半导体的基础知识
半导体知识
3、扩散运动和漂移运动同时存在
在电场作用下,任何载流子都做漂移运 动,但是漂移电流主要是多数载流子的贡献, 而扩散情况下,只有光照产生的少数载流子 存在较大的浓度梯度,故对扩散电流的贡献 主要是少数载流子。
4、PN 结
在一块单晶半导体中,一部分掺有受主杂质是P型半导体, 另一部分掺有施主杂质是N型半导体时,P型半导体和N型 半导体的交界面附近的过渡区称为PN结。
• 只有最外层的电子的共有化特征最明显。
• 晶体中电子因为共有化特征,可以在原子间转移,但是它 只能在能量相同的量子态之间发生转移,所以,共有化的 量子态与原子的能级之间存在着直接的对应关系。
B、能带:能量近乎相同的能级相互靠的很近,组
成一定的能量区域,我们将这些能量区域中密集的
能级形象的称为能带。
温度愈高,晶体中产生的 自由电子愈多。
导电过程
在外电场的作用下,空穴吸引相邻原子的价电子来填补, 出现了一个新的空穴,其结果相当于空穴的运动(相当于正 电荷的移动)。
在半导体中将出现两部分电流: (1) 自由电子作定向运动:电子电流。 (2) 价电子递补空穴:空穴电流。 自由电子和空穴都称为载流子。
同质结:用同一种半导体材料制成的PN结; 异质结:由禁带宽度不同的两种半导体材料(如GaAl/GaAs、 InGaAsP/InP等)制成的PN结。
制造PN结的方法有合金法、扩散法、离子注入法和外延生长 法等。制造异质结通常采用外延生长法。
5、半导体对光的吸收
h Eg Eg / h v c/
间的半导体。 • 电阻率<10-3欧姆•厘米——导体:金属 • 电阻率>1012欧姆•厘米——绝缘体:玻璃 • 电阻率介于导体和绝缘体之间——半导体:硫化镉
第三节 半导体
第三节半导体
半导体是当今电子行业最基础的材料之一,其作用和意义不容小觑。
在此我们将深入探讨半导体的相关知识。
一、什么是半导体?
半导体是指在室温下,其导电性介于导体和绝缘体之间的材料。
有
时也被称为半导体晶体。
二、半导体的种类
从其晶体结构来看,半导体可分为单晶硅、多晶硅、非晶硅、蓝宝石、碳化硅、氮化硅等。
三、半导体的应用
1、集成电路 - 由于半导体表现出了半导体-绝缘体-金属场效应,能
够强制控制流经半导体器件的电流强度和方向,因此可用于制作各种
逻辑、振荡器等集成电路。
2、光电器件 - 利用半导体光电特性制作出的器件,如太阳能电池、发光二极管、激光器等。
3、功率器件 - 利用半导体导电性能和电特性,制作出高变换效率、低损耗、高可靠性的功率电子元器件,如IGBT器件等。
4、传感器 - 利用半导体的光电、温度、湿度、压力等特性制作出的传感器器件。
四、半导体技术的发展趋势
1、晶体管微型化和集成化 - 在实际应用中,需要更高的速度、更小的面积和功耗,因此晶体管制作微型化和集成化是半导体技术的重要趋势。
2、功率器件的高效率和大功率 - 随着人们生活水平的提高,需要更高效、更可靠、更节能的电子设备,因此功率器件的高效率和大功率是半导体技术的趋势。
3、新型材料的开发 - 蓝宝石、碳化硅等新型材料在一定应用领域已得到广泛的应用,半导体技术发展也将趋于多样化。
总而言之,半导体技术因其广泛的应用领域和重要的作用被越来越广泛地关注着,也将成为电子行业长期的研究方向之一。
半导体基础知识
容易导电的物质叫导体,如:金属、石墨、人体、大地以及各种酸、碱、盐的水溶液等都是导体。 不容易导电的物质叫做绝缘体,如:橡胶、塑料、玻璃、云母、陶瓷、纯水、油、空气等都是绝缘体。 所谓半导体是指导电能力介于导体和绝缘体之间的物质。如:硅、锗、砷化镓、磷化铟、氮化镓、碳化硅等。半 导体大体上可以分为两类,即本征半导体和杂质半导体。本征半导体是指纯净的半导体,这里的纯净包括两个意思, 一是指半导体材料中只含有一种元素的原子;二是指原子与原子之间的排列是有一定规律的。本征半导体的特点是导 电能力极弱,且随温度变化导电能力有显著变化。杂质半导体是指人为地在本征半导体中掺入微量其他元素(称杂质) 所形成的半导体。杂质半导体有两类:N 型半导体和 P 型半导体。
多晶则是有多个单晶晶粒组成的晶体,在其晶界处的颗粒间的晶体学取向彼此不同,其周期性与规则性也在此 处受到破坏。
7.常用半导体材料的晶体生长方向有几种?
