LM2907
运放——精选推荐
运放线性系列(OP、TL、LM、LF系列)型号功能型号功能OP07低失调运算放⼤器LM318⾼速运算放⼤器OP07CZ 低失调运算放⼤器(⼯业级)LM319⾼速运算放⼤器OP20⾼精度、微功耗运算放⼤器LM324通⽤四运放OP27超低噪声、⾼精密运算放⼤器LM331电压、频率/频率、电压转换OP37低噪声精密运算放⼤器LM334恒流源OP77超低噪声精密运放LM339四⽐较器TL061低功耗、JFET输⼊运算放⼤器LM347四运放TL062低功耗JFET输⼊双运算放⼤器LM348四电路通⽤运算放⼤器TL064低功耗JFET输⼊四运算放⼤器LM35温度传感器TL071低功耗、JFET输⼊运算放⼤器LM358低功耗双运放TL072低功耗JFET输⼊双运算放⼤器LM361⾼频差动⽐较器TL074低功耗JFET输⼊四运算放⼤器LM376可调稳压电源TL081通⽤JFET输⼊运算放⼤器LM386声频⼩功放⼤器TL082通⽤JFET输⼊双运算放⼤器LM390四电路、最流差动运算放⼤器TL084通⽤JFET输⼊四运算放⼤LM391⼗段点级显⽰驱动器器4LM10CLN ⾼精度基准电源运放(军品)LM3915⼗段点级显⽰驱动器LM101JH 通⽤可调运算放⼤器(军品)LM393双电压⽐较器LM108H⾼精度运算放⼤器(军品)LM710CN⾼频差分电压⽐较器LM1203三基⾊视频放⼤器LM725低漂移⾼精度运放LM124J四运放(军品)LM733视频放⼤器LM139J四电压⽐较器(军品)LM741通⽤单运放LM158J低耗双运放(军品)LM747通⽤双运放LM1881N视频同步分离器LM748CN不带补尝的741运放LM193J双电压⽐较器LM759功率运放LM201宽通⽤运放(⼯业级)LM760⾼速差分⽐较仪LM208H精密双极单运放(⼯业级)LM776可编程运放LM211N⾼精度⽐较器(⼯业级)LM777⾼电压运放LM224J四运放(⼯业级)LM796HC⾼电压运放LM231电压、频率转换(⼯业级)LM833双⾳频功放LM258N低功耗双运放(⼯业级)LF13332四常开模护开关LM2851.2V、2.5V精密基准源(⼯业)LF13333三常开⼆常闭模拟开关LM2902N四电路、单电源运算放⼤器LF351JFET输⼊运算放⼤器LM2903N双电压⽐较器LF353JFET输⼊运算放⼤器LM2904N双电路、单电源运算放⼤器LF355LM2907N频率电压转换器LF356JFET输⼊运算放⼤器LM2917N频率电压转换器LF357JFET输⼊运算放⼤器LM301AN能⽤宽带运算放⼤器LF398采样/保持器LM308N单运算放⼤器LF411低失调、低漂移、JFET输⼊LM310N电压跟随运算放⼤器LF412双低失调、低漂移JFET运放LM311P单⽐较器LF441低功耗、JFET输⼊运放通⽤运算放⼤器型号失调电压mV偏流mA失调电流mA电压漂移µV电压增益V/V共模抑制⽐dB说明OP07CP0.15760.2100100超低偏移电压OP07DN0.15126 2.510094超低噪声,单路OP27OGP0.14010.81800114超低噪声,单路OP27EP0.180750.41200120超低噪声,单路OP27GP0.180750.41200120超低噪声,单路OP77GP0.15 2.8 2.8 1.22000108单路超低偏移电压OP97FP0.0250.20.10.6200108低功率,单路LM741UA741LM741KH LM741JLH0003C H 3.0200200420K70宽带,⼤电流输出LH0004CH1.010020430K70⾼压LH0021CK3.03001003100K70 1.0A⼤电流输出LH0033CG跟随器LF347550PA25PA10100100四路JFET输⼊OP *LF351550PA25PA10100100JFET输⼊OPLF353550PA25PA10100100双路JFET输⼊LF356性能⽐通常运放要好*LF358双路⼩功率差分输⼊*LF4110.50.6PA20PA108090精密JFET输⼊OP*LF412 1.00.5PA25PA10150100双路JFET输⼊OP TL022 5.0200804K60低功率*TL031 0.8-1.594低功耗⾼精度OP*TL032 0.8-1.94低功耗,⾼精OP*TL0613-1586低功耗JFET输⼊OPTL062CN 3.03PA0.5104K80双路,低功率, JFETTL062MJGTL064IN 3.03PA0.5104K80四路,低功率JFE TL070 6.00.20.051050K80低噪声JFET TL071 3.030PA5PA1050K100单路,低噪声JFETTL072 3.030PA5PA1050K100双路,低噪声JFET*TL074 3.030PA5PA10100四路,低噪声JFETTL08015.00.40.2102570双极型JFETTL08115.00.40.21025K80单路JFETTL082MJG6.00.20.11050K80双路双极型JFET TL084CD154000.2102570四路TL08415.00.40.21025K70四路双极型JFET *NE55324100双路低噪声MC1458690双路OP通⽤运算放⼤器(续)型号失调电压mV 偏流mA失调电流mA电压漂移µV电压增V/V共模抑制⽐dB说明LM108H 2.020.21550K65精密双极LM110 J/883 4.0312跟随器,代替1 0 2 LM110H 跟随器LM118H 4.02505050K80精密⾼速LM1203ANLM146J 5.0100201K70⾼增益,可编程LM1458 6.05002002050K70双71 C*LM2582380双路低功耗O P*LM2900四路O P*LM2902780四路O P*LM2904780双路O P*LM31810100单路⾼速O PLM324780四路O PLM348690*LM3583-780双路P*LM3900四路O PLM6361 LMC660AIN LMC662CN AD102JY 隔离放⼤器AD104JY 隔离放⼤器AD204KY 隔离放⼤器AD517JH0.155131M94超低失调电压AD542JH 2.00.0250.012050K76精密极J F E TAD544JH 1.00.0260.0021050K80⾼速双极J F E TAD545AJH 1.00.0020.0012520K68精密低漂移J F E TAD624AD0.2510011K100精密仪⽤AD625JN 仪表放⼤器AD648JN 线性运算放⼤AD6640AST放⼤器TLC274CN线性运算放⼤器TLC27L4CNTLC271CP2-1080低噪声OP NJM062D双单元线性运算放⼤器HA1-2539-2⾼速运算放⼤器HA2-2522-2线性运算放⼤器CA3080低偏置运算放⼤器TDA2004R⾳频功放,双功率放⼤器TDA2006⾳频功放,单功率放⼤器M51392视频放⼤器LM386N-1线性单⽚单功率放⼤器LM386N-4线性单⽚单功率放⼤器。
LM2907频率/电压转换器原理及应用
LM2907频率/电压转换器原理及应用LM2907频率/电压转换器原理及应用(图)【转】2009-11-25 18:07:57| 分类:默认分类|字号订阅LM2907频率/电压转换器原理及应用(图)2007-09-12 18:311引言在测量转速(频率)时,目前多采用数字电路,但有些场合则需要转速(频率)的变化与模拟信号输出相对应,这样便可在自动控制系统实验中用频/压转换器件代替测速发电机,从而使实验设备简化。
美国国家半导体公司推出的速度(频率)/电压转换芯片LM2907/LM2917只需接少量的外围元件即可构成模拟式转速表,可用于测量电机转速,实现汽车超速报警等。
2LM2907芯片介绍LM2907为集成式频率/电压转换器,芯片中包含了比较器、充电泵、高增益运算放大器,能将频率信号转换为直流电压信号。
LM2917与LM2907基本相同,区别是:LM2917内部有一只稳压管,用于提高电源的稳定性。
2.1主要特点LM2917进行频率倍增时只需使用一个RC网络;以地为参考点的转速计(频率)输入可直接从输入管脚接入;运算放大器/比较器采用浮动三极管输出;最大50mA的输出电流可驱动开关管、发光二极管等;内含的转速计使用充电泵技术,对低纹波有频率倍增功能;比较器的滞后电压为30mV利用这个特性可以抑制外界干扰;输出电压与输入频率成正比,线性度典型值为±0.3%;具有保护电路,不会受高于Vcc值或低于地参考点输入信号的损伤;在零频率输入时,LM2907的输出电压可根据外围电路自行调节;当输入频率达到或超过某一给定值时,可将输出用于驱动继电器、指示灯等负载。
2.2电性能参数LM2907的主要电性能参数如表1所列:表1 LM2907的主要电性能参数(Vcc=12VDC,TA=25)2.3引脚排列及内部结构LM2907/LM2917有DIP8和DIP14两种封装形式。
LM2907的DIP14的内部结构如图1所示,DIP8的内部结构及各引脚功能可参考图2。
LM2917M-8中文资料
LM2907/LM2917Frequency to Voltage ConverterGeneral DescriptionThe LM2907,LM2917series are monolithic frequency to voltage converters with a high gain op amp/comparator de-signed to operate a relay,lamp,or other load when the input frequency reaches or exceeds a selected rate.The tachom-eter uses a charge pump technique and offers frequency doubling for low ripple,full input protection in two versions (LM2907-8,LM2917-8)and its output swings to ground for a zero frequency input.The op amp/comparator is fully compatible with the tachom-eter and has a floating transistor as its output.This feature allows either a ground or supply referred load of up to 50mA.The collector may be taken above V CC up to a maximum V CE of 28V.The two basic configurations offered include an 8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input.This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications.The more versatile configurations provide differential ta-chometer input and uncommitted op amp inputs.With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachom-eter output.Both of these configurations are available with an active shunt regulator connected across the power leads.The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor.Advantagesn Output swings to ground for zero frequency input n Easy to use;V OUT =f IN x V CC x R1x C1n Only one RC network provides frequency doubling n Zener regulator on chip allows accurate and stable frequency to voltage or current conversion (LM2917)Featuresn Ground referenced tachometer input interfaces directly with variable reluctance magnetic pickupsn Op amp/comparator has floating transistor output n 50mA sink or source to operate relays,solenoids,meters,or LEDsn Frequency doubling for low ripplen Tachometer has built-in hysteresis with either differential input or ground referenced input n Built-in zener on LM2917n ±0.3%linearity typicaln Ground referenced tachometer is fully protected from damage due to swings above V CC and below groundApplicationsn Over/under speed sensingn Frequency to voltage conversion (tachometer)n Speedometersn Breaker point dwell meters n Hand-held tachometer n Speed governors n Cruise controln Automotive door lock control n Clutch control n Horn controlnTouch or sound switchesBlock and Connection DiagramsDual-In-Line and Small Outline Packages,Top Views00794201Order Number LM2907M-8or LM2907N-8See NS Package Number M08A or N08E 00794202Order Number LM2917M-8or LM2917N-8See NS Package Number M08A or N08EMay 2003LM2907/LM2917Frequency to Voltage Converter©2003National Semiconductor Corporation Block and Connection Diagrams Dual-In-Line and Small Outline Packages,Top Views(Continued)00794203Order Number LM2907M or LM2907N See NS Package Number M14A or N14A 00794204Order Number LM2917M or LM2917N See NS Package Number M14A or N14AL M 2907/L M 2917 2Absolute Maximum Ratings(Note1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage28V Supply Current(Zener Options)25mA Collector Voltage28V Differential Input VoltageTachometer28V Op Amp/Comparator28V Input Voltage RangeTachometerLM2907-8,LM2917-8±28VLM2907,LM29170.0V to+28V Op Amp/Comparator0.0V to+28V Power DissipationLM2907-8,LM2917-81200mW LM2907-14,LM2917-141580mW See(Note1)Operating Temperature Range−40˚C to+85˚C Storage Temperature Range−65˚C to+150˚C Soldering InformationDual-In-Line PackageSoldering(10seconds)260˚C Small Outline PackageVapor Phase(60seconds)215˚C Infrared(15seconds)220˚C See AN-450“Surface Mounting Methods and Their Effect on Product Reliability”for other methods of soldering surface mount devices.Electrical CharacteristicsV CC=12V DC,T A=25˚C,see test circuitSymbol Parameter Conditions Min Typ Max Units TACHOMETERInput Thresholds V IN=250mVp-p@1kHz(Note2)±10±25±40mVHysteresis V IN=250mVp-p@1kHz(Note2)30mVOffset Voltage V IN=250mVp-p@1kHz(Note2)LM2907/LM2917 3.510mVLM2907-8/LM2917-8515mVInput Bias Current V IN=±50mV DC0.11µAV OH Pin2V IN=+125mV DC(Note3)8.3VV OL Pin2V IN=−125mV DC(Note3) 2.3VI2,I3Output Current V2=V3=6.0V(Note4)140180240µAI3Leakage Current I2=0,V3=00.1µAK Gain Constant(Note3)0.9 1.0 1.1 Linearity f IN=1kHz,5kHz,10kHz(Note5)−1.00.3+1.0%OP/AMP COMPARATORV OS V IN=6.0V310mVI BIAS V IN=6.0V50500nAInput Common-Mode Voltage0V CC−1.5V VVoltage Gain200V/mVOutput Sink Current V C=1.04050mAOutput Source Current V E=V CC−2.010mASaturation Voltage I SINK=5mA0.10.5VI SINK=20mA 1.0VI SINK=50mA 1.0 1.5VZENER REGULATORRegulator Voltage R DROP=470Ω7.56VSeries Resistance10.515ΩTemperature Stability+1mV/˚CTOTAL SUPPLY CURRENT 3.86mANote1:For operation in ambient temperatures above25˚C,the device must be derated based on a150˚C maximum junction temperature and a thermal resistanceof101˚C/W junction to ambient for LM2907-8and LM2917-8,and79˚C/W junction to ambient for LM2907-14and LM2917-14.Note2:Hysteresis is the sum+V TH−(−V TH),offset voltage is their difference.See test circuit.Note3:V OH is equal to3⁄4x V CC−1V BE,V OL is equal to1⁄4x V CC−1V BE therefore V OH−V OL=V CC/2.The difference,V OH−V OL,and the mirror gain,I2/I3,are the two factors that cause the tachometer gain constant to vary from1.0.Note4:Be sure when choosing the time constant R1x C1that R1is such that the maximum anticipated output voltage at pin3can be reached with I3x R1.The maximum value for R1is limited by the output resistance of pin3which is greater than10MΩtypically.LM2907/LM29173Electrical Characteristics(Continued)Note 5:Nonlinearity is defined as the deviation of V OUT (@pin 3)for f IN =5kHz from a straight line defined by the V OUT @1kHz and V OUT @10kHz.C1=1000pF,R1=68k and C2=0.22mFd.Test Circuit and Waveform00794206Tachometer Input Threshold Measurement00794207L M 2907/L M 2917 4Typical Performance CharacteristicsTotal Supply CurrentZener Voltage vsTemperature0079424000794241Normalized Tachometer Output vs TemperatureNormalized TachometerOutput vs Temperature 0079424200794243Tachometer Currents I2 and I3vs Supply VoltageTachometer Currents I2and I3vs Temperature0079424400794245LM2907/LM29175Typical Performance Characteristics(Continued)Tachometer Linearity vs TemperatureTachometer Linearity vs Temperature0079424600794247Tachometer Linearity vs R1Tachometer Input Hysteresisvs Temperature0079424800794249Op Amp Output TransistorCharacteristics Op Amp Output TransistorCharacteristics0079425000794251L M 2907/L M 2917 6Applications InformationThe LM2907series of tachometer circuits is designed forminimum external