2.4.1 二次函数的应用1

合集下载

二次函数的应用

二次函数的应用

二次函数的应用1. 引言二次函数是高中数学中的重要概念之一。

它具有很多应用,涉及到许多实际问题的建模与解决。

本文将介绍二次函数的应用,并以实际例子来说明。

2. 二次函数的定义二次函数是指形如f(f)=ff2+ff+f的函数,其中f、f、f是实数且f ff0。

这里,f控制着二次项的开口方向和大小,f控制着一次项的斜率和大小,f控制着常数项的f-坐标。

3. 二次函数的图像二次函数的图像通常是一个称为抛物线的曲线。

抛物线的开口方向由二次项的系数f决定。

当f>0时,抛物线向上开口;当f<0时,抛物线向下开口。

抛物线的顶点是其中最高或最低的点,其f-坐标由 $x = -\\frac{b}{2a}$ 给出。

当f>0时,顶点为最低点;当f<0时,顶点为最高点。

4. 二次函数的应用之一:物体的运动轨迹二次函数在描述物体的运动轨迹时经常被使用。

考虑一个以一定速度向上抛出的物体,忽略空气阻力的影响。

假设物体的高度f(以米为单位)关于时间f(以秒为单位)的关系可以由二次函数f(f)=−5f2+10f+15描述。

这里−5f2表示重力对物体高度的影响,10f表示物体的初速度和时间的乘积,15表示物体的初始高度。

通过观察二次函数的图像,我们可以得到以下信息: - 物体的运动轨迹是一个向下开口的抛物线; - 物体的最高高度(即抛物线的顶点)是f(1.0)=20米,此时经过了1秒; - 物体在f=0秒时位于f(0)=15米的高度; - 物体在f=3秒时落地,此时高度为f(3)=0米。

通过这个例子,我们可以看到二次函数在描述物体的运动轨迹时有着重要的应用。

5. 二次函数的应用之二:经济利润二次函数还可以用来描述经济活动中的利润。

假设某公司的利润f(以万元为单位)关于销售量f(以单位为单位)的关系可以由二次函数f(f)=−2f2+20f+50描述。

这里−2f2表示固定成本对利润的影响,20f表示每单位销售额对利润的影响,50表示初始利润。

北师大版初三下册数学 2.4 二次函数的应用 教案(教学设计)

北师大版初三下册数学 2.4  二次函数的应用 教案(教学设计)

