最新高一培优专题:数列选择题填空题简答题难题汇编(含解析)

合集下载

高考数学压轴专题最新备战高考《数列》难题汇编及答案解析

高考数学压轴专题最新备战高考《数列》难题汇编及答案解析

数学高考《数列》试题含答案一、选择题1.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( ) AB .2CD .3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.2.设等比数列{}n a 的前n 项和记为n S ,若105:1:2S S =,则155:S S =( ) A .34B .23C .12D .13【答案】A 【解析】 【分析】根据等比数列前n 项和的性质求解可得所求结果. 【详解】∵数列{}n a 为等比数列,且其前n 项和记为n S , ∴51051510,,S S S S S --成等比数列. ∵105:1:2S S =,即1051 2S S =, ∴等比数列51051510,,S S S S S --的公比为105512S S S -=-,∴()1510105511 24S S S S S -=--=, ∴15510513 44S S S S =+=, ∴1553:4S S =. 故选A . 【点睛】在等比数列{}n a 中,其前n 项和记为n S ,若公比1q ≠,则233,,,k k k k k S S S S S --L 成等比数列,即等比数列中依次取k 项的和仍为等比数列,利用此性质解题时可简化运算,提高解题的效率.3.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.4.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.5.已知数列{}n a 的前n 项和为n S ,若2n n S a n =-,则9S =( ) A .993 B .766 C .1013 D .885【答案】C 【解析】 【分析】计算11a =,()1121n n a a -+=+,得到21nn a =-,代入计算得到答案.【详解】当1n =时,11a =;当2n ≥时,1121n n n n a S S a --=-=+,∴()1121n n a a -+=+,所以{}1n a +是首项为2,公比为2的等比数列,即21nn a =-,∴1222n n n S a n n +=-=--,∴1092111013S =-=.故选:C . 【点睛】本题考查了构造法求通项公式,数列求和,意在考查学生对于数列公式方法的灵活运用.6.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.7.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.8.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.9.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.10.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 为( ) A .3∶4 B .4∶3 C .1∶2 D .2∶1【答案】A 【解析】 【分析】根据在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012S x =,1534S x =,从而得到155:S S 的值. 【详解】解:在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012S x =, 1051122S S x x x ∴-=-=-,151014S S x ∴-=,15113244S x x x ∴=+=, 故155334:4xS S x ==, 故选:A . 【点睛】本题考查等比数列的性质,解题的关键是熟练掌握等比数列的性质k S ,2k k S S -,32k k S S -,成公比为k q 的等比数列,属于中档题.11.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A.4B .19 C .20 D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.12.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.13.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( ) A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.14.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====.故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.15.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则A .140,0a d dS >>B .140,0a d dS <<C .140,0a d dS ><D .140,0a d dS <>【答案】B 【解析】 ∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念16.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.17.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2【答案】B 【解析】 【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得. 【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B 【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.18.等比数列{}n a 共有21n +项,其中11a =,偶数项和为170,奇数项和为341,则n =( )A .3B .4C .7D .9【答案】B 【解析】由题意知1321...341n a a a ++++= ,可得3211...341340n a a a +++=-=,又因为242...170,n a a a +++= 所以321242 (340)2 (170)n n a a q a a a +++===+++ ,21211234117051112n n S ++-==+=- ,解得4n = ,故选B.19.设函数()221x f x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( ) A .9 B .11C .92D .112【答案】B 【解析】 【分析】先计算出()()f x f x +-的值,然后利用倒序相加法即可计算出所求代数式的值. 【详解】()221xf x =+Q ,()()()22222212121221xx x x x x f x f x --⋅∴+-=+=+++++()2122222211221xx x x x +⋅=+==+++, 设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++, 则()()()()()54045S f f f f f =+++++-+-L L ,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =. 故选:B. 【点睛】本题考查函数值的和的求法,注意运用倒序相加法,求得()()2f x f x +-=是解题的关键,考查化简运算能力,属于中档题.20.执行如图所示的程序框图,若输入,则输出的S 的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。

高一必修数列测试题及答案详解高一数学

高一必修数列测试题及答案详解高一数学

高一必修数列测试题及答案详解高一数学一、填空题1. 若\[a_n = 2n - 1\],则数列\[\{a_n\}\]的前5项分别为\[1, 3, 5, 7, 9\]。

2. 若\[b_n = 3^n\],则数列\[\{b_n\}\]的前4项分别为\[3, 9, 27, 81\]。

3. 若\[c_n = \frac{n(n+1)}{2}\],则数列\[\{c_n\}\]的前6项分别为\[1, 3, 6, 10, 15, 21\]。

二、选择题1. 以下是等差数列的是(B)。

A. 1, 2, 4, 7, 11B. 2, 4, 8, 16, 32C. 1, 3, 6, 10, 15D. 3, 8, 15, 24, 352. 若\[a_1=2\],\[a_2=5\],则\[a_3=8\),\[a_4=11\),则\(a_n\)的通项公式是(C)。

A. \(a_n=2n+1\)B. \(a_n=3n-1\)C. \(a_n=3n-1\)D. \(a_n=2n+4\)3. 若对于等差数列\(\{a_n\}\)有\(\frac{{a_5 - a_2}}{7}=3\),则\(d=\)(A)。

A. 1B. 2C. 3D. 4三、解答题1. 求等差数列\(\{a_n\}\)的前5项之和,已知\(a_1=1\),\(a_3=7\)。

(解答略)2. 若等差数列\(\{a_n\}\)的首项为-3,公差为4,求该数列的第n项和。

\({S_n}=\)(解答略)3. 若等差数列\(\{a_n\}\)的首项为2,公差为3,已知\(\frac{{a_m+a_n}}{2}=13\),求\(m\)与\(n\)的值。

(解答略)四、解题思路详解1. 填空题1解析:根据数列通项公式\[a_n = 2n - 1\],带入\[n=1,2,3,4,5\],即可得到\[a_n\]的前5项。

2. 填空题2解析:根据数列通项公式\[b_n=3^n\],带入\[n=1,2,3,4\],即可得到\[b_n\]的前4项。

高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。

高考数学压轴专题最新备战高考《数列》难题汇编附答案

高考数学压轴专题最新备战高考《数列》难题汇编附答案
考点:等比数列的通项公式及性质.
12.在数列 中, ,则 的值为
A.-2B. C. D.
【答案】B
【解析】
由 ,得 .
所以 .
即数列 以3为周期的周期数列.
所以 .
故选B.
点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项,本题是通过迭代得到了数列的周期性.
【答案】C
【解析】
【分析】
根据等比数列的性质可将已知等式变为 ,解方程求得结果.
【详解】
由题意得:
本题正确选项:
【点睛】
本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于 的方程,属于基础题.
9.数列{an},满足对任意的n∈N+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列{an}的前100项的和S100=( )
【详解】
解:根据题意,
当孩子18岁生日时,孩子在一周岁生日时存入的 元产生的本利合计为 ,
同理:孩子在2周岁生日时存入的 元产生的本利合计为 ,
孩子在3周岁生日时存入的 元产生的本利合计为 ,
孩子在17周岁生日时存入的 元产生的本利合计为 ,
可以看成是以 为首项, 为公比的等比数列的前17项的和,
此时将存款(含利息)全部取回,
A. B. C. D.
【答案】B
【解析】
【分析】
计算出 的值,推导出 ,再由 ,结合数列的周期性可求得数列 的前 项和.

高一数学数列练习题及答案

高一数学数列练习题及答案

高一数学数列练习题及答案一、选择题1. 设数列 {an} 为等差数列,已知 a1 = 3,d = 2,求 a4 的值。

A. 4B. 5C. 6D. 72. 若数列 {bn} 的前 n 项和为 Sn = 2n^2 + 3n,求 b1 的值。

A. 3B. 4C. 5D. 63. 已知数列 {cn} 为等差数列,前 n 项和为 Sn = 3n^2 + n,求通项c3 的值。

A. 4B. 5C. 6D. 74. 数列 {dn} 的通项公式为 an = 2n^3,求第 5 项的值。

A. 200B. 250C. 300D. 3505. 若数列 {en} 的前 n 项和为 Sn = n(5n + 1),求 e1 的值。

A. 0B. 1C. 2D. 3二、填空题1. 设数列 {an} 的前 n 项和为 Sn = 3n^2 + 4n,其中 a1 = 2,则 a2 的值为 ________。

2. 已知等差数列 {bn} 的前 n 项和为 Sn = n^2 + 3n,其中 b2 = 7,则b1 的值为 ________。

3. 若数列 {cn} 的通项公式为 cn = 2n^2 + n,则第 4 项的值为________。

4. 设数列 {dn} 的前 n 项和为 Sn = 4n + 5n^2,则 d1 的值为________。

5. 已知数列 {en} 的前 n 项和为 Sn = 2n(3n + 1),其中 e3 = 28,则e1 的值为 ________。

三、解答题1. 设等差数列 {an} 前 n 项和为 Sn,已知 a1 = 3,an = 7,求 n 的值及 Sn 的表达式。

2. 设等差数列 {bn} 前 n 项和为 Sn,已知 b1 = 1,d = 5,求 n 的值及 Sn 的表达式。

3. 已知等差数列 {cn} 的通项公式为 cn = an - 2n,前 n 项和为 Sn = 3n^2 + 2n,求 a1 的值。

最新成都高一数学期末考试难题汇编(含解析)超经典填空选择解答题(高一培优)

最新成都高一数学期末考试难题汇编(含解析)超经典填空选择解答题(高一培优)