我们实际使用单晶材料都是按一定的方向生长的,因此单晶表现出各向异性。单晶生长的这种方向直接来自晶 格结构,常用半导体材料的晶体生长方向是<111>和<100>。
29.半导体芯片制造对厂房洁净度有什么要求?
空气中的一个小尘埃将影响整个芯片的完整性、成品率,并影响其电学性能和可*性,所以半导体芯片制造工艺需 在超净厂房内进行。1977 年 5 月,原四机部颁布的《电子工业洁净度等级试行规定》如下:
电子工业洁净度等级试行规定
洁净室等 洁净度 温度(℃) 相对湿度 正压值 噪声
电阻率 ρ=1/σ,单位为 Ω*cm
9.PN 结是如何形成的?它具有什么特性?
如果用工艺的方法,把一边是 N 型半导体另一边是 P 型半导体结合在一起,这时 N 型半导体中的多数载流子电子 就要向 P 型半导体一边渗透扩散。结果是 N 型区域中邻近 P 型区一边的薄层 A 中有一部分电子扩散到 P 型区域中去了, 如图 2-6 所示(图略)。薄层 A 中因失去了这一部分电子 而带有正电。同样,P 型区域中邻近 N 型区域一边的薄层 B 中有一部分空穴扩散到 N 型区域一边去了,如图 2-7 所示(图略)。结果使薄层 B 带有负电。这样就在 N 型和 P 型两 种不同类型半导体的交界面两侧形成了带电薄层 A 和 B(其中 A 带正电,B 带负电)。A、B 间便产生了一个电场, 这个带电的薄层 A 和 B,叫做 PN 结,又叫做阻挡层。
半导体基础知识
现代电子学中,用的最多的半导 体是硅和锗,它们的最外层电子 (价电子)都是四个。
Ge
Si
电子器件所用的半导体具有晶体结构,因 此把半导体也称为晶体。
2、半导体的导电特性
1)热敏性 与温度有关。温度升高,导电能力增强。 2)光敏性 与光照强弱有关。光照强,导电能力增强 3)掺杂性 加入适当杂质,导电能力显著增强。
图 二极管的结构示意图 (a)点接触型
(2) 面接触型二极管—
PN结面积大,用 于工频大电流整流电路。
往往用于集成电路制造工 艺中。PN 结面积可大可小,用 于高频整流和开关电路中。
(b)面接触型
(3) 平面型二极管—
(c)平面型 图 二极管的结构示意图
2、分类
1)按材料分:硅管和锗管 2)按结构分:点接触和面接触 3)按用途分:检波、整流…… 4)按频率分:高频和低频
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
空间电荷区
扩散运动 (浓度差产生)
阻挡多子扩散
2)内电场的形成及其作用{ 促进少子漂移 漂移运动
P型半导体
、所以扩散和 移这一对相反- - - - - - 运动最终达到 衡,相当于两- - - - - - 区之间没有电- - - - - - 运动,空间电 区的厚度固定- - - - - - 变。
在常温下,由于热激发,使一些价电子 获得足够的能量而脱离共价键的束缚,成 为自由电子,同时共价键上留下一个空位, 称为空穴。
半导体基础知识
一.名词解释:1..什么是半导体?半导体具有那些特性?导电性介于导体与绝缘体之间的物质称为半导体热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。
可制作热敏元件。
光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。
可制作光敏元件。
掺杂性:导电能力受杂质影响极大,称为掺杂性。
2.典型的半导体是SI和Ge , 它们都是四价元素。
Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是?。
3.半导体材料中有两种载流子,电子和空穴。
电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。
P型半导体主要空穴导电,N型半导体主要靠电子导电。
4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。
5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。
惰性气体,橡胶等。