2.4.1 二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排1课时三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.四、教学难点运用二次函数的知识解决实际问题.五、教学过程(一)导入新课引导学生把握二次函数的最值求法:(1)最大值:(2)最小值:(二)讲授新课活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上.(1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x ==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时 活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.y x x ++π=由 157.4x x y --π=得 2215722()242x x x x S xy x π--ππ=+=+窗户面积 271522x x =-+ 2715225().21456x =--+ 2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时 即当x≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2.(四)归纳小结“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.2.用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y,要使△DEF为等腰三角形,m的值应为多少?m5.如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围.(2)生物园的面积能否达到210平方米?说明理由.【答案】1.12.52. 根据题意可得:等腰三角形的直角边为2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积 30202,.322x ==-+当时金属框围成的图形面积最大 )((()2x 602m ,1022103210210m .=--+⨯-=此时矩形的一边长为另一边长为 )2S 3002002m .=-最大3.解: (1)设矩形广场四角的小正方形的边长为x 米,根据题意得4x 2+(100-2x )(80-2x )=5 200,整理,得x 2-45x +350=0,解得:x 1=35,x 2=10,经检验x 1=35,x 2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y 元,广场四角的小正方形的边长为x 米,则 y =30[4x 2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)]即y =80x 2-3 600x +240 000,配方,得y =80(x -22.5)2+199 500.当x =22.5时,y 的值最小,最小值为199 500.所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD 中,∠B=∠C=90°,∴在Rt△BFE 中, ∠1+∠BFE=90°,又∵EF⊥DE, ∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED, ∴BF BE CE CD =, ∴8y x x m-= 即28x x y m -=.⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m-=得关于x 的方程: 28120x x -+=,得1226x x ==,.∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED ,此时, Rt△BFE≌Rt△CED.∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2.即△DEF为等腰三角形,m的值应为6或2.5. 解:(1)依题意,得y=(40-2x)x.∴y=-2x2+40x.x的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x2+40x=210.即x2-20x+105=0.∵ a=1,b=-20,c=105,∴2--⨯⨯<(20)411050,∴此方程无实数根,即生物园的面积不能达到210平方米.六.板书设计2.4.1二次函数的应用探究:例题:“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.2.4.2二次函数的应用一、教学目标1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.二、课时安排1课时三、教学重点运用二次函数的知识求出实际问题的最大值、最小值.四、教学难点运用二次函数的知识求出实际问题的最大值、最小值.五、教学过程(一)导入新课某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件. 若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的?(二)讲授新课活动1:小组合作二次函数y=a(x-h)2+k(a 0),顶点坐标为(h,k),则①当a>0时,y有最小值k;②当a<0时,y有最大值k【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?【解析】设销售单价为x (x≤13.5)元,那么销售量可以表示为: 件;每件T恤衫的利润为: 元;所获总利润可以表示为: 元;即y=-200x 2+3 700x-8 000=-200(x-9.25)2+9 112.5∴当销售单价为 元时,可以获得最大利润,最大利润是 元.活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围.(2)设宾馆一天的利润为w 元,求w 与x 的函数关系式.(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?【解析】(1)y=50-10x ; (2)w=(180+x-20)y=(180+x-20)(50-10x )=2x 34x 8 000.10-++ (3)因为w=2x 34x 8 000,10-++ 所以x=b -2a=170时,w 有最大值,而170>160,故由函数性质知,x=160时,利润最大,此时订房数y=50- 10x =34,此时的利润为10 880元.例题3 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1 500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x元,列方程,得(5+x)(200-10x)=1 500,解得x1=10,x2=5.因为要顾客得到实惠,5<10,所以x=5. 答:每千克应涨价5元.(2)设商场每天获得的利润为y元,则根据题意,得y=( x +5)(200-10x)= -10x2+150x+1 000,当x=1507.522(10)ba-=-=⨯-时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场获利最多(四)归纳小结“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润(五)随堂检测1.某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米2.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5 000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次性购买100个以上,则购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3 500元/个.乙商家一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)若市政府投资140万元,最多能购买多少个太阳能路灯?3.桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离OA 1m处达到最大高度2.25m.如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?4.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似地看作一次函数:(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【答案】1. 【解析】选A. 抛物线的顶点坐标为(2,4),所以水喷出的最大高度是4米.2. 【解析】(1)由题意可知,当x ≤100时,购买一个需5 000元,故y 1=5 000x当x>100时,因为购买个数每增加一个,其价格减少10元但售价不得低于3 500元/个,所以x ≤ 5 000 3 50010025010-+= 即100<x≤250时,购买一个需5 000-10(x-100)元,故y 1=6 000x-10x 2;当x>250时,购买一个需3 500元,故y 1=3 500x;21 5 000x,y 6 000x 10x ,3 500x,⎧⎪=-⎨⎪⎩所以 0x 100100x 250x 250≤≤<≤> 2500080%4000.y x x =⨯=(2) 当0≤x ≤100时,y 1=5 000x ≤500 000<1 400 000;当100<x ≤250时,y 1=6 000x -10x 2=-10(x -300)2+900 000<1 400 000;∴由35001400000x = 得到x=400由40001400000x = 得到350400x =<故选择甲商家,最多能购买400个太阳能路灯3.【解析】建立如图所示的坐标系,根据题意,得,点A(0,1.25),顶点B(1,2.25).设抛物线的表达式为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25. 当y=0时,得点C(2.5,0);同理,点D(-2.5,0).根据对称性,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.4.解析:(1)由题意,得:w = (x -20)·y=(x -20)·(-10x+500)=-10x 2+700x-10 000 当352b x a=-=时,w 有最大值. 答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得21070010 000 2 000.x x -+-=解这个方程,得x 1 = 30,x 2 = 40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.(3)∵10a =-<0∴抛物线开口向下.∴当30≤x≤40时,w≥2 000.∵x≤32,∴当30≤x≤32时,w≥2 000. 设成本为P (元),由题意,得P=20(-10x+500)=-200x+10 000, ∵k=-200<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3 600.答:想要每月获得的利润不低于2 000元,每月的成本最少需要3 600元.六.板书设计2.4.2二次函数的应用探究:例题2:例题3:“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式;2.根据二次函数的最值问题求出最大利润.。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是一种常见的数学函数类型,它在许多实际问题的建模与解决中具有广泛的应用。

本文将介绍二次函数的基本概念,以及其在现实生活中的几个具体应用。

一、二次函数的基本概念二次函数是指一个变量的平方项与该变量的一次项的和再加上一个常数项所构成的函数。

一般表示为f(x) = ax^2 + bx + c,其中a、b、c为常数。

二次函数的图像通常是一个抛物线,其开口的方向取决于a的正负。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数还具有一个特殊的点,称为顶点,它是抛物线的最高点或最低点。

二、1. 几何应用二次函数在几何中广泛应用,如平面几何中的抛物线问题、曲线的拐点问题等。

例如,在研究体育运动的抛体运动过程中,可以通过二次函数来描述运动物体的轨迹,进而计算出最高点、最远距离等重要参数。

2. 物理应用二次函数在物理学中具有重要的应用。

例如,在自由落体运动中,物体的下落距离与时间的关系可用二次函数来表示。

这种关系可以帮助我们计算出物体的速度、加速度等重要物理参数。

3. 经济应用经济学中也广泛使用二次函数进行经济模型的建立与分析。

例如,在市场供求关系的研究中,需求函数和供给函数通常采用二次函数形式,通过求解二次函数的交点可以确定市场均衡价格和数量。

4. 工程应用二次函数在工程中有着广泛的应用。

例如,在桥梁设计中,通过研究桥梁的受力情况,可以建立相应的二次函数模型,以确定桥梁的最佳设计参数,确保桥梁的结构安全可靠。

5. 金融应用金融领域中也经常使用二次函数进行金融模型的建立与分析。

例如,在股票市场中,通过研究股票价格的变化规律,可以建立相应的二次函数模型,以预测未来价格的走势,为投资者提供参考。

综上所述,二次函数在几何、物理、经济、工程和金融等领域中都有着广泛的应用。

通过建立并分析二次函数模型,我们可以更好地理解和解决实际问题,为实际应用提供科学的依据和方法。

二次函数应用的研究还有很大的发展空间,可以进一步拓展其在不同领域中的应用范围,为社会进步与发展做出更大的贡献。

浙教版数学九年级上册2.4《二次函数的应用》说课稿1

浙教版数学九年级上册2.4《二次函数的应用》说课稿1

浙教版数学九年级上册2.4《二次函数的应用》说课稿1一. 教材分析《二次函数的应用》是浙教版数学九年级上册第2.4节的内容。

这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,主要让学生了解二次函数在实际生活中的应用,培养学生的数学应用能力。