最新成都高一期末考试难题汇编(含解析)高一培优第Ⅰ卷(选择题)一.选择题(共16小题)1.设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a的值是()A.B.3 C.D.22.已知函数y=sinx+1与y=在[﹣a,a](a∈Z,且a>2017)上有m个交点(x1,y1),(x2,y2),…,(x m,y m),则(x1+y1)+(x2+y2)+…+(x m+y m)=()A.0 B.m C.2m D.20173.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),且,记S n为数列{b n}的前n项和,则S30=()A.294 B.174 C.470 D.3044.已知数列{a n}的前n项和为S n,对任意n∈N*,S n=(﹣1)n a n++2n﹣6,﹣p)(a n﹣p)<0恒成立,则实数p的取值范围是()且(a n+1A.(﹣,)B.(﹣∞,)C.(﹣,6)D.(﹣2,)5.已知函数,若,则=()A.1 B.0 C.﹣1 D.﹣26.已知平面向量,,满足,,且,则的取值范围是()A.[0,2]B.[1,3]C.[2,4]D.[3,5]7.如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A﹣BEF的体积为定值D.异面直线AE,BF所成的角为定值8.设等差数列{a n}满足=1,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.(,)B.[,]C.(,)D.[,]9.在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,(a+b+c)(a+c ﹣b)=,则cosA+sinC的取值范围为()A.B.C.D.10.定义符号函数为sgn(x)=,则下列命题:①|x|=x•sgn(x);②关于x的方程lnx•sgn(lnx)=sinx•sgn(sinx)有5个实数根;③若lna•sgn(lna)=lnb•sgn(lnb)(a>b),则a+b的取值范围是(2,+∞);④设f(x)=(x2﹣1)•sgn(x2﹣1),若函数g(x)=f2(x)+af(x)+1有6个零点,则a<﹣2.正确的有()A.0个 B.1个 C.2个 D.3个11.已知函数,那么下列命题正确的是()A.若a=0,则y=f(x)与y=3是同一函数B.若0<a≤1,则C.若a=2,则对任意使得f(m)=0的实数m,都有f(﹣m)=1D.若a>3,则f(cos2)<f(cos3)12.若实数a,b,c满足log a3<log b3<log c3,则下列关系中不可能成立的()A.a<b<c B.b<a<c C.c<b<a D.a<c<b13.已知f(x)=2sinx+cosx,若函数g(x)=f(x)﹣m在x∈(0,π)上有两个不同零点α、β,则cos(α+β)=()A.B.C.D.14.已知数列{a n}、{b n}均为等比数列,其前n项和分别为S n,T n,若对任意的n∈N*,都有,则=()A.81 B.9 C.729 D.73015.三棱柱ABC﹣A′B′C′的底面是边长为1的正三角形,高AA′=1,在AB上取一点P,设△PA′C′与底面所成的二面角为α,△PB′C′与底面所成的二面角为β,则tan(α+β)的最小值是()A.B. C.D.16.给出下列四个关于数列命题:(1)若{a n}是等差数列,则三点、、共线;(2)若{a n}是等比数列,则S m、S2m﹣S m、S3m﹣S2m(m∈N*)也是等比数列;(3)等比数列{a n}的前n项和为S n,若对任意的n∈N*,点(n,S n)均在函数y=b x+r(b≠0,b≠1,b、r均为常数)的图象上,则r的值为﹣1.(4)对于数列{a n},定义数列{a n+1﹣a n}为数列{a n}的“差数列”,若a1=2,{a n}的“差数列”的通项为2n,则数列{a n}的前n项和S n=2n+1﹣2其中正确命题的个数是()A.4 B.3 C.2 D.1第Ⅱ卷(非选择题)二.填空题(共10小题)17.设a为自然对数的底数,若函数f(x)=a x(2﹣a x)+(a+2)|a x﹣1|﹣|a2|存在三个零点,则实数a的取值范围是.18.已知O是锐角三角形△ABC的外接圆的圆心,且,若,则k= .19.在△ABC中,角A、B、C所对的边分别为a、b、c,且acosB﹣bcosA=c,当tan(A﹣B)取最大值时,角B的值为.20.设e为自然对数的底数,若函数f(x)=e x(2﹣e x)+(a+2)•|e x﹣1|﹣a2存在三个零点,则实数a的取值范围是.21.已知数列{a n}满足则{a n}的通项公式.22.已知数列满足:a1=1,a n+1=,(n∈N*),若b n+1=(n﹣λ)(+1),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围为.23.若函数f(x),g(x)分别是R上的奇函数、偶函数且满足f(x)+g(x)=e x,其中e是自然对数的底数,则比较f(e),f(3),g(﹣3)的大小.24.已知m∈R,函数f(x)=,g(x)=x2﹣2x+2m2﹣1,若函数y=f(g(x))﹣m有6个零点则实数m的取值范围是.25.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,P为线段A1B上的动点,则下列结论正确的序号是.①DC1⊥D1P②平面D1A1P⊥平面A1AP③∠APD1的最大值为90°④AP+PD1的最小值为.26.在△ABC中,a,b,c是角A,B,C所对应边,且a,b,c成等比数列,则sinA(+)的取值范围是.三.解答题(共14小题)27.对于在区间[m,n]上有意义的函数f(x),满足对任意的x1,x2∈[m,n],有|f(x1)﹣f(x2)≤1|恒成立,则称f(x)在[m.n]上是“友好”的,否则就称f(x)在[m,n]上是“不友好”的,现有函数f(x)=log3.(1)若函数f(x)在区间[m,m+1](1≤m≤2)上是“友好”的,求实数a的取值范围;(2)若关于x的方程=1的解集中有且只有一个元素,求实数a的取值范围.28.已知数列{a n}中,a1=1,a n•a n+1=()n(n∈N*),记T2n为{a n}的前2n项的和.(I)设b n=a2n,证明:数列{b n}是等比数列;(Ⅱ)求T2n;(III)不等式对于一切n∈N*恒成立,求实数k的最大值.29.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA,且B为钝角.(I)证明:;(II)求sinA+sinC的取值范围.30.定义函数,其中x为自变量,a为常数.(I)若当x∈[0,2]时,函数f a(x)的最小值为一1,求a之值;(II)设全集U=R,集A={x|f3(x)≥f a(0)},B={x|f a(x)+f a(2﹣x)=f2(2)},且(∁U A)∩B≠∅中,求a的取值范围.31.已知数列{a n}满足.(1)设,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n;(3)记,求数列{c n}的前n项和T n.32.设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(1)求tanA:tanB的值;的最大值.(2)若b=4,求S△ABC33.已知数列{a n}的前n项和为S n,a1=1,且(n+1)a n=2S n(n∈N*),数列{b n}满足,,对任意n∈N*,都有.(1)求数列{a n}、{b n}的通项公式;(2)令T n=a1b1+a2b2+…+a n b n.若对任意的n∈N*,不等式λnT n+2b n S n<2(λn+3b n)恒成立,试求实数λ的取值范围.34.设f(x)是定义在R上的奇函数,且对任意x∈R,都有f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x2.(I)当﹣2≤x≤0时,求f(x)的解析式;(II)设向量,若同向,求的值;(III)定义:一个函数在某区间上的最大值减去最小值的差称为此函数在此区间上的“界高”.求f(x)在区间[t,t+1](﹣2≤t≤0)上的“界高”h(t)的解析式;在上述区间变化的过程中,“界高”h(t)的某个值h0共出现了四次,求h0的取值范围.35.若在定义域内存在实数x0使得f(x0+1)=f(x0)+f(1)成立则称函数f(x)有“溜点x0”(1)若函数在(0,1)上有“溜点”,求实数m的取值范围;(2)若函数f(x)=lg()在(0,1)上有“溜点”,求实数a的取值范围.36.函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③.(1)求证:f(x)在R上是单调增函数;(2)若f(4x+a•2x+1﹣a2+2)≥1对任意x∈R恒成立,求实数a的取值范围.37.如图,已知四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(1)证明:AE⊥平面PAD;(2)取AB=2,若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E﹣AF﹣C的余弦值.38.已知f(n)是平面区域I n:(x,y∈R,n∈N*)内的整点(横纵坐标都是整数的点)的个数,记a n=2n f(n),数列{a n}的前n项和为S n(1)求数列{a n}的前n项和为S n(2)若对于任意n∈N*,≤c恒成立,求实数c的取值范围.39.对于无穷数列{x n}和函数f(x),若x n+1=f(x n)(n∈N+),则称f(x)是数列{x n}的母函数.(Ⅰ)定义在R上的函数g(x)满足:对任意α,β∈R,都有g(αβ)=αg(β)+βg(α),且;又数列{a n}满足.(1)求证:f(x)=x+2是数列{2n a n}的母函数;(2)求数列{a n}的前项n和S n.(Ⅱ)已知是数列{b n}的母函数,且b1=2.若数列的前n项和为T n,求证:.40.已知数列{a n}满足:a1=1,a n+1=2a n+1.(1)求证:数列{a n+1}是等比数列;(2)求数列{a n}的通项公式;(3)设,求数列{c n}的前n项和T n的取值范围.参考答案与试题解析一.选择题(共16小题)1.设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a的值是()A.B.3 C.D.2【解答】解:如图所示,画出函数f(x)的图象,不妨设x1<x2<x3,则x1+x2=2×(﹣)=﹣3,又x1+x2+x3=﹣,∴x3=,∴a==.故选:A.2.已知函数y=sinx+1与y=在[﹣a,a](a∈Z,且a>2017)上有m个交点(x1,y1),(x2,y2),…,(x m,y m),则(x1+y1)+(x2+y2)+…+(x m+y m)=()A.0 B.m C.2m D.2017【解答】解:分别画出函数y=sinx+1与函数y=的图象,由图象可知,两个图象共有m个交点,均关于(1,0)成中心对称,∴(x1+y1)+(x2+y2)+…+(x m+y m)=m,故选:B.3.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),且,记S n为数列{b n}的前n项和,则S30=()A.294 B.174 C.470 D.304【解答】解:∵na n=(n+1)a n+n(n+1),+1∴﹣=1,∴数列{}是等差数列,公差与首项都为1.∴=1+(n﹣1),可得a n=n2.∵,∴b n=n2cos,=(3k﹣2)2cos=﹣(3k﹣2)2,∴b3k﹣2=﹣(3k﹣1)2,同理可得b3k﹣1b3k=(3k)2,k∈N*.+b3k﹣1+b3k═﹣(3k﹣2)2﹣(3k﹣1)2+(3k)2=9k﹣,∴b3k﹣2则S30=9×(1+2+…+10)﹣×10=470,故选:C.4.已知数列{a n}的前n项和为S n,对任意n∈N*,S n=(﹣1)n a n++2n﹣6,﹣p)(a n﹣p)<0恒成立,则实数p的取值范围是()且(a n+1A.(﹣,)B.(﹣∞,)C.(﹣,6)D.(﹣2,)【解答】解:∵S n=(﹣1)n a n++2n﹣6,=(﹣1)n﹣1a n﹣1++2n﹣8,∴当n≥2时,S n﹣1两式相减得:a n=(﹣1)n a n++2n﹣6﹣[(﹣1)n﹣1a n﹣1++2n﹣8],整理得:[1﹣(﹣1)n]a n=(﹣1)n a n﹣1+2﹣(n≥2),(*)又∵S n=(﹣1)n a n++2n﹣6,∴S1=(﹣1)a1++2﹣6,即a1=﹣,下面对n的奇偶性进行讨论:=﹣2,(1)当n为偶数时,化简(*)可知:a n﹣1∴a n=﹣2(n为奇数);(2)当n为奇数时,化简(*)可知:2a n=﹣a n﹣1+2﹣,+2﹣,即a n﹣1=6﹣,即﹣4=﹣a n﹣1∴a n=6﹣(n为偶数);于是a n=.﹣p)(a n﹣p)<0恒成立,∵对任意n∈N*(a n+1)(p﹣a n)<0恒成立.∴对任意n∈N*(p﹣a n+1}单调递减,数列{a2k}单调递增,又∵数列{a2k﹣1∴当n为奇数时,有:a n<p<a n+1,则a1<p<a1+1,即﹣<p<;<p<a n,当n为偶数时,有:a n+1<p<a2,即﹣<p<;则a2+1综上所述,﹣<p<,故选:A.5.已知函数,若,则=()A.1 B.0 C.﹣1 D.﹣2【解答】解:由已知可得:=log2=log2,可得:﹣sinα﹣cosα=2(﹣sinα+cosα),解得:tanα=3,则=log2=log2=log2 =log2=log2=﹣1.故选:C.6.已知平面向量,,满足,,且,则的取值范围是()A.[0,2]B.[1,3]C.[2,4]D.[3,5]【解答】解:∵,,∴==4.∵,∴=﹣=cosα﹣3,设α为与的夹角.∴cosα=∈[﹣1,1],解得∈[1,3].故选:B.7.如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A﹣BEF的体积为定值D.异面直线AE,BF所成的角为定值【解答】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO 为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F 与B1重合时tanα=,∴异面直线AE、BF所成的角不是定值,故D错误;故选:D.8.设等差数列{a n}满足=1,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.(,)B.[,]C.(,)D.[,]【解答】解:∵等差数列{a n}满足=1,∴(sina3cosa6﹣sina6cosa3)(sina3cosa6+sina6cosa3)=sin(a3+a6)=(sina3cosa6+sina6cosa3),∴sina3cosa6﹣sina6cosa3=1,即sin(a3﹣a6)=1,或sin(a3+a6)=0(舍)当sin(a3﹣a6)=1时,∵a3﹣a6=﹣3d∈(0,3),a3﹣a6=2kπ+,k∈Z,∴﹣3d=,d=﹣.∵=+(a1﹣)n,且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴﹣=9,化为.∴=.故选:C.9.在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,(a+b+c)(a+c ﹣b)=,则cosA+sinC的取值范围为()A.B.C.D.【解答】(本题满分为12分)解:由:(a+b+c)(a+c﹣b)=,可得:,根据余弦定理得:,∵B是锐角,∴.∴,即,=,又△ABC是锐角三角形,∴,即,∴,∴,∴.故选:B.10.定义符号函数为sgn(x)=,则下列命题:①|x|=x•sgn(x);②关于x的方程lnx•sgn(lnx)=sinx•sgn(sinx)有5个实数根;③若lna•sgn(lna)=lnb•sgn(lnb)(a>b),则a+b的取值范围是(2,+∞);④设f(x)=(x2﹣1)•sgn(x2﹣1),若函数g(x)=f2(x)+af(x)+1有6个零点,则a<﹣2.正确的有()A.0个 B.1个 C.2个 D.3个【解答】解:①当x>0时,x•sgn(x)=x,当x=0时,x•sgn(x)=0,当x<0时,x•sgn(x)=﹣x.故|x|=x•sgn(x)成立,故①正确;②设f(x)=lnx•sgn(lnx),当lnx>0即x>1时,f(x)=lnx,当lnx=0即x=1时,f(x)=0,当lnx<0即0<x<1时,f(x)=﹣lnx,作出y=f(x)的图象(如右上);设g(x)=sinx•sgn(sinx),当sinx>0时,g(x)=sinx,当sinx=0时,g(x)=0,当sinx<0时,g(x)=﹣sinx,画出y=g(x)的图象(如右上),由图象可得y=f(x)和y=g(x)有两个交点,则关于x的方程lnx•sgn(lnx)=sin x•sgn(sinx)有2个实数根,故②错误;③若lna•sgn(lna)=lnb•sgn(lnb)(a>b),则a>1,0<b<1,即有lna=﹣lnb,可得lna+lnb=0,即ab=1,则a+b>2=2,则a+b的取值范围是(2,+∞),故③正确;④设f(x)=(x2﹣1)•sgn(x2﹣1),当x2﹣1>0即x>1或x<﹣1,即有f(x)=x2﹣1,当x2﹣1=0即x=±1,f(x)=0,当x2﹣1<0即﹣1<x<1,f(x)=1﹣x2,作出f(x)的图象,(如下图)令t=f(x),可得函数y=t2+at+1,若函数g(x)=f2(x)+af(x)+1有6个零点,则t2+at+1=0有6个实根,由于t=0不成立,方程t2+at+1=0的两根,一个大于1,另一个介于(0,1),则即为,解得a<﹣2,故④正确.故正确的个数有3个.故选:D.11.已知函数,那么下列命题正确的是()A.若a=0,则y=f(x)与y=3是同一函数B.若0<a≤1,则C.若a=2,则对任意使得f(m)=0的实数m,都有f(﹣m)=1D.若a>3,则f(cos2)<f(cos3)【解答】解:对于A,若a=0,则y=f(x)的定义域为{x|x≠0},y=3定义域为R,不是同一函数,故错;对于B,若0<a≤1时,可得函数f(x)在[﹣,]上为增函数,∵=,故错;对于C,a=2时,f(x)=,f(x)+f(﹣x)==,∴则对任意使得f(m)=0的实数m,都有f(﹣m)=1,正确;对于D,当a>3时,f(x)在[﹣,]上为增函数,且cos2>cos3,则f(cos2)>f(cos3),故错.故选:C.12.若实数a,b,c满足log a3<log b3<log c3,则下列关系中不可能成立的()A.a<b<c B.b<a<c C.c<b<a D.a<c<b【解答】解:∵实数a,b,c满足log a3<log b3<log c3,y=log m3(0<m<1)是减函数,y=log m3(m>1)是增函数,∴当a,b,c均大于1时,a>b>c>1;当a,b,c均小于1时,1>a>b>c>0;当a,b,c中有1个大于1,两个小于1时,c>1>a>b>0;当a,b,c中有1 个小于1,两个大于1时,b>c>1>a>0.故选:A.13.已知f(x)=2sinx+cosx,若函数g(x)=f(x)﹣m在x∈(0,π)上有两个不同零点α、β,则cos(α+β)=()A.B.C.D.【解答】解:∵α、β是函数g(x)=2sinx+cosx﹣m在(0,π)内的两个零点,即α、β是方程2sinx+cosx=m在(0,π)内的两个解,∴m=2sinα+cosα=2sinβ+cosβ,即2sinα﹣2sinβ=cosβ﹣cosα,∴2×2×cos sin=﹣2sin sin,∴2cos=sin,∴tan=2,∴cos(α+β)===﹣,故选:D.14.已知数列{a n}、{b n}均为等比数列,其前n项和分别为S n,T n,若对任意的n∈N*,都有,则=()A.81 B.9 C.729 D.730【解答】解:数列{a n}、{b n}均为等比数列,其前n项和分别为S n,T n,若对任意的n∈N*,都有,设{a n},{b n}的公比分别为q,q′,令n=1,可得=1,∴a1=b1.再令n=2,可得==,即1+2q=5+5q′,即2q﹣4=5q′①.再令n=3,可得==7,即1+q+q2=7+7q′+7q′2,即q+q2=6+7q′+7q′2②.由①②求得q=9,q′=3,则===9,故选:B.15.三棱柱ABC﹣A′B′C′的底面是边长为1的正三角形,高AA′=1,在AB上取一点P,设△PA′C′与底面所成的二面角为α,△PB′C′与底面所成的二面角为β,则tan(α+β)的最小值是()A.B. C.D.【解答】解:记P在A′B′=1上的投影为P′,A′P′=t,则B′P′=1﹣t,由图形得tanα==,tanβ=,∴tan(α+β)===≥﹣.∴tan(α+β)的最小值是﹣.故选:C.16.给出下列四个关于数列命题:(1)若{a n}是等差数列,则三点、、共线;(2)若{a n}是等比数列,则S m、S2m﹣S m、S3m﹣S2m(m∈N*)也是等比数列;(3)等比数列{a n}的前n项和为S n,若对任意的n∈N*,点(n,S n)均在函数y=b x+r(b≠0,b≠1,b、r均为常数)的图象上,则r的值为﹣1.(4)对于数列{a n},定义数列{a n+1﹣a n}为数列{a n}的“差数列”,若a1=2,{a n}的“差数列”的通项为2n,则数列{a n}的前n项和S n=2n+1﹣2其中正确命题的个数是()A.4 B.3 C.2 D.1【解答】解:(1)若{a n}是等差数列,则S n=na1+,∴=a1﹣+n,即是关于n的一次函数,∴{}是等差数列,∴三点、、共线,故(1)正确;(2)若{a n}是公比为﹣1的等比数列,当m为偶数时,有S m=S2m=S3m=0,显然结论错误;故(2)错误;(3)S n=b n+r,当n=1时,a1=S1=b+r,当n≥2时,a n=S n﹣S n﹣1=b n+r﹣(b n﹣1+r)=b n﹣b n﹣1=(b﹣1)b n﹣1,又因为{a n}为等比数列,所以r=﹣1,故(3)正确;(4)n=1时,a1=2;当n≥2时,a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2n﹣1+2n﹣2+…+2+2=2+=2n;∴S n==2n+1﹣2,故(4)正确.故选:B.二.填空题(共10小题)17.设a为自然对数的底数,若函数f(x)=a x(2﹣a x)+(a+2)|a x﹣1|﹣|a2|存在三个零点,则实数a的取值范围是(1,2].