Uniform Local Existence for Inhomogeneous Rotating Fluid Equations

合集下载

双语理论力学常用词汇表

双语理论力学常用词汇表

Sc-Te Words and Expressions used in TheoreticalMechanicsⅠAlphabet IndexAacceleration-due-to-gravity重力加速度acceleration加速度accommodate调和,调整addition合成aerodynamics空气动力学aerodynamic空气阻力algebra代数学align成一行amplitude振幅analytically解析法angular-impulse角冲量angular-momentum角动量angular-velocity角速度application应用apply施加,使用approach途径,趋近,方法arc-coordinates弧坐标axis轴Bbearing轴承,支撑面bit钻头bolt螺栓Ccam 凸轮cancel抵消,中和cantilever悬臂Cartesian-coordinate笛卡儿坐标系cast-iron铸铁center-of-gravity重心center-of-mass质心central-force向心力centroid形心chain-rule-of-differentiation链导法则circular-frequency圆频率clockwise(CW)顺时针clutch离合器coefficient系数collar套筒collect提取(公因式)collinear共线combine motion复合运动combine合并同类项,联立complementary-solution通解component分量,构成元件composite-body组合体composite-motion复合运动concept概念concurrent汇交的cone圆锥conic-section圆锥曲线conservation-of-momentum动量守恒conservation守恒conservative-force保守力consistent with….及…保持一致constants(const.)常数contour等高线,参照线constraint 约束conventional惯例的convention约定,惯例的convert- conversion转化coplanar共面的Coriolis-accelera tion科氏加速度corresponding相应的Coulomb's-law-of-friction库仑摩擦定律counterclockwise( CCW)逆时针couple(s)力偶crank曲柄cross-product叉乘法curvature曲率curved-surface曲面cycloid摆线cylinder圆柱,汽缸Dd'Alembert's-prin ciple达朗贝尔原理damped-vibration 衰减振动damp潮湿的,阻尼,衰减的dashed虚线的deduce推演,证明deformation形变degrees-of-freedom自由度density密度derivate求导derivative导数determinant行列式detrimental有害的diagonal对角线differential-differentiation微分dimension量纲,度量单位,维direction-cosine方向余弦direction方向displacement位移distributed-load分布载荷dot-product点乘法dynamics动力学Eeccentricity 偏心距,离心率ellipse椭圆elongation(弹簧等)伸长量equal-sign等号equation-of-motion运动方程equilibrium平衡equipotential-surfaces等势面equivalence等价equivalent等同的expand(多项式)展开exponent指数Ffinite限定的,有限的finite elementmethod 有限元方法formula公式Fourier-series傅立叶级数frequency频率friction摩擦Ggradient梯度graphically图解法gravitation引力gravity重力Hhard-steel高碳钢harmonic-motion谐运动helix-helical螺旋hinge门绞,铰链homogeneous均匀的,齐次的horizontal水平的hub轮毂humidity湿度hyperbola双曲线Iidentity恒等式illustrate举例说明impact碰撞impending临界的impulse冲量incline倾斜indicate=locate标明Inertial-Referenc e-Frame惯性系inertia惯性,惯量infinitesimal无穷小infinite无穷的initial-initially 初始的initial-condition 初始条件instant瞬时integral-integrat ion积分interchangeabilit y可交换的interval间隔inverse倒数invert反解investigate研究invoke调用Jjack千斤顶joint=node结合,节joule焦耳Kkey键,键槽kinematics运动学kinetic-energy动能kinetics=dynamics动力学LLaw-of-cosine余弦定理Law-of-sine正弦定理linear-vibration线振动line-segment线段load-intensity载荷强度load载荷lubricate润滑Mmagnitude量值大小mass质量matrix矩阵mean-radius中径mechanical-energy机械能mechanics力学mild-steel低碳钢misalignment未对准moment-arm矩臂moment-of-momentum(angular momentum)动量矩momentum(linear momentum)动量moment矩multiply乘法mutually相互的Nnatural-frequency固有频率negative负的negotiate=pass通过,越过non-collinear不共线的non-coplanar不共面的non-homogeneous非齐次non-inertial-reference-frame非惯性系normal法向的numerical数值的nut螺母Oobtain解得omitting忽略operator计算符,算子ordinary-differentiation常微分orthogonal-component正交分量outcome(最终)结果Pparabolic抛物线parallel-axis-theorem平行轴定理parallelogram-law 平四法则parallel平行parameter参数partial-different iation偏微分particle质点particular-soluti on特解path-coordinate自然坐标系pedal踏板pendulum摆period周期perpendicular垂直的phase相位pitch螺距plane平面plank铺板plot图像plus加上,正的polar-coordinate 极坐标position-vector位矢positive正的postulate=assume 假设potential-energy 势能preceding先前的preclude=exclude 排除preliminary 预备的principle-of-change-of-momentum动量定理principle-of-work-and-energy动能定理principle原理procedure=step步骤projectile抛体projection投影property性质proportional成比例的pulley滑轮Rradian弧度制radii= radius半径radius-of-gyration回转半径rate-of-change变化率rectangular-component正交分量rectangular矩形rectilinear直线运动reduce-reduction化简repel排斥resistance阻力resolve-resolution分解resonance共振resonance共振respectively=separately各自的restoring-force回复力restrict-restriction约束resultant合力resultant moment合力矩right-angle直角rigid body 刚体rim 轮缘,沿轮缘(滚动)rotate-rotation旋转Ssample示例scalar标量scale天平,磅秤screwdriver螺丝刀screw螺丝second-order-differentiation二阶微分section部件,截面sector扇形self lock自锁shaft连杆,轴simple-pendulum单摆simultaneously同时地solve theequationssimultaneously联立求解方程式skid=brake制动slack松弛,缝隙slope斜度,斜率slot滑槽socket插槽,嵌槽speed速率(s) spool线框,线轴stability稳定性statics静力学steer=drive操纵,驾驶stiffness劲度系数subscript下标substantially充分的substitute-substi tuting取代subtract=subtract ion减法sufficient-and-ne cessary-condition 充要条件summation求和superposition叠加survey测量,调查suspend悬挂symmetry对称Ttangent-tangential切向(的)Taylor-series泰勒级数tendency倾向term术语theorem定理法则thread螺纹thrust插入tip尖端,翻倒tire=tyre轮胎torque扭矩traction牵引trajectory=path轨迹transfer-couple附加力偶translate平动transport牵连的triangle三角triple矢量混合积tripod三脚架truss桁架Uuniform=homogeneous均匀的universal-joint万向节unwind绷紧的,伸直的Vvalidate验证(有效)vector矢量velocity速度(v)versus对,比vertex-angle顶角vertical垂直virtual-work虚功vise虎钳Wwarrant=guarantee保证watt瓦特wear磨损wedge楔weld焊接winch绞盘wrench扳手,力螺旋Yyield服从(定律)ⅡClassified Index▉AlgebraAlgebra代数学approach途径,趋近,方法equal-sign等号equivalence等价equivalent等同的formula公式identity恒等式operator计算符,算子positive正的negative负的plus加上,正的minus减去,负的coefficient系数constants常数parameter参数exponent指数inverse倒数multiply=time乘法subtract=subtract ion减法arc-coordinates弧坐标Cartesian-coordin ate笛卡儿坐标系polar-coordinate 极坐标path-coordinate自然坐标系cross-product叉乘法dot-product点乘法triple矢量混合积matrix矩阵determinant行列式dimension维,量纲,度量单位rate-of-change变化率derivative导数derivate求导chain-rule-of-differentiation链导法则integral-integration积分differential-differentiation微分ordinary-differentiation常微分partial-differentiation偏微分second-order-differentiation二阶微分differential-equation微分方程homogeneous齐次的non-homogeneous非齐次的complementary-solution通解particular-solution特解initial-condition初始条件Fourier-series傅立叶级数Taylor-series泰勒级数gradient梯度direction-cosine方向余弦infinitesimal无穷小numerical数值的plot图像proportional成比例的slope斜度,斜率▉Geometrycone圆锥cylinder圆柱rectangular矩形triangle三角sector扇形conic-section圆锥曲线ellipse椭圆hyperbola双曲线parabolic抛物线cycloid摆线eccentricity 偏心距,离心率helix-helical螺旋line-segment线段projection投影radii= radius半径right-angle直角vertex-angle顶角plane平面section截面diagonal对角线centroid形心symmetry对称curvature曲率curved-surface曲面Law-of-cosine余弦定理Law-of-sine正弦定理▉Basic Concepts & Termsconcept概念aerodynamics空气动力学mechanics力学statics静力学kinematics运动学kinetics=dynamics 动力学Inertial-Referenc e-Frame惯性系non-inertial-refe rence-frame非惯性系inertia惯性,惯量mass质量particle质点rigid刚体center-of-gravity 重心center-of-mass质心restriction约束couple(s)力偶transfer-couple附加力偶wrench力螺旋aerodynamic空气阻力central-force向心力friction摩擦力resistance阻力gravitation引力gravity重力resultant合力conservative-force保守力moment矩moment-arm矩臂orthogonal-component正交分量rectangular-component正交分量stiffness劲度系数elongation(弹簧等)伸长量torque扭矩scalar标量vector矢量position-vector位矢direction方向displacement位移acceleration加速度acceleration-due-to-gravity重力加速度Coriolis-acceleration科氏加速度combine motion复合运动composite-motion复合运动degrees-of-freedom自由度equation-of-motion运动方程rectilinear直线运动translate平动rotate-rotation转动trajectory=path轨迹composite-body组合体projectile抛体deformation形变density密度equilibrium平衡load载荷distributed-load分布载荷load-intensity载荷强度stability稳定性self lock自锁velocity速度(v)angular-impulse角冲量angular-momentum角动量angular-velocity角速度circular-frequency圆频率impulse冲量momentum动量moment-of-momentum动量矩kinetic-energy动能potential-energy 势能mechanical-energy 机械能parallel-axis-the orem平行轴定理parallelogram-law 平四法则principle-of-chan ge-of-momentum动量定理principle-of-work -and-energy动能定理conservation守恒conservation-of-momentum动量守恒equipotential-surfaces等势面radius-of-gyration回转半径virtual-work虚功amplitude振幅damped-vibration衰减振动damp潮湿的,阻尼,衰减的frequency频率harmonic-motion谐运动linear-vibration线振动natural-frequency固有频率pendulum摆period周期phase相位restoring-force回复力resonance共振▉Common Mechanism & Structureaxis轴bearing轴承,支撑面bit钻头bolt螺栓cam 凸轮cantilever悬臂clutch离合器collar套筒crank曲柄cylinder汽缸,液压柱hinge门绞,铰链hub轮毂jack千斤顶joint=node结合,节key键,键槽mean-radius中径nut螺母pedal踏板pitch螺距plank铺板pulley滑轮rim 轮缘scale天平,磅秤screwdriver螺丝刀screw螺丝shaft连杆,轴simple-pendulum单摆slack松弛,缝隙slot滑槽socket插槽,嵌槽spool线框,线轴thread螺纹tip尖端tire=tyre轮胎tripod三脚架truss桁架universal-joint万向节vise虎钳wedge楔winch绞盘wrench扳手▉Keywords in Solutionsaccommodate调和,调整according to依据(定理)analytically解析法的graphically图解法的application应用sample示例apply施加,使用invoke调用postulate=assume 假设preclude=exclude 排除approach途径principle原理theorem定理法则property性质procedure=step步骤deduce推演,证明illustrate举例说明indicate=locate标明validate验证(有效)warrant=guarantee 保证yield服从(定律)reduce-reduction 化简resolve-resolution分解addition合成superposition叠加projection投影cancel抵消,中和collect提取(公因式)combine合并同类项,联立expand(多项式)展开summation求和invert反解substitute-substituting取代convert-conversion转化obtain解得outcome(最终)结果initial=initially初始的conventional惯例的convention约定,惯例的corresponding相应的finite限定的infinite无穷的respectively=separately各自的,分别的preliminary 预备的simultaneously同时地,联立substantially充分的interchangeability可交换的sufficient-and-necessary-condition充要条件omitting忽略subscript下标▉State Descriptionalign成一行misalignment未对准clockwise(CW)顺时针counterclockwise( CCW)逆时针collinear共线coplanar共面的noncollinear不共线的noncoplanar不共面的component分量,构成元件resultant合力,合成量horizontal水平的incline倾斜vertical铅垂的perpendicular垂直的parallel平行normal法向的tangent-tangential切向(的)concurrent汇交的initial=initially初始的final末态的instant瞬时impending临界的interval间隔magnitude量值大小direction方向sense 方向mutually相互的uniform=homogeneo us均匀的unwind绷紧的,伸直的contour等高线,参照线negotiate=pass通过,越过repel排斥skid=brake制动suspend悬挂tendency倾向thrust插入wear磨损weld焊接▉Interchangeable Wordsapply =invoke调用,使用indicate=locate标明joint=node结合,节kinetics=dynamics 动力学negotiate=pass通过,越过postulate=assume 假设preclude=exclude排除procedure=step步骤radii= radius半径rectangular-component=orthogonal-component正交分量respectively=separately各自地steer=drive操纵,驾驶tire=tyre轮胎uniform=homogeneous均匀的warrant=guarantee保证▉AbbreviationCCW=counterclockw ise逆时针CW=clockwise顺时针FBD=Free-body-dia gramMAD=Force-acceler ation-diagram const=constant常数,恒量rev=revolution 转数deg=degree度数A.M.=absolute-motionR.M.=relative-motionT.M.=transport-motionDOF=degree-of-freedom自由度数IRF=Inertial-Reference-Frame惯性系▉Othersaxiom 公理theorem 定理law 定律principle 原理sequence, inference, deduction推论definition 定义conclusion 结论convention 约定hypothesis 假设equation 方程equality 等式inequality不等式formula, formulas/ formulae公式formulation (集合名词)公式assumption 假设 significant digit 有效数字integral 整数 fraction 分数 decimal 小数 cast-iron 铸铁hard-steel 高碳钢 mild-steel 低碳钢 aluminum 铝 humidity 湿度 joule 焦耳 watt 瓦特Newton ’s law 牛顿运动定律D'Alembert's-prin ciple 达朗贝尔原理 Cartesian-coordin ate 笛卡儿坐标系Coriolis-accelera tion 科氏加速度 Coulomb's-law-of-friction 库仑摩擦定律Taylor-series 泰勒级数Fourier-series 傅立叶级数Ⅲ read the expression correctly21a half /(one)half 31a third 41a quarter/ one(a) fourth 43 three fourth /three overfour125five twelfth 212 two and a half 1.0point one 35.2 two point three five9.4 four point ninerecurring+ plus /positive / and- minus /negative/subtract()⋅⨯ times / (be ) multipliedby() (be) divided by = is equal to /equals≈ is approximately equal to≡ is identically equal ton x the nth power of x / x tothe power n2x x square 3x x cube nx1the nth root of xx the square root of xb a > a is greater than bb a < a is less than bb a >> a is much (far)greaterthan b()x f x x lim 1→ the limitation of ()x fwhen x approaches (tends) to x sub oney ' y primey '' y double prime y ''' y triple primexx dot xx double dots / x two dots ∆ delta()xx f bad ⎰ integral betweenlimits a and b∞ infinityxyd d the first derivative of y with respect to xxy22∂∂ the second derivative of y with respect to xxu ∂∂the partial derivative of uwith respective to x。

