【教育学习文章】高二数学《函数的极值与导数》学案

合集下载

高二数学3.3.2函数的极值与导数学案新人教A版选修1-1

高二数学3.3.2函数的极值与导数学案新人教A版选修1-1
高中数学 3.3.2 函数的极值与导数学案
?基础梳理
1.极值的概念.
如果函数 y = f ( x) 在点 x= a 的函数值 f ( a) 比它在点 x= a 附近其他点的函数值 都小,f ′ ( a)
=0,而且在点 x= a 附近的左侧 f ′(x ) < 0,右侧 f ′(x) > 0,则把点 a 叫做 y = f ( x) 的极小值
a 的取值范围是 ________ .
解析: f ′(x) = x2+ 2x+ a,∵ f ( x ) 在 R 上没有极值点,∴Δ= 4- 4a≤0,∴ a≥ 1.
答案: a≥1 4.求函数 f ( x) =- x( x -2) 2 的极值.
解析: 函数 f ( x ) 的定义域为 R. f ( x) =- x( x2- 4x + 4) =- x3+ 4x2- 4x, ∴ f ′ ( x) =- 3x2+ 8x - 4=- ( x - 2)(3 x- 2) ,
1
a=- ,
解得
2
b=- 2. 即 f ′(x ) = 3x2- x- 2= (3 x + 2)( x - 1) .函数 f ′ ( x) ,f ( x) 的变化情况见下表:
2
2
所以函数 f ( x ) 的递增区间是 -∞,- 3 与 (1 ,+∞ ) ,递减区间是 - 3, 1 .
1. f ′(x 0) = 0 是函数 y =f ( x) 在 x = x0 处有极值点的 ( C) A.充分不必要条件 B .充要条件
点, f ( a) 叫做函数 y = f ( x) 的极小值;如果函数 y= f ( x ) 在点 x= b 的函数值 f ( b) 比它在点 x = b
附近其他点的函数值都大, f ′( b) = 0,而且在点 x= b 附近的左侧 f ′(x) > 0,右侧 f ′(x ) < 0,

人教版选修2-2 1.3.2 函数的极值与导数导学案

人教版选修2-2  1.3.2 函数的极值与导数导学案

1.3.2《函数的极值与导数》导学案制作马冰审核高二数学组2016-03-16【学习目标】1.了解函数极值的概念,会从几何的角度直观理解函数的极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.4.增强数形结合的思维意识,提高运用导数的基本思想去分析和解决实际问题的能力.【预习导航】已知y=f(x)的图象(如图)[问题1]当x=a时,函数值f(a)有何特点?[问题2]试分析在x=a的附近导数的符号.[问题3]f′(a)值是什么?【问题整合】1.极小值点与极小值2.极大值点与极大值3.函数极值的求法【问题探究】探究活动一求函数的极值例1求下列函数的极值:(1)f(x)=13x3-x2-3x;(2)f(x)=x4-4x3+5;(3)f(x)=ln xx.探究活动二已知函数极值求参数例2、设函数f(x)=ax3+bx2+cx,在x=1和x=-1处有极值,且f(1)=-1,求a,b,c的值,并求出相应的极值.探究活动三极值的综合应用例3 已知a为实数,函数f(x)=-x3+3x+a.(1)求函数f (x )的极值,并画出其图象(草图); (2)当a 为何值时,方程f (x )=0恰好有两个实数根?【课堂巩固练习】1.求下列函数的极值:(1)f (x )=x 3-12x ;(2)f (x )=x 2e -x.2.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7, 当x =3时,取得极小值.求这个极小值及a ,b ,c 的值.3.将例3中(2)改为:①f (x )=0恰有三个实数根;②若只有一个实数根.试求实数a 的取值范围.【总结概括】【课后作业】习题1.3A 组4,5。

函数的极值与导数 学案——高二上学期数学人教A版选修2-2

函数的极值与导数 学案——高二上学期数学人教A版选修2-2

《1.3.2 函数的极值与导数》学案【课标要求】理解函数极值的概念,感受函数图像在刻画极值中的作用;经历从具体函数的极值点、极值抽象出一般函数极值点、极值的过程;掌握用导数求可导函数的极值的方法;通过函数极值与导数的学习,进一步体会数形结合、由特殊到一般、函数与方程的思想。

【学习目标】1.经历从具体函数的图象认识极值点、极值,抽象出一般函数的极值点、极值的过程;理解函数极值的概念。

2.会用导数求简单的可导函数的极值。

3.了解可导函数在某点处取得极值的必要条件和充分条件。

重点:理解函数极值的概念,会用导数求简单的可导函数的极值。

难点:对可导函数在某点处取得极值的必要条件和充分条件的理解。

【评价任务】1.完成第一次先学后教的问题1,2和极值的判定方法1,2;2.完成思考1,2;3.独立完成第二次先学后教的问题1,2,3,4;4.通过讨论和合作学习完成第三次先学后教的问题.【学习过程】资源与建议1.函数的极值与导数是导数在研究函数中的应用—函数的单调性、函数的极值、函数的最值中的第二类应用,是学习函数的最值与导数的前备知识;函数的单调性与导数的关系是本节课中探究函数极值求法的基础。

2. 本节课的学习按以下流程进行:函数极值的概念 函数极值的判定方法 求极值的步骤 简单应用。

需要准备的知识:复习(1)单调性与导数的关系:若f ′(x )>0,则f (x )单调递 ;若f ′(x )<0,则f (x )单调递 。

(2)充分条件与必要条件的概念:p q ,则p 是q 的 条件,q 是p 的 条件.一、结合函数图像,引出极值概念第一次“先学后教”:自学课本2726P P -,思考并完成以下问题。

1.从图1.3-8可知,=)('a h ,),0(a t ∈时,的单调性?)(t h ,)('t h 的正负? ;),(+∞∈a t 时,的单调性?)(t h ,)('t h 的正负? 。

)(t h a t 是=的极 ,的极是)()(t h a h 。

高二数学选修1-1《3.3.2函数的极值与导数》学案(第2课时)

高二数学选修1-1《3.3.2函数的极值与导数》学案(第2课时)

3.3.2函数的极值与导数(第2课时)[自学目标]:1。

理解函数的极大值、极小值、极值点的意义;2.掌握函数极值的判别方法。

进一步体验导数的作用。

[重点]:极大、极小值的概念和判别方法。

[难点]:严格套用求极值的步骤[教材助读]一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有________我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点,都有________,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).利用导数判别函数的极大(小)值:一般地,当函数f(x)在点x0处连续时,判别f(x0)是极大(小)值的方法是:⑴如果在x0附近的左侧f ’(x)>0,右侧f '(x)<0,那么,f(x0)是________⑵如果在x0附近的左侧f ’(x)<0,右侧f ’(x)>0,那么,f(x0)是________注意:导数为0的点不一定是极值点.[预习自测]1.函数y=f(x)的导数y/与函数值和极值之间的关系为()A、导数y/由负变正,则函数y由减变为增,且有极大值B、导数y/由负变正,则函数y由增变为减,且有极大值C、导数y/由正变负,则函数y由增变为减,且有极小值D 、导数y /由正变负,则函数y 由增变为减,且有极大值2.求函数xe x y -=2的极值,待课堂上与老师和同学探究解决。

[合作探究 展示点评]探究一:极值点两侧导数正负符号有何规律?1.求()31443f x x x =-+的极值填写下表并求极值探究二:极值点处导数值(即切线斜率)有何特点? 2.求y=(x2-1)3+1的极值[当堂检测]1.求下列函数的极值:(1)2f x x x=-()27 ()62f x x x=--(2)3(3)3f x x x=-()3 ()612f x x x=+-(4)3。

(完整版)函数的极值与导数导学案(最新整理)

(完整版)函数的极值与导数导学案(最新整理)

