九年级数学下册27.2相似三角形27.2.3相似三角形应用举例同步测试A卷无答案新版新人教版
人教版数学九年级下册《27.2相似三角形》同步测试(含答案)
27.2《相似三角形》测试一、选择题1、如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,则EC=()A.0.9cm B.1cm C.3.6cm D.0.2cm2、如图,DE是△ABC的中位线,已知△ABC的面积为8,则△ADE的面积为().A.2 B.4 C.6 D.83、已知两个相似三角形的周长比为4:9,则它们的面积比为()A.4:9 B.2:3 C.8:18 D.16:494、如图,已知DE∥BC,那么下列结论正确的是()A.B.C.D.5、如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或6、如图所示,在▱ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有()A.3对B.4对C.5对D.6对7、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.8、如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有()A.1个B.2个C.3个D.4个9、已知中,D、E分别是AB、AC边上的点,,点F是BC边上一点,联结AF交DE于点G,那么下列结论中一定正确的是………………………………………()(A);(B);(C);(D).10、如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为()A.B.C.3 D.11、.如图,在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,它们相交于点G,延长BE交CD的延长线于点H,下列结论错误的是()A.B.C.D.12、在△ABC,直线DE∥BC,DE分别交边AB、AC于D、E,在下列比例式中,不能成立的是()(A);(B);(C);(D).13、如图,△ABC中,点D、E分别在AB、AC边上,则下列条件中,不一定能使△AED∽△ABC的是()A.∠2=∠B B.∠1=∠C C. D.14、如图,△ABC中,BD是∠ABC的平分线,DE∥AB交BC于E,EC=6,BE=4,则AB长为()A.6 B.8 C. D.15、能判定与相似的条件是()A. B.,且C.且D.,且二、填空题16、如图,△ABC中,D在AC上,且AD:DC=1:n,E为BD的中点,AE的延长线交BC于F,那么的值为(用n表示).17、如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP= .18、在边长为2cm的正方形ABCD中,动点E、F分别从D、C两点同时出发,都以1cm/s的速度在射线DC、CB 上移动.连接AE和DF交于点P,点Q为AD的中点.若以A、P、Q为顶点的三角形与以P、D、C为顶点的三角形相似,则运动时间t为秒.19、将两块全等的三角板如图放置,点O为AB中点,AB=A′B′=10,BC=B′C′=6,现将三角板A′B′C′绕点O旋转,B′C′、A′B′与边AC分别交于点M、N,当CM= 时,△OMN与△BCO相似.20、如图,在▱ABCD中,F是BC上的点,直线DF与AB的延长线相交于点E,与AC相交于点M,BP∥DF,且与AD相交于点P,与AC相交于点N,则图中的相似三角形有对.21、如图,在△ABC中,点D在AB上,请再添一个适当的条件,使△ADC∽△ACB,那么可添加的条件是.三、简答题22、如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.23、如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发,运动时间为t(s).(1)当t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为8cm2?24、如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.25、如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.26、如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.27、如图①,△ABC中,∠ACB=90°,∠ABC=α,将△ABC绕点A顺时针旋转得到△AB′C′,设旋转的角度是β.(1)如图②,当β= °(用含α的代数式表示)时,点B′恰好落在CA的延长线上;(2)如图③,连接BB′、CC′,CC′的延长线交斜边AB于点E,交BB′于点F.请写出图中两对相似三角形,(不含全等三角形),并选一对证明.∥AC.动点D从点A出发沿射线AC 28、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH于F,G是EF中点,连接DG.设点D运动的时间为t秒.⊥AB于H,过点E作EF⊥AC交射线BB1(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.参考答案一、选择题1、A解:∵DE∥BC,∴=,即=,∴EC=0.9(cm).2、A3、D4、B5、C【分析】根据AE=EB,△ABE中,AB=2BE,所以在△MNC中,分CM与AB和BE是对应边两种情况利用相似三角形对应边成比例求出CM与CN的关系,然后利用勾股定理列式计算即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+DM2=1,解得DM=;②DM与BE是对应边时,DM=DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM=.∴DM为或时,△ABE与以D、M、N为顶点的三角形相似.故选C.【点评】本题考查相似三角形的判定与性质、正方形的性质.解决本题特别要考虑到①DM与AB是对应边时,②当DM与BE是对应边时这两种情况.6、D【分析】根据相似三角形的判定来找出共有多少对相似的三角形.【解答】解:AD∥BC,可知△AGE∽△CGB,△DFE∽△CFB,△ABC∽△CDA,AB∥CD,可知△ABG∽△CFG,△ABE∽△CFB,△EDF∽△EAB.共有6对,故选D.7、B【分析】设小正方形的边长为1,根据已知可求出△ABC三边的长,同理可求出阴影部分的各边长,从而根据相似三角形的三边对应成比例即可得到答案.【解答】解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为8、C【分析】设AP=x,则有PB=AB﹣AP=7﹣x,分两种情况考虑:三角形PDA与三角形CPB相似;三角形PDA 与三角形PCB相似,分别求出x的值,即可确定出P的个数.【解答】解:设AP=x,则有PB=AB﹣AP=7﹣x,当△PDA∽△CPB时,=,即=,解得:x=1或x=6,当△PDA∽△PCB时,=,即=,解得:x=,则这样的点P共有3个,故选C.9、D.10、A11、C解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△ABE∽△DHE,△ABG∽△FHG,,∴,,∴选项A、B、D正确,C错误;故选:C.12、B 13、D14、C【解析】试题解析:∵DE∥AB,∴∠BDE=∠ABD,∵BD是∠ABC的平分线,∴∠ABD=∠DBE,∴∠DBE=∠EDB,∴BE=DE,∵BE=4,∴DE=4,∵DE∥AB,∴△DEC∽△ABC,∴,∴,∴AB=,故选C.15、.C二、填空题16、证明:∵AD:DC=1:n,∴AD:AC=1:(n+1).作DG平行于AF交BC于G,则=,根据比例的性质知,==,又E是BD的中点,∴EF是△BGD的中位线,∴BF=FG.∴=.故答案为:.17、5.5 .【解答】解:∵AB和DE是⊙O的直径,∴OA=OB=OD=4,∠C=90°,又∵DE⊥AC,∴OP∥BC,∴△AOP∽△ABC,∴,即,∴OP=1.5.∴DP=OD+OP=5.5,故答案为:5.5.18、2或4【分析】分两种情况:①E点在DC上;②E点在BC上;根据相似三角形的性质得到比例式求出运动时间t即可.【解答】解:分两种情况:①如图1,E点在DC上,AE==,DP=,AP==,∵以A、P、Q为顶点的三角形与以P、D、C为顶点的三角形相似,∴=,即=,解得t=2;△APQ与△ODC相似,边的对应关系共有三种可能逐一分类讨论,得t=4符合题意【点评】考查了相似三角形的判定和性质,正方形的性质,本题关键是根据相似三角形的性质列出比例式,注意分类思想的运用.19、或【分析】由直角三角形斜边上的中线性质得出OC=AB=OA=OB=5,由勾股定理求出AC=8,由全等三角形的性质得出∠B=∠MON.△OMN与△BCO相似,分两种情况:①当OM=MN时,作OD⊥AC于D,CE⊥AB于E,则AD=CD=AC=4,由勾股定理求出OD,由三角形的面积求出CE,由相似三角形的性质得出比例式求出OM=MN=,由勾股定理求出DM,得出CM=CD﹣DM=4﹣=;②当ON=MN时,由△OMN∽△BCO,得出==,求出OM,与勾股定理求出DM,即可得出CM的长.【解答】解:∵∠ACB=90°,点O为AB中点,AB=A′B′=10,BC=B′C′=6,∴OC=AB=OA=OB=5,AC==8,∵△ABC≌△A′B′C′,∴∠B=∠MON.若△OMN与△BCO相似,分两种情况:①当OM=MN时,作OD⊥AC于D,CE⊥AB于E,如图所示:则AD=CD=AC=4,△ABC的面积=AB•CE=AC•BC,∴OD===3,CE==,∵△OMN∽△BOC,∴==,即,∴OM=MN=,∴DM==,∴CM=CD﹣DM=4﹣=;②当ON=MN时,∵△OMN∽△BCO,∴===,即,解得:OM=,∴DM==,∴CM=CD﹣DM=4﹣=;综上所述:当CM=或时,△OMN与△BCO相似.【点评】本题考查了相似三角形的判定与性质、旋转的性质、勾股定理、等腰三角形的判定、直角三角形斜边上的中线性质等知识;熟练掌握勾股定理,证明三角形相似是解决问题的关键.20、16【分析】根据相似三角形的判定,判断出△BFE∽△ADE,△BFE∽△APB,△BFE∽△CFD,从而得到△ADE∽△APB,△ADE∽△CFD,△APB∽△CFD,类似可得与△CFM相似的有△CNB,△ANP,△AMD,共6对;与△CMD相似的有△ANB,△AME共3对;与△ABC相似的有△CDA,共1对.【解答】解:∵AD∥BF,∴△BFE∽△ADE,∵AD∥BC,∴∠DAB=∠CBE,∵DE∥BP,∴∠E=∠PBA,∴△BFE∽△APB,∵AE∥DC,∴△BFE∽△CFD,∴△ADE∽△APB,∴△ADE∽△CFD,∴△APB∽△CFD,故与△BFE相似的有△ADE,△APB,△CFD,共6对;类似的,与△CFM相似的有△CNB,△ANP,△AMD,共6对;与△CMD相似的有△ANB,△AME共3对;与△ABC相似的有△CDA,共1对.故答案为16.【点评】本题考查了相似三角形的判定和平行四边形的性质,找到平行线进而判断出三角形相似是解题的关键.21、等;三、简答题22、(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.23、【解答】解:(1)∵点A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵点P的速度是每秒1个单位,点Q的速度是每秒1个单位,∴AQ=t,AP=10﹣t,①∠APQ是直角时,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP是直角时,△AQP∽△AOB,∴,即,解得t=,综上所述,t=秒时,△APQ与△AOB相似;(2)如图,过点P作PC⊥OA于点C,则PC=AP•sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面积=×t×(10﹣t)=8,整理,得:t2﹣10t+20=0,解得:t=5+>6(舍去),或t=5﹣,故当t=5﹣s时,△APQ的面积为8cm2.【点评】本题主要考查了相似三角形的判定与性质、三角形的面积以及一元二次方程的应用能力,根据对应边成比例两相似三角形的判定分类讨论是解题的关键.24、【解答】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.