一元一次不等式--浙教版
浙教版八年级上册数学期末专区课件-第8讲一元一次不等式的性质及其解法
第二章 一元一次不等式
第8讲 一元一次不等式性质及其解法
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
《算法统宗》 程大位(1533游一带经商.因商业计 算的需要,他随时留意数学,遍访名 师~1606),明代商人,珠算发明家,字 汝思,号宾渠,汉族,安徽休宁县率口 (今黄山市屯溪)人.少年时,读书极为广 博﹐对书法和数学颇感兴趣,一生没有 做过官.20岁起便在长江中﹑下,搜集很 多数学书籍,刻苦钻研,时有心得.40岁时回家,专心研究, 参考各家学说,加上自己的见解,于60岁时完成其杰作《算法 统宗》.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
一元一次不等式及其解法 例 2 解不等式12x-1≤23x-12,并把它的解集在图 2-8-3 的数轴上表示出来.
图2-8-3
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【思路生成】解一元一次不等式按去分母、去括号、移 项、合并同类项、系数化为1的步骤进行,所不同的是不等式 两边都乘以(或除以)一个负数时,不等号的方向要改变.用数 轴表示解集时要注意实心点与空心圈的区分.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
例 5 我们用a表示不大于 a 的最大整数,例如: 2.5=2,3 =3,-2.5=-3;用〈a〉表示大于 a 的最小整数,例如: 〈2.5〉 =3,〈4〉=5,〈-1.5〉=-1.解决下列问题:
(1)-4.5=___-__5___,〈3.5〉=____4____; (2)若x=2,则 x 的取值范围是__2_≤_x_<__3___;若〈y〉=-1, 则 y 的取值范围是__-___2_≤_y_<_-__1___; (3)已知 x,y 满足方程组33xx+-2〈〈y〉y〉==-3,6,求 x,y 的取值 范围.
浙教版数学八年级上册一元一次不等式组课件
一般地,由几个含同一未知数的一元一次不等式 所组成的一组不等式,叫做一元一次不等式组.
例如, 3x-2>1-2x, x≥0,
都是一元一次不等式组.
组成不等式组的各个不等式的解的公共部分就是不等式组 的解. 当它们没有公共部分时,我们称这个不等式组无解.
思考:如何确定不等式解的公共部分呢?
数轴是确定一元一次不等式组的解的有效工具,可以 利用数轴表示各个不等式的解,从而得到不等式组的解.
-3 -2 -1 0 1 2 3 4 5 6 7
所以原不等式组的解是-1<x≤6.
例2 解一元一次不等式组
-3 -2 -1 0 1 2 3 4 5 6 7
所以原不等式组无解.
归纳小结
一元一次不等式组解的四种情况
x>a
x>b
无解
b<x<a
大大小小 大小小大 同大取大 同小取小 题无解 取中间
解一元一次不等式组的步骤 分别求出不等式组中各个不等式的解
例题解答
例1 解一元一次不等式组
分析:根据一元一次不等式组的解的意义,我们只要分 别求出①,②两个不等式的解,并把解表示在同一条数 轴上,两个不等式的解的公共部分即为不等式组的解.
例题解答
例1 解一元一次不等式组
解:解不等式①,得x>-1. 解不等式②,得x≤6. 把①,②两个不等式的解表示在数轴上,如图所示:
在同一数轴上表示出这几个不等式解的公共 部分,若无公共部分,则不等式组无解
用表示不等关系的式子表示公共部分, 得到不等式组的解
随堂练习
1.下列不等式组,其中是一元一次不等式组的有( B )
A.2个 B.3个 C.4个 D.5个 解析:①②④符合一元一次不等式组的概念;③含有一 个未知数,但未知数的最高次数是2,⑤含有两个未知数.
3.3 一元一次不等式八年级上册数学浙教版
移项,得 . 移项要变号
合并同类项,得 .
两边都除以 ,得 . 同除以一个负数,不等号的方向要改变
不等式的解表示在数轴上如图所示.
知识点4 一元一次不等式的实际应用 重点
有些实际问题中存在不等关系,用不等式来表示这样的关系,就能把实际问题转化为数学问题,从而通过解不等式解决实际问题.
33
解析: 设该中学购买篮球 个,
根据题意得, ,解得 . 是整数, 的最大值是33.
例题点拨解决此类问题的关键是找到数量关系和不等关系,抓住“至少”“超过”“至多”等关键词来列不等式.
本节知识归纳
中考常考考点
难度
常考题型
考点1:一元一次不等式的解法,主要考查解一元一次不等式并在数轴上表示不等式的解集,以及求一元一次不等式的特殊解.
(2) “粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业.据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?
(2)设李某的年工资收入增长率为 ,依题意,得 ,解得 .答:李某的年工资收入增长率至少要达到 .
考点2 一元一次不等式的实际应用
典例6 [2021·广州中考] 民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.
(1) 若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次.
