直角三角形二.填空题8.已知三角形三边长分别是6,8,10,则此三角形的面积为.9.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.10.如图,每个小正方形的边长为1,则∠ABC的度数为°.11.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,请写出第6个数组:.12.如图所示的网格是正方形网格,A,B,C是网格线交点,则∠ABC+∠BAC=°.13.如图,△ABC是边长为6cm的等边三角形,动点P,Q同时从A,B两点出发,分别在AB,BC边上匀速移动,它们的速度分别为2cm/s和1cm/s,当点P到达点B时,P,Q 两点停止运动,设点P的运动时间为ts,则当t=s时,△PBQ为直角三角形.三.解答题14.如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.试判断△ACD的形状,并说明理由.15.已知三条线段的长分别为a,a+1,a+2.(1)当a=3时,证明这三条线段可以组成一个直角三角形.(2)若这三条线段可以组成一个三角形,求a的取值范围.16.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c 根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1(n为正整数)时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.17.如图,已知AC⊥BC,CA=BD=CB=2,.(1)求AB的长;(2)求△ABD的面积.18.如图,在△ABC中,点D是BC边的中点,DE⊥BC交AB于点E,且BE2﹣EA2=AC2.(1)求证:∠A=90°;(2)若AC=6,BD=5,求AE的长度.19.如图,已知点C是线段BD上一点,∠B=∠D=90°,若AB=4,BC=3,CD=8,DE=6,AE2=125.(1)求AC、CE的长;(2)求证:∠ACE=90°.20.如图,在4×4的正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°;(3)若点P为直线AC上任意一点,则线段BP的最小值为.21.如图,在△ACD中,AD=17,AC=15,DC=8,点B是CD延长线上一点,连接AB,若AB=25.求:△ABD的面积.22.如图,AD是△ABC的中线,DE⊥AC于点E,DF是△ABD的中线,且CE=2,DE=4,AE=8.(1)求证:∠ADC=90°;(2)求DF的长.参考答案一.选择题1.D2.A3.B4.A5.C6.B7.A二.填空题8.249.12010.4511.(13,84,85)12.4513.或.三.解答题14.解:△ACD是直角三角形.理由是:∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5,又∵AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.15.(1)证明:当a=3时,a+1=4,a+2=5,∵32+42=52,∴这三条线段可以组成一个直角三角形.(2)解:根据三角形的三边关系,得a+a+1>a+2,解得a>1.故a的取值范围是a>1.16.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n2+2n,c=2n2+2n+1;(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n2+2n=112≠111,∴15,111,112不是一组勾股数.17.解:(1)∵AC⊥BC,∴∠C=90°,∵AC=BC=2,∴AB===2,∴AB的长为2;(2)∵AB2+BD2=(2)2+22=12,AD2=(2)2=12,∴AB2+BD2=AD2,∴△ABD是直角三角形,∴∠ABD=90°,∴△ABD的面积=AB•BD=×2×2=2,∴△ABD的面积为2.18.(1)证明:连结CE,∵D是BC的中点,DE⊥BC,∴CE=BE,∵BE2﹣EA2=AC2,∴CE2﹣EA2=AC2,∴EA2+AC2=CE2,∴△ACE是直角三角形,即∠A=90°;(2)解∵D是BC的中点,BD=5,∴BC=2BD=10,∵∠A=90°,AC=6,∴AB===8,在Rt△AEC中,EA2+AC2=CE2,∵CE=BE,∴62+AE2=(8﹣AE)2,解得:AE=,∴AE的长为.19.(1)解:∵∠B=90°,AB=4,BC=3,∴AC===5,∵∠D=90°,CD=8,DE=6,∴CE===10;(2)证明:∵AC=5,CE=10,AE2=125,∴AE2=AC2+CE2,∴∠ACE=90°.20.解:(1)AB=,BC=,AC=,△ABC的周长=2++5=3+5,(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.(3)过B作BP⊥AC,∵△ABC的面积=,即,解得BP=2,故答案为:221.解:∵AD=17,AC=15,DC=8,∴AC2+CD2=AD2,∴∠C=90°,∵AB=25,AC=15,∴由勾股定理得:BC==20,∴BD=BC﹣DC=20﹣8=12,∴△ABD的面积是==90.22.证明:(1)∵DE⊥AC于点E,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=82+42=80,同理:CD2=20,∴AD2+CD2=100,∵AC=AE+CE=8+2=10,∴AC2=100,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC=90°;(2)∵AD是△ABC的中线,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=10,在Rt△ADB中,∠ADB=90°,∵点F是边AB的中点,∴DF=.。