6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。
其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。
Si,Ge等四价元素。
7. 本征半导体:无杂质的具有稳定结构的半导体。
8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。
9.晶体结构:简单立方,体心立方,面心立方,六角密积,NACL结构,CSCL结构,金刚石结构。
10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。
11.酸腐蚀和碱腐蚀的化学反应方程式:SI+4HNO3+HF=SIF4+4NO2+4H2OSI+2NaOH+H2O=Na2SiO3+2H212.自然界的物质,可分为晶体和非晶体两大类。
常见的晶体有硅,锗,铜,铅等。
常见的非晶体有玻璃,塑料,松香等。
晶体和非晶体可以从三个方面来区分:1.晶体有规则的外形 2.晶体具有一定的熔点 3.晶体各向异性。
11 半导体的基础知识
1.1 半导体的基础知识1.1.1 本征半导体1.1.2 杂质半导体1.1.3 PN结及其单向导电性1.1.1 本征半导体一、何谓半导体和本征半导体半导体—导电能力介于导体和绝缘体之间的物质常用:硅 Si、锗 Ge、砷化镓 GaAs 本征半导体—纯净的具有晶体结构的半导体硅(锗)的原子结构模型表示四价元素原子核和内层电子所具有的净电荷硅(锗)的晶格结构示意图硅(锗)的晶格结构示意图⏹共价键⏹本征激发,成对产生自由电子和空穴⏹有两种载流子导电:空穴带正电,电子带负电⏹复合⏹动态平衡⏹温度一定时,自由电子-空穴对的浓度一定。
温度升高或受光照时,载流子浓度增大⏹常温下导电性能差1.1.2 杂质半导体掺杂后的半导体称为杂质半导体其导电能力大大增强,导电性能得到改善。
掺入五价杂质元素(如磷、砷、锑)→N型半导体掺入三价杂质元素(如硼、铝、铟)→P型半导体一、N 型半导体的结构及导电机理 晶格结构⏹杂质离子不是载流子。
⏹多子:自由电子;少子:空穴。
⏹整个半导体呈电中性。
电结构二、P 型半导体的结构及导电机理晶格结构电结构⏹多子:空穴;少子:自由电子。
⏹整个半导体呈电中性。
杂质离子不是载流子。
三、杂质半导体的导电性能杂质半导体导电性能主要取决于多子浓度。
多子浓度主要由掺杂浓度决定,其值较大且稳定,故杂质半导体导电性能得到显著改善。
少子对杂质半导体导电性能也有影响,由于少子由本征激发产生,其大小随温度升高和光照而增大,故半导体器件对温度、光照敏感,在应用中要注意温度、光照对半导体器件及其电路性能的影响。
一、何谓PN 结PN 结二、PN 结的形成内电场阻碍扩散运动 促进漂移运动扩散运动载流子的扩散运动一、何谓PN 结空间电荷区 内电场空间电荷区及其内电场 达到动态平衡,形成PN 结二、PN 结的形成 续动态平衡时的PN 结中的 载流子运动及电流⏹动态平衡时:扩散电流等于漂移电流,流过PN结的总电流为零。
空间电荷区宽度一定,内电场强度一定。
半导体基础知识
半导体基础知识 Prepared on 24 November 2020一.名词解释:1..什么是半导体半导体具有那些特性导电性介于导体与绝缘体之间的物质称为半导体热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。
可制作热敏元件。
光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。
可制作光敏元件。
掺杂性:导电能力受杂质影响极大,称为掺杂性。
2.典型的半导体是SI和Ge , 它们都是四价元素。
Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是。
3.半导体材料中有两种载流子,电子和空穴。
电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。
P型半导体主要空穴导电, N型半导体主要靠电子导电。
4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。
