材料力学-组合变形杆件的强度计算
杆件的应力与强度—组合变形(建筑力学)
教学目标
知识目标
1.理解组合变形的基本概念; 2.掌握斜弯曲梁的强度计算方法; 3.掌握单向偏心压缩(拉伸)杆件的强度计算方法。
技能目标
1.能够将组合变形问题分解为基本变形的组合; 2.能够对斜弯曲、偏心压缩(拉伸)等组合变形进行强度计算。
重点和难点
重点内容
难点内容
1.组合变形的基本概念;
压缩(拉伸)与弯曲
代入公式得: 解得:h≥280 mm Nhomakorabea此时截面中的最大压应力为:
课程研究内容
1.将组合变形问题分解为基本变形的组合;
2.简单组合变形强度计算方法。 2.应用叠加法解决工程中组合变形实际问题。
组合变形概念 • 组合变形:同时发生两种或两种以上的简单变形。
组合变形实例
组合变形实例
组合变形实例
组合变形实例
组合变形的分析方法
叠加法求解组合变形的计算步骤: (1)将构件的组合变形分解为基本变形; (2)分析、计算构件在每一种基本变形情况下产生的应力; (3)将同一点处的应力进行叠加,计算杆件危险点处的应力,然后进行强 度计算。
(2)内力分析。两个方向弯曲的最大弯矩值都是发生在固定端 截面处,分别为:
My=FL=2×2=4kN.m
斜弯曲
(3)应力分析。由变形情况可知,梁的最大拉应力发生在A点处,梁 的最大压应力发生在B点处,分别为:
故:梁的最大拉应力和最大压应力均为107.73MPa。
压缩(拉伸)与弯曲
l
φ Px 轴向力 : Px=Pcosφ P 横向力: Py=Psinφ
斜弯曲
斜弯曲
斜弯曲
斜弯曲
【例1】如图所示为一悬臂梁,采用25a号 工字钢,已知q=5kN/m, F=2kN,Wy=48.28cm3,Wz=401.9cm3,求梁 的最大拉应力和最大压应力。
建筑力学 第9章 组合变形杆件的应力分析与强度计算
§9-1 组合变形的概念
一、组合变形的概念
前面几章研究了构件的基本变形: 轴向拉(压)、扭转、平面弯曲。
由两种或两种以上基本变形组合的情况称为组合变形
组合变形
斜弯曲 拉(压)弯组合变形 偏心拉伸(压缩)变形 弯扭组合变形
§9-1 组合变形的概念
斜弯曲:
压弯组合变形:
F
Fy
z
Fz
x
y
§9-1 组合变形的概念
M z max Wz
z
Fx x
Fy
y
F
设图示简易吊车在当小车运行到梁端D时,吊车横梁处于最 不利位置。已知小车和重物的总重量F=20kN, 钢材的许用应力[]=160MPa,暂不考虑梁的自重。 按强度条件选择横梁工字钢的型号。
C
2m
A
A
FAx FAy
30 3.46m
FBC
30 3.46m
解:1、横梁AD受力分析
z
F2
b
(最大拉应力)
l y
解:
h
z
l
F1
(最大压应力)y
§9-3 拉伸(压缩)与弯曲的组合变形
横向力与轴向力共同作用的组合变形 一、荷载分解
Fx F cos
z
Fx x
Fy
y
F
Fy F sin
§9-3 拉伸(压缩)与弯曲的组合变形
二、内力计算 a
z
Fx F cos
Fx Fy F sin
解:1、荷载分解
q
qy q cos 800 0.894 714 N / m A
B
L
qz q sin 800 0.447 358 N / m
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第10章 组合受力与变形杆件的强度计算
解:危险截面在 A 处,其上之内力分量为: 弯矩: M y = FP1 a , M z = FP2 H 扭矩: M x = FP2 a 轴力: FNx = FP1 在截面上垂直与 M 方向的垂直线 ab 与圆环截 求得 M y 与 M z 的矢量和 M 过截面中心, 面边界交于 a、b 两点,这两点分别受最大拉应力和最大压应力。但由于轴向压力的作用,最 大压应力值大于最大拉应力值,故 b 点为危险点,其应力状态如图所示。 10-7 试求图 a 和 b 中所示之二杆横截面上最大正应力及其比值。 解: (a)为拉弯组合