【点评】此题考查了相似三角形的判定(有两边对应成比例且夹角相等三角形相似)、正方形的性质、平行线分线段成比例定理等知识的综合应用.解题的关键是数形结合思想的应用.25、【解答】(1)证明:∵BF∥DE,∴==,∵AD=BD,∴AC=CG,AE=EF,在△ABC和△GBC中:,∴△ABC≌△GBC(SAS),∴AB=BG;(2)解:当BP长为或时,△BCP与△BCD相似;∵AC=3,BC=4,∴AB=5,∴CD=2.5,∴∠DCB=∠DBC,∵DE∥BF,∴∠DCB=∠CBP,∴∠DBC=∠CBP,第一种情况:若∠CDB=∠CPB,如图1:在△BCP与△BCD中,∴△BCP≌△BCD(AAS),∴BP=CD=2.5;第二种情况:若∠PCB=∠CDB,过C点作CH⊥BG于H点.如图2:∵∠CBD=∠CBP,∴△BPC∽△BCD,∵CH⊥BG,∴∠ACB=∠CHB=90°,∠ABC=∠CBH,∴△ABC∽△CBH,∴=,∴BH=,BP=.综上所述:当PB=2.5或时,△BCP与△BCD相似.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质,正确利用分类讨论分析是解题关键.26、【解答】(1)证明:Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠ADE+∠EDC=∠B+∠BAD.又∵∠ADE=45°,∴45°+∠EDC=45°+∠BAD.∴∠EDC=∠BAD.∴△ABD∽△DCE.(2)解:讨论:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=2,BC=2,AE=AC﹣EC=2﹣BD=2﹣(2﹣2)=4﹣2③若AE=DE,此时∠DAE=∠ADE=45°,如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=1.【点评】熟练运用等腰直角三角形的性质,特别注意第二问要分情况进行讨论解题.27、【解答】解:(1)∵∠ABC=α,∴∠BAC=90°﹣α,∴β=∠90°+α;(2)图中两对相似三角形:①△ABB′∽△ACC′,②△ACE∽△FBE,证明①:∵△ABC绕点A顺时针旋转角β得到△AB′C′,∴∠CAC′=∠BAB′=β,AC=AC′,AB=AB′∴∴△ABB′∽△ACC′28、【解答】解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB==5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t,若△DEG与△ACB相似,则或,∴或,∴t=或t=;当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,若△DEG与△ACB相似,则或,∴或,解得t=或t=;综上所述,当t=或或或时,△DEG与△ACB相似.【点评】此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.。
人教版九年级下册数学 27.2相似三角形 同步练习(含解析)
27.2相似三角形同步练习一.选择题1.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°2.两个相似三角形对应角平分线的比为4:3,那么这两个三角形的面积的比是()A.2:3B.4:9C.16:36D.16:93.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.且∠B=∠DC.D.且∠A=∠D4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中能判断△ABC∽△AED 的是()①∠AED=∠B;②∠ADE=∠C;③=;④=.A.①②B.①②③C.①②④D.①②③④5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=5:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.5:7B.10:4C.25:4D.25:496.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似7.如图,在△ABC,D是BC上一点,BD:CD=1:2,E是AD上一点,DE:AE=1:2,连接CE,CE的延长线交AB于F,则AF:AB为()A.1:2B.2:3C.4:3D.4:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1:4B.1:5C.1:6D.1:79.如图,AD∥BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△P AD 与△PBC相似,则这样的点P有()A.1 个B.2 个C.3 个D.4 个10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于F,连接DF,若BF=,BC =3,则DF=()A.4B.3C.2D.二.填空题11.已知△ABC∽△A′B′C′,且AB=3cm,A′B′=5cm,则相似比为.12.如图,△ABC中,CA=CB,点E在BC边上,点D在AC边上,连接AE、DE,若AB =AE,2∠AEB+∠ADE=180°,BE=8,CD=,则CE=.13.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则AF:FD:DB=.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值是.15.如图,在矩形ABCD中,AD=2,AB=4,E、F分别是AB、CD边上的动点,EF⊥AC,则AF+CE的最小值为.三.解答题16.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.17.如图,在△ABC中,点D、E分别在AB、AC上,DE、BC的延长线相交于点F,且EF•DF=CF•BF.求证:△CAB∽△DAE.18.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.参考答案一.选择题1.解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DAC=∠B=33°,∴∠BAD=∠BAC+∠DAC=150°,故选:A.2.解:∵两个相似三角形对应角平分线的比为4:3,∴它们的相似比为4:3,∴它们的面积比为16:9.故选:D.3.解:A、∠A=∠D,∠B=∠F,可以得出△ABC∽△DFE,故此选项不合题意;B、=且∠B=∠D,不是两边成比例且夹角相等,故此选项符合题意;C、==,可以得出△ABC∽△DEF,故此选项不合题意;D、=且∠A=∠D,可以得出△ABC∽△DEF,故此选项不合题意;故选:B.4.解:∵∠A=∠A,∴∠AED=∠B或∠ADE=∠C时,△ABC∽△AED.∵=,∴=∵∠A=∠A,∴△ABC∽△AED,故①②③可以判断三角形相似,故选:B.5.解:设DE=5k,EC=2k,则CD=7k,∵四边形ABCD是平行四边形,∴AB=CD=7k,DE∥AB,∴△DEF∽△BAF,∴===,故选:D.6.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.7.解:过D作DH∥AB交CF于H,如图,∵DH∥BF,∴=,∵BD:CD=1:2,∴CD:BC=2:3,∴BF=DH,∵DH∥AF,∴==2,∴AF=2DH,∴AF:BF=2DH:DH=4:3,∴AF:AB=4:7.故选:D.8.解:∵四边形ABCD是平行四边形,∴BO=DO,AB∥CD,∵E为OD的中点,∴DE=EO=DO,∴BO=2EO,BE=3DE,∵DF∥AB,∴△DFE∽△BAE,∴=()2=,设S△DEF=x,则S△BEA=9x,∵BO=2OE,∴S△AOB=6x=S△DOC,∴四边形EFCO的面积=5x,∴△DEF与四边形EFCO的面积比=1:5,故选:B.9.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设DP的长为x,则CP长为6﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则DP:CP=AD:BC,即x:(6﹣x)=3:4,解得:x=②若△APD∽△BPC,则DP:PC=AD:BC,即x:4=3:(6﹣x),整理得:x2﹣6x+12=0,∵△<0,这种情形不存在,∴满足条件的点P的个数是1个,故选:A.10.解:如图,连接BD,∵∠AEF=∠BEA,∠AFE=∠BAE=90°,∴△AEF∽△BEA,∴=,∵AE=ED,∴=,又∵∠FED=∠DEB,∴△FED∽△DEB,∴∠EFD=∠EDB,∵∠EFD+∠DFC=90°,∠EDB+∠ODC=90°,∴∠DFC=∠ODC,∵在矩形ABCD中,OC=AC,OD=BD,AC=BD,∴OD=OC,∴∠OCD=∠ODC,∴∠DFC=∠OCD,∴DF=DC,在Rt△BCF中,FC===2,∵AD∥BC,∴△AEF∽△CBF,∴==,∴AF=FC=,∴AB===3,∴DF=3,故选:B.二.填空题11.解:由题意得,=,∵△ABC∽△A′B′C′,∴△ABC与△A′B′C′的相似比为=,故答案为:.12.解:如图,过点A作AM⊥BE于E,过点D作DN⊥EC于N,∵CA=CB,AB=AE,∴∠B=∠CAB,∠B=∠AEB,∴∠B=∠CAB=∠AEB,∵∠B+∠BAC+∠C=180°,∠B+∠AEB+∠BAE=180°,∴∠C=∠BAE,∴2∠AEB+∠C=180°,又∵2∠AEB+∠ADE=180°,∴∠C=∠ADE,又∵∠ADE=∠C+∠DEC,∴∠C=∠DEC,∴DE=DC=,∵AB=AE,AM⊥BE,DE=CC,DN⊥EC,∴BM=ME=BE=4,EN=NC=EC,AM∥DN,∴△CDN∽△CAM,∴,∴,∴EC=12,EC=﹣5(不合题意舍去),故答案为:12.13.解:∵EF∥CD,AE=2EC,∴==2,∵DE∥BC,∴==2,设DF=m,则AF=2m,AD=3m,DB=m,∴AF:DF:DB=2m:m:m=4:2:3.故答案为:4:2:3.14.解:∵DE∥AC,∴△DOE∽△COA,∴=()2=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴=,故答案为:.15.解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG=EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG∥EF,且CG=EF,∴四边形CEFG是平行四边形;∴EC∥FG,EC=FG,又∵点A、F、G三点共线,∴AF∥EC,又∵四边形ABCD是矩形,∴AE∥DC,∠D=90°,∴四边形AECF是平行四边形,∴OA=OC,OE=OF,又∵EF⊥AC,AF=CF=4﹣x,在Rt△ADF中,由勾股定理得:AD2+DF2=AF2,又∵AD=2,DF=x,则FC=4﹣x,∴22+x2=(4﹣x)2,解得:x=,∴AF=,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,∴AC=,∴AO=,又∵OF∥CG,∴△AOF∽△ACG,∴=,∴AG=5,又∵AG=AF+FG,FG=EC,∴AF+EC=5,故答案为5.三.解答题16.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.17.证明:∵EF•DF=CF•BF.∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE.18.(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.。
【九年级】九年级数学下27.2相似三角形(一)同步练习(人教版有答案和解释)
【九年级】九年级数学下27.2相似三角形(一)同步练习(人教版有答案和解释)27.2相似三角形同步练习(一)一、单选题(本大题共15个子题,每个子题得3分,共计45分)1、如图,在中,已知于点,则图中相似三角形共有().a、对b.对c、对d.对2.如图所示,如果直线已知,且直线和,,分别与点,,,,,,,,,相交,则的值为()3、如图,已知,,则().4.同时,身高1.6米的小华在阳光下的影子长度为0.8米。