第3章 一元一次不等式
浙教版数学八年级上册《3.3 一元一次不等式》教学设计
浙教版数学八年级上册《3.3 一元一次不等式》教学设计一. 教材分析浙教版数学八年级上册《3.3 一元一次不等式》是学生在学习了有理数、一元一次方程的基础上,进一步探讨不等式的性质和运用。
本节内容通过实际问题引入不等式,让学生了解不等式的概念,掌握一元一次不等式的解法,并能运用不等式解决实际问题。
教材内容由浅入深,环环相扣,既注重了知识的传授,也重视了学生的动手实践和思维训练。
二. 学情分析学生在八年级上册之前,已经学习了有理数、一元一次方程等知识,对于数学的基础运算和逻辑思维有一定的掌握。
但部分学生在解决实际问题时,还不能很好地将数学知识与实际问题相结合。
因此,在教学过程中,需要关注学生的知识基础,激发学生的学习兴趣,提高学生解决实际问题的能力。
三. 教学目标1.了解不等式的概念,掌握一元一次不等式的解法。
2.能够运用不等式解决实际问题。
3.培养学生的逻辑思维和解决问题的能力。
四. 教学重难点1.重难点:一元一次不等式的解法及运用。
2.难点:不等式的解法,以及如何将实际问题转化为不等式问题。
五. 教学方法1.采用问题驱动法,以实际问题引入不等式概念,激发学生的学习兴趣。
2.采用案例分析法,通过具体案例讲解一元一次不等式的解法。
3.采用分组讨论法,让学生分组探讨不等式的性质,提高学生的合作能力。
4.采用练习法,让学生在实践中巩固知识,提高解题技能。
六. 教学准备1.准备相关实际问题,用于引入不等式概念。
2.准备一元一次不等式的解法案例,用于讲解和分析。
3.准备分组讨论的任务,让学生在讨论中掌握知识。
4.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实际问题引入不等式概念,例如:小明比小红高,可以表示为小明的高度 > 小红的高度。
通过这个问题,让学生了解不等式的概念。
2.呈现(10分钟)呈现一元一次不等式的解法案例,通过具体案例讲解不等式的解法。
例如,解不等式 2x > 6,可得 x > 3。
新浙教版八年级上3.3一元一次不等式1
不等式3x<18的解是 X<6
表示小于6的实数的全体.
练一练:1.下列说法正确的是(D
)
x4 ( A)
是 x 2 5 的解
(B) x 2 5 的解是 x 4
( C) x 4
( D) x 4
是 x 2 5 的唯一解
是 x 2 5 的一个解
2.求下列各不等式的解集 (1) X+5<3
特点: 1、方程的两边都是整式
2、只有一个未知数 3、未知数的指数是一次
例如: (1)x=4 x (3) 2x+1 = 2 3
(2)3y=30 ⑷1.5a+12=0.5a+1
(1)x>4
(2)3y>30
x (3) 2x+1 < 2 3
⑷ 1.5a+12≤0.5a+1
请你找出这些不等式有哪些共同的特征?
5 2x 5 2x <3+x 不是一元一次不等式
整式
分式
3+x
一元一次不等式定义:
不等号的两边都是整式,而且只含有一个 未知数,未知数的最高次数是一次,这样 的不等式叫做一元一次不等式。
特点: (1)不等号的两边都是整式
(2)只含有一个未知数 (3)未知数的最高次数是1次
练习
下列式子哪些是一元一次不等式?哪些不是一元 一次不等式?
1、X>0 √ 1 2、 x >-1
3、X >2 √ 4、x+y>-3 5、x=-1
把x=5代入不等式3x<18,不等式成立吗? X=6,x=7呢? 那能否说能使不等式成立的值就是x=5? 请同学们把他们在数轴上指出来
浙教版八年级上册第三章一元一次不等式复习课件
(2)若企业每月产生的污水量为2040吨,为了勤俭资金,应选择哪 种购买方案?
A型
B型
价格(万元/台)
12
10
处理污水量(吨/月) 240
200
年消耗费(万元/台) 1
1
总结
解 由题意得:240x+200(10-x)≥2040, 解得:x≥1, 由(1)知x可取0,1,2,则x=1或x=2. 当x=1时,购买资金为:12×1+10×9=102(万元); 当x=2时,购买资金为:12×2+10×8=104(万元). 答:为了勤俭资金,应选购A型1台,B型9台.
一元一次不等式复习
一元一次不等式
不等号的两边都是整式,而且只含有一个未知数, 并且未知数 的最高次数是一次,这样的不等式叫做一元一次不等式。
一元一次不等式的解
使不等式成立的未知数的值的全体叫做不等式的解集,简称不 等式的解
下列是一元一次不等式的有
(1) x>-3 (2) x+y≥1 (3)x2<3
求解一元一次不等式 一般情况先将一元一次不等式化简成ax>b或者ax<b的情势,再根据 具体题意求解,注意系数化为“1”时不等号的变化,适当情况可以 结合数轴。
一元一次不等式的应用 列不等式解应用题的关键是找出实际问题中的不等关系,设未知数,列 出不等式;然后从不等式的解中找出符合题意的答案.
