浙江省2013届高三高考模拟训练评估(一)数学理试卷

合集下载

浙江省绍兴一中2013届高三高考模拟数学理试卷 Word版含答案

浙江省绍兴一中2013届高三高考模拟数学理试卷 Word版含答案

121121绍兴一中2013年高考模拟考试卷数学(理科)试卷本试题卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

参考公式:如果事件A 、B 互斥,那么 棱柱的体积公式)()()(B P A P B A P +=+Sh V =如果事件A 、B 相互独立,那么其中S 表示棱柱的底面积,h 表示棱柱的高 )()()(B P A P B A P ⋅=⋅棱锥的体积公式如果事件A 在一次试验中发生的概率是P , Sh V 31=n 次独立重复试验中恰好发生k 次的概率其中S 表示棱锥的底面积,h 表示棱锥的高 k n k k n n P P C k P --=)1()(),,2,1,0(n k Λ=球的表面积公式24R S π= 棱台的体积公式)(312211S S S S h V ++=球的体积公式343V R π=其中S 1,S 2分别表示棱台的上、下底面积, 其中R 表示球的半径 h 表示棱台的高第I 卷(选择题部分,共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a =( ) A.-4 B.4 C.-1 D.1 2.当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]3.若nxx )1(+展开式的二项式系数之和为64,则展开式的常数项为( ) A .10B .20C .30D .1204.设抛物线y x 122=的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则AF BF +等于 ( ) A .6 B .8 C .9D .105.已知一几何体三视图如右, 则其体积为 ( )A .23B .43C .1D .26.如图,是一程序框图,则输出结果为( )A .511 B .49 C .37 D .6137.如果在约束条件1020(01)0x y x y a ax y -+≥⎧⎪+-≤<<⎨⎪-≤⎩下,目标函数x ay +最大值是53,则a 等于( ) A .23 B .13 C .1123或 D .128.在平面直角坐标系中,x 轴正半轴上有5个点, y 轴正半轴有3个点,将x 轴上这5个点和y 轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 A.30个 B.35个 C.20个 D.15个9.函数()f x 定义域为(1,1)-,且对定义域内的一切实数,x y 都有()()()f x y f x f y +=+,又当0x >时,有()0f x <,若2(1)(1)0f a f a -+-<,则实数a 的取值范围是 ( )A .(0,1) B.(0,2) C. (,0)(1,)-∞⋃+∞ D.(-2,1)10.将函数112y x =-+的图象先向右平移2个单位,再向上平移1个单位后得到函数()f x 的图象,数列{}n a 满足1()n n a f a -=(n≥2,n ∈N *),且135a =,则n a 的最大项等于( )A .3B .5C .8D .10第Ⅱ卷 (非选择题部分,共100分)二、填空题:本大题共7小题,每小题4分,共28分。

浙江省考试院2013年高考数学测试卷(理)测试卷--含答案

浙江省考试院2013年高考数学测试卷(理)测试卷--含答案

浙江省考试院2013年高考数学测试卷(理)测试卷姓名_____________ 准考证号__________________本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分 (共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={y | y =2x ,x ∈R },则 R A =A .∅B . (-∞,0]C .(0,+∞)D .R 2.已知a ,b 是实数,则“| a +b |=| a |+| b |”是“ab >0”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.若函数f(x ) (x ∈R )是奇函数,函数g(x ) (x ∈R )是偶函数,则A .函数f [g (x )]是奇函数B .函数g [f (x )]是奇函数C .函数f (x )⋅g (x )是奇函数D .函数f (x )+g (x )是奇函数4.设函数f (x )=x 3-4x +a ,0<a <2.若f (x )的三个零点为x 1,x 2,x 3,且x 1<x 2<x 3,则A .x 1>-1B .x 2<0C .x 2>0D .x 3>25.如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥DC .若|AB |=a ,|AD |=b ,则AC BD ⋅=A .b 2-a 2B .a 2-b 2C .a 2+b 2D .ab 6.设数列{a n }.A .若2n a =4n ,n ∈N *,则{a n }为等比数列B .若a n ⋅a n +2=21n a +,n ∈N *,则{a n }为等比数列C .若a m ⋅a n =2m +n ,m ,n ∈N *,则{a n }为等比数列D .若a n ⋅a n +3=a n +1⋅a n +2,n ∈N *,则{a n }为等比数列7.已知以下三视图中有三个同时表示某一个三棱锥,则不是..该三棱锥的三视图是ABCD8.若整数x ,y 满足不等式组 0,2100,0,x y x y y ⎧->⎪--<⎨+-≥ 则2x+y 的最大值是A .11B .23C .26D .309.如图,F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,过F 1的直线l 与C 的左、右两支分别交于A ,B 两点.若 | AB | : | BF 2 | : | AF 2 |=3:4 : 5,则双曲线的离心率为A B(第6题图)侧视图正视图俯视图侧视图俯视图侧视图正视图 俯视图侧视图俯视图 xy OA B F 1F 2(第9题图)C.2D10.如图,函数y=f(x)的图象为折线ABC,设f1(x)=f(x),f n+1 (x)=f[f n(x)],n∈N*,则函数y=f4(x)的图象为A.B.C.D.非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

(2013嘉兴一模)浙江省嘉兴市2013届高三教学测试数学理试卷(一)

(2013嘉兴一模)浙江省嘉兴市2013届高三教学测试数学理试卷(一)

2013年高三教学测试(一)理科数学试题卷注意事项:1. 本科考试分试題卷和答題卷,考生须在答題卷上作答.答题前,请在答題卷的密封线内填写学校、班级、学号、姓名;2. 本试題卷分为第1卷(选择題)和第π卷(非选择題)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:如果事件,互斥,那么棱柱的体积公式如果事件,相互独立,那么其中表示棱柱的底面积,表示棱柱的高棱锥的体积公式如果事件在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的概率其中表示棱锥的底面积,表示棱锥的高棱台的体积公式球的表面积公式球的体积公式其中分别表示棱台的上底、下底面积,其中表示球的半径表示棱台的高第I卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若i为虚数单位,则复数=A. iB. -iC.D.-2. 函数的最小正周期是A. B. π C. 2πD.4π3. 执行如图所示的程序框图,则输出的结果是A. OB. -1C. D.4. 已知α,β是空间中两个不同平面,m , n是空间中两条不同直线,则下列命题中错误的是A. 若m//n m 丄α, 则n 丄αB. 若m//ααβ, 则m//nC. 若m丄α,m 丄β,则α//βD. 若m丄α, m β则α丄β5. 已知函数下列命题正确的是A. 若是增函数,是减函数,则存在最大值B. 若存在最大值,则是增函数,是减函数C. 若,均为减函数,则是减函数D. 若是减函数,则,均为减函数6. 已知a,b∈R,a.b≠O,则“a>0,b>0”是“”的A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件7. 已知双曲线c:,以右焦点F为圆心,|OF|为半径的圆交双曲线两渐近线于点M、N(异于原点O),若|MN|=,则双曲线C的离心率是A. B. C. 2 D.8. 已知,则下列命题正确的是A.若则.B.若,则C. 若,则 D若,则9. 如图,给定由10个点(任意相邻两点距离为1)组成的正三角形点阵,在其中任意取三个点,以这三个点为顶点构成的正三角形的个数是A. 13B. 14C. 15D. 1710. 已知函数f(x)=x2+bx+c,(b,c∈R),集合A = {x丨f(x)=0}, B ={x|f(f(x)))= 0},若且存在x0∈B,x0∈A则实数b的取值范围是A B b<0或C D非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.14. 设(x-2)6=a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6,则a0+a1+a2+…+a6的值为15. 一盒中有6个小球,其中4个白球,2个黑球•从盒中一次任取3个球,若为黑球则放回盒中,若为白球则涂黑后再放回盒中.此时盒中黑球个数X的均值E(X) =__17. 己知抛物线y2=4x的焦点为F,若点A,B是该抛物线上的点,,线段AB的中点M在三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步驟•18. (本题满分14分)在ΔABC中,a,b,c分别是角A,B,C所对的边,且a=c + bcosC.(I )求角B的大小(II)若,求b的最小值.19. (本题满分14分)已知等差数列{a n}的公差不为零,且a3 =5, a1 , a2.a5成等比数列(I)求数列{a n}的通项公式:(II)若数列{b n}满足b1+2b2+4b3+…+2n-1b n=a n且数列{b n}的前n项和T n试比较T n与的大小20. (本题满分15分)如图,直角梯形ABCD中,AB//CD,= 90° , BC = CD =,AD = BD:EC丄底面ABCD, FD 丄底面ABCD 且有E C=F D=2.(I)求证:AD丄B F :(II )若线段EC上一点M在平面BDF上的射影恰好是BF的中点N,试求二面角B-MF-C 的余弦值.21 (本题满分15分)已知椭圆C:的左、右焦点分别为F1,F2, O为原点.(I)如图①,点M为椭圆C上的一点,N是MF1的中点,且NF2丄MF1,求点M 到y轴的距离;(II)如图②,直线l: :y=k + m与椭圆C上相交于P,G两点,若在椭圆C上存在点R,使OPRQ为平行四边形,求m的取值范围.22. (本题满分14分)已知函数(I )求f(x)的单调区间;(II)对任意的,恒有,求正实数的取值范围.三、解答题(本大题共5小题,第18-20题各14分,第21、22题各15分,共72分)18.解:(Ⅰ)由正弦定理可得:,…2分又因为,所以,…4分可得,…6分即.所以…7分(Ⅱ)因为,所以,所以…10分由余弦定理可知:…12分所以,即,所以的最小值为2.…14分19.解:(Ⅰ)在等差数列中,设公差为,由题,,…3分解得: . …4分. …5分(Ⅱ)①20.解:(Ⅰ)证明:∵,且,∴且;…1分又由,可知∵,∴是等腰三角形,且,∴,即;…3分∵底面ABCD于D,平面ABCD,∴,…4分∴平面DBF.又∵平面DBF,∴可得. …6分(Ⅱ)解:如图,以点C为原点,直线CD、CB、CE方向为x、y、z轴建系. 可得,…8分又∵ N恰好为BF的中点,∴. …9分设,∴.又∵,∴可得.故M为线段CE的中点. …11分设平面BMF的一个法向量为,且,,由可得,取得. …13分又∵平面MFC的一个法向量为,…14分∴.故所求二面角B-MF-C的余弦值为. …15分21.解(Ⅰ),…1分设,则的中点为,…2分∵,∴,即,…3分∴(1)…4分又有,(2)由(1)、(2)解得(舍去)…5分所以点M 到y轴的距离为. …6分(Ⅱ)设,,∵OPRQ为平行四边形,∴,.…8分∵R点在椭圆上,∴,即,…9分化简得,.…(1)…10分由得.由,得…(2),…11分且.…12分代入(1)式,得,化简得,代入(2)式,得.…14分又,∴或.…15分22.解:(Ⅰ)= ()令,…1分①时,,所以增区间是;②时,,所以增区间是与,减区间是③时,,所以增区间是与,减区间是④时,,所以增区间是,减区间是…5分(Ⅰ)因为,所以,由(1)知在上为减函数. …6分若,则原不等式恒成立,∴…7分若,不妨设,则,,所以原不等式即为:,即对任意的,恒成立令,所以对任意的,有恒成立,所以在闭区间上为增函数 (9)分所以对任意的,恒成立。

浙江省杭州市2013年高三第一次高考科目教学质量检测数学(理)试题(扫描版).pdf

浙江省杭州市2013年高三第一次高考科目教学质量检测数学(理)试题(扫描版).pdf

答案 一.选择题本大题共10小题, 每小题5分, 共50分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.DBCDAABBCC二、填空题:11.64 12. (1 13. 14. 15.2 16. 17. -2 本大题有5小题,共72分,解答应写出文字说明、证明过程或演算步骤.(Ⅰ)cos(2x+)+3, 故的最大值为+3;最小正周期.(Ⅱ)由得cos(2A+)+3=3-2, 故cos(2A+)=-1,又由0<A<得A+<+, A+=,解得A=.又B=C=. ∴=2cosC=0. 14分 19.(本题满分14分) (Ⅰ)//,得2sin2A1cosA=0,即cosA=或cosA=-1(舍去), 所以A=. -----------------------------------------------------------6分 (Ⅱ)a,由//,得λsin2A1cosA=0, 即cosA=或cosA=-1(舍去),----------------------------------------------10分 又cosA=, 综上,λ需要满足,得λ≥..(本小题满分1分)(Ⅰ)设等差数列的公差为,等比数列的公比为.由题意, 得,解得d=q=3.∴,. (Ⅱ).∴.∴.∴..(本小题满分1分)Ⅰ)当时, 当时,; 当时,; 当时,. 所以当时,取极小值. ………………7分 (Ⅱ)当时,,,, 故l1中,不存函数图象的切线. 由得与, 当时,求得 当时,求得. 15分 22.(本小题满分1分)Ⅰ )由题意知:, 所以抛物线C的方程.(Ⅱ),因为、、、四点共圆,所以确定圆的方程为: ① 又⊙:② 又由①-②得直线的方程:.(Ⅲ)方程为,由于⊙M与直线相切,得到,整理得到: ,即,所以或, 经检验得点坐标为. 高考学习网: 高考学习网:。

浙江省杭州市2013届高三第一次高考科目教学质量检测数学(理)试卷【详解】

浙江省杭州市2013届高三第一次高考科目教学质量检测数学(理)试卷【详解】

2013年杭州市第一次高考科目教学质量检测数学(理科)试题详解一、选择题: 1.若复数221z i i=++,其中i 是虚数单位,则复数z 的模为( )A.2B.C. D. 2【解析】由题意,得:22(1)2211(1)(1)i z i i i ii i -=+=+=-++-复数z的模z ==【答案】B2.设a ∈R ,则“4a =”是“直线1:230l ax y +-=与直线2:20l x y a +-=平行”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【解析】由题意,1122:42304//:240l x y a l l l x y +-=⎧=⇒⇒⎨+-=⎩,即充分。

又121221//04l l A B A B a ⇒-=⇒=,注意到此时12,l l 不重合,即必要。

【答案】C3.设函数()2xf x =,则下列结论中正确的是( )A. (1)(2)()f f f -<<B. ((1)(2)f f f <-<C. (2)((1)f f f <<-D. (1)((2)f f f -<<【解析】由题意,()22()xxf x f x -===-,即()f x 为偶函数。

故(1)(1)(2)(2)(f f f f f f ⎧-=⎪-=⎨⎪=⎩. 显然0()2x x f x ≥=时,单调递增。

所以(1)(1)((2)(2)f f f f f f -=<=<-= 【答案】D4.设等差数列{}n a 的前n 项和是n S ,若11m m a a a +-<<-(m ∈N *,且2m ≥),则必定有( )A. 0m S >,且10m S +<B. 0m S <,且10m S +>C. 0m S >,且10m S +>D. 0m S <,且10m S +<【解析】由题意,得:11111+00m m m m a a a a a a a ++>⎧-<<-⇔⎨+<⎩。