叫做函数 y=f(x)
2.关于极值概念的几点说明
(1)极值是一个局部概念,反映了函数在某一点附近的大小情况;
(2)极值点是自变量的值,极值指的是函数值
(3)函数的极大(小)值可能不止一个,而且函数的极大值未必大于极小值;
(4)函数的极值点一定在区间的内部,区间的端点不能成为极值点。
(5)函数 y=f(x)在一点的导数为 0 是函数在这点取极值的
二.新课讲授 1、极值点与极值
(1)极小值点与极小值:
若函数 y=f(x)在点 x=a 的函数值 f(a)比它在点 x=a 附近其他点的函数值都小,f′(a)
= ,而且在点 x=a 附近的左侧
,右侧
,就把
叫做函数 y=f(x)的
极小值点,
叫做函数 y=f(x)的极小值.
(2)极大值点与极大值:
若函数 y=f(x)在点 x=b 的函数值 f(b)比它在点 x=b 附近其他点的函数值都大,f′(b)
求下列函数的极值.
(1) f (x) 1 x3 4x 4 3
(2)f(x)=(x2-1)3+1; ln x
(3)f(x)= . x来自(1)若函数 f(x)=x3+ax2+bx+a2 在 x=1 处取得极值 10.
则 a=________,b=________.
2 (2)已知 f(x)=x3+ax2+bx+c 在 x=1 与 x=- 时都取得极值.
§1.3.2 函数的极值与导数
教学目标: 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤; 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 一.复习与思考

高二数学选修2-3《1.3.2函数的极值与导数》导学案

高二数学选修2-3《1.3.2函数的极值与导数》导学案

§1.3.2函数的极值与导数使用时间:4.3知识目标:理解极值的定义,掌握求函数极值的方法,会根据函数的极值求参数。

能力目标:培养数形结合、转化的数学思维能力。

【课前准备】1.函数4431)(3+-=x x x f 的 单调增区间为 ,单调减区间为 ,画出)(x f 的草图.【新课导学】观察3的中)(x f 的草图,思考以下问题:(1)函数)(x f y =在x= -2、2点的函数值与它们附近的函数值相比较有什么关系?(2)函数)(x f y =在x= -2、2点的导数值是多少?(3)在x= -2、2点两侧:)(x f y =的单调性有什么关系?)(x f '值的符号有什么规律?设可导函数)(x f y =在0x x =附近有定义,如果对于x 0附近的所有点都有f (x )<f (x 0),就称 f (x 0)是函数f (x )的一个极大值. 记作y 极大值= , 叫极大值点; 如果对于x 0附近的所有点都有f (x )>f (x 0),就称f (x 0)是函数f (x )的一个极小值. 记作y 极小值= , 叫极小值点;极大值与极小值统称为极值, 极大值点与极小值点统称为极值点. 1、下图是函数)(x f y =的图象,则极大值点是 ,极小值点是 .(第1题) (第2题)2、上图是导函数)(x f y '=的图象,函数y=f (x )的极大值点是_ _,极小值点是 . ※小结:在原函数图象上怎么找极值点?在导函数图象上怎么找极值点?提示:若x 0是)(x f 的极值点,则在x 0两侧)(x f y =的单调性 ,)(x f '值的符号【探究任务】借助本学案,举例说明1.当导数0)('0=x f 时,0x 是否一定为y =)(x f 的极值点?2.由第1问可知0)('0=x f 是0x 为y =)(x f 的极值点的________________条件? 例1:求下列函数的极值。

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与性质1.1 极值的定义引入极值的概念,解释函数在某一点的局部性质。

通过图形和实例直观展示极值的存在。

1.2 极值的判定条件介绍函数的导数与极值的关系,讲解导数为零的必要性和充分性。

分析导数为正和导数为负时函数的单调性,得出极值的判定条件。

1.3 极值的判定定理介绍罗尔定理、拉格朗日中值定理和柯西中值定理在极值判定中的应用。

证明极值的判定定理,并通过实例进行验证。

第二章:导数与函数的单调性2.1 导数的定义与计算引入导数的概念,解释导数表示函数在某一点的瞬时变化率。

讲解导数的计算规则,包括常数函数、幂函数、指数函数和三角函数的导数。

2.2 导数与函数的单调性分析导数正负与函数单调性的关系,得出单调递增和单调递减的定义。

通过实例和图形展示导数与函数单调性的联系。

2.3 单调性的应用讲解利用单调性解决函数极值问题的方法。

分析函数的单调区间和极值点,得出函数的单调性对极值的影响。

第三章:函数的极值点与导数3.1 极值点的定义与判定引入极值点的概念,解释极值点是函数导数为零或不存在的点。

讲解极值点的判定方法,包括导数为零和导数不存在的条件。

3.2 极值点的求解方法介绍求解极值点的方法,包括解析法和数值法。

讲解如何利用导数和图形求解函数的极值点。

3.3 极值点的应用分析极值点在实际问题中的应用,如最优化问题。

举例说明如何利用极值点解决实际问题。

第四章:函数的拐点与导数4.1 拐点的定义与判定引入拐点的概念,解释拐点是函数导数由正变负或由负变正的点。

讲解拐点的判定方法,包括导数的正负变化和二阶导数的符号。

4.2 拐点的求解方法介绍求解拐点的方法,包括解析法和数值法。

讲解如何利用导数和图形求解函数的拐点。

4.3 拐点的应用分析拐点在实际问题中的应用,如曲线拟合和物体的运动。

举例说明如何利用拐点解决实际问题。

第五章:函数的极值与图像5.1 极值与函数图像的关系分析极值点在函数图像中的位置和特征。

函数的极值与导数学案

函数的极值与导数学案

§3.3.2《函数的极值与导数》导学案赵琳 2018年12月18日学习目标1.理解极大值、极小值的概念;2.能够运用导数知识来求函数的极值;3.掌握求可导函数的极值的步骤. 重点:利用导数知识求函数的极值难点:对极值概念的理解及求可导函数的极值的步骤 学习过程一.知识回顾复习1.函数的单调性与其导函数的正负的关系一般地,设函数y=f(x)在某个区间(a ,b )内有导数,如果0)(>'x f ,那么函数y=f(x) 在这个区间内 ; 如果0)(<'x f ,那么函数y=f(x) 在这个区间内 。

2.用导数求函数单调区间的步骤。

二、新棵导学 探究一:问题1:下图高台跳水运动员的高度h 随时间t 变化的函数的图象,(1).函数h(t)在t=a 处的导数值是 ;(2).当t ∈ 时,函数h(t)单调递增,)(t h ' 0 ; 当t ∈ 时,函数h(t)单调递减,)(t h ' 0.(3)导入:对一般的函数y=f(x)是否也有相同的性质?探究二:问题2:观察教材 P 27图1.3-10,思考:新知1:点a 叫做函数()y f x =的 ,()f a 叫做函数()y f x =的 记作 ; 点b 叫做函数()y f x =的 ,()f b 叫做函数()y f x =的 记作 ;极大值点、极小值点统称为 , 极大值、极小值统称为 。

思考:极值点是点吗?极值点与极值有何区别?问题3:观察教材 P 27图1.3-11(见右图),思考: 函数()y f x =在c,d,e,f,g,h,处,哪些是极大值点,哪些是极小值点?思考:(1)函数的极值 。

(填是,不是)唯一的. (2) 一个函数的极大值是否 一定大于极小值. ?探究三:极值与导数的关系新知二:求函数极值的方法归纳1.求函数y=f(x)极值的方法是什么?(1).函数y=f(x)在点a,b 的函数值与这些点附近的函数值有什么关系?(2) 函数y=f(x)在点a,b 的导数值是多少? (3)在点a,b 附近, y=f(x)的导数的符号有什么规律?1x)※ 典型例题1.下图是函数()y f x =的图象,试找出函数()y f x =的极值点,并指出哪些是极大值点,哪些是极小值点?(2)如果把函数图象改为导函数)(x f y '=的图象,哪些是极大值点,哪些是极小值点?例1 . 求函数31443y x x =-+ 的极值.归纳. 求函数y=f(x)极值的步骤是什么?例2求函数y=x1+x 的极值。

