4-5学案
高中数学 第二讲 讲明不等式的基本方法复习课学案 新人教A版选修4-5-新人教A版高二选修4-5数学
第二讲讲明不等式的基本方法复习课学习目标 1.系统梳理证明不等式的基本方法.2.进一步体会不同方法所适合的不同类型的问题,针对不同类型的问题,合理选用不同的方法.3.进一步熟练掌握不同方法的解题步骤及规范.1.比较法作差比较法是证明不等式的基本方法,其依据是:不等式的意义及实数大小比较的充要条件.证明的步骤大致是:作差——恒等变形——判断结果的符号.2.综合法综合法证明不等式的依据是:已知的不等式以及逻辑推理的基本理论.证明时要注意的是作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.3.分析法分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即从待证的不等式出发,逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.4.反证法反证法是一种“正难则反”的方法,反证法适用的范围:①直接证明困难;②需要分成很多类进行讨论;③“唯一性”“存在性”的命题;④结论中含有“至少”“至多”否定性词语的命题.5.放缩法放缩法就是将不等式的一边放大或缩小,寻找一个中间量,常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③用基本不等式放缩.类型一 比较法证明不等式例1 若x ,y ,z ∈R ,a >0,b >0,c >0.求证:b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx ). 证明 ∵b +c a x 2+c +a b y 2+a +b cz 2-2(xy +yz +zx ) =⎝ ⎛⎭⎪⎫bax 2+a by 2-2xy +⎝ ⎛⎭⎪⎫c by 2+b cz 2-2yz +⎝ ⎛⎭⎪⎫a c z 2+c a x 2-2zx =⎝⎛⎭⎪⎫b ax -a b y 2+⎝⎛⎭⎪⎫c by -b c z 2+⎝⎛⎭⎪⎫a cz -c a x 2≥0, ∴b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx )成立. 反思与感悟 作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.跟踪训练1 设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n ≥(a +b )2.证明 a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn ≥0,∴a 2m +b 2n≥(a +b )2. 类型二 综合法与分析法证明不等式例2 已知a ,b ,c ∈R +,且ab +bc +ca =1,求证: (1)a +b +c ≥3; (2)a bc +b ac +cab≥3(a +b +c ).证明 (1)要证a +b +c ≥3,由于a ,b ,c ∈R +, 因此只需证(a +b +c )2≥3,即证a 2+b 2+c 2+2(ab +bc +ca )≥3,根据条件,只需证a 2+b 2+c 2≥1=ab +bc +ca , 由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c =33时取等号)可知,原不等式成立. (2)a bc +b ac+c ab =a +b +c abc, 在(1)中已证a +b +c ≥3, ∵ab +bc +ca =1, ∴要证原不等式成立,只需证1abc≥a +b +c ,即证a bc +b ac +c ab ≤1=ab +bc +ca . ∵a ,b ,c ∈R +,a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤ac +bc2,∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =33时取等号)成立, ∴原不等式成立.反思与感悟 证明比较复杂的不等式时,考虑分析法与综合法的结合使用,这样使解题过程更加简洁.跟踪训练2 已知a >b >c ,求证:1a -b +1b -c +1c -a>0. 证明 方法一 要证1a -b +1b -c +1c -a>0, 只需证1a -b +1b -c >1a -c. ∵a >b >c ,∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c ,1b -c>0,∴1a -b +1b -c >1a -c成立, ∴1a -b +1b -c +1c -a>0成立. 方法二 ∵a >b >c , ∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c ,1b -c >0, ∴1a -b +1b -c >1a -c , ∴1a -b +1b -c +1c -a>0. 类型三 反证法证明不等式例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2或1+yx<2中至少有一个成立.证明 假设1+x y <2和1+y x<2都不成立,则1+x y ≥2和1+yx≥2同时成立.因为x >0且y >0,所以1+x ≥2y 且1+y ≥2x , 两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2. 这与已知x +y >2矛盾. 故1+x y <2或1+y x<2中至少有一个成立.反思与感悟 反证法的“三步曲”:(1)否定结论.(2)推出矛盾.(3)肯定结论.其核心是在否定结论的前提下推出矛盾.跟踪训练3 已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b .证明 假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ), 于是f (a )+f (-b )=f (b )+f (-a )与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性,可得f (a )>f (b ),f (-b )>f (-a ), 于是有f (a )+f (-b )>f (b )+f (-a )与已知矛盾.故假设不成立. ∴a <b .类型四 放缩法证明不等式例4 已知n ∈N +,求证:2(n +1-1)<1+12+13+…+1n<2n .证明 ∵对k ∈N +,1≤k ≤n ,有 1k =22k>2k +k +1=2(k +1-k ),∴1k>2(k +1-k ). ∴1+12+13+…+1n>2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1).又∵对于k ∈N +,2≤k ≤n ,有 1k =22k<2k +k -1=2(k -k -1),∴1+12+13+…+1n<1+2(2-1)+2(3-2)+…+2(n -n -1)=2n -1<2n . ∴原不等式成立.反思与感悟 放缩法是在顺推法逻辑推理过程中,有时利用不等式关系的传递性作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当放缩,否则达不到目的.跟踪训练4 设f (x )=x 2-x +13,a ,b ∈[0,1], 求证:|f (a )-f (b )|≤|a -b |. 证明 |f (a )-f (b )|=|a 2-a -b 2+b | =|(a -b )(a +b -1)|=|a -b ||a +b -1|, ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2, -1≤a +b -1≤1,|a +b -1|≤1. ∴|f (a )-f (b )|≤|a -b |.1.已知p: ab >0,q :b a +a b≥2,则p 与q 的关系是( ) A .p 是q 的充分不必要条件 B .p 是q 的必要不充分条件C .p 是q 的充要条件D .以上答案都不对 答案 C解析 由ab >0,得b a >0,a b>0,∴b a +a b ≥2b a ·ab =2, 又b a +a b≥2,则b a ,a b必为正数, ∴ab >0.2.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数 B .a ,b ,c 都大于1 C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12答案 D解析 假设a ,b ,c 都小于12,则a +2b +c <2与a +2b +c =2矛盾. 3.若a =lg22,b =lg33,c =lg55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 C解析 a =3lg 26=lg 86,b =2lg 36=lg 96,∵9>8,∴b >a .b 与c 比较:b =lg 33=lg 3515,c =lg 55=lg 5315,∵35>53,∴b >c .a 与c 比较:a =lg 2510=lg 3210,c =lg 2510,∵32>25,∴a >c .∴b >a >c ,故选C.4.已知a,b∈R+,n∈N+,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).证明∵(a+b)(a n+b n)-2(a n+1+b n+1)=a n+1+ab n+ba n+b n+1-2a n+1-2b n+1=a(b n-a n)+b(a n-b n)=(a-b)(b n-a n).(1)若a>b>0,则b n-a n<0,a-b>0,∴(a-b)(b n-a n)<0.(2)若b>a>0,则b n-a n>0,a-b<0,∴(a-b)(b n-a n)<0.(3)若a=b>0,(b n-a n)(a-b)=0.综上(1)(2)(3)可知,对于a,b∈R+,n∈N+,都有(a+b)(a n+b n)≤2(a n+1+b n+1).1.