分生总结

分生总结

名词解释1.操纵子:是由结构基因及其上游调控序列组成的转录单元,结构基因转录受调控序列控制;也是原核生物基因组构成的基本单位,通常由2个以上的编码序列与启动序列、操纵序列以及其他调节序列在基因组中成簇串联组成。

2.选择性剪接(alternative splicing):是指从一个mRNA前体中通过不同的剪接方式(选择不同的剪接位点组合)产生不同的mRNA剪接异构体的过程,而最终的蛋白产物会表现出不同或者是相互拮抗的功能和结构特性;亦或是在相同的细胞中由于表达水平的不同而导致不同的表型。

3易感基因:(susceptible gene)和特定疾病具有阳性关联的基因或等位基因。

在适宜的环境刺激下能够编码遗传性疾病或获得疾病易感性的基因。

4.信号转导分子(signal transducer):细胞外的信号经过受体转换进入细胞内,通过细胞内一些蛋白质和小分子活性物质进行传递,这些能够传递信号的分子称为信号转导分子。

5.表达载体(expression vector):指的是为了使插入的外源DNA序列可转录、进而翻译成多肽链而特意设计的克隆载体称为表达载体。

6.核酸分子杂交原理:在DNA变性后的复性过程中,如果将不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件下,就可以在不同的分子间形成杂化双链。

这种杂化双链可以在不同的DNA和DNA之间形成,也可以在DNA和RNA分子间或RNA和RNA分子间形成,这种现象称为核酸分子杂交原理。

(这种原理可以用来研究DNA分子中某一种基因的位置、鉴定两种核酸分子间的序列相似性、检测某些专一序列在待测样品中存在与否等)。

常用技术:Southern 印迹杂交(鉴别DNA靶分子的杂交、待测核酸是DNA片段)、Northern印迹杂交(鉴别RNA 靶分子、待测核酸是RNA)、斑点杂交、原位杂交和液相杂交。

7.基因诊断:是以DNA或RNA为诊断材料,通过检查基因存在、缺陷或表达异常,对人体状态和疾病做出诊断的方法和过程。

分子遗传学常用词汇

分子遗传学常用词汇

分子遗传学常用词汇词汇医学英语专业英语医学术语分子遗传学【字体:小大】腺嘌呤Adenine(A):一种碱基,和胸腺嘧啶T结合成碱基对。

等位基因(Alleles):同一个基因座位上的多种表现形式。

一般控制同一个性状,比如眼睛的颜色等。

氨基酸(Amino Acid):共有20种氨基酸组成了生物体中所有的蛋白质。

蛋白质的氨基酸序列和由遗传密码决定。

扩增(Amplification):对某种特定DNA片段拷贝数目增加的方法,有体内扩增和体外扩增两种。

(参见克隆和PCR技术)克隆矩阵(Arrayed Library):一些重要的重组体的克隆(以噬菌粒,YAC或者其他作载体),这些重组体放在试管中,排成一个二维矩阵。