(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处 理污水费为每吨10元,请你计算,该企业自己处理污水与将污 水排到污水厂处理相比较,10年勤俭资金多少万元?(注:企 业处理污水的费用包括购买设备的资金和消耗费)
A型
B型
价格(万元/台)
12
10
浙教版数学八年级上册《第3章 一元一次不等式》全章教案
浙教版数学八年级上册《第3章一元一次不等式》全章教案一. 教材分析《浙教版数学八年级上册》第3章《一元一次不等式》是学生在学习了有理数、整式乘法等基础知识后的进一步拓展。
本章主要通过引入一元一次不等式,让学生掌握不等式的概念、性质和运算方法,培养学生解决实际问题的能力。
本章内容在初中数学中占据重要地位,为后续学习一元二次不等式、不等式组等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对整式、有理数等概念有一定的了解。
但部分学生在解决实际问题时,还不能很好地将数学知识运用其中。
因此,在教学过程中,要注重培养学生运用数学知识解决实际问题的能力,激发学生的学习兴趣。
三. 教学目标1.理解一元一次不等式的概念,掌握一元一次不等式的性质。
2.学会解一元一次不等式,并能运用一元一次不等式解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.一元一次不等式的概念和性质。
2.一元一次不等式的解法。
3.运用一元一次不等式解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。
六. 教学准备1.教材、教案、PPT等教学资料。
2.练习题、测试题等。
3.教学工具(如黑板、粉笔等)。
七. 教学过程1.导入(5分钟)利用生活实例引入不等式概念,如:“小明有5个苹果,小华有3个苹果,谁的数量多?”引导学生思考,引出不等式的概念。
2.呈现(10分钟)讲解一元一次不等式的定义、性质和表示方法。
通过PPT展示一元一次不等式的图像,让学生直观理解不等式的性质。
3.操练(10分钟)让学生独立完成练习题,如解以下不等式:2x + 3 > 7。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)讲解练习题的解题思路,分析解题过程中容易出现的问题。
让学生互相讨论,加深对一元一次不等式的理解。
5.拓展(10分钟)引导学生运用一元一次不等式解决实际问题,如:“一个数的平方大于另一个数,求这个数的范围。
浙教版数学八年级上册3.3《一元一次不等式》教案(1)
浙教版数学八年级上册3.3《一元一次不等式》教案(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册第三章第三节的内容。
本节内容是在学生已经掌握了不等式的概念和性质的基础上进行教学的。
通过本节课的学习,使学生掌握一元一次不等式的定义、解法及其应用,培养学生解决实际问题的能力。
二. 学情分析学生在七年级时已经学习了不等式的基本概念和性质,对不等式有了一定的认识。
但他们对一元一次不等式的定义、解法和应用还不够了解。
因此,在教学过程中,教师需要引导学生从实际问题中抽象出一元一次不等式,并通过实例让学生掌握一元一次不等式的解法和应用。
三. 教学目标1.知识与技能:使学生掌握一元一次不等式的定义、解法及其应用。
2.过程与方法:通过实际问题引导学生从数学的角度进行分析,提高学生解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:一元一次不等式的定义、解法及其应用。
2.难点:一元一次不等式的解法。
五. 教学方法采用情境教学法、问题教学法和小组合作学习法。
通过实际问题引入一元一次不等式,引导学生主动探索、发现问题,并通过小组合作学习,共同解决问题。
六. 教学准备1.准备一些实际问题,用于导入和巩固知识点。
2.准备PPT,用于呈现知识点和示例。
3.准备练习题,用于课后巩固和拓展。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,让学生思考如何用数学的方法来解决这些问题。
例如,小明有2个苹果,小红有3个苹果,问小明和小红谁苹果多?引导学生发现这个问题可以用不等式来表示和解决。
2.呈现(10分钟)通过PPT呈现一元一次不等式的定义、解法及其应用。
讲解一元一次不等式的定义,例如:ax > b(a、b为实数,a≠0)。
讲解一元一次不等式的解法,例如:将不等式两边同除以a,得到x > b/a。
同时,展示一些实例,让学生理解一元一次不等式的应用。
浙教版初中数学八年级 上册 3.3 一元一次不等式(2) 课件 教学课件
其数学表达式 10x-5(20-x)
据题意,小明最后得分要求: 超过90分
用数学表达式表示为: 10x-5(20-x)>90
拓展提高
解:设小明答对x道题,则他答错或者不答的题数为 (20-x),根据题意,得:
10x-5(20-x)>90
解这个不等式,得
10x-100+5x>90 15x>190 x > 12 2
、
_________、 _________四种常见最简不等式.
例3 解不等式 10.5x0.1x0.2
0.2 0.3
还记得它吗
10.5x0.1x0.2
0.2
0.3
例3 解不等式 10.5x0.1x0.2
0.2 0.3
解法一
解法二 你会选择哪种解法?
1 5x 1 10x 2
2
3
0.6 3(0.5x 0.1) 2( x 0.2)
数轴上表示出来. 2
3
解下列不等式,并把解在数轴上表示出来.
(1)5x313x; (2)1y11y;
3
2
(3 )3 ( 1 3 x ) 2 (4 2 x ) 0 ;
(4)1(2m)3m;
6
10
1.解一元一次不等式和解
的思路和步骤类似.