5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。
惰性气体,橡胶等。
6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。
其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。
Si,Ge等四价元素。
7. 本征半导体:无杂质的具有稳定结构的半导体。
8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。
9.晶体结构:简单立方,体心立方,面心立方,六角密积, NACL结构,CSCL结构,金刚石结构。
10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。
11.酸腐蚀和碱腐蚀的化学反应方程式:SI+4HNO3+HF=SIF4+4NO2+4H2OSI+2NaOH+H2O=Na2SiO3+2H212.自然界的物质,可分为晶体和非晶体两大类。
半导体基础知识
半导体基础知识1. 半导体的概念与分类1.1 半导体的定义半导体是一种电导率介于导体和绝缘体之间的材料,其电导率会随着外界条件(如温度、光照、掺杂等)的变化而变化。
常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。
1.2 半导体的分类根据半导体材料的类型,可分为元素半导体和化合物半导体。
•元素半导体:如硅(Si)、锗(Ge)等。
•化合物半导体:如砷化镓(GaAs)、氮化镓(GaN)、碳化硅(SiC)等。
根据导电类型,半导体可分为n型半导体和p型半导体。
•n型半导体:掺杂有五价元素(如磷、砷等)的半导体材料。
•p型半导体:掺杂有三价元素(如硼、铝等)的半导体材料。
2. 半导体物理基础2.1 能带结构半导体的导电性能与其能带结构密切相关。
一个完整的周期性晶体结构可以分为价带、导带和禁带。
•价带:充满电子的能量状态所在的带,电子的能量低于价带顶。
•导带:电子的能量高于导带底时,可以自由移动的状态所在的带。
•禁带:价带和导带之间的区域,电子不能存在于这个区域。
2.2 掺杂效应掺杂是向半导体材料中引入少量其他元素,以改变其导电性能的过程。
掺杂分为n型掺杂和p型掺杂。
•n型掺杂:向半导体中引入五价元素,如磷、砷等,使得半导体中的自由电子浓度增加。
•p型掺杂:向半导体中引入三价元素,如硼、铝等,使得半导体中的空穴浓度增加。
2.3 载流子在半导体中,自由电子和空穴是载流子,负责导电。
n型半导体中的载流子主要是自由电子,而p型半导体中的载流子主要是空穴。
2.4 霍尔效应霍尔效应是研究半导体中载流子运动的一种重要物理现象。
当半导体中的载流子在外加磁场作用下发生偏转时,会在半导体的一侧产生电势差,即霍尔电压。
3. 半导体器件3.1 半导体二极管半导体二极管(DIODE)是一种具有单向导电性的半导体器件。
它由p型半导体和n型半导体组成,形成PN结。
当外界电压正向偏置时,二极管导通;反向偏置时,二极管截止。
(完整word版)半导体基础知识
1.1 半导体基础知识概念归纳本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。
电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。
绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。
绝缘体导电性:极差。
如惰性气体和橡胶.半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧.半导体导电性能:介于半导体与绝缘体之间.半导体的特点:★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。
★在光照和热辐射条件下,其导电性有明显的变化.晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。