这种克隆矩阵有很多应用,比如筛选特定的基因和片段,以及物理图谱绘制等。

从每种克隆得到的遗传连锁信息和物理图谱信息都输入到关系数据库中。

自显影技术(Autoradiography):使用X光片来显示使用放射性元素标记的DNA片段的位置,常用在使用凝胶将DNA片段按照片段大小分离之后,显示各个DNA片段的位置。

常染色体(Autosome):和性别决定无关的染色体。

人是双倍体动物,每个体细胞中都含有46条染色体,其中22对是常染色体,一对是性染色体(XX或者XY)。

噬菌体(Bacteriophage):参见phage碱基对(Base Pair,bp):两个碱基(A和T,或者C和G)之间靠氢键结合在一起,形成一个碱基对。

DNA的两条链就是靠碱基对之间的氢键连接在一起,形成双螺旋结构。

碱基序列(Base sequence):DNA分子中碱基的排列顺序。

碱基序列分析(Base Sequence Analysis):分析出DNA分子中碱基序列的方法(这种方法有时能够全自动化)cDNA:参见互补DNA厘摩(cM):一种度量重组概率的单位。

在生殖细胞形成的减数分裂过程中,常常会发生同源染色体之间的交叉现象,如果两个标记之间发生交叉的概率为1%,那么它们之间的距离就定义为1cM.对人类来说,1cM大致相当于1Mbp.着丝点(Centromere):在细胞的有丝分裂过程中,从细胞的两端发出纺锤丝,连接在染色体的着丝点上,将染色体拉向细胞的两级。

(2021年整理)Epigeneticsglossary表观遗传名词解释

(2021年整理)Epigeneticsglossary表观遗传名词解释

Epigeneticsglossary表观遗传名词解释
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(Epigeneticsglossary表观遗传名词解释)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为Epigeneticsglossary表观遗传名词解释的全部内容。

Epigenetics glossary
Discover our epigenetics glossary with definitions covering the。