【解答】解:令t=a x﹣1,a x=t+1,f(t)=1﹣t2+(a+2)|t|﹣a2,令m=|t|=|a x﹣1|,则f(m)=﹣m2+(a+2)m+1﹣a2,∵f(x)有3个零点,∴根据m=|t|=|a x﹣1|,可得f(m)的一根在(0,1),另一根在[1,+∞),∴,∴a∈(1,2].故答案为:(1,2].18.已知O是锐角三角形△ABC的外接圆的圆心,且,若,则k= .【解答】解:设R为三角形△ABC的外接圆的半径,∵O是三角形△ABC的外接圆的圆心,∴,,由,可得+=k=k•R2,∴k=2cosCsinB+2sinCcosB=2sinA,∵,∴.∴.故答案为:.19.在△ABC中,角A、B、C所对的边分别为a、b、c,且acosB﹣bcosA=c,当tan(A﹣B)取最大值时,角B的值为.【解答】解:在△ABC中,∵acosB﹣bcosA=c,由正弦定理定理可得:sinAcosB﹣sinBcosA=sinC=sin(A+B),化为:tanA=3tanB>0,∴tan(A﹣B)===≤=,当且仅当tanB=,即B=时取等号.故答案为:.20.设e为自然对数的底数,若函数f(x)=e x(2﹣e x)+(a+2)•|e x﹣1|﹣a2存在三个零点,则实数a的取值范围是(1,2].【解答】解:令t=e x﹣1,e x=t+1,f(t)=1﹣t2+(a+2)|t|﹣a2,令m=|t|=|e x﹣1|,则f(m)=﹣m2+(a+2)m+1﹣a2,∵f(x)有3个零点,∴根据m=|t|=|e x﹣1|,可得f(m)的一根在(0,1),另一根在[1,+∞),∴∴a∈(1,2].故答案为(1,2].21.已知数列{a n}满足则{a n}的通项公式.【解答】解:∵数列{a n}满足,①∴当n≥2时,仿仿写一个式子②①﹣②得,∴a n=2n+1n≥2,当n=1时,a1=6,∴{a n}的通项公式a n=故答案为:a n=22.已知数列满足:a1=1,a n+1=,(n∈N*),若b n+1=(n﹣λ)(+1),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围为λ<2 .【解答】解:∵数列{a n}满足:a1=1,a n+1=,(n∈N*),∴,化为,∴数列是等比数列,首项为+1=2,公比为2,∴,∴b n=(n﹣λ)(+1)=(n﹣λ)•2n,+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴n≥2时,(n﹣λ)•2n>(n﹣1﹣λ)•2n﹣1,化为λ<n+1,∵数列{n+1}为单调递增数列,∴λ<3.n=1时,b2=(1﹣λ)×2>﹣λ=b1,解得λ<2.综上可得:实数λ的取值范围为λ<2.故答案为:λ<2.23.若函数f(x),g(x)分别是R上的奇函数、偶函数且满足f(x)+g(x)=e x,其中e是自然对数的底数,则比较f(e),f(3),g(﹣3)的大小f(e)<f(3)<g(﹣3).【解答】解;∵函数f(x),g(x)分别是R上的奇函数、偶函数且满足f(x)+g(x)=e x,①∴f(﹣x)+g(﹣x)=e﹣x,即﹣f(x)+g(x)=e﹣x,②两式联立得,f(x)=,则函数f(x)为增函数,∴f(e)<f(3),∵g(x)偶函数,∴g(﹣3)=g(3),∵g(3)=,f(3)=,∴f(3)<g(﹣3),综上:f(e)<f(3)<g(﹣3).故答案为:f(e)<f(3)<g(﹣3).24.已知m∈R,函数f(x)=,g(x)=x2﹣2x+2m2﹣1,若函数y=f(g(x))﹣m有6个零点则实数m的取值范围是.【解答】解:函数f(x)=的图象如图所示,令g(x)=t,y=f(t)与y=m的图象最多有3个零点,当有3个零点,则0<m<3,从左到右交点的横坐标依次t1<t2<t3,由于函数y=f(g(x))﹣m有6个零点,t=x2﹣2x+2m2﹣1,则每一个t的值对应2个x的值,则t的值不能取最小值,函数t=x2﹣2x+2m2﹣1的对称轴x=1,则t的最小值为1﹣2+2m2﹣1=2m2﹣2,由图可知,2t1+1=﹣m,则,由于t1是交点横坐标中最小的,满足>2m2﹣2①,又0<m<3②,联立①②得0<m<.∴实数m的取值范围是(0,).故答案为:.25.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,P为线段A1B上的动点,则下列结论正确的序号是①②④.①DC1⊥D1P②平面D1A1P⊥平面A1AP③∠APD1的最大值为90°④AP+PD1的最小值为.【解答】解:对于①,∵A1D1⊥平面D1DCC1,DC1⊂平面D1DCC1,∴A1D1⊥DC1,又A1B⊥DC1,A1D1∩A1B=A1,∴DC1⊥面A1BCD1,D1P⊂平面D1DCC1,∴DC1⊥D1P,故①正确对于②,∵平面D1A1P即为平面D1A1BC,平面A1AP 即为平面A1ABB1,且D1A1⊥平面A1ABB1,∴平面D1A1BC⊥平面A1ABB1,∴平面D1A1P⊥平面A1AP,故②正确;对于③,在△D1AP中,由余弦定理可知,当0<A1P<时,∠APD1为钝角,故③错误;对于④,将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△AA1D1中,利用余弦定理解三角形得AD1=,故④正确.故答案为:①②④.26.在△ABC中,a,b,c是角A,B,C所对应边,且a,b,c成等比数列,则sinA(+)的取值范围是(,).【解答】解:∵△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∵a,b,c成等比数列,sin2B=sinAsinC设a,b,c分别为a,aq,aq2.则有⇒⇒.sinA()=sinA()=sinA=∴sinA(+)的取值范围是:(,)三.解答题(共14小题)27.对于在区间[m,n]上有意义的函数f(x),满足对任意的x1,x2∈[m,n],有|f(x1)﹣f(x2)≤1|恒成立,则称f(x)在[m.n]上是“友好”的,否则就称f(x)在[m,n]上是“不友好”的,现有函数f(x)=log3.(1)若函数f(x)在区间[m,m+1](1≤m≤2)上是“友好”的,求实数a的取值范围;(2)若关于x的方程=1的解集中有且只有一个元素,求实数a的取值范围.【解答】解:(1)f(x)=log3(a+)在[m,m+1]上单调递减,∴f(x)的最大值为f(m)=log3(),f(x)的最小值为log3().∵函数f(x)在区间[m,m+1](1≤m≤2)上是“友好”的,∴log3()﹣log3(+a)≤1,即,∴a≥﹣•.令g(m)=﹣•,则g′(m)=,∴当1≤m≤时,g′(m)<0,当<m≤2时,g′(m)>0,又g(1)=﹣,g(2)=﹣,∴g(m)的最大值为﹣.∴a≥﹣.又对于任意的x∈[m,m+1],恒成立,a>﹣恒成立,即a>﹣≥﹣,综上,a的取值范围是[﹣,+∞).(2)∵,即=(a﹣3)x+2a﹣4>0,且(a﹣3)x+2a﹣4≠1,①∴(a﹣3)x2+(a﹣4)x﹣1=0,即[(a﹣3)x﹣1](x+1)=0,②当a=3时,方程②的解为x=﹣1,代入①,成立当a=2时,方程②的解为x=﹣1,代入①,不成立.当a≠2且a≠3时,方程②的解为x=﹣1或x=.将x=﹣1代入①,则(a﹣3)x+2a﹣4=a﹣1>0且a﹣1≠1,∴a>1且a≠2,将x=代入①,则(a﹣3)x+2a﹣4=2a﹣3>0,且2a﹣3≠1,所以a>且a≠2.要使方程有且仅有一个解,则1<a≤,综上,a的取值范围为{a|1<a≤或a=3}.28.已知数列{a n}中,a1=1,a n•a n+1=()n(n∈N*),记T2n为{a n}的前2n项的和.(I)设b n=a2n,证明:数列{b n}是等比数列;(Ⅱ)求T2n;(III)不等式对于一切n∈N*恒成立,求实数k的最大值.【解答】(1)证明:====,∴数列{b n}是等比数列,公比为.(2)解:由(1)可得:b1=a2=.∴b n=.∴n=2k时,a n=a2k=b k=.n=2k﹣1时,a n=a2k﹣1===.∴T2n=(a1+a3+……+a2n﹣1)+(a2+a4+……+a2n)=+=+=3.(3)解:由不等式对于一切n∈N*恒成立,由(1)和(2)结论有:+64•≤,∴k≤﹣﹣64,由双勾函数与正弦函数易得当n=3时,﹣﹣64有最小值﹣49.∴k的最大值为﹣49.29.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA,且B为钝角.(I)证明:;(II)求sinA+sinC的取值范围.【解答】证明:(Ⅰ)∵△ABC的内角A,B,C的对边分别为a,b,c,a=btanA,∴==,∴sinB=cosA,∴sinB=sin(+A),∵B为钝角,∴∈(,π),∴B=+A,∴B﹣A=.解:(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(2A+)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=﹣2sin2A+sinA+1=﹣2(sinA﹣)2+,∵0<A<,∴0<sinA<,∴<﹣2(sinA﹣)2+≤,∴sinA+sinC的取值范围是(,].30.定义函数,其中x为自变量,a为常数.(I)若当x∈[0,2]时,函数f a(x)的最小值为一1,求a之值;(II)设全集U=R,集A={x|f3(x)≥f a(0)},B={x|f a(x)+f a(2﹣x)=f2(2)},且(∁U A)∩B≠∅中,求a的取值范围.【解答】解:(Ⅰ)令t=2x,∵x∈[0,2],∴t∈[1,4],设φ(t)=t2﹣(a+1)t+a,t∈[1,4]…(1分)1°当,即a≤1时,f min(x)=φ(1)=0,与已知矛盾;…(2分)2°当,即,解得a=3或a=﹣1,∵1<a<7,∴a=3;…(3分)3°当,即a≥7,f min(x)=φ(4)=16﹣4a﹣4+a=1,解得,但与a≥7矛盾,故舍去…(4分)综上所述,a之值为3…(5分)(Ⅱ)∁U A={x|4x﹣4•2x+3<0}={x|0<x<log23}…(6分)B={x|4x﹣(a+1)•2x+a+42﹣x﹣(a+1)•22﹣x+a=6}=.…(7分)由已知(∁U A)∩B≠∅即﹣(a+1)()+2a﹣6=0在(0,log23)内有解,令t=,则t∈[4,5),方程(t2﹣8)﹣(a+1)t+2a﹣6在[4,5)上有解,也等价于方程在t∈[4,5)上有解…(9分)∵在t∈[4,5)上单调递增,…(10分)∴h(t)∈[﹣1,2)…(11分)故所求a的取值范围是[﹣1,2)…(12分)31.已知数列{a n}满足.(1)设,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n;(3)记,求数列{c n}的前n项和T n.【解答】解:(1)数列{a n}满足,可得:,设,数列{b n}是等差数列,公差为1,首项为1,所以b n=n;(2)易得,其前n项和:S n=1•21+2•22+3•23+…+n•2n…①,2S n=1•22+2•23+…+n•2n+1…②,②﹣①可得:S n=﹣1﹣22﹣23﹣…﹣2n+n•2n+1∴;(3)=,=或写成.32.设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(1)求tanA:tanB的值;的最大值.(2)若b=4,求S△ABC【解答】解:(1)由正弦定理,结合三角形中和差角公式得:,从而sinAcosB=4sinBcosA,即tanA:tanB=4;(2)由(1)知内角A、B均为锐角,如图所示过C作CD垂直于AB垂足为D.设|CD|=m,|AD|=n,由题意结合tanA:tanB=4,得:|BD|=4n,且m2+n2=b2=16,所以时,.的最大值为20.故S△ABC33.已知数列{a n}的前n项和为S n,a1=1,且(n+1)a n=2S n(n∈N*),数列{b n}满足,,对任意n∈N*,都有.(1)求数列{a n}、{b n}的通项公式;(2)令T n=a1b1+a2b2+…+a n b n.若对任意的n∈N*,不等式λnT n+2b n S n<2(λn+3b n)恒成立,试求实数λ的取值范围.【解答】解:(1)∵(n+1)a n=2S n,∴,n∈N*当n≥2时,,∴na n=(n﹣1)a n,即(n≥2).﹣1∴(n≥2),又a1=1,也满足上式,故数列{a n}的通项公式a n=n(n∈N*)..由,,,可知:数列{b n}是等比数列,其首项、公比均为,∴数列{b n}的通项公式:b n=.(2)∵a n b n=n.∴T n=+3×+…+n.=+…+(n﹣1)+n,∴T n=+…+﹣n=﹣n,∴.又S n=1+2+…+n=.不等式λnT n+2b n S n<2(λn+3b n)恒成立,即λn+<2,即(1﹣λ)n2+(1﹣2λ)n﹣6<0,(n∈N*)恒成立.设f(n)=(1﹣λ)n2+(1﹣2λ)n﹣6,(n∈N*).当λ=1时,f(n)=﹣n﹣6<0恒成立,则λ=1满足条件;当λ<1时,由二次函数性质知不恒成立;当λ>1时,由于对称轴x=<0,则f(n)在[1,+∞)上单调递减,∴f(n)≤f(1)=﹣3λ﹣4<0恒成立,则λ>1满足条件,综上所述,实数λ的取值范围是[1,+∞).34.设f(x)是定义在R上的奇函数,且对任意x∈R,都有f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x2.(I)当﹣2≤x≤0时,求f(x)的解析式;(II)设向量,若同向,求的值;(III)定义:一个函数在某区间上的最大值减去最小值的差称为此函数在此区间上的“界高”.求f(x)在区间[t,t+1](﹣2≤t≤0)上的“界高”h(t)的解析式;在上述区间变化的过程中,“界高”h(t)的某个值h0共出现了四次,求h0的取值范围.【解答】解:(I)设﹣2≤x≤﹣1,则0≤x+2≤1,∴f(x+2)=(x+2)2=﹣f(x),∴f(x)=﹣(x+2)2;设﹣1≤x≤0,则0≤﹣x≤1,∴f(﹣x)=(﹣x)2=﹣f(x),∴f(x)=﹣x2.综上:当﹣2≤x≤0时,.(II)由题:,∴,所以.∵sinθcosθ>0,∴θ可能在一、三象限,若θ在三象限,则反向,与题意矛盾;若θ在一象限,则同向.综上,θ只能在一象限.∴,∴,(※)由f(x+2)=﹣f(x)得f(x+4)=﹣f(x+2)=﹣[﹣f(x)]=f(x),所以(※)式=(或0.16)(III)先说明对称性(以下方法均可):法一:由(II):f(x+4)=f(x),再由已知:f(x)是奇函数且f(x+2)=﹣f(x),得f(x﹣2)=﹣f(x)=f(﹣x),令x为﹣x,得f(﹣2﹣x)=f(x),∴f(x)的图象关x=﹣1对称.法二:由(I):x∈[﹣1,0]时,f(﹣2﹣x)=﹣(﹣2﹣x)2=﹣(x+2)2=f(x);x∈[﹣2,﹣1]时,f(﹣2﹣x)=﹣(﹣2﹣x+2)2=﹣x2=f(x),综上:f(x)在[﹣1,0]和[﹣2,﹣1]上的图象关于x=﹣1对称.法三:由画出图象说明f(x)在[﹣2,﹣1]和[﹣1,0]上的图象关于x=﹣1对称也可.设f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),则h(t)=M(t)﹣m(t).显然:区间[t,t+1]的中点为.所以,如图:(i)当t≥﹣2且,即时,M(t)=﹣(t+2)2,m(t)=﹣1,∴h(t)=M(t)﹣m(t)=﹣(t+2)2+1;(ii)当t+1≤0且,即时,M(t)=﹣(t+1)2,m(t)=﹣1,∴h(t)=M(t)﹣m(t)=﹣(t+1)2+1;(iii)当﹣1≤t≤0时,M(t)=(t+1)2,m(t)=﹣t2,∴h(t)=M(t)﹣m (t)=(t+1)2+t2=2t2+2t+1.综上:.根据解析式分段画出图象,并求出每段最值(如图),由图象可得:.35.若在定义域内存在实数x0使得f(x0+1)=f(x0)+f(1)成立则称函数f(x)有“溜点x0”(1)若函数在(0,1)上有“溜点”,求实数m的取值范围;(2)若函数f(x)=lg()在(0,1)上有“溜点”,求实数a的取值范围.【解答】(本题满分12分)解:(1)在(0,1)上有“溜点”,即f(x+1)=f(x)+f(1)在(0,1)上有解,即在(0,1)上有解,整理得在(0,1)上有解,从而h(x)=4mx﹣1与的图象在(0,1)上有交点,故h(1)>g(1),即,得,(2)由题已知a>0,且在(0,1)上有解,整理得,又.设,令t=2x+1,由x∈(0,1)则t∈(1,3).于是则.从而.故实数a的取值范围是.36.函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③.(1)求证:f(x)在R上是单调增函数;(2)若f(4x+a•2x+1﹣a2+2)≥1对任意x∈R恒成立,求实数a的取值范围.【解答】解:(1)证明:令x=,y=3得f(1)=[f()]3,∵.∴所以f(1)>1.令x=1,则f(xy)=f(y)=[f(1)]y,即f(x)=[f(1)]x,为底数大于1的指数函数,所以函数f(x)在R上单调递增.(2)f(xy)=[f(x)]y中令x=0,y=2有f(0)=[f(0)]2,对任意x∈R,有f (x)>0,故f(0)=1,f(4x+a•2x+1﹣a2+2)≥1即f(4x+a•2x+1﹣a2+2)≥f(0),由(1)有f(x)在R上是单调增函数,即:4x+a•2x+1﹣a2+2≥0任意x∈R恒成立令2x=t,t>0则t2+2at﹣a2+2≥0在(0,+∞)上恒成立.i)△≤0即4a2﹣4(2﹣a2)≤0得﹣1≤a≤1;ii)得.综上可知.37.如图,已知四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(1)证明:AE⊥平面PAD;(2)取AB=2,若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E﹣AF﹣C的余弦值.【解答】(本小题满分13分)(1)证明:∵四边形ABCD为菱形,∠ABC=60°,∴△ABC为正三角形,∵E为BC的中点,∴AE⊥BC…(1分)又∵BC∥AD,∴AE⊥AD…(2分)∵PA⊥平面ABCD,AE⊂平面ABCD,∴PA⊥AE…(3分)而PA⊂平面PAD,AD⊂平面PAD,PA∩AD=A,∴AE⊥平面PAD.…(5分)(2)解法一:H为PD上任意一点,连接AH,EH,由(1)知AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角,…(6分)在RT△EAH中,,∴当AH最短时,即当AH⊥PD时,∠EHA最大.…(7分)此时,∴,又∵AD=2,∴∠ADH=45°,∴PA=2…(8分)∵PA⊥平面ABCD,PA⊂平面PAC,∴平面PAC⊥平面ABCD,过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF于S,连接ES,则∠ESO为二面角E﹣AF﹣C的平面角,…(10分)在RT△AOE中,,又F是PC的中点,在RT△ASO中,,又,…(11分)在RT△ESO中,即所求二面角的余弦值为.…(13分)(2)解法二:由(1)可知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系.设AP=a,则A(0,0,0),B(,﹣1,0),C(),D(0,2,0),P(0,0,a),E(,0,0),F(,,),H(0,2﹣2λ,aλ)(其中λ∈[0,1]),…(6分)∴,面PAD的法向量为,,∵EH与平面PAD所成最大角的正切值为…(7分)∴的最大值为,即f(a)=(a2+4)λ2﹣8λ+7在λ∈[0,1]的最小值为5,∵函数f(a)对称轴,∴f(a)min=,解得a=2…(9分)∴=(,0,0),=(,,1)设平面AEF的一个法向量为=(x1,y1,z1),则∴,取z1=﹣1,则=(0,2,﹣1)…(11分)为平面AFC的一个法向量.…(12分)∴∴所求二面角的余弦值为…(13分)38.已知f(n)是平面区域I n:(x,y∈R,n∈N*)内的整点(横纵坐标都是整数的点)的个数,记a n=2n f(n),数列{a n}的前n项和为S n (1)求数列{a n}的前n项和为S n(2)若对于任意n∈N*,≤c恒成立,求实数c的取值范围.【解答】解:(1)f(1)=3,f(2)=6,f(3)=9.由x>0,﹣nx+3n≥y>0,得0<x<3,∴x=1或x=2.∴I n内的整点在直线x=1和x=2上.记直线y=﹣nx+3n为l,l与直线x=1,x=2的交点的纵坐标分别为y1,y2,则y1=﹣n+3n=2n,y2=﹣2n+3n=n,∴f(n)=3n;a n=2n f(n)=3n•2n,前n项和为S n=3•2+6•22+9•23+…+3n•2n,2S n=3•22+6•23+9•24+…+3n•2n+1,两式相减可得,﹣S n=6+3(22+23+24+…+2n)﹣3n•2n+1,=6+3•﹣3n•2n+1,化简可得,S n=6+3(n﹣1)•2n+1;(2)若对于任意n∈N*,≤c恒成立,即为≤c恒成立,可令b n=,由=,当n=1,2时,b1<b2=b3,当n≥3时,b3>b4>b5>…,则b2=b3为最大值.则c≥.39.对于无穷数列{x n}和函数f(x),若x n+1=f(x n)(n∈N+),则称f(x)是数列{x n}的母函数.(Ⅰ)定义在R上的函数g(x)满足:对任意α,β∈R,都有g(αβ)=αg(β)+βg(α),且;又数列{a n}满足.(1)求证:f(x)=x+2是数列{2n a n}的母函数;(2)求数列{a n}的前项n和S n.(Ⅱ)已知是数列{b n}的母函数,且b1=2.若数列的前n项和为T n,求证:.【解答】解:(Ⅰ)(1)由题知,且.∴f(x)=x+2是数列{2n a n}的母函数;…3分(2)由(1)知:{2n a n}是首项和公差均为2的等差数列,故.∴①∴②两式相减得:.S n=,∴…6分(Ⅱ)由题知:,b1=2.∴.从而是以为首项,为公比的等比数列,∴…8分又,故当n≥2时⇒…12分40.已知数列{a n}满足:a1=1,a n+1=2a n+1.(1)求证:数列{a n+1}是等比数列;(2)求数列{a n}的通项公式;(3)设,求数列{c n}的前n项和T n的取值范围.=2a n+1,∴a n+1+1=2(a n+1),【解答】(1)证明:∵a n+1∴数列{a n+1}是等比数列.(2)解:由(1)及已知{a n+1}是等比数列,公比q=2,首项为a1+1=2,∴a n+1=2•2n﹣1=2n,∴.(3)解:=﹣,∴=<1,设f(n)=1﹣,则f(n)是增函数,∴当n=1时,f(n)取得最小值f(1)=.∴T n的取值范围是[,1).。