共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。
自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子.空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。
电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。
空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。
本征半导体的电流:电子电流+空穴电流.自由电子和空穴所带电荷极性不同,它们运动方向相反。
载流子:运载电荷的粒子称为载流子。
导体电的特点:导体导电只有一种载流子,即自由电子导电。
本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。
本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发.复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。
动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。
载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。
半导体基础知识详细
半导体基础知识详细半导体是一种电子特性介于导体和绝缘体之间的材料。
它的电阻率介于导体和绝缘体之间,而且在外界条件下可以通过控制电场、光照、温度等因素来改变其电子特性。
半导体材料广泛应用于电子器件、太阳能电池、光电器件、传感器等领域。
1. 半导体的基本概念半导体是指在温度为绝对零度时,其电阻率介于导体和绝缘体之间的材料。
在室温下,半导体的电阻率通常在10^-3到10^8Ω·cm之间。
半导体的导电性质可以通过控制材料中的杂质浓度来改变,这种过程称为掺杂。
2. 半导体的晶体结构半导体的晶体结构分为两种:共价键晶体和离子键晶体。
共价键晶体是由原子间共享电子形成的晶体,如硅、锗等。
共价键晶体的晶格结构稳定,电子在晶格中移动时需要克服较大的势垒,因此其导电性较差。
离子键晶体是由正负离子间的静电作用形成的晶体,如氯化钠、氧化镁等。
离子键晶体的晶格结构较稳定,电子在晶格中移动时需要克服较小的势垒,因此其导电性较好。
3. 半导体的能带结构半导体的能带结构是指半导体中电子能量的分布情况。
半导体的能带结构分为价带和导带两部分。
价带是指半导体中最高的能量带,其中填满了价电子。
导带是指半导体中次高的能量带,其中没有或只有很少的电子。
当半导体中的电子受到外界激发时,可以从价带跃迁到导带,形成电子空穴对。
4. 半导体的掺杂半导体的掺杂是指向半导体中加入少量的杂质原子,以改变其电子特性。
掺杂分为n型和p 型两种。
n型半导体是指向半导体中掺入少量的五价杂质原子,如磷、砷等。
这些杂质原子会向半导体中释放一个电子,形成自由电子,从而提高半导体的导电性能。
p型半导体是指向半导体中掺入少量的三价杂质原子,如硼、铝等。
这些杂质原子会从半导体中吸收一个电子,形成空穴,从而提高半导体的导电性能。
5. 半导体器件半导体器件是利用半导体材料制造的电子器件,包括二极管、晶体管、场效应管、集成电路等。
二极管是一种由n型半导体和p型半导体组成的器件,具有单向导电性。
半导体基础知识
外延基础知识一、基本概念能级:电子是不连续的,其值主要由主量子数N决定,每一确定能量值称为一个能级。
能带:大量孤立原子结合成晶体后,周期场中电子能量状态出现新特点:孤立原子原来一个能级将分裂成大量密集的能级,构成一相应的能带。
(晶体中电子能量状态可用能带描述)导带:对未填满电子的能带,能带中电子在外场作用下,将参与导电,形成宏观电流,这样的能带称为导带。
价带:由价电子能级分裂形成的能带,称为价带。
(价带可能是满带,也可能是电子未填满的能带)直接带隙:导带底和价带顶位于K空间同一位置。