7
y
y
A
O
0.795
B
14.526
+13.73MPa
z
(a)
O O
+14.43MPa
(b)
C
y
A
C
B B
y
A
O O
B
z
12.6mm
14.1mm
zC
−15.32MPa
16.55MPa
zC
z
(c)
(d)
习题 10-9 解图
∴
+ σ max
= 14.526 − 0.795 = 13.73 MPa
− σ max = −14.526 − 0.795 = −15.32 MPa
Ebh
由此得
2 FP 6e
e=
10-9
ε1 − ε 2 h × ε1 + ε 2 6
图中所示为承受纵向荷载的人骨受力简图。试:
1.假定骨骼为实心圆截面,确定横截面 B-B 上的应力分布; 2.假定骨骼中心部分(其直径为骨骼外直径的一半)由海绵状骨质所组成,忽略海绵状承受 应力的能力,确定横截面 B-B 上的应力分布;
杆件的强度计算
平均应力
循环特征
应力幅
杆件的强度计算
1.6 交变应力与疲劳失效
1.6.1 交变应力及其循环特征
2.交变应力分类 交变应力按其循环特征,可以分为对称循环和非对称循环两种类型。 交变应力的最大应力σmax与最小应力σmin大小相等,符号相反,即σmax= -σmin,其循环特征为r=-1,这种应力循环称为对称循环。 r≠-1的应力循环称为非对称循环。在非对称循环中,当σmin=0,r=0 时,这种应力循环称为脉动循环。静载荷可以看作交变应力的特殊情况, 其σmax=σmin=σm,σa=0,r=1。
工程力学
杆件的强度计算
1.1 拉压杆件的强度条件 1.2 连接件的强度条件 1.3 梁的正应力强度
返回
1.4 圆轴扭转的强度 1.5 圆轴弯扭组合变形的强度 1.6 交变应力与疲劳失效
杆件的强度计算
1.1 拉压杆件的强度条件
返回
由于拉、压杆横截面上的应力是均匀分布的,因此,对于等截面的拉、 压杆,其最大轴力所在的截面是危险截面,拉、压杆强度条件为
式中,FNmax为危险截面的轴力;A为危险截面的面积。
强度条件可解决以下三类强度计算问题: (1)校核强度。(2)设计截面尺寸。(3)确定许可载荷。
杆件的强度计算
1.2 连接件的强度条件
1.2.1 剪切的实用计算
如右图所示,构件的某一截面两侧受
到一对大小相等,方向相反,作用线相距
很近的横向外力F作用,此时构件的相邻两
杆件的强度计算
1.4 圆轴扭转的强度
返回
1.4.1 圆轴扭转时横截面上的切应力
如图(a)、(b)所示分别为实心圆轴和空心圆轴横截面上扭转切应力的分
布规律。
组合变形的强度计算
组合变形的强度计算 组合变形的概念拉伸与弯曲的组合一.组合变形的概念1.组合变形:在外力的作用下,构件若同时产生两种或两种以上基本变形的情况在小变形和线弹性的前提下,可以采用叠加原理研究组合变形问题所谓叠加原理是指若干个力作用下总的变形等于各个力单独作用下变形的总和(叠加)在复杂外载作用下,构件的变形会包含几种简单变形PRzxyPP2、组合变形的研究方法——叠加原理叠加原理应用的基本步骤:①外力分析:将载荷进行分解,得到与原载荷等效的几组载荷,使构件在每一组载荷的作用下,只产生一种基本变形.②内力分析:分析每种载荷的内力,确定危险截面.③应力分析:分别计算构件在每种基本变形情况下的危险将各基本变形情况下的应力叠加,确定最④强度计算:二.弯曲与拉伸(的组合杆件在外力作用下同时产生弯曲和拉伸(压缩)变形称为弯曲与拉伸(压缩)的组合偏心拉伸:弯曲与拉伸的组合变形链环受力立柱受力拉伸与弯曲组合的应力分析ϕϕsin p p cos p p y x ==A P x ='σy I M x l P M zy =''-=σ)(作用下:z T W M A N max max +=σzC W M A N max max -=σ危险截面处的弯矩抗弯截面模量y I M A N z +=''+'=σσσ根据叠加原理,可得x 横截面上的总应力为[]T z max max T W M A N σσ≤+=[]c zmax max C W M A N σσ≤-=强度条件为例:悬臂吊车,横梁由25 a 号工字钢制成,l =4m ,电葫芦重Q 1=4kN ,起重量Q2=20kN , α=30º, [σ]=100MPa,试校核强度。