如果一棵树的阴影长度是4.8米,那么树的高度是()a.米b、仪表c.米d、仪表5、下列四组线段中,不成构成比例线段的是().A.b.Cd.6.如果是这样,可以得到比例公式()a.Bc.D7、在运动会上,裁判员测得小明与小华跳远成绩分别是米,厘米,则线段与的比值是().A.b.Cd.8.如果三个顶点的纵坐标保持不变,横坐标分别乘以,新点依次连接,则得到的三角形与原始三角形之间的位置关系为()a.原三角形向轴的负方向平移一个单位即为所得三角形b、关于原点对称c.关于轴对称d、关于轴对称9、如图,在中,,若,则()A.b.Cd.10.如果一个直角三角形的两边分别是和,而另一个类似的直角三角形的边分别是和,那么()a.有无数个b、超过,但有限c.可以有个d、只有一个11、与是位似图形,且与的位似比是,已知的面积是,则的面积是()A.d.12.如图所示,为了测量学校旗杆的高度,晓东使用长度为的竹竿作为测量工具移动竹竿,使竹竿顶部和旗杆顶部的阴影落在地面上的同一点上。
此时,竹竿距离此点较远,旗杆高度为()下在墙上形成的影子如图所示.若,则这个三角尺的周长与它在墙上形成的影子的周长的比是()14.如果和的值为()a.D15、如图,已知,那么添加下列一个条件后,仍无法判定的是()D二、填空题(本大题共有5小题,每小题5分,共25分)16.假设两个相似多边形的相似比为,它们对应边的比率等于____________________;,面积比等于__17、测量旗杆高度的方法都是依据___________的原理而设计的.引理:平行于三角形一边并与另两边相交的直线。
九年级数学下册 27.2 相似三角形 27.2.3《相似三角形应用举例》同步测试(A卷,无答案)(新版)新人教版
《相似三角形应用举例》A卷一、单项选择题(共4题,共45分)1.如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高( )A.6.5 米B.7 米C.7. 5 米D.8 米2.如图,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱子(人与箱子的总高度约为2.2 m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高度约为( )A.5.5 mB.6.2 mC.11 mD.22m3.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距旗杆底部D的距离是4m.如图所示,已知小丽同学的身高是1.54 m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆的髙度DE等于( )A.10 mB.12 mC.12.4 mD.12.32m4.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在 BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m ,CD=20m,则河的宽度AB等于()A.60mB.40mC.30mD.20m二、填空题(共1题,共11分)1.如图,某条河的两岸有一段是平行的,在河的南岸每隔5米有一棵树,在北岸每隔50米有一根电线杆.小丽站在离南岸15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.三、解答题(共4题,共44分)1.如图,小明同学用自制的直角三角形纸板测量树的高度他调整自己的位置,设法使斜边保持水平,并且边与点B在同一直线上.已知纸板的两条直角边DE=0.4 m,EF=0.2 m,测得边DF离地面的高度AC=1.5m,CD=8 m,求树的高度.2.如图,为测量学校围墙外直立电线杆的高度,小亮在操场上点C处直立高3m的竹竿CD,然后退到点E处,此时恰好看到竹竿顶端与电线杆顶端B重合;小亮又在点C1处直立高3m的竹竿,然后退到点E1处,恰好看到竹竿顶端D1与电线杆顶端B重合.小亮的眼睛离地面高度EF=1.5 m,测得CE=2m, ECl=6m,C1E1=3m.(1)△FDM∽________ ,△F1D1N∽________ ;(2)求电线杆的高度.3.如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M,N两点之间的直线距离,选择测量点A,B,C,点B,C分别在AM,AN 上,现测得AM=1千米,AN=1.8千米,AB=54米,BC=45米,AC=30米,求 M,N两点之间的直线距离.4.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在点B面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距离地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离 CB=1.2米.根据以上测量过程及测量数据,请你求出河宽说) 是多少米?。
九年级数学下册 27.2 相似三角形 27.2.2《相似三角形的性质》同步测试(A卷,无答案)(新版)新人教版
《相似三角形的性质》A卷一、单项选择题(共5题,共37分)1.若△ABC∽△DEF,相似比为 3:2,则对应高的比为( )A.3:2B.3:5C.9:4D.4:92.已知△ADF∽△DEF且相似比为4:3,若△ABC中BC边上的中线AM=8, 则△DEF中EF边上的中线( )A. 3B.4C.5D.63.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为 ( )A.2B.3C.6D.544.如图,在△ABC中,两条中线BE,CD相交于点O,则△EOD的周长与△BOC的周长的比为( )A. 1:2B.2:3C.1:3D. 1:45.已知△ABC∽△,AD,分别是△ABC,△的高,且AD:=2:3,则()A.△ABC与△的周长比为4:9B.AB:=2:3C.D.二、填空题(共5题,共35分)1.若△ABC∽△,对应角平分线的比为2:,且BC边上的中线AD=5,则边上的中线=____.2.如图,在AD=10cm,CD=6cm,E为AD上一点,且 BE=BC,CE=CD, BM平分∠EBC,交CE于点M, CN平分∠ECD,交ED于点N.则的值是________.3.(2017湖南湘潭中考)如图,在△ABC中,D,E分别是边AB,AC的中点,则△ADE与△ABC 的面积比=________.4.在△ABC中,AB=6cm,AC=5cm,点D,E分别在AB,AC上,若△ADE与△ABC相似,且=1:8,则AD=________cm.5.(2017福建莆田二十五中月考)如图,M是△ABC内一点,过点M分别作直线平行于△ABC的三条边,所形成的三个小三角形(阴影部分)的面积分别是4,9,49,则△ABC的面积是________.三、解答题(共4题,共28分)1.如图,的对角线AC,BD相交于点O,点E是 AD的中点,△BCD的周长为8 cm,求△DEO的周长。
2.(2016·江苏无锡第二次联考改编)如图,已知矩形ABCD的边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的点P处,折痕与边BC交于点O。
人教版九年级数学下册 27.2.2 相似三角形的性质同步测试及答案【新】
相似三角形的性质1. 已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积之比为( D )A .4∶3B .3∶4C .16∶9D .9∶162. 如图27-2-41,AB ∥CD ,AO OD =23,则△AOB 的周长与△DOC 的周长比是 ( D )图27-2-41A.25B.32C.49D.233.两个相似多边形的面积比是9∶16,其中较小多边形的周长为36 cm ,则较大多边形的周长为( A )A .48 cmB .54 cmC .56 cmD .64 cm4.如图27-2-42,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论不正确的是( D )A .BC =2DEB .△ADE ∽△ABCC.AD AE =AB AC D .S △ABC =3S △ADE【解析】 ∵在△ABC 中,点D ,E 分别是边AB ,AC 的中点,∴DE ∥BC ,DE =12BC ,∴BC =2DE ,故A 正确;∵DE ∥BC ,∴△ADE ∽△ABC ,故B 正确;∴AD AE =AB AC,故C 正确;∵DE 是△ABC 的中位线,∴S △ABC =4S △ADE ,故D 错误.5.如图27-2-43,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( B )A .2 3B .3 3C .4 3D .6 3【解析】 作DF ⊥BC 于F ,∵边长为4的等边△ABC 中,DE 为中位线,∴DE =2,BD =2,∠B =60°,∴BF =1,DF =BD 2-BF 2=22-12=3,∴四边形BCED 的面积为12DF ·(DE +BC )=12×3×(2+4)=3 3.故选B. 6.在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D ,如果△ABC 的周长是16,面积是12,那么△DEF 的周长、面积依次为( A )A .8,3B .8,6C .4,3D .4,6【解析】 ∵AB =2DE ,AC =2DF ,∴AB DE =AC DF=2,又∠A =∠D ,∴△ABC ∽△DEF ,且相似比为2,∴△ABC 与△DEF 的周长比为2,面积比为4,又∵△ABC 的周长为16,面积为12,∴△DEF 的周长为16×12=8,△DEF 的面积为12×14=3. 7. 如图27-2-44,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AE AB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( C )图27-2-44A .1∶ 3 B. 1∶2C. 1∶3D. 1∶48.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,若△ABC 的周长为6,则△A ′B ′C ′的周长为__8__.【解析】 ∵△ABC ∽△A ′B ′C ′,∴△ABC 的周长∶△A ′B ′C ′的周长=3∶4,∵△ABC 的周长为6,∴△A ′B ′C ′的周长=6×43=8. 9.已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则△ABC 与△DEF 的面积之比为__9∶1__.【解析】 ∵△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,∴△ABC 与△DEF 的相似比是3∶1,的面积之比为9∶1.10.如图27-2-45,在△ABC 中,DE ∥BC ,DE 分别交边AB ,AC 于D ,E 两点,若AD ∶AB =1∶3,则△ADE 与△ABC 的面积比为__1∶9__.11.一天,某校数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些深坑对河道的影响,如图27-2-46是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测量出沙坑坑沿圆周的周长约为34.54米;②甲同学直立于沙坑坑沿圆周所在平面上,经过适当调整自己所处的位置,当他位于点B 时,恰好他的视线经过沙坑坑沿圆周上的一点A 看到坑底S (甲同学的视线起点C 与点A 、点S 三点共线).经测量:AB =1.2米,BC =1.6米. (圆锥的高).(π取3.14,结果精确到0.1米)解:如图,取圆锥底面圆圆心O ,连接OS ,OA , 则∠O =∠ABC =90°,OS ∥BC ,∴∠ACB =∠ASO ,∴△SOA ∽△CBA ,∴OS BC =OA AB ,即OS =OA ·BC AB. ∵OA =34.542π≈5.5,BC =1.6,AB =1.2, ∴OS ≈5.5×1.61.2≈7.3, ∴“圆锥形坑”的深度约为7.3米.12. 已知△ABC ∽△DEF ,DE AB =23,△ABC 的周长是12 cm ,面积是30 cm 2. (1)求△DEF 的周长;(2)求△DEF 的面积.解:(1)∵DE AB =23, ∴△DEF 的周长=12×23=8(cm); (2)∵DE AB =23, ∴△DEF 的面积=30×(23)2=1313(cm 2).13.