Use of Public Human Genetic Variant 1

Use of Public Human Genetic Variant 1

Use of Public Human Genetic Variant 1Databases to Support Clinical Validity 2for Next Generation Sequencing3(NGS)-Based In Vitro Diagnostics 456Draft Guidance for Stakeholders and 7Food and Drug Administration Staff 89DRAFT GUIDANCE1011This draft guidance document is being distributed for comment purposes only. 1213Document issued on July 8, 2016.141516You should submit comments and suggestions regarding this draft document within 90 days of 17publication in the Federal Register of the notice announcing the availability of the draft18guidance. Submit electronic comments to . Submit written19comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 205630 Fishers Lane, rm. 1061, Rockville, MD 20852. Identify all comments with the docket21number listed in the notice of availability that publishes in the Federal Register.2223For questions about this document concerning devices regulated by CDRH, contact Personalized 24Medicine Staff at 301-796-6206 or PMI@. For questions regarding this document as 25applied to devices regulated by CBER, contact the Office of Communication, Outreach and26Development in CBER at 1-800-835-4709 or 240-402-8010 or by email at ocod@. 27282930U.S. Department of Health and Human Services31Food and Drug Administration32Center for Devices and Radiological Health33Office of In Vitro Diagnostics and Radiological Health3435Center for Biologics Evaluation and Research36Preface3738Additional Copies394041CDRH42Additional copies are available from the Internet. You may also send an e-mail request to CDRH-43Guidance@ to receive a copy of the guidance. Please use the document number 16008 to identify the guidance you are requesting.444546CBER4748Additional copies are available from the Center for Biologics Evaluation and Research (CBER), by 49written request, Office of Communication, Outreach, and Development (OCOD), 10903 New50Hampshire Ave., Bldg. 71, Room 3128, Silver Spring, MD 20993-0002, or by calling 1-800-835-514709 or 240-402-8010, by email, ocod@ or from the Internet at52/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidan ces/default.htm.5354Table of Contents555657I.Introduction (1)58II.Background (1)59III.Scope (4)60IV.Recommendations to Support Recognition of Publicly Accessible Genetic Variant 61Databases of Human Genetic Variants as Sources of Valid Scientific Evidence62Supporting Clinical Validity of NGS Tests (4)63A.Database Procedures and Operations (5)64B.Data Quality (6)65C.Curation, Variant Interpretation and Assertions (7)66D.Professional Training and Conflicts of Interest (8)67V.FDA’s Genetic Variant Database Recognition Process (8)68A.Recognition Process for Genetic Variant Databases (9)691.Submission for Recognition (9)2.FDA Review of Genetic Variant Database Policies and Procedures (9)70713.Maintenance of FDA Recognition (10)72e of Third Parties (11)e of Data and Assertions from Recognized Genetic Variant Databases (11)7374Use of Public Human Genetic Variant 75Databases to Support Clinical Validity 76for Next Generation Sequencing7778798081828384858687888990919293949596979899100101102103104requirements are cited. The use of the word should in Agency guidance means that something is suggested or recommended, but not required.105106II.Background107108109NGS can enable rapid, broad, and deep sequencing of a portion of a gene, an entire exome(s), or 110a whole genome and may be used clinically for a variety of diagnostic purposes, including riskContains Nonbinding RecommendationsDraft – Not For Implementation111prediction, diagnosis, and treatment selection for a disease or condition. The rapid adoption of 112NGS-based tests in both research and clinical practice is leading to identification of an increasing 113number of genetic variants, including rare variants that may be unique to a single individual or 114family. Understanding the clinical significance of these genetic variants holds great promise for 115the future of personalized medicine.116117Although the importance of genetic variant data aggregation is widely recognized, today much of 118the data that would be useful to support clinical validity of NGS-based tests is generally stored in 119a manner in which it is not publicly accessible. Aggregation of clinical genotype-phenotype120associations and evaluation of the level of evidence underlying these associations under a well-defined process will continue to promote more rapid translation of genetic information into121122useful clinical evidence.123For the purposes of this draft guidance document, a “genetic variant database” is a publicly124125accessible database of human genetic variants that aggregates and curates reports of human126phenotype-genotype relationships to a disease or condition with publicly available127documentation of evidence supporting those linkages. Genetic variant databases may also128include assertions1 about specific genotype-phenotype correlations.129130FDA believes that the aggregation,2 curation,3 and interpretation4 of clinical genotype-phenotype 131associations in genetic variant databases could support the clinical validity of claims made about 132a variant detected by an NGS-based test and a disease or condition. In relying on assertions in 133genetic variant databases that follow the recommendations in this guidance, FDA hopes to134encourage the deposition of variant information in such databases, reduce regulatory burden on 135test developers, and spur advancements in the interpretation and implementation of precision 136medicine.137138Publicly Accessible Databases of Human Genetic Variants as Sources of Valid Scientific139Evidence Supporting Clinical Validity140141To determine whether an NGS-based test has a reasonable assurance of safety and effectiveness, 142the Agency relies upon the review of valid scientific evidence to support the analytical and143clinical performance of the test. Valid scientific evidence is defined as evidence from well-144controlled investigations, partially controlled studies, studies and objective trials without145matched controls, well-documented case histories conducted by qualified experts, and reports of 146significant human experience with a marketed device, from which it can fairly and responsibly1 For the purposes of this guidance, an assertion is the informed assessment of a genotype-phenotype correlation (orlack thereof) given the current state of knowledge for a particular variant. An assertion is generally noted in thegenetic variant database entry for a particular variant (e.g., benign, drug resistant, etc.).2 For the purposes of this guidance, the term aggregation refers to the process by which variant data aresystematically input into a genetic variant database. This process may require that data conform to specified formats.3 For the purposes of this guidance, curation refers to the process by which data regarding a specific variant arecollected from various sources, annotated, and maintained over time.4 For the purposes of this guidance, the term interpretation refers to the process by which genetic variant databasepersonnel evaluate the evidence regarding a linkage between a genetic variant and a disease or condition and make an assertion about that linkage (or lack thereof).Contains Nonbinding RecommendationsDraft – Not For Implementation147be concluded by qualified experts that there is a reasonable assurance of safety and148effectiveness.5In determining whether a particular NGS test has a reasonable assurance of safety 149and effectiveness, FDA must determine, based on valid scientific evidence that “in a significant 150portion of the target population, the use of the device for its intended uses and conditions of use, 151when accompanied by adequate directions for use and warnings against unsafe use, will provide 152clinically significant results.”6153The evidence residing in many genetic variant databases has been collected from multiple154155sources that can meet the valid scientific evidence definition, such as evidence from well-156controlled clinical investigations, clinical evidence generated in CLIA (Clinical Laboratory157Improvement Amendments of 1988)-certified laboratories, published peer-reviewed literature, 158and certain case study reports. Some organizations that are currently developing genetic variant 159databases have adopted protocols and methodologies (e.g., quality measures) and/or external 160guidelines (e.g., from professional societies or standards development organizations) for161evidence aggregation, curation, and interpretation practices. While interpretation processes may 162vary across databases and organizations, they typically involve the use of qualified experts who 163make informed conclusions about the presence or absence of a genetic variant and its meaning 164for a particular disease or clinical decision.165166Further, there are several parallels between the standards set forth by well-recognized167professional guidelines for variant interpretation and FDA review of clinical validity. Personnel 168interpreting variants use a range of evidence, including the types and positions of variants,169inheritance, prevalence, well-established functional studies, and prior knowledge of gene-disease 170relationships. Generally, the standards for use of evidence appear to parallel the types of171evidence appropriate to support an FDA premarket submission. Under 21 CFR 860.7(c)(2),172isolated case reports, random experience, reports lacking sufficient details to permit scientific 173evaluation, and unsubstantiated opinions are not regarded as valid scientific evidence.174Accordingly, FDA believes that summary literature is inferior in this respect to data available for 175independent evaluation. FDA assesses clinical validity based on the totality of availableevidence provided in a given submission. Similarly, well-recognized professional guidelines 176177dictate that database personnel interpreting variants integrate multiple lines of evidence to make 178an assertion of clinical validity.179180The Agency believes such practices help assure the quality of data and assertions within genetic 181variant databases and has built upon these approaches in developing the recommendations in this guidance.182183184FDA has long believed that public access to data is important so that all interested persons (e.g., 185healthcare providers and patients) can make the best medical treatment decisions. To that end, 186for all IVDs that have received clearance or de novo classification from FDA since November 1872003, FDA has published a Decision Summary containing a review of the analytical and clinical validity data and other information submitted by the applicant to support the submission and 1885 21 CFR 860.7(c)(2).6 21 CFR 860.7(e)(1).Contains Nonbinding RecommendationsDraft – Not For Implementation189FDA’s justification for clearing or classifying the IVD; FDA is also required to publish190Summaries of Safety and Effectiveness Data for approved PMAs under section 520(h) of theFederal Food, Drug and Cosmetic Act (FD&C Act) (21 U.S.C. 360j(h)).7 FDA believes that 191192similar public availability and access to data contained in genetic variant databases is importantto patients and healthcare providers in order to make fully informed medical decisions.193194195FDA believes that if genetic variant databases follow the recommendations in this document,including transparency regarding evidence evaluation, and obtain FDA recognition as described 196197below, the data and assertions within would generally constitute valid scientific evidence that can198be used to support clinical validity.199III.Scope200201202This draft guidance document describes FDA’s considerations in determining whether a genetic203variant database is a source of valid scientific evidence that could support the clinical validity of204an NGS-based test in a premarket submission. This draft guidance further outlines the process by205which administrators8 of publicly accessible genetic variant databases could voluntarily apply to206FDA for recognition, and how FDA would review such applications and periodically reevaluate207recognized databases.208209The genetic variant databases discussed in this draft guidance only include those that contain210human genetic variants, and do not include databases used for microbial genome identificationand detection of antimicrobial resistance and virulence markers. This draft guidance does not 211212apply to software used to classify and interpret genetic variants, but instead, only regards use ofcurated databases using expert human interpretation.213214IV.Recommendations to Support Recognition of Publicly 215Accessible Genetic Variant Databases of Human216Genetic Variants as Sources of Valid Scientific Evidence 217Supporting Clinical Validity of NGS Tests218219220FDA believes that evidence contained in a genetic variant database that conforms to the221recommendations described below would generally constitute valid scientific evidence that can 222be used to support the clinical validity of an NGS-based test.223FDA believes that such a genetic variant database would: (1) operate in a manner that provides 224225sufficient information and assurances regarding the quality of source data and its evidence7 No Decision Summaries or Summaries of Safety and Effectiveness Data are posted for those devices for which theapplicant failed to demonstrate substantial equivalence or a reasonable assurance of safety and effectiveness.8 FDA acknowledges that many databases may not use the term “administrator” or may have a committee ofindividuals that oversee the database. Therefore, for the purposes of this guidance, a genetic variant databaseadministrator is the entity or entities that oversee database operations.Contains Nonbinding RecommendationsDraft – Not For Implementation226review and variant assertions; (2) provide transparency regarding its data sources and its227operations, particularly around how variant evidence is evaluated and interpreted; (3) collect, 228store, and report data and conclusions in compliance with all applicable requirements regarding 229protected health information, patient privacy, research subject protections, and data security; and 230(4) house sequence information generated by validated methods.231232In the subsections below, FDA discusses recommendations for the operation of a genetic variant 233database, and the aggregation, curation, and interpretation of data therein, so that such data234would generally constitute valid scientific evidence supportive of clinical validity. FDA235acknowledges that individual genetic variant databases may have different, but equally236scientifically valid, approaches to assuring data quality, clinical relevance, data security, patient privacy, and transparency. Additionally, FDA recognizes that several professional societies have 237238or are developing guidelines for genetic variant curation and interpretation that may differ239depending upon discipline, but may each be appropriate in the context of the intended use.240Genetic variant database administrators should focus on ensuring that their procedures and241quality requirements are sufficiently robust to provide a high degree of confidence in their242conclusions regarding genotype-phenotype associations.243A.Database Procedures and Operations244245246Transparency and Public Accessibility: FDA recommends that genetic variant databaseadministrators make publicly available sufficient information regarding data sources and247248standard operating procedures (SOPs) for evaluation and interpretation of evidence to allow FDA and the public to understand the criteria and processes used to collect and interpret evidence249250about variants and enable patients and healthcare providers to make fully informed medical251decisions.252253SOP Version Control: SOPs should define how variant information is aggregated, curated, and 254interpreted. These SOPs should be documented and versioned. Changes to SOPs should be255clearly documented with sufficiently detailed information regarding the change accompanied by 256any necessary explanation to ensure all stakeholders understand any limitations created by or 257implications of the change in procedure. To maintain quality variant assertions and ensure thatgenetic variant database operations keep pace with advances in technology and scientific258259knowledge, operations and SOPs should be reviewed at least on an annual basis.260Data Preservation: FDA recommends that genetic variant database administrators have261262processes in place for assessing overall database stability and architecture and for ensuring that 263data linkages are properly maintained. When a genetic variant database contains linkages to 264secondary databases, the genetic variant database administrator should have predefined processes 265in place to recognize changes to the secondary databases and account for them in version control 266of the primary database. FDA recommends genetic variant database administrator back-up thedatabase on a regular basis so that it can be reinstated as necessary.267268269Genetic variant database administrators should have a plan in place to ensure database content 270and processes are preserved in the event a genetic variant database ceases operations271permanently or temporarily (e.g., a database loses funding, infrastructure upgrades). A locationContains Nonbinding RecommendationsDraft – Not For Implementation272to deposit data, including versioning information and supporting SOPs and documentation, in the 273event that the genetic variant database ceases operation should be identified.274275Security and Privacy: Genetic variant database operations must be in compliance with all276applicable federal laws and regulations (e.g., the Health Insurance Portability and Accountability 277Act, the Genetic Information Nondiscrimination Act, the Privacy Act, the Federal Policy for the 278Protection of Human Subjects (“Common Rule”), etc.) regarding protected health information, 279patient privacy, research involving human subjects, and data security, as applicable. It is the 280responsibility of the genetic variant database administrator to identify the applicable laws and 281regulations and to assure that any requirements are addressed. Genetic variant database282administrators should also put in place adequate security measures to ensure the protection and 283privacy of patient and protected health information and provide training for database staff on 284security and privacy protection.285286Data formats: To facilitate genetic variant database use for regulatory purposes and to help287assure the accuracy and quality of variant assertions, genetic variant database administratorsshould employ commonly accepted data formats and identify which format is in use by the288289genetic database. This standardization will help minimize ambiguity regarding variants and290better enable comparisons of variant assertions between different databases or other entities. 291B.Data Quality292293294It is essential that the data and information regarding genotypes and phenotypes or clinical295information placed into the genetic variant database are of sufficient quality, and based on296current scientific knowledge, in order for there to be a reasonable assurance that the assertions 297made linking specific genetic variants to diseases or conditions are accurate.298299Nomenclature: To aid in the accurate interpretation of genetic variants, genetic variant databases 300should use consistent nomenclature that is widely accepted by the genomics community for gene names and/or symbols, genomic coordinates, variants, described clinical and functional301302characteristics, and classifications. The genetic variant database administrator should also make 303available a detailed description of which nomenclature is used to allow FDA and external users to accurately interpret the information presented.304305306Metadata: Variant data in the genetic variant database should be accompanied by metadata,including the number of independent laboratories and/or studies reporting the variant307308classification, name of the laboratory(ies) that reported the variant, the name of the test used to 309detect the variant, and, to the extent possible, details of the technical characteristics of the test 310that was used (e.g., reference sequence version or build, instrument, software, bioinformatics 311tools, etc.) and variant characteristics (e.g., zygosity, phasing, and segregation). Genetic variant 312databases should clearly and transparently document evidence source(s) used to support variant interpretation (e.g., literature, well-documented case histories, etc.).313314315Data Uniqueness: Genetic variant database operations should also include methods to ensure that 316individual data points (e.g., a variant from one individual for a particular phenotype) are not317represented more than once in the database.Contains Nonbinding RecommendationsDraft – Not For ImplementationC.Curation, Variant Interpretation and Assertions318319320The processes that genetic variant database personnel use for curation and variant interpretation should be based on well-defined SOPs and carried out by qualified professionals.321322323Curation and Variant Interpretation: Written SOPs for curation and variant interpretation,including evaluation of data from clinical practice guidelines, peer-reviewed literature, and pre-324325curated knowledge bases, should be available to the public for review. SOPs should generally 326include validated decision matrices, such as those based on well-recognized professionalguidelines. All genetic variant database curation and interpretation rules, and future327328modifications of those rules, should be explained and made available to the public. Furthermore, 329if curated data or variant interpretations from other sources are to be integrated into the genetic 330variant database, then the curation and interpretation processes and data quality of those outside 331sources should be audited by the database administrator on a regular basis. Each interpretation 332should be performed independently by at least two qualified and trained professionals, as333discussed below, and genetic variant databases should have SOPs for resolving differences in 334interpretation.Providing SOPs publicly for each of these activities will allow outside users to 335evaluate the evidence used in variant interpretation and thereby promote the consistency of336interpretation.337338FDA believes that use of publicly available decision matrices9 for variant interpretation that are 339based on rigorous professional guidelines is central to assuring that assertions from genetic340variant databases constitute valid scientific evidence supporting the clinical validity of a test. 341FDA reviewers must evaluate evidence in the context of a test’s intended use and conditions of 342use, including specific facts about genes or diseases under consideration (e.g., population343incidence of a disease, variant incidence) into their review. See 21 CFR 860.7(e)(1). Similarly, 344such factors should be incorporated into a finalized decision matrix.345346Assertions:The types of evidence that personnel interpreting variants may use for an347interpretation, and their corresponding strengths, should be defined, and combined into a scoring 348system. Assertions within an FDA-recognized genetic variant database should be appropriate to 349the level of certainty and the nature of the genotype-phenotype relationship and be adequately 350supported. Assertions should be versioned, such that changes in assertions over time arerecorded and maintained. Assertions and the evidence underlying them should be truthful and not 351352misleading and be made in language that is clear and understandable. In order to be FDA-353recognized, a genetic variant database should not include any recommendations regardingclinical treatment or diagnosis.354355356For example, it is appropriate for an assertion to include descriptive language about a variant 357such as responder, non-responder, pathogenic, benign, likely pathogenic, likely benign, variant 358of unknown significance, etc. as long as such language is truthful, not misleading, and supported 359by adequate evidence detailed within the genetic variant database. FDA believes that it is9 For the purposes of this guidance, a decision matrix is an evidence-based tool used to guide the interpretation ofthe genotype-phenotype relationship between variants and diseases or conditions.Contains Nonbinding RecommendationsDraft – Not For Implementation360generally not scientifically appropriate to make a definitive assertion (e.g., pathogenic) about the 361clinical validity of a variant based on a single piece of evidence, or on only weak evidence.Assertions that a particular genotype-phenotype association is clinically valid should generally 362363involve multiple lines of evidence and, at a minimum, should identify a primary source of364scientific evidence and other supporting evidence. Further, wherever appropriate to avoid any 365potential misunderstanding regarding the strength of the evidence supporting an assertion, the 366assertion should include a clear description of the evidence associated with it.367D.Professional Training and Conflicts of Interest368369370Professional Training: FDA recognizes that many different types of genetics professionals may 371be involved in the curatorial and interpretive process as part of a team (e.g., genetic counselors, 372Ph.D.-level scientists, physicians). Adequate training and expertise of personnel interpreting 373variants plays an important role in the quality of variant review and interpretation. FDA believes 374that interpretation should be performed by qualified professionals with appropriate levels of375oversight in place (e.g., multiple levels of review). Personnel interpreting variants should have 376received adequate training and there should be methodologies in place, such as proficiency377testing, to ensure that such personnel meet and maintain high quality standards over time.378379Finally, curation procedures should ensure that all data has been collected in compliance with all 380applicable requirements for protecting patient health information and research involving human 381subjects.382383Conflicts of Interest: Conflicts of interest, especially financial ones, could introduce bias and 384undermine the quality of variant interpretations in genetic variant databases, as well as the385confidence in such interpretations, if not adequately mitigated. To be considered for recognition 386by FDA, efforts should be made to minimize, and make transparent, any potential conflicts of 387interest pertaining to a genetic variant database or its personnel.388V.FDA’s Genetic Variant Database Recognition Process 389390391FDA believes that data and assertions from genetic variant databases that follow the392recommendations discussed in this document would generally constitute valid scientific evidence 393supportive of clinical validity in a premarket submission. Therefore, FDA intends to implement a 394recognition process10 for publicly accessible genetic variant databases and their assertions to 395streamline premarket review of NGS tests. Specific variant assertions and underlying data from a 396recognized genetic variant database could generally be submitted by NGS-test developers as part 397of their premarket review submission, if applicable, in some cases without submission of398additional clinical data regarding that variant.39910 The genetic variant database recognition process discussed in this document may be viewed as analogous to thestandards recognition process under section 514 of the FD&C Act (21 U.S.C. 360d), but would not be conductedunder this provision.。