教材通过实例引入二次函数的应用,让学生了解二次函数在实际生活中的重要性,并通过解决问题,提高学生解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念、图像和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将数学知识应用到实际问题中,因此,在教学过程中,需要引导学生将二次函数知识与实际问题相结合,提高学生的数学应用能力。

三. 说教学目标1.知识与技能:让学生了解二次函数在实际生活中的应用,学会解决与二次函数相关的生活问题。

2.过程与方法:通过实例分析,培养学生将数学知识应用于实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学素养。

四. 说教学重难点1.教学重点:让学生了解二次函数在实际生活中的应用。

2.教学难点:如何引导学生将二次函数知识与实际问题相结合,解决实际问题。

五. 说教学方法与手段1.教学方法:采用案例分析法、问题驱动法、小组合作法等教学方法,引导学生主动探索、发现问题、解决问题。

2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,辅助教学。

六. 说教学过程1.导入:通过一个实际问题引出二次函数的应用,激发学生的学习兴趣。

2.新课导入:介绍二次函数在实际生活中的应用,让学生了解二次函数的实际意义。

3.案例分析:分析几个与二次函数相关的实际问题,让学生学会如何用二次函数解决问题。

4.小组讨论:让学生分组讨论,探讨二次函数在实际生活中的其他应用。

5.总结提高:对二次函数的应用进行总结,引导学生学会将二次函数知识应用于实际问题。

6.课堂练习:布置一些与二次函数应用相关的练习题,巩固所学知识。

二次函数在生活中的应用

二次函数在生活中的应用

二次函数在生活中的应用
二次函数是一种常见的数学函数,它在我们的生活和工作中有许多应用。

以下是二次函数在生活中的几个应用:
1. 抛物线运动
当一个物体以一定的初速度开始运动,并且受到重力的影响而向下运动时,它的运动轨迹就是一条抛物线。

这个运动过程可以用二次函数来描述。

例如,当你抛出一颗球时,它的高度会随着时间的推移而不断降低,形成一条抛物线。

2. 建筑设计
在建筑设计中,二次函数可以用来描述建筑物的结构和形状。

例如,在建造一座拱形桥时,设计师需要使用二次函数来确定桥的最高点和曲线的形状。

3. 经济学
在经济学中,二次函数可以用来描述成本和收益之间的关系。

例如,当一家企业决定生产某种产品时,它需要考虑生产成本和销售收益之间的平衡点,这个平衡点可以用二次函数来计算。

4. 电子技术
在电子技术中,二次函数可以用来描述电路中的电压和电流之间的关系。

例如,在设计一条放大电路时,工程师需要使用二次函数来确定电路的增益和频率响应。

总之,二次函数在我们的生活和工作中有许多应用,这些应用涉及到不同的领域,包括物理学、工程学、经济学和电子技术等。

熟练
掌握二次函数的概念和应用可以帮助我们更好地理解和解决实际问题。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是数学中一种常见的函数形式,其方程可以表示为:y = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。

二次函数在许多实际问题中都有广泛的应用,本文将介绍二次函数在几个不同领域的具体应用案例。

一、物理学领域中的应用1. 自由落体问题当物体在重力作用下自由落体时,其高度与时间之间的关系可以用二次函数来描述。

假设物体从初始高度h0下落,时间t与高度h之间的关系可以表示为:h = -gt^2 + h0其中g为重力加速度,取9.8m/s^2。

通过解二次方程可以求解物体落地的时间以及落地时的位置。

2. 弹射物体的运动考虑一个弹射物体,如抛射出的炮弹或投射物,其路径可以用一个抛物线来表示。

弹射物体的运动轨迹可以通过二次函数得到,可以利用二次函数的顶点坐标来确定最远射程或最高点。

二、经济学领域中的应用1. 成本和收入关系在经济学中,企业的成本和收入通常与产量相关。

通常情况下,成本和收入之间存在二次函数关系。

通过分析二次函数的图像,可以确定最大利润产量或最低成本产量。

2. 售价和需求关系在市场经济中,产品的售价通常与需求量相关。

通常情况下,售价和需求量之间存在二次函数关系。

通过分析二次函数的图像,可以找到最佳定价,以达到利润最大化。

三、工程学领域中的应用1. 抛物线拱桥在建筑和结构工程中,抛物线是通常用来设计拱桥的形状。

由于抛物线具有均匀承重特性,因此可以最大程度地减少桥墩的数量,提高桥梁的承载能力。

2. 抛物面反射器在光学和声学工程中,抛物面被广泛应用于反射器的设计。

由于抛物面具有焦点特性,因此可以实现光或声波的聚焦效果,提高反射效率。

四、生物学领域中的应用1. 生长模型植物和动物的生长通常可以使用二次函数模型来描述。

二次函数可以帮助分析生物在不同生长阶段的生长速率,并预测未来的生长趋势。

2. 群体增长生态学中,群体增长通常可以使用二次函数模型来描述。

例如,一种昆虫群体的数量随时间的变化可以通过二次函数来表示,通过分析二次函数的图像,可以预测种群数量的变化趋势。

21.4.1 二次函数的应用(1)

21.4.1 二次函数的应用(1)