part count applications and maximum ver-satility.In order to fully exploit its features and advantageslet’s examine its theory of operation.The first stage of op-eration is a differential amplifier driving a positive feedbackflip-flop circuit.The input threshold voltage is the amount ofdifferential input voltage at which the output of this stagechanges state.Two options(LM2907-8,LM2917-8)haveone input internally grounded so that an input signal mustswing above and below ground and exceed the input thresh-olds to produce an output.This is offered specifically formagnetic variable reluctance pickups which typically providea single-ended ac output.This single input is also fullyprotected against voltage swings to±28V,which are easilyattained with these types of pickups.The differential input options(LM2907,LM2917)give theuser the option of setting his own input switching level andstill have the hysteresis around that level for excellent noiserejection in any application.Of course in order to allow theinputs to attain common-mode voltages above ground,inputprotection is removed and neither input should be takenoutside the limits of the supply voltage being used.It is veryimportant that an input not go below ground without someresistance in its lead to limit the current that will then flow inthe epi-substrate diode.Following the input stage is the charge pump where the inputfrequency is converted to a dc voltage.To do this requiresone timing capacitor,one output resistor,and an integratingor filter capacitor.When the input stage changes state(dueto a suitable zero crossing or differential voltage on the input)the timing capacitor is either charged or discharged linearlybetween two voltages whose difference is V CC/2.Then inone half cycle of the input frequency or a time equal to1/2f INthe change in charge on the timing capacitor is equal toV CC/2x C1.The average amount of current pumped into orout of the capacitor then is:The output circuit mirrors this current very accurately into theload resistor R1,connected to ground,such that if the pulsesof current are integrated with a filter capacitor,then V O=i c xR1,and the total conversion equation becomes:V O=V CC x f IN x C1x R1x KWhere K is the gain constant—typically1.0.The size of C2is dependent only on the amount of ripplevoltage allowable and the required response time.CHOOSING R1AND C1There are some limitations on the choice of R1and C1whichshould be considered for optimum performance.The timingcapacitor also provides internal compensation for the chargepump and should be kept larger than500pF for very accu-rate operation.Smaller values can cause an error current onR1,especially at low temperatures.Several considerationsmust be met when choosing R1.The output current at pin3is internally fixed and therefore V O/R1must be less than orequal to this value.If R1is too large,it can become asignificant fraction of the output impedance at pin3whichdegrades linearity.Also output ripple voltage must be con-sidered and the size of C2is affected by R1.An expressionthat describes the ripple content on pin3for a single R1C2combination is:It appears R1can be chosen independent of ripple,howeverresponse time,or the time it takes V OUT to stabilize at a newvoltage increases as the size of C2increases,so a compro-mise between ripple,response time,and linearity must bechosen carefully.As a final consideration,the maximum attainable input fre-quency is determined by V CC,C1and I2:USING ZENER REGULATED OPTIONS(LM2917)For those applications where an output voltage or currentmust be obtained independent of supply voltage variations,the LM2917is offered.The most important consideration inchoosing a dropping resistor from the unregulated supply tothe device is that the tachometer and op amp circuitry alonerequire about3mA at the voltage level provided by thezener.At low supply voltages there must be some currentflowing in the resistor above the3mA circuit current tooperate the regulator.As an example,if the raw supplyvaries from9V to16V,a resistance of470Ωwill minimize thezener voltage variation to160mV.If the resistance goesunder400Ωor over600Ωthe zener variation quickly risesabove200mV for the same input variation.LM2907/LM29177Typical ApplicationsMinimum Component Tachometer0079420800794209L M 2907/L M 2917 8Typical Applications(Continued)Zener Regulated Frequency to Voltage Converter00794210Breaker Point Dwell Meter00794211LM2907/LM29179Typical Applications(Continued)Voltage Driven Meter Indicating Engine RPM V O =6V @400Hz or 6000ERPM (8Cylinder Engine)00794212Current Driven Meter Indicating Engine RPMI O =10mA @300Hz or 6000ERPM (6Cylinder Engine)00794213L M 2907/L M 2917 10Typical Applications(Continued)Capacitance MeterV OUT=1V–10V for C X=0.01to0.1mFd(R=111k)00794214Two-Wire Remote Speed Switch00794215LM2907/LM2917Typical Applications(Continued)100Cycle Delay Switch00794216Variable Reluctance Magnetic Pickup Buffer Circuits00794239Precision two-shot output frequency equals twice input frequency.Pulse height =V ZENER00794217L M 2907/L M 2917Typical Applications(Continued)Finger Touch or Contact Switch0079421800794219Flashing LED Indicates Overspeed00794220Flashing begins when f IN ≥100Hz.Flash rate increases with input frequency increase beyond trip point.LM2907/LM2917Typical Applications(Continued)Frequency to Voltage Converter with2Pole Butterworth Filter to Reduce Ripple00794221 Overspeed Latch0079422200794223 LM297/LM2917Typical Applications(Continued)Some Frequency Switch Applications May Require Hysteresis in theComparator Function Which can be Implemented in Several Ways:0079422400794225007942260079422700794228LM2907/LM2917Typical Applications(Continued)Changing the Output Voltage for an Input Frequency of Zero0079422900794230Changing Tachometer Gain Curve or Clamping the Minimum Output Voltage0079423100794232L M 2907/L M 2917Anti-Skid Circuit Functions“Select-Low”Circuit0079423300794234V OUT is proportional to the lower of the two input wheel speeds.“Select-High”Circuit0079423500794236V OUT is proportional to the higher of the two input wheel speeds.“Select-Average”Circuit00794237LM2907/LM2917Equivalent Schematic Diagram00794238*This connection made on LM2907-8and LM2917-8only.**This connection made on LM2917and LM2917-8only.L M 2907/L M 2917Physical Dimensions inches(millimeters)unless otherwise noted8-Lead(0.150"Wide)Molded Small Outline Package,JEDECOrder Number LM2907M-8or LM2917M-8NS Package Number M08AMolded SO Package(M)Order Number LM2907M or LM2917MNS Package Number M14A LM2907/LM2917Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)Molded Dual-In-Line Package (N)Order Number LM2907N-8or LM2917N-8NS Package Number N08EMolded Dual-In-Line Package (N)Order Number LM2907N or LM2917NNS Package Number N14AL M 2907/L M 2917NotesLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560LM2907/LM2917Frequency to Voltage ConverterNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.元器件交易网。
16秋《机械电子工程基础Ⅰ》习题答案
《机械电子工程基础Ⅰ》习题答案一、单项选择题1、数字万用表测正弦电压、正弦电流时,示值是_____C______。
A.最大值 B .最小值 C. 有效值 D. 平均值2、大地的作用是什么_____B_____。
3、下面各电路器件符号,哪个表示的是晶体三极管____A_______。
4、稳压二极管一般工作于______B_____状态。
A.5、整流的目是__A_____。
A.将交流变为直流; B.将高频变为低频;6、直流稳压电源中滤波电路的目的是____C____。
A. 将交流变为直流 C. 将交直流混合量中的交流成分滤掉 7、理想运算放大器的共模抑制比为______C_____。
120 dB 8、开环工作的理想运算放大器,同时输入时的电压传输特性为_____A______。
(b)(c)+u O sat ()000-u O sat ()-u O sat ()+u O sat ()+u O sat ()-u O sat ()u O u O u O u I u I u I9、以下不属于传感技术的研究内容的是:_____D______。
10、用于厚度测量的压电陶瓷器件利用了_____C______原理。
11、构成CCD 的基本单元是:_____D______。
12、测量海面浪高时,一般以______B_____为基准。
A . 海底B . 海平面C . 船底13、AD590集成温度传感器是_____A____型传感器。
A.电流B.电压C.电阻D.应变电阻14、以下因素中_____D____不会影响温度测量的精度。
A.15、MOC70T3光电对管的工作电压为 B 。
A.8VB.10VC.12VD.24V16、可以用来测量转速的方法测量____C______。
17、比较器是运算放大器的___A_____工作方式。
18、用电阻型敏感元件作为一个桥臂构成电桥,这种传感器的信号调理电路多采用__B ___。
A.同相放大器B.差动放大器C.电压跟随器D.反相放大器 19、十进制5的8421BCD 码是:____C______。
机械电子工程基础Ⅰ 西交大考试题库及答案
机械电子工程基础Ⅰ一、单选题1、数字万用表测正弦电压、正弦电流时,示值是_____C______。
A.最大值 B .最小值 C. 有效值 D. 平均值2、大地的作用是什么_____B_____。
A.提供电位参考点B.保护人身或仪器安全C.构成系统回路D.以上都是3、下面各电路器件符号,哪个表示的是晶体三极管____A_______。
4、稳压二极管一般工作于______B_____状态。
A.正向导通B.反向击穿C.反向截止5、整流的目是__A_____。
A.将交流变为直流;B.将高频变为低频;C.将正弦波变为方波6、直流稳压电源中滤波电路的目的是____C____。
A. 将交流变为直流B.将高频变为低频C. 将交直流混合量中的交流成分滤掉7、理想运算放大器的共模抑制比为______C_____。
A.零B.约120 dBC.无穷大D.不确定8、开环工作的理想运算放大器,同时输入时的电压传输特性为_____A______。
(b)(c)+uO sat()00-uO sat()-uO sat()+uO sat()+uO sat()-uO sat()uOuOuOuIuI u I9、以下不属于传感技术的研究内容的是:_____D______。
A.信息获取B.信息转换C.信息处理D.信息传输10、用于厚度测量的压电陶瓷器件利用了_____C______原理。
A.磁阻效应B.压阻效应C.正压电效应D.负压电效应11、构成CCD的基本单元是:_____D______。
A.P型硅B.PN结C.光敏二极管D.MOS电容器12、测量海面浪高时,一般以______B_____为基准。
A.海底B.海平面C.船底13、AD590集成温度传感器是_____A____型传感器。
A.电流B.电压C.电阻D.应变电阻14、下列因素中_____D____不会影响温度测量的精度。
A.传感器的精度B.传感器的特性C.系统误差D.被测物体的种类15、MOC70T3光电对管的工作电压为 B 。
LMBT2907ALT1G
Symbol PD
RθJA PD
RθJA TJ , Tstg
Max
Unit
225
mW
1.8
mW/°C
556
°C/W
300
mW
2.4 417 –55 to +150
mW/°C °C/W
°C
DEVICE MARKING
LMBT2907LT1G = M2B, LMBT2907AL T1G = 2F
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
RS=OPTIMUM SOURCE RESISTANCE
2.0
0 0.01 0.02 0.05 0.1 0.2
0.5 1.0 2.0
5.0 10 20
f, FREQUENCY (kHz) Figure 7. Frequency Effects
LMBT2907
75
LMBT2907A
100
(I C = –150mAdc, V CE =–10 Vdc)(3)
LMBT2907
––
LMBT2907A
100
(I C = –500mAdc, V CE =–10 Vdc)(3)
LMBT2907
30
LMBT2907A
50
Collector–Emitter Saturation Voltage(3) (I C = –150mAdc, I B = –15 mAdc) (I C = –500 mAdc, I B = –50 mAdc) Base–Emitter Saturation Voltage(3) (I C = –150mAdc, I B = –15 mAdc) (I C = –500mAdc, I B = –50 mAdc)
基于透射式齿轮盘的模型车用脉冲 amp;电压测速装置
基于透射式齿轮盘的模型车用脉冲&电压测速装置//- 1 -基于透射式齿轮盘的模型车用脉冲&电压测速装置王换换 1,韩毅 2,汪贵平 11长安大学电控学院,西安(710064)2长安大学汽车学院,西安(710064)摘要:本文设计了一种采用透射式齿轮盘的电机测速装置。
本设计采用槽型光电传感器配合自制的透射式齿轮码盘,产生数字脉冲信号;同时采用频率-电压转换芯片 LM2907 可将脉冲信号转化为电压信号。
此装置应用于模型车上,不仅可以实现脉冲测速,还可实现电压测速。
具有结构简单,安装方便,检测方式多样,检测精度高等特点。
关键词:模型车;电机测速;透射式齿轮盘;频率-电压转换;1. 引言在研究模型车的领域,很多时候都需要测量模型车的速度。
在模型车测速方面,目前用的比较多是是采取反射式码盘测速和使用集成的编码器测速[1]。
反射式码盘测速主要是利用红外管对黑白两种颜色的敏感度进行检测的,结构简单,安装方便,但是在模型车在高速运行时,容易出现信号迷失,而且当码盘表面有污损时也容易导致测速不准。
编码器测速准确,但价格比较昂贵。
本文设计了一种透射式的测速方法,采用自制码盘,传感器利用码盘中的间隙得到信号,不容易出现信号缺失现象。
而且使用者可根据自己的需要来选择是要获得脉冲信号还是电压信号,有助于在程序中实现对速度的灵活控制。
2. 硬件设计本设计的电路可以分为两部分,第一部分是获得脉冲信号,即脉冲检测电路,第二部分是利用第一部分电路得到的脉冲信号进行频率-电压转换,得到电压信号。
第一部分电路采用了 EE-SX1101 槽型光电传感器配合自制的 36 齿的透射式码盘,如图 1 所示。
将码盘安装在电机的输出轴上。
EE-SX1101 的发射端发出的红外光经码盘的间隙到达接收端,当码盘跟随电机轴转动时,接收端便以一定的频率接收到红外光。
将接收端的信号输入由 555 组成的施密特触发器[2],就可以得到与转速对应的脉冲信号,此信号可以直接输入单片机,也可将此脉冲信号接入由频率-电压转换芯片 LM2907 组成的转换电路[3],转换后可得到与转速对应的电压信号,再输入单片机进行控制。