高考数学压轴专题最新备战高考《数列》难题汇编附解析

高考数学压轴专题最新备战高考《数列》难题汇编附解析

新数学《数列》复习资料一、选择题1.已知等比数列{a n },a n >0,a 1=256,S 3=448,T n 为数列{a n }的前n 项乘积,则当T n 取得最大值时,n =( ) A .8 B .9C .8或9D .8.5【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a n >0,可得q >0.根据a 1=256,S 3=448,可得256(1+q +q 2)=448,解得q .可得a n ,T n ,利用二次函数的单调性即可得出. 【详解】设等比数列{a n }的公比为q ,∵a n >0,∴q >0. ∵a 1=256,S 3=448, ∴256(1+q +q 2)=448, 解得q 12=. ∴a n =25611()2n -⨯=29﹣n .T n =28•27•……•29﹣n=28+7+…+9﹣n()217289[)89242222n n n ⎛⎤--- ⎥+-⎝⎦==.∴当n =8或9时,T n 取得最大值时, 故选C . 【点睛】本题考查了等比数列的通项公式与求和公式及其性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.2.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足2131n n A n B n -=+,则371159a a ab b +++的值为( )A .3944B .58C .1516D .1322【答案】C 【解析】 【分析】利用等差中项的性质将371159a a ab b +++化简为7732a b ,再利用数列求和公式求解即可. 【详解】11337117131135971313()3333213115213()22223131162a a a a a a A b b b b b B +++⨯-==⨯=⨯=⨯=++⨯+, 故选:C. 【点睛】本题考查了等差中项以及数列求和公式的性质运用,考查了推理能力与计算能力,属于中档题.3.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20 C .40 D .80【答案】B 【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B . 【点睛】本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题4.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.5.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.6.已知数列{}n a 中,12a =,211n n n a a a +=-+,记12111n nA a a a =++⋯+,12111n nB a a a =⋅⋅⋯⋅,则( ) A .201920191A B +> B .201920191A B +< C .2019201912A B -> D .2019201912A B -< 【答案】C 【解析】 【分析】根据数列{}{},n n A B 的单调性即可判断n n A B -;通过猜想归纳证明,即可求得n n A B +. 【详解】注意到12a =,23a =,37a =,不难发现{}n a 是递增数列. (1)21210n n n n a a a a +-=-+≥,所以1n n a a +≥.(2)因为12a =,故2n a ≥,所以1n n a a +>,即{}n a 是增函数. 于是,{}n A 递增,{}n B 递减, 所以20192121156A A a a >=+=,20192121116B A a a <=⋅=, 所以2019201912A B ->. 事实上,111,A B +=221,A B +=331A B +=, 不难猜想:1n n A B +=. 证明如下:(1)211121111111111111n n n n n n n n a a a a a a a a a a ++-=-+⇒=-⇒++⋅⋅⋅+=----. (2)211n n n a a a +=-+等价于21111n n na a a +=--, 所以1111n n n a a a +-=-, 故12111111n n a a a a +⋅⋅⋯⋅=-,于是12121111111n n a a a a a a ⎛⎫⋅⋅⋯⋅+++⋯+= ⎪⎝⎭, 即有1n n A B +=. 故选:C. 【点睛】本题考查数列的单调性,以及用递推公式求数列的性质,属综合中档题.7.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.8.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <¿{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.9.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.10.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30 C .44 D .88【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】设等比数列{a n }的公比为q ,由a 2=1,a 10=16, 得810216a q a ==,得q 2=2. ∴4624a a q ==,即a 6=b 6=4,又S n 为等差数列{b n }的前n 项和, ∴()1111161111442b b S b+⨯===.故选:C. 【点睛】本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n 项和的求法,是中档题.11.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( )A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==,设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.12.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.13.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.14.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈, 所以当1n =时,得11a =, 当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S n因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.15.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则A .140,0a d dS >>B .140,0a d dS <<C .140,0a d dS ><D .140,0a d dS <>【答案】B 【解析】 ∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念16.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( )A .24143B .1143C .2413D .613【答案】D【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.17.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( )A .11S aB .88S aC .55S aD .99S a 【答案】C【解析】【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S S a a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, ,所以在912129...S S S a a a ,,,中最大的是55S a . 故选C .【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.18.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1 【答案】A【解析】【分析】 按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3,所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)【答案】D【解析】【分析】 先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.【详解】 由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<- ⎪⎝⎭,所以101a <<. 故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。

数列测试题及答案解析

数列测试题及答案解析

数列测试题及答案解析一、选择题1. 已知数列{an}满足a1=2,an+1 = 2an,判断数列{an}是否为等比数列。

A. 是B. 不是C. 无法判断答案:A2. 若数列{bn}是等差数列,且b3=5,b5=9,求b7。

A. 11B. 13C. 无法确定答案:B二、填空题1. 给定数列{cn},其中c1=1,cn+1 = cn + n,求c5的值。

答案:152. 已知等差数列{dn}的首项d1=3,公差d=2,求d20的值。

答案:43三、解答题1. 求等比数列{en}的前n项和Sn,若e1=1,公比q=3。

解:根据等比数列前n项和公式Sn = e1 * (1 - q^n) / (1 - q),代入e1=1和q=3,得到Sn = (1 - 3^n) / (1 - 3)。

2. 已知等差数列{fn}的前n项和为Tn,若f1=2,d=3,求T10。

解:根据等差数列前n项和公式Tn = n/2 * (2a1 + (n - 1)d),代入f1=2和d=3,得到T10 = 10/2 * (2*2 + (10 - 1)*3) = 5 * (4 + 27) = 5 * 31 = 155。