如图27-2-47,四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于O ,AD =1,BC =4,则△AOD 与△BOC 的面积比等于( D )图27-2-47A.12B.14C.18D.11614.如图27-2-48,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,∠ACB 的平分线CF 交AD 于点F ,点E 是AB 的中点,连接EF .(1)求证:EF ∥BC ;(2)若△ABD 的面积是6,求四边形BDFE 的面积.【解析】 (1)证明EF 为△ABD 的中位线;(2)利用相似三角形的面积比等于相似比的平方求解. 解:(1)证明:∵DC =AC ,∴△ACD 为等腰三角形.∵CF 平分∠ACD ,∴F 为AD 的中点.∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴EF ∥BC .(2)由(1)得EF ∥BC ,∴△AEF ∽△ABD . ∵EF BD =12,∴S △AEF ∶S △ABD =1∶4, ∴S 四边形BDFE ∶S △ABD = 3∶4.∵S △ABD =6,∴S 四边形BDFE =92. 15.[2013·泰安]如图27-2-49,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.图27-2-49(1)求证:AC 2=AB ·AD ;(2)求证:CE ∥AD ; (3)若AD =4,AB =6,求ACAF的值.解:(1)证明:∵AC 平分∠DAB ,∴∠DAC =∠CAB .又∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB .∴AD AC =AC AB. ∴AC 2=AB ·AD .(2)证明:∵E 为AB 的中点, ∴CE =12AB =AE , ∠EAC =∠ECA .∵AC 平分∠DAB ,∴∠CAD =∠CAB .∴∠DAC =∠ECA .∴CE ∥AD .(3)∵CE ∥AD ,∴∠DAF =∠ECF ,∠ADF =∠CEF ,∴△AFD ∽△CFE ,∴AD CE =AF CF.∵CE =12AB , ∴CE =12×6=3. 又∵AD =4,由AD CE =AF CF 得43=AF CF, ∴AF AC =47. ∴AC AF =74.16. 已知:如图27-2-50,△ABC 中,AB =AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F .求证:BP 2=PE ·PF .图27-2-50证明: 连接PC ,∵AB =AC ,AD 是中线,∴AD 是△ABC 的对称轴.∴PC =PB ,∠PCE =∠ABP .∵CF ∥AB ,∴∠PFC =∠ABP (两直线平行,内错角相等),∴∠PCE =∠PFC .又∵∠CPE =∠EPC ,∴△EPC ∽△CPF . ∴PC PE =PF PC(相似三角形的对应边成比例).∴PC 2=PE ·PF .∵PC =BP ,∴BP 2=PE ·PF .17. 我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如有关线段比、面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O 是△ABC 的重心(如图1),连结AO 并延长交BC 于D ,证明:AO AD =23; (2)若AD 是△ABC 的一条中线(如图2),O 是AD 上一点,且满足AO AD =23,试判断O 是△ABC 的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O 是△ABC 的重心,过O 的一条直线分别与AB ,AC 相交于G ,H (均不与△ABC 的顶点重合)(如图3),S 四边形BCHG .S △AGH 分别表示四边形BCHG 和△AGH 的面积,试探究S 四边形BCHG S △AGH的最大值.图27-2-51解:(1)证明:连接BO 并延长交AC 于点E ,连接DE ,则DE 为△ABC 的中位线,∴DE ∥AB ,∴△EDO ≌△BAO ,∴DO AO =DE AB =12,∴AO AD =23.(2)是,证明:连接BO 并延长交AC 于点E ,过点D 作DF ∥BE 交AC 于点F ,则△AOE ∽△ADF , ∴AE AF =AO AD =23,∴AE =2EF ,又∵△CDF ∽△CBE ,∴CF CE =CD CB =12, ∴EF =FC ,∴AE =CE ,即点E 为AC 中点,∴点O 为△ABC 的重心.(3)54.。
人教版九年级数学下册 第二十七章 相似 27.2 相似三角形 同步练习(含答案)
人教版九年级数学下册第二十七章相似27.2 相似三角形同步练习一、选择题1、能判定与相似的条件是()A. B.,且C.且D.,且2、如图,下列条件中不能判定的是()A. B.C. D.3、.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠CB.∠ADB=∠ABCC.D.4、如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③ B.①②④ C.①③④ D.②③④5、如图,△ABC中,点D、E分别在AB、AC边上,则下列条件中,不一定能使△AED∽△ABC的是()A.∠2=∠B B.∠1=∠C C.D.6、如图,△ABC中,BD是∠ABC的平分线,DE∥AB交BC于E,EC=6,BE=4,则AB长为()A. 6 B. 8 C.D.7、如图,DE是△ABC的中位线,已知△ABC的面积为8,则△ADE的面积为().A. 2 B. 4 C. 6 D. 88、如图所示,在河的一岸边选定一个目标A,再在河的另一岸边选定B和C,使AB⊥BC,然后选定E,使EC⊥BC,用视线确定BC和AE相交于D,此时测得BD=120米,CD=60米,为了估计河的宽度AB,还需要测量的线段是()A.CEB.DEC.CE或DED.无法确定9、已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对B.2对C.3对D.4对10、某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是()A.12米 B.11米 C.10米 D.9米11、.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值为()A. B. C. D.12、如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )A. 4.5秒B.3秒C. 3秒或4.8秒D.4.5秒或4.8秒二、填空题13、如图,是的中位线,的面积为,则四边形的面积为.14、如图,已知零件的外径为25,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC∶OA=1∶2,量得CD=10,则零件的厚度.15、如图,AC与BD交于点E,AB∥CD∥EF,AB=10,CD=15,则EF的长为16、已知△ABC∽△A′B′C′,且,△ABC的周长比△A′B′C′的周长少8cm,则△A′B′C′的周长为 cm 。
人教版九年级下册数学 第二十七章 27.2.3相似三角形应用举例 同步测试
人教版九年级下册数学第二十七章 27.2.3相似三角形应用举例 同步测试1.如图为某农村一古老的捣碎器,已知支撑柱AB 的高为0.3 m ,踏板DE 长为1.6 m ,支撑点A 到踏脚D 的距离为0.6 m ,现在踏脚着地,则捣头点E 上升了( )A .0.6 mB .0.8 mC .1 mD .1.2 m2.如图所示,ABC ∆为一块铁板余料,已知120BC mm =,高80AD mm =,要用这块余料裁出一个正方形材料,且使正方形的一边在BC 上,其余两个顶点分别在,AB AC 上,这个正方形的边长应为( )A .40mmB .44mmC .46mmD .48mm3.如图,AB 和CD 表示两根直立于地面的柱子,AC 和BD 表示起固定作用的两根钢筋,AC 与BD 相交于点M ,已知AB=8 m ,CD=12m ,则点M 离地面的高度MH 为( )A .4 mB .245mC .5mD .163m 4.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE=0.5m ,EF=0.25m ,目测点D 到地面的距离DG=1.5m ,到旗杆的水平距离DC=20m ,则旗杆的高度为( )A .105 mB .(105 1.5)+ mC .11.5mD .10m5.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度4的地方(即同时使,4OA OD =),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若3CD =,则AB 的长是( )A .12B .9C .8D .66.如图,为估算学校的旗杆的高度,身高1.8米的琪琪同学沿着旗杆在地面的影子AB 由A 向B 走去,当她走到点C 处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m, BC=8m,则旗杆的高度是( )A .6.4mB .7mC .8m.D .9m7.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根 长为 1 米的竹竿的影长为 0.4 米,同时另一名同学测量树的高度时, 发现树的影子不全落在地面上,有一部分落在教学楼的第一级台 阶水平面上,测得此影子长为 0.2 米,一级台阶高为 0.3 米,如图 所示,若此时落在地面上的影长为 4.4 米,则树高为( )A .11.8 米B .11.75 米C .12.3 米D .12.25 米8.雨后初晴,一学生在运动场上玩耍,从他前面2米远一块小积水处,他看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40米,该生的眼部高度是1.5米,那么旗杆的高度是( )A .30米B .40米C .25米D .35米9.《九章算术》记载“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步见木.问邑方有几何?”意思是:如图,点M 、点N 分别是正方形ABCD 的边AD 、AB 的中点,ME ⊥AD ,NF ⊥AB ,EF 过点A ,且ME=30步,NF=750步,则正方形的边长为( )A .150步B .200步C .250步D .300步10.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10cm ,12AO DO BO CO ==,则容器的内径是( ) A .5cm B .10cm C .15cm D .20cm11.如图,是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )A .0.64πm 2B .2.56πm 2C .1.44πm 2D .5.76πm 212.如图,阳光通过窗口AB 照射到室内,在地面上留下4米宽的亮区DE ,已知亮区DE 到窗口下的墙脚的距离CE=5米,窗口高米,那么窗口底部离地面的高度BC 为( )A .2米B .2.5米C .3米D .4米13.如图,为了估计河的宽度,在河的对岸选定一个目标点A ,在近岸取点B ,C ,D ,E ,使点A ,B ,D 在一条直线上,且AD ⊥DE ,点A ,C ,E 也在一条直线上且DE ∥BC .如果BC =24m ,BD =12m ,DE =40m ,则河的宽度AB 约为( )A .20mB .18mC .28mD .30m14.如图,有一块三角形的土地,它的一条边100BC =米,BC 边上的高80AH =米,某单位要沿着边BC 修一座底面是矩形DEFG 的大楼,点E ,F 在边BC 上,点D ,G 分别在边AB ,AC 上,若大楼的宽是40米(即40DE =米),则这个矩形的面积是______平方米.15.琪琪同学的身高1.86米,影子长3米,同一时刻戴老师的影子长2.7米,则戴老师的身高为________米(结果保留两位小数)。
初三数学下册《27.2相似三角形同步练习》(附答案)【人教版教材适用】
∵ ∠HFG=∠B,∴ ∠GFD=∠BHF,∴△ BFH∽△ DGF,∴ BF DG
2
∴BH?G=DBF.