2.解一元一次不等式的基本思路是:把原不等式变形成_________、
作业(5)系数化为1
骤
两边知同数时的除 系书以数上未 P1作01业作在乘本(以业把(1;题不)或,等与除号(以方5))向这负改两数变步,若要
解的 情况
一般只有一。个解
一般解集含有无数个解
当你的才华还撑不起你的野心时,你就该努力。心有猛虎,细嗅蔷薇。我TM竟然以为我竭尽全力了。能力是练出来的,潜能是逼出来的,习惯是养成的,我的 成功是一步步走出来的。不要因为希望去坚持,要坚持的看到希望。最怕自己平庸碌碌还安慰自己平凡可贵。
一元一次不等式的解法[上学期]--浙教版-
(2)方程变形中的去分母(根据等式的性质2,将 方程的两边同乘以分母的最小公倍数) (3)处理分母中含有小数的方程的解法(应用分 数的基本性质把它们先化为整数)
云创通 云创通
讪地说道:/您别是有啥啊事情吩咐妾身吗?喝茶别着急/若是您の事情耽搁咯/妾身怕是罪过咯呢//由于两各人最近壹直客气而生分/虽然他の真实目の是邀请她前来赏雪品茗/可是由于拘着面子/只好找咯壹各有事相商做借口/谁想到 水清还真就是信以为真/现在水清追问他到底有啥啊吩咐/令他壹时半会儿想别出来该如何回答才好/打别过只能逃/于是他装作没什么听到水清の问话/而是低下头来/继续写着手中の那各条幅/水清壹进门就发现他正在写字/此时见他 别再理会她/而是专心完成那各条幅/心中十分好奇他在写啥啊/写得如何/于是也忘记咯自己此行の目の/而是赶快解咯披风/脱咯雪帽/连狐狸毛围巾都没什么来得及解下/就朝书案急急走来/水清自己の字虽然很是漂亮/颇有功底/但是 她の字体没啥啊变化/专攻壹门小楷/而他则别同咯/行书、楷书、草书/全都有所涉猎/也全都取得咯较高の艺术造诣/虽然他在董体上下の功夫最多/因为皇上最欣赏董香光/待水清走到他の身边/展现在她眼前の/正是壹首草书七言: 六出飞花入户时/坐看青竹变琼枝/如今好上高楼望/盖尽人间恶路歧/那首诗别但格外地应景/更是道出咯他の心声/所以才会连想都没想/直接落笔成诗/而水清の全部注意力都在他の字体上/但见那幅字/下笔如行云流水/挥洒自如/别 拘壹格/令她看得如醉如痴、羡慕别已/他当然晓得水清の草书完全达到咯/惨别忍睹/の程度/难看得令他都禁别住要替她汗颜/此时见水清壹会儿羡慕/壹会儿赞叹の神情/他当然是难掩心中の骄傲自满和洋洋得意/继而眉头舒展/计上 心来/以往与水清の斗智斗勇过程中/他总是屡吃败仗/身处下风/刚刚那各打别过就逃跑の佯装写字/突然令他茅塞顿开/原来/她也有软肋/现在正是好好杀杀她の锐气/扬眉吐气の时刻/于是当他将最后壹各字写完/故作镇定、壹本正经 地对她说道:/您刚才别是问爷有啥啊吩咐吗?爷今天叫您过来办の差事/就是把那幅字临下来/作为爷の诸人/连各字都写别好/真是……/您若是临好咯/就算是将差事办妥咯/临别好/就等着挨罚吧//说完/他心虚气短却又得意洋洋地 看咯她壹眼/放下笔/就到窗边の罗汉榻上喝茶赏梅去咯/第壹卷//第1175章/临帖/水清确实是被他那幅草书七言所深深地折服/所以根本就没什么注意到他话里话外の嘲讽和调笑/而是羞愧得满脸通红/赶快挑选咯壹支大小适中の笔/急 急地上手临摹咯起来/王爷本来是想邀水清踏雪寻梅、赏花品茗来の/那各临帖写字儿别过是壹时兴起/戏弄她而已/结果他在罗汉榻上看咯小半各时辰の书/茶也喝咯壹盏壹盏又壹盏/再抬眼壹看窗外/零零星星の雪花正悠悠荡荡地从天 而降/相信过别咯多久/洁白の雪花就会漫天铺地倾洒下来/面对如此の美景/如此の意境/却只有他壹各人孤零零地独自面对/实在是大煞风景/于是他只好放下手中の书/朝水清说道:/好咯/好咯/又别是啥啊正经差事/您都写咯快壹各 时辰咯/那壹时半会儿也写别出啥啊来/赶快到爷那边来/看那雪景有多美///嗯/好呀//水清其实根本就没什么注意听到他在说啥啊/因为她正全神贯注地写着手中の那些字儿/于是模棱两可地应付咯两各字/直到此时/王爷那才发觉大事 别妙/因为她将所有の心思全都放在临贴之上/连回复他の话语都明显是在敷衍咯事/早晓得会是那各样子/他根本就别会提出那各法子/原本是为咯戏弄她/谁晓得她竟当咯真/深陷真中难以自拔/别想壹各人被干干地晾在壹边/喊咯半天 也喊别来她/作茧自缚の王爷只好自己下咯罗汉榻/直接走到书桌边/想将水清拉到窗前与他壹同赏雪/谁晓得壹到桌案前/看着她耗费咯快壹各时辰の功夫临摹下来の那些字儿/还是如此の别堪入目/简直是要将他笑死咯/说她の草书跟 猪猪爬似の/还真就是比猪猪爬都难看/性急の他忘记咯过来の目の/也忘记咯两各人目前别别扭扭の局面/而是连想都没想/上前壹把就握住她正在写字の手/连手带笔壹并握入他の掌中/壹边亲自示范带着她行笔运力/壹边别停地好为 人师、谆谆教诲:/那草书必须放得开手腕才行/绝别能拘着腕力/您从壹开始就没掌握要领/能写出来啥啊好字?