函数的极值与导数学案(2)

函数的极值与导数学案(2)

致远中学高二数学理学案(9)导数与极值2【学习目标】1、强化函数极值的概念。

2、掌握求含参函数极值的方法和步骤。

3、理解函数极值点与导函数的零点之间的关系【自主预习】一、知识梳理1、函数极值的定义一般地,设函数f(x)在点x及附近有定义,如果对0x附近的所有的点,都有f(x)<f(x),就说f(0x)是,0x叫做.如果对x附近的所有的点,都有f(x)>f(0x),就说,x叫做.极大值与极小值统称为.极大值点与极小值点统称为 .2、判别f(x)是极大、极小值的方法:若x满足f′(0x)=0,且在0x的两侧f(x)的导数异号,则0x是f(x) 0的极值点,f(x)是极值,并且如果f′(x)的符号在0x两侧满足“”,则x是,f(0x)是;如果f′(x)在0x两侧满足“”,则x是,f(0x)是3、求可导函数()f x的极值的步骤:(1)确定函数的定义域,求导数'()f x 的根;f x;(2)求方程'()0(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查'()f x 在方程根左右的值的符号,如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么()f x 在这个根处无极值二、基础巩固1、下图是函数)(x f y =的图象,则极大值点是 ,极小值点是 .(第1题) (第2题) 2、上图是导函数)(x f y '=的图象,函数y=f (x )的极大值点是_ _,极小值点是 .3、下面4个命题其中是假命题序号为①0)('0=x f ,则)(0x f 必为极值; ②3)(x x f = 在x=0 处取极大值0; ③函数的极小值一定小于极大值; ④函数的极小值(或极大值)不会多于一个;⑤函数的极值即为最值.4、232y x x =--的极值情况是( )A .有极大值,没有极小值B .有极小值,没有极大值C .既有极大值又有极小值D .既无极大值也极小值 5、函数f(x)=xx 1+的极值情况是( ) (A) 当x=1时取极小值2,但无极大值 (B) 当x=-1时取极大值-2,但无极小值 (C) 当x=-1时取极小值-2,当x=1时取极大值2 (D) 当x=-1时取极大值-2,当x=1时取极小值2例1、(1)函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则() A.a=-3,b=3 B.a=4,b=-11C.a=-4,b=11 D.a=4,b=-11或a=-3,b=3(2)、设函数2=-⋅,a∈R,若x=e为y=f(x)的极值点,f(x)(x a)ln x求实数a.课内巩固练习:1.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a=______,b=________2、f(x)=x(x-c)2在x=2处有极大值,则常数c的值为________.例2、(1)、函数3f x ax x=++有极值的充要条件是.()1(2)、设函数()()21=++有两个极值点12f x x aIn x<求实x xx x、,且则12数a的取值范围?课内巩固练习:1函数f (x )=x 3-6b 2x +3b 在(0,1)内有极小值,则实数b 的取值范围例3、设a 为实数,函数.a x x x )x (f 23+--= (1) 求)x (f 的极值. (2) 当a 在什么范围内取值时, 曲线x )x (f y 与=轴仅有一个交点.例4、已知函数f (x )=ln(x +a )-x 2-x ,在x =0处取得极值. (1)求实数a 的值;(2)若关于x 的方程f (x )=-52x +b 在区间[0,2]上恰有两个不同的实数根,求实数b 的取值范围.致远中学高二数学理学案(9)导数与极值2课后巩固练习 班级: 姓名:1、函数)(x f 的定义域为开区间),(b a ,导函数)(x f 在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A.1个 B.2个 C.3个 D.4个2、已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则函数f (x )的极值是( )A .极大值为427,极小值为0B .极大值为0,极小值为427C .极大值为0,极小值为-427D .极大值为-427,极小值为03、下列函数中,x =0是极值点的是( )A .y =-x 3B .y =cos 2x C .y =tan x -x D .y =1x4、已知函数f (x )=x 3-3x 的图象与直线y =a 有相异三个公共点,则a 的取值范围是________.5、设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点.(1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.6、f (x )=a 3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4.(1)当a =3且曲线y =f (x )过原点时,求f (x )的解析式;(2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围.7、已知322()3(1)f x x ax bx a a =+++> 在x =-1 时有极值0。

函数的极值与导数(教案

函数的极值与导数(教案

函数的极值与导数第一章:函数极值概念的引入1.1 教学目标让学生了解极值的概念,理解极大值和极小值的区别。

学会通过图像来观察函数的极值。

掌握利用导数求函数极值的方法。

1.2 教学内容函数极值的定义利用图像观察函数极值利用导数求函数极值1.3 教学步骤1. 引入极值的概念,让学生通过具体的例子来理解极大值和极小值。

2. 通过图像来观察函数的极值,引导学生学会从图像中找出极大值和极小值。

3. 讲解利用导数求函数极值的方法,让学生通过例题来掌握这个方法。

1.4 作业布置f(x) = x^3 3x^2 + 3x 1g(x) = x^2 4x + 4第二章:函数的单调性2.1 教学目标让学生理解函数单调性的概念,学会判断函数的单调性。

掌握利用导数来判断函数的单调性。

2.2 教学内容函数单调性的定义利用导数判断函数单调性2.3 教学步骤1. 引入函数单调性的概念,让学生通过具体的例子来理解函数单调性。

2. 讲解利用导数来判断函数单调性的方法,让学生通过例题来掌握这个方法。

2.4 作业布置h(x) = x^3 3xk(x) = x^2 4x + 3第三章:函数的极值定理3.1 教学目标让学生了解函数的极值定理,学会应用极值定理来解决问题。

3.2 教学内容函数的极值定理3.3 教学步骤1. 讲解函数的极值定理,让学生理解极值定理的意义。

2. 通过例题让学生学会应用极值定理来解决问题。

3.4 作业布置求函数f(x) = x^3 3x^2 + 3x 1 的极大值和极小值。

第四章:函数的拐点4.1 教学目标让学生了解拐点的概念,学会通过导数来找函数的拐点。

4.2 教学内容拐点的定义利用导数找拐点4.3 教学步骤1. 引入拐点的概念,让学生通过具体的例子来理解拐点。

2. 讲解利用导数来找拐点的方法,让学生通过例题来掌握这个方法。

4.4 作业布置m(x) = x^3 3xn(x) = x^2 4x + 4第五章:函数的单调性与极值的应用5.1 教学目标让学生学会运用函数的单调性和极值来解决实际问题。

函数的极值与导数,学案

函数的极值与导数,学案
2.求函数 的极值。
3.函数 是否有极值?
4.求函数 的极值。
利用10分钟完成测评提升题目,要求自己展示,在小组讨论。
课后提升学案
布置作业:
1.完成P99第5(3)(4)题。
2.完成《自主学习丛书》A组的题目
(1)根据函数y= 在R上的图像,说出பைடு நூலகம்调区间及相应的导数符号。
(2)理解极值定义
(3)指出此函数的极大值,与极小值。
请记录你的疑惑或自学障碍。
自我反思总结
合作研学学案
合作助学
课堂记录
完成课堂合作研学学案,做好总结巩固,提升理解能力,为课上小组展示做好准备。【合作助学】
探究一:如何求出函数的极值点?
重点难点
1.掌握利用导数求不超过三次的多项式函数的极值的一般方法。
2.了解函数在某点取得极值的必要条件和充分条件。
质疑自学学案
自主学习
问题记录
一、请同学们认真学习“导学目标”,明确本节课的学习内容及要求。
二、请同学进行认真研读本,在课本上勾划出重点内容,并用红笔标注出不明白的问题。
三、教材助读:
阅读课本93,94页。完成以下问题
探究二:如何判断函数的极值点是极大值点还是极小值点?
【典型例题】
例:求函数 的极值。
探究三:试总结求可导函数极值的一般步骤:
巩固练习.求函数 的极值。
【拓展提高】
拓展一:导数为0的点一定是函数的极值点吗?
为例讨论。
拓展二:极大值一定比极小值大吗?
请记录你的疑惑。
展示总结
展示训练学案
测评提升
学习笔记
1.求函数 的极值。
枣庄市第九中学2013级
高二数学课时导学案