LM各芯片功能
LM各芯片功能电子2009-11-04 12:32:49 阅读53 评论0 字号:大中小LM12 80W OPERATIONAL AMPLIFIER 80瓦运算放大器LM124 LM224 LM324 LM2902 Low Power Quad Operational Amplifier 低电压双路运算放大器LM324 Low Power Quad Operational Amplifier 低电压双路运算放大器LM129 LM329 Precision Reference 精密电压基准芯片LM135 LM235 LM335 精密温度传感器芯片LM1458 LM1558 Dual Operational Amplifier 双运算放大器LM158 LM258 LM358 LM2904 Low Power Dual Operational Amplifier 低压双运算放大器LM18293 Four Channel Push-Pull Driver 四通道推拉驱动器LM1868 AM/FM Radio System 调幅/调频收音机芯片LM1951 Solid State 1 Amp Switch 1安培固态开关LM2574 Simple Switcher 0.5A Step-Down Voltage Regulator 0.5A降阶式电压调节器LM1575 LM2575 1A Step-Down Voltage Regulator 1A 降阶式电压调节器LM2576 3A Step-Down Voltage Regulator 3A 降阶式电压调节器LM1577 LM2577 Simple Switch Step-Down Voltage Regulator 降阶式电压调节器LM2587 Simple Switch 5A Flyback Regulator 5A 返馈开关式电压调节器LM1893 LM2893 Carrier Current Transceiver 载体电流收发器LM193 LM293 LM393 LM2903 Low Power Low Offset Voltage Dual Comparator 双路低压低漂移比较器LM2907 LM2917 Frequency to Voltage Converter 频率电压转换器LM101A LM201A LM301A Operational Amplifiers 运算放大器芯片LM3045 LM3046 LM3086 Transistor Array 晶体管阵列LM111 LM211 LM311 Voltage Comparator 电压比较器LM117 LM317 3-Terminal Adjustable Regulator 三端可调式稳压器LM118 LM218 LM318 Operational Amplifier 运算放大器LM133 LM333 3A Adjustable Negative Regulator 3安培可调负电压调节器LM137 LM337 3-Terminal Adjustable Negative Regulator 可调式三端负压稳压器LM34 Precision Fahrenheit Temperature Sensor 精密华氏温度传感器LM342 3-Terminal Positive Regulator 三端正压稳压器LM148 LM248 LM348 / LM149 LM349 双LM741运算放大器LM35 Precision Centigrade Temperature Sensors 精密摄氏温度传感器LM158 LM258 LM358 LM2904 Low Power Dual Operational Amplifiers 低压双运算放大器LM150 LM350 3A Adjustable Regulator 3安培可调式电压调节器LM380 2.5W Audio Amplifier 2.5瓦音频放大器LM386 Low Voltage Audio Power Amplifier 低压音频功率放大器LM3886 High-Performance 68W Audio Power Amplifier With Mute 高性能68瓦音频功率放大器/带静音LM555 LM555C Timer Circuit 时基发生器电路LM556 LM556C Timer Circuit 双时基发生器电路LM565 Phase Locked Loop 相位跟随器LM567 Tone Decoder 音频译码器LM621 BrushLess Motor Commutator 无刷电机换向器LM628 LM629 Precision Motion Controller 精密位移控制器LM675 Power Operational Amplifier 功率运算放大器LM723 Voltage Regulator 电压调节器LM741 Operational Amplifier 运算放大器LM7805 LM78xx 系列稳压器LM7812 LM78xx 系列稳压器LM7815 LM78xx 系列稳压器LM78L00 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L05 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L09 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L12 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L15 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L62 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L82 3-Terminal Positive Voltage Regulator 三端正压调节器LM340 LM78Mxx Series 3-Terminal Positive Regulator 三端正压稳压器LM7905 3-Terminal Nagative Voltage Regulator 三端负压调节器LM7912 3-Terminal Nagative Voltage Regulator 三端负压调节器LM7915 3-Terminal Nagative Voltage Regulator 三端负压调节器LM79Mxx 3-Terminal Nagative Voltage Regulator 三端负压调节器LF147 LF347 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF351 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF353 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF444 Quad Low Power JFET input operational amplifier 双低压J型场效应输入运算放大器。
MMPQ2907;中文规格书,Datasheet资料
Base-Emitter Saturation Voltage vs Collector Current
1 0.8 0.6
125 ºC - 40 ºC 25 °C
Base Emitter ON Voltage vs Collector Current
1 0.8
- 40 ºC
0.6 0.4 0.2 0 0.1
1 KW
37 W
1.0 KW 0 - 30 V 50 W
£ 200ns
FIGURE 2: Saturated Turn-Off Switching Time Test Circuit
/
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
MMPQ2907
MMPQ2907
E3 B3 E4 B4
E1
B1
E2
B2
SOIC-16
pin #1 C1
C2 C1
C3 C2
C4 C4 C3
PNP General Purpose Amplifier
This device is designed for use as a general purpose amplifier and switch requiring collector currents to 500 mA. Sourced from Process 63.
霍尔测速
1前言霍尔传感器是基于霍尔效应的一种磁敏式传感器。
霍尔效应1897年首次被美国物理学家霍尔在金属材料中发现,但由于霍尔效应在金属材料中太微弱而没有得到人们的重视及较好的应用。
直到20世纪50年代,随着半导体技术的发展,利用半导体材料做成的霍尔元件的霍尔效应比较显著,从而霍尔效应被人们所重视和充分利用,霍尔式传感器得到了快速的应用和发展。
目前霍尔传感器已经广泛的应用于电磁、电流、水位、速度、振动等的测量领域。
由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。
霍尔传感器也称为霍尔集成电路,其外形较小,如图1所示,是其中一种型号的外形图。
2霍尔元件2.1霍尔元件及霍尔元件的命名方法霍尔元件是根据霍尔效应进行磁电转换的磁敏元件,其典型的工作原理图如图所示。
在金属或半导体薄片相对两侧面通以控制电流I ,在薄片垂直方向上施加电场B ,则在垂直于电流和磁场的方向上,即另两侧面会产生一个大小与控制控制电流I 和磁场B 乘积成正比的电压U H ,这一现象称为霍尔效应。
所产生的电压U H 叫霍尔电压。
即IB K U H H式中KH------霍尔元件的灵敏度。
dRKHH=式中RH------霍尔系数,它反映元件霍尔效应的强弱,有材料性质决定。
单位体积内导电粒子数越少,霍尔效应越强,半导体比金属导体霍尔 效应强,所以常采用半导体材料做霍尔元件;d------霍尔元件的厚度;图2霍尔效应原理由上式可知对于材料和尺寸确定的元件,K H 保持常数,霍尔电压U H 仅与IB 的乘积成正比。
利用这一特性,在恒定电流之下可用来测量磁感应强度B ;反之,在恒定的磁场之下,也可以用来测量电流I 。
当KH和B 恒定时,I 越大,UH越大。
同样,当KH和I 恒定时 ,B 越大, U H 也越大。
当所加磁场方向改变时,霍尔电压U H 的符号也随之改变。
当磁场方向不垂直于元件平面,而是与元件平面的法线成一角度θ时,实际作用于元件上的有效磁场是其法线方向的分量,即θcos B ,这时霍尔元件的输出为θIB K U H H cos =2.2霍尔元件的材料及结构霍尔元件通常采用的半导体材料有N型锗(Ge),锑化铟(InSb)、砷化铟(InAs)、砷化镓(GaAs)及磷砷化铟(InAsP)、N型硅(Si)等。
LM2917中文
LM2907 / LM2917频率电压转换器总体描述LM2907系列的单片机,LM2917频率电压转换器与高增益运算放大器/对照设计操作继电器、灯、或其他负荷当输入频率达到或超过选择率。
主要的使用一个电荷泵技术和提供的频率替身的波纹,满低输入保护两种版本(LM2907-8,LM2917-8)和输出摆动到地面输入零频率。
运算放大器/比较器的完全兼容的转速和有一个浮动晶体管为输出。
这一特点允许或者一个地面或供应负荷高达50所麻。
收集器可能采取VCC以上的由一个最大饱和压降低28 V。
这两个基本结构的优惠,包括一个8-pin装置一位地勤参考输入转速和内部关系运算放大器的输出转速和用户的输入。
这个版本是非常适合单身速度或频率转换或完全被缓冲的频率电压转换应用。
更多功能配置提供转速差输入放大器输入。
这版本主要的输入可以漂运算放大器成为适合转速调节的有源滤波器输出。
两个这样的配置有一个活跃的在调节阀连接并联电力的线索。
这调节阀,夹供应稳定频率对当前操作电压和频率都是可能的与任何电源电压和一个合适的电阻。
优势n输出为零频率波动到地面输入护士使用方便;VOUT =鳍x VCC x R1 x C1护士只有一个钢筋混凝土网提供频率两倍n齐纳调节阀晶片上的允许,精确稳定频率电压或电流转换(LM2917)特征参考输入接口n地面转速直接变磁阻磁车站n运算放大器/对照有漂浮的晶体管块和连接图Dual-In-Line和小包裹,顶部轮廓的观点Dual-In-Line块和连接图和小包裹,顶部轮廓视图(继续)绝对最大额定值(注1)如果军事航天指定的设备是必要的,请联系美国国家半导体销售办事处销售者的可用性和规格。
28 V电源电压选择开关电流(马)的25齐纳收藏家28 V电压差动输入电压28 V转速注1:操作的环境温度超过25°C,设备必须derated 150°C的基于最大结温和热阻101°C / W对环境和LM2907-8交界处,79°C LM2917-8 / W交界处,LM2907-14和LM2917-14环境。
LM2907中文资料
LM2907/LM2917Frequency to Voltage ConverterGeneral DescriptionThe LM2907,LM2917series are monolithic frequency to voltage converters with a high gain op amp/comparator de-signed to operate a relay,lamp,or other load when the input frequency reaches or exceeds a selected rate.The tachom-eter uses a charge pump technique and offers frequency doubling for low ripple,full input protection in two versions (LM2907-8,LM2917-8)and its output swings to ground for a zero frequency input.The op amp/comparator is fully compatible with the tachom-eter and has a floating transistor as its output.This feature allows either a ground or supply referred load of up to 50mA.The collector may be taken above V CC up to a maximum V CE of 28V.The two basic configurations offered include an 8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input.This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications.The more versatile configurations provide differential ta-chometer input and uncommitted op amp inputs.With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachom-eter output.Both of these configurations are available with an active shunt regulator connected across the power leads.The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor.Advantagesn Output swings to ground for zero frequency input n Easy to use;V OUT =f IN x V CC x R1x C1n Only one RC network provides frequency doubling n Zener regulator on chip allows accurate and stable frequency to voltage or current conversion (LM2917)Featuresn Ground referenced tachometer input interfaces directly with variable reluctance magnetic pickupsn Op amp/comparator has floating transistor output n 50mA sink or source to operate relays,solenoids,meters,or LEDsn Frequency doubling for low ripplen Tachometer has built-in hysteresis with either differential input or ground referenced input n Built-in zener on LM2917n ±0.3%linearity typicaln Ground referenced tachometer is fully protected from damage due to swings above V CC and below groundApplicationsn Over/under speed sensingn Frequency to voltage conversion (tachometer)n Speedometersn Breaker point dwell meters n Hand-held tachometer n Speed governors n Cruise controln Automotive door lock control n Clutch control n Horn controlnTouch or sound switchesBlock and Connection DiagramsDual-In-Line and Small Outline Packages,Top Views00794201Order Number LM2907M-8or LM2907N-8See NS Package Number M08A or N08E 00794202Order Number LM2917M-8or LM2917N-8See NS Package Number M08A or N08EMay 2003LM2907/LM2917Frequency to Voltage Converter©2003National Semiconductor Corporation Block and Connection Diagrams Dual-In-Line and Small Outline Packages,Top Views(Continued)00794203Order Number LM2907M or LM2907N See NS Package Number M14A or N14A 00794204Order Number LM2917M or LM2917N See NS Package Number M14A or N14AL M 2907/L M 2917 2Absolute Maximum Ratings(Note1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage28V Supply Current(Zener Options)25mA Collector Voltage28V Differential Input VoltageTachometer28V Op Amp/Comparator28V Input Voltage RangeTachometerLM2907-8,LM2917-8±28VLM2907,LM29170.0V to+28V Op Amp/Comparator0.0V to+28V Power DissipationLM2907-8,LM2917-81200mW LM2907-14,LM2917-141580mW See(Note1)Operating Temperature Range−40˚C to+85˚C Storage Temperature Range−65˚C to+150˚C Soldering InformationDual-In-Line PackageSoldering(10seconds)260˚C Small Outline PackageVapor Phase(60seconds)215˚C Infrared(15seconds)220˚C See AN-450“Surface Mounting Methods and Their Effect on Product Reliability”for other methods of soldering surface mount devices.Electrical CharacteristicsV CC=12V DC,T A=25˚C,see test circuitSymbol Parameter Conditions Min Typ Max Units TACHOMETERInput Thresholds V IN=250mVp-p@1kHz(Note2)±10±25±40mVHysteresis V IN=250mVp-p@1kHz(Note2)30mVOffset Voltage V IN=250mVp-p@1kHz(Note2)LM2907/LM2917 3.510mVLM2907-8/LM2917-8515mVInput Bias Current V IN=±50mV DC0.11µAV OH Pin2V IN=+125mV DC(Note3)8.3VV OL Pin2V IN=−125mV DC(Note3) 2.3VI2,I3Output Current V2=V3=6.0V(Note4)140180240µAI3Leakage Current I2=0,V3=00.1µAK Gain Constant(Note3)0.9 1.0 1.1 Linearity f IN=1kHz,5kHz,10kHz(Note5)−1.00.3+1.0%OP/AMP COMPARATORV OS V IN=6.0V310mVI BIAS V IN=6.0V50500nAInput Common-Mode Voltage0V CC−1.5V VVoltage Gain200V/mVOutput Sink Current V C=1.04050mAOutput Source Current V E=V CC−2.010mASaturation Voltage I SINK=5mA0.10.5VI SINK=20mA 1.0VI SINK=50mA 1.0 1.5VZENER REGULATORRegulator Voltage R DROP=470Ω7.56VSeries Resistance10.515ΩTemperature Stability+1mV/˚CTOTAL SUPPLY CURRENT 3.86mANote1:For operation in ambient temperatures above25˚C,the device must be derated based on a150˚C maximum junction temperature and a thermal resistanceof101˚C/W junction to ambient for LM2907-8and LM2917-8,and79˚C/W junction to ambient for LM2907-14and