13年浙江省高考模拟冲刺(提优)测试一数学试题(理)含解析

13年浙江省高考模拟冲刺(提优)测试一数学试题(理)含解析

2013年浙江省高考模拟冲刺(提优)测试一数学试题(理)含解析浙江省2013年高考模拟冲刺测试一数学试题一、选择题21.设∪=R,P={x|x<1},Q={x|x≥0},则P∩=A.{x|﹣1<x<0} B.{x|x<0} C.{x|x<﹣1} D.{x|0<x<1} 考点:交、并、补集的混合运算.分析:求解二次不等式化简集合P,然后直接利用交集和补集的运算求解.解答:解:P={x|x2<1}={x|﹣1<x<1},Q={x|x≥0},所以?UQ={x|x<0},所以P∩={x|﹣1<x<1}∩{x|x<0}={x|﹣1<x<0}.故选A.点评:本题考查了交、并、补集的混合运算,考查了二次不等式的解法,是基础题.2.如图,阴影部分所表示的平面区域对应的约束条件是A.B.C.D.考点:简单线性规划的应用.专题:不等式的解法及应用.分析:图解出两个边界直线对应的方程,二元一次不等式与区域的对应关系从选项中选出正确选项.解答:解:图知,一边界过,两点,故其直线方程为x﹣y+1=0 另一边界直线过,两点,故其直线方程为x﹣y+2=0 不等式与区域的对应关系知区域应满足x﹣y+1≤0与x﹣y+2≥0,且x≤0,y≥0.故区域对应的不等式组为.故选A.点评:考查用两点法求直线方程与二元一次方程与区域的对应关系,是基本概念应用的题型.3.如图是某几何体的三视图,则该几何体的体积为 3 8 12 A.C.D.考点:三视图求面积、体积.专题:计算题.分析:利用三视图复原的几何体的形状,通过三视图的数据求解几何体的体积即可.解答:解:题意三视图复原的几何体是放倒的四棱柱,底面是直角梯形,上底边长为1,下底边长为2,高为2的梯形,棱柱的高为2,并且是直棱柱,所以棱柱的体积为:=6. 6 B.故选B.点评:本题考查三视图与几何体的直观图的关系,判断三视图复原的几何体的形状是解题的关键.4.已知a,b为实数,且ab≠0,则下列命题错误的是A.B.若若a>0,b>0,则,则a≥0,b≥0C.若a≠b,则D.若,则a≠b 考点:命题的真假判断与应用.专题:计算题;不等式的解法及应用.分析:基本不等式可得A正确;选项B,有意义可得ab不可能异号,结合2可得ab 不会同为负值;选项C,可举反例说明错误;选项D平方可得>0,显然a≠b 解答:解:选项A,基本不等式可得:若a>0,b>0,则,故A正确;选项B,结合有意义可得ab不可能异号,可得ab不会同为负值,故可得a≥0,b≥0,故正确;选项C,需满足a,b为正数才成立,比如举a=﹣1,b=2,显然满足a≠b,但后面的式子无意义,故错误;选项D,平方可得>0,显然可得a≠b,故正确.2故选 C 点评:本题考查命题真假的判断与应用,涉及基本不等式的知识,属基础题.5.函数f=sin的部分图象如图所示,如果,且f=f,则f= A.B.C. 1 D.考点:y=Asin 的部分图象确定其解析式;正弦函数的对称性.专题:计算题;三角函数的图像与性质.分析:通过函数的图象求出函数的周期,利用函数的图象经过的特殊点求出函数的初相,得到函数的解析式,利用函数的图象与函数的对称性求出f即可.解答:解:图知,T=2×=π,),0=sin ∴ω=2,因为函数的图象经过如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是A.B.MN与AC垂直C.MN与BD平行D.MN与CC1垂直MN与A1B1平行考点:棱柱的结构特征.专题:证明题.分析:先利用三角形中位线定理证明MN∥BD,再利用线面垂直的判定定理定义证明MN与CC1垂直,异面直线所成的角的定义证明MN与AC垂直,故排除A、B、C选D 解答:解:如图:连接C1D,BD,在三角形C1DB中,MN∥BD,故C正确;∵CC1⊥平面ABCD,∴CC1⊥BD,∴MN与CC1垂直,故A正确;∵AC ⊥BD,MN∥BD,∴MN与AC垂直,B正确;∵A1B1与BD异面,MN∥BD,∴MN与A1B1不可能平行,D错误故选D 点评:本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键7.已知等比数列{an}的公比为q,则“0<q<1”是“{an}为递减数列”的A.充分不必要条件B.必要不充分条件充要条件C.D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:等差数列与等比数列.分析:可举﹣1,,…,说明不充分;举等比数列﹣1,﹣2,﹣4,﹣8,…说明不必要,进而可得答案.解答:解:可举a=﹣1,q=,可得数列的前几项依次为﹣1,1,…,显然不是递减数列,故“0<q<1”不能推出“{an}为递减数列”;可举等比数列﹣1,﹣2,﹣4,﹣8,…显然为递减数列,但其公比q=2,不满足0<q<1,故“{an}为递减数列”也不能推出“0<q<1”.故“0<q <1”是“{an}为递减数列”的既不充分也不必要条件.故选D 点评:本题考查充要条件的判断,涉及等比数列的性质,举反例是解决问题的关键,属基础题.28.偶函数f在[0,+∞)上为增函数,若不等式f<f恒成立,则实数a的取值范围为A.B.C.D.考点:奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:根据偶函数图象关于原点对称,得f在[0,+∞)上单调增且在是偶函数,图象关于y轴对称∴f在[0,+∞)上的单调性与的单调性相反此可得f在<f恒成立,等价于|ax ﹣1|<2+x恒成立即不等式﹣2﹣x<ax ﹣1<2+x恒成立,得2222的解集为R ∴结合一元二次方程根的判别式,得:a﹣4<0且﹣12<0 解之得﹣2<a<2 故选:B 点评:本题给出偶函数的单调性,叫我们讨论关于x的不等式恒成立的问题,着重考查了函数的单调性与奇偶性、一元二次不等式解法等知识,属于基础题.9.已知F1,F2分别是双曲线的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是A.B.C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据斜率与平行的关系即可得出过焦点F2的直线,与另一条渐近线联立即可得到交点M的坐标,再利用点M在以线段F1F2为直径的圆外和离心率的计算公式即可得出.解答:解:如图所示,过点F2且与渐近线平行的直线为,与另一条渐近线联立解得,即点M.∴|OM|==.∵点M在以线段F1F2为直径的圆外,∴|OM|>c,∴∴双曲线离心率e=,解得..故双曲线离心率的取值范围是.故选D.点评:熟练掌握平行线与向量的关系、双曲线的渐近线、两点间的距离计算公式、离心率的计算公式、点与圆的位置关系是解题的关键.10.已知集合M=N={0,1,2,3},定义函数f:M→N,且点A),B),C),.若△ABC的内切圆圆心为I,且R),则满足条件的函数有A.10个B.12个C.18个D.24个考点:排列、组合及简单计数问题.专题:综合题;压轴题.分析:+=λ,知△ABC 是以B为顶点的等腰三角形,且A点是4×4的格点第一列中的点,当i=1与i=2时,得到点B,点C的位置,数一数B 为顶点的等腰三角形的个数即可得到答案.解答:解:+=λ,知△ABC是以B 为顶点的等腰三角形,A点是4×4的格点第一列中的点.当i=1时,B点是第二列格点中的点,C点是第三列格点中的点,此时腰长为、、的△ABC分别有6个、4个、2个,当i=2时,B点是第三列格点中的点,C点是第四列格点中的点,如图:此时腰长为的△ABC分别有6个,满足条件的△ABC共有18个.故选C 点评:本题考查排列、组合及简单计数问题,依题意判断△ABC是以B 为顶点的等腰三角形是关键,也是难点,考查分类讨论思想与数形结合思想的综合应用,属于难题.二、填空题:本大题共7小题,每小题4分,共28分.11.已知f为奇函数,当x >0时,f=log2x,则f= ﹣2 .考点:函数的值.专题:函数的性质及应用.分析:利用奇函数的性质即可得出f=﹣f,再利用对数的运算法则即可得出.解答:解:∵f为奇函数,当x>0时,f=log2x,∴f=﹣f=﹣log24=﹣2.故答案为﹣2.点评:熟练掌握奇函数的性质、对数的运算法则是解题的关键.12.设i是虚数单位,则= 1+i .考点:复数代数形式的乘除运算.专题:计算题.分析:先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母再进行复数的除法运算,整理成最简形式.解答:解:∵===1+i,∴=1+i,故答案为:1+i.点评:本题考查复数的除法运算,复数的加减乘除运算是比较简单的问题,在高考时有时会出现,若出现则是要一定要得分的题目.13.某程序框图如图所示,则该程序运行后输出的a的值为﹣1 .考点:程序框图.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.解答:解:程序在运行过程中各变量的值如下表示:S i a是否继续循环循环前0 1 1/ 第一圈1 20 是第二圈1 3﹣1是第三圈0 4 1是第四圈 1 5 0是第五圈 1 6﹣1是… 依此类推,a的值呈周期性变化:1,0,﹣1,1,0,﹣1,… 第2012圈1 2013﹣1否故最终的输出结果为:﹣1,故答案为:﹣1.点评:本题考查循环结构的程序框图,解决本题的关键是弄清开始和结束循环的条件.属于基础题.14.各项都是正数的等比数列{an}中,首项a1=2,前3项和为14,则a4+a5+a6值为112 .考点:等比数列的通项公式;等比数列的前n项和.专题:等差数列与等比数列.分析:设出等比数列的公比,且各项都是正数,首项a1=2,前3项和为14列式求出公比,则a4+a5+a6值可求.解答:解:设等比数列{an}的公比为q,a1=2,前3项和为14,得:,所以q+q﹣6=0,解得:q=﹣3或q=2.因为等比数列的各项都是正数,所以q=2.则a4+a5+a6=2.故答案为112.点评:本题考查了等比数列的通项公式,考查了等比数列的前n 项和,解答时注意公比是否有可能等于1,此题是基础题.15.已知的展开式的各系数和为32,则展开式中x的系数为10 .考点:二项式系数的性质.专题:计算题;概率与统计.分析:先令x=1,求得n的值,进而可得展开式的通项,再令x的指数为1,即可求得结论.解答:解:令x=1,得展开式的各项系数和为2n=32,∴n=5 ∴展开式的通项为:Tr+1= 令10﹣3r=1,则r=3,∴展开式中x的系数为2n 故答案为:10.点评:本题考查二项式系数的性质,考查展开式的通项,考查计算能力,属于基础题.16.如图,Rt△ABC中,∠C=90°,其内切圆切AC 边于D点,O为圆心.若= ﹣3 .,则考点:平面向量数量积的运算;向量在几何中的应用.专题:平面向量及应用.分析:以CA 所在的直线为x轴,以CB所在的直线为y轴,建立平面直角坐标系,利用条件以及圆的切线性质求得A、B、C、O 的坐标,再利用两个向量的数量积公式求得的值.解答:解:以CA所在的直线为x轴,以CB所在的直线为y 轴,建立平面直角坐标系,则C、O、A.设直角三角形内切圆与AB边交与点E,与CB边交于点F,则圆的切线性质性质可得BE=BF,设BE=BF=m,22222则有勾股定理可得CB+CA=AB,即+9=,解得x=3,故B.∴==﹣3﹣0=﹣3,故答案为﹣3.点评:本题主要考查两个向量的数量积公式的应用,两个向量坐标形式的运算,圆的切线性质,属于中档题.217.已知抛物线C:y=2px 的焦点为F,准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点,若,则k的值±.考点:直线与圆锥曲线的关系.专题:压轴题;圆锥曲线的定义、性质与方程.分析:设A,根据斜率公式两点间距离公式把00,抛物线定义得|AF|=出来并进行适当变形,即可求得答案.解答:解:设A,则M,00表示抛物线定义得,|AF|=因为两边平方并化简得,所以,=,即,=,所以k==,故答案为:.点评:本题考查直线斜率公式、两点间距离公式抛物线定义等基础知识,属中档题.三、解答题:本大题共5小题,共72分.解答应给出文字说明,证明过程或演算步骤.18.在△ABC中,a,b,c分别为内角A,B,C的对边,且2cos=4sinB?sinC ﹣1.求A;若a=3,sin=,求b.考点:正弦定理;三角函数中的恒等变换应用.专题:计算题.分析:已知利用两角和的余弦公式展开整理,cos=﹣.可求B+C,进而可求A sin,可求cos=,代入sinB=2sincos可求B,然后正弦定理,可求 b 解答:解:2cos=4sinBsinC﹣1 得,2﹣4sinBsinC=﹣1,即2=﹣1.从而2cos=﹣1,得cos=﹣.…4分∵0<B+C<π ∴B+C=,故A=.…6分题意可得,0<B<π ∴sin,,得cos=,.…10分,∴,∴sinB=2sincos=正弦定理可得解得b=.…12分.点评:本题主要考查了两角和三角公式的应用,余弦值求解角,同角基本关系、二倍角公式、正弦定理的应用等公式综合应用.19.一个口袋中有红球3个,白球4个.从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E.考点:离散型随机变量的期望与方差;超几何分布的应用.专题:概率与统计.分析:恰好第2次中奖的情况是第一次摸到的2个白球,第二次至少有1个红球,此能求出恰好第2次中奖的概率P.条件知X~B,算出摸一次中奖的概率p,此能求出X的分布列和EX.解答:解:“恰好第2次中奖“即为“第一次摸到的2个白球,第二次至少有1个红球”,其概率为=;摸一次中奖的概率为p=条件知X~B,∴EX=np=4×=.=,点评:本题考查离散型随机变量的分布列和数学期望,是中档题,在历年高考中都是必考题型.解题时要认真审题,仔细解答,注意排列组合和概率知识的灵活运用.20.如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分别为线段CD、AB上的点,且EF∥AD.将梯形沿EF折起,使得平面ADEF ⊥平面BCEF,折后BD与平面ADEF 所成角正切值为.求证:BC ⊥平面BDE;求平面BCEF与平面ABD所成二面角的大小.考点:直线与平面垂直的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:设DE=a,则BE=,易得tan∠DBE ==,可解得a=1,可得F为AB的中点,可得BC⊥BE,BC ⊥DE,线面垂直的判定定理可得;取BC 中点可证∠DME即平面BCEF与平面ABD所成的二面角,在三角形中可得角的大小.解答:证明:∵DE⊥EF,平面ADEF⊥平面BCEF,∴DE⊥平面BCEF,∴∠DBE是BD与平面ADEF所成的角,∴tan∠DBE=设DE=a,则BE=,tan∠DBE==,=,可解得a=1,∴F为AB的中点,可得BC⊥BE,又DE ⊥平面BCEF,可得BC⊥DE,又BE∩DE=E,∴BC⊥平面BDE;取BC 中点M,连接MB、MD,易知MB∥AD,∴平面ABMD即平面ABD,∵DE⊥平面BCEF,∴DE⊥MB,∴MB⊥平面CDE,可得DM⊥BM,又MB⊥EC,∴∠DME即平面BCEF与平面ABD所成的二面角,DE=EM=1可得∠DME=45°故平面BCEF与平面ABD所成二面角为45°点评:本题考查直线与平面垂直的判定和二面角的求解,属中档题.21.已知圆O:,直线l:y=kx+m与椭圆C:相交于P、Q 两点,O为原点.若直线l过椭圆C的左焦点,且与圆O交于A、B两点,且∠AOB=60°,求直线l的方程;如图,若△POQ重心恰好在圆上,求m的取值范围.考点:直线与圆锥曲线的关系;直线的一般式方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:利用圆心O到直线l的距离d==即可求得k,从而可得直线l的方程;设P,Q,理可求得x1+x2=﹣得:x+4kmx+2m﹣2=0,利用韦达定22222,又△POQ重心恰好在圆x+y=上,可求得222+=4,化简可求得m=,△>0?1+2k>m,二者联立即可求得m的范围.解答:解:左焦点坐标为F,设直线l的方程为y=k,∠AOB=60°得,圆心O到直线l的距离d=又d=∴=,,解得k=±.,∴直线l的方程为y=±.222设P,Q,△>0得:1+2k>m…,且x1+x2=﹣∵△POQ重心恰好在圆x+y=上,∴即∴++﹣22222得:x+4kmx+2m﹣2=0..=4,=4,即+4m=4,化简得:m=22+4km+4m=4.,代入式得:k≠0,2又m=2=1+=1+.∵k≠0,2∴m>1,∴m>1或m<﹣1.点评:本题考查直线与圆锥曲线的位置关系,考查点到直线间的距离公式,突出考查韦达定理的应用,考查转化思想与逻辑思维与运算能力,属于难题.22.已知.x判断曲线y=f在x=0的切线能否与曲线y=e相切?并说明理;若x∈[a,2a]求f的最大值;若f=f=0,求证:.考点:利用导数研究曲线上某点切线方程;函数单调性的性质;利用导数求闭区间上函数的最值.专题:压轴题;导数的综合应用.分析:求出曲线y=f在x=0的切线方程,假设切线与曲线y=ex相切,设出切点,斜率相等及切点在切线上联立推出矛盾;求出函数f的导函数,导函数的零点对定义域分段,利用函数的单调性求出函数在[a,2a]上的最大值;知函数f先增后减,有最大值,若f=f=0,则最大值大于0,又f>0且a<alna,所以得到x2﹣x1>alna﹣a,把x1,x2代入原函数得到作比后利用放缩可证得要求证的不等式.解答:解:,得:=﹣1.∴曲线y=f在x=0的切线l的方程为.,,,则,f若l与曲线y=e相切,设切点为,则x①.a>0,得:0<①得,∴x0<0,.与x0<0矛盾.x∴曲线y=f在x=0的切线不能与曲线y=e相切.解:令f=0,得′′′,即x=alna.f >0,得x<alna,f<0,得:x>alna.∴f在上为减函数.∴当a>alna,即a<e 时,fmax=f=a﹣e.2当a≤alna≤2a,即e≤a≤e时,fmax=f=alna﹣a.2当2a<alna,即a>e时,.证明:知fmax=f=alna ﹣a.∵f=f=0,∴fmax=f=alna﹣a>0.∴lna>1,得:a>e,∴f=a﹣e>0,且f>0.得x2﹣x1>alna﹣a,又∴,,.点评:本题考查了利用导数求曲线上某点处的切线方程,考查了利用导数求函数在闭区间上的最值,利用了分类讨论的数学思想,特别是的证明涉及到放缩法的思想,是该题的难点所在,此题属有一定难度问题.。

数学_2013年浙江省高考数学仿真模拟试卷1(理科)(含答案)

数学_2013年浙江省高考数学仿真模拟试卷1(理科)(含答案)