间接带隙:导带底和价带顶位于K空间不同位置。
同质结:组成PN结的P型区和N型区是同种材料。
(如红黄光中的:GaAs上生长GaAs,蓝绿光中:U(undope)-GaN上生长N(dope)- GaN)异质结:两种晶体结构相同,晶格常数相近,但带隙宽度不同的半导体材料生长在一起形成的结,称为异质结。
(如蓝绿光中:GaN上生长Al GaN)超晶格(superlatic):由两种或两种以上组分不同或导电类型各异的超薄层(相邻势阱内电子波函数发生交迭)的材料,交替生长形成的人工周期性结构,称为超晶格材料。
量子阱(QW):通常把势垒较厚,以致于相邻电子波函数不发生交迭的周期性结构,称为量子阱(它是超晶格的一种)。
二、半导体1.分类:元素半导体:Si 、Ge化合物半导体:GaAs、InP、GaN(Ⅲ-Ⅴ)、ZnSe(Ⅱ-Ⅵ)、SiC2.化合物半导体优点:a.调节材料组分易形成直接带隙材料,有高的光电转换效率。
(光电器件一般选用直接带隙材料)b.高电子迁移率。
c.可制成异质结,进行能带裁减,易形成新器件。
3.半导体杂质和缺陷杂质:替位式杂质(有效掺杂)间隙式杂质缺陷:点缺陷:如空位、间隙原子线缺陷:如位错面缺陷:(即立方密积结构里夹杂着少量六角密积)如层错4.外延技术LPE:液相外延,生长速率快,产量大,但晶体生长难以精确控制。
(普亮LED常用此生长方法)MOCVD(也称MOVPE):Metal Organic Chemical Vapour Deposition金属有机汽相淀积,精确控制晶体生长,重复性好,产量大,适合工业化大生产。
半导体的基础知识
T a +
i
T
VD4
VD1
VD1
e e11
e e2 2
+
0 t
VD3
VD3
b -
VD2
RL RL
-
iL
u
o
0
VD1 VD3 导通
VD1 VD3 导通
t
图6—8(a)
单相半波整流电路输入与输出电压波形图
(1)工作原理
B、在交流电压的正半周(π-2π ),输出电压极性a端为负、 b端为正,如图6—3(b)所示,二极管VD2和VD4正偏导通, VD1和VD3反偏截止,负载RL上获得的电压为 Uo e2
4、锗二极管比硅二极管的正向电电流上升快,正向电 压压降小,但锗管比硅管的反向电流大得多,受温度影响 比较明显。
3、二极管的主要参数 1)最大整流电流IDM 最大整流电流IDM是指二极管长时间工作时允许通过的 最大直流电流。使用时,应注意流过二极管的正向最大平 均电流不大于这个数值,否则可能损坏二极管。
单相半波整流电路由于结构简单(优点), 输出的整流电压波动很大,整流效率低 (缺点), 电路需要改进。
2.单相桥式整流电路
使用4个整流元件,构成如图6-6所示的桥式整流电路。
T
VD4
VD1
T
VD1
VD2
e1
e2
VD3 VD2 RL
e1
e2
RL U0
VD3
VD4
(a)常用画法
(b)变形画法
图6—6桥式整流电路
正 A 极 LED 负 极
B
符号
单相整流与滤波电路
什么是整流? 把交流电转变成直流电的过程称为整流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体的基础知识
1、本征半导体
纯净晶体结构的半导体我们称之为本征半导体。
常用的半导体材料有:硅和锗。
它们都是四价元素,原子结构的最外层轨道上有四个价电子,当把硅或锗制成晶体时,它们是靠共价键的作用而紧密联系在一起。
共价键中的一些价电子由于热运动获得一些能量,从而摆脱共价键的约束成为自由电子,同时在共价键上留下空位,我们称这些空位为空穴,它带正电。
在外电场作用下,自由电子产生定向移动,形成电子电流
一般来说,共价键中的价电子不完全象绝缘体中价电子所受束缚那样强,如果能从外界获得一定的能量(如光照、升温、电磁场激发等),一些价电子就可能挣脱共价键的束缚而成为自由电子,将这种物理现象称作为本征激发。
本征半导体中的自由电子和空穴总是成对出现,同时又不断复合,在一定温度下达到动态平衡,载流子便维持一定数目。
温度愈高,载流子数目愈多,导电性能也就愈好。
所以,温度对半导体器件性能的影响很大。
2 、掺杂半导体
相对而言,本征半导体中载流子数目极少,导电能力仍然很低。
但如果在。