取横梁AB为研究对象,受力如图b所示。
梁上载荷为P =Q1+Q2= 24kN,斜杆的拉力S 可分解为X B和Y B(1)外力计算横梁在横向力P和Y A、Y B作用下产生弯曲;同时在X A和X B作用下产生轴向压缩。
2016工程力学(高教版)教案:6.6杆件的强度计算
第六节 杆件的强度计算由内力图可直观地判断出等直杆内力最大值所发生的截面,称为危险截面,危险截面上应力值最大的点称为危险点。
为了保证构件有足够的强度,其危险点的有关应力需满足对应的强度条件。
一、正应力与切应力强度条件轴向拉(压)杆中的任一点均处于单向应力状态。
塑性及脆性材料的极限应力u σ分别为屈服极限s σ(或2.0σ)和强度极限b σ,则材料在单向应力状态下的破坏条件为u σσ= 材料的许用拉(压)应力[]nuσσ=,则单向应力状态下的正应力强度条件为[]σσ≤ (6-24)同理可得,材料在纯剪切应力状态下的切应力强度条件[]ττ≤ (6-25)二、正应力强度计算由式(6-1)和(6-25)得,拉(压)杆的正应力强度条件为[]σσ≤=AN maxmax (6-26) 由式(6-1)和(6-25)得,梁弯曲的正应力强度条件为[]σσ≤=zW M maxmax (6-27) 应用强度条件可进行强度校核、设计截面、确定许可载荷等三方面的强度计算。
例6-7 如图6-29(a)所示托架,AB 为圆钢杆2.3=d cm ,BC 为正方形木杆a=14cm 。
杆端均用铰链连接。
在结点B 作用一载荷P=60kN 。
已知钢的许用应力[]σ=140MPa 。
木材的许用拉、压应力分别为[]t σ=8MPa ,[]5.3=c σMpa ,试求:(1)校核托架能否正常工作。
(2)为保证托架安全工作,最大许可载荷为多大;(3)如果要求载荷P=60kN 不变,应如何修改钢杆和木杆的截面尺寸。
解 (1)校核托架强度 如图6-29(b)。
图6-29由 0=∑Y ,0sin 1=-P P α解得 100c s c 1==αP P kN 由 0=∑X ,0cos 21=+-P P α 解得 80cos 12==αP P kN杆AB 、BC 的轴力分别为10011==P N kN, 8022-=-=P N kN ,即杆BC 受压、轴力负号不参与运算。
材料力学 第九章组合变形杆件强度计算
cos sin y0 + z0 = 0 Iz Iy
—— 中性轴方程(过截面形心的直线) 中性轴方程(过截面形心的直线)
b 中性轴 α
cos sin y0 + z0 = 0 Iz Iy
z
d
设中性轴与水平对称轴 z 的夹角为 ,则: 的夹角为α,
y0 tan α = z0
I z sin I y cos
=9.57mm
§9-3 拉伸(压缩)与弯曲的组合 拉伸(压缩)
当杆受轴向力F和横向力 共同作用时 当杆受轴向力 和横向力q共同作用时,杆将产 和横向力 共同作用时, 生拉伸(压缩)和弯曲组合变形. 生拉伸(压缩)和弯曲组合变形. q F
A B
F
对于弯曲刚度EI较大的杆, 对于弯曲刚度 较大的杆,由横向力引起的弯 较大的杆 曲变形与截面尺寸相比很小,因此, 曲变形与截面尺寸相比很小,因此,由轴向力在弯 曲变形上引起的附加弯矩可以忽略不计. 曲变形上引起的附加弯矩可以忽略不计. 附加弯矩可以忽略不计 q F F A B w x FA q FS M=FAx-qx2/2-Fw F A M w FN x 附加弯矩 FA
第九章 组合变形杆件 的强度计算
作者:黄孟生
§ 9 -1 概 述
构件发生两种或两种以上基本变形的组合, 构件发生两种或两种以上基本变形的组合,若几种变 形所对应的应力(或变形)属于同一数量级. 形所对应的应力(或变形)属于同一数量级.则构 件的变形称为组合变形. 组合变形.