21.4二次函数的应用第1课时二次函数的应用(1)1.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒2.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)的函数表达式是h=9.8t-4.9t2,那么小球运动中的最大高度h最大=.3.司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间,之后汽车还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”(如图).已知汽车的刹车距离s(单位:m)与车速v(单位:m/s)之间的关系是s=tv+kv2,其中t为司机的反应时间(单位:s),k为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=0.7s.(1)若志愿者未饮酒,且车速为11m/s,则该汽车的刹车距离为m.(精确到0.1m)(2)当志愿者在喝下一瓶啤酒半小时后,以17m/s的速度驾车行驶,测得刹车距离为46m.假如该志愿者当初是以11m/s的车速行驶,则刹车距离将比未饮酒时增加多少?(精确到0.1m)(3)假如你以后驾驶该型号的汽车以11m/s至17m/s的速度行驶,且与前方车辆的车距保持在40m至50m之间.若发现前方车辆突然停止,为防止“追尾”,你的反应时间应不超过多少秒?(精确到0.01s)4.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体表达式为w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的表达式.(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?5.用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.6.国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足表达式y1=170-2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数表达式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?7.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)8.(创新应用)农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40 m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图所示的一个矩形羊圈.(1)请你求出张大伯的矩形羊圈的面积.(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由.课后演练·能力提升答案:1.B由题意可知,抛物线y=ax2+bx+c的对称轴为x=10.5,且a<0.又因为x=10秒离对称轴较近,当x=10秒时,y最大.2.4.9m3.解:(1)17.38(2)饮酒后,当v=17时,s=46,代入s=tv+0.08v2,得t≈1.35(s).若饮酒时的车速为11m/s,则刹车距离s=1.35×11+0.08×112=24.53(m).而未饮酒时的刹车距离为17.38m,所以增加24.53-17.38≈7.2(m).(3)由题意知,17t+0.08×172<40,解得t<0.99.所以反应时间应不超过0.99秒.4.解:(1)y=(x-50)·w=(x-50)·(-2x+240)=-2x2+340x-12000,∴y与x的表达式为y=-2x2+340x-12000.(2)y=-2x2+340x-12000=-2(x-85)2+2450,∴当x=85时,y的值最大.(3)当y=2250时,可得方程-2(x-85)2+2450=2250.解得x1=75,x2=95.根据题意,x2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.5.解:根据题意可得:等腰直角三角形的直角边长为2x m,矩形的一边长为2x m.其相邻边长为20-(4+22)x=10-(2+2)x.2所以该金属框围成的面积S=2x ·[10-(2+ 2)x ]+12· 2x · 2x=-(3+2 2)x 2+20x (0<x<10-5 2).当x=3+2 2=30-20 2时,金属框围成的面积最大,此时矩形的一边长2x=60-40 相邻边长为10-(2+ 2)×10(3-2 2)=10 2-10(m),S 最大=100(3-2 2)=300-200 2(m 2). 6.解:(1)y 2=500+30x.(2)依题意得 500+30x ≤50x ,170-2x ≥90,解得25≤x ≤40.(3)∵W=x ·y 1-y 2=x (170-2x )-(500+30x )=-2x 2+140x-500,∴W=-2(x-35)2+1 950.而25<35<40,∴当x=35时,W 最大=1 950(元),即月产量为35件时,利润最大,最大利润是1 950万元.7.解:(1)由题意,得w=(x-20)·y=(x-20)·(-10x+500)=-10x 2+700x-10 000.x=-b2a =35.答:当销售单价定为35元时,每月可获得最大利润. (2)由题意,得-10x 2+700x-10 000=2 000. 解这个方程得x 1=30,x 2=40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元. (3)∵a=-10<0,∴抛物线开口向下. ∴当30≤x ≤40时,w ≥2 000. ∵x ≤32,∴当30≤x ≤32时,w ≥2 000.设成本为P (元),由题意,得P=20(-10x+500)=-200x+10 000. ∵k=-200<0,∴P 随x 的增大而减小. ∴当x=32时,P 最小=3 600.答:想要每月获得的利润不低于2 000元,每月的成本最少为3 600元. 8.解:(1)40-25=15,故矩形的宽为152m .∴S 矩形ABCD =152×25=187.5(m 2).(2)不合理.理由是:设利用x m 的墙作为矩形羊圈的长,则宽为40-x 2m,设矩形的面积为y m 2,则y=x ·40-x 2=-12x 2+20x=-12(x-20)2+200.∵-1<0,∴当x=20时,y最大=200.2∵200>187.5,故张大伯的设计不合理,应利用20m墙,设计长为20m,宽为10m的矩形羊圈.。

2.4.1北师大版九年级数学下册课件第二章第四节二次函数的应用第一课时最大面积

2.4.1北师大版九年级数学下册课件第二章第四节二次函数的应用第一课时最大面积

+300
(或用公式:当 x=
-
b 2a=25
时,y
最大值=300)
∵- 2152<0 ∴ 当 x = 25m 时,y 的值最大,最大面积为 300m2
如果设AB=xm,BC如何表示,最大面积是多少? (随堂练习)
第11页,共26页。
变式练习4: 如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm.若在△ABC上截出一矩形零件DEFG,使得EF在BC上,点D、 G分别在边AB、AC上.问矩形DEFG的最大面积是多少?
((12))求当Sx取与何x的值函时数所关围系成式的及花自圃变面量积的最取大值,范最围大;值是多S少=-?4x2+24x (3)若墙的最大可用长度为8米,求围成花圃的最大面积 .
24-4x≤8 (3)由题知24-4x>0 解得 4≤x<6
A
D
x>0
∵-4<0 且对称轴是直线 x=3
B
C
∴当 4≤x<6 时,y 随 x 增大而减少
(2)设五边形APQCD的面积为Scm2 ,写出S与t的函数关系式,t为何 值时S最小?求出S的最小值。
(2)由题意得
S=12×6 -
1 2
×2t(6-t)
=t2-6t+72=(t-3)2+63
∵1>0 ∴当 t=3 时 S 最小值=63
即 t=3cm 时 S 有最小值 63cm2
D
C
Q
2t cm
A t cm
解:(1)S=x(80-2x)= -2x2+80x
A
D
80-2x≤50
xm
xm
由题知80-2x≥40 解得 15≤x<40