比较法证明不等式一般有两种方法:作差法和作商法,作商法应用的前提条件是已知不等式两端的代数式同号.2.由教材内容可知,分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,两者是对立统一的两种方法.3.证明不等式的基本方法及一题多证:证明不等式的基本方法主要有比较法、综合法、分析法、反证法、放缩法等.证明不等式时既可探索新的证明方法,培养创新意识,也可一题多证,开阔思路,活跃思维,目的是通过证明不等式发展逻辑思维能力,提高数学素养.一、选择题1.a,b∈R+,那么下列不等式中不正确的是( )A.ab+ba≥2 B.b2a+a2b≥a+bC.ba2+ab2≤a+babD.1a2+1b2≥2ab答案 C解析A满足基本不等式;B可等价变形为(a-b)2(a+b)≥0正确;B选项中不等式的两端同除以ab,不等式方向不变,所以C选项不正确;D选项是A选项中不等式的两端同除以ab 得到的,D正确.2.设0<x<1,则a=2x,b=x+1,c=11-x中最大的是( )A.c B.bC.a D.随x取值不同而不同答案 A解析∵0<x<1,∴b=x+1>2x>2x=a,∵11-x-(x+1)=1-(1-x2)1-x=x21-x>0,∴c>b>a.3.若P=a+a+7,Q=a+3+a+4 (a≥0),则P与Q的大小关系为( ) A.P>Q B.P=QC.P<Q D.由a的取值确定答案 C解析 ∵P 2=2a +7+2a 2+7a ,Q 2=2a +7+2a 2+7a +12,∴P 2<Q 2,即P <Q .4.设a =(m 2+1)(n 2+4),b =(mn +2)2,则( ) A .a >b B .a <b C .a ≤b D .a ≥b答案 D解析 ∵a -b =(m 2+1)(n 2+4)-(mn +2)2=4m 2+n 2-4mn =(2m -n )2≥0, ∴a ≥b .5.已知a ,b ,c ,d 为实数,ab >0,-c a <-d b,则下列不等式中成立的是( ) A .bc <ad B .bc >ad C.a c >b d D.a c <b d答案 B解析 将-c a <-d b两边同乘以正数ab ,得-bc <-ad ,所以bc >ad . 6.若A ,B 为△ABC 的内角,则A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 C解析 由正弦定理知a sin A =bsin B =2R ,又A ,B 为三角形的内角, ∴sin A >0,sin B >0,∴sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 二、填空题7.lg9·lg11与1的大小关系是________.答案 lg9·lg11<1 解析 ∵lg9>0,lg11>0,∴lg9·lg11<lg9+lg112<lg992<lg1002=1.∴lg9·lg11<1.8.当x >1时,x 3与x 2-x +1的大小关系是________. 答案 x 3>x 2-x +1解析 ∵x 3-(x 2-x +1)=x 3-x 2+x -1=x 2(x -1)+(x -1)=(x -1)(x 2+1),且x >1, ∴(x -1)(x 2+1)>0. ∴x 3-(x 2-x +1)>0, 即x 3>x 2-x +1.9.用反证法证明“在△ABC 中,若∠A 是直角,则∠B 是锐角”时,应假设________. 答案 ∠B 不是锐角解析 “∠B 是锐角”的否定是“∠B 不是锐角”.10.建造一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元. 答案 1760解析 设水池底长为x (x >0)m , 则宽为82x =4x(m).水池造价y =82×120+⎝ ⎛⎭⎪⎫2x ×2+8x ×2×80=480+320⎝ ⎛⎭⎪⎫x +4x ≥480+1 280=1 760(元), 当且仅当x =2时取等号. 三、解答题11.求证:112+122+132+…+1n 2<2.证明 因为1n2<1n (n -1)=1n -1-1n(n ∈N +,n ≥2),所以112+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)·n=1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n<2. 所以原不等式得证.12.已知a n =1×2+2×3+3×4+…+n (n +1)(n ∈N +),求证:n (n +1)2<a n <(n +1)22. 证明 ∵n (n +1)>n ,∴a n =1×2+2×3+…+n (n +1)>1+2+…+n =n (n +1)2. 又n (n +1)<(n +1)+n 2=2n +12, ∴a n =1×2+2×3+…+n (n +1)<32+52+…+2n +12=n 2+2n 2<(n +1)22. ∴n (n +1)2<a n <(n +1)22. 四、探究与拓展13.已知a ,b 是正数,a ≠b ,x ,y ∈(0,+∞),若a 2x +b 2y ≥(a +b )2x +y,则等号成立的条件为________. 答案 ay =bx解析 a 2x +b 2y -(a +b )2x +y=a 2y (x +y )+b 2x (x +y )-xy (a +b )2xy (x +y )=(ay -bx )2xy (x +y )≥0, 当且仅当ay =bx 时等号成立.14.设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N +.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13. (1)解 令n =1,得S 21-(-1)S 1-3×2=0,即S 21+S 1-6=0,所以(S 1+3)(S 1-2)=0,因为S 1>0,所以S 1=2,即a 1=2.(2)解 由S 2n -(n 2+n -3)S n -3(n 2+n )=0,得(S n +3)[S n -(n 2+n )]=0,因为a n >0(n ∈N +),S n >0,从而S n +3>0,所以S n =n 2+n ,所以当n ≥2时, a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n ,又a 1=2=2×1,所以a n =2n (n ∈N +).(3)证明 设k ≥2,则1a k (a k +1)=12k (2k +1)<1(2k -1)(2k +1)=12⎝ ⎛⎭⎪⎫12k -1-12k +1, 所以1a 1(a 1+1)+1a 2(a 2+1)+1a 3(a 3+1)+…+1a n (a n +1)<12×3+12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n -1-12n +1=16+16-12(2n +1)<13. 所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.。
人教版-高中数学选修4-5 柯西不等式
注意观察此不等式的简洁性,对称性,深刻体现出 数学形式的美。
(二)柯西不等式的证明方法
共同思考,讨论发现。借助以往的知识和经验, 运用类比联想与化归转化的思想,探究用什么方法来 证明它。
归纳总结 1.向量法:(类比数学模型) 2.比较法:(不等式证明的基本方法) 3.构造法:(类比联想,利用二次函数的性质) 4.几何法:(利用余弦定理)
(二)柯西不等式的推广与应用
柯西不等式是一个非常重要的不等式,它在数学和物 理方面,尤其在解决不等式证明的有关问题中有着十分广 泛的应用。
进一步的论证可以得到N维形式的柯西不等式 :
由柯西不等式可以导出几个著名的不等式
推广1:(闵可夫斯基不等式 )
推广2:(赫尔德(H0lder)不等式 )
推广3:(赫尔德不等式一个极好的变式) :
求
学习报告 3000字左右 科学小论文 1500~2000字左右 规则 1. 严格按照报告或论文格式书写(自查) 2. 学习报告独立完成,论文可以2~3人合作 完成 时间 两个月完成上交 1.明确问题 2.制定计划 4.获得结论 5.书写成文 3.收集资料
步骤 建议
论文题目可以自定,也可以选择我们在课堂中提出 的合作探究题或是研究性课题。
(二)评价
1.客观性评价
概念形成,方法运用,解题能力 2.发展性评价
(1) 、 学 习 态 度 , 积 极 思 考 , 主 动 参 与 , 合 作交流,勤奋刻苦,不畏艰难等方面。 (2)、开放性考查课题完成情况。 (3)、报告与论文的表述 (4)、学习反思与学习方式的改进。
衷心感谢大家的合作 与支持!
大胆假设,小心求证,运用发散思维,自主探求。不断提升 思维层次,提炼出其中蕴含的数学思想方法。
(复习指导)选修4—5 第1课时 绝对值不等式含解析