组合变形的实例: 组合变形的实例
F
y
=
Iz = tan Iy
斜弯曲时, 注:① 当 Iy≠Iz 时,则α≠ .斜弯曲时,中性轴与外力作用
线不垂直. 线不垂直. ② 当Iy = Iz 时,则α= 只发生平面弯曲,而不发生斜 .只发生平面弯曲, 弯曲. 弯曲.
组合变形杆件的强度—斜弯曲梁的应力和强度计算(建筑力学)
180 120 2 6
mm 3
4.32 105 mm 3
屋面坡度为1:2,则
tan 1 sin 0.4472
2
cos 0.8944
斜弯曲梁的强度计算
(3)强度校核
max
M zmax M ymax
Wz
Wy
M max cos
Wz
M max sin
Wy
cos sin
M max( Wz
A处的正应力为最大拉应力,点C处的正应力为最大压应力:
yA yC ymax
zA zC zmax
max min
t max
cmax
My Iy
zmax
Mz Iz
ymax
My Wy
Mz Wz
M
sin
Wy
cos
Wz
M z 2.51 0.336 2 3.172 kN m M y 1.256 2 2.215 kN m
斜弯曲梁的强度计算
抗弯截面系数为:
Wz
bh2 6
0.6h h2 6
0.1h3
Wy
hb2 6
h (0.6h)2 6
0.06h3
由强度条件:
max
Mz Wz
My Wy
3.172 106 0.1h3
2.512 106 0.06h3
73.587 106 h3
≤[
]
h ≥ 3 73.587 106 194.5(mm) 10
取h = 200mm,b = 120mm。
斜弯曲梁的应力计算 一、斜弯曲的概念
对称截面梁在水平和铅垂两纵向 对称平面内同时承受横向外力的作用, 这时梁分别在水平纵对称面和铅垂纵 对称面内发生对称弯曲,称为斜弯曲 (即为两个相互垂直平面内的弯曲) x
材料力学第七章组合变形
P2=406N
外力向形心简化并分解 弯扭组合变形
每个外力分量对应 的内力方程和内力图
M (x)
M
2 y
(
x)M
2 z
(
x)
解续
MMZz ((NNmm)) 71.25
40.6
MMyy ((NNmm)) MT n ((NNmm))
7.05 120 Mn
+
MM ((NNmm)) Mmax=71.3
41.2
核心边界上的一个角点;
截面角点边界
核心边界上的一条直线;
截面曲线边界
核心边界上的一条曲线。
例:
求右图示矩形截面的截面核心。
解:取截面切线 l1作为中性轴,其截距:
b
az
b 2
ay
4
3
a
并注意到: iz2 Iz / A h2 /12 iy2 I y / A b2 /12
故
h
5 21 z
34
ay
iz2 yP
az
iy2 zP
当偏心外力作用在截面 形心周围一个小区域内, 而对应的中性轴与截面周 边相切或位于截面之外时, 整个横截面上就只有压应 力而无拉应力。
2.截面核心的性质及其确定
(1)性质:是截面的一种几何特征,它只与截面的形状、尺
寸有关,而与外力无关。
(2)确定:根据中性轴方程知,截面上中性轴上的点的坐标
cmax
B
Fp A
MB Wz
Fp 6M B 13.4MPa bh bh2
在 B 截面右边缘处
3、最大拉应力
t
max
Fp A
MB Wz
3.4MPa
4、最大剪应力
《材料力学》第八章组合变形
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
杆件的强度分析与计算
第九章杆件的强度分析与计算第一节概述一、构件的承载能力机械或机器的每一组成部分称为构件,它是机器的运动单元,为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
因此,构件应当满足以下要求:(一)、强度要求:构件在外力作用下应具有足够的抵抗破坏的能力。
在规定的载荷作用下构件不应被破坏,具有足够的强度。
例如,冲床曲轴不可折断;建筑物的梁和板不应发生较大塑性变形。