/嘴上别停地谆谆教诲/同时手上壹并握着她の手和笔/唰唰唰几笔下来/果然与刚才水清自己临摹の那些字完全别壹样咯/ 大有脱胎换骨の气势/见到在他の指导下/水清の字体有咯那么大の进步/他の心中立即充斥着强烈の成就感/继而教学热情急剧高涨/于是继续兴致勃勃手把手地带着水清/将那首七言又从头到尾完整地写咯壹遍/他の壹只手握着她の手 和笔/另壹只手没处放没处搁/别知别觉之间/也别晓得怎么回事儿/最后竟然落在咯她の腰间/而她の发髻抵在他の胸前/阵阵发香/还有她の淡淡体香/别停地侵入他の心脾/到最后/那首七言还没什么写完/他自己竟然有些意乱情迷咯起 来/早早地自乱咯阵脚/第壹卷//第1176章/对诗好别容易挨到那首七言写完/刚刚他那股情绪高涨の教学激情早早就变咯风向/完全转变成对她の心猿意马/所以即使高骈の那首《对雪》已经写完咯最后壹各字/他仍是没什么停下笔/而 是继续握着水清の手和她手中の那枝笔/手把手地带着她/重打鼓另开张/另外写咯壹首新诗:/有美人兮/见之别忘/壹日别见兮/思之如狂……/他才写咯前面/有美人兮/那四各字/饱读诗书の水清立即就晓得他后面要写啥啊/羞愧难当之 下/死活也别肯按照他の思路继续写字/急急地想从他の手掌束缚中抽回自己の手/可是任凭水清怎样抗争/怎奈她の那只小手无论如何也挣别开他の大手/原本她自己用咯七分力/他只是用咯三分力在带着她研习草书/现在被他气得满脸 通红の水清索性完全松咯笔/壹分力都别使/他根本别在乎她前面の奋力顽抗/也根本别去理会她后来の消极抵抗/壹言别发地只他壹各人用咯十分力/别仅握着笔/更是握着她の手/继续往下写着:/凤飞翱翔兮/四海求凰/无奈佳人兮/别 在东墙……/水清已经被他气得满脸通红/他若是再写下去/后面那些/室迩人遐毒我肠/、/得托孳尾永为妃/等等诗句/更是要让她羞愧得恨别能找地地缝钻进去/忍无可忍の水清终于大声地抗议起来:/爷/妾身学别会写字儿咯/而且妾 身已经累得站别住咯//他当然晓得她为啥啊别想写字儿咯/她分明是在躲他/眼见水清在他の怀中挣来扭去/而他又舍别下那张脸来/死皮赖脸地强迫要挟她/于是只好无可奈何地说道:/别学写字儿也行/但是总得学点儿啥啊吧/要别/对 诗?您自己选壹样吧//只要是别再写那些令她面红耳赤の诗句/让她干啥啊都行/更何况是对诗/她最拿手、也最为热衷の壹项活动/于是急急地答复道:/好/好/妾身愿意对诗//实际上/他根本就别是真の想要与她对诗/壹是因为水清死 活别想继续学写字儿/他总得给她找点儿别の事情/否则两各人干巴巴地大眼对小眼/实在是太过尴尬;二是他们去年行酒令对诗句の经历令他既印象深刻又念念别忘/所以即使是为咯随便找点儿事情去做/连他都没什么想到/说出口の/ 竟然是对诗/当听到水清立即响应他对诗の提议/他当然明白她并别是喜欢对诗/只是为咯摆脱他此时の纠缠而已/但是那各对诗の选择就能够成功地将他摆脱掉吗?他怎么可能将已经到手の猎物就那样白白地放走呢?既然打定咯主意 穷追别舍/又想要保持足够の矜持/于是他眼见着水清壹步壹步、心甘情愿地选择咯对诗/选择咯他刚刚无意中挖好の陷阱/狡猾の猎手此时极为沉得住气/别动声色地松开咯壹直紧握着她の那只大手/第壹卷//第1177章/行令好别容易摆 脱咯他の钳制/水清如释重负地长长出咯壹口气/然后就壹各箭步地离开咯桌案/生怕又被他捉咯回去/面对那首令她难堪至极の《凤求凰》/逃离开桌案/除咯窗前の罗汉榻/她也没什么啥啊地方可去/可是当她朝窗边走去の时候/那才突 然发现雪花已经开始零零星星地飘洒在天空中/面对即将到来の美景/水清の兴致壹下子高涨起来/忘记咯那些日子以来の别别扭扭/也忘记咯刚才の尴尬恼怒/而是笑容满面、兴致勃勃地回过头来朝他说道:/对诗啊/山南山北雪晴/千 里万里月明//他确实是让她自由选择写字还是对诗/可是/他の对诗可别是那各对法/刚才白白地让她逃脱咯自己の掌心/为の就是现在重新再将她收入掌中/假设诗句是那各对法/就凭她那各胡搅蛮缠の功夫/将来他们谁胜谁负还别壹定 呢/所以只有在规则上出奇制胜/才能实现他の阴谋诡计/所以眼见着眼前の猎物欢喜异常、兴致勃勃の样子/虽然他实在是忍别住想要笑出声来/可是老谋深算の他还是强迫自己压下咯心中の狂喜/面别改色心别跳地说道:/对诗可是要 行令の/那壹回您打算行啥啊令?/壹句话将水清问咯壹各张口结舌/她光想着用对诗来摆脱他の纠缠/却压根都没什么仔细考虑过对于失败方の惩罚措施/假设是行酒令/那处罚措施就是喝酒/但是喝酒实在别是她の强项/而且现在也没 什么耿姐姐在壹旁当援兵/真若是喝起酒来/她别但别是他の对手/更有可能羊入虎口/成咯真真正正の才出虎穴/又入狼窝/别过/那么点儿小事根本难别倒水清/连想都没什么想/张口就来:/爷/您都给准备好咯/怎么还问起妾身来咯呢? /水清壹边说着/壹边朝罗汉榻指咯指/原来那榻上の小方几上面/正架着壹各暖炉/炉上壹只紫砂泥壶正/突突突/地冒着热气//爷可真是大雅之人/‘赌书消得泼茶香’/看来您那是想要与妾身行各茶令呢/真是别有情趣//行茶令?他才 别会同意呢/连行酒令他都认为实在是便宜咯她/若是换作咯行茶令/别但根本就别能算得上是惩罚措施/而且岂别更是令她逍遥法外?/别行/别行/您既然选咯对诗/行啥啊令就得由爷说咯算///啊?别是茶令?//当然/再说咯/既然您自 己选择咯对诗/那行啥啊令/可是要由爷来决定/那很公平吧//水清壹想/也是/自己首先选咯对诗/行啥啊令自然应该轮到他来选择/反正自己喝酒别行/大别咯壹醉方休/人事别知/反正自己也没什么醉过/尝壹尝醉过の滋味/既有新鲜感 也有挑战感/打定咯主意/水清以壹副豁出去の大无畏精神朝他说道:/那妾身恭敬别如从命/依爷の意思办就是咯//第壹卷//第1178章/衣令见水清痛痛快快地答应咯由他来制定对诗の规则/王爷の心中顿时大喜:/好/爷の侧福晋果然 是爽快之人/那爷就提议咱们今天就行各‘衣’令来对诗///行衣令?/水清惊得半天没什么缓过神儿来/那可是她长到那么大以来/头壹回听到还有/行衣令/那么壹说/那叫啥以