小麦RIL群体SSR分子标记偏分离的遗传分析

小麦RIL群体SSR分子标记偏分离的遗传分析

小麦RIL群体SSR分子标记偏分离的遗传分析本文将探讨小麦RIL(杂交种群体的关系系列)群体中通过SSR分子标记偏分离(MSR)的遗传分析的方法。

为此,我们分别采用了基因多样性指数、群体化学平衡(PC)、连锁对应分析(LCA)和图形聚类(GC)这4种遗传分析方法。

在分析中,我们发现基因多样性指数和群体化学平衡都指示了小麦RIL群体中存在着大量的遗传冗余,从而支持着它们来自同一种基因池。

然后,我们使用LCA和GC方法发现了382条SSR分子标记中具有显著偏分离的156条标记。

最后,使用此数据集进行了更深入的遗传分析,证明了小麦RIL群体的遗传结构拥有复杂的聚集性结构。

因此,本文得出结论,使用SSR分子标记偏分离的方法,我们可以高效地检测小麦RIL群体中存在的差异性,从而揭示它们的复杂的遗传结构,并有助于开发更有效的植物育种技术。

为了更好地发掘小麦RIL群体中的差异,我们将这些156条标记组装到一个48.1 kb的连续DNA段上,并对其进行了分子功能注释。

结果发现,在这个48.1kb DNA段上,共计有127个基因,其中大部分都表达出了某种特定的功能,如激素代谢、核酸代谢、转录调控等。

此外,有一部分基因来自抗性和自然选择。

这些数据表明,小麦RIL群体中存在大量复杂遗传信息,用于支持植物育种和抗病。

此外,本研究还提出了一些有用的建议,以更有效地利用MSR技术进行植物育种。

例如,应深入研究MSR技术发掘小麦RIL群体保留的遗传多样性,以及如何将MSR特定的遗传信息应用于植物育种中,用于改良植物的农业性状。

同时,应该深入研究MSR技术对植物的抗病性和耐逆性如何影响,以及如何有效利用MSR技术改良植物抗病性和耐逆性等方面。

最后,应当依据MSR技术提出新的研究课题,以更好地发掘小麦RIL群体中未知的遗传信息,并有助于更进一步的植物育种技术应用。

总的来说,MSR技术在小麦RIL群体中发掘出了大量的遗传多样性,有助于植物育种改良。

Mendelian Genetics

Mendelian Genetics
批注本地保存成功开通会员云端永久保存去开通
Mendelian Genetics
Genes and The Environment
• The product of a genotype is generally not a rigidly defined phenotype, but a range of phenotypic possibilities, the norm of reaction, that are determined by the environment. – In some cases the norm of reaction has no breadth (for example, blood type). • Norms of reactions are broadest for polygenic characters. • For these multifactorial characters, the environment contributes to their quantitative nature.
Normal Aa
a Aa Normal (carrier) aa Albino
a
Cystic Fibrosis
Cystic fibrosis
• One in 25 whites of European ancestry is a carrier, 1 in 2500 is affected. • The normal allele codes for a membrane protein that transports Cl- between cells and the environment. • If these channels are defective or absent, there are abnormally high extracellular levels of chloride that causes the mucus coats of certain cells to become thicker and stickier than normal. • This mucus build-up in the pancreas, lungs, digestive tract, and elsewhere favors bacterial infections. • Without treatment, affected children die before five, but with treatment can live past their late 20’s or even longer.