强度要求就是指构件在规定的使用条件下不发生意外断裂或塑性变形。
(二)、刚度要求:构件在外力作用下应具有足够的抵抗变形的能力。
在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。
例如,机床主轴的变形过大,将影响加工精度;齿轮轴变形过大将造成齿轮和轴承的不均匀磨损,引起噪音。
刚度要求就是指构件在规定的使用条件下不发生较大的变形。
(三)、稳定性要求:构件在外力作用下能保持原有直线平衡状态的能力。
承受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等应始终维持原有的直线平衡状态,保证不被压弯。
稳定性要求就是指构件在规定的使用条件下有足够的稳定性。
为满足以上三方面的要求,构件可选用较好的材料和较大的截面尺寸,但这与节约和减轻构件自相矛盾。
构件设计的任务就是在保证满足强度、刚度和稳定性要求的前提下,以最经济的方式,为构件选择适宜的材料、确定合理的形状和尺寸。
二、变形固体的基本假设由各种固体材料制成的制成的构件在载荷作用下将产生变形,称为变形固体或变形体。
为了便于理论分析和实际计算,对变形固体常采用的几个基本假设:(一).连续性假设:假设在固体所占有的空间内毫无空隙地充满了物质。
实际上,组成固体的粒子之间存在空隙,但这种空隙极其微小,可以忽略不计。
于是可认为固体在其整个体积内是连续的。
基于连续性假设,固体内的一些物理量可用连续函数表示。
(二).均匀性假设:均匀性假设是指材料的力学性能在各处都是相同的,与其在固体内的位置无关。
(三).各向同性假设:即认为材料沿各个方向的力学性质是相同的。
工程力学组合受力与变形时的强度计算
FN A
M W
3103
d 2
8 103
d 3
81.1
MPa
81.9
4
32
位置?
例题:图示钢板受集中力P=128KN作用,当板在
一侧切去深4cm的缺口时,求缺口截面的最大正应 力?若在板两侧各切去深4cm的缺口时,缺口截面 的最大正应力为多少?(不考虑应力集中) 10
P
360
求: 1.链环直段部分横截面上 的最大拉应力和最大压应力; 2. 中性轴与截面形心之间 的距离。
解:根据平衡,截面上将
作用有内力分量FNx 和Mz
Fx 0 M C 0
得到 FNx=800 N
Mz= 12 N·m
x FNx
FNx A
4FNx πd 2
π
4 800 122 106
简支梁在中点受力的情
形下,最大弯矩
Mmax=FPl / 4。得到两个 平面弯曲情形下的最大
d
弯矩:
c
M max
FPz
FPx l FPsin l
4
4
M max
(FPy )
FPy l 4
FP
cos l 4
在Mmax(FPy)作用的截面上,截面上边缘的角点 a、b 承受最大压应力;下边缘的角点c、d 承受最 大拉应力。
Pz P cos
以y为中性轴弯曲 M y Pz (l x)
P cos(l x) M cos
M z Py (l x)
P sin(l x) M sin
M z y M y sin M y z M z cos
材料力学组合变形的强度计算第3节 弯曲与扭转的组合变形
1)外力分析
=
+
2)内力分析,确定危险截面的位置 —— A+ 截面
M max Fl M T M B Fa
k、k 两点为危险点
M max
Wz
MT
WP
3)强度计算
危险点的应力是二向应力状态,轴类零件一般都采 用塑性材料——钢材,因此应选用第三或第四强度理 论建立强度条件,即:
r3
32
F
l2 πd 3
R2
[ ]
按第四强度理论得到强度条件为
r4 32 F
l 2 0.75 R2 πd 3
[ ]
例9-3 卷扬机结构尺寸如图所示,l = 0.8m,R =0.18m,AB轴径 d = 0.06m。已知电动机的功率 P = 22kW,轴AB的转速 n =150r/min,轴材料的许用