北师大版八年级数学上册1.2.一定是直角三角形吗

北师大版八年级数学上册1.2.一定是直角三角形吗
第一章
勾பைடு நூலகம்定理
第 二 节 一定是直角三角形吗
下面有三组数分别是一个三角形的三边长 a,b,c:
①5,12,13; ②7,24,25;
回答这样两个问题:
③8,15,17.
1.这三组数都满足 a2+b2=c2吗? 2.分别以每组数为三边长作出三角 形,用量角器量一量,它们都是直 角三角形吗?
90 120 60 120
(1) (2) (3) (4) (5) (6)
a=15, b=8, c=17 ( 是 ) a=3, b=4, c=5 ( 是 ) a,b,c满足a2-b2=c2 ( 是 ) a=5, b=13, c=12 ( 是 ) 不是 ) ∠A:∠B:∠C=3:4:5 ( ∠A:∠B:∠C=1:1:2 ( 是 )
90 60
150
12
13
150
30
24
0
25
30
15
0
17
180
180
5
7
8
实验结果: ① 5,12,13满足a2+b2=c2,可以构成直角三角形; ② 7,24,25满足a2+b2=c2,可以构成直角三角形; ③ 8,15,17满足a2+b2=c2 ,可以构成直角三角形 .
像3,4,5,能够成为直角三角形三条 边长的三个正整数,称为勾股数
例1 一个零件的形状如图1所示,按 规定这个零件中 A和 DBC都应为直角 .工人师傅量得这个零件各边尺寸如图2, 这个零件符合要求吗?
C D D
4
5 13
C
12
A
图1
B
A 3 B
图2
例2如图所示在四边形ABCD中,AB=3, BC=4,∠ABC=90°,AD=12,DC=13。 你能求出这个四边形的面积吗?怎么求?