2013年浙江省高考数学仿真模拟试卷1(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设函数f(x)={√x ,x ≥0√−x ,x <0,若f(a)+f(−1)=2,则a =( )A −3B ±3C −1D ±12. 复数a 2−a −6+(a 2+a −12)i 为纯虚数的充要条件是( ) A a =−2 B a =3 C a =3或a =−2 D a =3或a =−43. 甲,乙两人分别独立参加某高校自主招生考试,若甲,乙能通过面试的概率都为23,则面试结束后通过的人数ξ的数学期望Eξ是( ) A 43B 119C 1D 894. 程序框图输出的结果为( )A 62B 126C 254D 5105. 已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题: ①α // β⇒l ⊥m ; ②α⊥β⇒l // m ; ③l // m ⇒α⊥β,其中假命题的个数为( ) A 3 B 2 C 1 D 06. 已知函数f(x)的图象如图所示,则f(x)的解析式可能是( )A f(x)=x 2−2ln|x|B f(x)=x 2−ln|x|C f(x)=|x|−2ln|x|D f(x)=|x|−ln|x|7. 等差数列{a n }的前n 项和为S n ,且满足2S 5−13a 4+5a 8=10,则下列数中恒为常数的是( )A a 8B S 9C a 17D S 17 8. 已知双曲线C:x 2a 2−y 2b 2=1(a,b >0)的左、右焦点分别为F 1,F 2,过F 2作双曲线C 的一条渐近线的垂线,垂足为H ,若F 2H 的中点M 在双曲线C 上,则双曲线C 的离心率为( ) A √2 B √3 C 2 D 39. 已知x ,y 满足不等式{x ≥0y ≥0x +2y ≤t 2x +y ≤4 ,且目标函数z =9x +6y 最大值的变化范围[20, 22],则t 的取值范围( )A [2, 4]B [4, 6]C [5, 8]D [6, 7]10. 若函数f(x)=x 3+a|x 2−1|,a ∈R ,则对于不同的实数a ,则函数f(x)的单调区间个数不可能是( )A 1个B 2个C 3个D 5个二、填空题:本大题共7小题,每小题4分,共28分. 11. 已知tan(α+π4)=12,且−π2<α<0,则2sin 2α+sin2αcos(α−π4)=________.12. 若(√a 23+1a )n 的展开式中含a 3项,则最小自然数n 是________. 13. 一个几何体的三视图如图所示,则该几何体的表面积为________.14. 函数f(x)=sin2x +e |sinx+cosx|的最大值与最小值之差等于________.15. 已知奇函数f(x)是定义在R 上的增函数,数列{x n }是一个公差为2的等差数列,满足f(x 8)+f(x 9)+f(x 10)+f(x 11)=0,则x 2011的值等于________.16. 如图,线段AB 长度为2,点A ,B 分别在x 非负半轴和y 非负半轴上滑动,以线段AB 为一边,在第一象限内作矩形ABCD ,BC =1,O 为坐标原点,则OC →⋅OD →的取值范围是________.17. 设集合A (p,q )={x ∈R|x 2+px +q =0},当实数p ,q 取遍[−1, 1]的所有值时,所有集合A (p,q )的并集为________.三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. 18. 已知函数f(x)=2sin 2(π4+x)−√3cos2x −1x ∈[π4,π2](1)求f(x)的单调递增区间;(2)若不等式|f(x)−m|<2在x ∈[π4,π2]上恒成立,求实数m 的取值范围.19. 如图,在四棱锥P −ABCD 中,底面ABCD 为直角梯形,AD // BC ,∠ADC =90∘,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD =√3.(1)求证:平面PQB ⊥平面PAD ;(2)若二面角M −BQ −C 为30∘,设PM =tMC ,试确定t 的值. 20. 已知数列{a n }的前n 项和是S n (n ∈N ∗),a 1=1且S n ⋅S n−1+12a n =0(1)求数列{a n }的通项公式;(2)求证:对任意的n ∈N ∗,不等式11−S 2⋅11−S 3⋅ (1)1−Sn+1>√n +1成立.21. 在平面直角坐标系xoy 中,过定点C(p, 0)作直线m 与抛物线y 2=2px(p >0)相交于A 、B 两点.(1)设N(−p, 0),求NA →⋅NB →的最小值;(2)是否存在垂直于x 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,请说明理由. 22. 已知函数f(x)=ax 2+lnx(a ∈R).(1)当a =12时,求f(x)在区间[1, e]上的最大值和最小值;(2)如果函数g(x),f 1(x),f 2(x),在公共定义域D 上,满足f 1(x)<g(x)<f 2(x),那么就称g(x)为f 1(x),f 2(x)的“活动函数”.已知函数f 1(x)=(a −12)x 2+2ax +(1−a 2)lnx ,f 2(x)=12x 2+2ax .若在区间(1, +∞)上,函数f(x)是f 1(x),f 2(x)的“活动函数”,求a 的取值范围.2013年浙江省高考数学仿真模拟试卷1(理科)答案1. D2. A3. A4. D5. C6. A7. D8. A9. B10. B11. −2√5512. 713. 12π+2414. e√2+115. 400316. [1, 3]17. [−1+√52, 1+√52]18. 解:(1)f(x)=2sin2(π4+x)−√3cos2x−1=−cos(π2+2x)−√3cos2x=sin2x−√3cos2x=2sin(2x−π3).由2kπ−π2≤2x−π3≤2kπ+π2,k∈z,可得kπ−π12≤x≤kπ+5π12,,k∈z.再由x∈[π4,π2],可得x∈[π4,5π12],故f(x)的单调递增区间[π4,5π12].(2)不等式|f(x)−m|<2,即m−2<f(x)<m+2.而x∈[π4,π2]时,π6≤2x−π3≤2π3,∴ 12≤sin(2x−π3)≤1,1≤f(x)≤2.∵ 不等式|f(x)−m|<2在x∈[π4,π2]上恒成立,∴ m−2<1且m+2>2,解得0<m<3,故实数m的取值范围为(0, 3).19. 证法一:∵ AD // BC,BC=12AD,Q为AD的中点,∴ 四边形BCDQ为平行四边形,∴ CD // BQ.∵ ∠ADC=90∘∴ ∠AQB=90∘,即QB⊥AD.又∵ 平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴ BQ⊥平面PAD.∵ BQ ⊂平面PQB ,∴ 平面PQB ⊥平面PAD . 证法二:AD // BC ,BC =12AD ,Q 为AD 的中点,∴ 四边形BCDQ 为平行四边形,∴ CD // BQ . ∵ ∠ADC =90∘∴ ∠AQB=90∘. ∵ PA =PD ,∴ PQ ⊥AD .∵ PQ ∩BQ =Q ,∴ AD ⊥平面PBQ .∵ AD ⊂平面PAD ,∴ 平面PQB ⊥平面PAD . ∵ PA =PD ,Q 为AD 的中点,∴ PQ ⊥AD .∵ 平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD , ∴ PQ ⊥平面ABCD .如图,以Q 为原点建立空间直角坐标系. 则平面BQC 的法向量为n →=(0,0,1);Q(0, 0, 0),P(0,0,√3),B(0,√3,0),C(−1,√3,0).设M(x, y, z),则PM →=(x,y,z −√3),MC →=(−1−x,√3−y,−z), ∵ PM →=tMC →,∴ {x =t(−1−x)y =t(√3−y)z −√3=t(−z) ,∴ {x =−t1+t y =√3t1+t z =√31+t⋯在平面MBQ 中,QB →=(0,√3,0),QM →=(−t 1+t ,√3t 1+t ,√31+t ), ∴ 平面MBQ 法向量为m →=(√3,0,t). ∵ 二面角M −BQ −C 为30∘, ∴ cos30=n →⋅m→|n →||m →|=√3+0+t2=√32, ∴ t =3.20. 解:(1)∵ a 1=1且S n ⋅S n−1+12a n =0即S n ⋅S n−1+12(S n −S n−1)=0(n ≥2)2S n ⋅S n−1=S n−1−S n 两边同除以S n ⋅S n−1得 2=1S n−1S n−1∴ 数列{1S n}是以1为首项,以2为公差的等差数列.∴ 1S n=1+2(n −1)=2n −1∴ S n =12n−1,当n =1时,a 1=1,当n ≥2时,an =Sn −Sn −1=12n−1−12(n−1)−1=−2(2n−1)(2n−3)∴ a n ={−2(2n−1)(2n−3)1(n =1)(n ≥2)(2)11−S k+1=2k+12k用数学归纳法证明: 当n =1时,11−S 2=11−13=32=√94>√2,不等式成立. ①假设当n =k(k ≥2)时成立,即有11−S 2⋅11−S 3⋅…11−S k+1>√k +1成立那么当n =k +1时不等式11−S 2⋅11−S 3⋅ (1)1−Sk+1+11−S(k+1)+1>√k +1⋅2(k+1)+12(k+1)=√k +1⋅2k+32k+2下证√k +1⋅2k+32k+2>√k +2成立. 只需证2k+32k+2>√k+1k+2 两边平方即为 4k 2+12k+94k 2+4k+1>k+2k+1,两边减去1得8k+84k 2+4k+1>1k+1即证8(k +1)2>4k 2+4k +1, 即4k 2+12k +7>0,显然成立②由①②可知,原不等式对任意正整数n 都成立. 21. 解:(1)依题意,可设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为:x =my +p 由{x =my +p y 2=2px ⇒y 2−2pmy −2p 2=0∴{y 1+y 2=2pm ⋅∴ NA →⋅NB →=(x 1+p,y 1)⋅(x 2+p,y 2)=(x 1+p)(x 2+p)+y 1y 2=(my 1+2p)(my 2+2p)+y 1y 2=(m 2+1)y 1y 2+2pm(y 1+y 2)+4p 2=2p 2m 2+2p 2当m =0时NA →⋅NB →的最小值为2p 2.(2)假设满足条件的直线l 存在,其方程为x =a ,AC 的中点为o′,l 与以AC 为直径的圆相交于P ,Q ,PQ 中点为H ,则o′H ⊥PQ ,o′的坐标为(x 1+p 2,y 12).∵ |o ′P|=12|AC|=12√(x 1−p)2+y 12=12√x 12+p 2∴ |PH|2=|o ′P|2−|o ′H|2=14(x 12+p 2)−14(2a −x 1−p)2=(a −12p)x 1+a(p −a)∴ |PQ|2=(2|PH|)2=4[(a −12p)x 1+a(p −a)]令a −12p =0得a =12p .此时|PQ|=p 为定值.故满足条件的直线l 存在, 其方程为x =12p22. 解:(1)当 a =12时,f(x)=12x 2+lnx ,f′(x)=x +1x=x 2+1x,对于x ∈[1, e],有f ′(x)>0,∴ f(x)在区间[1, e]上为增函数, ∴ f max (x)=f(e)=1+e 22,f min (x)=f(1)=12. (2)在区间(1, +∞)上,函数f(x)是f 1(x),f 2(x)的“活动函数”,则f 1(x)<f(x)<f 2(x),令 p(x)=f(x)−f 2(x)=(a −12)x 2−2ax +lnx <0,对x ∈(1, +∞)恒成立,且ℎ(x)=f 1(x)−f(x)=−12x 2+2ax −a 2lnx <0对x ∈(1, +∞)恒成立,∵ p′(x)=(2a −1)x −2a +1x =(2a−1)x 2−2ax+1x =(x−1)[(2a−1)x−1]x,①若 a >12,令p′(x)=0,得极值点x 1=1,x 2=12a−1,当x 2>x 1=1,即 12<a <1时,在(x 2, +∞)上有p′(x)>0, 此时p(x)在区间(x 2, +∞)上是增函数,并且在该区间上有p(x)∈(p(x 2),+∞),不合题意;当x 2<x 1=1,即a ≥1时,同理可知,p(x)在区间(1, +∞)上, 有p(x)∈(p(1),+∞),也不合题意;②若 a ≤12,则有2a −1≤0,此时在区间(1, +∞)上恒有p′(x)<0,从而p(x)在区间(1, +∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足 p(1)=−a −12≤0⇒a ≥−12, 所以 −12≤a ≤12. 又因为ℎ′(x)=−x +2a −a 2x=−x 2+2ax−a 2x=−(x−a)2x<0,ℎ(x)在(1, +∞)上为减函数,ℎ(x)<ℎ(1)=−12+2a≤0,所以a≤14,综合可知a的范围是[−12, 14 ].。