2.4二次函数的应用

2.4二次函数的应用
的边PQ在线段BC上,D、E分别在线段AB、AC上,设BP=x.
①求矩形PQED的面积y与x的函数关系表达式,并写出自变量x的取值范围.
解:
②当x取什么值时,矩形PQED的面积最大?求出这个最大值.
解:
和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形
和半圆的面积之和最大。
解:∵4y+4x+3x+πx=7x+4y+πx=15
∴y=
∴面积S= +2xy=
=(填一般式)。。。。。。。。。。
(这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.)
回顾解决问题的过程,小结:
(1)把最大面积问题转化为数学问题——————即二次函数最大值问题,
(2)把建立的二次函数化为顶点式或代入顶点坐标公式中即可得到最大值。
作业:课本P64的EX2,EX3
2、7《最大面积是多少》当堂测试(笋岗中学曾宪龙)
班级_________姓名_________分数_________
1.二次函数 的顶点坐标公式是( )。
A. , ;B. ,
C. , ;D. ,
2.把二次函数 配方成顶点式为()。
难点: 如何把生活中实际的最大面积问题转化为二次函数最大值的数学问题。
温故知新
1. 二次函数的顶点式是:( );
2. 二次函数 的顶点坐标公式是: , ;
3.把二次函数y= 化为顶点式为:y=,
当x=时,y有最值为.
合作探究(1)
如图,在一个直角三角形的内部作一个矩形ABCD,
其中AB和AD分别在两直角边上.
九年级数学教学教案
2.4.1二次函数的应用----最大面积

二次函数的应用举例

二次函数的应用举例

二次函数的应用举例在数学中,二次函数是一类常见的函数形式,其表达式一般为y =ax^2 + bx + c,其中a、b、c为常数,且a不为零。

二次函数在实际应用中具有广泛的应用,本文将介绍二次函数的几个常见应用举例。

1. 物体的抛射运动物体的抛射运动是二次函数的典型应用之一。

当一个物体被斜抛时,其运动轨迹可以用二次函数表示。

例如,当某个物体以一定的初速度水平抛出时,其高度与飞行时间之间的关系可以用二次函数模型来描述。

具体而言,该模型为y = -16t^2 + vt + h,其中t为时间(单位为秒),v为初速度(单位为米/秒),h为抛出高度(单位为米)。

2. 曲线的绘制二次函数可以绘制出各种曲线形状,从而在绘画、设计等领域中被广泛应用。

例如,在建筑设计中,二次函数常被用于绘制圆顶建筑、拱桥等曲线形状。

在绘画中,二次函数可以绘制出各种曲线,如抛物线、椭圆等,用于美化作品或表达特定的艺术效果。

3. 利润的最大化在经济学中,二次函数常被用于研究企业的利润最大化问题。

根据经济学原理,企业在销售产品时,需考虑生产成本和销售价格之间的关系,以实现最大利润。

假设某企业的成本函数为C(x) = ax^2 + bx + c,其中x为生产数量,a、b、c为常数。

则该企业的利润函数为P(x) =R(x) - C(x),其中R(x)为销售收入函数。

通过求解利润函数的极大值,可以确定最佳的生产数量,从而实现利润的最大化。

4. 投射物体的落地点计算二次函数还可以用于计算投射物体的落地点。

例如,当一个物体从一定高度自由落体时,它的落地点(水平方向的距离)可以用二次函数模型来计算。

具体而言,该模型为d = v0t + 1/2at^2,其中d为落地点距离(单位为米),v0为初速度(水平方向,单位为米/秒),t为时间(单位为秒),a为重力加速度(单位为米/秒^2)。

总结起来,二次函数在物理学、数学、经济学等领域具有广泛的应用。

通过物体的抛射运动、曲线的绘制、利润的最大化以及落地点的计算等实例,我们可以看到二次函数在实际问题中的重要性。

【课件一】2.4.1二次函数的应用上课课件

【课件一】2.4.1二次函数的应用上课课件

N
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下 半部是矩形,制造窗框的材料总长(图中所有的黑线 的长度和)为15m.当x等于多少时,窗户通过的光线最 多(结果精确到0.01m)?此时,窗户的面积是多少? 15 7 x x x x 解 : 1. 由4 y 7 x x 15. 得, y . 4 2 2 x 15 7 x x x
30cm
12 设AB bcm, 易得b x 24. 12 2 12 25 12 2 2. y xb x x 24 x 24 x x 25 300. 25 25 25 2 b 4ac b 或用公式 : 当x 25时, y最大值 300. 2a 4a
4.做数学求解; 5.检验结果的合理性,拓展等.
N
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD, 其中AB和AD分别在两直角边上. M (1).如果设矩形的一边AD=xcm,那 C 么AB边的长度如何表示? D (2).设矩形的面积为ym2,当x取何 ┐bcm 值时,y的最大值是多少?
xcm
30cm
4 A B 40cm 解 : 1.设AB bcm, 易得b x 40. 3 4 2 4 4 2. y xb x x 40 x 40 x x 152 300. 3 3 3 b 4ac b 2 或用公式 : 当x 15时, y最大值 300. 2a 4a
N
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD, 其中点A和点D分别在两直角边上,BC在斜边上. M (1).设矩形的一边BC=xcm,那么 C H AB边的长度如何表示? B (2).设矩形的面积为ym2,当x取何 D G 值时,y的最大值是多少? P┐ A 解 : 1.由勾股定理得MN 50cm, PH 24cm. 40cm