2022-2023学年北师大版八年级数学上册一定是直角三角形吗 同步训练

2022-2023学年北师大版八年级数学上册一定是直角三角形吗 同步训练

1.2 一定是直角三角形吗(同步训练)-北师大版八年级上册一.选择题1.以下列各组数为边长,能构成直角三角形的是()A.3,4,5B.6,7,8C.,,D.,2,2.如图所示的网格是正方形网格,A,B,C,D是网格线交点,则∠BAC与∠DAC的大小关系为()A.∠BAC>∠DAC B.∠BAC<∠DAC C.∠BAC=∠DAC D.无法确定3.下列各组数据中,能构成直角三角形的三边的长的一组是()A.1,2,3B.4,5,6C.5,12,13D.13,14,154.下列条件:①b2=c2﹣a2;②∠C=∠A﹣∠B;③a:b:c=::;④∠A:∠B:∠C=3:4:5,能判定△ABC是直角三角形的有()A.4个B.3个C.2个D.1个5.如图,在2×3的正方形网格中,∠AMB的度数是()A.22.5°B.30°C.45°D.60°6.在如图所示的方格纸中,点A,B,C均为格点,则∠ABC的度数是()A.30°B.35°C.45°D.60°7.如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个8.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c.那么下列条件中能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A=25°,∠B=75°C.a=,b=,c=D.a=6,b=10,c=129.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若a2=b2+c2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠C=∠A+∠B 10.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二.填空题11.如图,用6个边长为1的小正方形构造的网格图,角α,β的顶点均在格点上,则α+β=.12.某住宅小区有一块草坪如图所示,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是米2.13.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.14.如图所示,点D为△ABC的边BC上一点,AB=13,AD=12,AC=15,BD=5,则S=.△ABC15.如图,已知△ABC的三边长分别为6cm、8cm、10cm,分别以它的三边为直径向上作三个半圆,则图中阴影部分的面积=.三.解答题16.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,已知a=2,,,△ABC是直角三角形吗?小亮的解答如下:解:△ABC不是直角三角形.理由如下:因为,所以a2≠b2+c2,所以△ABC不是直角三角形.请问小亮的解答正确吗?若不正确,请给出正确的解答过程.17.如图,在△ABC中,AC=10,BC=17,CD=8,AD=6.(1)求BD的长;(2)求△ABC的面积.18.如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.19.如图,在△ABC中,AB=AC,点D为AC上一点,连接BD,BC=10.CD=6,BD=8.(1)试判断△ABD的形状,并说明理由;(2)求△ABC的周长.20.勾股定理是一个基本的几何定理,早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫做“整数直角三角形”;这三个整数叫做一组“勾股数”.在一次“构造勾股数”的探究性学习中,老师给出了下表:m2334…n1123…a22+1232+1232+2242+32…b461224…c22﹣1232﹣1232﹣2242﹣32…其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b =,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.参考答案与试题解析一.选择题1.【解答】解:A.∵32+42=9+16=25,52=25,∴32+42=52,∴以3,4,5为边能组成直角三角形,故本选项符合题意;B.∵62+72=36+49=85,82=64,∴62+72≠82,∴以6,7,8为边不能组成直角三角形,故本选项不符合题意;C.∵()2+()2=+=,()2=,∴()2+()2≠()2,∴以,,为边不能组成直角三角形,故本选项不符合题意;D.∵()2+22=3+4=7,()2=5,∴()2+22≠()2,∴以,2,为边不能组成直角三角形,故本选项不符合题意;故选:A.2.【解答】解:连接CD,BC,设小正方形的边长为1,由勾股定理得:AB2=22+42=4+16=20,BC2=12+32=1+9=10,AC2=12+32=1+9=10,AD2=12+22=1+4=5,CD2=12+22=1+4=5,所以BC=AC,AD=CD,AC2+BC2=AB2,AD2+CD2=AC2,即△ACB和△ADC都是等腰直角三角形,所以∠BAC=∠DAC=45°,故选:C.3.【解答】解:A.∵12+22=1+4=5,32=9,∴12+22≠32,∴以1,2,3为边的三角形不是直角三角形,故本选项不符合题意;B.∵42+52=16+25=41,62=36,∴42+52≠62,∴以4,5,6为边的三角形不是直角三角形,故本选项不符合题意;C.∵52+122=25+144=169,132=169,∴52+122=132,∴以5,12,13为边的三角形是直角三角形,故本选项符合题意;D.∵132+142=169+196=365,152=225,∴132+142≠152,∴以13,14,15为边的三角形不是直角三角形,故本选项不符合题意;故选:C.4.