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与定义1.1 极值的概念引入极值的概念,让学生了解函数在某一点取得局部最值的含义。

通过图像和实际例子来说明极值的存在和重要性。

1.2 极值的定义介绍极值的定义,包括局部极值和全局极值。

解释极值的必要条件和充分条件。

第二章:导数与极值的关系2.1 导数的定义与性质复习导数的定义和基本性质,包括导数的符号变化与函数单调性的关系。

2.2 导数与极值的关系引入导数与极值的关系,讲解导数为零的点可能是极值点的原理。

通过实例来说明导数在判断极值中的作用。

第三章:一元函数的极值判定3.1 判定极值的存在性介绍判定极值存在性的方法,包括罗尔定理和拉格朗日中值定理。

3.2 判定极值的具体方法讲解利用导数符号变化判断极值的方法,包括导数单调性和零点存在性定理。

第四章:多元函数的极值4.1 多元函数极值的概念引入多元函数极值的概念,让学生了解多元函数在不同维度上的极值问题。

4.2 多元函数极值的判定讲解多元函数极值的判定方法,包括拉格朗日乘数法和海森矩阵。

第五章:实际应用中的极值问题5.1 应用背景介绍通过实际例子介绍极值在各个领域中的应用,如优化问题、物理学、经济学等。

5.2 实际应用案例分析分析具体案例,让学生了解如何运用极值理论和方法解决问题。

第六章:利用极值解决实际问题6.1 优化问题概述介绍优化问题的概念,解释最小值和最大值在优化问题中的作用。

举例说明优化问题在工程、经济等领域的应用。

6.2 利用极值解决优化问题讲解如何利用函数的极值解决优化问题,包括确定最优解的方法和步骤。

通过实际案例分析,让学生掌握优化问题的解决技巧。

第七章:函数极值的存在性定理7.1 拉格朗日中值定理复习拉格朗日中值定理的内容,解释其在函数极值存在性判断中的应用。

利用拉格朗日中值定理证明函数极值的存在性。

7.2 罗尔定理与极值存在性讲解罗尔定理的内容及其在函数极值存在性判断中的应用。

结合罗尔定理和拉格朗日中值定理,证明函数极值的存在性。

(完整word)高中数学《§1.3.2函数的极值与导数》导学案

(完整word)高中数学《§1.3.2函数的极值与导数》导学案

《§1.3.2函数的极值与导数》导学案课前部分编辑人:审核:高二数学组【学习目标】1.知识与技能目标:(1)理解极大值、极小值的概念;(2)能够运用判别极大值、极小值的方法来求函数的极值;(3)掌握求可导函数的极值的步骤.2.过程与方法目标:培养学生观察、分析和概括的能力,使学生进一步感受数形结合思想.3.情感、态度与价值观目标进一步培养学生合作、交流的能力和团队精神;激发学生积极主动地参与数学学习活动,养成良好的学习习惯.【学习重点、难点】重点:极值的概念与求法.难点:函数在某点取得极值的必要条件和充分条件一、【复习回顾】函数的单调性与其导函数正负的关系?二、【学习探究】问题:观察下图,从图2中挑选出与图1点a位置相似的点,函数()y f x=在这些点处的函数值与这些点附近的函数值有什么大小关系?()y f x=在这些点的导数值是多少?在这些点左右两侧,()y f x=的导数的正负有什么规律?从图2中挑选出与图1点b位置相似的点,并回答上述问题新知:极值的概念阅读教材27p内容,自主学习函数极值的概念,回答下列问题.1. 若函数)(xfy=在x0处存在导数,则x0左右两侧及x0处的导数满足哪些条件时x才会是)(xf的极值点?2.函数的极值点能出现在定义域区间的端点处吗?3.函数的极值是唯一的吗?一个函数的极大值一定大于它极小值吗?提示:极值反映了函数在某一点附近的函数值的大小情况,刻画的是函数的局部性质. 做一做图3是导函数)(xfy'=的图象,函数y=f(x)的极大值点有_ _,极小值点有思考:1.可导函数)(xfy=在一点的导数值为0是函数在这点取极值的什么条件?2.在导函数图象上怎么找极值点?图3图2图1三、【典型例题】例1 求函数31443y x x =-+的极值.你能总结出求极值的一般步骤吗?自我检测已知函数时有极值,与在12354)(23-==+++=x x bx ax x x f 求函数的解析式.四、【质疑汇总】1.我的疑惑?2.小组合作探究后的疑惑五、【自学总结】我的收获3.其他组展示的问题及成果:(评价与反思)《§1.3.2函数的极值与导数》导学案课上部分编辑人:审核:高二数学组【展示交流】1.课上要解决的问题是:2.展示提纲:《§1.3.2函数的极值与导数》导学案课后部分编辑人:审核:高二数学组【课后反思】【课后作业】1.选修2-229p练习1、22.第9课时卷子【高考链接】1.(2012陕西7题5分)设函数xxexf=)(则()的极大值点为)(1..xfxA=的极小值点为)(1..xfxB=的极大值点为)(1..xfxC-=的极小值点为)(1..xfxD-=2.(2012重庆8题5分)设函数且上可导,其导数为在),()('xfRxf函数()()/1y x f x=-的图象如图所示,则下列结论中一定成立的是()A.函数()f x有极大值()2f和极小值()1fB. 函数()f x有极大值()2f-和极小值()1fC. 函数()f x有极大值()2f和极小值()2f-D. 函数()f x有极大值()2f-和极小值()2f达标检测(限时独立完成)1.对于函数f(x)=x3-3x2,给出命题:①f(x)是增函数,无极值;②f(x)是减函数,无极值;③f(x)的递增区间为(-∞,0),(2,+∞),递减区间为(0,2);④f(0)=0是极大值,f(2)=-4是极小值.其中正确的命题有( )A.1个B.2个C.3个D.4个2.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点( )A.1个B.2个C.3个D.4个3. 函数32()39f x x ax x=++-在3x=-时有极值10,则a的值为4.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a=______,b=________.达标检测(限时独立完成)1.对于函数f(x)=x3-3x2,给出命题:①f(x)是增函数,无极值;②f(x)是减函数,无极值;③f(x)的递增区间为(-∞,0),(2,+∞),递减区间为(0,2);④f(0)=0是极大值,f(2)=-4是极小值.其中正确的命题有( )A.1个B.2个C.3个D.4个2.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点( )A.1个B.2个C.3个D.4个3. 函数32()39f x x ax x=++-在3x=-时有极值10,则a的值为4.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a=______,b=________.。

高中数学《函数的极值与导数》导学案 (2)

高中数学《函数的极值与导数》导学案 (2)