LM2917-14.Note2:Hysteresis is the sum+V TH−(−V TH),offset voltage is their difference.See test circuit.Note3:V OH is equal to3⁄4x V CC−1V BE,V OL is equal to1⁄4x V CC−1V BE therefore V OH−V OL=V CC/2.The difference,V OH−V OL,and the mirror gain,I2/I3,are the two factors that cause the tachometer gain constant to vary from1.0.Note4:Be sure when choosing the time constant R1x C1that R1is such that the maximum anticipated output voltage at pin3can be reached with I3x R1.The maximum value for R1is limited by the output resistance of pin3which is greater than10MΩtypically.LM2907/LM29173Electrical Characteristics(Continued)Note 5:Nonlinearity is defined as the deviation of V OUT (@pin 3)for f IN =5kHz from a straight line defined by the V OUT @1kHz and V OUT @10kHz.C1=1000pF,R1=68k and C2=0.22mFd.Test Circuit and Waveform00794206Tachometer Input Threshold Measurement00794207L M 2907/L M 2917 4Typical Performance CharacteristicsTotal Supply CurrentZener Voltage vsTemperature0079424000794241Normalized Tachometer Output vs TemperatureNormalized TachometerOutput vs Temperature 0079424200794243Tachometer Currents I2 and I3vs Supply VoltageTachometer Currents I2and I3vs Temperature0079424400794245LM2907/LM29175Typical Performance Characteristics(Continued)Tachometer Linearity vs TemperatureTachometer Linearity vs Temperature0079424600794247Tachometer Linearity vs R1Tachometer Input Hysteresisvs Temperature0079424800794249Op Amp Output TransistorCharacteristics Op Amp Output TransistorCharacteristics0079425000794251L M 2907/L M 2917 6Applications InformationThe LM2907series of tachometer circuits is designed forminimum external part count applications and maximum ver-satility.In order to fully exploit its features and advantageslet’s examine its theory of operation.The first stage of op-eration is a differential amplifier driving a positive feedbackflip-flop circuit.The input threshold voltage is the amount ofdifferential input voltage at which the output of this stagechanges state.Two options(LM2907-8,LM2917-8)haveone input internally grounded so that an input signal mustswing above and below ground and exceed the input thresh-olds to produce an output.This is offered specifically formagnetic variable reluctance pickups which typically providea single-ended ac output.This single input is also fullyprotected against voltage swings to±28V,which are easilyattained with these types of pickups.The differential input options(LM2907,LM2917)give theuser the option of setting his own input switching level andstill have the hysteresis around that level for excellent noiserejection in any application.Of course in order to allow theinputs to attain common-mode voltages above ground,inputprotection is removed and neither input should be takenoutside the limits of the supply voltage being used.It is veryimportant that an input not go below ground without someresistance in its lead to limit the current that will then flow inthe epi-substrate diode.Following the input stage is the charge pump where the inputfrequency is converted to a dc voltage.To do this requiresone timing capacitor,one output resistor,and an integratingor filter capacitor.When the input stage changes state(dueto a suitable zero crossing or differential voltage on the input)the timing capacitor is either charged or discharged linearlybetween two voltages whose difference is V CC/2.Then inone half cycle of the input frequency or a time equal to1/2f INthe change in charge on the timing capacitor is equal toV CC/2x C1.The average amount of current pumped into orout of the capacitor then is:The output circuit mirrors this current very accurately into theload resistor R1,connected to ground,such that if the pulsesof current are integrated with a filter capacitor,then V O=i c xR1,and the total conversion equation becomes:V O=V CC x f IN x C1x R1x KWhere K is the gain constant—typically1.0.The size of C2is dependent only on the amount of ripplevoltage allowable and the required response time.CHOOSING R1AND C1There are some limitations on the choice of R1and C1whichshould be considered for optimum performance.The timingcapacitor also provides internal compensation for the chargepump and should be kept larger than500pF for very accu-rate operation.Smaller values can cause an error current onR1,especially at low temperatures.Several considerationsmust be met when choosing R1.The output current at pin3is internally fixed and therefore V O/R1must be less than orequal to this value.If R1is too large,it can become asignificant fraction of the output impedance at pin3whichdegrades linearity.Also output ripple voltage must be con-sidered and the size of C2is affected by R1.An expressionthat describes the ripple content on pin3for a single R1C2combination is:It appears R1can be chosen independent of ripple,howeverresponse time,or the time it takes V OUT to stabilize at a newvoltage increases as the size of C2increases,so a compro-mise between ripple,response time,and linearity must bechosen carefully.As a final consideration,the maximum attainable input fre-quency is determined by V CC,C1and I2:USING ZENER REGULATED OPTIONS(LM2917)For those applications where an output voltage or currentmust be obtained independent of supply voltage variations,the LM2917is offered.The most important consideration inchoosing a dropping resistor from the unregulated supply tothe device is that the tachometer and op amp circuitry alonerequire about3mA at the voltage level provided by thezener.At low supply voltages there must be some currentflowing in the resistor above the3mA circuit current tooperate the regulator.As an example,if the raw supplyvaries from9V to16V,a resistance of470Ωwill minimize thezener voltage variation to160mV.If the resistance goesunder400Ωor over600Ωthe zener variation quickly risesabove200mV for the same input variation.LM2907/LM29177Typical ApplicationsMinimum Component Tachometer0079420800794209L M 2907/L M 2917 8Typical Applications(Continued)Zener Regulated Frequency to Voltage Converter00794210Breaker Point Dwell Meter00794211LM2907/LM29179Typical Applications(Continued)Voltage Driven Meter Indicating Engine RPM V O =6V @400Hz or 6000ERPM (8Cylinder Engine)00794212Current Driven Meter Indicating Engine RPMI O =10mA @300Hz or 6000ERPM (6Cylinder Engine)00794213L M 2907/L M 2917 10Typical Applications(Continued)Capacitance MeterV OUT=1V–10V for C X=0.01to0.1mFd(R=111k)00794214Two-Wire Remote Speed Switch00794215LM2907/LM2917Typical Applications(Continued)100Cycle Delay Switch00794216Variable Reluctance Magnetic Pickup Buffer Circuits00794239Precision two-shot output frequency equals twice input frequency.Pulse height =V ZENER00794217L M 2907/L M 2917Typical Applications(Continued)Finger Touch or Contact Switch0079421800794219Flashing LED Indicates Overspeed00794220Flashing begins when f IN ≥100Hz.Flash rate increases with input frequency increase beyond trip point.LM2907/LM2917Typical Applications(Continued)Frequency to Voltage Converter with2Pole Butterworth Filter to Reduce Ripple00794221 Overspeed Latch0079422200794223 LM297/LM2917Typical Applications(Continued)Some Frequency Switch Applications May Require Hysteresis in theComparator Function Which can be Implemented in Several Ways:0079422400794225007942260079422700794228LM2907/LM2917Typical Applications(Continued)Changing the Output Voltage for an Input Frequency of Zero0079422900794230Changing Tachometer Gain Curve or Clamping the Minimum Output Voltage0079423100794232L M 2907/L M 2917Anti-Skid Circuit Functions“Select-Low”Circuit0079423300794234V OUT is proportional to the lower of the two input wheel speeds.“Select-High”Circuit0079423500794236V OUT is proportional to the higher of the two input wheel speeds.“Select-Average”Circuit00794237LM2907/LM2917Equivalent Schematic Diagram00794238*This connection made on LM2907-8and LM2917-8only.**This connection made on LM2917and LM2917-8only.L M 2907/L M 2917Physical Dimensions inches(millimeters)unless otherwise noted8-Lead(0.150"Wide)Molded Small Outline Package,JEDECOrder Number LM2907M-8or LM2917M-8NS Package Number M08AMolded SO Package(M)Order Number LM2907M or LM2917MNS Package Number M14A LM2907/LM2917Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)Molded Dual-In-Line Package (N)Order Number LM2907N-8or LM2917N-8NS Package Number N08EMolded Dual-In-Line Package (N)Order Number LM2907N or LM2917NNS Package Number N14AL M 2907/L M 2917NotesLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560LM2907/LM2917Frequency to Voltage ConverterNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.元器件交易网。
无线充电器论文(翻译)
无线移动充电器论文Wireless Mobile Charger------无线移动充电器摘要——随着移动电话变成一个基本生活的一部分,移动电话的电池充电,一直是一个问题。
手机有不同的通话时间,电池根据他们的制造商也有所不同。
所有这些手机不论他们的制造商都必须在电量消耗完后充电。
目前提案主要的目的是使充电的手机制造商和电池完全独立。
在本文中提出了一种新型的提案即当你在说话时你的手机充电是自动完成的。
这是通过使用微波完成的。
微波信号从传输器传输并且使用特殊类型的开槽天线导波的频率为2.45 GHz的天线传输消息信号。
另外,有一个小的补充,即制造的手机,需要添加一个传感器,一个硅整流二极管天线,和一个滤波器。
使用上面的设置,分离的手机充电器被淘汰,使充电普遍。
因此你们谈论得越多,你的手机充电越多。
通过这个提案制造商就可以使通话时间和不同规范的电池相分离。
Ⅰ.绪论A.电磁频谱——首先,要想了解一个光谱是:当白色光线通过棱镜分离成彩虹里面所有的颜色;这是可见光的光谱。
所以白光是各种颜色的混合。
黑色不是一种颜色;它是你把所有的光都移走得到的。
一些物理学家假设光是由他们称为光子的微小粒子组成的。
他们以光的速度传播(真是个惊喜)。
光的速度大约是300000000米每秒。
当他们遇到了一些物体则可能反弹射,通过或被吸收。
那种情况会发生取决于他们有多少能量。
如果他们被东西反射回来,然后进入你的眼睛,你会“看到”反射的东西。
一些诸如玻璃、有机玻璃会让他们通过。
这些材料都是透明的。
黑色物体吸收光子,所以你不能够看到黑色的东西:你将不得不考虑这个问题。
这些可怜的老物理学家能有点糊涂了,当他们试图解释为什么一些光子穿过一片叶子,有些是反映,一些被吸收。
他们说,这是因为他们有不同的能量。
其他物理学家假设光线是由波形成的。
这些物理学测量波的长度,这有助于解释当光照射到树叶发生了什么。
光波的最长波(红色)被叶片的绿色物质叶绿素吸收。
LM系列芯片大全