BH
,
DF
( 2)证明:∵ AG∥CE,∴ ∠FAG∥∠C. ∵ ∠CFE=∠CEF,∴ ∠AGF=∠CFE,∴ AF=AG.
∵ ∠BAD=∠C,∴ ∠BAF=∠DAG, △ABF≌△ ADG,∴ FB=DG,∴ FD+DG=D,B
AE
1
,即
AE ,解得 AE= 2 2 .
AC
3 62
AD 若 △ADE∽△ ACB时,
AC
AE
1
,即
AE ,解得 AE=
2
.
AB
62 3
4
∴当 AE= 2 2 或 2 时,以点 A、D、E 为顶点的三角形与△ ABC相似. 4
2.解:( 1)△ ADE∽△ ACB,△ CEF∽ △DBF,△EFB∽ △ CFD( 不唯一 ).
CN
GF
.
AB
12
x
设 正方形的边长为
x,则
5 12
x ,解得 x
5
60
.所以正方形的边长为
37
5
12 x
( 2)同( 1),有 5 12
2x ,解得 x
5
60
.
49
5
12 x ( 3)同( 1),有 5
12
3 x ,解得 x
5
60
.
61
5
12 x
( 4)同( 1),有 5 12
nx ,解得 x
5
方法二:证明:如图,延长 AD交 BC于 H ,则 ∠ADO∠= AHC.
∵ ∠AHC=∠B +∠BAD,∴ ∠ADO= ∠B+ ∠BAD. ∵OA=O,D∴ ∠DAO∠= B +∠BAD.
【最新】人教版九年级数学下册27.2.2 相似三角形应用举例同步练习及答案
27.2.2 相似三角形应用举例
1. 如图,在正方形网格中,若使△ABC∽△PBD,则点P应在()
A.P1处 B.P2处 C.P3处 D.P4处
2. (2013柳州)小明在测量楼高时,测出楼房落在地面上的影长BA为
15米(如图),同时在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()
A.10米 B.12米
C.15米 D.22.5米
3. (2013北京)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸
取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB等于()A.60 m B.40 m C.30 m D.20 m
4. 如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从A点出发到B
点止,动点E从C点出发到A点止.点D运动的速度为1 cm/秒,点E运动的速度为2 cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是多长?
参考答案
1.C
2.A
3.B
4.解:设当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是x 秒,
①若△ADE ∽△ABC ,则AD AE AB AC =,∴122612
x x -=,解得x =3; ②若△ADE ∽△ACB ,则AD AE AC AB =,∴122126
x x -=,解得x =4.8. ∴当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是3秒或4.8秒.。
2021-2022学年人教版九年级数学下册《27-2相似三角形》同步达标测评(附答案)
2021-2022学年人教版九年级数学下册《27.2相似三角形》同步达标测评(附答案)一.选择题(共15小题,满分45分)1.已知△ABC与△DEF相似,又∠A=40°,∠B=60°,那么∠D不可能是()A.40°B.60°C.80°D.100°2.如图△ABC∽△ACD,则下列式子中不成立的是()A.=B.=C.AC2=AD•AB D.=3.如果两个相似三角形的对应边之比为3:7,其中一个三角形的一边上的中线长为2,则另一个三角形对应中线的长为()A.B.C.或D.无法确定4.如图,在等边三角形ABC中,点D,E分别在AB,AC边上,如果△ADE∽△ABC,AD:AB=1:4,BC=8cm,那么△ADE的周长等于()A.2cm B.3cm C.6cm D.12cm5.如图,已知在△ABC中,点D、点E是边BC上的两点,联结AD、AE,且AD=AE,如果△ABE∽△CBA,那么下列等式错误的是()A.AB2=BE•BC B.CD•AB=AD•ACC.AE2=CD•BE D.AB•AC=BE•CD6.下列结论中正确的是()A.有两条边长比值是3:4的两个直角三角形相似B.一个角相等的两个等腰三角形相似C.两边对应成比例且一个角对应相等的两个三角形相似D.有一个角为60°的两个等腰三角形相似7.下列说法中不正确的是()A.如果两个三角形全等,那么这两个三角形相似B.如果两个三角形相似,且相似比为1,那么这两个三角形必全等C.如果两个三角形都与另一个三角形相似,那么这两个三角形相似D.如果两个三角形相似,那么它们一定能互相重合8.如图,D是△ABC边AB延长线上一点,添加一个条件后,仍不能使△ACD∽△ABC的是()A.∠ACB=∠D B.∠ACD=∠ABC C.D.9.如图△ABC中,点D、E分别在边AB、AC上,则在下列四个条件中:①∠AED=∠B;②DE∥BC;③;④AD•BC=DE•AC,能满足△ADE∽△ACB的条件有()A.1个B.2个C.3个D.4个10.如图,在四边形ABCD中,∠BAC=90°,AB=6,AC=8,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.下列结论错误的是()A.四边形AECD的周长是20B.△ABC∽△FECC.∠B+∠ACD=90°D.EF的长为11.如图,F为▱ABCD的边AD上一点,射线BF交CD的延长线于点E,则下列结论正确的是()A.=B.=C.=D.=12.如图,AD∥CB,E、F分别在AB、CD上,且EF∥CB,若=,CD=15,则线段DF的长为()A.3B.6C.9D.1013.如图,在平行四边形ABCD中,点E、F分别是AB及BA延长线上一点,连接CE、DF 相交于点H,CE交AD于点G,下列结论错误的是()A.=B.=C.=D.=14.如图.四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD、CD于点G、H,则下列结论不一定成立的是()A.=B.=C.=D.=15.如图,在△ABC中,DE∥BC,若AD=3,BD=4,则=()A.B.C.D.二.填空题(共10小题,满分30分)16.已知△ABC∽△A'B'C',AD和A′D'是它们的对应中线,若AD=10,A'D'=8,则△ABC 与△A'B'C′的周长比等于.17.若△ABC∽△DEF,且△ABC与△DEF的面积之比为1:9,则△ABC与△DEF的相似比为.18.已知△ABC∽△A'B'C',顶点A、B、C分别与顶点A'、B'、C'对应,AD、A'D'分别是BC、B'C'边上的中线,如果BC=3,AD=2.4,B'C'=2,那么A'D'的长是.19.如果两个相似三角形的周长之比为1:4.那么这两个三角形对应边上的高之比为.20.如图所示,在△ABC中D为AC边上一点,请你添加一个条件,使△ABC和△BCD相似,你所添加的条件是.21.如图,已知BD⊥AB于点B,AC⊥AB于点A,且BD=4,AC=3,AB=a,在线段AB 上找一点E,使△BDE与△ACE相似,若这样的点E有且只有两个,则a的值是.22.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)23.如图1,等边△ABC的顶点A在直角△MON的斜边MN上,顶点B与O重合,C在OM上.如图2,从O点出发在线段OM上平移等边△ABC,在开始平移△ABC同时,点P从△ABC的顶点B出发,沿线段BA运动,当点P运动到A时即停止运动,△ABC 也随之停止平移.边AB,AC分别与线段MN交于点E,F,已知∠M=30°,∠MON=90°,OM=6,点P的移动速度是△ABC移动速度的2倍.当△PEF∽△NOM时,则线段OB的长为.24.如图,在▱ABCD中,点E在边AD上,AE:AD=2:3,BE与AC交于点F.若AC=20,则AF的长为.25.如图,AB∥CD,AD、BC相交于点E过E作EF∥CD交BD于点F,如果AB=3,CD =6,那么EF的长是.三.解答题(共5小题,满分45分)26.已知:如图,Rt△ABC∽Rt△ACD,若AC=3,BC=4,求AD.27.两个相似三角形对应边的比是2:3.它们的面积和为65平方厘米,求较小三角形的面积.28.如图,将△ABC绕点A旋转得到△ADE,连接BD,CE.求证:△ADB∽△AEC.29.已知,如图,△ABC中,AB=4,BC=8,D为BC边上一点,BD=2.求证:△ABD ∽△CBA.30.已知,在▱ABCD中,∠ABC=45°,,点G是直线BC上一点,(1)如图,若AD=6,连接BD,AG,且AG⊥BD于点E,①求对角线BD的长;②线段BG的长为;(2)连接AG,作BF⊥AG,交直线AD于点F,当时,请直接写出线段BG的长.参考答案一.选择题(共15小题,满分45分)1.解:∵△ABC∽△DEF,∠A=40°,∠B=60°,∴∠A=∠D=40°或∠B=∠D=60°或∠C=∠D=180°﹣40°﹣60°=80°,故选:D.2.解:∵△ABC∽△ACD,∴=,=,,∴AC2=AD•AB,∴A、B、C成立,不符合题意;D错误,符合题意,故选:D.3.解:∵相似三角形的对应边之比为3:7,∴它们的对应中线的比为3:7,∵其中一个三角形的一条中线为2,而这条中线可能是小三角形的,也可能是大三角形的,∴另一个三角形对应的中线可能为,也可能是.故选:C.4.解:∵△ADE∽△ABC,AD:AB=1:4,∴其周长比为1:4,∵BC=8cm,三角形ABC为等边三角形,∴△ABC的周长为24cm,∴△ADE的周长为6cm.故选:C.5.解:∵△ABE∽△CBA,∴AB:BC=BE:AB,∴AB2=BE•BC,所以A选项的结论正确;∵△ABE∽△CBA,∴∠BAE=∠C,∠AEB=∠BAC,∵AD=AE,∴∠ADE=∠AED,∠ACD=∠BCA,∴∠ADE=∠BAC,∵∠ADC=∠BAC,∴△CAD∽△CBA,∴CD:AC=AD:AB,即CD•AB=AD•AC,所以B选项的结论正确;∵△ABE∽△CBA,△CAD∽△CBA,∴△CAD∽△ABE,∴AD:BE=CD:AE,即AD•AE=CD•BE,∵AD=AE,∴AE2=CD•BE,所以C选项的结论正确;∵△CBA∽△ABE,∴AC:AE=CB:AB,∴AB•AC=AE•CB,∵AE2=CD•BE,AE≠CB,∴AB•AC≠BE•CD,所以D选项的结论不正确.故选:D.6.解:A、错误.比如,一个直角三角形的直角边为3,4,另一个直角三角形的一条直角边为3,斜边为4,这两个直角三角形不相似;B、错误.