【解答】解:∵b2=c2﹣a2,∴a2+b2=c2,∴△ABC是直角三角形,故①能判断是直角三角形,∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故②能判断是直角三角形,∵a:b:c=::,∴可以假设,a=20k,b=15k,c=12k,∴a2≠b2+c2,∴△ABC不是直角三角形,故③不能判断是直角三角形,∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=()°>90°,故④不能判断是直角三角形故选:C.5.【解答】解:连接AB,设小正方形的边长为1,由勾股定理得:AM2=12+22=5,AB2=12+22=5,BM2=12+32=10,∴AM=AB,AM2+AB2=BM2,∴△MAB是等腰直角三角形,∴∠AMB=45°,故选:C.6.【解答】解:连接AC,则AC=BC==,AB==,∵()2+()2=()2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故选:C.7.【解答】解:如图,分情况讨论:①AB为直角△ABC斜边时,符合条件的格点C点有2个;②AB为直角△ABC其中的一条直角边时,符合条件的格点C点有1个.故共有3个点,故选:C.8.【解答】解:A.∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴最大角∠C=×180°=75°,∴△ABC不是直角三角形,故本选项不符合题意;B.∵∠A=25°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=80°,∴△ABC不是直角三角形,故本选项不符合题意;C.∵a=,b=,c=,∴a2+b2=c2,∴△ABC是直角三角形,故本选项符合题意;D.∵a=6,b=10,c=12,∴a2+b2≠c2,∴△ABC不是直角三角形,故本选项不符合题意;故选:C.9.【解答】解:∵∠A、∠B、∠C的对边分别为a、b、c,a2=b2+c2,∴∠A=90°,∵∠A+∠B+∠C=180°,∴∠B+∠C=90°=∠A,故选:A.10.【解答】解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.二.填空题11.【解答】解:如图,由勾股定理得,EB2=12+22=5,EC2=12+22=5,BC2=12+32=10,∴EB2+EC2=BC2,∴△EBC是直角三角形,∵EB=EC,∴△EBC是等腰直角三角形,由SAS可证△BME≌△ANC,∴∠α=∠EBA,∴∠α+∠β=∠EBA+∠β=45°.故答案为:45°.12.【解答】解:连接AC,如图,∵AB⊥BC,∴∠ABC=90°,∵AB=3米,BC=4米,∴AC=5米,∵CD=12米,DA=13米,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36米2.故答案为36.13.【解答】解:如图:设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D,∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°,∵S△ACB=AC×BC=AB×CD,∴AC×BC=AB×CD15×20=25CD,∴CD=12(cm);故答案为:12.14.【解答】解:在△ABD中,AB=13,AD=12,BD=5,∵AD2+BD2=122+52=169,AB2=132=169,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,∴∠ADC=180°﹣∠ADB=90°,∵AC=15,∴CD===9,∴BC=BD+CD=5+9=14,∴S△ABC=BC•AD=×14×12=84,故答案为:84.15.【解答】解:∵直角△ABC的两直角边分别为6,8,∴AB==10,∵以BC为直径的半圆的面积是π()2=8π,以AC为直径的半圆的面积是π(3)2=,以AB为直径的面积是×π(5)2=,△ABC的面积是AC•BC=24,∴阴影部分的面积是8π++24﹣=24cm2.故答案为24.三.解答题16.【解答】解:小亮的解答不正确.正确的解答过程如下:△ABC是直角三角形,理由如下:因为,,所以a2+c2=b2,所以△ABC是直角三角形.17.【解答】解:(1)∵在△ABC中,AC=10,CD=8,AD=6∴AD2+CD2=AC2,即62+82=102,∴△ACD是直角三角形,∴CD⊥AB,∵在Rt△BCD中,CD=8,BC=17,∴BD==15;(2)由(1)可知BD=15,∴AD+BD=6+15=21,∴S△ABC=AB•CD=(AD+BD)•AD=84,答:△ABC的面积是84.18.【解答】解:(1)∵CD⊥AB,∴△BCD和△ACD都是直角三角形,∴CD==12,AD==16;(2)△ABC为直角三角形,理由:∵AD=16,BD=9,∴AB=AD+BD=16+9=25,∵AC2+BC2=202+152=625=252=AB2,∴△ABC为直角三角形.19.【解答】解:(1)△ABD是直角三角形,理由:在△CBD中,BC=10.CD=6,BD=8,∵CD2+BD2=62+82=100,BC2=102=100,∴CD2+BD2=BC2,∴△BCD是直角三角形,∴∠BDC=90°,∴∠ADB=180°﹣∠BDC=90°,∴△ABD是直角三角形;(2)设AD=x,则AC=x+6,∵AB=AC,∴AB=x+6,在Rt△ABD中,BD2+AD2=AB2,∴82+x2=(x+6)2,∴x=,∴AB=AC=x+6=,∴△ABC的周长=AB+AC+BC=,∴△ABC的周长为.20.【解答】解:(1)当m=2,n=1时,a=5、b=4、c=3,∵32+42=52,∴a、b、c的值能为直角三角形三边的长;(2)观察得,a=m2+n2,b=2mn,c=m2﹣n2;故答案为:m2+n2,2mn,m2﹣n2;(3)以a,b,c为边长的三角形一定为直角三角形,∵a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4﹣2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.。