LM系列芯片大全LM12 80W OPERATIONAL AMPLIFIER 80瓦运算放大器LM124 LM224 LM324 LM2902 Low Power Quad Operational Amplifier 低电压双路运算放大器LM324 Low Power Quad Operational Amplifier 低电压双路运算放大器LM129 LM329 Precision Reference 精密电压基准芯片LM135 LM235 LM335 精密温度传感器芯片LM1458 LM1558 Dual Operational Amplifier 双运算放大器LM158 LM258 LM358 LM2904 Low Power Dual Operational Amplifier 低压双运算放大器LM18293 Four Channel Push-Pull Driver 四通道推拉驱动器LM1868 AM/FM Radio System 调幅/调频收音机芯片LM1951 Solid State 1 Amp Switch 1安培固态开关LM2574 Simple Switcher 0.5A Step-Down V oltage Regulator 0.5A降阶式电压调节器LM1575 LM2575 1A Step-Down V oltage Regulator 1A 降阶式电压调节器LM2576 3A Step-Down V oltage Regulator 3A 降阶式电压调节器LM1577 LM2577 Simple Switch Step-Down V oltage Regulator 降阶式电压调节器LM2587 Simple Switch 5A Flyback Regulator 5A 返馈开关式电压调节器LM1893 LM2893 Carrier Current Transceiver 载体电流收发器LM193 LM293 LM393 LM2903 Low Power Low Offset V oltage Dual Comparator 双路低压低漂移比较器LM2907 LM2917 Frequency to V oltage Converter 频率电压转换器LM101A LM201A LM301A Operational Amplifiers 运算放大器芯片LM3045 LM3046 LM3086 Transistor Array 晶体管阵列LM111 LM211 LM311 V oltage Comparator 电压比较器LM117 LM317 3-Terminal Adjustable Regulator 三端可调式稳压器LM118 LM218 LM318 Operational Amplifier 运算放大器LM133 LM333 3A Adjustable Negative Regulator 3安培可调负电压调节器LM137 LM337 3-Terminal Adjustable Negative Regulator 可调式三端负压稳压器LM34 Precision Fahrenheit Temperature Sensor 精密华氏温度传感器LM342 3-Terminal Positive Regulator 三端正压稳压器LM148 LM248 LM348 / LM149 LM349 双LM741运算放大器LM35 Precision Centigrade Temperature Sensors 精密摄氏温度传感器LM158 LM258 LM358 LM2904 Low Power Dual Operational Amplifiers 低压双运算放大器LM150 LM350 3A Adjustable Regulator 3安培可调式电压调节器LM380 2.5W Audio Amplifier 2.5瓦音频放大器LM386 Low V oltage Audio Power Amplifier 低压音频功率放大器LM3886 High-Performance 68W Audio Power Amplifier With Mute 高性能68瓦音频功率放大器/带静音LM555 LM555C Timer Circuit 时基发生器电路LM556 LM556C Timer Circuit 双时基发生器电路LM565 Phase Locked Loop 相位跟随器LM567 Tone Decoder 音频译码器LM621 BrushLess Motor Commutator 无刷电机换向器LM628 LM629 Precision Motion Controller 精密位移控制器LM675 Power Operational Amplifier 功率运算放大器LM723 V oltage Regulator 电压调节器LM741 Operational Amplifier 运算放大器LM7805 LM78xx 系列稳压器LM7812 LM78xx 系列稳压器LM7815 LM78xx 系列稳压器LM78L00 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L05 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L09 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L12 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L15 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L62 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L82 3-Terminal Positive V oltage Regulator 三端正压调节器LM340 LM78Mxx Series 3-Terminal Positive Regulator 三端正压稳压器LM7905 3-Terminal Nagative V oltage Regulator 三端负压调节器LM7912 3-Terminal Nagative V oltage Regulator 三端负压调节器LM7915 3-Terminal Nagative V oltage Regulator 三端负压调节器LM79Mxx 3-Terminal Nagative V oltage Regulator 三端负压调节器LF147 LF347 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF351 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF353 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF444 Quad Low Power JFET input operational amplifier 双低压J型场效应输入运算放大器。
7及其他系列芯片引脚图资料大全
一:分类74ls00 2输入四与非门74ls01 2输入四与非门(oc)74ls02 2输入四或非门74ls03 2输入四与非门(oc)74ls04 六倒相器74ls05 六倒相器(oc)74ls06 六高压输出反相缓冲器/驱动器(oc,30v) 74ls07 六高压输出缓冲器/驱动器(oc,30v)74ls08 2输入四与门74ls09 2输入四与门(oc)74ls10 3输入三与非门74ls11 3输入三与门74ls12 3输入三与非门(oc)74ls13 4输入双与非门(斯密特触发)74ls14 六倒相器(斯密特触发)74ls15 3输入三与门(oc)74ls16 六高压输出反相缓冲器/驱动器(oc,15v) 74ls17 六高压输出缓冲器/驱动器(oc,15v)74ls18 4输入双与非门(斯密特触发)74ls19 六倒相器(斯密特触发)74ls20 4输入双与非门74ls21 4输入双与门74ls22 4输入双与非门(oc)74ls23 双可扩展的输入或非门74ls24 2输入四与非门(斯密特触发)74ls25 4输入双或非门(有选通)74ls26 2输入四高电平接口与非缓冲器(oc,15v)74ls27 3输入三或非门74ls28 2输入四或非缓冲器74ls30 8输入与非门74ls31 延迟电路74ls32 2输入四或门74ls33 2输入四或非缓冲器(集电极开路输出)74ls34 六缓冲器74ls35 六缓冲器(oc)74ls36 2输入四或非门(有选通)74ls37 2输入四与非缓冲器74ls38 2输入四或非缓冲器(集电极开路输出74ls39 2输入四或非缓冲器(集电极开路输出)7 4ls40 4输入双与非缓冲器7 4ls41 bcd-十进制计数器7 4ls42 4线-10线译码器(bcd输入)7 4ls43 4线-10线译码器(余3码输入)7 4ls44 4线-10线译码器(余3葛莱码输入)7 4ls45 bcd-十进制译码器/驱动器7 4ls46 bcd-七段译码器/驱动器7 4ls47 bcd-七段译码器/驱动器7 4ls48 bcd-七段译码器/驱动器7 4ls49 bcd-七段译码器/驱动器(oc)7 4ls50 双二路2-2输入与或非门(一门可扩展)7 4ls51 双二路2-2输入与或非门7 4ls51 二路3-3输入,二路2-2输入与或非门7 4ls52 四路2-3-2-2输入与或门(可扩展)7 4ls53 四路2-2-2-2输入与或非门(可扩展)7 4ls53 四路2-2-3-2输入与或非门(可扩展)7 4ls54 四路2-2-2-2输入与或非门7 4ls54 四路2-3-3-2输入与或非门7 4ls54 四路2-2-3-2输入与或非门7 4ls55 二路4-4输入与或非门(可扩展)7 4ls60 双四输入与扩展7 4ls61 三3输入与扩展7 4ls62 四路2-3-3-2输入与或扩展器7 4ls63 六电流读出接口门7 4ls64 四路4-2-3-2输入与或非门7 4ls65 四路4-2-3-2输入与或非门(oc)7 4ls70 与门输入上升沿jk触发器7 4ls71 与输入r-s主从触发器7 4ls72 与门输入主从jk触发器7 4ls73 双j-k触发器(带清除端)7 4ls74 正沿触发双d型触发器(带预置端和清除端)7 4ls75 4位双稳锁存器7 4ls76 双j-k触发器(带预置端和清除端)7 4ls77 4位双稳态锁存器7 4ls78 双j-k触发器(带预置端,公共清除端和公共时钟端)7 4ls80 门控全加器7 4ls81 16位随机存取存储器7 4ls82 2位二进制全加器(快速进位)7 4ls83 4位二进制全加器(快速进位)7 4ls84 16位随机存取存储器74ls85 4位数字比较器7 4ls86 2输入四异或门7 4ls87 四位二进制原码/反码/oi单元7 4ls89 64位读/写存储器7 4ls90 十进制计数器7 4ls91 八位移位寄存器7 4ls92 12分频计数器(2分频和6分频)7 4ls93 4位二进制计数器7 4ls94 4位移位寄存器(异步)7 4ls95 4位移位寄存器(并行io)7 4ls96 5位移位寄存器7 4ls97 六位同步二进制比率乘法器7 4ls100 八位双稳锁存器7 4ls103 负沿触发双j-k主从触发器(带清除端)7 4ls106 负沿触发双j-k主从触发器(带预置,清除,时钟)7 4ls107 双j-k主从触发器(带清除端)4ls108 双j-k主从触发器(带预置,清除,时钟)7 4ls109 双j-k触发器(带置位,清除,正触发)7 4ls110 与门输入j-k主从触发器(带锁定)7 4ls111 双j-k主从触发器(带数据锁定)7 4ls112 负沿触发双j-k触发器(带预置端和清除端)7 4ls113 负沿触发双j-k触发器(带预置端)7 4ls114 双j-k触发器(带预置端,共清除端和时钟端)7 4ls116 双四位锁存器7 4ls120 双脉冲同步器/驱动器7 4ls121 单稳态触发器(施密特触发)7 4ls122 可再触发单稳态多谐振荡器(带清除端)7 4ls123 可再触发双单稳多谐振荡器7 4ls125 四总线缓冲门(三态输出) 4ls126 四总线缓冲门(三态输出)7 4ls128 2输入四或非线驱动器7 4ls131 3-8译码器7 4ls132 2输入四与非门(斯密特触发)7 4ls133 13输入端与非门7 4ls134 12输入端与门(三态输出)7 4ls135 四异或/异或非门7 4ls136 2输入四异或门(oc)7 4ls137 八选1锁存译码器/多路转换器7 4ls138 3-8线译码器/多路转换器7 4ls139 双2-4线译码器/多路转换器7 4ls140 双4输入与非线驱动器7 4ls141 bcd-十进制译码器/驱动器7 4ls142 计数器/锁存器/译码器/驱动器4ls145 4-10译码器/驱动器7 4ls147 10线-4线优先编码器7 4ls148 8线-3线八进制优先编码器7 4ls150 16选1数据选择器(反补输出)7 4ls151 8选1数据选择器(互补输出)7 4ls152 8选1数据选择器多路开关7 4ls153 双4选1数据选择器/多路选择器7 4ls154 4线-16线译码器7 4ls155 双2-4译码器/分配器(图腾柱输出)7 4ls156 双2-4译码器/分配器(集电极开路输出)7 4ls157 四2选1数据选择器/多路选择器7 4ls158 四2选1数据选择器(反相输出)7 4ls160 可预置bcd计数器(异步清除)7 4ls161 可预置四位二进制计数器(并清除异步) 4ls162 可预置bcd计数器(异步清除)7 4ls163 可预置四位二进制计数器(并清除异步)7 4ls164 8位并行输出串行移位寄存器7 4ls165 并行输入8位移位寄存器(补码输出)7 4ls166 8位移位寄存器7 4ls167 同步十进制比率乘法器7 4ls168 4位加/减同步计数器(十进制)7 4ls169 同步二进制可逆计数器7 4ls170 4*4寄存器堆7 4ls171 四d触发器(带清除端)7 4ls172 16位寄存器堆7 4ls173 4位d型寄存器(带清除端)7 4ls174 六d触发器7 4ls175 四d触发器4ls176 十进制可预置计数器7 4ls177 2-8-16进制可预置计数器7 4ls178 四位通用移位寄存器7 4ls179 四位通用移位寄存器7 4ls180 九位奇偶产生/校验器7 4ls181 算术逻辑单元/功能发生器7 4ls182 先行进位发生器7 4ls183 双保留进位全加器7 4ls184 bcd-二进制转换器7 4ls185 二进制-bcd转换器7 4ls190 同步可逆计数器(bcd,二进制)7 4ls191 同步可逆计数器(bcd,二进制)7 4ls192 同步可逆计数器(bcd,二进制)7 4ls193 同步可逆计数器(bcd,二进制) 4ls194 四位双向通用移位寄存器7 4ls195 四位通用移位寄存器7 4ls196 可预置计数器/锁存器7 4ls197 可预置计数器/锁存器(二进制)7 4ls198 八位双向移位寄存器7 4ls199 八位移位寄存器7 4ls210 2-5-10进制计数器7 4ls213 2-n-10可变进制计数器7 4ls221 双单稳触发器7 4ls230 八3态总线驱动器7 4ls231 八3态总线反向驱动器7 4ls240 八缓冲器/线驱动器/线接收器(反码三态输出)7 4ls241 八缓冲器/线驱动器/线接收器(原码三态输出)4ls242 八缓冲器/线驱动器/线接收器7 4ls243 4同相三态总线收发器7 4ls244 八缓冲器/线驱动器/线接收器7 4ls245 八双向总线收发器7 4ls246 4线-七段译码/驱动器(30v)7 4ls247 4线-七段译码/驱动器(15v)7 4ls248 4线-七段译码/驱动器7 4ls249 4线-七段译码/驱动器7 4ls251 8选1数据选择器(三态输出)7 4ls253 双四选1数据选择器(三态输出)7 4ls256 双四位可寻址锁存器7 4ls257 四2选1数据选择器(三态输出)7 4ls258 四2选1数据选择器(反码三态输出)7 4ls259 8为可寻址锁存器4ls260 双5输入或非门7 4ls261 4*2并行二进制乘法器7 4ls265 四互补输出元件7 4ls266 2输入四异或非门(oc)7 4ls270 2048位rom (512位四字节,oc)7 4ls271 2048位rom (256位八字节,oc)7 4ls273 八d触发器7 4ls274 4*4并行二进制乘法器7 4ls275 七位片式华莱士树乘法器7 4ls276 四jk触发器7 4ls278 四位可级联优先寄存器7 4ls279 四s-r锁存器7 4ls280 9位奇数/偶数奇偶发生器/较验器7 4ls2814ls283 4位二进制全加器7 4ls290 十进制计数器7 4ls291 32位可编程模7 4ls293 4位二进制计数器7 4ls294 16位可编程模7 4ls295 四位双向通用移位寄存器7 4ls298 四-2输入多路转换器(带选通)7 4ls299 八位通用移位寄存器(三态输出)7 4ls348 8-3线优先编码器(三态输出)7 4ls352 双四选1数据选择器/多路转换器7 4ls353 双4-1线数据选择器(三态输出)7 4ls354 8输入端多路转换器/数据选择器/寄存器,三态补码输出7 4ls355 8输入端多路转换器/数据选择器/寄存器,三态补码输出4ls356 8输入端多路转换器/数据选择器/寄存器,三态补码输出7 4ls357 8输入端多路转换器/数据选择器/寄存器,三态补码输出7 4ls365 6总线驱动器7 4ls366 六反向三态缓冲器/线驱动器7 4ls367 六同向三态缓冲器/线驱动器7 4ls368 六反向三态缓冲器/线驱动器7 4ls373 八d锁存器7 4ls374 八d触发器(三态同相)7 4ls375 4位双稳态锁存器7 4ls377 带使能的八d触发器7 4ls378 六d触发器7 4ls379 四d触发器7 4ls381 算术逻辑单元/函数发生器7 4ls382 算术逻辑单元/函数发生器7 4ls384 8位*1位补码乘法器7 4ls385 四串行加法器/乘法器7 4ls386 2输入四异或门7 4ls390 双十进制计数器7 4ls391 双四位二进制计数器7 4ls395 4位通用移位寄存器7 4ls396 八位存储寄存器74ls398 四2输入端多路开关(双路输出)74ls399 四-2输入多路转换器(带选通)74ls422 单稳态触发器74ls423 双单稳态触发器74ls440 四3方向总线收发器,集电极开路74ls441 四3方向总线收发器,集电极开路74ls442 四3方向总线收发器,三态输出74ls443 四3方向总线收发器,三态输出74ls444 四3方向总线收发器,三态输出74ls445 bcd-十进制译码器/驱动器,三态输出74ls446 有方向控制的双总线收发器74ls448 四3方向总线收发器,三态输出74ls449 有方向控制的双总线收发器74ls465 八三态线缓冲器74ls466 八三态线反向缓冲器74ls467 八三态线缓冲器74ls468 八三态线反向缓冲器74ls490 双十进制计数器74ls540 八位三态总线缓冲器(反向)74ls541 八位三态总线缓冲器74ls589 有输入锁存的并入串出移位寄存器74ls590 带输出寄存器的8位二进制计数器74ls591 带输出寄存器的8位二进制计数器74ls592 带输出寄存器的8位二进制计数器74ls593 带输出寄存器的8位二进制计数器74ls594 带输出锁存的8位串入并出移位寄存器74ls595 8位输出锁存移位寄存器74ls596 带输出锁存的8位串入并出移位寄存器74ls597 8位输出锁存移位寄存器74ls598 带输入锁存的并入串出移位寄存器74ls599 带输出锁存的8位串入并出移位寄存器74ls604 双8位锁存器74ls605 双8位锁存器74ls606 双8位锁存器74ls607 双8位锁存器74ls620 8位三态总线发送接收器(反相)74ls621 8位总线收发器74ls622 8位总线收发器74ls623 8位总线收发器74ls640 反相总线收发器(三态输出)74ls641 同相8总线收发器,集电极开路74ls642 同相8总线收发器,集电极开路74ls643 8位三态总线发送接收器74ls644 真值反相8总线收发器,集电极开路74ls645 三态同相8总线收发器74ls646 八位总线收发器,寄存器74ls647 八位总线收发器,寄存器74ls648 八位总线收发器,寄存器74ls649 八位总线收发器,寄存器74ls651 三态反相8总线收发器74ls652 三态反相8总线收发器74ls653 反相8总线收发器,集电极开路74ls654 同相8总线收发器,集电极开路74ls668 4位同步加/减十进制计数器74ls669 带先行进位的4位同步二进制可逆计数器74ls670 4*4寄存器堆(三态)74ls671 带输出寄存的四位并入并出移位寄存器74ls672 带输出寄存的四位并入并出移位寄存器74ls673 16位并行输出存储器,16位串入串出移位寄存器74ls674 16位并行输入串行输出移位寄存器74ls681 4位并行二进制累加器74ls682 8位数值比较器(图腾柱输出)74ls683 8位数值比较器(集电极开路)74ls684 8位数值比较器(图腾柱输出)74ls685 8位数值比较器(集电极开路)74ls686 8位数值比较器(图腾柱输出)74ls687 8位数值比较器(集电极开路)74ls688 8位数字比较器(oc输出)74ls689 8位数字比较器74ls690 同步十进制计数器/寄存器(带数选,三态输出,直接清除)74ls691 计数器/寄存器(带多转换,三态输出)74ls692 同步十进制计数器(带预置输入,同步清除)74ls693 计数器/寄存器(带多转换,三态输出)74ls696 同步加/减十进制计数器/寄存器(带数选,三态输出,直接清除)74ls697 计数器/寄存器(带多转换,三态输出)74ls698 计数器/寄存器(带多转换,三态输出)74ls699 计数器/寄存器(带多转换,三态输出)74ls716 可编程模n十进制计数器74ls718 可编程模n十进制计数器LM12瓦运算放大器LM124 LM224 LM324 LM2902 低电压双路运算放大器LM324 低电压双路运算放大器LM129 LM329 精密电压基准芯片LM135 LM235 LM335 精密温度传感器芯片LM1458 LM1558 双运算放大器LM158 LM258 LM358 LM2904 低压双运算放大器LM18293 四通道推拉驱动器LM1868 调幅/调频收音机芯片LM1951 1安培固态开关LM2574 0.5A降阶式电压调节器LM1575 LM2575 1A 降阶式电压调节器LM2576 3A 3A 降阶式电压调节器LM1577 LM2577 降阶式电压调节器LM2587 5A 返馈开关式电压调节器LM1893 LM2893 载体电流收发器LM193 LM293 LM393 LM2903 双路低压低漂移比较器LM2907 LM2917 频率电压转换器LM101A LM201A LM301A 运算放大器芯片LM3045 LM3046 LM3086 晶体管阵列LM111 LM211 LM311 电压比较器LM117 LM317 三端可调式稳压器LM118 LM218 LM318 运算放大器LM133 LM333安培可调负电压调节器LM137 LM337 可调式三端负压稳压器LM34 精密华氏温度传感器LM342 三端正压稳压器LM148 LM248 LM348 / LM149 LM349 双LM741运算放大器LM35 精密摄氏温度传感器LM158 LM258 LM358 LM2904 低压双运算放大器LM150 LM350 3安培可调式电压调节器LM380 2.5瓦音频放大器LM386 低压音频功率放大器LM3886 高性能68瓦音频功率放大器/带静音LM555 LM555C 时基发生器电路LM556 LM556C 双时基发生器电路LM565 相位跟随器LM567 音频译码器LM621 无刷电机换向器LM628 LM629精密位移控制器LM675功率运算放大器LM723 电压调节器LM741 运算放大器LM7805 LM78xx 系列稳压器LM7812 LM78xx 系列稳压器LM7815 LM78xx 系列稳压器LM78L00 三端正压调节器LM78L05 三端正压调节器LM78L09三端正压调节器LM78L12 三端正压调节器LM78L15 三端正压调节器LM78L62 三端正压调节器LM78L82 三端正压调节器LM340 LM78Mxx 三端正压稳压器LM7905 三端负压调节器LM7912 三端负压调节器LM7915 三端负压调节器LM79Mxx 三端负压调节器 LF147 LF347 宽带J 型场效应输入运算放大器 LF351 宽带J 型场效应输入运算放大器LF353 宽带J 型场效应输入运算放大器LF444 双低压J 型场效应输入运算放大器(1) 74LS00双输入四与非门,管脚图如附图1-27所示。
2907三级的基本管参数
2907三级的基本管参数
摘要:
1.2907 三级的基本概念
2.2907 三级的基本管参数概述
3.2907 三级的基本管参数详细说明
4.2907 三级的基本管参数的应用
正文:
一、2907 三级的基本概念
2907 三级,是指我国电子元器件产品标准中的一种分类,主要涵盖了电阻、电容、二极管、三极管等基本电子元器件。
在这个分类中,产品的性能、尺寸、工作电压等参数都有明确的规定。
二、2907 三级的基本管参数概述
2907 三级的基本管参数,是指在这个分类下的电子元器件产品,其性能参数需要满足的一组标准。
这些参数涵盖了元器件的工作电压、工作电流、功率、频率响应等多个方面。
三、2907 三级的基本管参数详细说明