当这个角一个是等腰三角形的顶角,一个是等腰三角形的底角,两个等腰三角形不相似;C、错误;边对应成比例且一个角对应相等的两个三角形不一定相似;D、正确.两个等边三角形相似;故选:D.7.解:A、如果两个三角形全等,则相似比为1,那么这两个三角形相似,故本选项不符合题意.B、如果两个三角形相似,且相似比为1,那么这两个三角形全等,故本选项不符合题意.C、如果两个三角形都与另一个三角形相似,那么这两个三角形相似,故本选项不符合题意.D、如果两个三角形相似,它们不一定全等,则它们不一定能互相重合,故本选项符合题意.故选:D.8.解:A、当∠ACB=∠D时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;B、当∠ACD=∠ABC时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;C、当时,无法得出△ACD∽△ABC,故此选项符合题意;D、当时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;故选:C.9.解:①∠B=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故①符合题意;②DE∥BC,则△ADE∽△ABC,故②不符合题意,③,且夹角∠A=∠A,能确定△ADE∽△ACB,故③符合题意;④由AD•BC=DE•AC可得=,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB,故④不符合题意,故选:B.10.解:∵∠BAC=90°,AB=6,AC=8,∴BC==10,∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC=5,∴四边形AECD是菱形,∴菱形AECD的周长是20,故A选项正确,不符合题意;∵四边形AECD是菱形,∴∠ACB=∠ACD,∵∠B+∠ACB=90°,∴∠B+∠ACD=90°,故C选项正确,不符合题意;如图,过A作AH⊥BC于点H,∵S△ABC=BC•AH=AB•AC,∴AH==,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.故D选项正确,不符合题意;在Rt△EFC中,EF=,EC=5,∴FC==,在Rt△CAB中,AB=6,AC=8,BC=10,∵=,=,=,∴△ABC与△FEC不相似,故B选项错误,符合题意.故选:B.11.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△ABF∽△DEF,△EFD∽△EBC,∴,,,故选项A、C、D错误;∵△ABF∽△DEF,△EFD∽△EBC,∴△ABF∽△CEB,∴,故选项B正确;故选:B.12.解:∵AD∥CB,EF∥CB,∴AD∥EF∥CB,∴==,∴=,即=,∴DF=CD=×15=6.故选:B.13.解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,AD=BC,∴△AEG∽△BEC,△EFH∽△CDH,△AEG∽△DCG,∴=,故A正确,不符合题意;=,故B错误,符合题意;=,故C正确,不符合题意;∵=,∴+=+,∴=,∵AD=BC,∴=,∴=,故D正确,不符合题意.综上,只有B符合题意.故选:B.14.解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∴△EAG∽△EBF,△EAG∽△HDG,∴,,故选项A、B成立,∵CH∥BA,∴,∴,故选项C正确,∵AG∥AC,CH∥BA,∴,,而无法证明是否成立,故选项D不一定成立,故选:D.15.解:∵AD=3,BD=4,∴,∵DE∥BC,∴△ADE∽△ABC,∴===.故选:D.二.填空题(共10小题,满分45分)16.解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=8,∴ABC与△A'B'C'的周长比=AD:A′D′=10:8=5:4.故答案为:5:4.17.解:∵△ABC∽△DEF,△ABC与△DEF的面积之比为1:9,∴△ABC与△DEF的相似比为1:3,故答案为:1:3.18.解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,BC=3,AD=2.4,B'C'=2,∴BC:B′C′=AD:A′D′,∴2.4:A′D′=3:2,∴A'D'的长是1.6,故答案为:1.6.19.解:∵两个相似三角形的周长之比为1:4,∴这两个三角形的相似比为1:4,∴两个相似三角形对应边上的高之比1:4;故答案为:1:4.20.解:∵∠C=∠BCD,∴当∠A=∠CBD或∠CDB=∠ABC时,△ABC∽△BCD.故答案是:∠A=∠CBD或∠CDB=∠ABC(答案不唯一).21.解:∵BD⊥AB于点B,AC⊥AB,∴∠A=∠B=90°,当∠ACE=∠BDE时,△ACE∽△BDE,∴,∴AE=BE①,当∠ACE=∠BED时,△ACE∽△BED,∴,即AE•BE=AC•BD=3×4=12②,由①②可得:,解得:BE=4,∴AE=3,∴AB=AE+BE=7,即a=7,当AE=3时,BE=4时,两个三角形相似,当AE=4时,BE=3,两个三角形全等,符合题目要求,设AE=x,则BE=a﹣x,∴x:4=3:(a﹣x),整理得:x2﹣ax+12=0,方程有唯一解时,△=a2﹣48=0,解得:(舍去),∴a=4,当a=4时,AE:BE=3:4,两个三角形相似,AE=BE=2时,两个三角形相似,同样是两个点可以满足要求,综上所述,△BDE与△ACE相似,若这样的点E有且仅有两个,则a的值为7或4,故答案为:7或4.22.解:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.23.解:如图1中,设AB=AC=BC=a,∵△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠M+∠CAM,∠M=30°,∴∠M=∠CAM=30°,∴AC=CM=a,∴OM=2a,即2a=6,∴a=3,如图2﹣1中,设OB=m,则PB=2m,∵△PEF∽△NOM,∴∠EPF=∠N=90°﹣30°=60°,∴∠APF=∠ABC=60°,∴PF∥BC,∴∠AFP=∠ACP=60°,∴△APF的等边三角形,∵∠M+∠EBM=90°,∴∠FEP=90°,∴FE⊥AP,∴AE=EP,∴BM=6﹣m,∴BE=BM=(6﹣m),∴AE=EP=(6﹣m)﹣2m,∵AP+PB=3,∴6﹣m﹣4m+2m=3,解得m=1,∴OB=1,当点P与A重合时,△PEF∽△NOM,∵BP=2OB,∴OB=,综上所述,满足条件的OB的值为1或.24.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△AEF∽△CBF,∴,∵AE:AD=2:3,∴,∴,又∵AC=20,∴AF=8,故答案为:8.25.解:∵AB∥CD,∴△ABE∽△DCE,∴==.∵EF∥CD,∴△BEF∽△BCD,∴==,即=,∴EF=2.故答案为:2.三.解答题(共5小题,满分45分)26.解:∵AC=3,BC=4,∠ACB=90°,由勾股定理得:AB=5,∵Rt△ABC∽Rt△ACD,∴,即:,解得:AD=,∴AD的长为.27.解:设两个三角形的面积分别为x,y,则有,解得x=20,y=45答:较小三角形面积为20.28.证明:∵将△ABC绕点A旋转得到△ADE,∴AC=AE,AB=AD,∠CAE=∠BAD,∴,∴△ADB∽△AEC.29.证明:∵AB=4,BC=8,BD=2,∴.∵∠ABD=∠CBA,∴△ABD∽△CBA.30.解:(1)①如图1,过点D作DH⊥BC交BC延长线于H,∴∠H=90°,∵四边形ABCD是平行四边形,∴BC=AD=6,CD=AB=3,CD∥AB,∴∠DCH=∠ABC=45°,在Rt△CHD中,CH=DH=CD=3,∴BH=BC+CH=9,在Rt△BHD中,BD===3;②∵AG⊥BD,∴∠AEB=∠AED=90°,由①知,BD=3,设BE=x,则DE=BD﹣BE=3﹣x,在RtAEB中,AE2=AB2﹣BE2=(3)2﹣x2=18﹣x2,在RtAED中,AE2=AD2﹣DE2=62﹣(3﹣x)2=﹣x2+6x﹣54,∴18﹣x2=﹣x2+6x﹣54,∴x=,∴BE=,DE=3﹣=,四边形ABCD是平行四边形,∴AD∥BC,∴△BEG∽△DEA,∴,∴,∴BG=4,故答案为:4;(2)①当点F在点A左侧时,如图2,过点A作AM⊥BC于M,过点B作BN⊥AD于N,∴∠ANB=∠AMB=90°,在Rt△ABM中,∠ABC=45°,AB=3,∴BM=AM=AB=3,∵AD∥BC,∴∠MBN+∠ANB=180°,∴∠MBN=90°,∴∠FBN+∠MBH=90°,∠F+∠FBN=90°,∴∠F=∠HBG,∵∠HBG+∠H=∠GAM+∠AMB,∴∠HBG+90°=∠GAM+90°,∴∠HBG=∠GAM,∴∠F=∠GAM,∵∠BNF=∠GMA,∴△BNF∽△GMA,∴,∴=,∴GM=,∴BG=BM﹣GM=3﹣=,②当点F在点A右侧时,如图3,同①的方法得,GM=,∴BG=BM+GM=3+=,即线段BG的长为或.。
人教版九年级数学下册 27.2.3 相似三角形应用举例同步测试及答案【精选】