浙教版数学八年级上册3章:《一元一次不等式组》参考教案
浙教版数学八年级上册3章:《一元一次不等式组》参考教案一. 教材分析《一元一次不等式组》是浙教版数学八年级上册第3章的内容,这部分内容是在学生已经掌握了不等式的基本性质和一元一次不等式的解法的基础上进行教学的。
通过这部分的学习,使学生能够理解不等式组的含义,掌握解一元一次不等式组的方法,提高学生解决实际问题的能力。
二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,但对于不等式组的解法可能会感到困惑。
因此,在教学过程中,需要关注学生的学习情况,针对学生的困惑进行讲解,帮助学生理解和掌握不等式组的解法。
三. 教学目标1.让学生理解不等式组的含义,掌握解一元一次不等式组的方法。
2.培养学生解决实际问题的能力,提高学生的数学思维能力。
3.培养学生合作学习、积极探究的学习习惯。
四. 教学重难点1.教学重点:让学生掌握解一元一次不等式组的方法。
2.教学难点:对于不等式组的解法的理解和应用。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等教学方法,引导学生通过自主学习、讨论交流,掌握解一元一次不等式组的方法。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,制作课件。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾不等式的基本性质和一元一次不等式的解法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示不等式组的含义和解法,让学生直观地感受不等式组的特点和解法。
3.操练(10分钟)学生分组进行讨论,每组解答一个不等式组,教师巡回指导,帮助学生解决解答过程中遇到的问题。
4.巩固(10分钟)学生独立完成一些关于不等式组的练习题,教师选取部分题目进行讲解,巩固学生对不等式组的解法的掌握。
5.拓展(10分钟)教师提出一些实际问题,引导学生运用不等式组的知识解决问题,提高学生的实际应用能力。
6.小结(5分钟)教师引导学生总结本节课所学的内容,加深学生对不等式组的解法的理解。
浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)
浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册3.3节的内容,本节课的主要内容是一元一次不等式的概念、性质和运算。
学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力,但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。
二. 学情分析学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力。
但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。
同时,学生对于抽象的数学概念的理解和运用还需要进一步的培养和提高。
三. 教学目标1.了解一元一次不等式的概念,掌握一元一次不等式的性质。
2.学会解一元一次不等式,能够运用一元一次不等式解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.重难点:一元一次不等式的概念和性质。
2.难点:解一元一次不等式,运用一元一次不等式解决实际问题。
五. 教学方法1.讲授法:通过讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。
2.案例分析法:通过分析实际问题,引导学生运用一元一次不等式解决问题,培养学生的实际应用能力。
3.小组讨论法:学生进行小组讨论,促进学生之间的交流与合作,提高学生的团队协作能力。
六. 教学准备1.教学PPT:制作教学PPT,包括一元一次不等式的概念、性质和运算方法的讲解,以及实际问题的案例分析。
2.教学案例:准备一些实际问题,用于引导学生运用一元一次不等式解决问题。
3.练习题:准备一些练习题,用于巩固学生对一元一次不等式的理解和运用。
七. 教学过程1.导入(5分钟)通过复习实数、方程等基础知识,引导学生进入本节课的学习。
2.呈现(10分钟)讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。
3.操练(10分钟)让学生练习解一元一次不等式,巩固学生对一元一次不等式的理解和运用。
浙教版数学八年级上册3.3《一元一次不等式》说课稿(2)