二次函数的应用

二次函数的应用

二次函数的应用一、简介二次函数是一种具有一定特征的函数形式,常用于描述各种实际问题,并在众多领域得到广泛应用。

本文将介绍二次函数的基本概念、性质以及其在几个常见应用领域中的实际应用。

二、二次函数的基本概念和性质1. 二次函数的定义二次函数的定义为f(x) = ax² + bx + c,其中a、b、c为常数,a≠0。

其中,a决定了二次函数的开口方向,正值表示开口向上,负值表示开口向下;b则决定了二次函数的对称轴位置;c则代表二次函数与y轴的截距。

2. 二次函数的图象和特征点二次函数的图象一般为一个开口向上或向下的抛物线。

其中,最高(最低)点也称为抛物线的顶点,其坐标为(-b/2a, f(-b/2a))。

抛物线与x轴的交点称为根,其个数与二次函数的判别式(b²-4ac)有关。

3. 二次函数的单调性当a>0时,二次函数开口向上,且在顶点左右是单调递增的;当a<0时,二次函数开口向下,且在顶点左右单调递减。

三、二次函数的应用领域1. 物理学中的应用二次函数在物理学中有广泛应用,例如用二次函数描述物体的弹道轨迹,通过分析二次函数的顶点可以确定物体的最大高度和飞行时间;又如利用二次函数描述物体的自由落体运动,通过解析二次函数的根可以计算物体下落的时间。

2. 金融学中的应用在金融学中,使用二次函数可以进行风险管理和资产定价等方面的分析。

例如,对于某一投资组合的收益-风险关系,可以通过二次函数的顶点来找到最佳投资组合,以最小化风险并最大化收益。

3. 工程学中的应用二次函数在工程学中也有多种应用。

例如,在物体自由落体问题中,可以通过解析二次函数的根来计算物体落地的时间,进而设计合适的减震装置;又如在桥梁设计中,通过分析二次函数的顶点来确定桥梁的最大荷载,保证桥梁的结构安全。

4. 经济学中的应用经济学中,二次函数可以用来描述成本、收益等经济指标与某一变量之间的关系。

例如,通过分析二次函数的根和顶点,可以确定最小化成本或最大化收益的最优产量。

北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。

这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。

但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。

因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。

三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。

四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。

如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。

请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。

例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。

3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。

例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。

4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。

二次函数在生活中的运用

二次函数在生活中的运用

二次函数在生活中的运用二次函数是一个具有形式为y=ax^2+bx+c的二次多项式函数,其中a、b、c是实数且a≠0。

它是数学中一个重要的函数类型,其在现实生活中有许多广泛的应用。

下面将介绍一些二次函数在生活中的运用。

1.物体的自由落体运动:当物体从静止的位置开始自由下落时,其高度与时间的关系可以用二次函数来描述。

根据物体下落的加速度和初速度,我们可以建立二次函数模型来预测物体的高度随时间的变化。

2.弹性力的计算:弹性力是恢复力的一种,其大小与物体偏离平衡位置的距离成正比。

当物体被施加一个力使其偏离平衡位置时,恢复力的大小可以用二次函数描述。

3.抛物线的建模:抛物线是二次函数的图像,它在很多领域中都有应用。

例如,在建筑设计中,抛物线形状的屋顶可以提供更好的排水系统。

在桥梁设计中,抛物线形状的拱桥可以提供更好的结构稳定性。

4.投射物体的路径预测:当一个物体以一定的初速度和角度被抛出时,它的轨迹可以用二次函数模型来预测。

例如,在棒球运动中,球员可以通过分析投球的初速度和角度来预测球的落点。

5.音乐乐器的调音:乐器的音高可以通过改变乐器弦的张力来调节。

根据弦的拉紧程度,可以建立一个二次函数模型来描述音高与弦长的关系。

这使得乐器演奏者能够根据需要调整乐器的音高。

6.经济中的成本与产出关系:在经济学中,成本与产出的关系经常可以用二次函数来描述。

例如,生产一定数量的商品所需的成本与产出之间可能存在一个最优点,通过求二次函数的极值,可以确定最大化利润的产量。

7.变量与值的关系:二次函数可以用来描述两个变量之间的关系。

例如,员工的工资与工作经验之间可能存在一个二次函数模型,随着工作经验的增加,工资可能会呈现先上升后下降的趋势。

8.交通流量的模拟:交通流量的变化可以用二次函数来建模。

例如,小时交通流量随时间的变化可能呈现一个钟形曲线,交通高峰期的交通流量较大,而其他时间段的交通流量相对较小。

以上仅列举了二次函数在生活中的一些应用,其中还有许多其他的应用。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是高中数学中的重要内容之一,在现实生活中也有广泛的应用。