相似三角形1.某一时刻,身高1.6 m 的小明在阳光下的影子是0.4 m .同一时刻同一地点,测得某旗杆的影长是5 m ,则该旗杆的高度为( C )A .1.25 mB .10 mC .20 mD .8 m2.[2013·北京]如图27-2-52,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,EC =10 m ,CD =20 m ,则河的宽度AB 等于( B )图27-2-52A. 60 mB. 40 mC. 30 mD. 20 m【解析】 由两角对应相等可得△BAE ∽△CDE ,利用对应边成比例可得两岸间的大致距离AB . ∵AB ⊥BC ,CD ⊥BC ,∴△BAE ∽△CDE , ∴AB CD =BE CE ∵BE =20 m ,CE =10 m ,CD =20 m ,∴AB 20=2010, 解得:AB =40,故选B. 3. [2013·白银]如图27-2-53,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长__5__米.图27-2-53【解析】根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知AB OC =AM OA +AM ,即1.68=AM 20+AM, 解得AM =5,则小明的影长为5米.4. [2013·巴中]如图27-2-54,小明在打网球时,使球恰好能打过网,而且落在离网4 m 的位置上,则球拍击球的高度h 为__1.5__m__.图27-2-54第4题答图【解析】∵DE ∥BC , ∴△ADE ∽△ACB ,即DE BC =AEAB,则0.8h=44+3.5,∴h=1.5 m.故答案为:1.5 m.5.如图27-2-55,已知零件的外径为25 mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC∶OA=1∶2,量得CD=10 mm,则零件的厚度x=__2.5__mm.图27-2-556.如图27-2-56,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40 cm,EF =20 cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB=__5.5__m.图27-2-56图27-2-577.如图27-2-57,从点A(0,2)发出一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过的路径的长为__41__.图27-2-588.如图27-2-58,阳光通过窗口照到室内,在地面上留下2.7 m宽的亮区,已知亮区一边到窗下的墙脚距离CE=8.7 m,窗口高AB=1.8 m,那么窗口底边离地面的高BC=__4__m__.【解析】设BC=x m,根据题意得△BCD∽△ACE,∴BCAC=CDCE,即xx+1.8=8.7-2.78.7,解得x=4(m).9.如图27-2-59,是一个照相机成像的示意图.(1)如果像高MN是35 mm,焦距是50 mm,拍摄的景物高度AB是4.9 m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2 m的景物,拍摄点离景物有4 m,像高不变,则相机的焦距应调整为多少?图27-2-59解:根据物体成像原理知:△LMN ∽△LBA , ∴MN AB =LC LD . (1)∵像高MN 是35 mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,∴3550=4.9LD, 解得:LD =7,∴拍摄点距离景物7 m ;(2)拍摄高度是2 m 的景物,拍摄点离景物有4 m ,像高不变,∴35LC =24, 解得:LC =70,∴相机的焦距应调整为70 mm.10.如图27-2-60,为测量学校围墙外直立电线杆AB 的高度,小亮在操场上点C 处直立高3 m 的竹竿CD ,然后退到点E 处,此时恰好看到竹竿顶端D 与电线杆顶端B 重合;小亮又在点C 1处直立高3 m 的竹竿C 1D 1,然后退到点E 1处,此时恰好看到竹竿顶端D 1与电线杆顶端B 重合.小亮的眼睛离地面高度EF =E 1F 1=1.5 m ,量得CE =2 m ,EC 1=6 m ,C 1E 1=3 m.图27-2-60(1)由题意可知△FDM ∽△________,△F 1D 1N ∽△________;(2)求电线杆AB 的高度.解:(1)FBG F 1BG(2)∵D 1C 1∥BA ,∴△F 1D 1N ∽△F 1BG ,∴D 1N BG =F 1N F 1G. ∵DC ∥BA ,∴△FDM ∽△FBG .∴DM BG =FM FG . ∵D 1N =DM ,∴F 1N F 1G =FM FG ,即3GM +11=2GM +2. ∴GM =16.∵D 1N BG =F 1N F 1G ,∴1.5BG =327. ∴BG =13.5.∴AB =BG +GA =15(m).∴电线杆AB 的高度为15 m.11.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图27-2-61所示,若此时落在地面上的影长为4.4米,则树高为( C )A .11.5米B .11.75米C .11.8米D .12.25米图27-2-61第13题答图【解析】 由题意画图,树高为AB ,台阶CD 高为0.3米,DE 为树落在台阶上的影子,长为0.2米,BC 为树落在地面上的影子,长为4.4米.过D 作DF ⊥AB 于F ,则DF =BC =4.4米,所以EF =DF +DE =4.4+0.2=4.6(米),依题意有AF EF =10.4, ∴AF =EF 0.4=4.6×52=11.5(米), ∴AB =AF +BF =AF +CD =11.5+0.3=11.8(米),即树高11.8米,选C.。
九年级数学下册27.2.3相似三角形应用举例练习卷
相似三角形应用举例学校:___________姓名:___________班级:___________考号:___________一、选择题1.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则BF的长为()A.5cm B.6cm C.8cm D.9cm【答案】D.【解析】试题分析:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm,∴BF的长为6+3=9.故选D.考点:1.平行四边形的性质;2.相似三角形的判定与性质.△2.如图,在ABC中,∠C=90°,点D在AB上,BC=BD,DE⊥AB交AC于点△E,ABC的周长为△12,ADE 的周长为6,则BC的长为()A.3B.4C.5D.6【答案】A.【解析】试题分析:设BC=BD=x,AD=y,因为∠C=∠ADE=90°∠A=∠△A,所以A△D E∽ACB;两三角形的周长之比为1:2,所以AD:AC=1:2,则AC=2y;根据三角形ABC的周长为12得:x+(x+y)+2y=12;即:2x+3y=12…①根据勾股定理得:(2y)2+x2=(x+y)2,即:2x=3y…②联合①②得:x=3,y=2;故应选A.考点:相似三角形的判定与性质应用.3.如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为()【解析】如图,作DE⊥FC于点,∴△E ABC∽△CED,∴ABx-2.2=A.5.5mB.6.2mC.11mD.2.2m【答案】AEC=BCDE.设AB=x米,由题意得DE=6米,EF=2.2米.∴x106,解得x=5.5.故选A.考点:相似三角形的应用.4.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A.B.C.D.【答案】A【解析】试题分析:根据已知条件得出△ADC∽△BDE,然后依据对应边成比例即可求得.∵∠C=∠E,∠ADC=∠BDE,∴△ADC∽△BDE,∴=,又∵AD:DE=3:5,AE=8,∴AD=3,DE=5,∵BD=4,∴=,∴DC=,故应选:A.考点:相似三角形的判定和性质应用.5.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABCC.△SB CD△=SBODD.点D为线段AC的黄金分割点【答案】C.【解析】试题解析:A、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,B、∵DO是AB垂直平分线,∴AD=BD,∴∠A=∠ABD=36°,∴∠DBC=72°-36°=36°=∠ABD,∴BD是∠ABC的角平分线,正确,△C,根据已知不能推出BCD的面积和△BOD面积相等,错误,D、∵∠C=∠C,∠DBC=∠A=36°,∴△DBC∽△CAB,∴BC CDAC BC,∴BC2=CD•AC,∵∠C=72°,∠D BC=36°,∴∠BDC=72°=∠C,∴BC=BD,∵AD=BD,∴AD=BC,∴AD2=CD•AC,∴ AE BC ,即 2 2( ) =4∴DF= 42+ 4 2即点 D 是 AC 的黄金分割点,正确, 故选 C .考点:1.线段垂直平分线的性质;2.等腰三角形的性质应用;3.黄金分割6. 如图,⊙O 与 △R t ABC 的斜边 AB 相切于点 D ,与直角边 AC 相交于点 E ,且 DE ∥BC .已知 AE =2 2 ,AC =3 2 ,BC =6,则⊙O 的半径是A .3B .2 2C .2 3D . 6【答案】C . 【解析】试题分析:延长 AC 交⊙O 于 F ,连接 FD .∵∠C=90°,DE ∥BC ,∴∠DEF=90°,∴FD 是圆的直径. ∵AB 切⊙O 于 D ,∴FD ⊥AB . ∵DE ∥△B C ,∴ ADE ∽△ABC .AC =DE3 2 = DE 6 ,∴DE=4.∵∠ADF=90°,DE ⊥AF , ∴△ADE ∽△DFE ,∴DE2=AE•EF,即 42= 2 2 •EF,∴EF=42 .∴半径为 2 3 .23 ,F,,故选C.考点:1.切线的性质2.圆周角定理3.相似三角形的判定与性质应用.二、填空题7.如果两个相似三角形的对应中线之比是1︰4,那么它们的周长比是.【答案】1:4【解析】试题分析:根据中线之比为1:4,可得三角形的相似比为1:4,周长之比等于相似比.考点:三角形相似的应用.8.如图,正方形ABCD内有两点E、满足AE=4tanα=,AE⊥EF,CF⊥EF EF=CF,则正方形的边长为.【答案】10.【解析】试题分析:由AE⊥EF,CF⊥EF,AE=4,tanα=,可找出ME的长度以及用CF表示出FM的长度,再由EF=CF,可找出CF的长,结合勾股定理与正方形的性质即可得出正方形的边长.令EF与AC的交点为点M,如图所示.∵AE⊥EF,CF⊥EF,∴∠AEM=∠CFM=90°,∵∠AME=∠CMF,∴△AME∽CMF,∴∠EAM=∠FCM=α.∵AE=4,tanα=,∴EM=3,FM=CF,∵EF=EM+FM=3+CF=CF,∴CF=12,FM=9.由勾股定理可知:AM==5,CM==15,9.如图,在∆ABC中,DE//BC,DE解得h=4∴AC=AM+CM=20.∵四边形AB CD为正方形,∴AB=AC=10.考点:相似三角形的判定与性质应用;正方形的性质;解直角三角形.2=,∆ADE的面积是8,则四边形DBCE的面积是_____.BC3AD EB C【答案】10【解析】DE2=试题分析:根据DE∥BC可得:△ADE∽△ABC,根据BC3,则△ADE的面积:△ABC的面积=4:9,根据题意可得:△ABC的面积为18,则四边形DECB的面积=18-8=10.考点:三角形相似的应用10.如图,小明在打网球时,球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h 为________米.【答案】43【解析】由题意得题图中的两个三角形相似,所以0.86=,h104,即球拍击球的高度为米.33考点:三角形相似的应用三、解答题11.小明想利用太阳光测量楼高。
人教版九年级数学下册27.2.3 相似三角形的应用举例-同步练习【编辑】