1.工作电压:这是指元器件能正常工作的电压范围,超过这个范围,元器件可能会损坏。
2.工作电流:这是指元器件能正常工作的电流范围,超过这个范围,元器件可能会过热,影响其使用寿命。
3.功率:这是指元器件在正常工作状态下,消耗的功率。
不同类型的元器
件,其功率也有所不同。
4.频率响应:这是指元器件对不同频率信号的响应能力。
频率响应好的元器件,其信号损失小,音质更好。
四、2907 三级的基本管参数的应用
2907 三级的基本管参数,是电子元器件设计和选型的重要依据。
设计人员需要根据这些参数,选择最适合的元器件,以满足产品的性能要求。
lm2907-n
LM2907-N,LM2917-N SNAS555B–MAY2004–REVISED DECEMBER2008 LM2907/LM2917Frequency to Voltage ConverterCheck for Samples:LM2907-N,LM2917-NFEATURES APPLICATIONS•Ground referenced tachometer input interfaces•Over/under speed sensing directly with variable reluctance magnetic•Frequency to voltage conversion(tachometer) pickups•Speedometers•Op amp/comparator has floating transistor•Breaker point dwell meters output•Hand-held tachometer•50mA sink or source to operate relays,•Speed governorssolenoids,meters,or LEDs•Cruise control•Frequency doubling for low ripple•Automotive door lock control•Tachometer has built-in hysteresis with either•Clutch controldifferential input or ground referenced input•Horn control•Built-in zener on LM2917•Touch or sound switches•±0.3%linearity typical•Ground referenced tachometer is fullyprotected from damage due to swings aboveV CC and below groundDESCRIPTIONThe LM2907,LM2917series are monolithic frequency to voltage converters with a high gain op amp/comparator designed to operate a relay,lamp,or other load when the input frequency reaches or exceeds a selected rate. The tachometer uses a charge pump technique and offers frequency doubling for low ripple,full input protection in two versions(LM2907-8,LM2917-8)and its output swings to ground for a zero frequency input.The op amp/comparator is fully compatible with the tachometer and has a floating transistor as its output.This feature allows either a ground or supply referred load of up to50mA.The collector may be taken above V CC up to a maximum V CE of28V.The two basic configurations offered include an8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input.This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications.The more versatile configurations provide differential tachometer input and uncommitted op amp inputs.With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachometer output.Both of these configurations are available with an active shunt regulator connected across the power leads.The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor.Advantages•Output swings to ground for zero frequency input•Easy to use;V OUT=f IN×V CC×R1×C1•Only one RC network provides frequency doubling•Zener regulator on chip allows accurate and stable frequency to voltage or current conversion(LM2917)Connection DiagramDual-In-Line and Small Outline Packages,Top ViewsPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.All trademarks are the property of their respective owners.PRODUCTION DATA information is current as of publication date.Copyright©2004–2008,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasLM2907-N,LM2917-NSNAS555B–MAY2004–REVISED Dual-In-Line and Small Outline Packages,Top ViewsFigure1.Figure2.Figure3.2Submit Documentation Feedback Copyright©2004–2008,Texas Instruments IncorporatedLM2907-N,LM2917-N SNAS555B–MAY2004–REVISED DECEMBER2008 Dual-In-Line and Small Outline Packages,Top ViewsFigure4.These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.Absolute Maximum Ratings(1)Supply Voltage28V Supply Current(Zener Options)25mA Collector Voltage28V Differential Input VoltageTachometer28V Op Amp/Comparator28V Input Voltage RangeTachometerLM2907-8,LM2917-8±28V LM2907,LM29170.0V to+28V Op Amp/Comparator0.0V to+28V Power DissipationLM2907-8,LM2917-81200mW LM2907-14,LM2917-141580mW See(1)Operating Temperature Range−40°C to+85°C Storage Temperature Range−65°C to+150°C Soldering InformationDual-In-Line PackageSoldering(10seconds)260°C Small Outline PackageVapor Phase(60seconds)215°C Infrared(15seconds)220°C (1)For operation in ambient temperatures above25°C,the device must be derated based on a150°C maximum junction temperature and athermal resistance of101°C/W junction to ambient for LM2907-8and LM2917-8,and79°C/W junction to ambient for LM2907-14and LM2917-14.Copyright©2004–2008,Texas Instruments Incorporated Submit Documentation Feedback3LM2907-N,LM2917-NSNAS555B–MAY2004–REVISED Electrical Characteristics(1)Hysteresis is the sum+V TH−(−V TH),offset voltage is their difference.See test circuit.(2)V OH is equal to¾×V CC−1V BE,V OL is equal to¼×V CC−1V BE therefore V OH−V OL=V CC/2.The difference,V OH−V OL,and themirror gain,I2/I3,are the two factors that cause the tachometer gain constant to vary from1.0.(3)Be sure when choosing the time constant R1×C1that R1is such that the maximum anticipated output voltage at pin3can be reachedwith I3×R1.The maximum value for R1is limited by the output resistance of pin3which is greater than10MΩtypically.(4)Nonlinearity is defined as the deviation of V OUT(@pin3)for f IN=5kHz from a straight line defined by the V OUT@1kHz and V OUT@10kHz.C1=1000pF,R1=68k and C2=0.22mFd.4Submit Documentation Feedback Copyright©2004–2008,Texas Instruments IncorporatedLM2907-N,LM2917-N SNAS555B–MAY2004–REVISED DECEMBER2008 Test Circuit and WaveformCopyright©2004–2008,Texas Instruments Incorporated Submit Documentation Feedback5LM2907-N,LM2917-NSNAS555B–MAY2004–REVISED Figure5.Tachometer Input Threshold Measurement6Submit Documentation Feedback Copyright©2004–2008,Texas Instruments IncorporatedLM2907-N,LM2917-N SNAS555B–MAY2004–REVISED DECEMBER2008Typical Performance CharacteristicsTachometer Linearity Tachometer Linearityvs Temperature vs TemperatureZener Voltage vsTotal Supply Current TemperatureNormalized Tachometer Output(K) Normalized Tachometer Output(K)vsvs Temperature TemperatureTachometer Currents I2and I3vs Tachometer Currents I2and I3Supply Voltage vs TemperatureTachometer Linearityvs Tachometer Input HysteresisR1vs TemperatureCopyright©2004–2008,Texas Instruments Incorporated Submit Documentation Feedback7LM2907-N,LM2917-NSNAS555B –MAY 2004–REVISED DECEMBER 2008Typical Performance Characteristics (continued)Op Amp Output TransistorOp Amp Output TransistorCharacteristicsCharacteristicsApplications InformationThe LM2907series of tachometer circuits is designed for minimum external part count applications and maximum versatility.In order to fully exploit its features and advantages let's examine its theory of operation.The first stage of operation is a differential amplifier driving a positive feedback flip-flop circuit.The input threshold voltage is the amount of differential input voltage at which the output of this stage changes state.Two options (LM2907-8,LM2917-8)have one input internally grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output.This is offered specifically for magnetic variable reluctance pickups which typically provide a single-ended ac output.This single input is also fully protected against voltage swings to ±28V,which are easily attained with these types of pickups.The differential input options (LM2907,LM2917)give the user the option of setting his own input switching level and still have the hysteresis around that level for excellent noise rejection in any application.Of course in order to allow the inputs to attain common-mode voltages above ground,input protection is removed and neither input should be taken outside the limits of the supply voltage being used.It is very important that an input not go below ground without some resistance in its lead to limit the current that will then flow in the epi-substrate diode.Following the input stage is the charge pump where the input frequency is converted to a dc voltage.To do this requires one timing capacitor,one output resistor,and an integrating or filter capacitor.When the input stage changes state (due to a suitable zero crossing or differential voltage on the input)the timing capacitor is either charged or discharged linearly between two voltages whose difference is V CC /2.Then in one half cycle of the input frequency or a time equal to 1/2f IN the change in charge on the timing capacitor is equal to V CC /2×C1.The average amount of current pumped into or out of the capacitor then is:(1)The output circuit mirrors this current very accurately into the load resistor R1,connected to ground,such that if the pulses of current are integrated with a filter capacitor,then V O =i c ×R1,and the total conversion equation becomes:V O =V CC ×f IN ×C1×R1×K(2)Where K is the gain constant—typically 1.0.The size of C2is dependent only on the amount of ripple voltage allowable and the required response time.CHOOSING R1AND C1There are some limitations on the choice of R1and C1which should be considered for optimum performance.The timing capacitor also provides internal compensation for the charge pump and should be kept larger than 500pF for very accurate operation.Smaller values can cause an error current on R1,especially at low temperatures.Several considerations must be met when choosing R1.The output current at pin 3is internally fixed and therefore V O /R1must be less than or equal to this value.If R1is too large,it can become a significant fraction of the output impedance at pin 3which degrades linearity.Also output ripple voltage must be considered and the size of C2is affected by R1.An expression that describes the ripple content on pin 3for a single R1C2combination is:(3)8Submit Documentation Feedback Copyright ©2004–2008,Texas Instruments IncorporatedLM2907-N,LM2917-N SNAS555B–MAY2004–REVISED DECEMBER2008 It appears R1can be chosen independent of ripple,however response time,or the time it takes V OUT to stabilize at a new voltage increases as the size of C2increases,so a compromise between ripple,response time,and linearity must be chosen carefully.As a final consideration,the maximum attainable input frequency is determined by V CC,C1and I2:(4) USING ZENER REGULATED OPTIONS(LM2917)For those applications where an output voltage or current must be obtained independent of supply voltage variations,the LM2917is offered.The most important consideration in choosing a dropping resistor from the unregulated supply to the device is that the tachometer and op amp circuitry alone require about3mA at the voltage level provided by the zener.At low supply voltages there must be some current flowing in the resistor above the3mA circuit current to operate the regulator.As an example,if the raw supply varies from9V to16V,a resistance of470Ωwill minimize