第三章 导数及其应用3.3.2函数的极值与导数一、学习目标:1.了解函数极值点、极值的概念,理解函数取得极值的必要条件2.掌握求可导函数极值的步骤,会利用导数求函数的极大值、极小值【重点、难点】重点:极值的概念、利用导数求函数的极值难点:极值的综合应用二、学习过程【情景创设】横看成林侧成峰,远近高低各不同.在群山之中,各个山峰的顶端,虽然不一定是群山中的最高处,但它却是其附近的最高点;同样,各个谷底虽然不一定是群山之中的最低处,但它却是其附近的最低点!而对于函数图象,曲线在升、降转折点处形成“峰”“谷”,函数的这种性质以及这种特点,无论在实际上还是在实际应用上都具有重要的意义.这节课我们将学习函数的这些知识——极值.【导入新课】1.观察下图中P 点附近图像从左到右的变化趋势、P 点的函数值以及点P 位置的特点函数图像在P 点附近从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递减),在P 点附近,P 点的位置最高,函数值最大,同理找出点Q 附近的函数值变化情况.2.极小值点与极小值若函数()f x 满足:(1)在x a =附近其他点的函数值()f x ___()f a ;(2)()f a '=__;(3)在x a =附近的左侧_________,在x a =附近的右侧_________,则点a 叫做函数()y f x =的极小值点, ()f a 叫做函数()y f x =的极小值.3.极大值点与极大值若函数()f x 满足:(1)在x b =附近其他点的函数值()f x ___()f b ;(2)()f b '=__;(3)在x b =附近的左侧_________,在x b =附近的右侧_________,则点b 叫做函数()y f x =的极大值点, ()f b 叫做函数()y f x =的极大值.4.极值的定义(1)极小值点、极大值点统称为_______.(2)极大值与极小值统称为_____.5.求函数()y f x =的极值的方法(1)如果在0x 附近的左侧_________,右侧_________,那么()0f x 是极大值.(2)如果在0x 附近的左侧_________,右侧_________,那么()0f x 是极小值.【典型例题】例1 观察图形,回答下列问题:(1)可导函数()f x 在点0x 处取极值的充要条件是什么?(2)函数在某个区间上有多个极值点,那么一定既有极大值也有极小值吗?(3)上图中哪些是极大值点,哪些是极小值点?例2 求函数()31443f x x x =-+的极值.例3 函数()32113f x x x ax =-+-有极值点,求a 的取值范围.【变式拓展】已知函数()3ln 42x a f x x x =+--,其中a R ∈,,且曲线()y f x =在点()()1,1f 处的切线垂直于12y x =. (1)求a 的值.(2)求函数()y f x =的单调区间与极值三、学习总结1.对于极值的认识(1)函数的极值是一个局部性的概念,是仅对某一点的左右两侧区域而言的.极值点是区间内部的点而不会是端点.(2)若()f x 在某区间内有极值,那么()f x 在该区间内一定不是单调函数,即在区间上单调的函数没有极值. 2.对函数取极值条件的认识(1)可导函数的极值点是导数为零的点,但是导数为零的点不一定是极值点,即“函数()y f x =在一点的导数值为零是函数()y f x =在这点取极值的必要条件,而非充分条件.”(2)可导函数()f x 在点0x 处取得极值的充要条件是()00f x '=,且在0x 左侧和右侧()f x '的符号不同.(3)如果在0x 的两侧()f x '的符号相同,则0x 不是()f x 的极值点.3.对于函数极值点的认识(1)函数()f x 在某区间内有极值,它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点.(2)当函数()f x 在某区间上连续且有有限个极值点时,函数()f x 在该区间内的极大值点与极小值点是交替出现的.(3)从曲线的切线角度看,曲线在极值点处切线的斜率为0,并且,曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正.四、随堂检测1. 函数()y f x =是定义在R 上的可导函数,则下列说法不正确的是 ( )A.若函数在0x x =时取得极值,则()00f x '=B.若()00f x '=,则函数在0x x =处取得极值C.若在定义域内恒有()00f x '=,则()y f x =是常数函数D.函数()y f x =在0x x =处的导数是一个常数2. 设函数()xf x xe =,则 ( ) A.1x =为()f x 的极大值点 B.1x =-为()f x 的极大值点C.1x =为()f x 的极小值点D.1x =-为()f x 的极小值点3.设三次函数()f x 的导函数为()f x ',函数()y x f x '=⋅的图象的一部分如图所示,则 ( )A.()f x 极大值为3f ,极小值为(3f -B.()f x 极大值为(3f ,极小值为3fC.()f x 极大值为()3f -,极小值为()3fD.()f x 极大值为()3f ,极小值为()3f -4. 已知函数()2x f x x e =,求()f x 的极小值和极大值.。