27.2.3 相似三角形的应用举例要求:运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题1、如图,身高为1.6米的某学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是()A.6.4米B.7米C.8米D.9米2.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.11.5米 B.11.75米C.11.8米 D.12.25米3.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度()A.增大1.5米 B. 减小1.5米 C. 增大3.5米 D.减小3.5米4. 如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触路灯AC的底部,当他向前再步行12 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知王华同学的身高是1.6m,两个路灯的高度都是9.6m。
(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?5、如图,已知零件的外径a为25cm ,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=3,且量得CD=7cm,求厚度x。
6、小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?。
九年级数学下册第二十七章相似27.2相似三角形27.2.3相似的应用举例练习新人教版(2021年整
九年级数学下册第二十七章相似27.2 相似三角形27.2.3 相似的应用举例同步练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册第二十七章相似27.2 相似三角形27.2.3 相似的应用举例同步练习(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册第二十七章相似27.2 相似三角形27.2.3 相似的应用举例同步练习(新版)新人教版的全部内容。
《27.2。
3相似的应用举例(1)》【基础点拨】1.在同一时刻同一个地点物体的高度与自身的影长的关系是( )A .成反比例B .成正比例C .相等D .不成比例2.已知一棵树的影长是30m,同一时刻一根长1。
5m 的标杆的影长为3m ,则这棵树的高度是( )A .15mB .60mC .20mD .m 3103.一斜坡长70m,它的高为5m,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( )A .m 711B .m 710 C .m 79D .m 234.如图2,在△ABC 中,DE∥BC,DE 分别与AB ,AC 相交于点D 、E ,若AD=4,DB=2,则DE∶BC 的值为( )A 。
32 B.21 C 。
43 D 。
53图1 图2 图3 5.如图2所示阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1。
8m,窗户下檐距地面的距离BC =1m ,EC =1。
2m ,那么窗户的高AB 为( )A .1.5mB .1。
6mC .1.86mD .2.16m6.如图3所示,AB 是斜靠在墙壁上的长梯,梯脚B 距离墙角1.6m ,梯上点D距离墙1.4m ,BD 长0.55m ,则梯子长为( )A .3。
九年级数学下册27.2相似三角形27.2.3《相似三角形的应用》基础型测试(无答案)新人教版(20
九年级数学下册27.2 相似三角形27.2.3《相似三角形的应用》基础型同步测试(无答案)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册27.2 相似三角形27.2.3《相似三角形的应用》基础型同步测试(无答案)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册27.2 相似三角形27.2.3《相似三角形的应用》基础型同步测试(无答案)(新版)新人教版的全部内容。
1 / 31《相似三角形的应用》基础型一、单项选择题(共3题,共51分)1.小明在测量某建筑物高时,先测出建筑物在地面上的影长BA为21米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则建筑物高为( )A.16米 B.15米 C.14米 D.12米2。
一斜坡长80m,它的高为6m,将某物从斜坡起点推到坡上30m处停止下,停下地点的高度为( )A .B .C .D .3.如图,某商场在一楼到二楼之间装有自动扶梯,楼面与地面平行.一人扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好完全通过,请你根据图中数据回答,两层楼之间的高约为( )A.2.2m B.5。
5m C.6。
2m D.11m二、填空题(共3题,共49分)1.如图所示是小孔成像原理的示意图,根据图中所标的尺寸,蜡烛AB在暗盒中所成像CD的高度是______cm.2 / 322.如图,屋架跨度的一半OP=6m,高度OQ=2.7m.现要在屋顶上开一个天窗,天窗高度 AC=1.25m,AB在水平位置,则AB的长度约为_________m。
人教版九年级数学下册--27.2.2 相似三角形应用举例同步练习 --(附解析答案)
27.2.2 相似三角形应用举例
1. 如图,在正方形网格中,若使△ABC∽△PBD,则点P应在()
A.P1处 B.P2处 C.P3处 D.P4处
2. (2013柳州)小明在测量楼高时,测出楼房落在地面上的影
长BA为15米(如图),同时在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()
A.10米 B.12米
C.15米 D.22.5米
3. (2013北京)如图,为估算某河的宽度,在河对岸选定一个目标点
A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB等于()
A.60 m B.40 m C.30 m D.20 m
4. 如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从A点出发到B点止,动点
E从C点出发到A点止.点D运动的速度为1 c m/秒,点E运动的速度为2 cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是多长?
参考答案 1.C 2.A 3.B
4.解:设当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是x 秒, ①若△ADE ∽△ABC ,则
AD AE AB AC =
,∴122612
x x
-=,解得x =3; ②若△ADE ∽△ACB ,则
AD AE AC AB =,∴122126
x x
-=
,解得x =4.8. ∴当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是3秒或4.8秒.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相似三角形应用举例》A卷
一、单项选择题(共4题,共45分)
1.如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高( )
A.6.5 米
B.7 米
C.7. 5 米
D.8 米
2.如图,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱子(人与箱子的总高度约为2.2 m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高度约为( )
A.5.5 m
B.6.2 m
C.11 m
D.22m
3.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距旗杆底部D的距离是4m.如图所示,已知小丽同学的身高是1.54 m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆的髙度DE等于( )
A.10 m
B.12 m
C.12.4 m
D.12.32m
4.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得
AB⊥BC,CD⊥BC,点E在 BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,
EC=10m ,CD=20m,则河的宽度AB等于()
A.60m
B.40m
C.30m
D.20m
二、填空题(共1题,共11分)
1.如图,某条河的两岸有一段是平行的,在河的南岸每隔5米有一棵树,在北岸每隔50米有一根电线杆.小丽站在离南岸15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.
三、解答题(共4题,共44分)
1.如图,小明同学用自制的直角三角形纸板测量树的高度他调整自己的位置,设法使斜边保持水平,并且边与点B在同一直线上.已知纸板的两条直角边DE=0.4 m,EF=0.2 m,测得边DF离地面的高度AC=1.5m,CD=8 m,求树的高度.
2.如图,为测量学校围墙外直立电线杆的高度,小亮在操场上点C处直立高3m的竹竿CD,然后退到点E处,此时恰好看到竹竿顶端与电线杆顶端B重合;小亮又在点C1处直立高3m的竹竿,然后退到点E1处,恰好看到竹竿顶端D1与电线杆顶端B重合.小亮的眼睛离地面高度EF=1.5 m,测得CE=2m, ECl=6m,C1E1=3m.
(1)△FDM∽________ ,△F1D1N∽________ ;
(2)求电线杆的高度.
3.如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M,N两点之间的直线距离,选择测量点
A,B,C,点B,C分别在AM,AN 上,现测得AM=1千米,AN=1.8千米,AB=54米,BC=45米,AC=30米,求 M,N两点之间的直线距离.
4.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).
①小明在点B面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距离地面的距离AB=1.7米;
②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离 CB=1.2米.
根据以上测量过程及测量数据,请你求出河宽说) 是多少米?。