2013年浙江省高考数学试卷(理科)答案与解析

2013年浙江省高考数学试卷(理科)答案与解析

2013年浙江省高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用两个复数代数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果.解答:解:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,故选B.点评:本题主要考查两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.2.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁R S)∪T=()A.(﹣2,1]B.(﹣∞,﹣4]C.(﹣∞,1]D.[1,+∞)考点:交、并、补集的混合运算;全集及其运算.专题:集合.分析:先根据一元二次不等式求出集合T,然后求得∁R S,再利用并集的定义求出结果.解答:解:∵集合S={x|x>﹣2},∴∁R S={x|x≤﹣2},T={x|x2+3x﹣4≤0}={x|﹣4≤x≤1},故(∁R S)∪T={x|x≤1}故选C.点评:此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型.在求补集时注意全集的范围.3.(5分)(2013•浙江)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:直接利用指数与对数的运算性质,判断选项即可.解答:解:因为a s+t=a s•a t,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.点评:本题考查指数与对数的运算性质,基本知识的考查.4.(5分)(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:三角函数的图像与性质.分析:φ=⇒f(x)=Acos(ωx+)⇒f(x)=Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f (x)为奇函数⇒f(0)=0⇒φ=kπ+,k∈Z.所以“f(x)是奇函数”是“φ=”必要不充分条件.解答:解:若φ=,则f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数;若f(x)是奇函数,⇒f(0)=0,∴f(0)=Acos(ω×0+φ)=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ=“f(x)是奇函数”是“φ=”必要不充分条件.故选B.点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.5.(5分)(2013•浙江)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4 B.a=5 C.a=6 D.a=7考点:程序框图.专题:算法和程序框图.分析:根据已知流程图可得程序的功能是计算S=1++…+的值,利用裂项相消法易得答案.解答:解:由已知可得该程序的功能是计算并输出S=1++…+=1+1﹣=2﹣.若该程序运行后输出的值是,则2﹣=.∴a=4,故选A.点评:本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键.6.(5分)(2013•浙江)已知,则tan2α=()A.B.C.D.考点:二倍角的正切;同角三角函数间的基本关系.专题:三角函数的求值.分析:由题意结合sin2α+cos2α=1可解得sinα,和cosα,进而可得tanα,再代入二倍角的正切公式可得答案.解答:解:∵,又sin2α+cos2α=1,联立解得,或故tanα==,或tanα=3,代入可得tan2α===﹣,或tan2α===故选C点评:本题考查二倍角的正切公式,涉及同角三角函数的基本关系,属中档题.7.(5分)(2013•浙江)设△ABC,P0是边AB上一定点,满足,且对于边AB 上任一点P,恒有则()A.∠ABC=90°B.∠BAC=90°C.A B=AC D.A C=BC考点:平面向量数量积的运算.专题:平面向量及应用.分析:设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.解答:解:设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,=||•||=||﹣(a+1))||,•=﹣a,于是•≥••恒成立,整理得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.故选:D.点评:本题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力8.(5分)(2013•浙江)已知e为自然对数的底数,设函数f(x)=(e x﹣1)(x﹣1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值考点:函数在某点取得极值的条件.专题:导数的综合应用.分析:通过对函数f(x)求导,根据选项知函数在x=1处有极值,验证f'(1)=0,再验证f (x)在x=1处取得极小值还是极大值即可得结论.解答:解:当k=1时,函数f(x)=(e x﹣1)(x﹣1).求导函数可得f'(x)=e x(x﹣1)+(e x﹣1)=(xe x﹣1),f'(1)=e﹣1≠0,f'(2)=2e2﹣1≠0,则f(x)在在x=1处与在x=2处均取不到极值,当k=2时,函数f(x)=(e x﹣1)(x﹣1)2.求导函数可得f'(x)=e x(x﹣1)2+2(e x﹣1)(x﹣1)=(x﹣1)(xe x+e x﹣2),∴当x=1,f'(x)=0,且当x>1时,f'(x)>0,当x0<x<1时(x0为极大值点),f'(x)<0,故函数f(x)在(1,+∞)上是增函数;在(x0,1)上是减函数,从而函数f(x)在x=1取得极小值.对照选项.故选C.点评:本题考查了函数的极值问题,考查学生的计算能力,正确理解极值是关键.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.解答:解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2=2,∴双曲线C2的离心率e===.故选D.点评:本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)(2013•浙江)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°考点:空间中直线与平面之间的位置关系;平面与平面之间的位置关系;二面角的平面角及求法.专题:空间位置关系与距离.分析:设P1是点P在α内的射影,点P2是点P在β内的射影.根据题意点P1在β内的射影与P2在α内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角,根据面面垂直的定义可得平面α与平面β垂直,得到本题答案.解答:解:设P1=fα(P),则根据题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα(P)]=fβ(P1),∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直故选:A点评:本题给出新定义,要求我们判定平面α与平面β所成角大小,着重考查了线面垂直性质、二面角的平面角和面面垂直的定义等知识,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)设二项式的展开式中常数项为A,则A=﹣10.考点:二项式系数的性质.专题:排列组合.分析:先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.解答:解:二项式的展开式的通项公式为T r+1=••(﹣1)r•=(﹣1)r••.令=0,解得r=3,故展开式的常数项为﹣=﹣10,故答案为﹣10.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12.(4分)(2013•浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于24cm3.考点:由三视图求面积、体积.专题:立体几何.分析:先根据三视图判断几何体的形状,再利用体积公式计算即可.解答:解:几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,侧面的高为5,被截取的棱锥的高为3.如图:V=V棱柱﹣V棱锥==24(cm3)故答案为:24.点评:本题考查几何体的三视图及几何体的体积计算.V椎体=Sh,V柱体=Sh.考查空间想象能力.13.(4分)(2013•浙江)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=2.考点:简单线性规划.专题:不等式的解法及应用.分析:先画出可行域,得到角点坐标.再对k进行分类讨论,通过平移直线z=kx+y得到最大值点A,即可得到答案.解答:解:可行域如图:由得:A(4,4),同样地,得B(0,2),z=kx+y,即y=﹣kx+z,分k>0,k<0两种情况.当k>0时,目标函数z=kx+y在A点取最大值,即直线z=kx+y在y轴上的截距z最大,即12=4k+4,得k=2;当k<0时,①当k>﹣时,目标函数z=kx+y在A点(4,4)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=4k+4,故k=2.②当k时,目标函数z=kx+y在B点(0,2)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=0×k+2,故k不存在.综上,k=2.故答案为:2.点评:本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.14.(4分)(2013•浙江)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有480种(用数字作答)考点:排列、组合及简单计数问题.专题:排列组合.分析:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.解答:解:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A,当C在左边第2个位置时,A和B有C右边的4个位置可以选,有A A,当C在左边第3个位置时,有A A+A A,共为240种,乘以2,得480.则不同的排法共有480种.故答案为:480.点评:本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法.15.(4分)(2013•浙江)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于不存在.考点:直线与圆锥曲线的关系;直线的斜率.专题:圆锥曲线的定义、性质与方程.分析:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.解答:解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.点评:本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和计算能力.16.(4分)(2013•浙江)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=.考点:正弦定理.专题:解三角形.分析:作出图象,设出未知量,在△ABM中,由正弦定理可得sin∠AMB=,进而可得cosβ=,在RT△ACM中,还可得cosβ=,建立等式后可得a=b,再由勾股定理可得c=,而sin∠BAC═=,代入化简可得答案.解答:解:如图设AC=b,AB=c,CM=MB=,∠MAC=β,在△ABM中,由正弦定理可得=,代入数据可得=,解得sin∠AMB=,故cosβ=cos(﹣∠AMC)=sin∠AMC=sin(π﹣∠AMB)=sin∠AMB=,而在RT△ACM中,cosβ==,故可得=,化简可得a4﹣4a2b2+4b4=(a2﹣2b2)2=0,解之可得a=b,再由勾股定理可得a2+b2=c2,联立可得c=,故在RT△ABC中,sin∠BAC====,故答案为:点评: 本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属难题.17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x 、y ∈R .若、的夹角为30°,则的最大值等于 2 .考点:数量积表示两个向量的夹角. 专题: 平面向量及应用. 分析:由题意求得 =,||==,从而可得===,再利用二次函数的性质求得的最大值.解答:解:∵、 为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x +y,∴||===,∴====, 故当=﹣时,取得最大值为2,故答案为 2.点评: 本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.考点:数列的求和;等差数列的通项公式;等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.解答:解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.点评:本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.19.(14分)(2013•浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;(2)先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.解答:解:(1)由题意得ξ=2,3,4,5,6,P(ξ=2)==;P(ξ=3)==;P(ξ=4)==;P(ξ=5)==;P(ξ=6)==.故所求ξ的分布列为ξ 2 3 4 5 6P(2)由题意知η的分布列为η 1 2 3PEη==Dη=(1﹣)2+(2﹣)2+(3﹣)2=.得,解得a=3c,b=2c,故a:b:c=3:2:1.点评:本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算能力,属于中档题.20.(15分)(2013•浙江)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ.根据平行线分线段成比例定理结合三角形的中位线定理证出四边形OPQF是平行四边形,从而PQ∥OF,再由线面平行判定定理,证出PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH.根据线面垂直的判定与性质证出BM⊥CH,因此∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°.设∠BDC=θ,用解直角三角形的方法算出HG和CG关于θ的表达式,最后在Rt△CHG中,根据正切的定义得出tan∠CHG==,从而得到tanθ=,由此可得∠BDC.解答:(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ ∵△ACD中,AQ=3QC且DF=3CF,∴QF∥AD且QF=AD∵△BDM中,O、P分别为BD、BM的中点∴OP∥DM,且OP=DM,结合M为AD中点得:OP∥AD且OP=AD∴OP∥QF且OP=QF,可得四边形OPQF是平行四边形∴PQ∥OF∵PQ⊄平面BCD且OF⊂平面BCD,∴PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH∵AD⊥平面BCD,CG⊂平面BCD,∴AD⊥CG又∵CG⊥BD,AD、BD是平面ABD内的相交直线∴CG⊥平面ABD,结合BM⊂平面ABD,得CG⊥BM∵GH⊥BM,CG、GH是平面CGH内的相交直线∴BM⊥平面CGH,可得BM⊥CH因此,∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°设∠BDC=θ,可得Rt△BCD中,CD=BDcosθ=2cosθ,CG=CDsinθ=sinθcosθ,BG=BCsinθ=2sin2θRt△BMD中,HG==;Rt△CHG中,tan∠CHG==∴tanθ=,可得θ=60°,即∠BDC=60°点评:本题在底面为直角三角形且过锐角顶点的侧棱与底面垂直的三棱锥中求证线面平行,并且在已知二面角大小的情况下求线线角.着重考查了线面平行、线面垂直的判定与性质,解直角三角形和平面与平面所成角求法等知识,属于中档题.21.(15分)(2013•浙江)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(1)由题意可得b=1,2a=4,即可得到椭圆的方程;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.解答:解:(1)由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.又圆的圆心O(0,0)到直线l1的距离d=.∴|AB|==.又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到(4+k2)x2+8kx=0,解得,∴|PD|=.∴三角形ABD 的面积S △==,令4+k 2=t >4,则k 2=t ﹣4, f (t )===,∴S △=,当且仅,即,当时取等号,故所求直线l 1的方程为.点评:本题主要考查了椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,同时考查了推理能力和计算能力及分析问题和解决问题的能力. 22.(14分)(2013•浙江)已知a ∈R ,函数f (x )=x 3﹣3x 2+3ax ﹣3a+3. (1)求曲线y=f (x )在点(1,f (1))处的切线方程; (2)当x ∈[0,2]时,求|f (x )|的最大值.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值. 专题:导数的综合应用. 分析: (1)求出原函数的导函数,求出函数取x=1时的导数值及f (1),由直线方程的点斜式写出切线方程;(2)求出原函数的导函数,分a ≤0,0<a <1,a ≥1三种情况求|f (x )|的最大值.特别当0<a <1时,仍需要利用导数求函数在区间(0,2)上的极值,然后在根据a 的范围分析区间端点值与极值绝对值的大小. 解答: 解:(1)因为f (x )=x 3﹣3x 2+3ax ﹣3a+3,所以f ′(x )=3x 2﹣6x+3a , 故f ′(1)=3a ﹣3,又f (1)=1,所以所求的切线方程为y=(3a ﹣3)x ﹣3a+4;(2)由于f ′(x )=3(x ﹣1)2+3(a ﹣1),0≤x ≤2.故当a ≤0时,有f ′(x )≤0,此时f (x )在[0,2]上单调递减,故 |f (x )|max =max{|f (0)|,|f (2)|}=3﹣3a .当a ≥1时,有f ′(x )≥0,此时f (x )在[0,2]上单调递增,故 |f (x )|max =max{|f (0)|,|f (2)|}=3a ﹣1.当0<a <1时,由3(x ﹣1)2+3(a ﹣1)=0,得,.所以,当x ∈(0,x 1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,2)时,f ′(x )>0,函数f (x )单调递增. 所以函数f (x )的极大值,极小值.故f (x 1)+f (x 2)=2>0,.从而f (x 1)>|f (x 2)|. 所以|f (x )|max =max{f (0),|f (2)|,f (x 1)}. 当0<a <时,f (0)>|f (2)|. 又=故.当时,|f (2)|=f (2),且f (2)≥f (0).又=.所以当时,f (x 1)>|f (2)|.故.当时,f (x 1)≤|f (2)|.故f (x )max =|f (2)|=3a ﹣1.综上所述|f (x )|max =.点评: 本题考查了利用导数研究曲线上某点处的切线方程,考查了利用导数求闭区间上的最值,考查了分类讨论的数学思想方法,正确的分类是解答(2)的关键,此题属于难题.。

浙江省嘉兴市2013届高三一模试题:数学(理)(扫描版)

浙江省嘉兴市2013届高三一模试题:数学(理)(扫描版)

三、解答题(本大题共5小题,第18-20题各14分,第21、22题各15分,共72分) 18.解:(Ⅰ)由正弦定理可得:C B C A cos sin sin 21sin +=, …2分 又因为)(C B A +-=π,所以)sin(sin C B A +=, …4分 可得C B C C B C B cos sin sin 21sin cos cos sin +=+,…6分 即21cos =B .所以3π=B …7分 (Ⅱ) 因为 3=∆ABC S ,所以 33sin 21=πac ,所以4=ac…10分 由余弦定理可知:ac ac ac ac c a b =-≥-+=2222…12分所以42≥b ,即2≥b ,所以b 的最小值为2. …14分19.解:(Ⅰ)在等差数列中,设公差为)0(≠d d ,由题⎪⎩⎪⎨⎧==532251a a a a ,∴⎪⎩⎪⎨⎧=++=+52)()4(12111d a d a d a a ,…3分解得:⎩⎨⎧==211d a .…4分122)1(1)1(1-=-+=-+=∴n n d n a a n .…5分(Ⅱ)n n n a b b b b =++++-1321242 ①20.解:(Ⅰ)证明:∵DC BC ⊥,且2==CD BC ,∴2=BD 且 45=∠=∠BDC CBD ; …1分又由DC AB //,可知 45=∠=∠CBD DBA∵2=AD ,∴ADB ∆是等腰三角形,且 45=∠=∠DBA DAB , ∴ 90=∠ADB ,即DB AD ⊥;…3分 ∵⊥FD 底面ABCD 于D ,⊂AD 平面ABCD ,∴DF AD ⊥, …4分 ∴⊥AD 平面DBF .又∵⊂BF 平面DBF ,∴可得BF AD ⊥. …6分 (Ⅱ)解:如图,以点C 为原点,直线CD 、CB 、CE 方向为x 、y 、z 轴建系. 可得)0,2,22(),2,0,2(),0,2,0(),0,0,2(A F B D , …8分 又∵ N 恰好为BF 的中点,∴ )1,22,22(N .设),0,0(0z M ,∴)1,22,22(0z MN -=.又∵⎪⎩⎪⎨⎧=⋅=⋅00DF MN BD MN ,∴可得10=z .故M 为线段CE 的中点. …11分设平面BMF 的一个法向量为),,(1111z y x n =, 且)2,2,2(--=BF ,)1,2,0(-=BM ,由⎪⎩⎪⎨⎧=⋅=⋅0011n BM n BF 可得⎪⎩⎪⎨⎧=+-=--02022211111z y z y x , 取⎪⎩⎪⎨⎧===213111z y x 得)2,1,3(1=n . …13分又∵平面MFC 的一个法向量为)0,1,0(2=n , …14分∴63,cos 21<n n . 故所求二面角B -MF -C 的余弦值为63. …15分 21.解(Ⅰ))0,1(1-F ,…1分 设),(00y x M ,则1MF 的中点为)2,21(0y x N -, …2分 ∵21NF MF ⊥,∴021=⋅NF MF ,即0)2,23(),1(0000=-⋅+y x y x , …3分∴03220020=+--y x x (1) …4分又有122020=+y x, (2)由(1)、(2)解得2220-=x (2220+=x 舍去) …5分 所以点M 到y 轴的距离为222-.…6分(Ⅱ)设),(11y x P ,),(22y x Q ,∵OPRQ 为平行四边形,∴R x x x =+21,R y y y =+21. …8分∵R 点在椭圆上,∴1)(2)(221221=+++y y x x ,即1]2)([2)(221221=++++m x x k x x ,…9分化简得,28)(8))(21(2212212=+++++m x x km x x k .…(1) …10分 由⎪⎩⎪⎨⎧+==+m kx y y x 1222得0224)21(222=-+++m kmx x k .由0>∆,得2212m k >+…(2), …11分 且221214k km x x +-=+.…12分代入(1)式,得282132)21()21(16222222222=++-++m km k k m k k ,化简得22214k m +=,代入(2)式,得0≠m . …14分 又121422≥+=k m , ∴21-≤m 或21≥m .…15分22.解:(Ⅰ)xa a x x f 12)22()(+++-='=x x a x )1)(12(--- (0>x )令0)(='x f ,1,1221=+=x a x …1分① 0=a 时,0)1()(2≥-='xx x f ,所以)(x f 增区间是()+∞,0;② 0>a 时,112>+a ,所以)(x f 增区间是)1,0(与),12(+∞+a ,减区间是)12,1(+a ③021<<-a 时,1120<+<a ,所以)(x f 增区间是)12,0(+a 与),1(+∞,减区间是)1,12(+a ④ 21-≤a 时,012≤+a ,所以)(x f 增区间是),1(+∞,减区间是)1,0( (5)分(Ⅰ)因为]25,23[∈a ,所以]6,4[)12(∈+a ,由(1)知)(x f 在]2,1[上为减函数. …6分若21x x =,则原不等式恒成立,∴),0(∞+∈λ …7分若21x x ≠,不妨设2121≤<≤x x ,则)()(21x f x f >,2111x x >, 所以原不等式即为:)11()()(2121x x x f x f -≤-λ,即22111)(1)(x x f x x f λλ-≤-对任意的]25,23[∈a ,]2,1[,21∈x x 恒成立令x x f x g λ-=)()(,所以对任意的]25,23[∈a ,]2,1[,21∈x x 有)()(21x g x g <恒成立,所以xx f x g λ-=)()(在闭区间]2,1[上为增函数 …9分所以0)(≥'x g 对任意的]25,23[∈a ,]2,1[∈x 恒成立。

2013年浙江省高考理科数学试题(一模)

2013年浙江省高考理科数学试题(一模)

2013学年第一学期高三年级第一次摸底考试试题数学(理科)本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分2至4页,满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)一. 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四项中,只有一项是符合题目要求的。

(1)已知全集U =R ,集合()37x A x f x x ⎧⎫-⎪⎪==⎨⎬-⎪⎪⎩⎭,{}27100B x x x =-+<,则()A B =R ð(A )()(),35,-∞+∞(B )()[),35,-∞+∞(C )(][),35,-∞+∞(D )(](),35,-∞+∞(2)已知i 为虚数单位,m ∈R ,21m iz i-⋅=+,z 是z 的共轭复数,若0z z +=,则m = (A )1(B )2(C )1-(D )2-(3)函数()()sin 22f x x πϕϕ⎛⎫=+<⎪⎝⎭向左平移6π个单位后得到一个奇函数,则函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为 (A )32-(B )12-(C )12(D )32(4)已知,,a b c ∈R ,则“()4,5a bc+∈”是“236a b c ==”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)已知m n ,是两条不同的直线,αβγ,,是三个不同的平面,下列说法错误..的是 (A )若m n ,是两条异面直线,则直线m n ,夹角的取值范围是0,2π⎛⎤ ⎥⎝⎦(B )若面α//面β,面α面m γ=,面β面n γ=,则m //n(C )若m 不垂直于面α,则m 不可能垂直于面α内的无数条直线(D )若面α面m β=,m //n ,且n ⊄面α,n ⊄面β,则n //面α,且n //面β(6)在约束条件0,024x y x y s x y ≥≥⎧⎪+≤⎨⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的取值范围是(A )[]6,15(B )[]7,15(C )[]6,8(D )[]7,8(7)已知在ABC ∆中,1AB =,3AC =.若O 是该三角形内的一点,满足()0OA OB AB +⋅=,OB OC =,则AO BC ⋅=(A )52(B )3(C )4(D )92(8)定义在0,2π⎛⎫⎪⎝⎭上的函数()f x ,()'f x 是它的导函数,且恒有()()'tan f x f x x <⋅成立,则 (A )3243f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭(B )()12sin16f f π⎛⎫<⎪⎝⎭(C )264f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭(D )363f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭(9)三个顶点均在椭圆上的三角形称为椭圆的内接三角形,已知点A 是椭圆的一个短轴端点,如果以A 为直角顶点的椭圆内接等要直角三角形有且仅有三个,则椭圆的离心率取值范围是 (A )20,2⎛⎫ ⎪ ⎪⎝⎭(B )26,23⎛⎫⎪ ⎪⎝⎭(C )2,12⎛⎫⎪ ⎪⎝⎭(D )6,13⎛⎫⎪ ⎪⎝⎭(10)在平面直角坐标系中,如果不同两点(),A a b ,(),B a b --都在函数()y h x =的图象上,那么称[],A B 为函数()h x 的一组“友好点”([],A B 与[],B A 看成一组).已知定义在[)0,+∞上的函数()f x 满足()()22f x f x +=,且当[]0,2x ∈时,()sin2f x x π=.则函数()(),08,80f x xg x x x <≤⎧⎪=⎨---≤<⎪⎩的“友好点”的组数为(A )4(B )5(C )6(D )7非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分。