the zener voltage variation to160mV.If the resistance goes under400Ωor over600Ωthe zener variation quickly rises above200mV for the same input variation.Typical ApplicationsFigure6.Minimum Component TachometerFigure7.”Speed Switch”A.Load is Energized when f IN≥(1/(2RC))Copyright©2004–2008,Texas Instruments Incorporated Submit Documentation Feedback9LM2907-N,LM2917-NSNAS555B–MAY2004–REVISED Figure8.Zener Regulated Frequency to Voltage ConverterFigure9.Breaker Point Dwell MeterFigure10.Voltage Driven Meter Indicating Engine RPMA.V O=6V@400Hz or6000ERPM(8Cylinder Engine)10Submit Documentation Feedback Copyright©2004–2008,Texas Instruments IncorporatedFigure11.Current Driven Meter Indicating Engine RPMA.I O=10mA@300Hz or6000ERPM(6Cylinder Engine)Figure12.Capacitance MeterA.V OUT=1V–10V for C X=0.01to0.1mFd(R=111k)Figure13.Two-Wire Remote Speed SwitchFigure14.100Cycle Delay SwitchVariable Reluctance Magnetic Pickup Buffer CircuitsPrecision two-shot output frequencyequals twice input frequency.Pulse height=V ZENERFinger Touch or Contact SwitchFigure15.Flashing LED Indicates OverspeedFlashing begins when f IN≥100Hz.Flash rate increases with input frequencyincrease beyond trip point.Figure16.Frequency to Voltage Converter with2Pole Butterworth Filter to Reduce RippleOverspeed LatchFrequency Switch ApplicationsSome frequency switch applications may require hysteresis in the comparator function which can be implemented in several ways.Changing the Output Voltage for an Input Frequency of ZeroChanging Tachometer Gain Curve or Clamping the Minimum Output VoltageAnti-Skid Circuit Functions“Select-Low”CircuitFigure17.V OUT Proportional to the Lowerof the Two Input Wheel Speeds “Select-High”CircuitFigure18.V OUT Proportional to the Higher of the Two Input Wheel SpeedsFigure19.“Select-Average”CircuitEquivalent Schematic Diagram*This connection made on LM2907-8and LM2917-8only.**This connection made on LM2917and LM2917-8only.9-Feb-2013 PACKAGING INFORMATION9-Feb-2013(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check /productcontent for the latest availability information and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement thatlead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used betweenthe die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weightin homogeneous material)(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.(4) Only one of markings shown within the brackets will appear on the physical device.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.9-Feb-2013 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.TAPE AND REELINFORMATION *All dimensionsare nominal Device Package Type Package DrawingPinsSPQ Reel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant LM2907MX SOICD 142500330.016.4 6.59.35 2.38.016.0Q1LM2907MX-8SOICD 82500330.012.4 6.5 5.4 2.08.012.0Q1LM2907MX-8/NOPB SOICD 82500330.012.4 6.5 5.4 2.08.012.0Q1LM2907MX/NOPB SOICD 142500330.016.4 6.59.35 2.38.016.0Q1LM2917MX SOICD 142500330.016.4 6.59.35 2.38.016.0Q1LM2917MX-8SOICD 82500330.012.4 6.5 5.4 2.08.012.0Q1LM2917MX-8/NOPB SOICD 82500330.012.4 6.5 5.4 2.08.012.0Q1LM2917MX/NOPB SOIC D 142500330.016.4 6.59.35 17-Nov-2012*All dimensionsare nominal DevicePackage Type Package Drawing Pins SPQ Length (mm)Width (mm)Height (mm)LM2907MXSOIC D 142500349.0337.045.0LM2907MX-8SOIC D 82500349.0337.045.0LM2907MX-8/NOPBSOIC D 82500349.0337.045.0LM2907MX/NOPBSOIC D 142500349.0337.045.0LM2917MXSOIC D 142500349.0337.045.0LM2917MX-8SOIC D 82500349.0337.045.0LM2917MX-8/NOPBSOIC D 82500349.0337.045.0LM2917MX/NOPB SOIC D 142500349.0337.045.0 17-Nov-2012MECHANICAL DATAIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46,latest issue,and to discontinue any product or service per JESD48,latest issue.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products(also referred to herein as“components”)are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any patent right,copyright,mask work right,or other intellectual property right relating to any combination,machine,or process in which TI components or services are rmation published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures,monitor failures and their consequences,lessen the likelihood of failures that might cause harm and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed a special agreement specifically governing such use.Only those TI components which TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk,and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI has specifically designated certain components as meeting ISO/TS16949requirements,mainly for automotive use.In any case of use of non-designated products,TI will not be responsible for any failure to meet ISO/TS16949.Products ApplicationsAudio /audio Automotive and Transportation /automotiveAmplifiers Communications and Telecom /communicationsData Converters Computers and Peripherals /computersDLP®Products Consumer Electronics /consumer-appsDSP Energy and Lighting /energyClocks and Timers /clocks Industrial /industrialInterface Medical /medicalLogic Security /securityPower Mgmt Space,Avionics and Defense /space-avionics-defense Microcontrollers Video and Imaging /videoRFID OMAP Applications Processors /omap TI E2E Community Wireless Connectivity /wirelessconnectivityMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2013,Texas Instruments Incorporated。
自-张珉豪技术讲座:汽车电子系统交流
张珉豪技术讲座:汽车电子系统交流苏州亚龙汽车技术服务有限公司张珉豪老师作技术讲座。
张珉豪:各位朋友,大家好,很高兴在这里发言。
北京是我18年前初进中国大陆举办活动的第一个地方,今天又能回忆到18年前的故地,参加本次会谈,我个人也感到非常荣幸。
ﻫ今天的时间虽然很短,在18年前,可能国内的很多技术资料和讯息非常闭锁和封闭,但是18年后的今天,可以讲,在国内,需要取得任何技术资料,并不是一件很困难的事,而且是垂手可得。
网络的发展平台,在全世界各国中,我们中国的网络发展非常完善且快速,虽然在欧美国家发展网络的时间也很长,但是在很多偏僻的山区和乡镇,基本网络的建设还没有中国的网络建设完善。
我们在大西部,在国内更远的高原地区,都有非常充分的网络,这也是中国资讯快速发展的一个体现。
在今天的中国汽车维修行业的水平,以一个多小时的时间,不太可能用以往课程的模式与大家探讨技术性的内容。
再加上这次参会的所有人员都是经过千挑万选,本省中仅仅有几位精英有资格参会。
我在汽车电子系统方面与大家作一交流,车辆的发展,绝对是越来越高科技化,但车辆的维修、车辆的保养绝对是越来越简单,如果一部车辆的设计让我们的维修和保养越来越复杂,那这个车子的设计思路绝对是错误的。
但反过来,要支持这样的论调和理念,最重要的是在思维上也要做改变。
以往我们的车辆维修是以机械机修、工艺为主体,所以一个汽车的高级维修人员必须懂车床洗刨,甚至热处理,但当电子化以后,如果你还在不断学习机械化的东西,那就必然对电子化的知识感到陌生,所以你必须了解电子化的理论。
可现在电子的内容越来越多,就要考虑到资料的处理速度和传输,因为全车上越来越多的运用电脑模块,而这些电脑模块就牵扯到数据流的接控。
如果你还停留在以电表检测的时候,那你就是落后的,所以你必须要学习数据流、解码分析。
可是请问各位,今天的汽车模块有150多个,能再用传统的方式作数据传输吗?不可能,必须用光缆、光纤作更快的数据传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TL H 7942LM2907 LM2917Frequency to Voltage ConverterFebruary 1995LM2907 LM2917Frequency to Voltage ConverterGeneral DescriptionThe LM2907 LM2917series are monolithic frequency to voltage converters with a high gain op amp comparator de-signed to operate a relay lamp or other load when the input frequency reaches or exceeds a selected rate The tachom-eter uses a charge pump technique and offers frequency doubling for low ripple full input protection in two versions (LM2907-8 LM2917-8)and its output swings to ground for a zero frequency inputAdvantagesY Output swings to ground for zero frequency input Y Easy to use V OUT e f IN c V CC c R1c C1Y Only one RC network provides frequency doublingYZener regulator on chip allows accurate and stable fre-quency to voltage or current conversion (LM2917)FeaturesY Ground referenced tachometer input interfaces directly with variable reluctance magnetic pickupsY Op amp comparator has floating transistor outputY50mA sink or source to operate relays solenoids me-ters or LEDsY Frequency doubling for low rippleYTachometer has built-in hysteresis with either differen-tial input or ground referenced input Y Built-in zener on LM2917Y g 0 3%linearity typicalYGround referenced tachometer is fully protected from damage due to swings above V CC and below groundApplicationsY Over under speed sensingY Frequency to voltage conversion (tachometer)Y SpeedometersY Breaker point dwell meters Y Hand-held tachometer Y Speed governors Y Cruise controlY Automotive door lock control Y Clutch control Y Horn controlYTouch or sound switchesBlock and Connection Diagrams Dual-In-Line and Small Outline Packages Top ViewsTL H 7942–1Order Number LM2907M-8or LM2907N-8See NS Package Number M08A or N08E TL H 7942–2Order Number LM2917M-8or LM2917N-8See NS Package Number M08A or N08ETL H 7942–3Order Number LM2907N See NS Package Number N14ATL H 7942–4Order Number LM2917M or LM2917N See NS Package Number M14A or N14AC 1995National Semiconductor CorporationRRD-B30M115 Printed in U S AAbsolute Maximum Ratings(Note1)If Military Aerospace specified devices are required please contact the National Semiconductor Sales Office Distributors for availability and specifications Supply Voltage28V Supply Current(Zener Options)25mA Collector Voltage28V Differential Input VoltageTachometer28V Op Amp Comparator28V Input Voltage RangeTachometer LM2907-8 LM2917-8g28V LM2907 LM29170 0V to a28V Op Amp Comparator0 0V to a28V Power DissipationLM2907-8 LM2917-81200mW LM2907-14 LM2917-141580mW (See Note1)Operating Temperature Range b40 C to a85 C Storage Temperature Range b65 C to a150 C Soldering InformationDual-In-Line PackageSoldering(10seconds)260 C Small Outline PackageVapor Phase(60seconds)215 C Infrared(15seconds)220 C See AN-450‘‘Surface Mounting Methods and Their Effect on Product Reliability’’for other methods of soldering sur-face mount devicesElectrical Characteristics V CC e12V DC T A e25 C see test circuitSymbol Parameter Conditions Min Typ Max Units TACHOMETERInput Thresholds V IN e250mVp-p 1kHz(Note2)g10g25g40mVHysteresis V IN e250mVp-p 1kHz(Note2)30mVOffset Voltage V IN e250mVp-p 1kHz(Note2)LM2907 LM29173 510mVLM2907-8 LM2917-8515mVInput Bias Current V IN e g50mV DC0 11m A V OH Pin2V IN e a125mV DC(Note3)8 3V V OL Pin2V IN e b125mV DC(Note3)2 3V I2 I3Output Current V2e V3e6 0V(Note4)140180240m A I3Leakage Current I2e0 V3e00 1m A K Gain Constant(Note3)0 91 01 1 Linearity f IN e1kHz 5kHz 10kHz(Note5)b1 00 3a1 0% OP AMP COMPARATORV OS V IN e6 0V310mV I BIAS V IN e6 0V50500nAInput Common-Mode Voltage0V CC b1 5V VVoltage Gain200V mVOutput Sink Current V C e1 04050mAOutput Source Current V E e V CC b2 010mASaturation Voltage I SINK e5mA0 10 5VI SINK e20mA1 0VI SINK e50mA1 01 5V2Electrical Characteristics V CC e12V DC T A e25 C see test circuit(Continued)Symbol Parameter Conditions Min Typ Max Units ZENER REGULATORRegulator Voltage R DROP e470X7 56VSeries Resistance10 515XTemperature Stability a1mV CTOTAL SUPPLY CURRENT3 86mA Note1 For operation in ambient temperatures above25 C the device must be derated based on a150 C maximum junction temperature and a