选修4—5不等式选讲必备知识预案自诊知识梳理1.绝对值三角不等式(1)定理1:若a,b是实数,则|a+b|≤,当且仅当时,等号成立;(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;(3)定理2:若a,b,c是实数,则|a-c|≤,当且仅当时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a(a>0)的解法:①|x|<a⇔-a<x<a;②|x|>a⇔x>a或x<-a.(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔;②|ax+b|≥c⇔.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程及数形结合的思想.3.基本不等式定理1:设a,b∈R,则a2+b2≥,当且仅当a=b时,等号成立.定理2:若a,b为正数,则a+b2≥√ab,当且仅当a=b时,等号成立.定理3:若a,b,c为正数,则a+b+c3≥√abc3,当且仅当a=b=c时,等号成立.定理4:若a1,a2,…,a n为n个正数,则a1+a2+…+a nn ≥√a1a2…a nn,当且仅当a1=a2=…=a n时,等号成立.4.柯西不等式(1)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a12+a22+…+a n2)(b12+b22+…+b n2)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量或存在实数k,使α=kβ时,等号成立.5.不等式证明的方法证明不等式常用的方法有比较法、综合法、分析法、放缩法以及利用绝对值三角不等式、柯西不等式法等.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)对|a-b|≤|a|+|b|,当且仅当ab≤0时,等号成立.()(2)|a+b|+|a-b|≥|2a|.()(3)|x-a|+|x-b|的几何意义是表示数轴上的点x到点a,b的距离之和.()(4)用反证法证明命题“a,b,c全为0”时假设为“a,b,c全不为0”.()(5)若m=a+2b,n=a+b2+1,则n≥m.() 2.若|a-c|<|b|,则下列不等式正确的是()A.a<b+cB.a>c-bC.|a|>|b|-|c|D.|a|<|b|+|c|3.若不等式|x+1x|>|a-2|+1对于一切非零实数x均成立,则实数a的取值范围是() A.(2,3) B.(1,2)C.(1,3)D.(1,4)4.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则√m2+n2的最小值为.5.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是.第1课时绝对值不等式关键能力学案突破考点绝对值不等式的解法【例1】(2020全国1,理23)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.解题心得解含有两个以上绝对值符号的不等式的方法解法1:利用绝对值不等式的几何意义求解,体现了数形结合的思想;解法2:利用“零点分段法”求解,即令各个绝对值式子等于0,求出各自零点,把零点在数轴上从小到大排列,然后按零点分数轴形成的各区间去绝对值,进而将绝对值不等式转化为常规不等式,体现了分类讨论的思想;解法3:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.对点训练1(2019全国2,理23)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.考点求参数范围(多考向探究)考向1分离参数法求参数范围【例2】(2017全国3,理23)已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.解题心得在不等式有解或成立的情况下,求参数的取值范围,可以采取分离参数,通过求对应函数最值的方法获得.对点训练2已知f(x)=|x+1|,g(x)=2|x|+a,(1)当a=-1时,求不等式f(x)≥g(x)的解集;(2)若存在x0∈R使得f(x0)≥g(x0)成立,求a的取值范围.考向2利用函数最值求参数范围【例3】(2020辽宁大连一中6月模拟,23)已知函数f(x)=x|x-a|,a∈R.(1)当f(1)+f(-1)>1时,求a的取值范围;+|y-a|恒成立,求a的取值范围.(2)若a>0,对任意x,y∈(-∞,a],都有不等式f(x)≤y+54解题心得1.对于求参数范围问题,可将已知条件进行等价转化,得到含有参数的不等式恒成立,此时通过求函数的最值得到关于参数的不等式,解不等式得参数范围.2.解答此类问题应熟记以下转化:f(x)>a恒成立⇔f(x)min>a;f(x)<a恒成立⇔f(x)max<a;f(x)>a有解⇔f(x)max>a;f(x)<a有解⇔f(x)min<a;f(x)>a无解⇔f(x)max≤a;f(x)<a无解⇔f(x)min≥a.对点训练3(2020山西太原三模,23)已知函数f(x)=|x+1|+|x-2a|,a∈R.(1)若a=1,解不等式f(x)<4;(2)对任意的实数m,若总存在实数x,使得m2-2m+4=f(x),求实数a的取值范围.考向3恒等转化法求参数范围【例4】(2020全国2,理23)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.解题心得在不等式成立的前提下求参数范围,通常对不等式进行等价变形,求出不等式的解,然后根据已知条件确定参数范围.对点训练4(2018全国1,理23)已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.考点求函数或代数式的最值(多考向探究)考向1利用基本不等式求最值【例5】(2020河北石家庄二模,文23)函数f(x)=|2x-1|+|x+2|.(1)求函数f(x)的最小值;(2)若f(x)的最小值为M,a+2b=2M(a>0,b>0),求证:1a+1+12b+1≥47.解题心得在求某一代数式的最值时,根据已知条件利用基本不等式a 2+b 2≥2ab ,a+b2≥√ab (a ,b 为正数),a+b+c3≥√abc 3(a ,b ,c 为正数)对代数式进行适当的放缩,从而得出其最值.对点训练5(2020河南开封三模)关于x 的不等式|x-2|<m (m ∈N +)的解集为A ,且32∈A ,12∉A. (1)求m 的值;(2)设a ,b ,c 为正实数,且a+b+c=3m ,求√a +√b +√c 的最大值.考向2 利用绝对值三角不等式求最值【例6】已知函数f (x )=2|x+a|+|x -1a|(a ≠0).(1)当a=1时,解不等式f (x )<4;(2)求函数g (x )=f (x )+f (-x )的最小值.解题心得利用绝对值三角不等式求函数或代数式的最值时,往往需要对函数或代数式中的几个绝对值里面的代数式等价变形,使相加或相减后对消变量,得到常数.对点训练6已知函数f (x )=|2x+1|-|x-1|. (1)求f (x )+|x-1|+|2x-3|的最小值;(2)若不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,求实数m 的取值范围.考向3利用放缩法求最值【例7】(2019全国3,理23)设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥13成立,证明:a≤-3或a≥-1.解题心得利用放缩法求代数式的最值,一般利用基本不等式,绝对值三角不等式及数学结论进行放缩,在放缩的过程中,结合已知条件消去变量得到常量,从而得到代数式的最值.对点训练7已知实数m,n满足2m-n=3.(1)若|m|+|n+3|≥9,求实数m的取值范围;(2)求|53m-13n|+|13m-23n|的最小值.1.绝对值不等式主要利用“零点分段法”求解,有时也利用函数图像通过观察得出不等式的解集.2.含绝对值不等式的恒成立问题的求解方法(1)分离参数法:运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔f(x)min≥a”可解决恒成立中的参数范围问题.(2)数形结合法:在研究不等式f(x)≤g(x)恒成立问题时,若能作出两个函数的图像,通过图像的位置关系可直观解决问题.3.求函数或代数式的最值主要应用基本不等式、绝对值三角不等式以及通过放缩求解.在解决有关绝对值不等式的问题时,充分利用绝对值不等式的几何意义解决问题能有效避免分类讨论不全面的问题.若用零点分段法求解,要掌握分类讨论的标准,做到不重不漏.选修4—5 不等式选讲必备知识·预案自诊知识梳理1.(1)|a|+|b| ab ≥0 (3)|a-b|+|b-c| (a-b )(b-c )≥02.(2)①-c ≤ax+b ≤c ②ax+b ≥c 或ax+b ≤-c3.2ab考点自诊1.(1)√ (2)√ (3)√ (4)× (5)√2.D |a|-|c|≤|a-c|<|b|,即|a|<|b|+|c|,故选D .3.C 因为|x +1x |=|x|+|1x |≥2,要使对于一切非零实数x ,|x +1x|>|a-2|+1恒成立,则|a-2|+1<2,即1<a<3.4.√5 由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma+nb )2,即5(m 2+n 2)≥25,当且仅当an=bm 时,等号成立,所以√m 2+n 2≥√5.5.[-2,4] ∵|x-a|+|x-1|≥|(x-a )-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a ≤4.第1课时 绝对值不等式 关键能力·学案突破 例1解(1)由题设知f (x )={-x -3,x ≤-13,5x -1,-13<x ≤1,x +3,x >1.y=f (x )的图像如图所示.(2)函数y=f (x )的图像向左平移1个单位长度后得到函数y=f (x+1)的图像.y=f (x )的图像与y=f (x+1)的图像的交点坐标为-76,-116.由图像可知当且仅当x<-76时,y=f (x )的图像在y=f (x+1)的图像上方. 故不等式f (x )>f (x+1)的解集为(-∞,-76). 对点训练1解(1)当a=1时,f (x )=|x-1|x+|x-2|·(x-1).当x<1时,f (x )=-2(x-1)2<0; 当x ≥1时,f (x )≥0.所以,不等式f (x )<0的解集为(-∞,1). (2)因为f (a )=0,所以a ≥1. 当a ≥1,x ∈(-∞,1)时,f (x )=(a-x )x+(2-x )(x-a )=2(a-x )(x-1)<0. 所以,a 的取值范围是[1,+∞). 例2解(1)f (x )={-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x<-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1得,2x-1≥1,解得1≤x ≤2; 当x>2时,由f (x )≥1解得x>2. 所以f (x )≥1的解集为{x|x ≥1}.(2)由f (x )≥x 2-x+m 得m ≤|x+1|-|x-2|-x 2+x. 