浙江省考试院2013届高三数学上学期测试试题 理(含解析)新人教A版

浙江省考试院2013届高三数学上学期测试试题 理(含解析)新人教A版

2013年浙江省考试院高考数学测试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江模拟)已知集合A={y|y=2x,x∈R},则 C R A=()A.∅B.(﹣∞,0] C.(0,+∞)D.R考点:补集及其运算.专题:计算题.分析:根据指数函数的值域化简集合A,则其补集可求.解答:解:因为集合A={y|y=2x,x∈R}={y|y>0},所以C R A={y|y≤0}.故选B.点评:本题考查了补集及其运算,考查了指数函数的值域的求法,是基础题.2.(5分)(2013•浙江模拟)已知a,b是实数,则“|a+b|=|a|+|b|”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为“|a+b|=|a|+|b|”,说明ab同号,但是有时a=b=0也可以,从而进行判断;解答:解:若ab>0,说明a与b全大于0或者全部小于0,∴可得“|a+b|=|a|+|b|”,若“|a+b|=|a|+|b|”,可以取a=b=0,此时也满足“|a+b|=|a|+|b|”,∴“ab>0”⇒“|a+b|=|a|+|b|”;∴“|a+b|=|a|+|b|”是“ab>0”必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题;3.(5分)(2013•浙江模拟)若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则()A.函数f[g(x)]是奇函数B.函数g[f(x)]是奇函数C.函数f(x)•g(x)是奇函数D.函数f(x)+g(x)是奇函数考点:奇偶性与单调性的综合.专题:计算题.分析:令h(x)=f(x).g(x),由已知可知f(﹣x)=﹣f(x),g(﹣x)=g(x),然后检验h(﹣x)与h(x)的关系即可判断解答:解:令h(x)=f(x).g(x)∵函数f(x)是奇函数,函数g(x)是偶函数∴f(﹣x)=﹣f(x),g(﹣x)=g(x)∴h(﹣x)=f(﹣x)g(﹣x)=﹣f(x).g(x)=﹣h(x)∴h(x)=f(x).g(x)是奇函数故选C点评:本题主要考查了函数的奇偶性的性质的简单应用,属于基础试题4.(5分)(2013•浙江模拟)设函数f(x)=x3﹣4x+a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则()A.x1>﹣1 B.x2<0 C.x2>0 D.x3>2考点:利用导数研究函数的极值;函数的零点.专题:函数的性质及应用.分析:利用导数研究函数的单调性,利用导数求函数的极值,再根据f (x)的三个零点为x1,x2,x3,且x1<x2<x3,求得各个零点所在的区间,从而得出结论.解答:解:∵函数f (x)=x3﹣4x+a,0<a<2,∴f′(x)=3x2﹣4.令f′(x)=0可得 x=.∵当x<﹣时,f′(x)>0;在(﹣,)上,f′(x)<0;在(,+∞)上,f′(x)>0.故函数在(∞,﹣)上是增函数,在(﹣,)上是减函数,在(,+∞)上是增函数.故f(﹣)是极大值,f()是极小值.再由f (x)的三个零点为x1,x2,x3,且x1<x2<x3,可得 x1<﹣,﹣<x2<,x3>.根据f(0)=a>0,且f()=a﹣<0,可得>x2>0.故选C.点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,利用导数研究函数的单调性,利用导数求函数的极值,属于中档题.5.(5分)(2013•浙江模拟)如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若||=a,||=b,则=()A.a2﹣b2B.b2﹣a2C.a2+b2D.a b考点:向量在几何中的应用.专题:计算题;平面向量及应用.分析:利用向量的线性运算及向量的数量积公式,即可得到结论.解答:解:∵AD⊥DC,∴=0,∴==﹣=﹣∵AB⊥BC,∴=0,∴﹣=﹣∵||=a,||=b,∴﹣=b2﹣a2∴=b2﹣a2,故选B.点评:本题考查向量在几何中的应用,考查向量的线性运算及向量的数量积公式,属于中档题.6.(5分)(2013•浙江模拟)设数列{a n}()A.若=4n,n∈N*,则{an}为等比数列B.若an•a n+2=,n∈N *,则{an}为等比数列C.若a m•a n=2m+n,m,n∈N*,则{a n}为等比数列D.若a n•a n+3=a n+1•a n+2,n∈N*,则{a n}为等比数列考点:等比数列的性质;等差数列的性质.专题:计算题;等差数列与等比数列.分析:利用等比数列的概念,通过特例法对A,B,C,D四个选项逐一判断排除即可.解答:解:A中,=4n,n∈N*,∴a n=±2n,例如2,22,﹣23,﹣24,25,26,﹣27,﹣28,…不是等比数列,故A错误;B中,若a n=0,满足a n•a n+2=,n∈N*,但{a n}不是等比数列,故B错误;同理也排除D;对于C,∵a m•a n=2m+n,m,n∈N*,∴==2,即=2,∴{a n}为等比数列,故C正确.故选C.点评:本题考查等比数列的概念与性质,考查举例排除法的应用,考查分析问题与解决问题的能力,属于中档题.7.(5分)(2013•浙江模拟)已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的四个三视图,可知四个三视图,分别表示从前、后、左、右四个方向观察同一个棱锥,但其中有一个是错误的,根据A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,可得A,C均正确,而根据AC可判断B正确,D错误.解答:解:三棱锥的三视图均为三角形,四个答案均满足;且四个三视图均表示一个高为3,底面为两直角边分别为1,2的棱锥A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,故A,C表示同一棱锥设A中观察的正方向为标准正方向,以C表示从后面观察该棱锥B与D中俯视图正好旋转180°,故应是从相反方向进行观察,但侧视图中三角形斜边倾斜方向相同,不满足实际情况,故B,D中有一个不与其它三个一样表示同一个棱锥,根据B中正视图与A中侧视图相同,侧视图与C中正视图相同,可判断B是从左边观察该棱锥故选D点评:本题考查的知识点是空间几何体的三视图,本题要求具有超强的空间想像能力,难度较大.(2013•浙江模拟)若整数x,y满足不等式组则2x+y的最大值是()(5分)8.A.11 B.23 C.26 D.30考点:简单线性规划.分析:由已知中的约束条件,画出可行域,结合x,y均为整数,分析可行域内的整点,比较后可得目标函数的最优解.解答:解:满足不等式组的可行域如下图所示又∵x,y均为整数故当x=8,y=7时,2x+y的最大值为23故选B点评:本题考查的知识点是简单的线性规划,本题易忽略约束条件中的不等式均不带等号,可行域不含角点,而错选D9.(5分)(2013•南开区二模)如图,F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A.B.C.2D.考点:双曲线的简单性质.专题:计算题.分析:根据双曲线的定义可求得a=1,∠ABF2=90°,再利用勾股定理可求得2c=|F1F2|,从而可求得双曲线的离心率.解答:解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,∵|AB|2+=,∴∠ABF2=90°,又由双曲线的定义得:|BF1|﹣|BF2|=2a,|AF2|﹣|AF1|=2a,∴|AF1|+3﹣4=5﹣|AF1|,∴|AF1|=3.∴|BF1|﹣|BF2|=3+3﹣4=2a,∴a=1.在Rt△BF1F2中,=+=62+42=52,又=4c2,∴4c2=52,∴c=.∴双曲线的离心率e==.故选A.点评:本题考查双曲线的简单性质,求得a与c的值是关键,考查转化思想与运算能力,属于中档题.10.(5分)(2013•浙江模拟)如图,函数y=f(x)的图象为折线ABC,设f1(x)=f(x),f n+1(x)=f[f n(x)],n∈N*,则函数y=f4(x)的图象为()A.B.C.D.考点:函数的图象.分析:已知函数y=f(x)的图象为折线ABC,设f1(x)=f(x),f n+1(x)=f[f n(x)],可以根据图象与x轴的交点进行判断,求出f1(x)的解析式,可得与x轴有两个交点,f2(x)与x 轴有4个交点,以此来进行判断;解答:解:函数y=f(x)的图象为折线ABC,设f1(x)=f(x),f n+1(x)=f[f n(x)],由图象可知f(x)为偶函数,关于y轴对称,所以只需考虑x≥0的情况即可:由图f1(x)是分段函数,f1(x)=f(x)=,是分段函数,∵f2(x)=f(f(x)),当0≤x≤,f1(x)=4x﹣1,可得﹣1≤f(x)≤1,仍然需要进行分类讨论:①0≤f(x )≤,可得0<x≤,此时f2(x)=f(f1(x))=4(4x﹣1)=16x﹣4,②≤f(x)≤1,可得<x≤,此时f2(x)=f(f1(x))=﹣4(4x﹣1)=﹣16x+4,可得与x轴有2个交点;当≤x≤1,时,也分两种情况,此时也与x轴有两个交点;∴f2(x)在[0,1]上与x轴有4个交点;那么f3(x)在[0,1]上与x轴有6个交点;∴f4(x)在[0,1]上与x轴有8个交点,同理在[﹣1.0]上也有8个交点;故选D;点评:此题主要考查函数的图象问题,以及分段函数的性质及其图象,是一道好题;二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江模拟)已知i是虚数单位,a∈R.若复数的虚部为1,则a= 2 .考点:复数代数形式的乘除运算.专题:计算题.分析:把已知复数的分子分母同乘以分母的共轭复数,再进行化简即可求出复数的虚部.解答:解:∵==,可知复数的虚部为=1,解得a=2故答案为:2点评:本题考查复数的除法运算及基本概念,熟练掌握运算法则及理解基本概念是做好本题的关键.12.(4分)(2013•浙江模拟)设公差不为零的等差数列{a n}的前n项和为S n.若a22+a32=a42+a52,则S6= 0 .考点:等差数列的前n项和;等差数列的性质.专题:计算题;等差数列与等比数列.分析:设等差数列的公差为d,可得a1+a6=a4+a3=0,而S6=代入可得答案.解答:解:设等差数列的公差为d,(d≠0),由a22+a32=a42+a52可得,即2d(a5+a3)+2d(a4+a2)=0,即a5+a3+a4+a2=0,由等差数列的性质可得2a4+2a3=0,即a4+a3=0,又a1+a6=a4+a3=0,故S6==0故答案为:0点评:本题为等差数列的性质的应用,熟练利用性质是解决问题的关键,属基础题.13.(4分)(2013•浙江模拟)若(n为正偶数)的展开式中第5项的二项式系数最大,则第5项是x6.考点:二项式定理的应用.专题:计算题.分析:由二项式系数的性质可得n=8,利用其通项公式即可求得第5项.解答:解:∵的展开式中第5项的二项式系数最大,∴+1=5,∴n=8.∴T5=••=•x6=x6.故答案为:x6.点评:本题考查二项式定理的应用,着重考查项式系数的性质与其通项公式,属于基础题.14.(4分)(2013•浙江模拟)若某程序框图如图所示,则该程序运行后输出的值是 3 .考点:循环结构.专题:压轴题;图表型.分析:根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,执行语句输出i,从而到结论.解答:解:当输入的值为n=12时,n不满足判断框中的条件,n=6,n不满足判断框中的条件,n=3,n满足判断框中的条件,n=10,i=2,n不满足判断框中的条件,n=5,n满足判断框中的条件,n=16,i=3,n不满足判断框中的条件,n=8,n不满足判断框中的条件,n=4,n不满足判断框中的条件,n=2,n不满足判断框中的条件,n=1,n满足下面一个判断框中的条件,退出循环,即输出的结果为i=3,故答案为:3.点评:本题主要考查了循环结构,是当型循环,当满足条件,执行循环,属于基础题.15.(4分)(2013•浙江模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,已知C=2A,cosA=,b=5,则△ABC的面积为.考点:正弦定理.专题:计算题;解三角形.分析:由题意可求得sin2A,sin3A,再利用正弦定理==可求得c,从而可求得△ABC的面积.解答:解;∵在△ABC中,C=2A,∴B=π﹣A﹣C=π﹣3A,又cos A=,∴sinA=,sin2A=2sinAcosA=,sinB=sin(π﹣3A)=sin3A=3sinA﹣4sin3A,又b=5,∴由正弦定理=得:=,∴c=====6,∴S△ABC=bcsinA=×5×6×=.故答案为:点评:本题考查正弦定理,考查二倍角的正弦与三倍角的正弦公式,考查转化分析与运算能力,属于中档题.16.(4分)(2013•浙江模拟)在△ABC中,B(10,0),直线BC与圆Γ:x2+(y﹣5)2=25相切,切点为线段BC的中点.若△ABC的重心恰好为圆Γ的圆心,则点A的坐标为(0,15)或(﹣8,﹣1).考点:直线与圆的位置关系.专题:直线与圆.分析:设BC的中点为D,设点A和C的坐标,根据圆心Γ(0,5)到直线AB的距离等于半径5求出AB的斜率k的值.再由斜率公式以及ΓD⊥BC,求出C的坐标,再利用三角形的重心公式求得A的坐标.解答:解:设BC的中点为D,设点A(x1,y1)、C(x2,y2),则由题意可得ΓD⊥BC,且D(,).故有圆心Γ(0,5)到直线AB的距离ΓD=r=5.设BC的方程为y﹣0=k(x﹣10),即 kx﹣y﹣10k=0.则有=5,解得 k=0或 k=﹣.当k=0时,有,当k=﹣时,有.解得,或.再由三角形的重心公式可得,由此求得或,故点A的坐标为(0,15)或(﹣8,﹣1),故答案为(0,15)或(﹣8,﹣1).点评:本题主要考查直线和圆的位置关系的应用,点到直线的距离公式、斜率公式、三角形的重心公式,属于中档题.17.(4分)(2013•浙江模拟)在长方体ABCD﹣A1B1C1D1中,AB=1,AD=2.若存在各棱长均相等的四面体P1P2P3P4,其中P1,P2,P3,P4分别在棱AB,A1B1,C1D1,CD所在的直线上,则此长方体的体积为 4 .考点:棱柱、棱锥、棱台的体积.专题:计算题;压轴题.分析:根据正四面体是由正方体截掉四个角得到的,可得若各棱长均相等的四面体P1P2P3P4,其中P1,P2,P3,P4分别在棱AB,A1B1,C1D1,CD所在的直线上,则棱AB,A1B1,C1D1,CD所在的直线应为某正四棱柱的四条侧棱所在的直线,进而得到A1A=AD,代入长方体体积公式可得答案.解答:解:若各棱长均相等的四面体P1P2P3P4,其中P1,P2,P3,P4分别在棱AB,A1B1,C1D1,CD所在的直线上,则棱AB,A1B1,C1D1,CD所在的直线应为某正四棱柱的四条侧棱所在的直线∵AD=2,∴A1A=2故此长方体的体积V=2×2×1=4故答案为:4点评:本题考查的知识点是棱柱的几何特征,棱锥的几何特征,其中根据正四面体是由正方体截掉四个角得到的,分析出A1A=AD,是解答的关键.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江模拟)已知函数f (x)=3sin2ax+sinaxcosax+2cos2ax的周期为π,其中a>0.(Ⅰ)求a的值;(Ⅱ)求f(x)的值域.考点:三角函数的恒等变换及化简求值.专题:计算题;三角函数的图像与性质.分析:(Ⅰ)利用两角和与差的三角函数间的关系式将f(x)化为f(x)=sin(2ax﹣)+,利用其周期公式即可求得a的值;(Ⅱ)由(Ⅰ)得f(x)=sin(2x﹣)+,利用正弦函数的性质即可求得其值域.解答:解:(Ⅰ)由题意得f(x)=(1﹣cos2ax)+sin2ax+(1+cos2ax)=sin2ax﹣cos2ax+=sin(2ax﹣)+.∵f (x)的周期为π,a>0,∴a=1.…(7分)(Ⅱ)由(Ⅰ)得f(x)=sin(2x﹣)+,∴f(x)的值域为[,].…(14分)点评:本题主要考查三角函数的图象与性质、三角变换等基础知识,同时考查运算求解能力,属于中档题.19.(14分)(2013•浙江模拟)已知A,B,C,D,E,F是边长为1的正六边形的6个顶点,在顶点取自A,B,C,D,E,F的所有三角形中,随机(等可能)取一个三角形.设随机变量X为取出三角形的面积.(Ⅰ)求概率P (X=);(Ⅱ)求数学期望E (X ).考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:计算题;概率与统计.分析:(Ⅰ)取出的三角形的面积是的三角形有6种情况,由此可得结论;(Ⅱ)确定X的取值,求出相应的概率,从而可求数学期望.解答:解:(Ⅰ)由题意得取出的三角形的面积是的概率P(X=)==.…(7分)(Ⅱ)随机变量X的分布列为XP所以E(X)=×+×+×=.…(14分)点评:本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算求解能力和应用意识.20.(15分)(2013•浙江模拟)如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.(Ⅰ)求异面直线EF与BC所成角的大小;(Ⅱ)若二面角A﹣BF﹣D的平面角的余弦值为,求AB的长.考点:异面直线及其所成的角;二面角的平面角及求法.专题:空间角.分析:(Ⅰ)延长AD,FE交于Q,根据异面直线夹角的定义,根据BC∥AD,得∠AQF是异面直线EF与BC所成的角,解△AQF可得答案.(II)几何法:取AF的中点G,过G作GH⊥BF,垂足为H,连接DH,可证得∠DHG为二面角A﹣BF﹣D的平面角,解三角形DGH可得答案.(II)向量法:以F为原点,AF,FQ所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.求出二面角A﹣BF﹣D中两个半平面的法向量,进而构造AB长的方程,解方程可得答案.解答:解:(Ⅰ)延长AD,FE交于Q.∵ABCD是矩形,∴BC∥AD,∴∠AQF是异面直线EF与BC所成的角.在梯形ADEF中,由DE∥AF,AF⊥FE,AF=2,DE=1得∠AQF=30°.即异面直线EF与BC所成角为30°…(7分)(Ⅱ)方法一:设AB=x.取AF的中点G.由题意得DG⊥AF.∵平面ABCD⊥平面ADEF,AB⊥AD,∴AB⊥平面ADEF,∴AB⊥DG.∴DG⊥平面ABF.过G作GH⊥BF,垂足为H,连接DH,则DH⊥BF,∴∠DHG为二面角A﹣BF﹣D的平面角.在直角△AGD中,AD=2,AG=1,得DG=.在直角△BAF中,由=sin∠AFB=,得=,∴GH=.在直角△DGH中,DG=,GH=,得DH=.∵cos∠DHG==,得x=,∴AB=.…(15分)方法二:设AB=x.以F为原点,AF,FQ所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.则F(0,0,0),A(﹣2,0,0),E(0,,0),D(﹣1,,0),B(﹣2,0,x),∴=(1,﹣,0),=(2,0,﹣x).∵EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).设=(x1,y1,z1)为平面BFD的法向量,则∴可取=(,1,).∵cos<,>==,得x=,∴AB=.…(15分)点评:本题考查的知识点是异面直线及其所成的角,二面角的平面角及求法,其中(1)的关键是利用平移求出异面直线夹角的几何角,(2)中几何的关键是找出二面角的平面角,向量法的关键是构造空间坐标系,求出二面角A﹣BF﹣D中两个半平面的法向量21.(15分)(2013•浙江模拟)如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线l:x=﹣将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围.考点:椭圆的标准方程;直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)椭圆离心率为,线l:x=﹣将线段F1F2分成两段,其长度之比为1:3,可确定几何量,从而可得椭圆C的方程;(Ⅱ)分类讨论,直线与椭圆方程联立,利用韦达定理及向量知识,即可求得结论.解答:解:(Ⅰ)设F2(c,0),则=,所以c=1.因为离心率e=,所以a=,所以b=1所以椭圆C的方程为.…(6分)(Ⅱ)当直线AB垂直于x轴时,直线AB方程为x=﹣,此时P(,0)、Q(,0),.当直线AB不垂直于x轴时,设直线AB的斜率为k,M(﹣,m)(m≠0),A(x1,y1),B (x2,y2).由得(x1+x2)+2(y1+y2)=0,则﹣1+4mk=0,∴k=.此时,直线PQ斜率为k1=﹣4m,PQ的直线方程为,即y=﹣4mx﹣m.联立消去y,整理得(32m2+1)x2+16m2x+2m2﹣2=0.所以,.于是=(x1﹣1)(x2﹣1)+y1y2=x1x2﹣(x1+x2)+1+(4mx1+m)(4mx2+m)===.令t=1+32m2,1<t<29,则.又1<t<29,所以.综上,的取值范围为[﹣1,).…(15分)点评:本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.22.(14分)(2013•浙江模拟)已知函数f (x)=x3+(1﹣a)x2﹣3ax+1,a>0.(Ⅰ)证明:对于正数a,存在正数p,使得当x∈[0,p]时,有﹣1≤f (x)≤1;(Ⅱ)设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)对f(x)进行求导,利用导数研究函数f(x)的单调性,求得极值点,从而求出f(x)的值域;(Ⅱ)由(Ⅰ)知f (x)在[0,+∞)上的最小值为f (a),需要分类讨论:0<a≤1或a>1,对于g(a)的表达式,对其进行求导研究其最值问题;解答:解:(Ⅰ)由于f′(x)=3x2+3(1﹣a)x﹣3a=3(x+1)(x﹣a),且a>0,故f (x)在[0,a]上单调递减,在[a,+∞)上单调递增.又f (0)=1,f (a)=﹣a3﹣a2+1=(1﹣a)(a+2)2﹣1.当f (a)≥﹣1时,取p=a.此时,当x∈[0,p]时有﹣1≤f (x)≤1成立.当f (a)<﹣1时,由于f (0)+1=2>0,f (a)+1<0,故存在p∈(0,a)使得f (p)+1=0.此时,当x∈[0,p]时有﹣1≤f (x)≤1成立.综上,对于正数a,存在正数p,使得当x∈[0,p]时,有﹣1≤f (x)≤1.…(7分)(Ⅱ)由(Ⅰ)知f (x)在[0,+∞)上的最小值为f (a).当0<a≤1时,f (a)≥﹣1,则g(a)是方程f (p)=1满足p>a的实根,即2p2+3(1﹣a)p﹣6a=0满足p>a的实根,所以g(a)=.又g(a)在(0,1]上单调递增,故g(a)max=g(1)=.当a>1时,f (a)<﹣1.由于f (0)=1,f (1)=(1﹣a)﹣1<﹣1,故[0,p]⊂[0,1].此时,g(a)≤1.综上所述,g(a)的最大值为.…(14分)点评:本题主要考查利用导数研究函数的性质等基础知识,同时考查推理论证能力,分类讨论等综合解题能力和创新意识,是一道中档题,也是高考的热点问题;。