thermal resistance of101 C W junction to ambient for LM2907-8and LM2917-8 and79 C W junction to ambient for LM2907-14and LM2917-14Note2 Hysteresis is the sum a V TH b(b V TH) offset voltage is their difference See test circuitNote3 V OH is equal to c V CC b1V BE V OL is equal to c V CC b1V BE therefore V OH b V OL e V CC 2 The difference V OH b V OL and the mirror gain I2 I3 are the two factors that cause the tachometer gain constant to vary from1 0Note4 Be sure when choosing the time constant R1c C1that R1is such that the maximum anticipated output voltage at pin3can be reached with I3c R1 The maximum value for R1is limited by the output resistance of pin3which is greater than10M X typicallyNote5 Nonlinearity is defined as the deviation of V OUT( pin3)for f IN e5kHz from a straight line defined by the V OUT 1kHz and V OUT 10kHz C1e1000pF R1e68k and C2e0 22mFdGeneral Description(Continued)The op amp comparator is fully compatible with the ta-chometer and has a floating transistor as its output This feature allows either a ground or supply referred load of up to50mA The collector may be taken above V CC up to a maximum V CE of28VThe two basic configurations offered include an8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications The more versatile configurations provide differential ta-chometer input and uncommitted op amp inputs With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachometer outputBoth of these configurations are available with an active shunt regulator connected across the power leads The reg-ulator clamps the supply such that stable frequency to volt-age and frequency to current operations are possible with any supply voltage and a suitable resistorTest Circuit and WaveformTL H 7942–6Tachometer Input Threshold MeasurementTL H 7942–7 3Typical Performance CharacteristicsTotal Supply CurrentTemperatureZener Voltage vs Output vs TemperatureNormalized Tachometer Output vs TemperatureNormalized Tachometer and I 3vs Supply Voltage Tachometer Currents I 2and I 3vs TemperatureTachometer Currents I 2vs Temperature Tachometer Linearity vs TemperatureTachometer Linearity Tachometer Linearity vs R1vs Temperature Tachometer Input Hysteresis Characteristics Op Amp Output Transistor CharacteristicsOp Amp Output Transistor TL H 7942–54Applications InformationThe LM2907series of tachometer circuits is designed for minimum external part count applications and maximum ver-satility In order to fully exploit its features and advantages let’s examine its theory of operation The first stage of oper-ation is a differential amplifier driving a positive feedback flip-flop circuit The input threshold voltage is the amount of differential input voltage at which the output of this stage changes state Two options(LM2907-8 LM2917-8)have one input internally grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output This is offered specifically for magnetic variable reluctance pickups which typically pro-vide a single-ended ac output This single input is also fully protected against voltage swings to g28V which are easily attained with these types of pickupsThe differential input options(LM2907 LM2917)give the user the option of setting his own input switching level and still have the hysteresis around that level for excellent noise rejection in any application Of course in order to allow the inputs to attain common-mode voltages above ground input protection is removed and neither input should be taken outside the limits of the supply voltage being used It is very important that an input not go below ground without some resistance in its lead to limit the current that will then flow in the epi-substrate diodeFollowing the input stage is the charge pump where the input frequency is converted to a dc voltage To do this requires one timing capacitor one output resistor and an integrating or filter capacitor When the input stage changes state(due to a suitable zero crossing or differential voltage on the input)the timing capacitor is either charged or dis-charged linearly between two voltages whose difference is V CC 2 Then in one half cycle of the input frequency or a time equal to1 2f IN the change in charge on the timing capacitor is equal to V CC 2c C1 The average amount of current pumped into or out of the capacitor then isD Q T e i c(AVG)e C1cV CC2c(2f IN)e V CC c f IN c C1The output circuit mirrors this current very accurately into the load resistor R1 connected to ground such that if the pulses of current are integrated with a filter capacitor then V O e i c c R1 and the total conversion equation becomes V O e V CC c f IN c C1c R1c KWhere K is the gain constant typically1 0 The size of C2is dependent only on the amount of ripple voltage allowable and the required response time CHOOSING R1AND C1There are some limitations on the choice of R1and C1 which should be considered for optimum performance The timing capacitor also provides internal compensation for the charge pump and should be kept larger than500pF for very accurate operation Smaller values can cause an error cur-rent on R1 especially at low temperatures Several consid-erations must be met when choosing R1 The output current at pin3is internally fixed and therefore V O R1must be less than or equal to this value If R1is too large it can become a significant fraction of the output impedance at pin3which degrades linearity Also output ripple voltage must be con-sidered and the size of C2is affected by R1 An expression that describes the ripple content on pin3for a single R1C2 combination isV RIPPLE eV CC2cC1C2c 1b V CC c f IN c C1I2J pk-pk It appears R1can be chosen independent of ripple howev-er response time or the time it takes V OUT to stabilize at a new voltage increases as the size of C2increases so a compromise between ripple response time and linearity must be chosen carefullyAs a final consideration the maximum attainable input fre-quency is determined by V CC C1and I2f MAX eI2C1c V CCUSING ZENER REGULATED OPTIONS(LM2917)For those applications where an output voltage or current must be obtained independent of supply voltage variations the LM2917is offered The most important consideration in choosing a dropping resistor from the unregulated supply to the device is that the tachometer and op amp circuitry alone require about3mA at the voltage level provided by the zener At low supply voltages there must be some current flowing in the resistor above the3mA circuit current to op-erate the regulator As an example if the raw supply varies from9V to16V a resistance of470X will minimize the ze-ner voltage variation to160mV If the resistance goes un-der400X or over600X the zener variation quickly rises above200mV for the same input variationTypical ApplicationsMinimum Component TachometerTL H 7942–85Typical Applications(Continued)‘‘Speed Switch’’Load is Energized When f IN t1 2RCTL H 7942–9 Zener Regulated Frequency to Voltage ConverterTL H 7942–10Breaker Point Dwell MeterTL H 7942–116Typical Applications(Continued)Voltage Driven Meter Indicating Engine RPMV O e6V 400Hz or6000ERPM(8Cylinder Engine)TL H 7942–12Current Driven Meter Indicating Engine RPMI O e10mA 300Hz or6000ERPM(6Cylinder Engine)TL H 7942–13Capacitance MeterV OUT e1V–10V for C X e0 01to0 1mFd(R e111k)TL H 7942–147Typical Applications (Continued)Two-Wire Remote Speed SwitchTL H 7942–15100Cycle Delay SwitchV3steps up in voltage by the amountV CC c C1C2for each complete input cycle (2zero crossings)TL H 7942–16ExampleIf C2e 200C1after 100consecutive input cycles V3e 1 2V CC8Typical Applications (Continued)Variable Reluctance Magnetic Pickup Buffer CircuitsPrecision two-shot output frequency equals twice input frequency Pulse width e V CC 2C1I2Pulse height e V ZENERTL H 7942–39TL H 7942–17Finger Touch or Contact SwitchTL H 7942–18TL H 7942–19Flashing LED Indicates OverspeedFlashing begins when f IN t 100HzFlash rate increases with input frequency increase beyond trip pointTL H 7942–209Typical Applications(Continued)Frequency to Voltage Converter with2Pole Butterworth Filter to Reduce Ripplef POLE e 0 707 2q RCu RESPONSE e2 572q f POLETL H 7942–21Overspeed LatchTL H 7942–22Output latches when TL H 7942–23f IN eR2R1a R21RCReset by removing V CC10Typical Applications(Continued)Some Frequency Switch Applications May Require Hysteresis in theComparator Function Which can be Implemented in Several WaysTL H 7942–24TL H 7942–25TL H 7942–26TL H 7942–27TL H 7942–2811Typical Applications (Continued)Changing the Output Voltage for an Input Frequency of ZeroTL H 7942–29TL H 7942–30Changing Tachometer Gain Curve or Clamping the Minimum Output VoltageTL H 7942–31TL H 7942–3212Anti-Skid Circuit Functions‘‘Select-Low’’CircuitTL H 7942–33TL H 7942–34V OUT is proportional to the lower of the two input wheel speeds‘‘Select-High’’CircuitTL H 7942–35TL H 7942–36V OUT is proportional to the higher of the two input wheel speeds‘‘Select-Average’’CircuitTL H 7942–3713Equivalent Schematic DiagramT L H 7942–38T h i s c o n n e c t i o n m a d e o n L M 2907-8a n d L M 2917-8o n l yT h i s c o n n e c t i o n m a d e o n L M 2917a n d L M 2917-8o n l y1415Physical Dimensions inches(millimeters)8-Lead(0 150 Wide)Molded Small Outline Package JEDECOrder Number LM2907M-8or LM2917M-8NS Package Number M08A16Physical Dimensions inches(millimeters)(Continued)Molded SO Package(M)Order Number LM2917MNS Package Number M14AMolded Dual-In-Line Package(N)Order Number LM2907N-8or LM2917N-8NS Package Number N08E17L M 2907 L M 2917F r e q u e n c y t o V o l t a g e C o n v e r t e rPhysical Dimensions inches (millimeters)(Continued)Molded Dual-In-Line Package (N)Order Number LM2907N or LM2917NNS Package Number N14ALIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or 2 A critical component is any component of a life systems which (a)are intended for surgical implant support device or system whose failure to perform can into the body or (b)support or sustain life and whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system or to affect its safety or with instructions for use provided in the labeling can effectivenessbe reasonably expected to result in a significant injury to the userNational Semiconductor National Semiconductor National Semiconductor National Semiconductor CorporationEuropeHong Kong LtdJapan Ltd1111West Bardin RoadFax (a 49)0-180-530858613th Floor Straight Block Tel 81-043-299-2309。