浙教版数学八年级上册3.3《一元一次不等式》说课稿(2)一. 教材分析浙教版数学八年级上册3.3《一元一次不等式》是学生在学习了有理数、方程等知识的基础上,进一步引导学生探讨不等式的性质和运用。
这一节内容的重要性在于,它不仅巩固了学生对一元一次方程的理解,而且为学生今后学习更复杂的不等式打下基础。
教材通过具体的例子引入一元一次不等式,并引导学生通过观察、分析、归纳来理解不等式的概念和性质。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和探究能力,对一元一次方程有了初步的了解。
但在学习本节内容时,学生可能会对不等式的概念和性质产生混淆。
因此,在教学过程中,需要关注学生的认知差异,针对性地进行引导和帮助。
三. 说教学目标1.知识与技能:让学生掌握一元一次不等式的概念,理解不等式的性质,并能运用不等式解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生自主学习的能力和合作意识。
3.情感态度与价值观:激发学生对数学学科的兴趣,培养学生的耐心和毅力,使学生在解决实际问题的过程中,体验到数学的魅力。
四. 说教学重难点1.教学重点:一元一次不等式的概念、性质和运用。
2.教学难点:不等式的性质,如何引导学生从具体例子中归纳出一般性规律。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、合作学习。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件和网络资源,提高教学效果。
六. 说教学过程1.导入新课:通过一个实际问题,引入一元一次不等式的概念,激发学生的兴趣。
2.自主学习:让学生独立思考,尝试解这个问题,感受不等式的存在。
3.小组讨论:学生分组讨论,总结解不等式的方法和步骤。
4.师生互动:教师引导学生归纳总结不等式的性质,并通过举例验证。
5.练习巩固:布置一些练习题,让学生运用所学知识解决实际问题。
6.课堂小结:对本节课的内容进行总结,强调重点和难点。
《一元一次不等式》word教案 (同课异构)2022年浙教版 (4)
3.3一元一次不等式教学目标1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式的性质的利用导入对解不等式的讨论。
3.引导学生体会通过综合利用不等式的概念和根本性质解不等式的方法。
4.指导学生将文字表达转化为数学语言,从而解决实际问题。
5.练习稳固,能将本节内容与上节内容联系起来。
教学重、难点重点1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
难点能将文字表达转化为数学语言,从而完成对应用问题的解决。
教学流程设计一、导入新课〔约分钟〕教师活动学生活动1.引导学生回忆不等式的性质,并说出解不等式的关键在哪里。
2.总结学生的答复,指出一元一次不等式的概念,让学生举例。
3.导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。
这节课我们来共同探讨解一元一次不等式的方法。
1.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x<a或x>a的形式。
2.举出一元一次不等式的例子:5x+6≤4,7x+10>5。
3.明确本课目标,进入对新课的学习。
二、探索一元一次不等式的解法〔约分钟〕教师活动学生活动1.引导学生观察课本第61页例3,教师给出〔1〕的解法,说明:解不等式就是利用不等式的三条根本性质对不等式进行变形的过程。
提醒学生注意解题的步骤,鼓励学生完成对〔2〕得解答,并找学生上讲台演示。
2.分析学生的解答,指出解一元一次不等式的步骤,并提醒学生在解不等式中常见的错误:不等式两边同乘〔除〕一个负数不等号反向。
3.鼓励学生讨论完成课本第61页的例4。
提示学生:首先将简单的文字表达转化成数学语言。
告诉学生判断一个不等式是否是一元一次不等式要先将不等式化成最简形式,1.仔细观察教师的示范,理解用不等式的性质解不等式的原理,并掌握用数轴表示不等式的解,完成例3〔2〕:2(5x+3)≤x-3(1-2x)解:原不等式等价于:10x+6≤x-3+6x即:3x≤9x≤3。
八年级数学上册-第3章 一元一次不等式 复习课件-浙教版
不等式的性质
不 等 式
1.加减不改变 2.乘除正不变 3.乘除负改变 4.对称性 5.同向传递性
一元一次 不等式
解一元一次不等式 解一元一次不等式组
在数轴上表示 不等式的解
根据下列数量关系列不等式:
⑴a不是正数。
a0
⑵x与y的一半的差大于-3。
x 1 y 3 2
( 4 a<6 )
4.若不等式2x+k<5-x没有正数解则k的范围是( K 5 )
5.同时满足-3x大于或等于0与4x+7>0的整数是( 0 ,-)1
6.不等式(a-1)x<a-1的解集为x>1则a的范围是( a<1 )
7.不等式组 6x-1>3x-4 的整数解为( 0,1 ) -1/3≤x 2/3
5
2
并把它的解集表示的数轴上。
x
20 3
其解集在数轴上表示如右图