本文将介绍二次函数的基本概念,并结合实际例子,探讨二次函数在各个领域的应用。

1. 二次函数的基本概念二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数,且a ≠ 0。

二次函数的图像是一个二次曲线,也称为抛物线。

2. 二次函数与图像二次函数的图像具有以下特点:- 当a > 0时,二次函数的图像开口向上,称为正抛物线;当a < 0时,二次函数的图像开口向下,称为负抛物线。

- 二次函数的图像关于x轴对称,称为对称轴。

对称轴的方程为x = -b/(2a)。

- 二次函数的顶点是图像的最低点或最高点,在对称轴上。

顶点的横坐标为-x = -b/(2a),纵坐标为f(-b/(2a))。

3. 抛物线的应用抛物线作为一种特殊的曲线形状,在工程、物理、经济等领域有广泛的应用。

3.1 物理学中的应用在物理学中,抛物线经常用来描述物体的运动轨迹。

例如,抛出的物体在重力作用下的运动可以用二次函数来描述。

通过分析抛物线的特性和方程,可以推导出物体的最高点、最远点等重要信息。

3.2 工程学中的应用抛物线在工程学中也有许多应用。

例如,在桥梁设计中,二次函数可以用来描述桥梁弯曲的形状,从而确定桥梁的结构和材料;在发射抛物线的炮弹或火箭的轨迹计算中,二次函数可以用来分析飞行轨迹和最佳发射角度。

3.3 经济学中的应用经济学中的需求曲线和供给曲线通常也是二次函数。

通过分析二次函数的方程和图像,可以研究产品的价格和销量之间的关系,从而进行市场预测和经济决策。

4. 求解二次方程二次函数也可以用来解决一些实际问题。

当我们遇到形如ax^2 + bx + c = 0的二次方程时,可以使用求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)通过求解二次方程,可以找到方程的根或解,并应用于各个领域的实际问题中。

北师大版九年级数学下册:2.4《二次函数的应用》教学设计1

北师大版九年级数学下册:2.4《二次函数的应用》教学设计1

北师大版九年级数学下册:2.4《二次函数的应用》教学设计1一. 教材分析《二次函数的应用》是北师大版九年级数学下册第2章“函数、方程与不等式”的第4节内容。

本节课的主要内容是让学生掌握二次函数在实际生活中的应用,学会用二次函数解决实际问题。

教材通过丰富的例题和练习题,帮助学生理解和掌握二次函数的应用。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题。

因此,在教学过程中,教师需要引导学生将实际问题与二次函数联系起来,提高学生的数学应用能力。

三. 教学目标1.知识与技能:使学生掌握二次函数在实际生活中的应用,学会用二次函数解决实际问题。

2.过程与方法:通过解决实际问题,培养学生将现实问题转化为数学问题的能力,提高学生的数学建模能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学思维,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:二次函数在实际生活中的应用。

2.难点:如何将实际问题转化为二次函数问题,以及如何利用二次函数解决实际问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握二次函数的应用。

同时,运用讨论法、案例分析法等教学方法,提高学生的参与度和积极性。

六. 教学准备1.教材:《北师大版九年级数学下册》。

2.教学课件:根据教学内容制作的课件。

3.练习题:针对本节课内容设计的练习题。

4.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,如抛物线形的跳板,引导学生思考如何用数学模型来描述这个问题。

让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。

2.呈现(15分钟)呈现教材中的例题,讲解二次函数在实际生活中的应用。

通过例题,让学生了解如何将实际问题转化为二次函数问题,以及如何利用二次函数解决实际问题。

九(下)2.4.1 二次函数的应用(1)

九(下)2.4.1  二次函数的应用(1)

§2.4.1 二次函数的应用(1) 班级: 姓名:〖学习目标〗 1、体会二次函数是一类最优化问题的数学模型;2、了解数学的应用价值,掌握实际问题中变量之间的二次函数关系;3、会运用二次函数的知识求出实际问题的最大值、最小值。

〖导学流程〗浅层加工二次函数2y ax bx c =++ (a ≠0),若 0>a ,则抛物线开口 ,此时函数有最 值,函数的最值为 ;若0<a ,则抛物线开口 ,此时函数有最 值,函数的最值为 。

注意:1、用自变量表示与图形面积相关的其他量及面积是解决最大面积问题的关键;2、利用二次函数解决几何图形的最大面积问题主要是以下几个步骤:(1)用含有自变量的代数式分别表示出与所求几何图形相关的量;(2)根据几何图形的特征,列出其面积的计算公式,用函数表示出这个面积;(3)根据函数关系式求出最值以及取得最值的自变量的值,当a b 2-不在自变量取值范围内时,应根据取值范围来确定最值;3、本节重点是应用二次函数解决实际问题中的最值;应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值;实际问题的最值,不仅可以帮助我们解决一些实际问题,也是中考中经常出现的一种题型。

深度建构【探究活动】:例1、某广告公司要设计一个周长为20m 的矩形广告牌,当矩形的一边为何值时,广告牌的面积最大?学海拾贝 总结纠错例2、修建有一条边靠墙的矩形菜园,不靠墙的的三边的长度之和为60m.应怎样设计才使菜园面积最大?最大面积是多少?例3、如图所示,在△ABC中,AF⊥BC,AB=AC=5,BC=6,矩形PQED的边PQ在线段BC 上,D、E分别在线段AB、AC上,设BP=x.(1)求矩形PQED的面积y关于x的函数关系式,并写出自变量x的取值范围;2)当x取什么值时,矩形PQED的面积最大?求出这个最大面积例4、如图所示,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2cm的速度向左运动,最终点A 与点M重合, 则重叠部分面积y与时间t 之间的函数解析【融合应用】1.用一根铁丝围成正方形、长方形、正三角形和圆,那么面积最大的是()A.长方形B.正方形C.正三角形D.圆2.在△ABC中,AB=6,AB边上的高为3,点F为AB上一点,点E为AC边上的一个动点,DE∥AB交BC于点D,若AB与DE之间的距离为x,则△DEF的面积y关于x的函数关系是3.如图,在直角三角形ABC中,∠C=90°,直角边AC=30厘米,BC=40厘米,在其内部做矩形DEFG,求这个矩形的最大面积自我提升【学习评价】1.请完成练习册上相关内容.2.总结反思:(1)你学到了什么知识?(2)你学到了哪些数学思想方法?(3)你的困惑?二、检测拓展1.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④2.如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别EF.四边形MEFN面积的最大值是3.施工队要修建一个横斯面为抛物线的公路隧道,其高度为6米,宽度0M 为12米现以O 点为原点,OM 所在直线为X轴建立直角坐标系(如图所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、应用提升
1.(包头·中考)将一条长为20cm的铁丝剪成两段, 并以每一段铁丝的长度为周长各做成一个正方形,则这 两个正方形面积之和的最小值是 cm2.
【答案】
12.5