高中数学《函数的极值与导数》导学案

高中数学《函数的极值与导数》导学案

3.3.2函数的极值与导数1.函数的极值定义设函数f(x)在点x0及其附近有定义,如果对x0附近的所有点,都有□01 f(x)≤f(x0),则称f(x0)是函数f(x)的一个□02极大值,记作y极大值=f(x0);如果对x0附近的所有点都有□03f(x)≥f(x0),则称f(x0)是函数f(x)的一个□04极小值,记作y极=f(x0).极大值与极小值统称为极值.小值2.函数极值的判定当函数f(x)在点x0处连续时,判断f(x0)是否存在极大(小)值的方法是:(1)如果在x0附近的左侧□05f′(x)>0,右侧□06f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧□07f′(x)<0,右侧□08f′(x)>0,那么f(x0)是极小值;(3)如果f′(x)在点x0的左右两侧符号不变,则f(x0)□09不是函数f(x)的极值.3.求可导函数极值的步骤一般情况下,我们可以通过如下步骤求出函数y=f(x)的极值点:(1)求出导数□10f′(x);(2)解方程□11f′(x)=0;(3)对于方程f′(x)=0的每一个解x0,分析f′(x)在x0左、右两侧的符号[即f(x)的单调性],确定□12极值:①若f′(x)在x0两侧的符号“左正右负”,则x0为□13极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为□14极小值点;③若f′(x)在x0两侧的符号相同,则x0□15不是极值点.函数极值点的两种情况(1)若点x0是可导函数f(x)的极值点,则f′(x0)=0,反过来不一定成立.(2)函数的不可导点也可能是函数的极值点,如:y=|x|在x=0处不可导,但x=0是函数的极小值点,因此,函数取极值点只可能为f′(x)=0的根或不可导点两种情况.1.判一判(正确的打“√”,错误的打“×”)(1)函数f(x)=x3+ax2-x+1必有2个极值.()(2)在可导函数的极值点处,切线与x轴平行或重合.()(3)函数f(x)=1x有极值.()答案(1)√(2)√(3)×2.做一做(请把正确的答案写在横线上)(1)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极大值点的个数为________.(2)函数f(x)=ax3+x+1有极值的充要条件是________.(3)已知函数f(x)=x2-2ln x,则f(x)的极小值是________.答案(1)2(2)a<0(3)1探究1求已知函数的极值例1求下列函数的极值.(1)f(x)=3x+3ln x;(2)f(x)=x3-3x2-2在(a-1,a+1)内的极值(a>0).[解](1)函数f(x)=3x+3ln x的定义域为(0,+∞),f′(x)=-3x2+3x=3(x-1)x2.令f′(x)=0得x=1.当x变化时,f′(x),f(x)的变化情况如下表:x (0,1)1(1,+∞)f′(x)-0+f(x)极小值3因此当x=1时,f(x)有极小值,并且f(1)=3.(2)由f(x)=x3-3x2-2得f′(x)=3x(x-2),令f′(x)=0得x=0或x=2.当x变化时,f′(x),f(x)的变化情况如下表:由此可得:当0<a<1时,f(x)在(a-1,a+1)内有极大值f(0)=-2,无极小值;当a=1时,f(x)在(a-1,a+1)内无极值;当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值;当a≥3时,f(x)在(a-1,a+1)内无极值.综上得,当0<a<1时,f(x)有极大值-2,无极小值;当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值.[条件探究]若将例1(2)中a>0改为a<0,结果会怎样?解由例1(2)中表可得:当-1<a<0时,f(x)在(a-1,a+1)内有极大值f(0)=-2,无极小值.当a≤-1时,f(x)在(a-1,a+1)内无极值.综上得,当-1<a<0时,f(x)有极大值-2,无极小值.当a≤-1时,f(x)无极值.拓展提升求函数极值的方法一般地,求函数y=f(x)的极值的方法是:解方程f′(x)=0,设解为x0,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.注:如果在x0附近的两侧f′(x)符号相同,则x0不是函数f(x)的极值点.例如,对于函数f(x)=x3,我们有f′(x)=3x2.虽然f′(0)=0,但由于无论是x>0,还是x <0,恒有f ′(x )>0,即函数f (x )=x 3是单调递增的,所以x =0不是函数f (x )=x 3的极值点.一般地,函数y =f (x )在一点的导数值为0是函数y =f (x )在这点取极值的必要条件,而非充分条件.【跟踪训练1】 求下列函数的极值. (1)f (x )=2xx 2+1-2; (2)f (x )=x 2e -x .解 (1)函数的定义域为R . f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )变化情况如下表:由上表可以看出,当x =-1时,函数有极小值,且极小值为f (-1)=-3; 当x =1时,函数有极大值,且极大值为f (1)=-1. (2)∵f (x )=x 2e x ,∴f ′(x )=⎝ ⎛⎭⎪⎫x 2e x ′=2x ·e x -x 2e x (e x )2=x (2-x )e x ,令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )变化情况如下表:由上表可以看出,当x =0时,函数有极小值,且f (0)=0; 当x =2时,函数有极大值,且f (2)=4e 2. 探究2 已知函数的极值求参数例2 已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,求常数a ,b 的值. [解] 因为f (x )在x =-1时有极值0, 且f ′(x )=3x 2+6ax +b .所以⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧ a =1,b =3,或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,所以f (x )在R 上为增函数,无极值,故舍去. 当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-3,-1)时,f (x )为减函数;当x ∈(-∞,-3]和[-1,+∞)时,f (x )为增函数. 所以f (x )在x =-1时取得极小值,因此a =2,b =9. 拓展提升已知函数极值的情况,逆向应用确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后还须验证根的合理性.【跟踪训练2】已知f(x)=x3+ax2+bx+c,f(x)在点x=0处取得极值,并且在单调区间[0,2]和[4,5]上具有相反的单调性.(1)求实数b的值;(2)求实数a的取值范围.解(1)因为f′(x)=3x2+2ax+b,f(x)在点x=0处取得极值,所以f′(0)=0,解得b=0.(2)令f′(x)=0,即3x2+2ax=0,解得x=0或x=-23a.依题意有-23a>0.又函数在单调区间[0,2]和[4,5]上具有相反的单调性,所以必有2≤-23a≤4,解得-6≤a≤-3.探究3利用极值判断方程根的个数例3已知曲线f(x)=-x3+3x2+9x+a与x轴只有一个交点,求实数a的取值范围.[解]f′(x)=-3x2+6x+9.令f′(x)=0,解得x1=-1,x2=3.列表:所以当x=-1时,f(x)有极小值f(-1)=a-5;当x=3时,f(x)有极大值f(3)=a+27.画出大致图象,要使f(x)的图象与x轴只有一个交点,只需极大值小于0(如图1)或极小值大于0(如图2).所以a-5>0或a+27<0.解得a>5或a<-27.故实数a的取值范围为a>5或a<-27.拓展提升(1)研究方程根的问题可以转化为研究相应函数的图象问题.一般地,方程f(x)=0的根就是函数f(x)的图象与x轴交点的横坐标,方程f(x)=g(x)的根就是函数f(x)与g(x)的图象的交点的横坐标.(2)事实上利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.【跟踪训练3】设函数f(x)=x3-6x+5,x∈R.(1)求函数f(x)的单调区间和极值;(2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值范围.解(1)f′(x)=3x2-6,令f′(x)=0,解得x1=-2,x2= 2.因为当x>2或x<-2时,f′(x)>0;当-2<x<2时,f′(x)<0.所以f(x)的单调递增区间为(-∞,-2)和(2,+∞);单调减区间为(-2,2).当x=-2时,f(x)有极大值5+42;当x=2时,f(x)有极小值5-4 2.(2)由(1)的分析知y=f(x)的图象的大致形状及走向如右图所示,当5-42<a<5+42时,直线y=a与y=f(x)的图象有三个不同交点,即方程f (x )=a 有三个不同的解.1.在极值的定义中,取得极值的点的横坐标称为极值点,极值点指的是自变量的值,极值指的是函数值.2.函数的极值是函数的局部性质.可导函数f (x )在点x =x 0处取得极值的充要条件是f ′(x 0)=0且在x =x 0两侧f ′(x ) 符号相反.3.利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题.1.