四、证明题1. 证明数列{gn},其中gn = n^2,是一个单调递增数列。

证明:设n≥2,我们需要证明对于任意的n,有gn ≥ gn-1。

即证明n^2 ≥ (n-1)^2。

展开得n^2 - (n-1)^2 = 2n - 1 > 0,所以数列{gn}是单调递增的。

2. 证明等差数列{hn}的任意两项hn和hm(m > n)之和等于它们中间项的两倍。

证明:设等差数列{hn}的首项为h1,公差为d。

根据等差数列的定义,hn = h1 + (n - 1)d,hm = h1 + (m - 1)d。

将两项相加得hn + hm = 2h1 + (m + n - 2)d。

由于m > n,所以m + n - 2 = m - 1 + n - 1,即hn + hm = h1 + (m - 1)d + h1 + (n - 1)d = 2h1 + (m + n - 2)d = 2h((m + n - 1)/2),这正是它们中间项的两倍。

高一数学数列复习题有详细答案新人教版必修1

高一数学数列复习题有详细答案新人教版必修1

数列复习题班级______ 姓名______ 学号_______一、选择题1、若数列{a n }的通项公式是a n =2(n +1)+3,则此数列 ( )(A)是公差为2的等差数列 (B)是公差为3的等差数列(C) 是公差为5的等差数列 (D)不是等差数列2、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98等于 ( )(A)36 (B)38 (C)39 (D)423、含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为 ( ) (A)n n 12+ (B)n n 1+ (C)n n 1- (D)nn 21+ 4、设等差数列的首项为a,公差为d ,则它含负数项且只有有限个负数项的条件是( )(A)a >0,d >0 (B)a >0,d <0 (C)a <0,d >0 (D)a <0,d <05、在等差数列{a n }中,公差为d ,已知S 10=4S 5,则d a 1是 ( ) (A)21 (B)2 (C)41 (D)4 6、设{a n }是公差为-2的等差数列,如果a 1+ a 4+ a 7+……+ a 97=50,则a 3+ a 6+ a 9……+ a 99=( )(A)182 (B)-80 (C)-82 (D)-847、等差数列{a n } 中,S 15=90,则a 8= ( )(A)3 (B)4 (C)6 (D)128、等差数列{a n }中,前三项依次为xx x 1,65,11+,则a 101= ( ) (A)3150 (B)3213 (C)24 (D)328 9、数列{a n }的通项公式nn a n ++=11,已知它的前n 项和为S n =9,则项数n= ( )(A)9 (B)10 (C)99 (D)10010、等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( )(A)45 (B)75 (C)180 (D)30011、已知{a n }是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( )(A)12 (B)16 (C)20 (D)2412、在项数为2n+1的等差数列中,若所有奇数项的和为165,所有偶数项的和为150,则n 等于 ( )(A)9 (B)10 (C)11 (D)1213、等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A)130 (B)170 (C)210 (D)16014、等差数列{a n }的公差为21,且S 100=145,则奇数项的和a 1+a 3+a 5+……+ a 99=( ) (A)60 (B)80 (C)72.5 (D)其它的值15、等差数列{a n }中,a 1+a 2+……a 10=15,a 11+a 12+……a 20=20,则a 21+a 22+……a 30=( )(A)15 (B)25 (C)35 (D)4516、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98= ( )(A)36 (B)39 (C)42 (D)4517、{a n }是公差为2的等差数列,a 1+a 4+a 7+……+a 97=50,则a 3+a 6+……+ a 99= ( )(A)-50 (B)50 (C)16 (D)1.8218、若等差数列{a n }中,S 17=102,则a 9= ( )(A)3 (B)4 (C)5 (D)619、夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是 ( )(A)1500 (B)1600 (C)1700 (D)180020、若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么=--31b y x a ( )(A)43 (B)34 (C)32 (D)值不确定 21、一个等差数列共有2n 项,奇数项的和与偶数项的和分别为24和30,且末项比首项大10.5,则该数列的项数是 ( )(A)4 (B)8 (C)12 (D)2022、等差数列{a n }中如果a 6=6,a 9=9,那么a 3= ( )(A)3 (B)32 (C)916 (D)4 23、设{a n }是等比数列,且a 1=32,S 3=916,则它的通项公式为a n = ( ) (A)1216-⎪⎭⎫ ⎝⎛∙n (B)n ⎪⎭⎫ ⎝⎛-∙216 (C)1216-⎪⎭⎫ ⎝⎛-∙n (D)1216-⎪⎭⎫ ⎝⎛-∙n 或23 24、已知a 、b 、c 、d 是公比为2的等比数列,则dc b a ++22= ( ) (A)1 (B)21 (C)41 (D)81 25、已知等比数列{a n } 的公比为q ,若21+n a =m (n 为奇数),则213+n a = ( ) (A)mq n -1 (B) mq n (C) mq (D) 8126、已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( )(A)60 (B)70 (C)90 (D)12627、若{a n }是等比数列,已知a 4 a 7=-512,a 2+a 9=254,且公比为整数,则数列的a 12是( )(A)-2048 (B)1024 (C)512 (D)-51228、数列{a n }、{b n }都是等差数列,它们的前n 项的和为1213-+=n n T S n n ,则这两个数列的第5项的比为 ( ) (A)2949 (B)1934 (C)1728 (D)以上结论都不对29、已知cb b a ac lg lg 4lg 2∙=,则a ,b ,c ( ) (A)成等差数列 (B)成等比数列(C)既成等差数列又成等比数列 (D)既不成等差数列又不成等比数列30、若a+b+c ,b+c -a ,c+a -b ,a+b -c 成等比数列,且公比为q ,则q 3+q 2+q 的值为( )(A)1 (B)-1 (C)0 (D)231、若一等差数列前四项的和为124,后四项的和为156,又各项的和为350,则此数列共有 ( )(A)10项 (B)11项 (C)12项 (D)13项32、在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则二数之和为 ( ) (A)2113 (B)04111或 (C)2110 (D)219 33、数列1,211+,3211++,……,n+⋅⋅⋅++211的前n 项和为 ( ) (A) n n 12+ (B)122+n n (C)12++n n (D)12+n n 34、设数列{a n }各项均为正值,且前n 项和S n =21(a n +n a 1),则此数列的通项a n 应为 ( )(A) a n =n n -+1 (B) a n =1--n n(C) a n =12+-+n n (D) a n =12-n35、数列{a n }为等比数列,若a 1+ a 8=387,a 4 a 5=1152,则此数列的通项a n 的表达式为( )(A) a n =3×2n -1 (B) a n =384×(21)n -1 (C) a n =3×2n -1或a n =384×(21)n -1 (D) a n =3×(21)n -1 36、已知等差数{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,则a 1+ a 9= ( )(A)45 (B)75 (C)180 (D)30037、已知等比数列{a n }中,a n >0,公比q ≠1,则 ( )(A)26242723a a a a +〉+ (B)26242723a a a a +〈+(C)26242723a a a a +=+ (D)的大小不确定与26242723a a a a ++38、在等比数列中,首项89,末项31,公比32,求项数 ( ) (A)3 (B)4 (C)5 (D)639、等比数列{a n }中,公比为2,前四项和等于1,则前8项和等于 ( )(A)15 (B)17 (C)19 (D)2140、某厂产量第二年增长率为p ,第三年增长率为q ,第四年增长率为r ,设这三年增长率为x ,则有 ( ) (A)3r q p x ++= (B)3r q p x ++<(C)3r q p x ++≤ (D)3r q p x ++≥ 二、填空题1、已知等差数列公差d >0,a 3a 7=-12,a 4+a 6=-4,则S 20=_______2、数列{a n }中,若a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数又成等差数列,则a 1,a 3,a 5成_______数列3、已知{a n }为等差数列,a 1=1,S 10=100,a n =_______.令a n =log 2b n ,则的前五项之和S 5′=_______4、已知数列 )2)(1(1,,201,121,61++n n 则其前n 项和S n =________. 5、数列前n 项和为S n =n 2+3n,则其通项a n 等于____________.6、等差数列{a n }中, 前4项和为26, 后4项之和为110, 且n 项和为187, 则n 的值为____________.7、已知等差数列{a n }的公差d ≠0, 且a 1,a 3,a 9成等比数列, 1042931a a a a a a ++++的值是________. 8、等差数列{a n }中, S 6=28, S 10=36(S n 为前n 项和), 则S 15等于________.9、等比数列{a n }中, 公比为2, 前99项之和为56, 则a 3+a 6+a 9+…a 99等于________.10、等差数列{a n }中, a 1=1,a 10=100,若存在数列{b n }, 且a n =log 2b n ,则b 1+b 2+b 3+b 4+b 5等于____________.11、已知数列1, ,3,2,1nn n n n n --- , 前n 项的和为____________. 12、已知{a n }是等差数列,且有a 2+a 3+a 10+a 11=48, 则a 6+a 7=____________.13、等比数列{a n }中, a 1+a 2+a 3+a 4=80, a 5+a 6a 7+a 8=6480, 则a 1必为________.14、三个数a 1、1、c 1成等差数列,而三个数a 2、1、c 2成等比数列, 则22c a c a ++等于____________.15、已知12, lgy 成等比数列, 且x >1,y >1, 则x 、y 的最小值为________. 16、在数列{a n }中, 5221-=+n n n a a a , 已知{a n }既是等差数列, 又是等比数列,则{a n }的前20项的和为________.17、若数列{a n }, )1)(2(1,3211+++==+n n a a a n n 且 (n ∈N), 则通项a n =________. 18、已知数列{a n }中, n n a a a )12(,22314-=-=+(n ≥1), 则这个数列的通项公式a n =________.19、正数a 、b 、c 成等比数列, x 为a 、b 的等差中项, y 为b 、c 的等差中项, 则a c x y+的值为________. 20、等比数列{a n }中, 已知a 1·a 2·a 3=1,a 2+a 3+a 4=47, 则a 1为________. 三、解答题1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和,(1)70≤n ≤200;(2)n 能被7整除.2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由.3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值.4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S .5、已知数列{n a }的前n 项和31=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和.6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根;(2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 11+n m ,…也成等差数列.7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根,当a 1=2时,试求c 100的值.8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.9、有两个各项都是正数的数列{n a },{n b }.如果a 1=1,b 1=2,a 2=3.且n a ,n b ,1+n a 成等差数列, n b ,1+n a ,1+n b 成等比数列,试求这两个数列的通项公式.10、若等差数列{log 2x n }的第m 项等于n ,第n 项等于m(其中m ≠n),求数列{x n }的前m +n 项的和。

(完整版)《数列》练习题及答案

(完整版)《数列》练习题及答案

欢迎阅读《数列》练习题姓名_________班级___________一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列-2,0,2,…的第15项为( ) A .11 2 B .12 2 C .13 2 D .14 22.若在数列{a n }中,a 1=1,a n +1=a 2n -1(n ∈N *),则a 1+a 2+a 3+a 4+a 5=( ) A .-1 B .1 C .0 D .23.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个4.设S n 为等差数列{a n }的前n 项和,若S 8=30,S 4=7,则a 4的值等于( ) A.14 B.94 C.134 D.1745.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x 、y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围为( )A .[12,2)B .[12,2]C .[12,1)D .[12,1]6.小正方形按照如图所示的规律排列:每个图中的小正方形的个数构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n +1=a n +n +1(n ∈N *).其中正确的命题序号为( )A .①②B .①③C .①④D .①7.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( )A .0B .- 3 C. 3D.328.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得{a n +λ3n}为等差数列的实数λ=( )A .2B .5C .-12D.129.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为( )A.S17 B.S18 C.S19D.S2010.将数列{3n-1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A.34 950 B.35 000 C.35 010D.35 050二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)11.设等差数列{a n}的前n项和为S n,若S9=72,则a2+a4+a9=________.12.设数列{a n}中,a1=2,a n+1=a n+n+1,则通项a n=________..)100项2,0,n2n1232n-1<3.18.(本小题满分8分)已知数列{a n}的前n项和为S n,且a n+S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=3+log4a n,设T n=|b1|+|b2|+…+|b n|,求T n.19.(本小题满分10分)已知单调递增的等比数列{a n}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若b n =n n a log a 21,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.参考答案选择题答案题号 12345678910答案C A B C C C B C C A填空题答案第11题 24第12题第13题 a n =2·3n第14题-7【第15题】S 5=5?a 1+a 5?2=5?a 1+5?2=15,∴a 1=1. ∴d =a 5-a 15-1=5-15-1=1.∴a n =1+(n -1)×1=n . ∴1a n a n +1=1n ?n +1?.设{1a n a n +1}的前n 项和为T n ,则T 100=11×2+12×3+…+1100×101 =1-12+12-13+…+1100-1101 =1-1101=100101. 【第16题】(1)设{a n }的公差为d .由题意,a 211=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ).于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .【第17题】(1)∵{a n }是递减的等比数列, ∴数列{a n }的公比q 是正数. 又∵{a 1,a 2,a 3}{-4,-3,-2,0,1,2,3,4},∴a 1=4,a 2=2,a 3=1.∴q =a 2a 1=24=12.∴a n =a 1q n -1=82n .(2)由已知得b n =12])1(1[8+--n n ,当n =2k (k ∈N *)时,b n =0,当n =2k -1(k ∈N *)时,b n =a n . 即b n =⎩⎨⎧0,?n =2k ,k ∈N *?,a n ,?n =2k -1,k ∈N *?.∴b 1+b 2+b 3+…+b 2n -2+b 2n -1T n T n n ⎪⎩≥+-)7(,460112n n n 【第19题】(1)n n 2a =(2)∵b n =2n ·log 12 2n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ,① -2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①-②,得S n =2+22+23+…+2n -n ·2n +1=21)21(2--n -n ·2n +1=2n +1-n ·2n +1-2.∵S n +(n +m )a n +1<0,∴2n +1-n ·2n +1-2+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立. ∴m ·2n +1<2-2n +1对任意正整数n 恒成立,即m <12n -1恒成立.∵12n -1>-1,∴m ≤-1,即m 的取值范围是(-∞,-1].。

高一数学数列练习题含答案

高一数学数列练习题含答案

高一级数学数列练习题一、选择题: 1、等差数列9}{,7,3,}{51第则数列中n n a a a a ==项等于( C )A 、9B 、10C 、11D 、122、等比数列{}n a 中, ,243,952==a a 则{}n a 的第4项为( A )A 、81B 、243C 、27D 、1923、已知一等差数列的前三项依次为34,22,++x x x ,那么22是此数列的第( D )项A 、2B 、4C 、6D 、84、已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( A )A 、15B 、30C 、31D 、645、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( B )A 、63B 、45C 、36D 、276、已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( B )A 、2B 、3C 、6D 、97、在等差数列{}n a 中,若4681012120a a a a a ++++=,则10122a a -的值为( C )A 、20B 、22C 、24D 、288、已知等差数列{a n }满足56a a +=28,则其前10项之和为 ( A )A 、140B 、280C 、168D 、569、等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是( A )A 、3B 、5C 、7D 、910、在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0(a n ≠0),则2a 1+a 22a 3+a 4等于( D ) A 、1 B 、12 C 、13 D 、1411、在各项均为正数的等比数列{a n }中,若a 5a 6=9,则log 3a 1+log 3a 2+…+log 3a 10等于( B )A 、12B 、10C 、8D 、2+log 3512、设数列{n a }的通项公式是1002+=n n a n ,则{n a }中最大项是( B ) A.9a B.10a C.9a 和10a D.8a 和9a二、填空题:13、数列{n a }是等差数列,47a =,则7s =_________4914、已知数列{n a }的前n 项和210n S n n =-+,则其通项n a =211n -+;当n = 5 时n S 最大,且最大值为 2515、已知数列{a n }满足a 1=1,a n +1=a n 1+a n ,则a 5=_______15 16、已知数列{}n a 满足123n n a a -=+且11a =,则数列{}n a 的通项公式为__________123n n a +=-三、解答题:17、设{}n a 为等差数列,{}n b 为等比数列,,,,134234211a b b b a a b a ==+==分别求出{}n a 及{}n b 的前10项的和1010T S 及.解:设等差数列{}n a 的公差为,d 等比数列{}n b 的公比为q .d q q b d a d a 42,,31,122342+=∴=+=+=Θ ①又,,21,,2333342b a d a q b q b =+===ΘΘd q 214+=∴ ② 则由①,②得242q q =-将212=q 代入①,得855,8310-=∴-=S d 当22=q 时,)22(323110+=T , 当22-=q 时,)22(323110-=T 18、等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n <34. 解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d >0,q ≠0,a n =3+(n -1)d ,b n =q n -1,依题意有⎩⎨⎧ b 2S 2=?6+d ?q =64,b 3S 3=?9+3d ?q 2=960.解得⎩⎨⎧ d =2,q =8,或⎩⎨⎧ d =-65,q =403,(舍去).故a n =2n +1,b n =8n -1.(2)证明:由(1)知S n =3+2n +12×n =n (n +2), 1S n =1n ?n +2?=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n ?n +2?=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32?n +1??n +2?∵2n +32?n +1??n +2?>0∴1S 1+1S 2+…+1S n <34.19、已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解 (1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1.∴a n =4n -1(n ∈N *).由a n =4log 2b n +3=4n -1,得b n =2n -1(n ∈N *).(2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *,∴T n =3+7×2+11×22+…+(4n -1)×2n -1,2T n =3×2+7×22+…+(4n -5)×2n -1+(4n -1)×2n .∴2T n -T n =(4n -1)×2n -[3+4(2+22+…+2n -1]=(4n -5)2n +5. 故T n =(4n -5)2n +5.20、已知数列{a n }满足a 1=1,a n -2a n -1-2n -1=0(n ∈N *,n ≥2).(1)求证:数列{a n2n }是等差数列;(2)若数列{a n }的前n 项和为S n ,求S n .解 (1)∵a n -2a n -1-2n -1=0,∴a n 2n -a n -12n -1=12,∴{a n 2n }是以12为首项,12为公差的等差数列.(2)由(1),得a n 2n =12+(n -1)×12,∴a n =n ·2n -1,∴S n =1·20+2·21+3·22+…+n ·2n -1①则2S n =1·21+2·22+3·23+…+n ·2n ②①-②,得-S n =1+21+22+…+2n -1-n ·2n =1·?1-2n?1-2-n ·2n =2n -1-n ·2n ,∴S n =(n -1)·2n +1.21、设数列{}n a 的前项n 和为n S ,若对于任意的正整数n 都有n a S n n 32-=.(1)设3n n b a =+,求证:数列{}n b 是等比数列,并求出{}n a 的通项公式。