浙江省杭州市2013届高三第一次高考科目教学质量检测数学(理)试题

浙江省杭州市2013届高三第一次高考科目教学质量检测数学(理)试题

故函数存在“转点”,且是“转点”的横坐标.
(0,7) (7,0)
O x 15.在△ABC中,角A,B,C的对边分别a,b,c,若.则直线被圆
长为 .
16.若整数满足不等式组, 则的最大值为 .
所截得的弦
(第17题)
O A B C 17.如图,在扇形OAB中,,C为弧AB上的一个动点.若,则的取值范围是 .
三、解答题: 18.(本题满分14分)设.
18.【解析】(I)
故的最大值为,最小正周期为.
(II)由得,
故,
又由,解得。 再由, . 19.【解析】(I)由题意知, 当且仅当时等号成立,所以,当取得最大值时. (II)当时,即甲箱中有个红球与个白球, 所以的所有可能取值为则,,,, 所以红球个数的分布列为
于是. 20.【解析】(I)证明 , 所以数列是等差数列,,因此
值,则首项的取值范围是( )
A. B. C. D.
二、填空题:
11.二项式的展开式中第四项的系数为 .
12.从中任取三个数字,组成无重复数字的三位数中,偶数的个数是
(用数字回答).
13.无穷数列 的首项是,随后两项都是,接下来项都是,再接下来项
都是,…,以此类推.记该数列为,若,,则 .
14.若正数满足,则的最小值为 . y
(Ⅱ)若直线 与椭圆C交于A、B两点,且线段AB中点恰好在直线上,求 △OAB的面积S的最大值.(其中O为坐标原点).
22.(本题满分15分)已知函数 (Ⅰ)当时,求函数的极小值;
(Ⅱ)当时,过坐标原点作曲线的切线,设切点为,求实数的值; (Ⅲ)设定义在上的函数在点处的切线方程为当时,若在内恒成
立,则称为函数的“转点”.当时,试问函数是否存在“转点”.若存在,请

2013年高考理科数学浙江卷试题与答案(经典word解析版)

2013年高考理科数学浙江卷试题与答案(经典word解析版)

2013年普通高等学校招生全国统一考试数学理工农医类(浙江卷)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,理1)已知i 是虚数单位,则(-1+i)(2-i)=( ).A .-3+iB .-1+3iC .-3+3iD .-1+i 2.(2013浙江,理2)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(R S )∪T =( ).A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞) 3.(2013浙江,理3)已知x ,y 为正实数,则( ).A .2lg x +lg y =2lg x +2lg yB .2lg(x +y)=2lg x²2lg yC .2lg x²lg y=2lg x +2lg yD .2lg(xy)=2lg x²2lg y 4.(2013浙江,理4)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“π2ϕ=”的( ). A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.(2013浙江,理5)某程序框图如图所示,若该程序运行后输出的值是95,则( ). A .a =4 B .a =5 C .a =6 D .a =7 6.(2013浙江,理6)已知α∈R ,sin α+2cos α=2,则tan 2α=( ). A .43 B .34 C .34- D .43-7.(2013浙江,理7)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB ²PC ≥0P B ²0PC ,则( ). A .∠ABC =90° B.∠BAC =90° C .AB =AC D .AC =BC8.(2013浙江,理8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k(k =1,2),则( ).A .当k =1时,f(x)在x =1处取到极小值B .当k =1时,f(x)在x =1处取到极大值C .当k =2时,f(x)在x =1处取到极小值D .当k =2时,f(x)在x =1处取到极大值9.(2013浙江,理9)如图,F 1,F 2是椭圆C 1:24x +y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ).A.32 D.210.(2013浙江,理10)在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( ).A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60°非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,理11)设二项式5的展开式中常数项为A ,则A =__________. 12.(2013浙江,理12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于__________cm 3.13.(2013浙江,理13)设z =kx +y ,其中实数x ,y 满足20,240,240.x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =__________.14.(2013浙江,理14)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答).15.(2013浙江,理15)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于__________.16.(2013浙江,理16)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =__________.17.(2013浙江,理17)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则||||x b 的最大值等于__________.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,理18)(本题满分14分)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,a n;(2)若d<0,求|a1|+|a2|+|a3|+…+|a n|.19.(2013浙江,理19)(本题满分14分)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a∶b∶c.20.(2013浙江,理20)(本题满分15分)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C-BM-D的大小为60°,求∠BDC的大小.21.(2013浙江,理21)(本题满分15分)如图,点P(0,-1)是椭圆C1:22221x ya b+=(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积取最大值时直线l1的方程.22.(2013浙江,理22)(本题满分14分)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.2013年普通高等学校夏季招生全国统一考试数学理工农医类(浙江卷)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:B解析:(-1+i)(2-i)=-2+i+2i-i2=-1+3i,故选B.2.答案:C解析:由题意得T={x|x2+3x-4≤0}={x|-4≤x≤1}.又S={x|x>-2},∴(R S)∪T ={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1},故选C.3.答案:D解析:根据指数与对数的运算法则可知,2lg x+lg y=2lg x²2lg y,故A错,B错,C错;D中,2lg(xy)=2lg x+lg y=2lg x²2lg y,故选D.4.答案:B解析:若f(x)是奇函数,则φ=kπ+π2,k∈Z;若π2ϕ=,则f(x)=A cos(ωx+φ)=-A sin ωx,显然是奇函数.所以“f(x)是奇函数”是“π2ϕ=”的必要不充分条件.5.答案:A解析:该程序框图的功能为计算1+112⨯+123⨯+…+11a a(+)=2-11a+的值,由已知输出的值为95,可知当a=4时2-11a+=95.故选A.6.答案:C解析:由sin α+2cos αsin α2cos α.①把①式代入sin2α+cos2α=1中可解出cos α,当cos α时,sin α;当cos α时,sin α=.∴tan α=3或tan α=13-,∴tan 2α=34-.7. 答案:D解析:设PB =t AB (0≤t ≤1), ∴PC =PB +BC =t AB +BC ,∴PB ²PC =(t AB )²(t AB +BC )=t 22AB +t AB ²BC .由题意PB ²PC ≥0P B ²0PC , 即t 22AB +t AB ²BC ≥14AB 14AB BC ⎛⎫+ ⎪⎝⎭=214⎛⎫⎪⎝⎭2AB +14AB ²BC ,即当14t =时PB ²PC 取得最小值.由二次函数的性质可知:2142AB BC AB⋅-=,即:AB -²BC =122AB ,∴AB ²12AB BC ⎛⎫+ ⎪⎝⎭=0.取AB 中点M ,则12AB +BC =MB +BC =MC ,∴AB ²MC =0,即AB ⊥MC . ∴AC =BC .故选D . 8. 答案:C解析:当k =1时,f (x )=(e x -1)(x -1),f ′(x )=x e x-1, ∵f ′(1)=e -1≠0,∴f (x )在x =1处不能取到极值;当k =2时,f (x )=(e x -1)(x -1)2,f ′(x )=(x -1)(x e x +e x-2),令H (x )=x e x +e x-2,则H ′(x )=x e x +2e x>0,x ∈(0,+∞). 说明H (x )在(0,+∞)上为增函数, 且H (1)=2e -2>0,H (0)=-1<0,因此当x 0<x <1(x 0为H (x )的零点)时,f ′(x )<0,f (x )在(x 0,1)上为减函数. 当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数. ∴x =1是f (x )的极小值点,故选C . 9. 答案:D解析:椭圆C 1中,|AF 1|+|AF 2|=4,|F 1F 2|=又因为四边形AF 1BF 2为矩形, 所以∠F 1AF 2=90°.所以|AF 1|2+|AF 2|2=|F 1F 2|2,所以|AF 1|=2|AF 2|=2所以在双曲线C 2中,2c =2a =|AF 2|-|AF 1|=e ==,故选D . 10. 答案:A非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分. 11.答案:-10解析:T r +1=553255C C (1)rr rr r r rx x ---⎛⋅=⋅-⋅ ⎝=515523655(1)C (1)C r rr rrrr xx----=-.令15-5r =0,得r =3,所以A =(-1)335C =25C -=-10.12.答案:24解析:由三视图可知该几何体为如图所示的三棱柱割掉了一个三棱锥.11111111A EC ABC A B C ABC E A B C V V V ---=-=12³3³4³5-13³12³3³4³3=30-6=24.13.答案:2解析:画出可行域如图所示.由可行域知,最优解可能在A (0,2)或C (4,4)处取得. 若在A (0,2)处取得不符合题意;若在C (4,4)处取得,则4k +4=12,解得k =2,此时符合题意. 14.答案:480 解析:如图六个位置.若C 放在第一个位置,则满足条件的排法共有55A 种情况;若C 放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A ,B ,再在余下的3个位置排D ,E ,F ,共24A ²33A 种排法;若C 放在第3个位置,则可在1,2两个位置排A ,B ,其余位置排D ,E ,F ,则共有22A ²33A 种排法或在4,5,6共3个位置中选2个位置排A ,B ,再在其余3个位置排D ,E ,F ,共有23A ²33A 种排法;若C 在第4个位置,则有22A 33A +23A 33A 种排法;若C 在第5个位置,则有24A 33A 种排法;若C 在第6个位置,则有55A 种排法.综上,共有2(55A +24A 33A +23A 33A +22A 33A )=480(种)排法.15.答案:±1解析:设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由24,1y x y k x ⎧=⎨=(+)⎩联立,得k 2x2+2(k 2-2)x +k 2=0,∴x 1+x 2=2222k k (-)-,∴212222212x x k k k+-=-=-+,1222y y k +=, 即Q 2221,k k ⎛⎫-+ ⎪⎝⎭.又|FQ |=2,F (1,0),∴22222114k k ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,解得k =±1.16.解析:如图以C 为原点建立平面直角坐标系,设A (0,b ),B (a,0), 则M ,02a ⎛⎫⎪⎝⎭,AB =(a ,-b ),AM =,2a b ⎛⎫- ⎪⎝⎭, cos ∠MAB =AB AMAB AM⋅22a b +.又sin ∠MAB =13,∴cos ∠MAB=∴22222222894a b aa b b ⎛⎫+ ⎪⎝⎭=⎛⎫(+)+ ⎪⎝⎭, 整理得a 4-4a 2b 2+4b 4=0,即a 2-2b 2=0,∴a 2=2b 2, sin∠CAB===. 17.答案:2解析:|b |2=(x e 1+y e 2)2=x 2+y 2+2xy e 1²e 2=x 2+y 2.∴||||x =b x =0时,||0||x =b ; 当x ≠0时,||2||x ==≤b .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.解:(1)由题意得5a 3²a 1=(2a 2+2)2,即d 2-3d -4=0, 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =212122n n -+. 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=212122n n -+110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=22121,11,22121110,12.22n n n n n n ⎧-+≤⎪⎪⎨⎪-+≥⎪⎩19.解:(1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=331664⨯=⨯, P (ξ=3)=2321663⨯⨯=⨯, P (ξ=4)=2312256618⨯⨯+⨯=⨯, P (ξ=5)=2211669⨯⨯=⨯, P (ξ=6)=1116636⨯=⨯, 所以ξ的分布列为(2)由题意知η所以E (η)=3a abc a b c a b c ++=++++++, D (η)=22255551233339a b c a b c a b c a b c ⎛⎫⎛⎫⎛⎫-⋅+-⋅+-⋅= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,化简得240,4110.a b c a b c --=⎧⎨+-=⎩解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1. 20.方法一:(1)证明:取BD 的中点O ,在线段CD 上取点F ,使得DF =3FC ,连结OP ,OF ,FQ ,因为AQ =3QC ,所以QF ∥AD ,且QF =14AD .因为O ,P 分别为BD ,BM 的中点, 所以OP 是△BDM 的中位线, 所以OP ∥DM ,且OP =12DM . 又点M 为AD 的中点,所以OP ∥AD ,且OP =14AD . 从而OP ∥FQ ,且OP =FQ ,所以四边形OPQF 为平行四边形,故PQ ∥OF . 又PQ ⊄平面BCD ,OF ⊂平面BCD , 所以PQ ∥平面BCD .(2)解:作CG ⊥BD 于点G ,作CH ⊥BM 于点H ,连结CH . 因为AD ⊥平面BCD ,CG ⊂平面BCD , 所以AD ⊥CG ,又CG ⊥BD ,AD ∩BD =D ,故CG ⊥平面ABD ,又BM ⊂平面ABD , 所以CG ⊥BM .又GH ⊥BM ,CG ∩GH =G ,故BM ⊥平面CGH , 所以GH ⊥BM ,CH ⊥BM .所以∠CHG 为二面角C -BM -D 的平面角,即∠CHG =60°. 设∠BDC =θ.在Rt △BCD 中,CD =BD cos θ=θ,CG =CD sin θ=θsin θ,BG =BC sin θ=2θ.在Rt △BDM 中,23BG DM HG BM θ⋅==.在Rt △CHG 中,tan ∠CHG =3cos sin CG HG θθ==所以tan θ从而θ=60°.即∠BDC =60°.方法二:(1)证明:如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知A (02),B (0,0),D (00). 设点C 的坐标为(0,y 0,0).因为3AQ QC =,所以Q 00331,442x y ⎛⎫⎪ ⎪⎝⎭. 因为M 为AD 的中点,故M (01). 又P 为BM 的中点,故P 10,0,2⎛⎫ ⎪⎝⎭, 所以PQ=0033,,0444x y ⎛⎫+ ⎪ ⎪⎝⎭. 又平面BCD 的一个法向量为u =(0,0,1),故PQ ²u =0.又PQ ⊄平面BCD ,所以PQ ∥平面BCD .(2)解:设m =(x ,y ,z )为平面BMC 的一个法向量. 由CM =(-x 00y ,1),BM =(0,1),知000,0.x x y y z z ⎧-+)+=⎪⎨+=⎪⎩ 取y =-1,得m=001,y x ⎛+- ⎝. 又平面BDM 的一个法向量为n =(1,0,0),于是|cos 〈m ,n 〉|=||1||||2⋅==m n m n,即200y x ⎛+= ⎝⎭① 又BC ⊥CD ,所以CB ²CD =0,故(-x 0,0y ,0)²(-x 00y ,0)=0, 即x 02+y 02=2.②联立①,②,解得000,x y =⎧⎪⎨=⎪⎩(舍去)或00x y ⎧=⎪⎪⎨⎪=⎪⎩所以tan ∠BDC=.又∠BDC 是锐角,所以∠BDC =60°. 21.解:(1)由题意得1,2.b a =⎧⎨=⎩所以椭圆C 的方程为24x +y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =,所以||AB ==. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0. 由220,44,x ky k x y ++=⎧⎨+=⎩消去y ,整理得(4+k 2)x 2+8kx =0, 故0284kx k =-+.所以|PD |=24k +设△ABD 的面积为S ,则S =12|AB |²|PD |=24k+, 所以S=32=,当且仅当k =时取等号.所以所求直线l1的方程为y=x-1.22.解:(1)由题意f′(x)=3x2-6x+3a,故f′(1)=3a-3.又f(1)=1,所以所求的切线方程为y=(3a-3)x-3a+4. (2)由于f′(x)=3(x-1)2+3(a-1),0≤x≤2,故①当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3-3a.②当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a-1.③当0<a<1时,设x1=1x2=1则0<x1<x2<2,f′(x)=3(x-x1)(x-x2).由于故f(x1)+f(x2)=2>0,f(x1)-f(x2)=4(1-a0,从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<23时,f(0)>|f(2)|.又f(x1)-f(0)=2(1-a(2-3a)2>0,故|f(x)|max=f(x1)=1+2(1-a当23≤a<1时,|f(2)|=f(2),且f(2)≥f(0).又f(x1)-|f(2)|=2(1-a(3a-2)2,所以当23≤a<34时,f(x1)>|f(2)|.故f(x)max=f(x1)=1+2(1-a当34≤a<1时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a-1. 综上所述,|f(x)|max=33,0,3 121,4331,.4a aa aa a⎧⎪-≤⎪⎪+(-<<⎨⎪⎪-≥⎪⎩。