1 2一定是直角三角形吗 课时作业 北师大版八年级上册数学

1 2一定是直角三角形吗 课时作业 北师大版八年级上册数学

北师大版八年级上册数学1.2一定是直角三角形吗 课时作业一、单选题 1.如图①,某超市为了吸引顾客,在超市门只离地高4.5m 的墙上,装有一个由传感器控制的门铃A ,人只要移至该门口4m 及4m 以内时,门铃就会自动发出语音“欢迎光临”.如图①,一个身高1.5m 的学生刚走到D 处,门铃恰好自动响起,则该生头顶C 到门铃A 的距离为( )A .7mB .6mC .5mD .4m2.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .1693.如图:一个长、宽、高分别为4cm 、3cm 、12cm 的长方体盒子能容下的最长木棒长为( )A .11cmB .12cmC .13cmD .14cm4.下列叙述中,正确的是( )A .直角三角形中,两条边的平方和等于第三边的平方B .如果一个三角形中,两边的平方和等于第三边的平方,那么这个三角形是直角三角形C .ABC 中,①A ,①B ,①C 的对边分别为a ,b ,c ,若222a b c +=,则①A=90ºD .ABC 中,①A ,①B ,①C 的对边分别为a ,b ,c ,若①B=90º,则222c a b -=5.三车魏景元四年(公元263年),由我国古典数学理论的奠基人之一刘徽完成了《九章术注》十卷,《重差》为第一卷,它是我国学者编撰的最早的一部测量数学著作,亦为地图学提供了数学基础,该卷中的第一个问题是求海岛上的山峰的高度,这本书的名称是( )A .《海岛算经》B .《孙子算经》C .《九章算术》D .《五经算术》A.3B.4C.22D.A.16B.20C.22D.24A.①①B.①①①C.①①①D.①①①①二、填空题10.如图,四个全等的直角三角形围成一个大正方形ABCD,中间阴影部分是一个小正方形EFGH,这样就组成一11.如图,一个密封的圆柱形油罐底面圆的周长是10m,高为13m,一只壁虎在距底面1m的A处,C处有食物,12.如图,以数轴的单位长度线段为边作正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴12三、解答题14.如图所示,一桥洞的上边是半圆,下边是长方形.已知半圆的直径为2m,长方形的另一边是1m,有一辆厢式小货车,高1.5米,宽1.6米,这辆小货车能否通过此桥洞?通过计算说明理由.(1)请你用图(①)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直16.十九世纪英国赫赫有名的谜题创作者在1903年的英国报纸上发表的“蚂蚁爬行”的问题.问题是:如图1,在一个长、宽、高分别为8m 8m 4m ,,的长方体房间内,一只蚂蚁在右面墙的高度一半位置(即M 点处),并且距离前面墙1m ,苍蝇正好在左面墙高度一半的位置(即N 点处),并且距离后面墙2m ,蚂蚁爬到苍蝇处应该怎样爬行所走路程最短,最短路程是多少m ?这只蚂蚁在长方体表面爬行的问题,引起了当时很多数学爱好者的研究与讨论,今天我们也一起来研究一下这个当时非常热门的数学问题!【基础研究】如图2,在长、宽、高分别为a ,b ,c ()a b c >>的长方体一个顶点A 处有一只蚂蚁,欲从长方体表面爬行去另一个顶点C '处吃食物,探究哪种爬行路径是最短的?(1)观察发现:蚂蚁从A 点出发,为了走出最短路线,根据两点之间线段最短的知识,并结合展开与折叠原理,一共有3种不同的爬行路线,即图3、图4、图5所示.填空:图5是由______面与______面展开得到的平面图形;(填“前”、“后”、“左”、“右”、“上”、“下”)(2)推理验证:如图3,由勾股定理得,()2222222AC a b c a b c ab '=++=+++,如图4,由勾股定理得,()2222222AC b c a a b c bc '=++=+++,如图5,()2222222AC a c b a b c ac '=++=+++.要使得AC '的值最小,①a b c >>……(请补全推理过程.......) ①ab ac bc >>①选择如图______情况,此时2AC '的值最小,则AC '的值最小,即这种爬行路径是最短的.(3)【简单应用】如图6,长方体的长,宽,高分别为24cm 12cm 40cm ,,,点P 是FG 的中点,一只蚂蚁要沿着长方体的表面从点A 爬到点P ,则爬行的最短路程长为______cm .(4)【问题回归】最后让我们再回到那道十九世纪英国报纸上发表的“蚂蚁爬行”的问题(如图1),那只蚂蚁所走的最短路程是______m .(1)在图1中,若①BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB①AC= ,OC①OA= ;。

北师大版八年级数学上册:1-2一定是直角三角形吗(教案)

北师大版八年级数学上册:1-2一定是直角三角形吗(教案)
2.应用勾股定理的逆定理判定直角三角形:学生通过解决实际问题,学会运用勾股定理的逆定理来判断一个三角形是否为直角三角形。
3.解决实际问题:结合实际情境,运用勾股定理及其逆定理,解决与直角三角形有关的问题。
本节课旨在帮助学生巩固勾股定理的知识,并学会运用勾股定理的逆定理解决实际问题,提高学生的逻辑思维能力和实际应用能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理逆定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理逆定理的判定条件和运用方法这两个重点。对于难点部分,我会通过举例和图形演示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理逆定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量三角形边长并验证勾股定理逆定理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理逆定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理逆定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级数学上册:1-2一定是直角三角形吗(教案)