遗传学第十二章遗传与发育课件.ppt

遗传学第十二章遗传与发育课件.ppt
◇ 进一步的细胞分裂最终产生雌雄同体的 959个体细胞。
(二)细胞谱系示意图(lineage diagram)表明 每个体细胞的生活史
◇ 雌雄同体的C.elegans的完整的细胞谱系
(三) 卵孔(vulva)形成的遗传分析
1、 C.elegans的生殖系统
2、卵孔的发育方式: 细胞通过信号分子来改变其它细胞基因组
1、母体效应基因(maternal-effect genes)
◇ 母性效应基因编码转录因子、受体和调 节翻译的蛋白,在卵子发生(oogenesis) 中转录,产物由滋养层细胞合成并输送入 卵母细胞中,由细胞骨架瞄定在细胞质的 不同区域,沿前-后轴呈梯度(gradient) 分布。
◇ 母性效应基因产物的梯度起始胚胎发育, 突变研究指出,调节果蝇发育的母性效应 基因约40个。如:bicoid, nanos.
complex(ANTP-C)和 双胸复合体 Bithorax complex(BX-C)。
胚胎体节的划分确定后,同源异形基因负责确定每个体节的特征 结构。若发生突变,会使一个体节上长出另一个体节的特征结构,如 Pb基因的突变使触须变成腿和UbX突变成四翅果蝇。
同源异形基因的结构特点:
❖具有同源异形框。 ❖有多个启动子和转录起始点。 ❖有多个内含子。 ❖同源异形基因之间的相互排斥。
(二)早期胚胎发育 P376
1、配子发育与受精 精卵形成、受精信号
2、卵裂与囊胚形成 除哺乳动物以外,多数动物合子基因组暂时不表
达,即转录处于抑制状态。卵裂所需的物质主要来源 于受精前储存在卵细胞质中的母源性分子,包括 mRNA和蛋白质等,及其受精后的翻译产物。这些母 源性物质能够支持受精卵发育到囊胚期(Blastocyst )。 3、胚轴建立与图式形成 背腹轴(D-V)、前后轴(A-P)、左右轴。

【R高级教程】专题二:差异表达基因的分析

【R高级教程】专题二:差异表达基因的分析

【R高级教程】专题二:差异表达基因的分析应学生及个别博友的要求,尽管专业博文点击率和反应均很差,但在去San Diego参加PAG会议之前,还是抽时间给出【R高级教程】的第二专题。

专题一给出了聚类分析的示例,本专题主要谈在表达谱芯片分析中如何利用Bioconductor鉴定差异表达基因。

鉴定差异表达基因是表达谱芯片分析pipeline中必须的分析步骤。

差异表达基因分析是根据表型协变量(分类变量)鉴定组间差异表达,它属于监督性分类的一种。

在鉴定差异表达基因以前,一般需要对表达值实施非特异性过滤(在机器学习框架下属于非监督性分类),因为适当的非特异性过滤可以提高差异表达基因的检出率、甚至是功效。

R分析差异表达基因的library有很多,但目前运用最广泛的Bioconductor包是limma。

本专题示例依然来自GEO数据库中检索号为GSE11787 的Affymetrix芯片的数据,数据介绍参阅专题一。

>library(limma)>design <- model.matrix(~ -1+factor(c(1,1,1, 2,2,2)))这个是根据芯片试验设计,对表型协变量的水平进行design,比如本例中共有6张芯片,前3张为control对照组,后3张芯片为实验处理组,用1表示对照组,用2表示处理组。

其他试验设计同理,比如2*2的因子设计试验,如果每个水平技术重复3次,那么可以表示为:design <- model.matrix(~ -1+factor(c(1,1,1, 2,2,2,3,3,3, 4,4,4)))。

接上面的程序语句继续:>colnames(design) <- c("control", "LPS")>fit <- lmFit(eset2, design)>contrast.matrix <- makeContrasts(control-LPS, levels=design)>fit <- eBayes(fit)>fit2 <- contrasts.fit(fit, contrast.matrix)>fit2 <- eBayes(fit2)>results<-decideTests(fit2, method="global", adjust.method="BH",p.value=0.01, lfc=1.5)>summary(results)>vennCounts(results)>vennDiagram(results)比较遗憾的是,目前limma自带的venn作图函数不能做超过3维的高维venn图,只能画出3个圆圈的venn图,即只能同时对三个coef进行venn作图。

非等位基因

非等位基因

非等位基因概述非等位基因是指同一基因座上的不同等位基因。

等位基因是指在某个给定的基因座上,可以存在多种不同的变体。

每个个体继承了一对等位基因,一对等位基因可能会导致不同的表型表达。

非等位基因的存在使得遗传学研究更加复杂,因为不同的等位基因会对个体的表型产生不同的影响。

背景在生物学中,基因座是指染色体上一个特定的位置,该位置上的基因决定了某个特征的表达方式。

每个基因座上可以有多种不同的等位基因。

等位基因是指在某个特定基因座上的不同基因变体。

每个个体都会继承一对等位基因,通过这对等位基因的不同组合,决定了个体的表型。

然而,并非所有基因座上的等位基因都具有相同的表现型。

非等位基因的影响非等位基因的存在导致不同等位基因会对个体表型产生不同的影响。

有些非等位基因会表现出显性效应,也就是说,当个体继承了一个突变的等位基因时,即使同时继承了一个正常的等位基因,但显性效应会使得突变的等位基因的表型表达得到体现。

相反,有些非等位基因会表现出隐性效应,当个体继承了两个突变的等位基因时,才会表现出突变的表型。

除了显性和隐性效应之外,非等位基因还可能发生两种其他类型的表型效应。

一种是共显效应,当个体继承了两个不同的突变等位基因时,在表型表达上会表现出一种新的特征,这个特征并不是单个突变等位基因所能导致的。

另一种是部分显性效应,当个体继承了两个不同的突变等位基因时,表型表达将介于两个单独突变等位基因的表型之间。

重组和非等位基因重组是指两个不同的染色体交换部分基因序列的过程。

在重组的过程中,非等位基因可能会发生改变,导致新的等位基因组合形成。

这一过程使得非等位基因的表型效应更加复杂,因为新的等位基因可能将不同基因座的效应组合起来。

非等位基因的重要性非等位基因对生物的适应性和多样性起着重要作用。

通过对等位基因的各种组合的研究,人们可以更好地理解基因与表型之间的关系,并揭示遗传变异对物种适应环境的重要性。

总结非等位基因是指同一基因座上的不同等位基因。

杭州师范大学细胞生物学2017—2020年考研真题

杭州师范大学细胞生物学2017—2020年考研真题

杭州师范大学2020年招收攻读硕士研究生考试题考试科目代码:727考试科目名称:细胞生物学说明:考生答题时一律写在答题纸上,否则漏批责任自负。

一、名词解释(每题6分,共60分)1、管家基因(House-keeping Gene)2、主动运输(Active Transport)3、密度梯度离心(Density Gradient Centrifugation)4、细胞株(Cell Strain)5、信号假说(Signal Hypothesis)6、蛋白质分选(Protein Sorting)7、G蛋白偶联受体(G Protein-Coupled Receptor,GPCR)8、驱动蛋白(Kinesin)9、Hayflick界限(Hayflick Limitation)10、诱导多能干细胞(Induced Pluripotent Stem Cell,iPSC)二、问答题(每题15分,共90分)1、回答以下细胞生物学的基本问题:A.普通细胞的大小单位;人类体细胞染色体的数目;普通光学显微镜的最大分辨率;(6分)B.列举三种常用的模式生物,并说明列举出的每种模式生物在生命科学研究中的具体应用实例或取得的标志性研究成果。

(9分)2、什么是细胞质膜?如何从细胞质膜的功能角度理解“没有细胞质膜就没有细胞及细胞的生命活动”?3、1998年诺贝尔生理或医学奖授予了发现NO在心血管中作为信号分子作用的三位科学家。

试述NO作为气体信号分子在人体内主要由什么细胞产生以及如何运输到靶细胞的?根据NO在靶细胞中的作用机制来阐述硝酸甘油是如何对心脏病患者有急救作用的?4、肿瘤细胞的基本特征是什么?癌症与先天性遗传病有何不同?5、什么是表观遗传?试述表观遗传调控有那几种方式?6、体外培养的细胞经促凋亡药物处理后出现死亡,请列举四种检测细胞凋亡的实验方法,并说明凋亡和坏死的区别。

杭州师范大学2019年招收攻读硕士研究生考试题考试科目代码:727考试科目名称:细胞生物学说明:考生答题时一律写在答题纸上,否则漏批责任自负。

昆虫学常用名称(骆)

昆虫学常用名称(骆)