2013届高三模拟试卷(01)数学(理)参考答案

2013届高三模拟试卷(01)数学(理)参考答案

2013届高三模拟试卷(01) 数学(理)试卷参考答案11、34π12、 13、[1,3] 14、①④ 15、A :21-≤m ;B :2或8- 三、解答题16.解:(Ⅰ)由题意知:243ππω=,解得:32ω=, ………………………2分ACB AC B cos cos -cos -2sin sin sin =+Θ A C A B A A C A B sin cos -sin cos -sin 2cos sin cos sin =+∴ A A C A C A B A B sin 2sin cos cos sin sin cos cos sin =+++∴A C AB A sin 2)(sin )(sin =+++∴………………………………………4分a cb A B C 2sin 2sin sin =+⇒∴=+∴……………………………………6分 (Ⅱ)因为2bc a b c +==,,所以a b c ==,所以ABC △为等边三角形21sin 2OACB OAB ABC S S S OA OB AB θ∆∆=+=⋅ …………8分435cos 3-sin +=θθ2sin (-)3πθ=,……………10分 (0)θπ∈Q ,,2--333πππθ∴∈(,),当且仅当-32ππθ=,即56πθ=时取最大值,OACB S 的最大值为2+分17.解:(1)设四层下到三层有n 个出口,恰好被三楼的警员抓获,说明五层及四层的警员均没有与他相遇。

9141)11)(311(=⨯--∴n ,解得3=n ………………………3分(2)ξ可能取值为0,1,2,3,4,5 9231)311()1(,31)0(=⨯-====ξξp p 9141)311)(311()2(=⨯--==ξp12141)411)(311)(311()3(=⨯---==ξp24161)411)(411)(311)(311()4(=⨯----==ξp 2452411219192311)5(=-----==ξp ………………………8分 所以,分布列为………………………………………………………………………………10分72137245524141213912921310=⨯+⨯+⨯+⨯+⨯+⨯=ξE ………………………12分18.解:(1)解法1:因为平面⊥ABE 平面ABCD ,且BC AB ⊥所以BC ⊥平面ABE ,则CEB ∠即为直线EC 与平面ABE 所成的角………2分 设BC=a ,则AB=2a则直角三角形CBE即直线EC 与平面ABE 所成角的正弦值为………………………6分解法2:因为平面⊥ABE 平面ABCD ,且 AB EO ⊥, 所以⊥EO 平面ABCD ,所以OD EO ⊥.由OE OD OB ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. 因为三角形EAB 为等腰直角三角形,所以OE OD OB OA ===,设1=OB ,则(0,0,0),(1,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1)O A B C D E -.所以 )1,1,1(-=EC ,平面ABE 的一个法向量为(0,1,0)OD =u u u r.…………3分 设直线EC 与平面ABE 所成的角为θ,所以即直线EC 与平面ABE 所成角的正弦值为…………………………6分 (2)存在点F ,且时,有EC // 平面FBD . 证明如下:由设平面FBD 的法向量为v ),,(c b a =,则有0,0.BD FB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rv v 所以 取1=a ,得)2,1,1(=v .………………………………9分 因为 ⋅EC v 0)2,1,1()1,1,1(=⋅-=,且⊄EC 平面FBD ,所以 EC // 平面FBD . 即点F 满足时,有EC // 平面FBD .……………………………………12分 19.解:2)1(3n n d -+=Θ,∴1232n n a d d d d =+++⋅⋅⋅+3232n n ⨯== …………………3分 又由题知:令1m = ,则22212b b ==,33312b b ==L 12n nn b b == ……………5分若2n n b =,则2m nm n b =,2n mn m b =,所以m nn m b b =恒成立若2n n b ≠,当1m =,m nn m b b =不成立,所以2n n b = …………………………………6分(Ⅱ)由题知将数列{}n b 中的第3项、第6项、第9项……删去后构成的新数列{}n c 中的奇数列与偶数列仍成等比数列,首项分别是12b =,24b =公比均是,8 …………9分201313520132462012()()T c c c c c c c c =+++⋅⋅⋅+++++⋅⋅⋅+1007100610062(18)4(18)208618187⨯-⨯-⨯-=+=--………………………………………12分20.解:(Ⅰ) 设F2(c ,0),则1212c c -+=13,所以c =1.因为离心率e2,所以a.所以椭圆C 的方程为2212x y +=. …………………………………………4分(Ⅱ) 当直线AB 垂直于x 轴时,直线AB 方程为x =-12,……………………6分 此时P(2-,0)、Q(2,0) ,221F P F Q ⋅=-u u u u r u u u u r.不合;当直线AB 不垂直于x 轴时,设存在点M(-12,m ) (m ≠0),直线AB 的斜率为k , ),(11y x A , ),(22y x B .由 221122221,21,2x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 得12112212()2()0y y x y x y x x -+++⋅=-,则 -1+4mk =0, 故k =14m.此时,直线PQ 斜率为m k 41-=,PQ 的直线方程为)21(4+-=-x m m y .即 m mx y --=4.联立⎪⎩⎪⎨⎧=+--=12422y x mmx y 消去y ,整理得 2222(321)16220m x m x m +++-=. 所以212216321m x x m +=-+,212222321m x x m -=+.………………………………8分由题意=⋅F F 220,于是=⋅Q F P F 22(x1-1)(x2-1)+y1y2)4)(4(1)(212121m mx m mx x x x x +++++-=22122121))(14()161(m x x m x x m +++-++=2222222(116)(22)(41)(16)1321321m m m m m m m +---=+++++22191321m m -=+=0.1919±=∴m 因为M 在椭圆内,872<∴m 1919±=∴m 符合条件;……………………12分 综上,存在两点M 符合条件,坐标为)1919,21(±-M .……………………13分 21.解:(Ⅰ)∵()ln()f x a x b =+,∴()af x x b'=+, 则()f x 在点(0,ln )A a b 处切线的斜率(0)ak f b'==,切点(0,ln )A a b , 则()f x 在点(0,ln )A a b 处切线方程为ln ay x a b b=+,……………………2分 又()e 1x g x a =-,∴()e x g x a '=,则()g x 在点(0,1)B a -处切线的斜率(0)k g a '==,切点(0,1)B a -,则()g x 在点(0,1)B a -处切线方程为1y ax a =+-,…………………………4分 由,ln 1,a a b a b a ⎧=⎪⎨⎪=-⎩解得1a =,1b =.…………………………………………6分(Ⅱ)由()1x m g x ->+得ex x m-e x m x <在[0,)+∞上有解,令()e x h x x =-,只需max ()m h x <.……………………………………8分 ①当0x =时,()e 0x h x x =-=,所以0m <;………………………………10分 ②当0x >时,∵()1e )1x x x h x '=-=-+,∵0x >,e 1x >,∴x >故()10x h x '=-<,即函数()e x h x x =在区间[0,)+∞上单调递减,所以max ()(0)0h x h ==,此时0m <.…………………………………………13分 综合①②得实数m 的取值范围是(,0)-∞.……………………………………14分。

2013年浙江省高考模拟冲刺(提优)测试一数学(理)试题(含解析)

2013年浙江省高考模拟冲刺(提优)测试一数学(理)试题(含解析)

浙江省2013年高考模拟冲刺(提优)测试一数学(理)试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)22.(5分)如图,阴影部分(含边界)所表示的平面区域对应的约束条件是()故区域对应的不等式组为.3.(5分)如图是某几何体的三视图,则该几何体的体积为()考点:由三视图求面积、体积.专题:计算题.分析:利用三视图复原的几何体的形状,通过三视图的数据求解几何体的体积即可.解答:解:由题意三视图复原的几何体是放倒的四棱柱,底面是直角梯形,上底边长为1,下底边长为2,高为2的梯形,棱柱的高为2,并且是直棱柱,所以棱柱的体积为:=6.故选B.点评:本题考查三视图与几何体的直观图的关系,判断三视图复原的几何体的形状是解题的关键.4.(5分)已知a,b为实数,且ab≠0,则下列命题错误的是()A.若a>0,b>0,则B.若,则a≥0,b≥0C.若a≠b,则D.若,则a≠b考点:命题的真假判断与应用.专题:计算题;不等式的解法及应用.分析:由基本不等式可得A正确;选项B,有意义可得ab不可能异号,结合可得ab不会同为负值;选项C,可举反例说明错误;选项D平方可得(a﹣b)2>0,显然a≠b解答:解:选项A,由基本不等式可得:若a>0,b>0,则,故A正确;选项B,由有意义可得ab不可能异号,结合可得ab不会同为负值,故可得a≥0,b≥0,故正确;选项C,需满足a,b为正数才成立,比如举a=﹣1,b=2,显然满足a≠b,但后面的式子无意义,故错误;选项D,由平方可得(a﹣b)2>0,显然可得a≠b,故正确.故选C点评:本题考查命题真假的判断与应用,涉及基本不等式的知识,属基础题.5.(5分)函数f(x)=sin(ωx+ϕ)(x∈R)的部分图象如图所示,如果,且f(x1)=f(x2),则f(x1+x2)=()A.B.C.D.1考点:由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的对称性.专题:计算题;三角函数的图像与性质.分析:通过函数的图象求出函数的周期,利用函数的图象经过的特殊点求出函数的初相,得到函数的解析式,利用函数的图象与函数的对称性求出f(x1+x2)即可.解答:解:由图知,T=2×=π,∴ω=2,因为函数的图象经过(﹣),0=sin(﹣+ϕ)∵,所以ϕ=,∴,,所以.故选C.点评:本题考查三角函数的解析式的求法,函数的图象的应用,函数的对称性,考查计算能力.6.(5分)如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.M N与CC1垂直B.M N与AC垂直C.M N与BD平行D.M N与A1B1平行考点:棱柱的结构特征.专题:证明题.分析:先利用三角形中位线定理证明MN∥BD,再利用线面垂直的判定定理定义证明MN与CC1垂直,由异面直线所成的角的定义证明MN与AC垂直,故排除A、B、C选D解答:解:如图:连接C1D,BD,在三角形C1DB中,MN∥BD,故C正确;∵CC1⊥平面ABCD,∴CC1⊥BD,∴MN与CC1垂直,故A正确;∵AC⊥BD,MN∥BD,∴MN与AC垂直,B正确;∵A1B1与BD异面,MN∥BD,∴MN与A1B1不可能平行,D错误故选D点评:本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键7.(5分)(2013•浙江模拟)已知等比数列{a n}的公比为q,则“0<q<1”是“{a n}为递减数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:等差数列与等比数列.分析:可举﹣1,,…,说明不充分;举等比数列﹣1,﹣2,﹣4,﹣8,…说明不必要,进而可得答案.解答:解:可举a1=﹣1,q=,可得数列的前几项依次为﹣1,,…,显然不是递减数列,故由“0<q<1”不能推出“{a n}为递减数列”;可举等比数列﹣1,﹣2,﹣4,﹣8,…显然为递减数列,但其公比q=2,不满足0<q<1,故由“{a n}为递减数列”也不能推出“0<q<1”.8.(5分)偶函数f(x)在[0,+∞)上为增函数,若不等式f(ax﹣1)<f(2+x2)恒成立,则实数a的取B.即不等式﹣2﹣x2<ax﹣1<2+x2恒成立,得的解集为R229.(5分)已知F1,F2分别是双曲线的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率B平行的直线为与另一条渐近线联立解得M.|OM|=.12,解得10.(5分)已知集合M=N={0,1,2,3},定义函数f:M→N,且点A(0,f(0)),B(i,f(i)),C(i+1,f(i+1)),(其中i=1,2).若△ABC的内切圆圆心为I,且R),则满足条件的函+=λ解:=λ此时腰长为、、此时腰长为的二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知f(x)为奇函数,当x>0时,f(x)=log2x,则f(﹣4)=﹣2.12.(4分)(2009•嘉定区二模)设i是虚数单位,则=1+i.解:∵===1+i13.(4分)某程序框图如图所示,则该程序运行后输出的a的值为﹣1.点评:本题考查循环结构的程序框图,解决本题的关键是弄清开始和结束循环的条件.属于基础题.14.(4分)各项都是正数的等比数列{a n}中,首项a1=2,前3项和为14,则a4+a5+a6值为112.考点:等比数列的通项公式;等比数列的前n项和.专题:等差数列与等比数列.分析:设出等比数列的公比,且各项都是正数,由首项a1=2,前3项和为14列式求出公比,则a4+a5+a6值可求.解答:解:设等比数列{a n}的公比为q,由a1=2,前3项和为14,得:,所以q2+q﹣6=0,解得:q=﹣3或q=2.因为等比数列的各项都是正数,所以q=2.则a4+a5+a6=.故答案为112.点评:本题考查了等比数列的通项公式,考查了等比数列的前n项和,解答时注意公比是否有可能等于1,此题是基础题.15.(4分)已知(x2+)n的展开式的各系数和为32,则展开式中x的系数为10.考点:二项式系数的性质.专题:计算题;概率与统计.分析:先令x=1,求得n的值,进而可得展开式的通项,再令x的指数为1,即可求得结论.解答:解:令x=1,得展开式的各项系数和为2n=32,∴n=5∴展开式的通项为:T r+1=令10﹣3r=1,则r=3,∴展开式中x的系数为故答案为:10.点评:本题考查二项式系数的性质,考查展开式的通项,考查计算能力,属于基础题.16.(4分)如图,Rt△ABC中,∠C=90°,其内切圆切AC边于D点,O为圆心.若,则=﹣3.考点:平面向量数量积的运算;向量在几何中的应用.专题:平面向量及应用.分析:以CA所在的直线为x轴,以CB所在的直线为y轴,建立平面直角坐标系,利用条件以及圆的切线性质求得A、B、C、O的坐标,再利用两个向量的数量积公式求得的值.解答:解:以CA所在的直线为x轴,以CB所在的直线为y轴,建立平面直角坐标系,则C(0,0)、O (1,1)、A(3,0).设直角三角形内切圆与AB边交与点E,与CB边交于点F,则由圆的切线性质性质可得BE=BF,设BE=BF=m,则有勾股定理可得CB2+CA2=AB2,即(x+1)2+9=(x+2)2,解得x=3,故B(0,4).∴=(1,﹣3)(﹣3,0)=﹣3﹣0=﹣3,故答案为﹣3.点评:本题主要考查两个向量的数量积公式的应用,两个向量坐标形式的运算,圆的切线性质,属于中档17.(4分)已知抛物线C:y2=2px(p>0)的焦点为F,准线与x轴交于M点,过M点斜率为k的直线l 与抛物线C交于A、B两点,若,则k的值±.设A(x0,y0),由抛物线定义得|AF|=,根据斜率公式由两点间距离公式把表示(﹣由抛物线定义得,|AF|=,因为,所以,两边平方并化简得,即=,,故答案为:.三、解答题:本大题共5小题,共72分.解答应给出文字说明,证明过程或演算步骤.18.(14分)(2012•杭州一模)在△ABC中,a,b,c分别为内角A,B,C的对边,且2cos(B﹣C)=4sinB•sinC ﹣1.(1)求A;(2)若a=3,sin=,求b..可求sin cos sinB=2sin cos可求,然后由正弦定理2(cosBcosC+sinBsinC)﹣4sinBsinC=﹣1,即2(cosBcosC﹣sinBsinC)=﹣1.从而2cos(B+C)=﹣1,得cos(B+C)=﹣.…4分B+C=A=(2)由题意可得,0<B<πsin cos=sinB=2sin cos=由正弦定理可得,∴19.(14分)一个口袋中有红球3个,白球4个.(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).其概率为=p==×=.20.(14分)如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分别为线段CD、AB上的点,且EF∥AD.将梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD与平面ADEF 所成角正切值为.(Ⅰ)求证:BC⊥平面BDE;(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.BE=,易得=,可解得DBE=BE=,由=,可解得21.(15分)已知圆O:,直线l:y=kx+m与椭圆C:相交于P、Q两点,O为原点.(Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于A、B两点,且∠AOB=60°,求直线l的方程;(Ⅱ)如图,若△POQ重心恰好在圆上,求m的取值范围.即可求得,由直线l的距离d=,又d=,∴=,解得k=±.∴直线l的方程为y=±(x+1).(Ⅱ)设P(x1,y1),Q(x2,y2),由得:(1+2k2)x2+4kmx+2m2﹣2=0.由△>0得:1+2k2>m2…(⊕),且x1+x2=﹣.∵△POQ重心恰好在圆x2+y2=上,∴+=4,即+=4,即(1+k2)+4km(x1+x2)+4m2=4.∴﹣+4m2=4,化简得:m2=,代入(⊕)式得:k≠0,又m2==1+=1+.∵k≠0,∴m2>1,∴m>1或m<﹣1.点评:本题考查直线与圆锥曲线的位置关系,考查点到直线间的距离公式,突出考查韦达定理的应用,考查转化思想与逻辑思维与运算能力,属于难题.22.(15分)已知.(Ⅰ)判断曲线y=f(x)在x=0的切线能否与曲线y=e x相切?并说明理由;(Ⅱ)若x∈[a,2a]求f(x)的最大值;(Ⅲ)若f(x1)=f(x2)=0(x1<x2),求证:.考点:利用导数研究曲线上某点切线方程;函数单调性的性质;利用导数求闭区间上函数的最值.专题:压轴题;导数的综合应用.分析:(Ⅰ)求出曲线y=f(x)在x=0的切线方程,假设切线与曲线y=e x相切,设出切点,由斜率相等及切点在切线上联立推出矛盾;(Ⅱ)求出函数f(x)的导函数,由导函数的零点对定义域分段,利用函数的单调性求出函数在[a,2a]上的最大值;(Ⅲ)由(Ⅱ)知函数f(x)先增后减,有最大值,若f(x1)=f(x2)=0(x1<x2),则最大值大于0,又f(a)>0且a<alna,所以得到x2﹣x1>alna﹣a,把x1,x2代入原函数得到,,作比后利用放缩可证得要求证的不等式.解答:(Ⅰ)解:由,得:,则,f(0)的方程为①由a>0,得:0<,∴x0<0,得,即max时,得x2﹣x1>alna﹣a,又,,.。