应力[ ] = 100MPa,试校核AB轴的强度。
解: 1)外力分析 — 计算电动机输入的力偶矩 M0
M0
9550
P n
9550 22 150
Nm
1.4
k
N m
卷扬机的最大起重量 G M0 1.4 kN 7.78 kN R 0.18
2)内力分析,确定危险截面的位置 —— C_截面
1 3
2
2
2
2
2 0
r3 2 4 2 [ ]
r4 2 3 2 [ ]
WZ
d3
32
,WP
材料力学第八章-组合变形
12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算
材料力学第10章 组合变形
5
第二节 斜弯曲 在第6章讨论过平面弯曲,例如,如图10.2(a) 所示的矩形截面梁,外力F1,F2作用于同一纵向 平面内,作用线通过截面的弯心,且与形心主惯性 轴之一平行,梁弯曲后,梁的挠曲线位于外力所在 的形心主惯性平面内,这类弯曲为平面弯曲。如图 10.2(b)所示的矩形截面梁,外力F的作用线虽然通 过截面的弯心,但它与截面的形心主惯性轴斜交, 此时,梁弯曲后的挠曲线不再位于外力F所在的纵 向平面内,这类弯曲则称为斜弯曲(oblique bendin g)。
13
图10.4
图10.5
14
在梁的斜弯曲问题中,一般不考虑切应力的影 响,直接对危险截面上的危险点进行正应力强度计 算,其强度条件为
对于矩形、工字形及槽形截面梁,则可写成
15
五、斜弯曲梁的变形计算 梁在斜弯曲情况下的变形,仍可根据叠加原理 求解。如图10.3所示悬臂梁在自由端的挠度就等于 力F的分量Fy,Fz在各自弯曲平面内的挠度的矢量 和。因为
第10章
第一节 概述 一、组合变形的概念 前面有关章节分别讨论了杆件在各基本变形情 况下的强度计算和刚度计算。在实际工程中,许多 常用杆件往往并不处于单一的基本变形,而可能同 时存在着几种基本变形,它们的每一种变形所对应 的应力或变形属同一量级,在杆件设计计算时都必 须考虑。
1
图10.1
2
二、组合变形的求解方法 在小变形、线弹性材料的前提下,杆件同时存 在的几种基本变形,它们的每一种基本变形都是彼 此独立的,即在组合变形中的任一种基本变形都不 会改变另外一种基本变形相应的应力和变形。这样, 对于组合变形问题就能够用叠加原理来进行计算。
3
具体的方法及步骤是: ①荷载标准化。找出构成组合变形的所有基本 变形,将荷载化简为只引起这些基本变形的相当力 系。 ②基本变形计算。按构件原始形状和尺寸,计 算每一组基本变形的应力和变形。
材料力学-第八章组合变形
M z y M y sin
Iz
Iz
x
M y z M z cos
Iy
Iy
x
y
z
y
z
M
y sin
z
cos
对于圆形截面
因为过形心的任意轴均为截面的对称轴,所以当横 截面上同时作用两个弯矩时,可以将弯矩用矢量表示, 然后求二者的矢量和。于是,斜弯曲圆截面上的应力计 算公式为:
A
C
B
D
2 kN 5 kN
300 500
2 kN (a)
500
解:
1.5 kN Am
7 kN
C
1.5 kN m
B
D
(1)分析载荷 如图b所示
5 kN
12 kN (b)
T 1.5 kN m
(2)作内力图 x
如图c、d、e、f 所示
(c)
MC MD
1.5 kN Am
7 kN
C
1.5 kN m
B
FN A
F (2a)2
1 4
F a2
(2)开槽后的正应力
My
FN F
My
Fa 2
FN
2
max
FN A
My Wy
F 2a2
Fa / 2 2a2 a2 /
6
2
F a2
2a
2a
z
a
所以:
2
1
8
y
§8.3 斜弯曲
F1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当压力作用在截面形心附近的一个区域内时,可保证
中性轴不穿过横截面。
截面核心
横截面上不 偏心压缩杆件
出现拉应力
压力必须作用 在截面核心上
截面核心的边界如何确定 ?