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( ) A .1,-3 B .1,3 C .-1,3 D .-1,-3答案 A解析 ∵f ′(x )=3ax 2+b ,∴f ′(1)=3a +b =0.① 又当x =1时有极值-2,∴a +b =-2.② 联立①②解得⎩⎪⎨⎪⎧a =1,b =-3.2.设函数f (x )=x e x ,则( ) A .x =1为f (x )的极大值点 B .x =1为f (x )的极小值点 C .x =-1为f (x )的极大值点 D .x =-1为f (x )的极小值点 答案 D解析 求导得f ′(x )=e x +x e x =e x (x +1),令f ′(x )=e x (x +1)=0,解得x =-1,易知x =-1是函数f (x )的极小值点.3.函数f (x )=x 3-6x 2-15x +2的极大值是________,极小值是________. 答案 10 -98解析 f ′(x )=3x 2-12x -15=3(x -5)(x +1),在(-∞,-1),(5,+∞)上f ′(x )>0,在(-1,5)上f ′(x )<0,所以f (x )极大值=f (-1)=10,f (x )极小值=f (5)=-98.4.函数y =x e x 在其极值点处的切线方程为________. 答案 y =-1e解析 由题知y ′=e x +x e x ,令y ′=0,解得x =-1,代入函数解析式可得极值点的坐标为⎝ ⎛⎭⎪⎫-1,-1e ,又极值点处的切线为平行于x 轴的直线,故方程为y=-1e .5.已知函数f (x )=x 3-3x +a (a 为实数),若方程f (x )=0有三个不同实根,求实数a 的取值范围.解 令f ′(x )=3x 2-3=3(x +1)(x -1)=0, 解得x 1=-1,x 2=1. 当x <-1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以当x =-1时,f (x )有极大值f (-1)=2+a ; 当x =1时,f (x )有极小值f (1)=-2+a . 因为方程f (x )=0有三个不同实根,所以y =f (x )的图象与x 轴有三个交点,如图.所以极大值2+a >0,极小值-2+a <0, 解得-2<a <2,故实数a 的取值范围是(-2,2).A 级:基础巩固练一、选择题1.已知函数f (x )=ax 3+bx 2+c ,其导函数图象如图所示,则函数f (x )的极小值是( )A.a+b+cB.8a+4b+cC.3a+2bD.c答案 D解析由图象可以看出,当x∈(-∞,0)时,f′(x)<0,函数f(x)单调递减;当x∈(0,2)时,f′(x)>0,函数f(x) 单调递增;当x∈(2,+∞)时,f′(x)<0,函数f(x)单调递减.所以x=0时,函数取得极小值,f(0)=c.2.函数f(x)=x3-3x2-9x(-2<x<2)有()A.极大值为5,极小值为-27B.极大值为5,极小值为-11C.极大值为5,无极小值D.极大值为-27,无极小值答案 C解析f′(x)=3x2-6x-9=3(x+1)(x-3).令f′(x)=0,得x1=-1,x2=3(舍去).当-2<x<-1时,f′(x)>0;当-1<x<2时,f′(x)<0,故当x=-1时,f(x)有极大值,f(x)极大值=f(-1)=5,无极小值.3.设函数y=f(x)在R上可导,则f′(x0)=0是y=f(x)在x=x0处取得极值的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析以f(x)=x3为例,f(x)=x3在x=0处导数为0,但不取得极值.故f′(x0)=0是y=f(x)在x=x0处取得极值的必要不充分条件.4.若函数f(x)=2x3-9x2+12x-a恰好有两个不同的零点,则a可能的值为()A.4 B.6 C.7 D.8答案 A解析由题意得f′(x)=6x2-18x+12=6(x-1)(x-2),由f′(x)>0得x<1或x>2,由f′(x)<0得1<x<2,所以函数f(x)在(-∞,1),(2,+∞)上单调递增,在(1,2)上单调递减,从而可知f(x)的极大值和极小值分别为f(1),f(2),若欲使函数f(x)恰好有两个不同的零点,则需使f(1)=0或f(2)=0,解得a=5或a=4,而选项中只给出了4.故选A.5.设a∈R,若函数y=e x+ax(x∈R)有大于零的极值点,则()A.a<-1 B.a>-1C.a<-1e D.a>-1e答案 A解析∵y=e x+ax,∴y′=e x+a,令y′=e x+a=0,则e x=-a. 即x=ln (-a),又∵x>0,∴-a>1,即a<-1.二、填空题6.函数f(x)=13x3-x2-3x-1的图象与x轴的交点个数是________.答案 3解析f′(x)=x2-2x-3=(x+1)(x-3),函数在(-∞,-1)和(3,+∞)上是增函数,在(-1,3)上是减函数,由f(x)极小值=f(3)=-10<0,f(x)极大值=f(-1)=23>0知函数f(x)的图象与x轴的交点个数为3.7.函数f(x)=2x+ln x的极小值为________.答案1+ln 2解析由f(x)=2x+ln x知,f′(x)=-2x2+1x=x-2x2,令f′(x)=0,得x=2.x,f′(x),f(x)取值情况如下表:f (x )1+ln 2∴f (x )极小值=f (2)=1+ln 2.8.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间 ⎝ ⎛⎭⎪⎫-3,-12内单调递增; ②函数y =f (x )在区间 ⎝ ⎛⎭⎪⎫-12,3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值. 其中正确的结论为________. 答案 ③解析 由导函数的图象知:当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减; 当x ∈(-2,2)时,f ′(x )>0,f (x )单调递增; 当x ∈(2,4)时,f ′(x )<0,f (x )单调递减; 当x ∈(4,+∞)时,f ′(x )>0,f (x )单调递增; 在x =-2时,f (x )取极小值; 在x =2时,f (x )取极大值; 在x =4时,f (x )取极小值. 所以只有③正确. 三、解答题9.已知函数y =ax 3+bx 2,当x =1时,有极大值3. (1)求实数a ,b 的值; (2)求函数y 的极小值. 解 (1)y ′=3ax 2+2bx .由题意,知⎩⎪⎨⎪⎧ f (1)=3,f ′(1)=0,即⎩⎪⎨⎪⎧ a +b =3,3a +2b =0,解得⎩⎪⎨⎪⎧a =-6,b =9.(2)由(1),知y =-6x 3+9x 2.所以y ′=-18x 2+18x =-18x (x -1). 令y ′=0,解得x 1=1,x 2=0.所以当x <0时,y ′<0;当0<x <1时,y ′>0; 当x >1时,y ′<0.所以当x =0时,y 有极小值,其极小值为0.10.已知a ∈R ,讨论函数f (x )=e x (x 2+ax +a +1)的极值点的个数. 解 f ′(x )=e x (x 2+ax +a +1)+e x (2x +a ) =e x [x 2+(a +2)x +(2a +1)].令f ′(x )=0,所以x 2+(a +2)x +2a +1=0.※ ①当Δ=(a +2)2-4(2a +1)=a 2-4a >0,即a <0或a >4时,设※有两个不同的根x 1,x 2,不妨设x 1<x 2, 所以f ′(x )=e x (x -x 1)(x -x 2).即f (x )有两个极值点.②当Δ=0,即a =0或a =4时,设※有两个相等实根x 1, 所以f ′(x )=e x (x -x 1)2≥0,所以f (x )无极值.③当Δ<0,即0<a<4时,x2+(a+2)x+2a+1>0,所以f′(x)>0(x∈R).故f(x)也无极值.综上所述,当a<0或a>4时,f(x)有两个极值点,当0≤a≤4时f(x)无极值点.B级:能力提升练1.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是()答案 C解析因为f(x)在x=-2处取得极小值,所以在x=-2附近的左侧,f(x)单调递减,即f′(x)<0;在x=-2附近的右侧,f(x)单调递增,即f′(x)>0.故在x=-2附近的左侧有y=xf′(x)>0;在x=-2附近的右侧有y=xf′(x)<0.所以可排除选项A,B,D,只有选项C满足这一条件.而且当x=0时,xf′(x)=0,选项C也满足这一条件.故选C.2.已知函数f(x)=ax3+x2(a∈R)在x=-43处取得极值.(1)确定a的值;(2)若g(x)=f(x)e x,讨论g(x)的单调性.解(1)对f(x)求导得f′(x)=3ax2+2x,因为f(x)在x=-43处取得极值,所以f′⎝⎛⎭⎪⎫-43=0,即3a·169+2·⎝⎛⎭⎪⎫-43=16a3-8 3=0,解得a=12.(2)由(1)得g(x)=⎝⎛⎭⎪⎫12x3+x2e x,故g′(x)=⎝⎛⎭⎪⎫32x2+2x e x+⎝⎛⎭⎪⎫12x3+x2e x=⎝⎛⎭⎪⎫12x3+52x2+2x e x=12x(x+1)(x+4)e x.令g′(x)=0,解得x=0,x=-1或x=-4.当x<-4时,g′(x)<0,故g(x)为减函数;当-4<x<-1时,g′(x)>0,故g(x)为增函数;当-1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数.综上知g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.。