初中数学北师大版八年级上册 第一章 1.2 一定是直角三角形吗 同步练习(解析版)

初中数学北师大版八年级上册 第一章 1.2 一定是直角三角形吗 同步练习(解析版)

初中数学北师大版八年级上学期第一章 1.2 一定是直角三角形吗一、单选题1.下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 2,3,4C. 1,1,D. 1,,32.已知以下三个数, 不能组成直角三角形的是( )A. 9、12、15B. 、3、2C. 0.3、0.4、0.5;D.3.a、b、c为△ABC三边,满足下列条件的三角形不是直角三角形的是()A. ∠C=∠A-∠BB. a:b:c = 1 : :C. ∠A∶∠B∶∠C=5∶4∶3D. ,4.如图,在边长为1的正方形组成的网格图中标有、、、四条线段,其中能构成一个直角三角形三边的线段是()A. ,,B. ,,C. ,,D. ,,二、填空题5.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=________.6.如图,方格纸中每个小正方形的边长均为1cm,△ABC为格点三角形.(1)△ABC的面积=________cm2;(2)判断△ABC的形状,并说明理由.三、解答题7.在△ABC中,,试判断△ABC的形状,并说明理由。

8.如图,在△ABC中,AB=AC,D是BC上任一点,且2AD2=BD2+CD2.求证:△ABC是直角三角形.9.一个零件的形状如图,按规定这个零件的∠A与∠BDC都要是直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DC=12,BC=13,BD=5.这个零件符合要求吗?四、作图题10.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,求线段AB的长度;若在图中画出以C为直角顶点的Rt△ABC,使点C在格点上,请在图中画出所有点C;(2)在图②中,以格点为顶点,请先用无刻度的直尺画正方形ABCD,使它的面积为13;再画一条直线PQ(不与正方形对角线重合),使PQ恰好将正方形ABCD的面积二等分(保留作图痕迹).11.图a.图b均为边长等于1的正方形组成的网格.(1)在图a空白的方格中,画出阴影部分的图形沿虚线AB翻折后的图形,并算出原来阴影部分的面积.(直接写出答案)(2)在图b空白的方格中,画出阴影部分的图形向右平移2个单位,再向上平移1个单位后的图形,并判断原来阴影部分的图形是什么三角形?(直接写出答案)答案解析部分一、单选题1. C解析:A.,∴选项不符合题意;B.,∴选项不符合题意;C.,∴选项符合题意;D.,∴选项不符合题意;故答案为:C。

北师版八年级数学上《一定是直角三角形吗》练习课

北师版八年级数学上《一定是直角三角形吗》练习课
北师大版八年级上
第一章 勾股定理
2 一定是直角三角形吗
提示:点击 进入习题
1 2 45 3A 4C
5B 6C 7C 8B
答案显示
提示:点击 进入习题
9D
10 C
11 ①
12 见习题
答案显示
13 见习题 14 见习题
15 见习题
1.阅读以下解题过程: 已知a,b,c为△ABC的三边长,且满足a2c2-b2c2= a4-b4,试判断△ABC的形状. 错解:因为a2c2-b2c2=a4-b4,① 所以c2(a2-b2)=(a2-b2)(a2+b2),② 所以c2=a2+b2.③ 所以△ABC为直角三角形.④
3.【2018•南通】下列长度的三条线段能组成直角三角形
的是( A )
A.3,4,5
B.2,3,4
C.4,6,7
D.5,1பைடு நூலகம்,12
4.【中考•南京】下列长度的三条线段能组成钝角三角形 的是( C )
A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7
* 5.【2019• 益 阳 】 已 知 M , N 是 线 段 AB 上 的 两 点 , AM =
* 2.【2019• 北 京 】 如 图 所 示 的 网 格 是 正 方 形 网 格 , 则 ∠PAB+∠PBA=________°(点A,B,P是网格线的 交点).
【点拨】如图,延长AP交网格边线于D,连接BD,设每个小正 方形的边长为1, 易知点D为格点,则PD2=BD2= 12+22=5,PB2=12+32=10, 所以PD2+DB2=PB2,PD=BD. 所以∠PDB=90°,所以△PDB为等腰直角三角形. 所以∠DPB=180°-∠APB=∠PAB+∠PBA=45°. 【答案】45