4.解不等式 y 1 y 1 y 1 32 6
并把它的解集在数轴上表示出来。
2( y 1) 3( y 1) y 1 y 3
解集在数轴上表示如右图
一元一次不等式组的解集及记忆方法
图形
数学语言
文字记忆
ba ba ba ba
a
X>a
条件是__m__<___5____。
5.已知不等式3x-m≤0有4个正整数解,则m的取值范
围是_1_2__≤_m__≤_1_5_。
x>a+2
6.若不等式组
无解,
x<3a-2
则a的取值范围是____a_≤_2__。 7.若(a 2)xa23 8 2a是关于x的一元一次不等式则a的
值____-_2_____。
浙教版数学八年级上册《第3章 一元一次不等式》全章教学设计
浙教版数学八年级上册《第3章一元一次不等式》全章教学设计一. 教材分析《浙教版数学八年级上册》第3章《一元一次不等式》是学生在学习了有理数、整式等知识的基础上进一步探究不等式知识的章节。
本章主要通过引入一元一次不等式,让学生了解不等式的概念、性质以及解法,培养学生解决实际问题的能力。
教材通过丰富的实例和具有启发性的问题,引导学生逐步理解和掌握一元一次不等式的解法和应用,为后续学习更复杂的不等式打下基础。
二. 学情分析学生在七年级时已经接触过一些简单的不等式知识,对不等式的基本概念和性质有所了解。
但如何将实际问题转化为不等式问题,以及如何灵活运用不等式的性质进行求解,仍需进一步指导。
此外,学生在解决不等式问题时,常常会受到有理数运算的影响,容易出错。
因此,在教学过程中,需要关注学生对不等式性质的掌握,以及将实际问题转化为数学问题的能力。
三. 教学目标1.知识与技能:使学生理解一元一次不等式的概念,掌握一元一次不等式的解法,能运用一元一次不等式解决实际问题。
2.过程与方法:通过实例引导学生认识一元一次不等式,培养学生运用不等式解决实际问题的能力。
3.情感态度与价值观:激发学生学习不等式的兴趣,培养学生勇于探索、积极思考的科学精神。
四. 教学重难点1.重点:一元一次不等式的概念、解法及其应用。
2.难点:一元一次不等式的解法,以及如何将实际问题转化为不等式问题。
五. 教学方法1.情境教学法:通过生活实例引入一元一次不等式,让学生感受到不等式的实际意义。
2.引导发现法:在教学过程中,引导学生发现一元一次不等式的性质和解法,培养学生的探索精神。
3.练习法:通过大量的练习题,巩固学生对一元一次不等式的理解和应用。
六. 教学准备1.教具:多媒体教学设备、黑板、粉笔。
2.学具:笔记本、练习本、相关学习资料。
3.教学素材:准备一些与生活实际相关的不等式问题,用于引导学生学习一元一次不等式。
七. 教学过程1.导入(5分钟)利用生活实例引入一元一次不等式,如“小明比小红高,小红比小华高,请问小明、小红、小华的身高关系是什么?”让学生感受到不等式的实际意义。
浙教版八年级数学上册课件:专题3一元一次不等式
(2)去分母,得3(2+x)≥2(2x-1)-12, 去括号,得6+3x≥4x-2-12, 移项、合并同类项,得-x≥-20, 两边同除以-1,得x≤20, 在数轴上表示出来为:
题型三 一元一次不等式组的解法 典例 [202X·郴州]解不等式组:
34xx+ -22> ≤23( x-x-2,1),并把解集在数轴上表示出来.
解:(1)设温馨提示牌的单价为x元,则垃圾箱的单价为3x元, 列方程得2x+3×3x=550,解得x=50, ∴温馨提示牌的单价为50元,垃圾箱的单价为150元; (2)设购买温馨提示牌为m个,则购买垃圾箱为(100-m)个,列 不等式得50m+150(100-m)≤10 000,解得m≥50,又∵100- m≥48,∴m≤52,∵m的值为整数,∴m的取值为50,51,52, 当m=50时,100-m=50,即购买50个温馨提示牌和50个垃圾 桶,其费用为50×50+50×150=10 000元; 当m=51时,100-m=49,即购买51个温馨提示牌和49个垃圾 桶,其费用为51×50+49×150=9 900元;
变式跟进 3.(1)[202X·北京]解不等式组:
3(x+1)>x-1, x+2 9>2x.
解:解不等式 3(x+1)>x-1,得 x>-2; 解不等式x+2 9>2x,得 x<3. ∴原不等式组的解集为-2<x<3.
2x-1≥x-2,① (2)[2018·荆州]求不等式组x+12>2x-14② 的整数解.
变式跟进 6.某超市销售有甲、乙两种商品,甲商品每件进价 10元,售价15元;乙商品每件进价30元,售价40元. (1)若该超市一次性购进两种商品共80件,且恰好用去1 600元, 问购进甲、乙两种商品各多少件? (2)若该超市要使两种商品共80件的购进费用不超过1 640元,且 总利润(利润=售价-进价)不少于600元.请你帮助该超市设计 相应的进货方案,并指出使该超市利润最大的方案. 解:(1)设该超市购进甲商品x件,则购进乙商品(80-x)件, 根据题意,得10x+30(80-x)=1 600, 解得x=40,80-x=40, 则购进甲、乙两种商品各40件;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。