而|x+1|-|x-2|-x 2+x ≤|x|+1+|x|-2-x 2+|x|=-(|x |-32)2+54≤54,且当x=32时,|x+1|-|x-2|-x 2+x=54. 故m 的取值范围为(-∞,54].对点训练2解(1)当a=-1时原不等式可化为|x+1|-2|x|≥-1,设φ(x )=|x+1|-2|x|={x -1,x ≤-1,3x +1,-1<x <0,-x +1,x ≥0,则{x ≤-1,x -1≥-1,或{-1<x <0,3x +1≥-1,或{x ≥0,-x +1≥-1. 即-23≤x ≤2.所以原不等式的解集为-23,2.(2)若存在x 0∈R 使得f (x 0)≥g (x 0)成立,等价于|x+1|≥2|x|+a 有解, 由(1)即φ(x )≥a 有解,即a ≤φ(x )max ,由(1)可知,φ(x )在(-∞,0)单调递增,在[0,+∞)单调递减, 所以φ(x )max =φ(0)=1,所以a ≤1.故a 的取值范围为(-∞,1].例3解(1)f (1)+f (-1)=|1-a|-|1+a|>1,若a ≤-1,则1-a+1+a>1,得2>1,即当a ≤-1时,不等式恒成立;若-1<a<1,则1-a-(1+a )>1,得a<-12,即-1<a<-12; 若a ≥1,则-(1-a )-(1+a )>1,得-2>1,此时不等式无解. 综上所述,a 的取值范围是-∞,-12.(2)由题意知,要使不等式恒成立,只需f (x )max ≤y+54+|y-a|min .当x ∈(-∞,a ]时,f (x )=-x 2+ax ,f (x )max =f a 2=a 24. 因为y+54+|y-a|≥a+54, 所以当y ∈-54,a 时,y+54+|y-a|min =a+54=a+54.于是a 24≤a+54,解得-1≤a ≤5.结合a>0,所以a 的取值范围是(0,5].对点训练3解(1)当a=1时,f (x )<4,即|x+1|+|x-2|<4,化为{x <-1,2x >-3或{-1≤x ≤2,3<4或{x >2,2x -1<4,解得-32<x<-1或-1≤x ≤2或2<x<52,综上,-32<x<52,即不等式f (x )<4的解集为-32,52.(2)根据题意,得m 2-2m+4的取值范围是f (x )值域的子集.m 2-2m+4=(m-1)2+3≥3,又f (x )=|x+1|+|x-2a|≥|2a+1|, 所以f (x )的值域为[|2a+1|,+∞).故|2a+1|≤3,解得-2≤a ≤1,即实数a 的取值范围为[-2,1].例4解(1)当a=2时,f (x )={7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为{x |x ≤32或x ≥112}. (2)因为f (x )=|x-a 2|+|x-2a+1|≥|a 2-2a+1|=(a-1)2,故当(a-1)2≥4,即|a-1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a<3时,f (a 2)=|a 2-2a+1|=(a-1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞).对点训练4解(1)当a=1时,f (x )=|x+1|-|x-1|,即f (x )={-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为{x |x >12}.(2)当x ∈(0,1)时|x+1|-|ax-1|>x 成立等价于当x ∈(0,1)时|ax-1|<1成立. 若a ≤0,则当x ∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为0<x<2a ,所以2a ≥1,故0<a ≤2. 综上,a 的取值范围为(0,2]. 例5(1)解f (x )=|2x-1|+|x+2|={-3x -1,x ≤-2,-x +3,-2<x <12,3x +1,x ≥12,当x ≤-2时,f (x )≥5;当-2<x<12时,52<f (x )<5; 当x ≥12时,f (x )≥52. 所以f (x )的最小值为52. (2)证明由(1)知M=52,即a+2b=5.又因为a>0,b>0,所以1a+1+12b+1=17[(a+1)+(2b+1)]1a+1+12b+1=172+2b+1a+1+a+12b+1 ≥172+2√2b+1a+1·a+12b+1 =47,当且仅当a=2b ,即a=52,b=54时,等号成立.所以1a+1+12b+1≥47. 对点训练5解(1)由已知得{|32-2|<m ,|12-2|≥m ,解得12<m ≤32.因为m ∈N *,所以m=1.(2)因为a+b+c=3,所以√a +√b +√c =√1·a +√1·b +√1·c ≤1+a 2+1+b 2+1+c2=3+a+b+c2=3, 当且仅当a=b=c=1时,等号成立.所以√a +√b +√c 的最大值为3.例6解(1)∵a=1,∴原不等式为2|x+1|+|x-1|<4,∴{x <-1,-2x -2-x +1<4,或 {-1≤x ≤1,2x +2-x +1<4,或{x >1,2x +2+x -1<4,∴-53<x<-1或-1≤x<1或∅. ∴原不等式的解集为(-53,1).(2)由题意得g (x )=f (x )+f (-x )=2(|x+a|+|x-a|)+(|x +1a |+|x -1a |)≥2|2a|+2|a |≥4√2.当且仅当2|a|=1|a |,即a=±√22,且-√22≤x ≤√22时,g (x )取最小值4√2. 对点训练6解(1)f (x )+|x-1|+|2x-3|=|2x+1|-|x-1|+|x-1|+|2x-3|=|2x+1|+|2x-3|≥|2x+1-(2x-3)|=4,当-12≤x ≤32时等号成立,所以f (x )+|x-1|+|2x-3|的最小值为4.(2)不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,∴|m-1|≥[f (x )+|x-1|+|2x-3|]min .∴|m-1|≥4,∴m-1≤-4或m-1≥4,即m ≤-3或m ≥5,∴实数m 的取值范围是(-∞,-3]∪[5,+∞).例7(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知得(x-1)2+(y+1)2+(z+1)2≥43,当且仅当x=53,y=-13,z=-13时等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为43.(2)证明由于[(x-2)+(y-1)+(z-a )]2=(x-2)2+(y-1)2+(z-a )2+2[(x-2)(y-1)+(y-1)(z-a )+(z-a )(x-2)]≤3[(x-2)2+(y-1)2+(z-a )2],故由已知得(x-2)2+(y-1)2+(z-a )2≥(2+a )23,当且仅当x=4-a 3,y=1-a 3,z=2a -23时等号成立. 因此(x-2)2+(y-1)2+(z-a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.对点训练7解因为2m-n=3,所以2m=n+3.(1)|m|+|n+3|=|m|+|2m|=3|m|≥9,所以|m|≥3,所以m ≤-3或m ≥3.故m 的取值范围为(-∞,-3]∪[3,+∞).(2)53m-13n +13m-23n =53m-13(2m-3)+13m-23(2m-3)=|m+1|+|m-2|≥3,当且仅当-1≤m ≤2(或-5≤n ≤1)时等号成立, 所以53m-13n +13m-23n 的最小值是3.。
4和5的分与合
过关检测:
1、第21页的第5题,第22页的第6题。(第6题这是一题判断题,是学生第一次遇到,教师可以先教学生如何做,然后学生再开始进行判断。)
拓展练习:
2、第19页的思考题,请自己独立的填一填。(注意:还有不同的填写方法吗?)
3、从1,2,3,4,5,6,7,8这八个数中,挑出6个填在下面的括号内,使等式成立。
一年级<<4和5的分与合>>导学案
学习目标:
1、掌握4和5的有关组成。
2、有初步的观察能力、动手操作能力、口头表达能力。
3、有合作和与他人交流的能力。
学习重点:掌握4和5的组成。
学习难点:自己得出各数的组成
学案
导学案
一、自主学习
1、拿出4根小棒,摆一摆,可以摆成一个什么图形?(小组合作、动手、交流)
( )+ ( )= ( )+ ( )= ( )+ ( )
总结、评价:今天的学习,我学会了:。
我在方面的表现很好,在方面表现不够,以Байду номын сангаас要注意的是:。
总体表现(优、良、差),愉悦指数(高兴、一般、痛苦)
教师出示学具,摆一摆。
教师出示学具,摆一摆。
指导学生归纳总结。
(3)、试着背一背。
二、合作探究、归纳展示(小组合作完成下列各题,一组展示,其余补充、评价)
1、请你认真观察上面的4个数的组成,看看你发现了什么?(先可以小组里互相讨论,发表自己的意见,然后选一个代表发言说给其它同学听。也可以写在下面)
2、你们自己组说得怎么样,你认为哪个组说得最好?,还有什么不足的地方?(互相进行评价)
2、能把这4根小棒分成两堆吗?还有不同的分法吗?(根据小组同学回答情况,小组形成以下资料)
人教版高中数学选修4-5全册课堂学案3-椭圆的参数方程(学生版)
班级: 姓名: 编号:3
学习目标
了解椭圆参数方程及参数的意义
重点
椭圆参数方程的推导
难点
参数的确定及参数的意义
自主学习
自学内容:
阅读课本25页例4.
自学反馈:
将参数方程 化成普通方程.
精讲点拨
椭圆参数方程的推导与应用.
例1 以原点为圆心,分别以 为半径作两个圆.点 是大圆半径 与小圆的交点,过点
例2 求椭圆 的内接矩形的最大面积.
合作探究
问题:在椭圆 上求一点 ,使点 到直线 的距离最小,并求出最小距离.
当堂巩固
1.已知椭圆 上一点 .求其对应的参数 的值,并作图指出这个角.
2.点 是椭圆 上一点,且在第一象限, 的倾斜角为 .求点 的坐标.
作业布置
见课时作业
总结与反思
请同学们看看这节课的学习目标是否都已达到?你还有什么疑惑?