高考数学压轴专题(易错题)备战高考《数列》难题汇编含答案

高考数学压轴专题(易错题)备战高考《数列》难题汇编含答案

数学《数列》复习资料一、选择题1.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.2.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C D .【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+=== ,∴623a π=,()62tan tan 3a π⎛⎫==⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.3.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.4.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】1()21m f x mx a x -'=+=+,1a ,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n nS n n n n =-+-++-=-=+++, 故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.5.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.6.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >, 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.7.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.8.已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( )A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C 【解析】 【分析】首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立, 所以41n a n =+, 故选C. 【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.9.设数列是公差的等差数列,为前项和,若,则取得最大值时,的值为A .B .C .或D .【答案】C 【解析】,进而得到,即,数列是公差的等差数列,所以前五项都是正数,或时,取最大值,故选C.10.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.11.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192C .1119892D .1120192 【答案】C 【解析】 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.12.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a = ∴1999()272a a S ⨯+== 故选D.13.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2 D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】 解:11a =,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.14.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则A .140,0a d dS >>B .140,0a d dS <<C .140,0a d dS ><D .140,0a d dS <>【答案】B 【解析】 ∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念15.在等比数列{}n a 中,已知259,243a a ==,那么{}n a 的前4项和为( ). A .81 B .120C .121D .192【答案】B 【解析】 【分析】根据352a q a =求出公比,利用等比数列的前n 项和公式即可求出. 【详解】35227a q a ==, ∴ 3q =∴ 4414(1)3(13)120113a q S q --===--.故选:B【点睛】本题主要考查了等比数列的通项公式,等比数列的前n 项和,属于中档题.16.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )A .48B .90C .105D .106【答案】C 【解析】 【分析】根据4841281612,,,S S S S S S S ---成等比数列即可求出16S . 【详解】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列, 所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=. 故选:C 【点睛】本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.18.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=( )A .20152016 B .40322017C .40342017D .20162017【答案】B 【解析】 【分析】首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++的值.【详解】因为111n n n a a a n a n +=++=++, 所以11n n a a n +-=+, 用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121201*********⎛⎫==- ⎪⎝⎭. 故选:B. 【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.19.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题: ①公差0d <②110S <③120S >④数列{}n S 中的最大项为11S ⑤67a a >其中正确命题的个数是( )A .2B .3C .4D .5【答案】B【解析】【分析】先由条件确定数列第六项和第七项的正负,进而确定公差的正负,最后11S ,12S 的符号由第六项和第七项的正负判定.【详解】等差数列{}n a 中,6S 最大,且675S S S >>, ∴10a >,0d <,①正确;675S S S >>,∴60a >,70a <,67 0a a +>,∴160a d +<,150a d +>,6S 最大,∴④不正确;1111115511(5)0S a d a d =+=+>,12111267 126612()12()0S a d a a a a =+=+=+>,∴③⑤正确,②错误.故选:B .【点睛】本题考查等差数列的前n 项和的应用,考查逻辑思维能力和运算能力,属于常考题.20.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .43钱B .73钱C .83钱D .103钱 【答案】C【解析】【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a +d ,a +2d ,由题意求得a =﹣6d ,结合a ﹣2d +a ﹣d +a +a +d +a +2d =5a =10求得a =2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a +d ,a +2d ,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.。

高考数学压轴专题专题备战高考《数列》难题汇编含答案解析

高考数学压轴专题专题备战高考《数列》难题汇编含答案解析

【最新】高考数学《数列》练习题一、选择题1.已知数列{}n a 中,732,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于( ) A .0 B .12C .23D .1-【答案】B 【解析】 【分析】先根据条件得等差数列11n a ⎧⎫⎨⎬+⎩⎭公差以及通项公式,代入解得11a .【详解】 设等差数列11n a ⎧⎫⎨⎬+⎩⎭公差为d ,则731111144,112324d d d a a =-∴=-=++, 从而31115(3)11242424n n n a a =+-⋅=+++ 11111115211242432a a =+=∴=+,选B. 【点睛】本题考查等差数列通项公式,考查基本求解能力,属基本题.2.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则 A .140,0a d dS >> B .140,0a d dS << C .140,0a d dS >< D .140,0a d dS <>【答案】B 【解析】 ∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念3.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( )A .21B .42C .63D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.4.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( ) A .(0,)+∞ B .8,75⎛⎫+∞⎪⎝⎭C .83,7525⎛⎫⎪⎝⎭ D .83,7525⎛⎤⎥⎝⎦ 【答案】D 【解析】 【分析】根据题意可知101a >,91a ≤,把1a 的值代入列不等式解得即可. 【详解】由题意,设数列{}n a 的公差为d ,首项1125a =,则10911a a >⎧⎨≤⎩,即101919181a a d a a d =+>⎧⎨=+≤⎩,解得837525d <≤. 故选:D. 【点睛】本题主要考查了等差数列的通项公式的应用,要熟练记忆等差数列的通项公式.5.已知数列{}n a 的前n 项和为212343n S n n =++(*N n ∈),则下列结论正确的是( )A .数列{}n a 是等差数列B .数列{}n a 是递增数列C .1a ,5a ,9a 成等差数列D .63S S -,96S S -,129S S -成等差数列【答案】D 【解析】 【分析】由2*123()43n S n n n N =++∈,2n …时,1n n n a S S -=-.1n =时,11a S =.进而判断出正误. 【详解】解:由2*123()43n S n n n N =++∈,2n ∴…时,2211212153[(1)(1)3]4343212n n n a S S n n n n n -=-=++--+-+=+.1n =时,114712a S ==,1n =时,15212n a n =+,不成立.∴数列{}n a 不是等差数列.21a a <,因此数列{}n a 不是单调递增数列.5191547154322(5)(9)021*******a a a --=⨯⨯+--⨯+=-≠,因此1a ,5a ,9a 不成等差数列.631535(456)32124S S -=⨯+++⨯=.961553(789)32124S S -=⨯+++⨯=.1291571(101112)32124S S -=⨯+++⨯=.Q53235710444⨯--=, 63S S ∴-,96S S -,129S S -成等差数列.故选:D . 【点睛】本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.6.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.7.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】 【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.8.在数列{}n a 中,()111,1nn n a a a n +==++-,则2018a 的值为( )A .2017⨯1008B .2017⨯1009C .2018⨯1008D .2018⨯1009【答案】B 【解析】 【分析】根据已知条件()nn 1n a a n 1+-=+-,利用累加法并结合等差数列的前n 项和公式即可得到答案. 【详解】()nn 1n a a n 1+-=+-,()()20182017201720162016201520152014a a 20171,a a 20161,a a 20151,a a 20141,-=+--=+-=+--=+⋅⋅⋅32a a 21-=+,()21a a 11,-=+-将以上式子相加得20181a a 20172016-=++⋅⋅⋅+2, 即2018a 20172016=++⋅⋅⋅+2+1=2017(12017)201710092+=⨯,故选:B. 【点睛】本题考查数列递推关系式的应用和累加法求和,考查等差数列前n 项和公式的应用.9.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5nf ()*n N ∈的前2020项的和为( )A .101051+B .1010514-C .1010512-D .101051-【答案】D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.10.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20 C .40 D .80【答案】B 【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B . 【点睛】本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题11.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.12.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C .3 D .【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.13.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D 【解析】根据等差数列公式直接计算得到答案. 【详解】 依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.14.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.15.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[; B.(,-∞C.)+∞D.(,)-∞⋃+∞【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.16.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016 B .40322017C .40342017D .20162017【答案】B 【解析】首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++, 所以11n n a a n +-=+, 用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121201*********⎛⎫==- ⎪⎝⎭. 故选:B. 【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.17.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.18.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A.43钱B.73钱C.83钱D.103钱【答案】C【解析】【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a =﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=10求得a=2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.19.执行如图所示的程序框图,若输入,则输出的S的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,; 第三次运算:,; 第四次运算:,;第五次运算:,; 第六次运算:,; 第七次运算:,; 第八次运算:,;第九次运算:,; 第十次运算:,, 综上所述,输出的结果为,故选B .【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( ) A .(1,2) B .(0,3)C .(0,2)D .(0,1)【答案】D 【解析】 【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围. 【详解】由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111111111133n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<- ⎪⎝⎭,所以101a <<. 故选:D. 【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。

高考数学压轴专题(易错题)备战高考《数列》难题汇编及答案解析

高考数学压轴专题(易错题)备战高考《数列》难题汇编及答案解析

【高中数学】数学《数列》复习知识要点一、选择题1.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案.【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q ---====--+-,解得2q =, 所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.2.已知数列22333311313571351,,,,,,,...,,,,...2222222222n n n,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C 【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项.【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.4.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–20【答案】D 【解析】 【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.5.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----,32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.6.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺 B .2.5尺C .3.5尺D .4.5尺【答案】C 【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.7.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L ()332432299=+++=.故选:B . 【点睛】本题考查周期数列求和,属于中档题.8.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.9.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( )A .2124n --B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.10.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.11.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n 项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】 【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.12.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.13.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.14.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.15.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯,故选:D【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.16.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】B【解析】【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系.【详解】因为数列{}n a 是等比数列,前n 项和为n S若3152a a a >+,由等比数列的通项公式可得 111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a <若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件故选:B【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.17.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( ) A .0 B .1 C .0或1 D .不存在满足条件的n【答案】B【解析】【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112n n C a n a a -=⨯=-- 由(),C a n n =,可得()21n a n -=. 当0n =时,对任意a Z +∈都满足条件.当0n ≠时, 21n n a =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21x f x x =--,则()2ln 21x f x '=-在2x ≥上单调递增.所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增.所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->. 则()0,121n n a =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1. 故选:B【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.18.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( )A .32B .32-C .23D .23- 【答案】D【解析】【分析】根据等差数列公式直接计算得到答案.【详解】依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.19.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n ++=(*n ∈N ),则n S =( )A .121n -+B .2n n ⋅C .31n -D .123n n -⋅【答案】B【解析】【分析】 由题得122,1n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】 由题得111(1)(1),,,2121n n n n n n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1n n a n a n ++=⨯+(2n ≥) 由题得22166,32a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n-+=⨯=⨯=⨯=⨯L , 所以11112,(1)22n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222n n n n S n n n =⨯+⋅=⋅+. 故选:B【点睛】本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.20.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】 按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

高一数列专项典型练习题及解析答案

高一数列专项典型练习题及解析答案

数列综合练习1.函数f〔*〕=〔a>0,a≠1〕,数列{a n}满足a n=f〔n〕〔n∈N*〕,且{a n}是单调递增数列,则实数a的取值围〔 〕A.[7,8〕B.〔1,8〕C.〔4,8〕D.〔4,7〕2.设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,假设S1,S2,S4成等比数列,则a1=〔 〕A.2B.﹣2C.D.﹣3.设S n是等差数列{a n}的前n项和,假设,则=〔 〕A.1B.﹣1C.2D.4.阅读图的程序框图,该程序运行后输出的k的值为〔 〕A.5B.6C.7D.85.设S n为等比数列{a n}的前n项和,8a2+a5=0,则等于〔 〕A.11B.5C.﹣8D.﹣116.数列{a n}满足a1=2,a n=,其前n项积为T n,则T2016=〔 〕C.1D.﹣1A.B.﹣7.数列{a n}的前n项和为S n,满足a n+2=2a n+1﹣a n,a6=4﹣a4,则S9=〔 〕A.9B.12C.14D.188.S n为等差数列{a n}的前n项和,S7=28,S11=66,则S9的值为〔 〕A.47B.45C.38D.549.在等比数列{a n}中,,则a3=〔 〕A.±9B.9C.±3D.310.在等差数列{a n}中,4〔a3+a4+a5〕+3〔a6+a8+a14+a16〕=36,则该数列的前14项和为〔 〕A.20B.21C.42D.8411.设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,假设S1,S2,S4成等比数列,则a1的值为 _________ 12.*公司推出了下表所示的QQ在线等级制度,设等级为n级需要的天数为a n〔n∈N*〕,等级等级图标需要天数等级等级图标需要天数157772128963211219243216320545321152660482496则等级为50级需要的天数a50= _________ .13.数列{a n}为等比数列,a2+a3=1,a3+a4=﹣2,则a5+a6+a7= _________ .14.数列{a n}中,a n+1=2a n,a3=8,则数列{log2a n}的前n项和等于 _________ .15.数列{a n }的前n 项和为S n ,并满足a n+2=2a n+1﹣a n ,a 6=4﹣a 4,则S 9= _________ .16.记等差数列{a n }的前n 项和为S n ,a 2+a 4=6,S 4=10.则a 10= _________ .17.设S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,且a 2+a 5=2a m ,则m= _________ .18.数列{a n }的前n 项和S n =﹣a n ﹣+2〔n ∈N *〕,数列{b n }满足b n =2n a n .〔1〕求证数列{b n }是等差数列,并求数列{a n }的通项公式;〔2〕设数列{a n }的前n 项和为T n ,证明:n ∈N *且n ≥3时,T n >〔3〕设数列{}满足a n 〔﹣3n 〕=〔﹣1〕n﹣1λn 〔λ为非零常数,n ∈N *〕,问是否存在整数λ,使得对任意n ∈N *,都有+1>.19.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,.〔Ⅰ〕求a n 与b n ;〔Ⅱ〕设=a n •b n ,求数列{}的前n 项和T n .20.等差数列{a n }满足a 3+a 4=9,a 2+a 6=10;又数列{b n }满足nb 1+〔n﹣1〕b 2+…+2b n﹣1+b n =S n ,其中S n 是首项为1,公比为的等比数列的前n 项和.〔1〕求a n 的表达式;〔2〕假设=﹣a n b n ,试问数列{}中是否存在整数k ,使得对任意的正整数n 都有≤c k 成立?并证明你的结论.21.等差数列{a n }的前n 项和为s n =pm 2﹣2n+q〔p ,q ∈R 〕,n ∈N *〔I 〕求q 的值;〔Ⅱ〕假设a 3=8,数列{b n }}满足a n =4log 2b n ,求数列{b n }的前n 项和.22.等比数列{a n }满足a 2=2,且2a 3+a 4=a 5,a n >0.〔1〕求数列{a n }的通项公式;〔2〕设b n =〔﹣1〕n 3a n +2n+1,数列{b n }的前项和为T n ,求T n .23.有穷数列﹛a n ﹜共有2k(k ≧2,k ∈Z)项,首项a 1=2。

高中数列测试题及答案

高中数列测试题及答案

高中数列测试题及答案一、选择题(每题3分,共30分)1. 以下数列中,哪一个是等差数列?A. 1, 3, 5, 7, 9B. 2, 4, 6, 8, 10C. 1, 2, 4, 8, 16D. 1, 1, 2, 3, 52. 等比数列的公比为2,首项为1,其第五项是多少?A. 16B. 32C. 64D. 1283. 已知数列{a_n}的通项公式为a_n = 2n - 1,求a_5。

A. 7B. 9C. 11D. 134. 一个等差数列的前三项分别为3, 6, 9,求该数列的公差。

A. 1B. 2C. 3D. 45. 数列{a_n}满足a_1 = 2,且a_n = 2a_{n-1} + 1(n≥2),则a_3等于多少?A. 7B. 9C. 11D. 136. 一个等差数列的前n项和为S_n,若S_5 = 75,S_10 = 175,则该数列的公差d是多少?A. 5B. 10C. 15D. 207. 已知数列{a_n}的前n项和为S_n,且S_n = 2n^2 + n,求a_5。

A. 19B. 21C. 23D. 258. 等比数列{a_n}的前三项分别为1, 2, 4,求该数列的公比。

A. 1B. 2C. 3D. 49. 一个等差数列的前三项分别为2, 5, 8,求该数列的通项公式。

A. a_n = 3n - 1B. a_n = 3n + 1C. a_n = 2n + 1D. a_n = 2n - 110. 数列{a_n}满足a_1 = 1,且a_n = a_{n-1} + 2(n≥2),则a_4等于多少?A. 7B. 8C. 9D. 10二、填空题(每题4分,共20分)11. 若数列{a_n}是等差数列,且a_1 = 4,d = 3,则a_4 = _______。

12. 等比数列{a_n}的前三项分别为2, 6, 18,求该数列的公比q。

13. 已知数列{a_n}的通项公式为a_n = 3n + 2,求a_7。

高一数列专项典型练习题及解析答案

高一数列专项典型练习题及解析答案

数列综合练习1.已知函数f(x)=(a>0,a≠1),数列{a n}满足a n=f(n)(n∈N*),且{a n}是单调递增数列,则实数a的取值范围()A.[7,8)B.(1,8)C.(4,8)D.(4,7)2.设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1=()A.2B.﹣2C.D.﹣3.设S n是等差数列{a n}的前n项和,若,则=()A.1B.﹣1C.2D.4.阅读图的程序框图,该程序运行后输出的k的值为()A.5B.6C.7D.85.设S n为等比数列{a n}的前n项和,8a2+a5=0,则等于()A.11B.5C.﹣8D.﹣116.数列{a n}满足a1=2,a n=,其前n项积为T n,则T2016=()A.B.﹣C.1D.﹣17.已知数列{a n}的前n项和为S n,满足a n+2=2a n+1﹣a n,a6=4﹣a4,则S9=()A.9B.12C.14D.188.已知S n为等差数列{a n}的前n项和,S7=28,S11=66,则S9的值为()A.47B.45C.38D.549.在等比数列{a n}中,,则a3=()A.±9B.9C.±3D.310.在等差数列{a n}中,4(a3+a4+a5)+3(a6+a8+a14+a16)=36,那么该数列的前14项和为()A.20B.21C.42D.8411.设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为_________12.某公司推出了下表所示的QQ在线等级制度,设等级为n级需要的天数为a n(n∈N*),等级等级图标需要天数等级等级图标需要天数157772128963211219243216320545321152660482496则等级为50级需要的天数a50= _________ .13.数列{a n}为等比数列,a2+a3=1,a3+a4=﹣2,则a5+a6+a7= _________ .14.已知数列{a n}中,a n+1=2a n,a3=8,则数列{log2a n}的前n项和等于_________ .15.已知数列{a n}的前n项和为S n,并满足a n+2=2a n+1﹣a n,a6=4﹣a4,则S9= _________ .16.记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=10.则a10= _________ .17.设S n是等比数列{a n}的前n项和,S3,S9,S6成等差数列,且a2+a5=2a m,则m= _________ .18.已知数列{a n}的前n项和S n=﹣a n﹣+2(n∈N*),数列{b n}满足b n=2n a n.(1)求证数列{b n}是等差数列,并求数列{a n}的通项公式;(2)设数列{a n}的前n项和为T n,证明:n∈N*且n≥3时,T n>(3)设数列{c n}满足a n(c n﹣3n)=(﹣1)n﹣1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有c n+1>c n.19.在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,.(Ⅰ)求a n与b n;(Ⅱ)设c n=a n•b n,求数列{c n}的前n项和T n.20.已知等差数列{a n}满足a3+a4=9,a2+a6=10;又数列{b n}满足nb1+(n﹣1)b2+…+2b n﹣1+b n=S n,其中S n是首项为1,公比为的等比数列的前n项和.(1)求a n的表达式;(2)若c n=﹣a n b n,试问数列{c n}中是否存在整数k,使得对任意的正整数n都有c n≤c k成立?并证明你的结论.21.已知等差数列{a n}的前n项和为s n=pm2﹣2n+q(p,q∈R),n∈N*(I)求q的值;(Ⅱ)若a3=8,数列{b n}}满足a n=4log2b n,求数列{b n}的前n项和.22.已知等比数列{a n }满足a 2=2,且2a 3+a 4=a 5,a n >0. (1)求数列{a n }的通项公式;(2)设b n =(﹣1)n 3a n +2n+1,数列{b n }的前项和为T n ,求T n .23.已知有穷数列﹛a n ﹜共有2k(k ≧2,k ∈Z)项,首项a 1=2。