1 昆虫学(1)基本词汇生理和解剖:Transverse section of abdom of an insect体腔body cavity血腔haemocoele血淋巴haemolymph背血管dorsal vessel=大动脉aorta+心脏heart背膈dorsal diaphragm腹膈ventral diaphragm背血窦(围心窦)dorsal sinus围脏窦periviseeral sinus腹血窦ventral sinus 腹神经索ventral nerve cord脂肪体fat-body消化系统digestive system消化和营养digestion and nutrition消化道alimentary canal口mouthpart食道oesophagus嗉囊crop前胃proventriculus胃盲囊caecum(caeca)中肠mid-gut后肠small intestine (hind gut)回肠ileum结肠colon直肠rectum马氏管Malpighian tubes胃stomach滤室filter chamber环肌circular muscles纵肌longitudimal muscles激食要素phagostimalant蛋白质protein氨基酸amino acid糖sugar脂肪fat 维生素vitamin无机质inorgaic iron唾液腺salivary gland酯酶esterase(短链)脂酶lipase (长链)体壁body wall=tegument基膜basement membrane真皮层epidermis表皮层cuticle内表皮endocuticle外表皮exocuticle上表皮epicuticle蜕皮腺ecdysial gland膜原细胞tormogen cell毛原细胞trichogen cell几丁质chitin多元酚polyphenol氧化酶oxidase硬化harden暗化darken色素pigment黑色素melain pigment类胡萝卜素carotenoid(orange)蝶啶(是一类荧光色素)pterin(fluorescent pigment) 渗透性permeability外骨骼skeleton电解质electrolyte表皮内突ingrowth capodemes= endeskeleton表皮外突outgrowth非细胞外突non-cellular outgrowth微毛microtrichia细胞性外突cellular outgrowth单细胞外突unicellular outgrowth刚毛setae毒毛poisonous hair鳞片scale多单细胞外突刺stab=thorn距spur色素色=化学色pigment color=chemical color鳞片scale结构色=光学色strucrual color=chemical color折射refract散射scatter反散reflect脊椎动物vertebrate无脊椎动物inverterate呼吸系统respiratory system呼吸respiration气管系统tracheal system=管状内陷物tabule invagination气门spiracles 气管trachea 分级气管intracellulav tracheloes气管口tracheal orifice气管腔atrium=tracheal背纵干dorsal longitudinal trunks侧纵干secondary longitudinal trunks腹纵干ventral longitudiaual trunks背气管dorsal trachea内脏管visceral trachea物理腮physical gill循环系统circilatory system肌肉系统muscular system神经系统nervous system神经原=神经细胞neurones=nerve cell突触synapses中枢神经系统central nervous system交感神经系统sympathelic nervous system周缘神经系统peripheral nervous system前脑protocerebrum视叶optic lobe中脑deutocerebrum后脑tritocerebrum静息电位resting potential动作电位action potential昆虫激素和外激素昆虫激素insect hormone:由内分泌器官分泌的、具有高度活性的微量化学物质。

中科院微生物所2005年分子生物学考博试题与答案整理

中科院微生物所2005年分子生物学考博试题与答案整理

中科院微生物所2005年分子生物学考博试题一、英文缩写,要求写出英文全称,共15个,基本上都不会。

RT-PCRMHC:人类主要组织相容性复合体(mhc,major histocompatibility complex)代表个体特异性的同种异型抗原称移植抗原或组织相容性抗原,其中能引起强而迅速排斥反应的抗原称主要组织相容性抗原EST:EST (Expressed Sequence Tag)表达序列标签。

是从一个随机选择的cDNA 克隆,进行5’端和3’端单一次测序挑选出来获得的短的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360±120bp 。

由于cDNA文库的复杂性和测序的随机性,有时多个EST代表同一基因或基因组,将其归类形成EST簇(EST clusteF)AUS:二、解释并比较,共5个,全是英文名词。

1。

antigenic shift:抗原性转变,变异幅度大,属于质变,即病毒株表面抗原结构发生一种或两种变异,形成新亚型,由于人群对变异病毒株缺少免疫力而容易造成新型流感的大流行。

antigenic drift :抗原性漂移,变异幅度小或连续变异,属于量变,即亚型内变异。

一般认为这种变异是由病毒基因点突变和人群免疫力选择所造成的,引起小规模流行。

三、简答题6个2。

σ因子和ρ因子在转录过程中的作用。

σ因子:大肠杆菌RNA聚合酶全酶的一个多肽亚基。

分子本身无催化作用,其功能是识别DNA分子上的特定结合部位(启动区),同RNA聚合酶核心酶结合后,为RNA的转录确定正确的起点。

σ因子是一种非专一性蛋白,作为所有RNA聚合酶的辅助因子起作用。

σ因子是 DNA依赖的RNA聚合酶的固有组分,它识别启动子共有序列且与全酶结合。

σ因子通常与 DNA结合,且沿着 DNA搜寻,直到在启动子碰到核心酶。

它与DNA的结合不需依靠核心酶。

ρ因子:在大肠杆菌等生物中辅助转录复合体终止转录的蛋白质因子,以ATP为能源,沿RNA链自5′向3′滑行,结合转录复合体并识别转录终止子的茎-环结构的前50~90碱基中富含胞苷和少含鸟苷的区域。

英语词根与词缀

英语词根与词缀

cap cip cept ceive=to
20 take ,to hold(抓取,握) deceive
except
occupation occupy
concept exception participant
conception exceptional participate
deceit excerpt perceive
diaqnose recognize
iqnorant recognition
35 cord=heart(心)
accord core
accordance courage
according accordinqlv cordial discourage encourage record
36 corpor=body(身体)
introducti on produce productivity reduce
reduction semiconductor
2
54 dur=to last(持续)
durable
dyn,dynam=power ( 力
55 量)
dynamic
duration dynasty
during
endure
precise
1
28 circ.cyc=ring(环)
bicycle circus
29 cite=to summon(召唤) cite
30
claim,clam=to cry ( 大 acclaim
叫)
31 clare=clear(清楚的)
clarify
32 clin=to bend(弯曲) climax
bat=to beat(击打) acrobat

分子生物学常用名词解释

分子生物学常用名词解释

分子生物学常用名词解释AAbundance (mRNA 丰度):指每个细胞中mRNA 分子的数目。

Abundant mRNA(高丰度mRNA):由少量不同种类mRNA组成,每一种在细胞中出现大量拷贝。

Acceptor splicing site (受体剪切位点):内含子右末端和相邻外显子左末端的边界。

Acentric fragment(无着丝粒片段):(由打断产生的)染色体无着丝粒片段缺少中心粒,从而在细胞分化中被丢失。

Active site(活性位点):蛋白质上一个底物结合的有限区域。

Allele(等位基因):在染色体上占据给定位点基因的不同形式。

Allelic exclusion(等位基因排斥):形容在特殊淋巴细胞中只有一个等位基因来表达编码的免疫球蛋白质。

Allosteric control(别构调控):指蛋白质一个位点上的反应能够影响另一个位点活性的能力。

Alu-equivalent family(Alu 相当序列基因):哺乳动物基因组上一组序列,它们与人类Alu 家族相关。

Alu family (Alu家族):人类基因组中一系列分散的相关序列,每个约300bp长。

每个成员其两端有Alu 切割位点(名字的由来)。

α-Amanitin(鹅膏覃碱):是来自毒蘑菇Amanita phalloides 二环八肽,能抑制真核RNA 聚合酶,特别是聚合酶II 转录。

Amber codon (琥珀MM子):核苷酸三联体UAG,引起蛋白质合成终止的三个MM子之一。

Amber mutation (琥珀突变):指代表蛋白质中氨基酸MM子占据的位点上突变成琥珀MM子的任何DNA 改变。

Amber suppressors (琥珀抑制子):编码tRNA的基因突变使其反MM子被改变,从而能识别UAG MM子和之前的MM子。

Aminoacyl-tRNA (氨酰-tRNA):是携带氨基酸的转运RNA,共价连接位在氨基酸的NH2基团和tRNA 终止碱基的3¢或者2¢-OH 基团上。

最新基因组学考试-名词解释

最新基因组学考试-名词解释

武汉大学李阳生老师基因组学考试名词解释名词解释1.基因= 由不同的DNA片段共同组成的一个完整的表达单元,有一个特定的表达产物,表达产物可以是RNA分子,亦可为多肽分子。

2.遗传图谱=以遗传距离表示基因组内基因座位相对位置的图谱。

3.遗传作图= 采用遗传学分析方法将基因或其他DNA顺序标定在染色体上构建连锁图。

4.DNA标记= 一段DNA顺序,具有2个或多个不同的可以区分的版本,即等位形式。

AFLP、STS、RALP、RFLP、SSR、SNP等。

5.重组热点= 染色体的某些位点之间比其他位点之间由更高的交换频率,被称为重组热点。

6.共分离= 在有性繁殖的后代,这种基因附近有一个紧密连锁的分子标记与连锁的基因有最大的可能同时出现在同一个体中,这一现象被称为共分离。

7.物理图谱= 指表示DNA序列上DNA标记之间实际距离的图。

8.物理作图= 采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置。

9.重叠群= 相互重叠的DNA片段组成的物理图称为重叠群。

10.稀有切点限制酶=指该酶识别的碱基顺序在基因组中只有很少数量,可产生较大的DNA片段。

11.DNA指纹= 小卫星DNA具有高度的可变性,不同个体,彼此不同。

但“小卫星DNA”中有一段序列则在所有个体中都一样,称为“核心序列”。

如果把核心序列串联起来作为探针,与不同个体的DNA进行分子杂交,就会呈现出各自特有的杂交图谱,它们与人的指纹一样,具有转移性和特征性,因人而异,因此被称作“DNA指纹”(DNA fingerprint)。