4,5的形成教案
4,5的形成教案教案主题:数学——4,5的形成教学目标:1.通过活动和讨论,引导学生发现4,5的数值特征和构成方式。
2.培养学生的观察能力、逻辑思维能力和数学创造力。
3.培养学生的团队合作能力和分享精神。
教学准备:1.石笔、小卡片、口径透明容器2.手指模型或数学符号模型3.数字图像或图片资源教学过程:一、导入(10分钟)1.准备一些数字图像或图片资源,包括4和5的数量、物品和形象等。
2.向学生展示图像,问学生4和5分别都有哪些东西?并引导学生描述图像特征。
二、发散思维(15分钟)1.将学生分成小组,每个小组分配一些石笔和小卡片,并给出任务:用石笔将卡片分成4份或5份,并用石笔标上相应的数字。
2.学生进行分组讨论和实践,引导他们通过试验和尝试,找出分成4份或5份的形成方式,并将自己的尝试介绍给其他小组。
三、概念讲解(10分钟)1.引导学生结合实际场景,总结出4和5的构成方式。
2.使用手指模型或数学符号模型,讲解4和5的概念和数值特征,引导学生从抽象的角度理解4和5。
四、情景演绎(15分钟)1.将学生分成小组,每个小组选择一个角色扮演情景。
2.情景一:请每组选择一件物品,比如苹果,通过分组的方式展示分成4份或5份的情景,例如将苹果分成4个等量的份或5个不等量的份。
3.情景二:请每组选择一个场景,比如野餐,通过分组的方式展示人们将食物分成4份或5份的情景,例如将食物分成4个盒或5个小包装。
4.每组进行表演,其他小组观看并提出问题和评价。
五、拓展延伸(20分钟)1.将学生分成小组,每个小组选择一个生活场景,通过数学操作展示分成4份或5份的情景,比如购物商品分成4份或5份、学习任务分成4份或5份等。
2.学生进行小组讨论和创作,并准备分享自己的场景和操作方法。
3.每个小组展示并分享自己的场景和操作方法,其他小组进行提问和讨论。
六、归纳总结(10分钟)1.引导学生总结4和5的构成方式和特征,提醒学生注意4是2的平方,5是素数。
5-4、5眼睛学案模板
教学目标: 1、眼睛的构造,知道眼睛是怎样看见物体的; 2、眼镜是怎样矫正视力的。
3、了解显微镜和望远镜的结构和原理。
教学重点:眼睛是怎样看物体的;眼镜是怎样矫正视力的;显微镜、望远镜的基本构造和原理教学难点:1、近视眼、远视眼的特点及其矫正方法; 2、眼镜的度数。
环节一:自主学习一1、眼睛中晶状体和角膜的共同作用相当于,它把来自物体的光在_______上,形成物体的像(填像的性质)。
视网膜上的视神经细胞受到光的刺激,把信号传输给大脑。
看远处物体时,睫状肌放松,晶状体比较____(偏折能力比较,焦距比较)。
看近处物体时,睫状肌收缩,晶状体比较(偏折能力比较,焦距比较)。
2、近视眼的表现:能看清的物体,看不清的物体。
近视的原因:晶状体太,折光能力太,或眼球前后方向太,致使远处物体的像成在视网膜。
近视眼的矫治:佩戴。
3、远视眼的表现:能看清的物体,看不清的物体。
远视的原因:晶状体太,折光能力太,或眼球前后方向太,致使远处物体的像成在视网膜。
远视眼的矫治:佩戴。
环节二:当堂训练一1.下列与近视眼不符合的是A.晶状体曲度过大B.物像落在视网膜前方C.眼球前后径过短D.可用凹透镜纠正2.近视眼是由于晶状体太______,远处物体的像落在视网膜______(填“前”或“后”)。
而看不清远处的物体。
远视眼是由于晶状体太______,近处物体的像落在视网膜______(填“前”或“后”)。
而看不清远处的物体。
3.眼睛通过睫状体来设定________的形状;当睫状体放松时,晶状体比较_______,远处物体的像落在_______上,眼球可以看清远处的物体。
4.图中是人眼晶状体调节光路图,其中描述正常眼的成像情况的是_______,描述近视眼的成像情况是_____;描述远视眼的成像是_______;描述矫正近视眼的方法的是______;描述矫正远视眼的方法的是______。
5.小明的爷爷和爸爸都是老花眼,爷爷的老花眼更重一些,小明的妈妈则是近视眼。
《不等式和绝对值不等式》学案2(人教A版选修4-5)
不等式的解法及应用★★★高考在考什么【考题回放】 1.不等式112x <的解集是( D ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .(,0)-∞⋃(2,)+∞2.“a >0,b >0”是“ab>0”的( A )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不允分也不必要条件 3.已知函数f(x)=ax 2+2ax+4(a>0),若x 1<x 2 , x 1+x 2=0 , 则( A )A.f(x 1)<f(x 2)B.f(x 1)=f(x 2)C.f(x 1)>f(x 2)D.f(x 1)与f(x 2)的大小不能确定4.不等式0121>+-x x的解集是 1(1,)2- . 5.已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 . 46.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).【专家解答】(I)设椭圆方程为22221y x a b+=(0a b >>),半焦距为c, 则21||a MA a c=-,11||A F a c =-,由题意,得 22222()24a a a c c a a b c ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得 2,1a b c ===故椭圆方程为22143y x += (II )设P(0,),||1m y m >, 当00y =时,120F PF ∠=当00y ≠时, 12102F PF PF M π<∠<∠< ∴只需求12tan F PF ∠的最大值即可。
人教A版高中数学选修4-5绝对值不等式的解法
高中数学学习材料(灿若寒星 精心整理制作)高二年级(下)数学学案绝对值不等式的解法制作人:岳双珊 审核人:张艳芬 时间 2013.03一.基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)、公式法:即利用a x >与a x <的解集求解。
主要知识:1.绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离。
2.a x >与a x <型的不等式的解法。
当0>a 时,不等式⇔>a x {}a x a x x -<>或,;不等式⇔<a x {}a x a x <<-; 当0<a 时,不等式⇔>a x {}R x x ∈;不等式⇔<a x ∅. 3.c b ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
4.关于绝对值不等式的常见类型有下列的同解变形 (1)()()()()();f x g x g x f x g x ≤⇔-≤≤ (2)()()()(),()()f x g x f x g x f x g x ≥⇔≤-≥或 (3)22()()()().f x g x f x g x ≤⇔≤(4)设0b a >>,则不等式()a f x b ≤<⇔()b f x a -<≤-或()a f x b ≤<(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。
例如:解不等式22xxx x >++.(三)、平方法:解()()f x g x >型不等式。
例如:解不等式123x x ->-.二.分类讨论法(零点分段法):即通过合理分类去绝对值后再求解。
高中数学 第一讲 不等式和绝对值不等式复习课学案 新人教A版选修4-5-新人教A版高二选修4-5数学
第一讲 不等式和绝对值不等式复习课学习目标 1.梳理本讲的重要知识要点,构建知识网络.2.进一步强化对基本不等式的理解和应用,尤其注意等号成立的条件.3.巩固对绝对值三角不等式的理解和掌握,进一步熟练绝对值三角不等式的应用.4.会解绝对值不等式.1.实数的运算性质与大小顺序的关系:a >b ⇔a -b >0,a =b ⇔a -b =0,a <b ⇔a -b <0,由此可知要比较两个实数的大小,判断差的符号即可. 2.不等式的基本性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇔a +c >b +c .(4)可乘性:如果a >b ,c >0,那么ac >bc ; 如果a >b ,c <0,那么ac <bc .(5)乘方:如果a >b >0,那么a n >b n(n ∈N ,n ≥2). (6)开方:如果a >b >0n a >nb n ∈N ,n ≥2). 3.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时,等号成立). (2)定理2:如果a ,b >0,那么a +b2≥ab (当且仅当a =b 时,等号成立).(3)引理:若a ,b ,c ∈R +,则a 3+b 3+c 3≥3abc (当且仅当a =b =c 时,等号成立). (4)定理3:如果a ,b ,c ∈R +,那么a +b +c3≥3abc (当且仅当a =b =c 时,等号成立).(5)推论:若a 1,a 2,…,a n ∈R +,则a 1+a 2+…+a n n≥na 1a 2…a n .当且仅当a 1=a 2=…=a n时,等号成立;(6)在应用基本不等式求最值时一定要注意考虑是否满足“一正,二定,三相等”的要求. 4.绝对值不等式的解法解含绝对值的不等式的基本思想是通过去掉绝对值符号,把含绝对值的不等式转化为一元一次不等式,或一元二次不等式.去绝对值符号常见的方法(1)根据绝对值的定义.(2)分区间讨论(零点分段法).(3)图象法.5.绝对值三角不等式(1)|a|的几何意义表示数轴上的点到原点的距离,|a-b|的几何意义表示数轴上两点间的距离.(2)|a+b|≤|a|+|b|(a,b∈R,ab≥0时等号成立).(3)|a-c|≤|a-b|+|b-c|(a,b,c∈R,(a-b)(b-c)≥0时等号成立).(4)||a|-|b||≤|a+b|≤|a|+|b|(a,b∈R,左边“=”成立的条件是ab≤0,右边“=”成立的条件是ab≥0).(5)||a|-|b||≤|a-b|≤|a|+|b|(a,b∈R,左边“=”成立的条件是ab≥0,右边“=”成立的条件是ab≤0).类型一不等式的基本性质的应用例1 “a+c>b+d”是“a>b且c>d”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案 A解析易得当a>b且c>d时,必有a+c>b+d.