(完整版)高中数学数列练习题及答案解析

(完整版)高中数学数列练习题及答案解析

高中数学数列练习题及答案解析第二章数列1 .{an} 是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n 等于.A .667B.668C.669D.6702 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .33B.7C.84D.1893 .如果a1 ,a2,⋯,a8 为各项都大于零的等差数列,公差d≠ 0,则.A .a1a8> a4a5B.a1a8< a4a5C.a1+a8< a4+a5D.a1a8=a4a54 .已知方程=0 的四个根组成一个首项为|m-n|等于.A .1B.313C.D.8421 的等差数列,则5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n 项和Sn> 0 成立的最大自然数n 是.A .005B.006C.007D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-4B.-6C.-8D.-108 .设Sn 是等差数列{an} 的前n 项和,若A .1B.-1 C.2D.1a2?a1 的值是.b2a5S5 =,则9=.a3S599 .已知数列- 1 ,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,-4成等比数列,则A .11111B.-C.-或D.2222210 .在等差数列{an} 中,a n≠ 0,an- 1 -an+an+1=0,若S2n-1=38,则n=.第 1 页共页A .38B.20 C.10D.9二、填空题11 .设 f = 12?x ,利用课本中推导等差数列前n项和公式的方法,可求得 f + f +⋯+ f +⋯+f + f 的值为12.已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.82713 .在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.314 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.15 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.16 .设平面内有n 条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f 表示这n 条直线交点的个数,则f=;当n> 4时,f =.三、解答题17 .已知数列{an} 的前n 项和Sn=3n2-2n,求证数列{an} 成等差数列.已知第页共页111b?cc?aa?b ,,成等差数列,求证,,也成等差数列. abcabc18 .设{an} 是公比为q 的等比数列,且a1,a3,a2 成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2时,比较Sn 与bn 的大小,并说明理由.19 .数列{an} 的前n 项和记为Sn,已知a1=1,an+1=求证:数列{20 .已知数列{an} 是首项为a且公比不等于 1 的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.第页共页n?2Sn .nSn} 是等比数列.n第二章数列参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1 =21 ,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84..B.解析:由a1 +a8=a4+a5,∴排除C.又a1· a8=a1=a12+7a1d,a12+7a1d +12d2> a1· a8.a4· a5==3 .C解析:解法 1 :设a1=中两根之和也为2,∴ a1+a2+a3+a4=1+6d=4,∴ d=∴ 11735,a1=,a4=是一个方程的两个根,a1=,a3=是另一个方程的两个根.44441111 ,a2=+d,a3=+2d,a4=+3d,而方程x2-2x +m=0 中两根之和为2,x2-2x+n=04444715,分别为m或n,1616第页共页∴|m-n|=1 ,故选C.解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若?+s=p+q,则a?+as=a p+aq,若设x1 为第一项,x2 必为第四项,则x2=差数列为1357,,,,444715 ,n=,16161 .7,于是可得等4∴ m=∴|m-n|=5 .B解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120. 1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003·a004< 0,0 ,a004< 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.同解法 1 的分析得a003>根据已知条件及图象的对称性可得006 在图象中右侧第页共页零点B的左侧,007,4第二章数列2 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .3B.7C.8D.1894 .已知方程=0 的四个根组成一个首项为|m-n|等于.A . 1B . 1 的等差数列,则4C.1D.5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n 项和Sn> 0 成立的最大自然数n 是.A .00B.00C.00D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-B.-C.-D.-108 .设S n 是等差数列{an} 的前n 项和,若A . 1B .-1a5S5=,则9=.a3S5C.D. 1a2?a1 的值是.b29 .已知数列-1,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,- 4 成等比数列,则A . 1B .- 1C .-11 或D. 1二、填空题12 .已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.13 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.14 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.三、解答题15 .已知数列{an} 的前n 项和Sn=3n2-2n,求证数列{an} 成等差数列.已知18 .设{an} 是公比为q? 的等比数列,且a1 ,a3,a2成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2时,比较Sn 与bn 的大小,并说明理由.111b?cc?aa?b ,,成等差数列,求证,,也成等差数列.abcabc19 .数列{an} 的前n 项和记为Sn,已知a1 =1,an+1=求证:数列{n?2Sn .nSn} 是等比数列.n20 .已知数列{an} 是首项为a 且公比不等于1的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.第二章数列参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1=21,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84.3 .B.解析:由a1 +a8=a4+a5,∴排除C.又a1 · a8=a1 =a12+7a1d,∴ a4· a5==a12+7a1d +12d2> a1· a8.4 .C解析:解法 1 :设a1=两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴ d=∴1111,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m=0 中两根之和为2,x2-2x+n =0 中444411735,a1=,a4=是一个方程的两个根,a1 =,a3=是另一个方程的两个根.4444715,分别为m或n,16161 ,故选C.∴|m-n|=解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若?+s=p+q,则a?+as=ap +aq,若设x1 为第一项,x2 必为第四项,则x2=数列为7,于是可得等差41357,,,,444715 ,n=,16161 .∴m=∴|m-n|=5 .B解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120.1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003· a004< 0,同a004 < 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.解法 1 的分析得a003> 0,根据已知条件及图象的对称性可得006 在图象中右侧都在其右侧,Sn> 0 的最大自然数是006.7 .B解析:∵{an} 是等差数列,∴a3=a1+4,a4=a1+6,又由a1 ,a3,a4 成等比数列,∴ 2=a1 ,解得a1 =-8,∴ a2=-8+2=-6.8 . A 零点 B 的左侧,007,00899?a5S95 解析:∵9===·= 1 ,∴选A.5?a3S55929 .A解析:设d和q 分别为公差和公比,则-4=-1+3d且-4=q4,∴ d=- 1 ,q2=2,第二章数列1 .{an} 是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n 等于.A .66B.66C.66D.6702 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .3B.7C.8D.1893 .如果a1 ,a2,⋯,a8 为各项都大于零的等差数列,公差d≠ 0,则.A .a1a8> a4a B.a1a8< a4a C.a1+a8< a4+aD.a1a8=a4a54 .已知方程=0 的四个根组成一个首项为|m-n|等于.A . 1B . 1 的等差数列,则4C.1D.5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n项和Sn> 0 成立的最大自然数n 是.A .00B.00C.00D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-B.-C.-D.-108 .设Sn 是等差数列{an} 的前n 项和,若A . 1B .-1a5S5=,则9=.a3S5C.D. 1a2?a1 的值是.b29 .已知数列-1,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,- 4 成等比数列,则A . 1B .- 1C .-11 或D. 1210 .在等差数列{an} 中,an≠ 0,an- 1-an+an+1=0,若S2n-1=38,则n=.A .3B.20 C.10 D.9二、填空题第 1 页共页11 .设 f =12x? ,利用课本中推导等差数列前n 项和公式的方法,可求得 f + f +⋯+ f +⋯+f+ f 的值为.12 .已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.82713 .在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.314 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.15 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.16 .设平面内有n 条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f 表示这n 条直线交点的个数,则f=;当n> 4时,f=.三、解答题17 .已知数列{an} 的前n 项和S n=3n2-2n,求证数列{an} 成等差数列.已知18 .设{an} 是公比为q? 的等比数列,且a1 ,a3,a2成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2 时,比较Sn 与bn 的大小,并说明理由.第页共页111b?cc?aa?b ,,成等差数列,求证,,也成等差数列. abcabc19 .数列{an} 的前n 项和记为Sn,已知a1 =1,an+1=求证:数列{20 .已知数列{an} 是首项为 a 且公比不等于1 的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.n?2Sn .nSn} 是等比数列.n第二章数列第页共页参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1 =21 ,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84.3 .B.解析:由a1 +a8=a4+a5,∴排除C.又a1· a8=a1=a12+7a1d,∴ a4· a5==a12+7a1d +12d2> a1· a8.4 .C解析:解法 1 :设a1=两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴ d=∴1111,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m=0 中两根之和为2,x2-2x +n=0中444411735,a1=,a4=是一个方程的两个根,a1 =,a3=是另一个方程的两个根.4444715,分别为m或n,16161 ,故选C.∴|m-n|=解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1· x2=m,x3· x4=n.由等差数列的性质:若?+s=p+q,则a?+as=ap+aq,若设x1 为第一项,x2 必为第四项,则x2=数列为7,于是可得等差41357,,,,444715 ,n=,1616第页共页∴ m=∴|m-n|=5 . B 1.解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120.1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003· a004< 0,同a004 < 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.解法 1 的分析得a003> 0,根据已知条件及图象的对称性可得006 在图象中右侧都在其右侧,Sn> 0 的最大自然数是006.7 .B解析:∵{an} 是等差数列,∴a3=a1+4,a4=a1+6,又由a1 ,a3,a4 成等比数列,∴ 2=a1 ,解得a1 =-8,∴ a2=-8+2=-6.8 .A第页共页零点B的左侧,007,008。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一培优专题:数列一.选择题(共8小题)1.已知数列{a n}、{b n}均为等比数列,其前n项和分别为S n,T n,若对任意的n ∈N*,都有,则=()A.81 B.9 C.729 D.7302.在正项数列{a n}中,若a1=1,且对所有n∈N*满足na n+1﹣(n+1)a n=0,则a2017=()A.1013 B.1014 C.2016 D.20173.已知数列{a n}满足a1=﹣1,a n=1﹣(n>1),a2016=()A.2 B.1 C.D.﹣14.设各项均为正数的数列{a n}的前n项之积为T n,若,则的最小值为()A.7 B.8 C.D.5.设等差数列{a n}满足:=1,公差d∈(﹣1,0).若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1取值范围是()A.(,)B.(,)C.[,]D.[,] 6.设数列{a n}满足,a n+1=a n2+a n(n∈N*),记,则S10的整数部分为()A.1 B.2 C.3 D.47.若函数,,,,在等差数列{a n}中,a1=0,a2019=1,b n=|g k(a n+1)﹣g k(a n)|(k=1,2,3,4),用p k表示数列{b n}的前2018项的和,则()A.P4<1=P1=P2<P3=2 B.P4<1=P1=P2<P3<2C.P4=1=P1=P2<P3=2 D.P4<1=P1<P2<P3=28.数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前64项和为()A.4290 B.4160 C.2145 D.2080二.填空题(共9小题)9.已知数列{a n}满足则{a n}的通项公式.10.在数列{a n}中,a1=2,2a n+1=a n2+1,n∈N*,设b n=,若数列{b n}的前2018项和S2018>t,则整数t的最大值为.11.已知数列{a n}满足a1=﹣1,|a n﹣a n﹣1|=2n﹣1(n∈N,n≥2),且{a2n﹣1}是递减数列,{a2n}是递增数列,则a2018=.12.数列{a n}中,a n=3n﹣1,现将{a n}的各项依原顺序按第k组有2k项的要求进行分组:(2,5),(8,11,14,17),(20,23,26,29,32,35),…,则第n 组中各数的和为.13.已知数列{a n}的前n项和是S n,,4S n S n﹣1+S n=S n﹣1(n≥2),则S n=.14.设数列{a n}的前n项和为S n.若S n=2a n﹣n,则+++=.15.已知数列{a n}的首项a1=m,其前n项和为S n,且满足S n+S n+1=3n2+2n,若对∀n∈N*,a n<a n+1恒成立,则m的取值范围是.16.已知数列{a n}中,a1=,2a n a n﹣1=a n﹣a n﹣1,则数列a n的通项公式为.17.在数列{a n}中,已知a1=,a n+1=1﹣,n∈N*,则a30=.三.解答题(共23小题)18.已知数列{a n}满足.(1)设,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n;(3)记,求数列{c n}的前n项和T n.19.已知数列{a n}是正项数列,满足(a1+a2+…+a n)2=a+a+…a.(1)求数列{a n}的通项公式;(2)求证:数列{}的前n项和T n<;(3)若0<λ<1,b n=,求证:20.函数y=(n∈N*,y≠1)的最大值为a n,最小值为b n且c n=4(a n b n ﹣)(1)求数列{c n}的通项公式;(2)求f(n)=(n∈N*)的最大值.21.已知f(n)是平面区域I n:(x,y∈R,n∈N*)内的整点(横纵坐标都是整数的点)的个数,记a n=2n f(n),数列{a n}的前n项和为S n(1)求数列{a n}的前n项和为S n(2)若对于任意n∈N*,≤c恒成立,求实数c的取值范围.22.已知数列{a n}满足4a n=a n﹣1﹣3(n≥2且n∈N*),且a1=﹣,设b n(a n+1),n∈N*,数列{c n}满足c n=(a n+1)b n(1)求证{a n+1}是等比数列并求出数列{a n}的通项公式;(2)求数列{c n}的前n项和S n(3)对于任意n∈N*,c n≤m2﹣m﹣恒成立,求实数m的取值范围.23.函数f(x)满足:对任意α,β∈R,都有f(αβ)=αf(β)+βf(α),且f(2)=2,数列{a n}满足a n=f(2n)(n∈N+).(1)求数列{a n}的通项公式;(2)令b n=(﹣1),c n=,记T n=(c1+c2+…+c n)(n∈N+).问:是否存在正整数M,使得当n>M时,不等式|T n﹣|<恒成立?若存在,写出一个满足条件的M;若不存在,请说明理由.24.已知数列{a n}的前n项和为S n,若a1=0,n•a n+1=S n+n(n+1),(1)求数列{a n}的通项公式;(2)若数列{b n}满足a n+log3n=log3b n,求数列{b n}的前n项和;(3)设P n=a1+a4+a7+…+a3n﹣2,Q n=a10+a12+a14+…+a2n+8,其中n∈N*,试比较P n与Q n的大小,并证明你的结论.25.在等比数列{a n}的前n项和为S n,S n=2n+r(r为常数),记b n=1+log2a n.(1)求r的值;(2)求数列{a n b n}的前n项和T n;(3)记数列{}的前n项和为P n,若对任意正整数n,都有P2n+≤k+P n,求+1实数k的最小值.26.已知数列{a n}满足=a n+1(n∈N*),且a1=.(I)求证:数列{}是等差数列,并求通项a n.(2)若b n=,c n=b n•()n,(n∈N*),且T n=c1+c2+…+c n,求证:1≤T n<3.27.已知数列{a n}为公差不为0的等差数列,S n为其前n项和,a5和a9的等差中项为13,且a2•a5=a1•a14.令b n=,数列{b n}的前n项和为T n.(Ⅰ)求T n;(Ⅱ)是否存在不同的正整数m,n,使得T2,T m,T n成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由;(Ⅲ)若c n=,是否存在互不相等的正整数m,n,t,使得m,n,t成等差数列,且c m,c n,c t成等比数列?若存在,求出所有的m,n,t的值;若不存在,请说明理由.28.各项为正数的数列{a n}的前n项和为S n,且满足:S n=2++(n∈N*)(1)求a n;(2)设函数f(n)=,c n=f(2n+4)(n∈N*),求数列{c n}的前n项和T n;(3)设λ为实数,对满足m+n=3k且m≠n的任意正整数m、n、k,不等式S m+S n >λS k恒成立,求实数λ的最大值.29.设数列{a n}满足:a1=1,a n+1=2a n+1,数列{b n}满足:b n=a,其中a >0且a≠1,n∈N*(1)求证:数列{a n+1}为等比数列,并求出数列{a n}的通项公式;(2)试问数列是否为等差数列,如果是,请写出公差,如果不是,说明理由;(3)若a=2,记c n=,数列{C n}的前n项和为T n,数列的前n 项和为R n,若对任意n∈N*,不等式λnT n+<2(λn+)恒成立,求实数λ的取值范围.30.已知数列{a n}的前n项和S n=﹣a n﹣()n﹣1+2(n为正整数).(1)证明:a n=a n+()n﹣1,并求数列{a n}的通项公式;+1(2)若=,T n=c1+c2+…+c n,求T n.31.在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n;(Ⅲ)证明存在k∈N*,使得对任意n∈N*均成立.32.已知{a n}为递增的等比数列,且{a1,a3,a5}⊆{﹣10,﹣6,﹣2,0,1,3,4,16}.(1)求数列{a n}的通项公式;(2)是否存在等差数列{b n},使得a1b n+a2b n﹣1+a3b n﹣2+…+a n b1=2n+1﹣n﹣2对一切n∈N*都成立?若存在,求出b n;若不存在,说明理由.33.已知数列{a n}满足a1=1,a n+1=1﹣,其中n∈N*(1)设b n=,求证:数列{b n}是等差数列;(2)若c n=6n+(﹣1)n﹣1λ•2是否存在λ,使得对任意n∈N+,都有c n+1>c n,若存在,求出λ的取值范围;若不存在,说明理由;(3)证明::对一切正整数n,有++…+<.34.已知数列{a n}中,.(1)求数列{a n}的通项公式a n;(2)求数列{n2a n}的前n项和T n;(3)若存在n∈N*,使关于n的不等式a n≤(n+1)λ成立,求常数λ的最小值.35.九连环是我国的一种古老的智力游戏,它环环相扣,趣味无穷.按照某种规则解开九连环,至少需要移动圆环a9次.我们不妨考虑n个圆环的情况,用a n 表示解下n个圆环所需的最少移动次数,用b n表示前(n﹣1)个圆环都已经解下后,再解第n个圆环所需的次数,按照某种规则可得:a1=1,a2=2,a n=a n﹣2+1+b n ,b1=1,b n=2b n﹣1+1.﹣1(1)求b n的表达式;(2)求a9的值,并求出a n的表达式;(3)求证:.36.已知数列{a n}中,a1=2,a2=10,对任意n∈N*有a n+2=2a n+1+3a n成立.(I)若{a n+λa n}是等比数列,求λ的值;+1(II)求数列{a n}的通项公式;(III)证明:对任意n∈N*成立.37.设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值.38.已知有穷数列{a n}共有m项(m≥2,m∈N*),且|a n+1﹣a n|=n(1≤n≤m﹣1,n∈N*).(1)若m=5,a1=1,a5=3,试写出一个满足条件的数列{a n};(2)若m=64,a1=2,求证:数列{a n}为递增数列的充要条件是a64=2018;(3)若a1=0,则a m所有可能的取值共有多少个?请说明理由.39.已知数列{a n}满足,(n∈N*)(Ⅰ)判断数列{a n}的单调性;(Ⅱ)证明:(n≥2);(Ⅲ)证明:.40.已知各项均为正数的数列{a n}的前n项和为S n,满足a n+12=2S n+n+4,a2﹣1,a3,a7恰为等比数列{b n}的前3项.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=,数列{c n}的前n项和T n.求证:T n.参考答案与试题解析一.选择题(共8小题)1.已知数列{a n}、{b n}均为等比数列,其前n项和分别为S n,T n,若对任意的n ∈N*,都有,则=()A.81 B.9 C.729 D.730【解答】解:数列{a n}、{b n}均为等比数列,其前n项和分别为S n,T n,若对任意的n∈N*,都有,设{a n},{b n}的公比分别为q,q′,令n=1,可得=1,∴a1=b1.再令n=2,可得==,即1+2q=5+5q′,即2q﹣4=5q′①.再令n=3,可得==7,即1+q+q2=7+7q′+7q′2,即q+q2=6+7q′+7q′2②.由①②求得q=9,q′=3,则===9,故选:B.2.在正项数列{a n}中,若a1=1,且对所有n∈N*满足na n+1﹣(n+1)a n=0,则a2017=()A.1013 B.1014 C.2016 D.2017【解答】解:a1=1,且对所有n∈N*满足na n+1﹣(n+1)a n=0,∴=…==1.可得a n=n.则a2017=2017.故选:D.3.已知数列{a n}满足a1=﹣1,a n=1﹣(n>1),a2016=()A.2 B.1 C.D.﹣1【解答】解:∵数列{a n}满足a1=﹣1,a n=1﹣(n>1),∴a2=2,a3=,a4=﹣1,∴数列{a n}是周期为3的数列,∵2016=672×3,∴a2016=a3=,故选:C.4.设各项均为正数的数列{a n}的前n项之积为T n,若,则的最小值为()A.7 B.8 C.D.【解答】解:∵各项均为正数的数列{a n}的前n项之积为T n,,∴a1=T1=22=4.n≥2时,a n===22n=4n.当n=1时上式也成立,∴a n=4n.则===g(n),考察函数f(x)=x+(x≥2)的单调性,f′(x)=1﹣==,当2≤x时,f′(x)<0,函数f(x)单调递减;当<x,f′(x)>0,函数f(x)单调递增.又g(2)=22+=7,g(3)=23+=>g(3).∴的最小值为7.故选:A.5.设等差数列{a n}满足:=1,公差d∈(﹣1,0).若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1取值范围是()A.(,)B.(,)C.[,]D.[,]【解答】解:由=1,得:,即,由积化和差公式得:,整理得:,∴sin(3d)=﹣1.∵d∈(﹣1,0),∴3d∈(﹣3,0),则3d=,d=﹣.由=.对称轴方程为n=,由题意当且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴,解得:.∴首项a1的取值范围是.故选:B.6.设数列{a n}满足,a n+1=a n2+a n(n∈N*),记,则S10的整数部分为()A.1 B.2 C.3 D.4=a n2+a n=a n(a n+1)(n∈N*),【解答】解:∵数列{a n}满足,a n+1∴===,∴,∴+…+=,∵,,,+>1,又a n>a n,+1∴a11>1,∴0<<1,∵,∴S10的整数部分是2.故选:B.7.若函数,,,,在等差数列{a n}中,a1=0,a2019=1,b n=|g k(a n+1)﹣g k(a n)|(k=1,2,3,4),用p k表示数列{b n}的前2018项的和,则()A.P4<1=P1=P2<P3=2 B.P4<1=P1=P2<P3<2C.P4=1=P1=P2<P3=2 D.P4<1=P1<P2<P3=2【解答】解:等差数列{a n}中,a1=0,a2019=1,可知该数列为递增数列,且a1010=,a505<,a506>,)﹣g1(a n)>0,对于g1(x)=2x,该函数在[0,1]上单调递增,于是有g1(a n+1于是b n=g1(a n+1)﹣g1(a n),∴p1=g1(a2019)﹣g1(a1)=2﹣1=1,对于g2(x),该函数在[0,]上递增,在(,1]上递减,于是P2=g2(a1010)﹣g2(a1)+g2(a1010)﹣g2(a2019)=﹣0+﹣0=1;对于g3(x),该函数在[0,]上递减,在(,1]上为常数,类似有P3=g3(a1)﹣g3(a1010)=g3(0)﹣g3()=3﹣1=2;对于g4(x),该函数在[0,]和[,]递增,在[,]和[,1]上递减,且是以为周期的周期函数,故只需讨论[0,]的情况,再2倍即可,仿前可知,P4=2[g4(a505)﹣g4(a1)+g4(a506)﹣g4(a1010)]<2(sin﹣sin0+sin﹣sinπ)=1,故P4<1,综上所述P4<1=P1=P2<P3=2,故选:A.8.数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前64项和为()A.4290 B.4160 C.2145 D.2080【解答】解:a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,…a1+a2+a3+a4+…+a64=a1+(a2+a3)+(a4+a5)+…+(a62+a63)+a64=a1+1953+a64,将a1﹣a2=﹣1,a3+a2=3,a4﹣a3=5,﹣a5﹣a4=﹣7,﹣a6﹣a5=﹣9,a7+a6=11,a8﹣a7=13,a9+a8=15…,a64﹣a63=125相加得a1+a64=﹣1+3+5﹣7﹣9+11+13﹣15﹣17+…+123+125=127,∴则{a n}的前64项和为:1953+127=2080.故选:D.二.填空题(共9小题)9.已知数列{a n}满足则{a n}的通项公式.【解答】解:∵数列{a n}满足,①∴当n≥2时,仿仿写一个式子②①﹣②得,∴a n=2n+1n≥2,当n=1时,a1=6,∴{a n}的通项公式a n=故答案为:a n=10.在数列{a n}中,a1=2,2a n+1=a n2+1,n∈N*,设b n=,若数列{b n}的前2018项和S2018>t,则整数t的最大值为4033.【解答】解:在数列{a n}中,a1=2,2a n+1=a n2+1,n∈N*,可得2(a n﹣1)=a n2﹣1=(a n﹣1)(a n+1),+12a n+1=a n2+1≥2a n,即有数列{a n}递增,可得=(﹣),即有=﹣,b n==2﹣,则S2018=b1+b2+b3+…+b2018=2×2018﹣3(++…+)=4036﹣3(﹣+﹣+…+﹣)=4036﹣3(1﹣)=4033+,而数列{a n}递增,a1=2,a2=,a3=,a4=>4,…,a2019>4,由数列{b n}的前2018项和S2018>t,可得整数t的最大值为4033.故答案为:4033.11.已知数列{a n}满足a1=﹣1,|a n﹣a n﹣1|=2n﹣1(n∈N,n≥2),且{a2n﹣1}是递减数列,{a2n}是递增数列,则a2018=.【解答】解:由|a n﹣a n﹣1|=2n﹣1,(n∈N,n≥2),则|a2n﹣a2n﹣1|=22n﹣1,|a2n+2﹣a2n+1|=22n+1,∵数列{a2n﹣1}是递减数列,且{a2n}是递增数列,∴a2n﹣a2n﹣1<a2n+2﹣a2n+1,又∵|a2n﹣a2n﹣1|=22n﹣1<|a2n+2﹣a2n+1|=22n+1,∴a2n﹣a2n﹣1>0,即a2n﹣a2n﹣1=22n﹣1,同理可得:a2n+3﹣a2n+2<a2n+1﹣a2n,又|a2n+3﹣a2n+2|>|a2n+1﹣a2n|,则a2n+1﹣a2n=﹣22n,当数列{a n}的项数为偶数时,令n=2k(k∈N*),∴a2﹣a1=2,a3﹣a2=﹣22,a4﹣a3=23,a5﹣a4=﹣24,…,a2015﹣a2014=﹣22014,a2016﹣a2015=22015,a2017﹣a2016=﹣22016,a2018﹣a2017=22017.