北师大版数学八年级上册 第1章 勾股定理 一定是直角三角形吗 习题课件

北师大版数学八年级上册 第1章 勾股定理 一定是直角三角形吗 习题课件

解 :小利的解答不正确.正确的解答过程如下: 这个三角形是直角三角形.理由如下: 5 3 因为 >2> , 2 2 所以b是这个三角形的最长边. 25 32 5 2 25 2 2 2 2 因为a +c = +2 = ,b = = , 4 4 2 2 所以a2+c2=b2.
①∠A=∠B-∠C;
②∠A∶∠B∶∠C=3∶4∶5; ③a2=(b+c)(b-c); ④a∶b∶c=5∶12∶13.
其中能判定△ABC是直角三角形的有( C )
A. 1个 B. 2 个 C. 3 个 D. 4 个
返回
8.(中考•达州)如图,在5×5的正方形网格中,从在格点 上的点A,B,C,D中任取三点,所构成的三角形恰 好是直角三角形的概率为( D )
两条水渠分别到试验田A,B;
乙方案:过点 C 作 AB 的垂线,垂足为 H ,先从水源 地C修筑一条水渠到线段AB上的H处,再从H分别向 试验田A,B修筑水渠. (1)请判断△ABC的形状(要求写出推理过程). (2) 两种方案中,哪一种方案所修的水渠较短?请通过 计算说明.
解:(1)因为AC2+BC2=1602+1202=40 000, AB2=2002=40 000, 所以AC2+BC2=AB2.
返回
5.已知△ABC的三边长分别为5,12,13,则△ABC的 面积为( A ) A.30 C.78 B.60 D.无法确定
返回
6.(中考•眉山)如图,每个小正方形的边长均为1,A,B, C是小正方形的顶点,则∠ABC的度数为( C )
A.90°
B.60°
C.45°
D.30°
返回
7.△ABC的三边长分别为a,b,c,下列条件:
返回

北师大版八年级(上)数学《一定是直角三角形吗》专题练习(含答案)

北师大版八年级(上)数学《一定是直角三角形吗》专题练习(含答案)

1.2一定是直角三角形吗专题判断三角形形状1. 已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形2. 在△ABC中,a=m2+n2,b=m2-n2,c=2mn,且m>n>0,(1)你能判断△ABC的最长边吗?请说明理由;(2)△ABC是什么三角形,请通过计算的方法说明.3. 张老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a、b、c与n之间的关系,并用含自然数n (n>1)的代数式表示a,b,c.(2)猜想:以a、b、c为边的三角形是否为直角三角形?请证明你的猜想.参考答案:1.D 【解析】∵a2c2-b2c2=a4-b4,∴(a2c2-b2c2)-(a4-b4)=0,∴c2(a+b)(a-b)-(a+b)(a-b)(a2+b2)=0,∴(a+b)(a-b)(c2-a2-b2)=0,∵a+b≠0,∴a-b=0或c2-a2-b2=0,所以a=b或c2=a2+b2,即它是等腰三角形或直角三角形.故选D.2.解:(1)a是最长边,其理由是:∵a-b=(m2+n2)-(m2-n2)=2n2>0,a-c=(m2+n2)-2mn=(m-n)2>0,∴a>b,a>c,∴a是最长边.(2)△ABC是直角三角形,其理由是:∵b2+c2=(m2-n2)2+(2mn)2=(m2+n2)2=a2,∴△ABC是直角三角形.3.解:(1)由图表可以得出:∵n=2时,a=22-1,b=2×2,c=22+1;n=3时,a=32-1,b=2×3,c=32+1;n=4时,a=42-1,b=2×4,c=42+1.∴a=n2-1,b=2n,c=n2+1.(2)以a、b、c为边的三角形是直角三角形.∵a2+b2=(n2-1)2+4n2=n4+2n2+1,c2=(n2+1)2=n4+2n2+1,∴a2+b2=c2,∴以a、b、c为边的三角形是直角三角形.。