25 2
要求:请同学们独立思考完成,然后展示,不同方法可以 补充。
2.(河源·中考)如图,东梅中学要在教学楼后面的空地上用
40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教
于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗
户的面积是多少?
要求:请同学们先独立思考,然后 小组交流,讨论出结果的小组展示, 讲解思路要清晰。
15 7 x x . 解: 由 4 y 7 x x 15. 得y 4
x 2 15 7 x x x 2 窗户面积 S 2 xy 2 x( ) 2 4 2
A
40m
B
N
3 2 3 2y x AD x x 30 x 30x 4 4 3 2 x 20 300 . 4 当x 20 时, y最大值 300.
或者直接用公式:
b 4ac b 2 当x 20时, y最大值 300. 2a 4a
【问题变式二
如图,在一个直角三角形的内部作一个矩形ABCD,其中点A和 】
点D分别在两直角边上,BC在斜边上.
(1).设矩形的一边BC=xcm,那么AB边的长度如何表示?
(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?
M
30cm
C B A N
要求:请同学们先独立思考,然 后小组交流,写出完整过程后, 派代表在展台展示。
C
AD边的长度如何表示?
(2)设矩形的面积为ym2,当x取 何值时,同学们先独立思考,然后小组交流,有思路后派代 表展示。
M 解:(1)易证∆MDC∽∆MAN
MD DC 30 - AD x 即 MA AN 30 40
30m
D ┐
C
3 AD x 30 . 4
【问题变式一
如图,在一个直角三角形的内部作一个矩形ABCD,其中AB 】
和AD分别在两直角边上.
30m
M D C
(1)设矩形的一边AD=xm,那么
AB边的长度如何表示?
(2)设矩形的面积为ym2,当x取 何值时,y的值最大?最大值是 多少?

A
40m
B
N
要求:请同学们独立思考,根据问题一的思路解决本题,要 写出完整过程,完成后在展台展示。
(2)当y=210时,由(1)可得,-2x2+40x=210.
即x2-20x+105=0. ∵ a=1,b=-20,c=105, ∴ ( 20) 2 4 1 105 0, ∴此方程无实数根,即生物园的面积不能达到210平方米.
“最大面积” 问题的解决: 1.审题,分析问题中的变量和常量之间的关系. 2.列式,用数量关系式表示出它们之间的关系. 3.求解,利用顶点坐标公式或者配方法求出最值. 4.检验,检验结果的合理性.
2.4.1 二次函数的应用
学习目标:
1.会解决长方形和窗户透光等最大面积问题;
2.学会分析和表示实际问题中变量之间的二次函数
关系,并会运用二次函数的知识解决实际问题.
3.体会数学的模型思想和应用价值.
一、复习回顾
二次函数y=ax2+bx+c(a ≠ 0)的最值的求法:
b 4 ac b 2 顶点坐标为(- , ) 2a 4a
学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y. (1)求y与x的函数关系式,并求出自变量x的取值范围. (2)生物园的面积能否达到210平方米?说明理由.
要求:请同学们独立思考完成,然后展示,不同方法可以补充。
【解析】 (1)依题意得:y=(40-2x)x.
∴y=-2x2+40x.
x的取值范围是0< x <20.
D
P
40cm
解 : 1. 由勾股定理得 MN 50cm, PH 24cm. 12 由相似易得 : AB x 24. 25 12 2 12 2y x AB x x 24 x 24x 25 25 12 2 x 25 300 . M 25 C
2 4 ac b ①当a>0时,y有最小值= 4a
②当a<0时,y有最大值=
4 ac b 2 4a
要求:请同学们独立思考,自由举手发言。
二、新知探究
【问题一】
如图,在一个直角三角形的内部作一个矩形ABCD,其中AB 和AD分别在两直角边上.
30m
M D ┐ A
40m
(1)设矩形的一边AB=xm,那么
7 2 15 x x 2 2
b 15 4ac b 2 225 或用公式 : 当x 1.07时,s最大值 4.02. 2a 14 4a 56
答:当x≈1.07m时,窗户通过的光线最多.此时窗户
的面积为4.02m2.
【方法总结】
“最大面积” 问题解决的基本思路. 1.审题,分析问题中的变量和常量之间的关系. 2.列式,用数量关系式表示出它们之间的关系. 3.求解,利用顶点坐标公式或者配方法求出最值. 4.检验,检验结果的合理性.
30cm
当x 25时, y最大值 300.
H
b 或用公式 : 当x 25时, 2a
D P┐
G
B A N
y最大值
4ac b 2 300. 4a
40cm
【问题二】
某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形 ,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等
相关文档
最新文档