∴a2018﹣a1=2﹣22+23﹣24+…﹣22014+22015﹣22016+22017==.∴a2018=.故答案为:.12.数列{a n}中,a n=3n﹣1,现将{a n}的各项依原顺序按第k组有2k项的要求进行分组:(2,5),(8,11,14,17),(20,23,26,29,32,35),…,则第n 组中各数的和为+.【解答】解:∵数列{a n}中,a n=3n﹣1,∴数列{a n}的前n项和S n=,∵3+6+9+…+3n=,3+6+9+…+3(n﹣1)=,∴第n组中各数的和为:S==﹣=+.故答案为:+.13.已知数列{a n}的前n项和是S n,,4S n S n﹣1+S n=S n﹣1(n≥2),则S n=.【解答】解:由4S n S n﹣1+S n=S n﹣1(n≥2),得4S n S n﹣1=S n﹣1﹣S n(n≥2),∴(n≥2).又,∴,则数列{}是以2为首项,以4为公差的等差数列,则,∴.故答案为:.14.设数列{a n}的前n项和为S n.若S n=2a n﹣n,则+++=.【解答】解:∵S n=2a n﹣n,∴n≥2时,a n=S n﹣S n﹣1=2a n﹣n﹣[2a n﹣1﹣(n﹣1)],∴a n=2a n﹣1+1,化为:a n+1=2(a n﹣1+1),n=1时,a1=2a1﹣1,解得a1=1.∴数列{a n+1}是等比数列,首项为2,公比为2.∴a n+1=2n,即a n=2n﹣1,∴==.∴+++=++…+ =1﹣=.故答案为:.15.已知数列{a n}的首项a1=m,其前n项和为S n,且满足S n+S n+1=3n2+2n,若对∀n∈N*,a n<a n+1恒成立,则m的取值范围是(﹣,).【解答】解:∵S n+S n+1=3n2+2n,∴n=1时,2a1+a2=5,解得a2=5﹣2m.n=2时,S2+S3=2(a1+a2)+a3=3×22+2×2=16,解得a3=6+2m.n≥2时,S n﹣1+S n=3(n﹣1)2+2(n﹣1),∴a n+1+a n=6n﹣1,∴a n+a n﹣1=6n﹣7,∴a n+1﹣a n﹣1=6,(n≥3).∴n≥2,数列{a n}的奇数项与偶数项分别成等差数列,a2k=5﹣2m+6(k﹣1)=6k﹣1﹣2m,a2k﹣1=6+2m+6(k﹣2)=6k+2m﹣6.∵对n∈N*,(n≥3),a n<a n+1恒成立,∴n=2k﹣1时,6k+2m﹣6<6k﹣1﹣2m,解得m<.n=2k时,6k﹣1﹣2m<6(k+1)+2m﹣6,解得:m>﹣.可得m的取值范围是:﹣<m<.由a1<a2,a2<a3,可得:m<5﹣2m,5﹣2m<6+2m,解得:,m,综上可得m的取值范围是:﹣<m<.故答案为:(﹣,).16.已知数列{a n}中,a1=,2a n a n﹣1=a n﹣a n﹣1,则数列a n的通项公式为a n=.【解答】解:∵2a n a n﹣1=a n﹣a n﹣1,∴=﹣2.∴数列是等差数列,首项为3,公差为2.∴=3﹣2(n﹣1)=5﹣2n.∴a n=.故答案为:a n=.17.在数列{a n}中,已知a1=,a n+1=1﹣,n∈N*,则a30=2.【解答】解:∵a1=,a n+1=1﹣,n∈N*,∴a2=1﹣2=﹣1,a3=2,a4=1﹣=,…,∴a n=a n.+3则a30=a3×10=a3=2,故答案为:2.三.解答题(共23小题)18.已知数列{a n}满足.(1)设,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n;(3)记,求数列{c n}的前n项和T n.【解答】解:(1)数列{a n}满足,可得:,设,数列{b n}是等差数列,公差为1,首项为1,所以b n=n;(2)易得,其前n项和:S n=1•21+2•22+3•23+…+n•2n…①,2S n=1•22+2•23+…+n•2n+1…②,②﹣①可得:S n=﹣1﹣22﹣23﹣…﹣2n+n•2n+1∴;(3)=,=或写成.19.已知数列{a n}是正项数列,满足(a1+a2+…+a n)2=a+a+…a.(1)求数列{a n}的通项公式;(2)求证:数列{}的前n项和T n<;(3)若0<λ<1,b n=,求证:【解答】解:(1)数列{a n}是正项数列,满足(a1+a2+…+a n)2=a+a+…a,可得a12=a13,解得a1=1;n=2时,(a1+a2)2=a+a,解得a2=2;n≥2时,(a1+a2+…+a n﹣1)2=a+a+…+a,又(a1+a2+…+a n)2=a+a+…a,相减可得a n2+2a n(a1+a2+…+a n﹣1)=a,即有2(a1+a2+…+a n﹣1)=a n2﹣a n,将n换为n﹣1可得,2(a1+a2+…+a n﹣2)=a n﹣12﹣an﹣1,相减可得2a n﹣1=a n2﹣a n﹣a n﹣12+a n﹣1,化为(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,则a n﹣a n﹣1=1,则a n=2+n﹣2=n,对n=1,2均成立,故a n=n,n∈N*;(2)证明:==(﹣),则前n项和T n=(1﹣+﹣+﹣+…+﹣+﹣)=(1+﹣﹣)=﹣(+)<;(3)证明:0<λ<1,b n==,=<()2•=(﹣),则++…+<(1﹣+﹣+…+﹣)=(1﹣)<.20.函数y=(n∈N*,y≠1)的最大值为a n,最小值为b n且c n=4(a n b n ﹣)(1)求数列{c n}的通项公式;(2)求f(n)=(n∈N*)的最大值.【解答】解:(1)由已知,y=(n∈N*,y≠1)的定义域为R,则x2(y﹣1)+x+y﹣n=0方程有解,即有△≥0即1﹣4(y﹣1)(y﹣n)≥0,即y2﹣(n+1)y+n﹣≤0的解集[b n,a n],即y2﹣(n+1)y+n﹣=0的两根为b n,a n,可得a n b n=n﹣,又因为c n=4(a n b n﹣),则c n=4n﹣3,n∈N*;(2)f(n)===,令4n﹣3=t(t≥1且t为正整数),可得n=,则g(t)==,由t+≥2=28,当且仅当t=,可得t=14,当t=21时,n=6,t+=49,当t=22,23,24时,n不为整数;当t=25时,n=7时,t+=48+;则当n=7时,g(t)取得最大值,即f(n)取得最大值=.21.已知f(n)是平面区域I n:(x,y∈R,n∈N*)内的整点(横纵坐标都是整数的点)的个数,记a n=2n f(n),数列{a n}的前n项和为S n(1)求数列{a n}的前n项和为S n(2)若对于任意n∈N*,≤c恒成立,求实数c的取值范围.【解答】解:(1)f(1)=3,f(2)=6,f(3)=9.由x>0,﹣nx+3n≥y>0,得0<x<3,∴x=1或x=2.∴I n内的整点在直线x=1和x=2上.记直线y=﹣nx+3n为l,l与直线x=1,x=2的交点的纵坐标分别为y1,y2,则y1=﹣n+3n=2n,y2=﹣2n+3n=n,∴f(n)=3n;a n=2n f(n)=3n•2n,前n项和为S n=3•2+6•22+9•23+…+3n•2n,2S n=3•22+6•23+9•24+…+3n•2n+1,两式相减可得,﹣S n=6+3(22+23+24+…+2n)﹣3n•2n+1,=6+3•﹣3n•2n+1,化简可得,S n=6+3(n﹣1)•2n+1;(2)若对于任意n∈N*,≤c恒成立,即为≤c恒成立,可令b n=,由=,当n=1,2时,b1<b2=b3,当n≥3时,b3>b4>b5>…,则b2=b3为最大值.则c≥.22.已知数列{a n}满足4a n=a n﹣1﹣3(n≥2且n∈N*),且a1=﹣,设b n(a n+1),n∈N*,数列{c n}满足c n=(a n+1)b n(1)求证{a n+1}是等比数列并求出数列{a n}的通项公式;(2)求数列{c n}的前n项和S n(3)对于任意n∈N*,c n≤m2﹣m﹣恒成立,求实数m的取值范围.【解答】(1)证明:数列{a n}满足4a n=a n﹣1﹣3(n≥2且n∈N*),+1),a1+1=.变形为:a n+1=(a n﹣1∴数列{a n+1}是等比数列,首项与公比都为.∴a n+1=,可得a n=﹣1.(2)解:b n(a n+1)=3n,∴b n=3n﹣2.数列{c n}满足c n=(a n+1)b n=(3n﹣2).∴数列{c n}的前n项和S n=+4×+7×+10×+…+(3n﹣2).S n=++7×+…+(2n﹣5)+(3n﹣2).∴S n=+3×+3×+…+3×﹣(3n﹣2)=+3×﹣(3n﹣2).化为:S n=.(3)解:n=1时,c1=;n=2时,c2=.n≥3时,c n>0.==<1,因此c n+1<c n.∴n=3时,c3=.对于任意n∈N*,c n≤m2﹣m﹣恒成立,∴≤m2﹣m﹣,化为:4m2﹣4m﹣3≥0.化为(2m﹣3)(2m+1)≥0.解得:或m.∴实数m的取值范围是∪.23.函数f(x)满足:对任意α,β∈R,都有f(αβ)=αf(β)+βf(α),且f(2)=2,数列{a n}满足a n=f(2n)(n∈N+).(1)求数列{a n}的通项公式;(2)令b n=(﹣1),c n=,记T n=(c1+c2+…+c n)(n∈N+).问:是否存在正整数M,使得当n>M时,不等式|T n﹣|<恒成立?若存在,写出一个满足条件的M;若不存在,请说明理由.【解答】解:(1)∵数列{a n}满足a n=f(2n)(n∈N+),∴a1=f(2)=2,又∵对任意α,β∈R,都有f(αβ)=αf(β)+βf(α),=f(2n+1)=2f(2n)+2n f(2)=2a n+2n+1,∴a n+1两边同时除以2n+1得:﹣=1,∴数列{}是首项、公差均为1的等差数列,∴=n,即a n=n•2n;(2)由(1)可知,b n=(﹣1)=2n(2n﹣1),c n====﹣<,∴c1+c2+…+c n<,∵c n=﹣=﹣=﹣,∴c n=﹣>﹣(n>2),∴c1+c2+…+c n>﹣•=﹣+>﹣(n>2),∴﹣<c1+c2+…+c n<(n>2),∵不等式|T n﹣|<恒成立等价于<,等价于n>=146,∴存在正整数M=146(或147,148,149,…),使得不等式|T n﹣|<恒成立.24.已知数列{a n}的前n项和为S n,若a1=0,n•a n+1=S n+n(n+1),(1)求数列{a n}的通项公式;(2)若数列{b n}满足a n+log3n=log3b n,求数列{b n}的前n项和;(3)设P n=a1+a4+a7+…+a3n﹣2,Q n=a10+a12+a14+…+a2n+8,其中n∈N*,试比较P n与Q n的大小,并证明你的结论.=S n+n(n+1)得:1•a2=S1+1=a1+1=2+1=3,【解答】解:(1)把n=1,代入n•a n+1即a2﹣a1=2,∵n•a n=S n+n(n+1)①,∴n≥2时,(n﹣1)•a n=S n﹣1+n(n﹣1)②,+1﹣(n﹣1)•a n=a n+2n,①﹣②得:n•a n+1﹣a n=2(n≥2),化简得:a n+1∵a2﹣a1=2,∴a n+1﹣a n=2(n∈N+),即数列{a n}是以0为首项,2为公差的等差数列,∴a n=0+2(n﹣1)=2(n﹣1);(2)由a n+log3n=log3b n得:b n=n•32n﹣2(n∈N*)T n=b1+b2+b3++b n=30+2•32+3•34+…+n•32n﹣2,①∴9T n=30+2•32+3•34+…+n•32n,②②﹣①得:8T n=n•32n﹣(30+32+34+…+32n﹣2)=n•32n﹣∴T n=;(3)∵a n=2(n﹣1),∴P n=a1+a4+a7+…+a3n﹣2==n(3n﹣3),Q n=a10+a12+a14+…+a2n+8= =n(2n+16)∴P n﹣Q n=n(3n﹣3)﹣n(2n+16)=n2﹣19n若n2﹣19n>0,即n>19时,P n>Q n;若n2﹣19n=0,即n=19时,P n=Q n;若n2﹣19n<0,即1≤n<19时,P n<Q n.25.在等比数列{a n}的前n项和为S n,S n=2n+r(r为常数),记b n=1+log2a n.(1)求r的值;(2)求数列{a n b n}的前n项和T n;+≤k+P n,求(3)记数列{}的前n项和为P n,若对任意正整数n,都有P2n+1实数k的最小值.【解答】解:(1)等比数列{a n}的前n项和为S n,S n=2n+r,可得a1=S1=2+r;a n=S n﹣S n﹣1=2n+r﹣(2n﹣1+r)=2n﹣1,上式对n=1也成立,即有2+r=1,解得r=﹣1.(2)b n=1+log2a n=1+log22n﹣1=1+n﹣1=n,数列{a n b n}的前n项和T n=1•20+2•2+3•22+…+n•2n﹣1,2T n=1•2+2•22+3•23+…+n•2n,两式相减可得,﹣T n=1+2+22+…+2n﹣1﹣n•2n=﹣n•2n,化简可得,T n=(n﹣1)•2n+1;(3)数列{}的前n项和为P n=1+++…+,P2n+1+≤k+P n,即为1+++…++…++≤k+1+++…+,化为k≥++…+,可设f(n)=++…+,f(n+1)﹣f(n)=+…+++﹣(++…+)=+﹣=﹣<0,即有f(n)在自然数集上递减,可得f(1)取得最大值,且为1++=.则k≥.即实数k的最小值为.26.已知数列{a n}满足=a n+1(n∈N*),且a1=.(I)求证:数列{}是等差数列,并求通项a n.(2)若b n=,c n=b n•()n,(n∈N*),且T n=c1+c2+…+c n,求证:1≤T n<3.【解答】解:(I)证明:将=a n(n∈N*),两边取倒数,移项整理=+1+,=1006,故数列{}以1006为首项,以为公差的等差数列,=1006+(n﹣1)=,∴数列{a n}的通项公式,a n=,(2)将a n代入b n,得b n==n+1,∴c n=b n•()n=(n+1)•()n,T n=c1+c2+…+c n,=2×+3×()2+4×()3+…+(n+1)•()n,T n=2×()2+3×()3+4×()4+…+(n+1)•()n+1,两式相减得:T n=1+()2+()3+…+()n﹣(n+1)•()n+1,=1+﹣(n+1)•()n+1,=﹣,∴T n=3﹣<3,由函数单调性可知,当n=1时,取最小值,T1=1∴1≤T n<3.27.已知数列{a n}为公差不为0的等差数列,S n为其前n项和,a5和a9的等差中项为13,且a2•a5=a1•a14.令b n=,数列{b n}的前n项和为T n.(Ⅰ)求T n;(Ⅱ)是否存在不同的正整数m,n,使得T2,T m,T n成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由;(Ⅲ)若c n=,是否存在互不相等的正整数m,n,t,使得m,n,t成等差数列,且c m,c n,c t成等比数列?若存在,求出所有的m,n,t的值;若不存在,请说明理由.(Ⅰ)因为{a n}为等差数列,设公差为d,则由题意得,【解答】解:即,整理得,解得,所以a n=1+(n﹣1)×2=2n﹣1,由,…3分(Ⅱ)由(Ⅰ)得,因为T2,T m,T n成等比数列,所以,即,对上等式左右同时取倒数可得即,∵,∴,只需要﹣m2+4m+1>0,所以,因为m∈N*,所以m可以取值1,2,3,4讨论:①当m=1时,带入,,不满足n∈N*,所以此时不存在.②当m=2时,带入,n=2,满足n∈N*,但是不满足m,n为不同整数的条件,所以此时也不存在.③当m=3时,带入,,不满足n∈N*,所以此时不存在.④当m=4时,带入,n=40,满足n∈N*,所以存在.综上所述,存在m=4,n=40满足T2,T m,T n成等比数列…7分(Ⅲ)由(Ⅰ)得,且2n=m+t,因为c m,c n,c t成等比数列,所以,将代入上式可得:将2n=m+t带入上式化简得:2•32n﹣1=32m﹣1+32t﹣1,不妨设m<n<t,则2•32n﹣1=32m﹣1+32t﹣1⇔32n﹣1﹣32m﹣1=32t﹣1﹣32n﹣1,即32m﹣1•(32n﹣2m﹣1)=32n﹣1•(32t﹣2n﹣1),∵2n﹣2m>0且2n﹣2m∈N*所以上式左端因式32n﹣2m﹣1不含因数3,同理上式右端因式32t﹣2n﹣1不含因数3.而上式左端含有因数3的次数为2m﹣1次,上式右端含有因数3的次数为2n﹣1次.∵2m﹣1≠2n﹣1,所以32m﹣1•(32n﹣2m﹣1)≠32n﹣1•(32t﹣2n﹣1),所以方程无解.综上所述,不存在互不相等的正整数m,n,t,使得m,n,t成等差数列,且c m,c n,c t成等比数列…12分.28.各项为正数的数列{a n}的前n项和为S n,且满足:S n=2++(n∈N*)(1)求a n;(2)设函数f(n)=,c n=f(2n+4)(n∈N*),求数列{c n}的前n项和T n;(3)设λ为实数,对满足m+n=3k且m≠n的任意正整数m、n、k,不等式S m+S n >λS k恒成立,求实数λ的最大值.【解答】解:(1)由S n=2++(n∈N*)…①得n≥2时,S n﹣1=2++(n∈N*)…②①﹣②化简可得,(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0又a n>0,所以当n≥2时,a n﹣a n﹣1=2∴数列{a n}成等差数列,公差为2又则a1=1∴a n=2n﹣1(2)由f(n)=,可得c1=f(6)=f(3)=a3=5c2=f(8)=f(4)=f(2)=f(1)=a1=1当n≥3时c n=f(2n+4)=f(2n﹣1+2)=f(2n﹣2+1)=2(2n﹣1+1)﹣1=2n﹣1+1故当n≥3时T n=2n+n∴(3)S m+S n>λS k⇒m2d2+n2d2>c•k2d2⇒m2+n2>λ•k2,恒成立.又m+n=3k且m≠n,,故,即λ的最大值为.29.设数列{a n}满足:a1=1,a n+1=2a n+1,数列{b n}满足:b n=a,其中a >0且a≠1,n∈N*(1)求证:数列{a n+1}为等比数列,并求出数列{a n}的通项公式;(2)试问数列是否为等差数列,如果是,请写出公差,如果不是,说明理由;(3)若a=2,记c n=,数列{C n}的前n项和为T n,数列的前n 项和为R n,若对任意n∈N*,不等式λnT n+<2(λn+)恒成立,求实数λ的取值范围.【解答】(1)证明:∵a n+1=2a n+1,∴a n+1+1=2a n+2,即a n+1+1=2(a n+1),又∵a1+1=1+1=2,∴数列{a n+1}是首项、公比均为2的等比数列,∴a n+1=2n,a n=﹣1+2n;(2)结论:数列是公差为log a2的等差数列.理由如下:∵b n=log a,∴==log a(a n+1)=nlog a2,∴数列是等差数列,公差为log a2;(3)解:由(1)、(2)可知c n==,∵T n=2•+3•+…+(n+1)•,2T n=2•1+3•+…+(n+1)•,∴T n=2++…+﹣(n+1)•=1+﹣(n+1)•=3﹣,由(2)可知R n=,又∵对任意n∈N*,不等式λnT n+<2(λn+)恒成立,∴对任意n∈N*,不等式λn(3﹣)+<2(λn+)恒成立,∴对任意n∈N*,不等式λ<恒成立,从而问题转化为求f(n)=的最小值,∵f(1)=,f(2)=﹣,f(3)=﹣,f(4)=﹣,且当n≥4时f(n)=随着n的增大而增大,∴λ<f(3)=﹣.30.已知数列{a n}的前n项和S n=﹣a n﹣()n﹣1+2(n为正整数).=a n+()n﹣1,并求数列{a n}的通项公式;(1)证明:a n+1(2)若=,T n=c1+c2+…+c n,求T n.【解答】解:(1)∵数列{a n}的前n项和(n为正整数),∴当n=1时,S1=a1=﹣a1﹣1+2,∴a1=.=﹣a n﹣1﹣()n﹣2+2,当n≥2时,S n﹣1=a n=﹣a n+a n﹣1﹣()n﹣1+()n﹣2,∴S n﹣S n﹣1∴2a n=a n﹣1+()n﹣1,=a n+()n,∴2a n+1∴.设b n=2n a n,=1,即当n≥2时b n﹣b n﹣1=1∴b n﹣b n﹣1又∵b1=2a1=1∴数列{b n}是首项和公差均为1的等差数列.∴b n=1+(n﹣1)×1=n=2na n,∴a n=.(2)∵,∴=(n+1)()n,∴T n=2×+3×()2+4×()3+…+(n+1)()n,①T n=2×()2+3×()3+4×()4+…+(n+1)()n+1,②由①﹣②得T n=1+()2+()3+…+()n﹣(n+1)()n+1=﹣,∴T n=3﹣.31.在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n;(Ⅲ)证明存在k∈N*,使得对任意n∈N*均成立.【解答】解:(Ⅰ)解法一:a2=2λ+λ2+(2﹣λ)×2=λ2+22,a3=λ(λ2+22)+λ3+(2﹣λ)×22=2λ3+23,a4=λ(2λ3+23)+λ4+(2﹣λ)×23=3λ4+24.由此可猜想出数列{a n}的通项公式为a n=(n﹣1)λn+2n.以下用数学归纳法证明.(1)当n=1时,a1=2,等式成立.(2)假设当n=k时等式成立,即a k=(k﹣1)λk+2k,=λa k+λk+1+(2﹣λ)2k=λ(k﹣1)λk+λ2k+λk+1+2k+1﹣λ2k=[(k+1)﹣1]λk+1+2k+1.那么,a k+1这就是说,当n=k+1时等式也成立.根据(1)和(2)可知,等式a n=(n﹣1)λn+2n 对任何n∈N*都成立.=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可得解法二:由a n+1,所以为等差数列,其公差为1,首项为0.故,所以数列{a n}的通项公式为a n=(n﹣1)λn+2n.(Ⅱ)解:设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn①λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.②当λ≠1时,①式减去②式,得(1﹣λ)T n=λ2+λ3+…+λn﹣(n﹣1)λn+1=,.这时数列{a n}的前n项和.当λ=1时,.这时数列{a n}的前n项和.(Ⅲ)证明:通过分析,推测数列的第一项最大.下面证明:.③≤(λ2+4)a n(n≥2).由λ>0知a n>0.要使③式成立,只要2a n+1因为(λ2+4)a n=(λ2+4)(n﹣1)λn+(λ2+4)2n≥4λ•(n﹣1)λn+4×2n=4(n﹣1)λn+1+2n+2≥2nλn+1+2n+2=2a n+1,n≥2.当且仅当λ=2时取等号,以③式成立.因此,存在k=1,使得对任意n∈N*均成立.32.已知{a n}为递增的等比数列,且{a1,a3,a5}⊆{﹣10,﹣6,﹣2,0,1,3,4,16}.(1)求数列{a n}的通项公式;(2)是否存在等差数列{b n},使得a1b n+a2b n﹣1+a3b n﹣2+…+a n b1=2n+1﹣n﹣2对一切n∈N*都成立?若存在,求出b n;若不存在,说明理由.【解答】解:(1)因为{a n}是递增的等比数列,所以数列{a n}公比q>0,首项a1>0,又{a1,a3,a5}⊆{﹣10,﹣6,﹣2,0,1,3,4,16},所以a1=1,a3=4,a s=16,从而q2==4,q=2,a n=a1q n﹣1=2n﹣1,所以数列{a n}的通项公式为a n=2n﹣1;(2)假设存在满足条件的等差数列{b n},其公差为d,则当n=1时,a1b1=1,又∵a1=1,∴b1=1;当n=2时,a1b2+a2b1=4,b2+2b1=4,b2=2则d=b2﹣b1=1,∴b n=b1+(n﹣1)d=1+(n﹣1)×1=n,以下证明当b n=n时,a1b n+a2b n﹣1++a n﹣1b2+a n b1=2n+1﹣n﹣2对一切n∈N*都成立.设S n=a1b n+a2b n﹣1+…+a n﹣1b2+a n b1,即S n=1×n+2×(n﹣1)+22×(n﹣2)+23×(n﹣3)+…+2n﹣2×2+2n﹣1×1,①2S n=2×n+22×(n﹣1)+23×(n﹣2)+…+2n﹣1×2+2n×1,②②﹣①得S n=﹣n+2+22+23++2n﹣1+2n=﹣n+=2n+1﹣n﹣2,所以存在等差数列{b n},b n=n,使得a1b n+a2b n﹣1+a3b n﹣2+a n b1=2n+1﹣n﹣2对一切n∈N*都成立.33.已知数列{a n}满足a1=1,a n+1=1﹣,其中n∈N*(1)设b n=,求证:数列{b n}是等差数列;(2)若c n=6n+(﹣1)n﹣1λ•2是否存在λ,使得对任意n∈N+,都有c n+1>c n,若存在,求出λ的取值范围;若不存在,说明理由;(3)证明::对一切正整数n,有++…+<.【解答】解:(1)证明:b n﹣b n=d=﹣==+1所以数列{b n}是等差数列,a1=1,b1=2,因此b n=2n.…(4分)(2)c n=6n+(﹣1)n﹣1λ•2=6n+(﹣1)n﹣1λ•4n,由c n+1>c n恒成立,则6n+1+(﹣1)nλ•4n+1>6n+(﹣1)n﹣1λ•4n⇒6n+(﹣1)nλ•4n>0当n为偶数时,λ>=﹣,∴λ>[﹣]max=﹣当n为奇数时,λ<==,∴λ<[]min=综上λ∈(﹣)..…(9分)(3)由(1)==<=(n≥2)..∴++…+<+(﹣+﹣+…+)=.34.已知数列{a n}中,.(1)求数列{a n}的通项公式a n;(2)求数列{n2a n}的前n项和T n;(3)若存在n∈N*,使关于n的不等式a n≤(n+1)λ成立,求常数λ的最小值.【解答】解:(1)因为所以﹣﹣﹣﹣﹣﹣﹣(1分)两式相减得所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)因此数列{na n}从第二项起,是以2为首项,以3为公比的等比数列所以﹣﹣﹣﹣(3分)故﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)由(1)可知当n≥2当n≥2时,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)两式相减得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)又∵T1=a1=1也满足上式,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(3)a n≤(n+1)λ等价于,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)由(1)可知当n≥2时,设,则,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)∴,又及,∴所求实数λ的取值范围为,∴﹣﹣﹣﹣﹣(14分)35.九连环是我国的一种古老的智力游戏,它环环相扣,趣味无穷.按照某种规则解开九连环,至少需要移动圆环a9次.我们不妨考虑n个圆环的情况,用a n 表示解下n个圆环所需的最少移动次数,用b n表示前(n﹣1)个圆环都已经解下后,再解第n个圆环所需的次数,按照某种规则可得:a1=1,a2=2,a n=a n﹣2+1+b n ,b1=1,b n=2b n﹣1+1.﹣1(1)求b n的表达式;(2)求a9的值,并求出a n的表达式;(3)求证:.【解答】解:(1)由b n=2b n﹣1+1.可得b n+1=2(b n﹣1+1),又b1+1=2,∴数列{b n+1}是以2为首项,2为公比的等比数列,∴,得.(2)由已知,∴+28+26+24==341.当n是偶数时,=…==2n﹣1+2n﹣3+…+23+2==.当n是奇数时,=…==2n﹣1+2n﹣3+…+22+1=.综上所述:.(3)当n为偶数时,,当n为奇数时,.∴当n∈N*时,=,∴…+=.36.已知数列{a n}中,a1=2,a2=10,对任意n∈N*有a n+2=2a n+1+3a n成立.(I)若{a n+1+λa n}是等比数列,求λ的值;(II)求数列{a n}的通项公式;(III)证明:对任意n∈N*成立.【解答】(I)解:设a n+2+λa n+1=μ(a n+1+λa n),则a n+2=(μ﹣λ)a n+1+λμa n,令,得或者,即λ=1或λ=﹣3;(II)解:由(I)知a n+2+a n+1=3(a n+1+a n),而a2+a1=12,故a n+1+a n=(a2+a1)•3n﹣1=12•3n﹣1=4•3n,①同理a n+2﹣3a n+1=﹣(a n+1﹣3a n)有a n+1﹣3a n=(a2﹣3a1)•(﹣1)n﹣1=4•(﹣1)n﹣1,②①﹣②得4a n=4•3n﹣4•(﹣1)n﹣1,即a n=3n+(﹣1)n.(III)证明:当n=2k(k∈N*)时,注意到32k+1﹣32k﹣1=2•32k﹣1>0,于是==.显然当n=1时,不等式成立;对于n≥2,当n为奇数时,===;当n为偶数时,===.综上对任意n∈N*有成立.37.设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值.【解答】解:(Ⅰ)设等比数列{b n}的公比为q,由b1=1,b3=b2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故,;设等差数列{a n}的公差为d,由b4=a3+a5,得a1+3d=4,由b5=a4+2a6,得3a1+13d=16,∴a1=d=1.故a n=n,;(Ⅱ)由(Ⅰ),可得T1+T2+……+T n==2n+1﹣n ﹣2.由S n+(T1+T2+……+T n)=a n+4b n,可得,整理得:n2﹣3n﹣4=0,解得n=﹣1(舍)或n=4.∴n的值为4.38.已知有穷数列{a n}共有m项(m≥2,m∈N*),且|a n+1﹣a n|=n(1≤n≤m﹣1,n∈N*).(1)若m=5,a1=1,a5=3,试写出一个满足条件的数列{a n};(2)若m=64,a1=2,求证:数列{a n}为递增数列的充要条件是a64=2018;(3)若a1=0,则a m所有可能的取值共有多少个?请说明理由.﹣a n|=n(1【解答】解:(1)有穷数列{a n}共有m项(m≥2,m∈N*),且|a n+1≤n≤m﹣1,n∈N*).m=5,a1=1,a5=3,则满足条件的数列{a n}有:1,2,4,7,3和1,0,2,﹣1,3.证明:(2)必要性若{a n}为递增数列,由题意得:a2﹣a1=1,a3﹣a2=2,…,a64﹣a63=63,∴a64﹣a1==2016,∵a1=2,∴a64=2018.充分性由题意|a n﹣a n|=n,1≤n≤63,n∈N*,+1∴a2﹣a1≤1,a3﹣a2≤2,…,a64﹣a63≤63,∴a64﹣a1≤2016,∴a64≤2018,∵a64=2018,﹣a n=n,1≤n≤63,n∈N*,∴a n+1∴{a n}是增数列,综上,数列{a n}为递增数列的充要条件是a64=2018.解:(3)由题意得a2﹣a1=±1,a3﹣a2=±2,…,a m﹣a m﹣1=±(m﹣1),假设a m=b1+b2+b3+…+b m﹣1,其中,b i∈{﹣i,i},(i∈N*,1≤i≤m﹣1),则(a m)min=﹣1﹣2﹣…﹣(m﹣1)=﹣.若a n中有k项,,,…,取负值,则有a m=(a m)max﹣(+++…+),(*)∴a m的所有可能值与(a m)max的差必为偶数,下面用数学归纳法证明a n可以取到﹣与之间相差2的所有整数,由(*)知,只需从1,2,3,…,m﹣1中任取一项或若干项相加,可以得到2从1到的所有整数值即可,当m=2时,成立,当m=3时,从1,2中任取一项或两项相加,可以得到从1,2,3中任取一项或若干项相加,可以得到从1到3的所有整数,结论成立,②假设m=k(k≥3,k∈N*)结论成立,即从1,2,3,…,k﹣1中任取一项或若干项相加,可以得到从1到的所有整数值,则当m=k+1时,由假设,从1,2,3,…,k﹣1中任取一项或若干项相加,可以得到从1到的所有整数值,用k取代1,2,3,…,k﹣1中的k,可得,用k取代1,2,3,…,k﹣1中的k﹣2,可得,将1,2,3,…,k﹣1,k全部相加,可得,故命题成立,∴a m所有可能的取值共有:=个.39.已知数列{a n}满足,(n∈N*)(Ⅰ)判断数列{a n}的单调性;(Ⅱ)证明:(n≥2);(Ⅲ)证明:.【解答】解:(Ⅰ)因为.当n=1时,.假设n=k时,a k>0,所以n=k+1时,.从而对于一切n∈N*,a n>0.所以,即数列{a n}单调递增.证明:(Ⅱ)因为,所以a2=3.>a n,又因为由(Ⅰ)可知a n+1所以n≥2时a n≥3.,即(n≥2).(Ⅲ)由(Ⅱ)得(n≥2).所以(n≥2).由ln(1+x)<x(x>0)得:(n≥2).lna n﹣lna2=(lna n﹣lna n﹣1)+(lna n﹣1﹣lna n﹣2)+…+(lna3﹣lna2)(n≥3).所以=(n≥3).所以(n≥3),即(n≥3).经验证a 1,a2也成立,即得证.40.已知各项均为正数的数列{a n}的前n项和为S n,满足a n+12=2S n+n+4,a2﹣1,a3,a7恰为等比数列{b n}的前3项.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=,数列{c n}的前n项和T n.求证:T n.【解答】解:(Ⅰ)各项均为正数的数列{a n}的前n项和为S n,满足a n+12=2Sn+n+4,所以:,两式相减得:=,由于数列{a n}的各项均为正数,则:a n+1﹣a n=1(常数).所以:a3=a2+1,a7=a2+5.由于a2﹣1,a3,a7,恰为等比数列{b n}的前3项.则:,解得:a2=3,由a n+12=2Sn+n+4,令n=1,解得:a1=2.所以:数列{a n}是以2为首项,1为公差的等差数列.则:a n=n+1.由题意知:b1=2,b2=4,b3=8,则:.(Ⅱ)证明:当n≥2时,,则:=,=,故:+…+],=.故:.。

相关文档
最新文档