若a+c>b+d,则可能有a>b且c>d. 反思与感悟利用不等式的性质判断不等式或有关结论是否成立,再就是利用不等式性质,进行数值或代数式大小的比较,常用到分类讨论的思想.跟踪训练1 如果a∈R,且a2+a<0,那么a,a2,-a,-a2的大小关系是( )A.a2>a>-a2>-aB.-a>a2>-a2>aC.-a>a2>a>-a2D.a2>-a>a>-a2答案 B解析由a2+a<0知,a≠0,故有a<-a2<0,0<a2<-a.故选B.类型二 基本不等式及其应用命题角度1 用基本不等式证明不等式 例2 已知a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d. 证明 ∵a >b >c >d ,∴a -b >0,b -c >0,c -d >0, ∴⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d ) =⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d ·[(a -b )+(b -c )+(c -d )] ≥331a -b ·1b -c ·1c -d·33(a -b )(b -c )(c -d )=9. ∴1a -b +1b -c +1c -d ≥9a -d. 反思与感悟 不等式的证明方法很多,关键是从式子的结构入手分析,运用基本不等式证明不等式时,要注意成立的条件,同时熟记一些变形形式. 跟踪训练2 设a ,b ,c 均为正数,证明:(ab +a +b +1)(ab +ac +bc +c 2)≥16abc . 证明 (ab +a +b +1)·(ab +ac +bc +c 2) =(b +1)(a +1)(b +c )(a +c ) ≥2b ·2a ·2bc ·2ac =16abc , ∴所证不等式成立.命题角度2 求最大、最小值例3 若x ,y ,z ∈R +,x -2y +3z =0,则y 2xz的最小值为________.答案 3解析 由x -2y +3z =0,得y =x +3z2,则y 2xz =x 2+9z 2+6xz 4xz ≥6xz +6xz 4xz=3, 当且仅当x =3z 时取“=”.反思与感悟 利用基本不等式求最值问题一般有两种类型(1)和为定值时,积有最大值;(2)积为定值时,和有最小值,在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.跟踪训练3 当0<x <π2时,函数f (x )=1+cos2x +8sin 2xsin2x 的最小值为( )A .2B .2 3C .4D .4 3答案 C解析 f (x )=2cos 2x +8sin 2x 2sin x cos x =cos x sin x +4sin xcos x.∵x ∈⎝⎛⎭⎪⎫0,π2,∴cos x >0,sin x >0.故f (x )=cos x sin x +4sin xcos x ≥2cos x sin x ·4sin xcos x=4,当且仅当cos x =2sin x >0时,等号成立.故选C.类型三 含绝对值的不等式的解法 例4 解下列关于x 的不等式. (1)|x +1|>|x -3|; (2)|x -2|-|2x +5|>2x . 解 (1)方法一 |x +1|>|x -3|,两边平方得(x +1)2>(x -3)2,∴8x >8,∴x >1. ∴原不等式的解集为{x |x >1}. 方法二 分段讨论:当x ≤-1时,有-x -1>-x +3,此时x ∈∅; 当-1<x ≤3时,有x +1>-x +3, 即x >1,∴此时1<x ≤3;当x >3时,有x +1>x -3,∴x >3. ∴原不等式的解集为{x |x >1}.(2)分段讨论:①当x <-52时,原不等式变形为2-x +2x +5>2x ,解得x <7,∴不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-52.②当-52≤x ≤2时,原不等式变形为2-x -2x -5>2x ,解得x <-35,∴不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52≤x <-35. ③当x >2时,原不等式变形为x -2-2x -5>2x , 解得x <-73,∴原不等式无解.综上可知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-35. 反思与感悟 含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间的符号,转化为不含绝对值的不等式去解.这种方法通常称为零点分段法.跟踪训练4 已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=|x -2|+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4,解得x ≤1; 当2<x <4时,f (x )≥4-|x -4|,得2≥4,无解; 当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4,解得x ≥5. 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,解得a =3.类型四 恒成立问题例5 设函数f (x )=|x +1|+|x -4|-a . (1)当a =1时,求函数f (x )的最小值;(2)若f (x )≥4a+1对任意的实数x 恒成立,求实数a 的取值范围.解 (1)当a =1时,f (x )=|x +1|+|x -4|-1≥|x +1+4-x |-1=4,∴f (x )min =4.(2)f (x )≥4a+1对任意的实数x 恒成立⇔|x +1|+|x -4|-1≥a +4a对任意的实数x 恒成立⇔a +4a≤4.当a <0时,上式成立; 当a >0时,a +4a≥2a ·4a=4,当且仅当a =4a,即a =2时上式取等号,此时a +4a≤4成立.综上,实数a 的取值范围为(-∞,0)∪{2}.反思与感悟 不等式恒成立问题,通常是分离参数,将其转化为求最大、最小值问题.当然,根据题目特点,还可能用①变更主次元;②数形结合等方法.跟踪训练5 已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪⎪⎪f (x )-2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范围.解 (1)由|ax +1|≤3,得-4≤ax ≤2, ∵f (x )≤3的解集为{x |-2≤x ≤1},∴当a ≤0时,不合题意. 又当a >0时,-4a ≤x ≤2a,∴a =2.(2)令h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2=|2x +1|-|2x +2|,∴h (x )=⎩⎪⎨⎪⎧1,x ≤-1,-4x -3,-1<x <-12,-1,x ≥-12,∴|h (x )|≤1,∴k ≥1,即k 的取值范围是[1,+∞).1.给出下列四个命题:①若a >b ,c >1,则a lg c >b lg c ;②若a >b ,c >0,则a lg c >b lg c ;③若a >b ,则a ·2c>b ·2c;④若a <b <0,c >0,则c a >cb. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4答案 C解析 ①正确,c >1,lg c >0;②不正确,当0<c ≤1时,lg c ≤0;③正确,2c>0;④正确,由a <b <0,得0>1a >1b ,故c a >cb.2.设6<a <10,a2≤b ≤2a ,c =a +b ,那么c 的取值范围是( )A .9<c <30B .0≤c ≤18C .0≤c ≤30D .15<c <30答案 A解析 因为a 2≤b ≤2a ,所以3a2≤a +b ≤3a .又因为6<a <10,所以3a2>9,3a <30.所以9<3a2≤a +b ≤3a <30,即9<c <30.3.不等式4<|3x -2|<8的解集为_______________________________________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2<x <-23或2<x <103 解析 由4<|3x -2|<8,得⎩⎪⎨⎪⎧|3x -2|>4,|3x -2|<8⇒⎩⎪⎨⎪⎧3x -2<-4或3x -2>4,-8<3x -2<8⇒⎩⎪⎨⎪⎧x <-23或x >2,-2<x <103.∴-2<x <-23或2<x <103.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2<x <-23或2<x <103. 4.解不等式3≤|x -2|<4.解 方法一 原不等式等价于⎩⎪⎨⎪⎧|x -2|≥3, ①|x -2|<4. ②由①得x -2≤-3或x -2≥3, ∴x ≤-1或x ≥5. 由②得-4<x -2<4, ∴-2<x <6.∴原不等式的解集为{x |-2<x ≤-1或5≤x <6}.方法二 3≤|x -2|<4⇔3≤x -2<4或-4<x -2≤-3⇔5≤x <6或-2<x ≤-1. ∴原不等式的解集为{x |-2<x ≤-1或5≤x <6}.1.本讲的重点是均值不等式和绝对值不等式,要特别注意含绝对值不等式的解法. 2.重点题型有利用不等式的基本性质、均值不等式、绝对值三角不等式证明不等式或求函数最值问题;解绝对值不等式.3.重点考查利用不等式性质,均值不等式求函数的最值,含参数的绝对值不等式有解、解集是空集或恒成立问题.一、选择题1.若a >b ,则下列不等式中一定成立的是( ) A .a >2b B .-b a>-1 C .2a >2bD .lg(a -b )>1答案 C解析 ∵y =2x 是增函数,又a >b ,∴2a >2b. 2.设a ,b 为正实数,以下不等式恒成立的为( ) ①ab >2aba +b; ②a >|a -b |-b ; ③a 2+b 2>4ab -3b 2; ④ab +2ab>2.A .①③B .①④C .②③D .②④答案 D解析 ①不恒成立,因为a =b 时取“=”; ②恒成立,因为a ,b 均为正数; ④是恒成立的,因为ab +2ab≥22>2.3.