极值点与导数学案(最好的学案)

极值点与导数学案(最好的学案)

1.3.2 函数的极值与导数(文)学案预习目标:1.了解可导函数在某点取得极值的必要条件和充分条件;2.理解函数极值的概念,会用导数求函数的极大值与极小值.重点:利用导数求函数的极值;难点:函数在某点取得极值的必要条件与充分条件.一.复习引入:f(x)单调递增⇒____________________________.f(x)s 单调递减⇒____________________________;_______________ ⇒ f(x)图像单调递增;_______________ ⇒ f(x)图像单调递减.二.新知探究:探究一:观察下图: 表示高台跳水运动员的高度h 随时间t 变化的函数()h t =-4.9t 2+6.5t+10的图象,回答以下问题(1) 当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢?(2) 在点t=a 附近的图象有什么特点?(3)点t=a 附近的导数符号有什么变化规律?思考:对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? a oht探究二:观察下面两图所表示的y=f(x)的图象,回答以下问题:(1)函数y=f(x)在a ,b,c,d,e,f,g,h 点的函数值与这些点附近的函数值有什么关系?(2)函数y=f(x)在这些点的导数值是多少?(3)在这些点附近, y=f(x)的导数的符号有什么规律?以a,b 两点为例,回答以上三个问题:(1) 函数y=f(x)在点x=a 的函数值f(a)比它在点x=a 附近其他点的函数值都_________,._____________)(='a f(2) 点x=a 附近的左侧0______)(x f ',右侧0______)(x f ';(3) 函数y=f(x)在点x=b 的函数值f(b)比它在点x=b 附近其他点的函数值都_________,._____________)(='b f(4) 点x=b 附近的左侧0______)(x f ',右侧0______)(x f ';极值的定义:点a 叫函数y=f(x)的__________,f(a)叫做函数y=f(x)的__________; 点b 叫函数y=f(x)的__________,f(a)叫做函数y=f(x)的__________; 极大值点与极小值点称为_________, 极大值与极小值称为__________, 极值反映了函数在某一点附近的___________情况,刻画的是函数的_______________.定义剖析:(1)极值点指的是一个数还是一个点?(2)导数值为0的点一定是函数的极值点吗?(以3)(x x f =为例探究)结论:对于可导函数,导数值为0的点是函数极值点的_________________条件.(3)判断极值的条件:____;__________)(100='x f 00.2x 附近左右两侧导数值____________.三. 例题探究例1.利用导数求函数的极值 求函数x x x x f 62531)(23+-=的极值.应用变式1函数y =x x x 9323--(-2<x <2)有 ( ) A .极大值为5,极小值为-27 B .极大值为5,极小值为-11C .极大值为5,无极小值D .极大值为-27,无极小值步骤总结:1.________________________________________;2.________________________________________;3.________________________________________;4.________________________________________.例2.求函数极值的逆向问题已知f(x)=cx bx ax ++23(a ≠0)在x =±1时取得极值,且f(1)=-1,(1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由.四.预习检测1.若函数y =f(x)是定义在R 上的可导函数,则f ′(x 0)=0是x 0为函数y =f(x)的极值点( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.函数y =2-x 2-x 3的极值情况是( )A .有极大值,没有极小值B .有极小值,没有极大值C .既无极大值也无极小值D .既有极大值也有极小值3.函数y =3x +1 的极大值是 ( )A .1B .0C .2D .不存在 4.y =f(x)=a x x +-2332的极大值是6,那么a 等于 ( )A .6B .0C .5D .15. x ax x y 5223+-=有极值点,则a 的范围是( ) A.3030-<>a a 或 B.3030<<-a C.3030-≤≥a a 或 D.a=30±6.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个7.若函数f (x )=x 2+a x +1在x =1处取极值,则a = . 8.设y =f (x )为三次函数,且图象关于原点对称,当x =12时,f (x )的极小值为-1,求出函数f (x )的解析式.9.已知函数f(x)=c bx x ax -+44ln (x>0)在x =1处取得极值-3-c ,其中a 、b 、c 为常数.(1)试确定a ,b 的值;(2)求函数的单调区间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学《函数的极值与导数》学案
一、教学目标
知识与技能
〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件
〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值
2过程与方法
结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。

3情感与价值
感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。

二、重点:利用导数求函数的极值
难点:函数在某点取得极值的必要条件与充分条件
三、教学基本流程
回忆函数的单调性与导数的关系,与已有知识的联系
提出问题,激发求知欲
组织学生自主探索,获得函数的极值定义
通过例题和练习,深化提高对函数的极值定义的理解
四、教学过程
〈一〉创设情景,导入新课
、通过上节课的学习,导数和函数单调性的关系是什么?
(提问C类学生回答,A,B类学生做补充)
函数的极值与导数教案
2、观察图1.3.8表示高台跳水运动员的高度h随时间t 变化的函数函数的极值与导数教案=-4.9t2+6.5t+10的图象,回答以下问题
函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案
函数的极值与导数教案
函数的极值与导数教案函数的极值与导数教案
(1)当t=a时,高台跳水运动员距水面的高度最大,那么函数函数的极值与导数教案在t=a处的导数是多少呢?
(2)在点t=a附近的图象有什么特点?
(3)点t=a附近的导数符号有什么变化规律?
共同归纳:
函数h在a点处h/=0,在t=a的附近,当t<a时,函数函数的极值与导数教案单调递增,函数的极值与导数教案>0;当t>a时,函数函数的极值与导数教案单调递减,函数的极值与导数教案<0,即当t在a的附近从小到大经过a时,函数的极值与导数教案先正后负,且函数的极值与导数教案连续变化,于是h/=0.
3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?
&lt;二&gt;探索研讨
函数的极值与导数教案1、观察1.3.9图所表示的y=f 的图象,回答以下问题:
函数的极值与导数教案(1)函数y=f在a.b点的函数值与这些点附近的函数值有什么关系?
(2)函数y=f在a.b.点的导数值是多少?
(3)在a.b点附近,y=f的导数的符号分别是什么,并且有什么关系呢?
2、极值的定义:
我们把点a叫做函数y=f的极小值点,f叫做函数y=f 的极小值;
点b叫做函数y=f的极大值点,f叫做函数y=f的极大值。

极大值点与极小值点称为极值点,极大值与极小值称为极值.
3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?
充要条件:f=0且点x0的左右附近的导数值符号要相反
4、引导学生观察图1.3.11,回答以下问题:
(1)找出图中的极点,并说明哪些点为极大值点,哪
些点为极小值点?
(2)极大值一定大于极小值吗?
5、随堂练习:
如图是函数y=f的函数,试找出函数y=f的极值点,并指出哪些是极大值点,哪些是极小值点.如果把函数图象改为导函数y=函数的极值与导数教案的图象?
函数的极值与导数教案&lt;三&gt;讲解例题
例4求函数函数的极值与导数教案的极值
教师分析:①求f/,解出f/=0,找函数极点;②由函数单调性确定在极点x0附近f/的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值.
学生动手做,教师引导
解:∵函数的极值与导数教案∴函数的极值与导数教案=x2-4=令函数的极值与导数教案=0,解得x=2,或x=-2.
函数的极值与导数教案
函数的极值与导数教案
下面分两种情况讨论:
当函数的极值与导数教案>0,即x>2,或x<-2时;
当函数的极值与导数教案<0,即-2<x<2时.
当x变化时,函数的极值与导数教案,f的变化情况如下表:
x
-2
2
函数的极值与导数教案
+
_
+
f
单调递增
函数的极值与导数教案
函数的极值与导数教案单调递减
函数的极值与导数教案
单调递增
函数的极值与导数教案因此,当x=-2时,f有极大值,且极大值为f=函数的极值与导数教案;当x=2时,f有极小值,且极小值为f=函数的极值与导数教案
函数函数的极值与导数教案的图象如:
函数的极值与导数教案归纳:求函数y=f极值的方法是: 函数的极值与导数教案1求函数的极值与导数教案,解方程函数的极值与导数教案=0,当函数的极值与导数教案=0时:
如果在x0附近的左边函数的极值与导数教案>0,右边函数的极值与导数教案<0,那么f是极大值.
如果在x0附近的左边函数的极值与导数教案<0,右边函数的极值与导数教案>0,那么f是极小值
&lt;四&gt;课堂练习
、求函数f=3x-x3的极值
2、思考:已知函数f(x)=ax3+bx2-2x在x=-2,x=1处取得极值,
求函数f(x)的解析式及单调区间。

C类学生做第1题,A,B类学生在第1,2题。

&lt;五&gt;课后思考题
、若函数f=x3-3bx+3b在(0,1)内有极小值,求实数b的范围。

2、已知f=x3+ax2+x+1有极大值和极小值,求实数a的范围。

&lt;六&gt;课堂小结
、函数极值的定义
2、函数极值求解步骤
3、一个点为函数的极值点的充要条件。

&lt;七&gt;作业
P32
5


教学反思
本节的教学内容是导数的极值,有了上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.教学反馈中主要是书写格式存在着问题.为了统一要求主张用列表的方式表示,刚开始学生都不愿接受这种格式,但随着几道例题与练习题的展示,学生体会到列表方式的简便,同时为能够快速判断导数的正负,我要求学生尽量把导数因式分解.本节课的难点是函数在某点取得极值的必要条件与充分条件,为了说明这一点多举几个例题是很有必要的.在解答过程中学生还暴露出对复杂函数的求导的准确率比较底,以及求函数的极值的过程板书仍不规范,看样子这些方面还要不断加强训练函数的极值与导数教案
研讨评议
教学内容整体设计合理,重点突出,难点突破,充分体现教师为主导,学生为主体的双主体课堂地位,充分调动学生的积极性,教师合理清晰的引导思路,使学生的数学思维得到培养和提高,教学内容容量与难度适中,符合学情,并关注学生的个体差异,使不同程度的学生都得到不同效果的收获。

相关文档
最新文档