浙江省丽水市2013届高三高考第一次模拟测试数学理试题

浙江省丽水市2013届高三高考第一次模拟测试数学理试题

浙江省丽水市2013届高三高考第一次模拟测试数学(理科)试题卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷上填写学校、班级、考号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:果事件A ,B 互斥,那么)()()(B P A P B A P +=+. 球的表面积公式24R S π=,其中R 表示球的半径. 球的体积公式334R V π=,其中R 表示球的半径.柱体的体积公式Sh V =,其中S 表示柱体的底面积,h 表示柱体的高.第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)已知集合}1{>=x x A , }21{<<-=x x B ,则B A =(A) }21{<<-x x } (B) }1{->x x (C) }11{<<-x x (D) }21{<<x x (2)已知复数z 满足2z i i ⋅=-,i 为虚数单位,则=z(A) 12i -- (B) 12i -+ (C) 12i - (D) 12i +(3)某程序框图如右图所示,该程序运行后输出S 的值是(A) 10 (B) 12 (C) 100(D) 102(4)已知实数y x ,满足不等式组2020350x y x y x y -≥⎧⎪+≥⎨⎪+-≤⎩,,, 则y x +2的最大值是(A) 0 (B) 3 (C) 4 (D) 5 (5)“22ab>”是 “22log log a b >”的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件(D) 既不充分也不必要条件(6)若7)1(axx -展开式中含x 的项的系数为280,则a = (A) 2- (B) 2 (C )21- (D )21(7)设n m ,为两条不同的直线,α是一个平面,则下列结论成立的是(A) n m //且α//m ,则α//n (B ) n m ⊥且α⊥m ,则α//n (C )n m ⊥且α//m ,则α⊥n (D ) n m //且α⊥m ,则α⊥n(8)设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这5个球随机放入这5个盒子内,要求每个盒子内放一个球,记“恰有两个球的编号与盒子的编号相同”为事件A ,则事件A 发生的概率为 (A)61(B )41(C )31(D )21 (9)离心率为1e 的椭圆与离心率为2e 的双曲线有相同的焦点,且椭圆长轴的端点、短轴的端点、焦点到双曲线的一条渐近线的距离依次构成等比数列,则=--112221e e(A) 1e -(B )2e - (C )11e -(D )21e -(10)定义在),0(+∞上的函数)(x f 满足:)(2)2(x f x f =,且当]2,1(∈x 时,x x f -=2)(,若21,x x 是方程=)(x f )10(≤<a a 的两个实数根,则21x x -不.可能..是 (A )24(B )72 (C )96 (D )120第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) (11)已知ααsin 562sin =,)2,0(πα∈,则=αta n . (12)某几何体的三视图如图所示,则该几何体的体积为 .(13)若函数220()0x x x f x ax x x ⎧-≥⎪=⎨-<⎪⎩,,,,是奇函数,则=a .(14)已知数列{}n a 的首项11a =,其前n 项和n n a n S ⋅=2*)(N n ∈,则=9a .(15)有甲、乙、丙三位同学,投篮命中的概率如下表:现请三位同学各投篮一次,设ξ表示命中的次数,若E ξ=6,则a = . (16)若正数a b ,满足12=+b a ,则ab b a ++224的最大值为 . (17)如图,已知圆M :4)3()3(22=-+-y x ,四边形ABCD为圆M 的内接正方形,E 为边AB 的中点,当正方形ABCD 绕圆心M 转动,同时点F 在边AD 上运动时,⋅的最大值是 .三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.)(18)(本题满分14分)在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 满足:=+C b B c cos cos A a cos 4. (Ⅰ)求A cos 的值;(Ⅱ)若c b +=⋅,求ABC∆的面积S 的最小值.(19)(本题满分14分)在等比数列{}n a 中,已知13a =,公比1q ≠,等差数列{}n b 满足1142133b a b a b a ===,,.(Ⅰ)求数列{}n a 与{}n b 的通项公式;(Ⅱ)记n n n n a b c +-=)1(,求数列{}n c 的前n 项和n S .(20)(本题满分15分)已知四边形ABEF 是矩形,ABC ∆是等腰三角形,平面ABEF ⊥平面ABC ,°120BAC ∠=,NA CN AF AB 3,421===,M P Q ,,分别是BC EF AF ,,的中点. (Ⅰ)求证:直线//PQ 平面BMN ;(Ⅱ)在线段AB 上是否存在点R ,使得平面⊥PQR 平面BMN ?若 存在,求出AR 的长;若不存在,请说明理由.(21)(本题满分15分)已知中心在坐标原点,焦点在x 轴上的椭圆过点P (2,3),且它的离心率21=e . (Ⅰ)求椭圆的标准方程;(Ⅱ)与圆1)1(22=++y x 相切的直线t kx y l +=:交椭圆于N M ,两点,若椭圆上一点C 满足OC ON OM λ=+,求实数λ的取值范围.(22)(本题满分14分)已知函数)1(21)(22+-+=x ae x x f . (Ⅰ)若,1=a 记)()(x f x g '=,求证:当21>x 时,21)(0<≤x g ;(Ⅱ)若1x ,2x 是函数)(x f 的两个极值点,且211x x <<,若34)(<i x f (2,1=i ),求实数a 的取值范围.(注:e 是自然对数的底数.)丽水市2012年高考第一次模拟测试数学(理科)参考答案一、选择题(每小题5分,共50分)1-5: DABCB 6-10: CDAAB 二、填空题(每小题4分,共28分)(11)34 (12) π3108+ (13)1- (14)451 (15)31 (16) 1617 (17) 8三、解答题(本大题共5小题,共72分.)(18)解:(Ⅰ) 由题意得:A A C B B C cos sin 4cos sin cos sin =+ A A C B cos sin 4)sin(=+A A A cos sin 4sin = 0s i n ≠A 41c o s =∴A ┈┈6分 (Ⅱ) 因为 bc A bc AC AB 41cos ==⋅ 所以bc c b bc 241≥+= 64≥bc ,又 415sin =A11sin 6422S bc A =≥⨯= 当且仅当c b =时,158min =S ┈┈┈┈┈┈┈┈┈┈┈┈ 14分 (19)解:(Ⅰ) 设等比数列{}n a 的公比为q ,等差数列{}n b 的公差为d . 由已知得:2323,3q a q a ==,d b d b b 123,23,31341+=+==3411123333322=⇒⎩⎨⎧+=+=⇒⎩⎨⎧+=+=q dq d q d q dq 或 1=q (舍去) 所以, 此时 2=d所以,n n a 3=, 12+=n b n ┈┈┈┈┈┈┈┈┈┈┈┈ 6分 (Ⅱ) 由题意得:n n n n n n n a b c 3)12()1()1(++-=+-= n n c c c S +++= 21n n n n n 333)12()1()12()1()97()53(21+++++-+--+++-++-=-当n 为偶数时,2323232311-+=-+=++n n S n n n 当n 为奇数时,27232323)12()1(11--=-++--=++n n n S n n n 所以,⎪⎪⎩⎪⎪⎨⎧---+=++)(2723)(232311为奇数时为偶数时n n n n S n n n ┈┈┈┈┈┈┈┈┈┈┈┈ 14分(20)解:(Ⅰ) 如图建立空间直角坐标系则)8,0,4(,)8,0,0(,)0,32,2(,)0,0,4(,)0,0,0(E F C B A -,)0,23,21(,)4,0,0(,)0,3,1(,)8,0,2(-N M Q P设平面BMN 的法向量),,(z y x n =则⎪⎩⎪⎨⎧=+-=+-⇒⎪⎩⎪⎨⎧=⋅=⋅0440232900z x y x n BN , 令1=x , 则⎩⎨⎧==133z y 所以 )1,33,1(=n又)8,3,1(--=,而 0891=-+-=⋅n所以 n ⊥ 又 ⊄PQ 平面BMN所以//PQ 平面BMN ┈┈┈┈┈┈┈┈┈┈┈┈ 7分y(Ⅱ) 假设在线段AB 上存在点R ,使平面⊥PQR 平面BMN设(,0,0)(04)R λλ≤≤,平面PQR 的法向量为),,(111z y x m =则⎩⎨⎧=--=-+-⇒⎪⎩⎪⎨⎧=⋅=⋅08)2(0830011111z x z y x m PQ m λ,令 31=x 则⎪⎩⎪⎨⎧-=-=8)2(3111λλz y 所以 )8)1(3,1,3(--=λλm 若平面⊥PQR 平面BMN ,则0=⋅n m即08)2(3)1(333=-+-+λλ 得:2518=λ 所以,存在点R ,使平面⊥PQR 平面BMN ,且2518=AR ┈┈┈┈┈┈ 15分 (21)解:(Ⅰ) 设椭圆的标准方程为)0(12222>>=+b a by a x由已知得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===+2222221194b ac a c b a 解得⎪⎩⎪⎨⎧===2324c b a 所以椭圆的标准方程为:1121622=+y x ┈┈┈┈┈┈┈┈┈┈┈┈ 5分(Ⅱ) 因为直线l :t kx y +=与圆1)1(22=++y x 相切所以,)0(121122≠-=⇒=+-t t t k kkt把t kx y +=代入1121622=+y x 并整理得: 0)484(8)43(222=-+++t ktx x k 设),(,),(2211y x N y x M ,则有 221438k ktx x +-=+22121214362)(ktt x x k t kx t kx y y +=++=+++=+ 因为,),(2121y y x x OC ++=λ所以,⎪⎪⎭⎫ ⎝⎛++-λλ)43(6,)43(822k t k kt C 又因为点C 在椭圆上,所以,1)43(3)43(4222222222=+++λλk t k t k 1)1()1(143222222++=+=⇒tt k t λ 因为 02>t 所以 11)1()1(222>++tt 所以 102<<λ所以 λ的取值范围为 )1,0()0,1( - ┈┈┈┈┈┈┈┈┈┈┈┈ 15分(22)解(Ⅰ) 因为 1=a ,所以 )1(21)(22+-+=x e x x f 222222)21(21)2(21)1(21)()(+-+-+--+=-⋅++='=x x x e x e x ex f x g由0)1(2)(22=-='+-x e x x g 得 1=x 当121<<x 时,0)(<'x g , 当1>x 时,0)(>'x g 所以,0)1()(=≥g x g又因为021<-x ,所以,21)21(21)(22<-+=+-x e x x g 所以,当21>x 时,21)(0<≤x g ┈┈┈┈┈┈┈┈┈┈┈┈ 6分(Ⅱ) 由2211()()022i x i i f x a x e -+'=+-= 得:)12(22-=-i x x a e i因为方程)12(22-=-x a e x 有两解,所以0>a 由3421]121)12[(41)1211(21)1(21)(22<+-+-=-+=+=+-i i i i x i i x x x x e a x x f i 解得:21<i x 或 232<<i x (ⅰ) 当21,2121<<<x x 时, ⎪⎪⎩⎪⎪⎨⎧><<>-a e a e a 310021⇒ 无解 (ⅱ) 当21,13221<<<<x x 时, ⎪⎪⎪⎩⎪⎪⎪⎨⎧><>>-ae aae a 31310232解得 3231-<<e a所以,实数a 的取值范围为 )3,1(32-e┈┈┈┈┈┈┈┈┈┈┈┈ 14分。

【解析版】浙江省华易新高考研究联盟2013届高三模拟考试数学理试题

【解析版】浙江省华易新高考研究联盟2013届高三模拟考试数学理试题

浙江省华易新高考研究联盟2013年高考数学模拟试卷(理科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)设复数z1=1﹣3i,z2=3+2i,则在复平面内对应的点在()求出=﹣﹣由此能得到==﹣i在复平面内对应的点(﹣,﹣)在第三象限.3.(5分)从2012名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2012人中剔除12人,剩下的2000人再按系统抽样的方法进行.则每人入选的概率都相等,且为都相等,且为=4.(5分)(2009•宁波模拟)设b、c表示两条直线,α,β表示两个平面,则下列命题是真5.(5分)下列四个函数:①y=|tanx|,②y=lg|x|,③,④y=2x,其中③(6.(5分)sin2α=,,则cos(﹣α)的值为()B,且=1+,,((+7.(5分)实数x、y满足不等式组则P=x2+(y﹣1)2的取值范围是()表示的可行域为如图:的坐标由的距离的平方为:=8.(5分)有七名同学站成一排照毕业纪念照,其中甲不能和乙站在一起,并且乙、丙两位共有222d=二、填空题:本大题共7小题,每小题4分,共28分.11.(4分))一个五面体的三视图如下,正视图与侧视图是等腰直角三角形,俯视图为直角梯形,部分边长如图所示,则此五面体的体积为1V=12.(4分)展开式中x4的系数为20(用数字作答).与常数解:展开式看作个+=2013.(4分)(2011•广州模拟)已知程序框图如图,则输出的i=9.14.(4分)已知函数有三个不同零点,则实数a的取值范围为(0,1].15.(4分)如图,第n(n∈N*)个图形是由正n+2边形“扩展”而来,则第n个图形中共有(n+2)(n+3)个顶点(相临两条边的交点即为顶点).16.(4分)在△ABC中,∠BAC=120°,AB=4,AC=2,D是BC上的一点,DC=2BD,则=.,将两向量,,用基向量表示出来,再进行数量积运算,求,为基向量,由图及题意得,()+×××)..17.(4分)若实数x,y满足x2+y2=4,则的最小值是.则要求的式子化为=t====t=sin),=,1+,故,三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.18.(14分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足ccosB+bcosC﹣3acosA=0.(Ⅰ)求cosA的值;(Ⅱ)若△ABC的面积是,求的值.(Ⅰ)由正弦定理==cosA=cosA==bcsinA=bc=•=bccosA=×=19.(14分)(2011•广州模拟)已知数列{a n}中,a1=1,a2=3,且a n+1=a n+2a n﹣1(n≥2).(1)设b n=a n+1+λa n,是否存在实数λ,使数列{b n}为等比数列.若存在,求出λ的值,若不存在,请说明理由;(2)求数列{a n}的前n项和S n.通过设()知,构造{)可知,则有比较,令)知.项和注:若将上述和式合并,即得所以因为所以(所以….)可知,所以为偶数时,.为奇数时,.项和注:若将上述和式合并,即得20.(14分)已知长方形ABCD的AB=3,AD=4.AC∩BD=O.将长方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A﹣BCD,如图所示.过A作BD的垂线交BD于E.(1)问a为何值时,AE⊥CD;(2)当二面角A﹣BD﹣C的大小为90°时,求二面角A﹣BC﹣D的正切值.,AE=,BDC=,∴,即EF=,21.(15分)(2012•甘肃一模)设椭圆的右焦点为F1,直线与x轴交于点A,若(其中O为坐标原点).(1)求椭圆M的方程;(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y﹣2)2=1的任意一条直径(E、F为直径的两个端点),求的最大值.的坐标,利用=,从而求的最大值转化为求的最大值;可得=.根据点=,利用,由解得,再分别求得、,利用,可求,,,得.的方程为.…从而求的最大值转化为求的最大值.所以,即,所以.因为,所以当时,所以,所以所以=.上,所以上,所以,即所以=因为,所以当时,,解得.所以,即所以因为,所以当时,,解得所以,即所以.所以因为,所以当时,综上可知,22.(15分)已知函数f(x)的定义域为I,导数f n(x)满足0<f(x)<2且fn(x)≠1,常数c1为方程f(x)﹣x=0的实数根,常数c2为方程f(x)﹣2x=0的实数根.(1)若对任意[a,b]⊆I,存在x0∈(a,b),使等式f(b)﹣f(a)=(b﹣a)f n(x0)成立.求证:方程f(x)﹣x=0不存在异于c1的实数根;(2)求证:当x>c2时,总有f(x)<2x成立;(3)对任意x1、x2,若满足|x1﹣c1|<1,|x2﹣c1|<1,求证:|f(x1)﹣f(x2)|<4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档