北师大数学八年级上册--第一章 一定是直角三角形吗

北师大数学八年级上册--第一章 一定是直角三角形吗

连接中考
1.2 一定是直角三角形吗/
已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆 心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两 弧交于点C,连接AC,BC,则△ABC一定是( B ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
课堂检测
1.2 一定是直角三角形吗/
勾股数拓展性质: 一组勾股数,都扩大相同倍数k(k为正整数),得到一组新
数,这组数同样是勾股数.
巩固练习
1.2 一定是直角三角形吗/
下列各组数是勾股数的是 ( D )
A.3,4,6
B.6,7,8
C.0.3,0.4,0.5
D.5,12,13
温馨提示:根据勾股数的定义,勾股数必须为正整数,先排除 小数,再计算最长边的平方是否等于其他两边的平方和即可.
教材作业 从课后习题中选取 自主安排 配套练习册练习
巩固练习
1.2 一定是直角三角形吗/
如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中
有几个直角三角形,你是如何判断的?与你的同伴交流.
A 2E 2 D 1
F
4 3
B
C
4
解:△ABE,△DEF,△FCB 均为直角三角形,
由勾股定理知 BE2=22+42=20,EF2=22+12=5, BF2=32+42=25, 所以BE2+EF2=BF2, 所以△BEF是直角三角形.
探究新知
1.2 一定是直角三角形吗/
方法点拨
勾股定理与其逆定理的关系:勾股定理是已知直角 三角形,得到三边长的关系,它是直角三角形的重要性质 之一;而勾股定理的逆定理是由三角形三边长的关系判 断一个三角形是不是直角三角形,这是直角三角形的判 定,也是判断两直线是否垂直的方法之一.二者的条件和 结论刚好相反.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 一定是直角三角形吗
A组基础训练
1.下列哪几组数据能作为直角三角形的三边长的是________________.(填序号)
①9,12,15;②15,36,39;③12,35,36;④12,18,22.
2.一个三角形的三边长分别是15 cm,20 cm,25 cm,则这个三角形的面积是().A.250cm2 B.150 cm2C.200 cm2 D.不能确定
3.如图,在△ABC中,AD⊥BC于D,BD=9,AD=12,AC=20,则△ABC是(). A.等腰三角形 B.锐角三角形
C.直角三角形 D.钝角三角形
4.将直角三角形的三边扩大相同的倍数后,
得到的三角形是().
A.直角三角形 B.锐角三角形
C.钝角三角形 D.不能确定
5.如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有哪几个直角三角形?为什么?
6.以下列三组数据为边长的三角形,是直角三角形的是().
A.15 cm,20 cm,25 cm B.2cm,3 cm,4cm
C.6cm,7cm,8cm D.4cm,5cm,6cm
7.以下列三组数据为边长的三角形,不是直角三角形的是().
A.12cm,15 cm,9 cm B.8cm,6 cm,10cm
C.7cm,24cm,25cm D.7cm,5cm,6cm
8.在△ABC中,已知AB=12cm,AC=9cm,BC=15cm,则△ABC的面积等于().A.108cm2 B.90cm2 C.180cm2 D.54cm2
9.如图,在RtΔABC中,∠ACB=90°,BC=3,AC=4,AB的垂
直平分线DE交BC的延长线于点E,则CE的长为().
A. B.C.D.2
10.若三角形的三边长为5cm,12cm,13cm,则这个三角形的面积为
()
A.60cm2 B.30cm2 C.78cm2 D.65cm2
3
2
7
6
25
6
B组强化训练
1.以下列各组数为边长组成三角形:①3,4,5;②8,15,17;③10,24,25;④16,30,34.其中能构成直角三角形的序号有____________________.
2.已知三角形的三边长分别为6,10,8,则此三角形面积为________.
3.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则CE的值是_____________.
4.如图,在矩形ABCD中,AB=4cm,BC=2cm,把△ABC沿对角线AC向上对折后,AB的对应边AE与CD相交于点F,则DF的长为________cm.
5.如图,在Rt△ABC中,∠B=90°,AB=6 cm,BC=8 cm.把Rt△ABC沿过点A的直线对折,折痕为AE,使点B恰好落在AC边上,则CE的长为______cm.
6.如图,下列哪些三角形是直角三角形,哪些不是?为什么?
C组延伸拓广
一棵9m高的树被风折断,树顶落在离树根3m之处,若要查看断痕,要从树底开始爬多高?
参考答案
A组
1.①②
2.B
3.C
4.A
5.4个直角三角形,它们分别是△ABE.△DEF、△BCF、△BEF
6.A
7.D
8.D
9.B
10.B
B组
1.①②④
2.24
3.7/24
4.3/2
5.3
6. ④⑤是直角三角形,①②③⑥不是直角三角形
C组
4m。

相关文档
最新文档