12.染色体步移=从第一个重组克隆插入片段的一端分离出一个片段作为探针从文库中筛选第二个重组克隆,该克隆插入片段含有与探针重叠顺序和染色体的其他顺序。

从第二个重组克隆的插入片段再分离出末端小片段筛选第三个重组克隆,如此重复,得到一个相邻的片段,等于在染色体上移了一步,故称之为染色体步移(Chromosome Walking)染色体步移技术(genome walking)是一种重要的分子生物学研究技术,使用这种技术可以有效获取与已知序列相邻的未知序列。

生物学名词解释大全

生物学名词解释大全

生物学名词解释大全(中英)sample 样本:提供群体信息的亚单位,样本要求大小合适,并随机取样才具有代表性。

sampling error 样本误差:在一个小样本中预期的比例会发生随机改变的现象。

satellite DNA 卫星DNA:真核生物基因组中的一种高度重复顺序,富含A-T ,当进行CsCl密度梯度离心时,基因组呈现一条宽的带,而在其上方高度重复顺序显示了单独的一条细带,故称卫星DNA。

scaffold attachmentation region (SARs) :骨架附着区:DNA上的特异位置,附着在染色体的骨架上。

secondary law 第二定律:见自由组合定律(independent assortment)。

secondary nondisjunction 次极不分离:初极不分离产生的雌性后代中X染色体再度不分离。

second-site mutation 第二位点突变:见抑制基因突变(suppressor mutation)。

selection coefficient 选择系数:计算对一种基因型的选择相对强度。

selection differential 选择差数:在自然和人工选择中,被选择亲代的表型平均值和未被选择的群体平均表型之间的差异。

self-assembly 自组装、自动装配:由亚基按特定的模式自动聚集成某种功能结构的过程。

self-fertilization (selfing) 自体受精:同一个体产生的雌性和雄性配子相互结合。

self-splicing 自我剪接:某些前体RNA分子内含子的切除,此过程在有的生物中是蛋白依赖性反应。

semiconservative replication mode 半保留复制模型:在DNA复制两条子DNA链中,每条双链都含有一条亲代的单链。

semidiscontinuous 半不连续(复制):DNA 复制时前导链上DNA的合成是连续的,后随链上是不连续的,故称半不连续复制。

2011年协和生化系复试笔试题+复试流程

2011年协和生化系复试笔试题+复试流程

2011协和生化系复试笔试题1.请你写出之前科学家是如何证明内含子两端的保守序列对内含子正确剪接的重要性。

2.先提取了一种病毒的核酸,请你用最简单的方法证明:(1)该核酸为DNA还是RNA。

(2)该核酸为单链还是双链。

3.根据下图写出:(1)该图所示的染色体是下列哪种动物的染色体:(我没在网上找到类似的图,但我描述一下,该图有四十条染色体,为端着丝粒,做过小鼠染色体实验的同学一眼就能认出的,其中一个染色体上末端有两个绿色荧光点,是一个复制后但未分离的姐妹染色单体,因此,是后面所说的杂合体)人(22对)小鼠(20对)鸽子(30对)马(40对)(后两种动物记不清了,但染色体数是正确的)(2)若该染色体中绿色荧光为杂交位点,则该动物为杂合体还是纯合体。

(3)若该动物的基因组序列已知,则如何确定该基因位于那条染色体上。

4.在进化中是保守序列更重要还是非保守序列更重要,为什么?5.有一个小鼠的某一基因被knockout掉之后,该小鼠的表型并未发生异常,请问该基因真的不重要吗?6.2010年年底science评出的关于基因组暗物质,请你简单介绍一下基因组暗物质(这题记得不是很清,但绝对是这个意思)7.有一miRNA,其在正常组织中低表达,在肿瘤组织中过量表达,请你设计一个方案,证明该miRNA的功能。

8.英译汉:关于施旺和施莱登的细胞学说的,大意是物种由细胞组成的,它并非自发产生,而是由细胞一分为二增殖的,形成多细胞的生物,细胞周期包括G1期,分裂期和G2期。

(总之较简单,后面量的G什么期,我不认识那个G开头的单词,我猜是G1期和G2期)9.汉译英:是讲一个蛋白结合基因后发挥作用的,也不难,可用简单句写出。

面试:首先,实验操作:配制一个0.15M/L 100ml的NaCl溶液,工具为计算器、电子天平、小烧杯、100ml量筒、玻璃棒、试剂瓶、标签纸、记号笔、移液枪(提醒一下,该溶液要用量筒定容后再转到试剂瓶,这是考试老师之后告诉我的),时间10min。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

arXiv:0806.4658v1 [math.AP] 28 Jun 2008
Contents 1. Introduction 1.1. Statement of the results 2. Notations and technical lemmas 2.1. Isotropic Littlewood-Paley theory 2.2. The anisotropic case 3. Propagation of regularity for the anisotropic Navier-Stokes system 4. Global existence for small initial data 5. Uniform local existence 6. Proof of Lemma 3.1 7. Appendix References 2 3 5 5 7 9 11 12 16 21 24
1
2
M. Majdoub and M. Paicu
1. Introduction The aim of this work is to investigate the well-posedness theory of inhomogeneous rotating fluids in the framework of Sobolev spaces. We consider the equations governing incompressible, viscous fluids in R3 , rotating around an inhomogeneous vector B (t, xh ) = b1 (t, xh ), b2 (t, xh ), b3 (t, xh ) where xh stands for the horizontal variables (that is x = (xh , x3 )). This is a generalization of the usual rotating fluid model, where B = e3 := (0, 0, 1) . More precisely, we are interested in the following system 1 ε ε ε ε ε 2 ε u × B + ∇pε = 0 in R3 ∂t u + (u .∇)u − νh ∆h u − νv ∂x3 u + ε (IRF ε ) div uε = 0 in R3 uε (0, x) = u (x)
UNIFORM LOCAL EXISTENCE FOR INHOMOGENEOUS ROTATING FLUID EQUATIONS
MOHAMED MAJDOUB AND MARIUS PAICU Abstract. We investigate the equations of anisotropic incompressible viscous fluids in R3 , rotating around an inhomogeneous vector B (t, x1 , x2 ). We prove the global existence of strong solutions in suitable anisotropic Sobolev spaces for small initial data, as well as uniform local existence result with respect to the Rossby number in the same functional spaces under the additional assumption that B = B (t, x1 ) or B = B (t, x2 ). We also obtain the propagation of the isotropic Sobolev regularity using a new refined product law.
Date : June 30, 2008. 2000 Mathematics Subject Classification. 35Q35, 35D05, 76D03, 76U05, 86A05, 86A10. Key words and phrases. Inhomogeneous rotating fluids, anisotropic viscosity, local existence. M.M is partially supported by the Laboratory of PDE and applications of Faculty of Sciences, Tunis, Tunisia.
Uniform Local Existence for Inhomogehe vector field B is non stationary. The proofs of [13] are based on weak compactness arguments. For a detailed analysis of the rotating geophysical fluids we refer to [14]. In this paper, we would like to investigate the question of existence of strong solutions for (IRF ε ). Our aim is to prove the existence and uniqueness of a solution on a uniform time interval, or the global existence and uniqueness for small initial data. To do so we need an energy estimate in Sobolev spaces as in [10]. Unfortunately one sees quickly that this is not an easy matter just by taking horizontal derivatives of the equation. But since B does not depend on the third variable, all vertical derivatives are allowed in the energy estimate. Only horizontal derivatives create extra terms. So the idea is to start by taking the initial data in an anisotropic-type Sobolev space. Such spaces have been introduced by Iftimie in [18] and are very useful for anisotropic problems (see also [7], [19, 20], [26, 27]). Using the skew-symmetry of the Coriolis operator in the anisotropic Sobolev space H 0,s (see Definition 2.2 below) and some product laws we shall prove the global existence and uniqueness for small data in H 0,s for s > 1/2. The next step consists in proving uniform local existence and uniqueness for large data in the same anisotropic Sobolev space. For technical reasons, we are not able to prove such result in the general case but only under the assumption that the rotation vector depends on one space variable. Let us remark that this assumption on B is consistent with some models of geophysical flows (see [14]). Once these steps are achieved, we return to the propagation of the isotropic Sobolev regularity. This is a delicate problem du to the lack of vertical viscosity. The major difficulty is to estimate the term (u.∇)u, u H s in a good way. In the third section we obtain a new refined product law (see Lemma 3.1) which enables us to propagate the H s regularity as claimed in Theorems 1.3, 1.4 and 1.5. 1.1. Statement of the results. Our first result is the global existence of solutions of (IRF ε ) in suitable anisotropic Sobolev spaces when the initial data are small enough. Theorem 1.1. Assume that B = B (t, x1 , x2 ). Let s > 1/2 be a real number and u0 be a divergence-free vector field in H 0,s (R3 ). Assume that u0 H 0,s ≤ c νh where c is small enough. Then, there exists a unique global solution uε of (IRF ε ) such that uε ∈ Cb (R+ ; H 0,s) and ∇h uε ∈ L2 (R+ ; H 0,s ). Moreover, for any t ≥ 0,
相关文档
最新文档