当压力作用在截面核心的边界上时,与此 相对应的中性轴正好与横截面相切。
ay =-
iz2 yF
az =-
iy2 zF
截面核心 是凸区域
yF
向,设钢的 [s ] = 160 MPa。试按第三强度理论校核
轴的强度。
5 kN 1.5 kN·m
12 kN
12.5 kN
2.1 kN
7 kN 9.1 kN
1.5 kN·m
4.5 kN
与P206 例 9-8 略有不同
内力图
作业:
9-17(a)、23
在 xz 平面内
产生平面弯曲
Mz = F ·yF 纯弯曲
在 xy 平面内
产生平面弯曲
压-弯-弯 组合变形
F My
Mz
FN = F
My = F ·zF Mz = F ·yF
FN My
Mz
轴力FN 引起的:
s =- F
A
弯矩 Mz 引起的:
s =- Mz y
Iz
弯矩 My 引起的:
s =- My z
l
y
s F、q 共同引起的: = s + s = FN - M ( x ) y
smax =
FN A
+
Mmax Wz
A
Iz
smin =
FN - Mmax A Wz
smin =
FN - Mmax A Wz
smax >s
smax =s
中性轴
smax <s
强度条件:
中性轴
s s tmax ≤ [ t ] s s cmax ≤ [ c ]
斜弯曲
研究矩形截面悬臂梁的应力、变形及强度计算
l
z
O
Fz
x
j Fy
y
F
一、正应力计算
F = Fy + Fz
斜弯曲是两个正交的平面弯曲的组合
l
z
O
A(x,y,z)
Fz
x
y
x
j Fy F
任意截面上的任一点的应力:
Fy 引起的: 弯矩 Mz = Fy ( l-x ) = M cosj
正应力
s =-
Mz y
例:托架受荷载 F = 45 kN 作用。设 AC 杆为
工字钢,容许应力[s ]= 160 MPa,试选择工字钢
型号。
FAx FAy
FN ( kN )
-
104 kN
FB
45 60 kN
M ( kN·m )
104
+
P199 例 9-3
§9-4 偏心压缩(拉伸)
F FM
F Mz
F 产生轴向压缩
My
My = F ·zF 纯弯曲
A
iz2
iy2
在中性轴上任取一点( y0 , z0 )
s =0
1 + yF y0 + zF z0 = 0
iz2
iy2
中性轴方程 中性轴是一条不过横截面形心的直线
中性轴方程
1+
yF y0 + zF z0 = 0
iz2
iy2
中性轴在 y、z 轴上的截矩:
ay =-
iz2 yF
az =-
iy2 zF
负号说明中性轴的位置与外力作用点的位置
=-
iz2
ay
zF
=-
iy2
az
(ay , 0)
④
①
2
3
14
③
y
(0, az) z
②
例:试确定矩形截面的截面核心。
b
P203 例 9-6
A
④
D
①
h
2
③
1 h/6
3
h/6
z
4
b/6 b/6
B
②
中直性线轴方方程程
C
y
1 + yF yB0 + zF zB0 = 0
iz2
iy2
例:试确定圆形截面的截面核心。
中性轴
D2
y
D1
横截面无凸角: 用图解法确定产生最大应力
的点。
z
中性轴
D2
y
e
l
z
x
中
f
y
j
F
性 轴
危险截面:固定端
危险点:e 点和 f 点(单向应力状态)
强度条件:
stmax ≤ [st] scmax ≤ [sc]
z y
l
三、变形计算
Fz x F j Fy
求悬臂梁自由端 截面形心的挠度
Fy
引起的:
x
8 kN
z
yl
l
l
1
y
内力图
§9-3 拉伸(压缩)与弯曲的组合变形
q
z
O
Fx
l
y
弯曲变形是小变形 轴向力引起的弯矩很小,可略去不计。
q
z
O
A(x, y, z)
Fx
x
y
l
s 轴向力 F 引起的: = FN
A
M(x)y
横向力 q 引起的: s =-
Iz
q
危险截面
z
固定端
A(x, y, z)
F x 危险点?