若a >b ,b >0,则下列与-b <1x<a 等价的是( )A .-1b <x <0或0<x <1aB .-1a<x <1bC .x <-1a 或x >1bD .x <-1b或x >1a答案 D解析 -b <1x <a ,当x <0时,-bx >1>ax ,解得x <-1b;当x >0时,-bx <1<ax ,解得x >1a,故选D.4.不等式|x +3|-|x -3|>3的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x ≤3 C .{x |x ≥3} D .{x |-3<x ≤0}答案 A解析 ①由⎩⎪⎨⎪⎧x ≤-3,-(x +3)+(x -3)>3,无解;②由⎩⎪⎨⎪⎧-3<x <3,x +3+x -3>3,得32<x <3; ③由⎩⎪⎨⎪⎧x ≥3,x +3-(x -3)>3,得x ≥3.综上,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32. 5.“a <4”是“对任意实数x ,|2x -1|+|2x +3|≥a 成立”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 B解析 ∵|2x -1|+|2x +3|≥|2x -1-(2x +3)|=4, ∴当a <4时⇒|2x -1|+|2x +3|≥a 成立,即充分条件成立;对任意实数x ,|2x -1|+|2x +3|≥a ⇒a ≤4,不能推出a <4,即必要条件不成立. 二、填空题 6.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围为________.答案 ⎣⎢⎡⎭⎪⎫15,+∞ 解析 令f (x )=xx 2+3x +1=1x +1x+3, ∵x >0,∴x +1x≥2,∴f (x )≤12+3=15,当且仅当x =1x ,即x =1时等号成立,即f (x )的最大值为15. 若使不等式恒成立,只需a ≥15即可. 7.已知不等式|x +2|-|x |≤a 的解集不是空集,则实数a 的取值范围是________. 答案 [-2,+∞)解析 ∵||x +2|-|x ||≤|x +2-x |=2,∴2≥|x +2|-|x |≥-2,∵不等式|x +2|-|x |≤a 的解集不是空集,∴a ≥-2.8.定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.答案 2解析 因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x 22xy. 又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy =x 2+2y 22xy ≥22xy 2xy =2,当且仅当x =2y 时,等号成立. 9.不等式14(3|x |-1)≤12|x |+3的解集为________. 答案 {x |-13≤x ≤13}解析 当x <0时,不等式为14(-3x -1)≤-12x +3, 解得-13≤x <0,当x ≥0时,不等式为14(3x -1)≤12x +3, 解得0≤x ≤13,∴不等式的解集为{x |-13≤x ≤13}.10.若f (x )=2|x +1|-|x -1|且f (x )≥22,则x 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫34,+∞ 解析 ∵f (x )=2x 是增函数,∴f (x )≥22,即|x +1|-|x -1|≥32,①⎩⎪⎨⎪⎧ x ≥1,2≥32,∴x ≥1,②⎩⎪⎨⎪⎧ -1<x <1,2x ≥32,∴34≤x <1, ③⎩⎪⎨⎪⎧ x ≤-1,-2≤32,无解.综上x ∈⎣⎢⎡⎭⎪⎫34,+∞. 11.已知函数f (x )=|x -a |,若不等式f (x )≤3的解集为{x |-1≤x ≤5},则实数a 的值为________.答案 2解析 由f (x )≤3,得|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧ a -3=-1,a +3=5,解得a =2,所以实数a 的值为2.三、解答题12.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.解 (1)当a =-3时,f (x )=|x -3|+|x -2|=⎩⎪⎨⎪⎧ -2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3,得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3,得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |,当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a , 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].13.(2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎪⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围是⎝⎛⎦⎥⎤-∞,54. 四、探究与拓展14.已知关于x 的不等式|2x +1|-|x -1|≤log 2a (其中a >0).(1)当a =4时,求不等式的解集;(2)若不等式有解,求实数a 的取值范围.解 (1)令f (x )=|2x +1|-|x -1|,当a =4时,f (x )≤2,当x <-12时,f (x )=-x -2≤2,得-4≤x <-12; 当-12≤x ≤1时,f (x )=3x ≤2,得-12≤x ≤23; 当x >1时,f (x )=x +2≤2,此时x 不存在.所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -4≤x ≤23.(2)设f (x )=|2x +1|-|x -1|=⎩⎪⎨⎪⎧ -x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1,故f (x )∈⎣⎢⎡⎭⎪⎫-32,+∞,即f (x )的最小值为-32, 若f (x )≤log 2a 有解,则log 2a ≥-32,解得a ≥24, 即a 的取值范围是⎣⎢⎡⎭⎪⎫24,+∞. 15.已知不等式|2x -3|<x 与不等式x 2-mx +n <0的解集相同.(1)求m -n ;(2)若a ,b ,c ∈(0,1),且ab +bc +ac =m -n ,求a +b +c 的最小值. 解 (1)|2x -3|<x ,即-x <2x -3<x ,解得1<x <3, ∴1,3是方程x 2-mx +n =0的两根,∴由根与系数的关系,得⎩⎪⎨⎪⎧ m =4,n =3.∴m -n =1.(2)由(1)得ab +bc +ac =1,∴(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac =a 2+b 22+b 2+c 22+a 2+c 22+2.∵a 2+b 22≥ab ,b 2+c 22≥bc ,a 2+c 22≥ac , ∴a 2+b 22+b 2+c 22+a 2+c 22≥ab +bc +ac =1. ∴(a +b +c )2=a 2+b 22+b 2+c 22+a 2+c 22+2≥3(当且仅当a =b =c =33时取等号), ∴a +b +c 的最小值是 3.。
七上4-5章——学案(修订)
课题 4—1 人口与人种 主备 孙元金 课时 第1课时 课型 新授课学习 目标1、初步学会阅读分析人口增长曲线图,并能利用世界人口统计数字,绘制人口增长统计图表。
2、学会计算人口自然增长率和人口密度。
【预习导学】(自学教材P64—67) 一、世界人口的增长1、2006年3月,世界人口总数达 。
2、人口增长速度:⑴18世纪以前,人口增长缓慢,20世纪以来,世界人口增长速度 。
⑵人口增长速度是有 、 决定的,用 表示。
公式: 。
二、世界人口的分布3、人口疏密程度用 来表示。
公式: 。
4、人口分布(参照课本P66图4.5)⑴人口稠密区:亚洲的 ,欧洲以及 洲东部等 地区。
⑵人口稀疏区:极端干旱的 地区,气候过于潮湿的 地区, 终年严寒的 地区,地势高峻的 。
组长检查:①完成: ②未做完:【图释导学】学习笔记[设问导入]:你们知道现在地球上有多少人吗?地球上的人口总数又是怎样变化的? 互动一:世界人口的增长1、完成课本P65 活动12、分组讨论:是哪些因素导致人口增长速度的加快?互动二:人口的增长既然有快慢,这个快和慢的速度用什么来衡量?1、完成课本P65活动2 计算四个国家的出生率、死亡率和人口自然增长率并比较。
2、完成课本P66活动3根据非洲人口统计数据,完成非洲人口增长柱状折线图。
[拓展思考]:人口越多是不是人口自然增长率就越高?互动三:世界人口分布不均衡,有疏密之分,可以如何来表示呢?1、人口密度:①概念: ②表示: ③公式:2、<活动>完成课本P65活动1,并填表。
3、读世界人口分布图,总结发现:[拓展思考]:人口数量越多是不是人口密度就越大?⑴在左图中用彩笔画出世界人口 增长的两个不同阶段。
⑵根据该图,预测一下世界人口 发展趋势: 。
⑴从图中可以看出:①世界人口分布特点: ; ②人口稠密地区是A B 因为 。
C D 因为 。
⑵完成课本P67活动2【达标反馈】一、选择题(10分/题)1、某地区在一年内平均每1000人中,出生并存活25个婴儿,死亡10人,那么该地人口出生率、死亡率和人口自然增长率分别是()A 25‟,10‟,15‟B 25‟,10‟,35‟C 25‟,15‟,10‟D 25‟,35‟,10‟2、人口分布密集地区绝大部分位于()A 南半球中低纬度近海平原地带B热带接近赤道地区C北半球中低纬度近海平原地带D北半球高纬度地区3、某城市面积约2000km²,人口500万,那么该市的人口密度是()A 250人/km²B 2500人/km²C 25000人/km²D 40人/km²4、世界人口增长大大加快实在()A 18世纪以前B 15世纪以前C 18世纪以后D 20世纪以后5、下列地区中,人口自然增长率最高的是(),人口自然增长率最低的是()A 拉丁美洲B 亚洲C 非洲D 欧洲6、下列关于当前世界人口增长的说法,正确的是()A发展中国家增长快B发达国家增长快C所有国家都增长快D欧洲国家增长快二、综合体(5分/空)7、读世界人口分布图,回答下列问题。