=M (- y + z )
t ? Iz
Iy
= t 存在,但不考虑。
二、中性轴的位置、最大正应力和强度条件
s
cosj
=M(-
y+
sinj
z)
Iz
Iy
横截面上正应力 是平面分布的
设 ( y0 , z0 ) 是中性轴上任一点的坐标
s =0
cosj
sinj
(- Iz y0 + Iy z0 ) = 0
中性轴方程
Iz
=-
M cosj Iz
y
z
O
y
x
l
A(x,y,z)
Fz
x
j Fy F
Fz 引起的: 弯矩 My = Fz ( l-x ) = M sinj
正应力 s = My z = M sinj z
Iy
Iy
l
z
O
A(x,y,z)
Fz
x
y
x
j Fy F
F 引起的:正应力 s =s +s
cosj
sinj
组合变形杆件的强度计算
◆ 概述 ◆ 斜弯曲 ◆ 拉伸(压缩)与弯曲的组合变形 ◆ 偏心压缩(拉伸) ◆ 截面核心 ◆ 弯曲与扭转的组合变形
§9-1 概述
组合变形
FF M
偏心压缩
螺旋桨 支臂
M F
拉—扭 组合变形
Fy
F
拉—弯
Fx 组合变形
传动轴
弯—扭 组合变形
在小变形、线弹性的条件下: 可用叠加原理求解组合变形问题。
wy =
Fy l 3
3EIz
Fz
引起的:
wz =
Fz l 3
3EIy
总挠度: w wy2 wz2
b
wj
力F 的 作用线
Iy ≠ Iz
设总挠度与 y 轴成 b 角
az
中性轴
y
tanb =
wz wy
=
Iz tanj
Iy
tana = Iz tanj
Iy
b ≠j
总挠度方向与力F 的方向不重合
b =a
总挠度方向 垂直于中性轴
中性轴是一条过横截面形心的直线
j
力F 的 作用线
cosj
(-
Iz
y0 +
sinj
Iy
z0 ) = 0
az
设中性轴与 z 轴成 a 角
中性轴
y
tana =
y0 z0
=
Iz tanj
Iy
中性轴和外力作用线在相邻的象限内
Iy ≠ Iz
a ≠j
中性轴不垂直力F
斜弯曲
Iy = Iz
a =j
中性轴垂直力F
平面弯曲
斜弯曲
Iy = Iz
b =j
总挠度方向与力
F 的方向重合,
均垂直于中性轴
平面弯曲
例:简支梁由 22a 工字钢制成,已知 l =1 m,
F1 = 8 kN ,F2 = 12 kN ,工字钢的 Wy = 40.9 cm3,
Wz = 309 cm3,试求梁的最大正应力。 12 kN
z
12 kN
2
A
B
C 8 kN D
Iy=Iz 的梁,只要横向力过截面形心,梁只产生平面弯曲。
中性轴将横截面分成二 个区:拉应力区和压应力区
中 性 轴
scmax =- (
Mz Wz
+
My )
Wy
stmax
=
M
(
cosj
Iz
ymax +
sinj
Iy zmax )=
Mz Wz
+
My Wy
D1
横截面有凸角:
最大应力发生在角点上,根据
z
变形确定产生最大应力的点。
Iy
B点总应力: s =s +s +s
Iz = A·iz2
=-( F + F yF y + F zF z )
A
Iz
Iy
Iy = A·iy2
=- F ( 1 + yF y + zF z )
A
iz2
iy2
横截面上正应力是平面分布的