人教版2019版高中数学第一讲不等式和绝对值不等式二第2课时绝对值不等式的解法学案新人教A版选修4_5
第2课时绝对值不等式的解法学习目标 1.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c.2.理解并掌握绝对值不等式的几种解法,并能根据不等式的结构特征选择适当方法求解.知识点一|ax+b|≤c和|ax+b|≥c型不等式的解法思考1 |x|≥2说明实数x有什么特征?答案x在数轴上对应的点x到原点的距离大于等于2.∴x≥2或x≤-2.思考2 若|2x-3|≤5,求x的取值范围.答案{x|-1≤x≤4}.梳理(1)含绝对值不等式|x|<a与|x|>a的解法①|x|<a⇔错误!②|x|>a⇔错误!(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c,②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.知识点二|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法思考如何去掉|x-a|+|x-b|的绝对值符号?答案采用零点分段法.即令|x-a|+|x-b|=0,得x1=a,x2=b,(不妨设a<b)|x-a|+|x-b|=错误!梳理|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法(1)利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.(2)以绝对值的“零点”为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键.(3)通过构造函数,利用函数的图象求解,体现函数与方程的思想,正确求出函数的零点并画出函数图象(有时需要考查函数的增减性)是解题关键.特别提醒:解含绝对值不等式的关键是去掉绝对值符号,去绝对值符号的关键是“零点分段”法.类型一 |ax +b |≤c 与|ax +b |≥c (c >0)型的不等式的解法 例1 解下列不等式:(1)|5x -2|≥8;(2)2≤|x -2|≤4.解 (1)由|5x -2|≥8,得5x -2≥8或5x -2≤-8,解得x ≥2或x ≤-65,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x≥2或x≤-65. (2)原不等式等价于⎩⎪⎨⎪⎧|x -2|≥2, ①|x -2|≤4,②由①得x -2≤-2或x -2≥2,∴x ≤0或x ≥4, 由②得-4≤x -2≤4,∴-2≤x ≤6.∴原不等式的解集为{x |-2≤x ≤0或4≤x ≤6}. 反思与感悟 |ax +b |≥c 和|ax +b |≤c 型不等式的解法 (1)当c >0时,|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c , |ax +b |≤c ⇔-c ≤ax +b ≤c .(2)当c =0时,|ax +b |≥c 的解集为R ,|ax +b |<c 的解集为∅. (3)当c <0时,|ax +b |≥c 的解集为R ,|ax +b |≤c 的解集为∅. 跟踪训练1 解关于x 的不等式: ||x -1|-4|<2.解 ||x -1|-4|<2⇔-2<|x -1|-4<2 ⇔2<|x -1|<6⇔⎩⎪⎨⎪⎧|x -1|>2,|x -1|<6⇔⎩⎪⎨⎪⎧x -1<-2或x -1>2,-6<x -1<6⇔⎩⎪⎨⎪⎧x <-1或x >3,-5<x <7⇔-5<x <-1或3<x <7.∴不等式||x -1|-4|<2的解集为{x |-5<x <-1或3<x <7}. 类型二 |x -a |+|x -b |≥c 和|x -a |+|x -b |≤c (c >0)型不等式的解法 例2 解关于x 的不等式:|3x -2|+|x -1|>3. 解 方法一 分类(零点分段)讨论法|3x -2|=0,|x -1|=0的根23,1把实数轴分为三个区间,在这三个区间上根据绝对值的定义,代数式|3x -2|+|x -1|有不同的解析表达式,因而原不等式的解集为以下三个不等式组解集的并集. ①因为当x ≤23时,|3x -2|+|x -1|=2-3x +1-x =3-4x ,所以当x ≤23时,|3x -2|+|x -1|>3⇔3-4x >3⇔x <0.因此,不等式组⎩⎪⎨⎪⎧x≤23,|3x -2|+|x -1|>3的解集为{x |x <0}.②因为当23<x <1时,|3x -2|+|x -1|=3x -2+1-x =2x -1, 所以当23<x <1时,|3x -2|+|x -1|>3⇔2x -1>3⇔x >2. 因此,不等式组⎩⎪⎨⎪⎧23<x <1,|3x -2|+|x -1|>3的解集为∅.③因为当x ≥1时,|3x -2|+|x -1|=3x -2+x -1=4x -3, 所以当x ≥1时,|3x -2|+|x -1|>3⇔4x -3>3⇔x >32.因此,不等式组⎩⎪⎨⎪⎧x≥1,|3x -2|+|x -1|>3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32.于是原不等式的解集为以上三个不等式组解集的并集,即{x |x <0}∪∅∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <0或x >32. 方法二 构造函数f (x )=|3x -2|+|x -1|-3,则原不等式的解集为{x |f (x )>0}.f (x )=⎩⎪⎨⎪⎧-4x ,x≤23,2x -4,23<x <1,4x -6,x≥1.作出函数f (x )的图象,如图.它是分段线性函数,函数的零点是0和32.从图象可知,当x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫32,+∞时,有f (x )>0. 所以原不等式的解集是(-∞,0)∪⎝ ⎛⎭⎪⎫32,+∞.反思与感悟 |x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(零点分段)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况. 跟踪训练2 解不等式|x +7|-|x -2|≤3.解 方法一 |x +7|-|x -2|可以看成数轴上的动点(坐标为x )到对应点-7的距离与到对应点2的距离的差,先找到这个差等于3的点,即x =-1.由图易知不等式|x +7|-|x -2|≤3的解为x ≤-1,即x ∈(-∞,-1].方法二 令x +7=0,得x =-7,令x -2=0,得x =2. ①当x <-7时,不等式变为-x -7+x -2≤3,∴-9≤3成立,∴x<-7.②当-7≤x≤2时,不等式变为x+7+x-2≤3,即2x≤-2,∴x≤-1,∴-7≤x≤-1.③当x>2时,不等式变为x+7-x+2≤3,即9≤3不成立,∴x∈∅.∴原不等式的解集为(-∞,-1].方法三 将原不等式转化为|x +7|-|x -2|-3≤0, 构造函数y =|x +7|-|x -2|-3, 即y =⎩⎪⎨⎪⎧-12,x <-7,2x +2,-7≤x≤2,6,x >2.作出函数的图象,由图象可知,当x ≤-1时,y ≤0, 即|x +7|-|x -2|-3≤0, ∴原不等式的解集为(-∞,-1]. 类型三 含绝对值不等式的恒成立问题 例3 已知函数f (x )=|2x +1|+|2x +a |. (1)当a =-3时,求不等式f (x )≤6的解集;(2)若关于x 的不等式f (x )>a 恒成立,求实数a 的取值范围. 解 (1)∵当a =-3时,f (x )=|2x +1|+|2x -3|, ∴f (x )≤6,等价于|2x +1|+|2x -3|-6≤0, 令g (x )=|2x +1|+|2x -3|-6,令|2x +1|=0,得x =-12,令|2x -3|=0,得x =32.∴g (x )=⎩⎪⎨⎪⎧-4x -4,x≤-12,-2,-12<x≤32,4x -8,x >32.作y =g (x )的图象,如图,∴f (x )≤6的解集为[-1,2].(2)∵f (x )=|2x +1|+|2x +a |≥|(2x +1)-(2x +a )|=|a -1|, ∴f (x )min =|a -1|.要使f (x )>a 恒成立,只需|a -1|>a 成立即可. 由|a -1|>a ,得a -1>a 或a -1<-a , ∴a <12,∴a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 引申探究若f (x )=|2x +1|-|2x +a |且f (x )<a 恒成立,求a 的取值范围. 解 ∵f (x )=|2x +1|-|2x +a |≤|(2x +1)-(2x +a )| =|a -1|,∴f (x )max =|a -1|.∵f (x )<a 恒成立,∴|a -1|<a ,∴-a <a -1<a , ∴a >12,∴a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.反思与感悟 不等式解集为R 或为空集时,都可以转化为不等式恒成立问题.f (x )<a 恒成立⇔f (x )max <a ,f (x )>a 恒成立⇔f (x )min >a .跟踪训练3 已知不等式|x +2|-|x +3|>m .根据以下情形分别求出m 的取值范围. (1)若不等式有解; (2)若不等式的解集为R ; (3)若不等式的解集为∅.解 方法一 因为|x +2|-|x +3|的几何意义为数轴上任意一点P (x )与两定点A (-2),B (-3)距离的差,即|x +2|-|x +3|=|PA |-|PB |.则(|PA |-|PB |)max =1,(|PA |-|PB |)min =-1. 即-1≤|x +2|-|x +3|≤1.(1)若不等式有解,m 只要比|x +2|-|x +3|的最大值小即可,即m <1,m 的取值范围为(-∞,1).(2)若不等式的解集为R ,即不等式恒成立,m 只要比|x +2|-|x +3|的最小值还小,即m <-1,m 的取值范围为(-∞,-1).(3)若不等式的解集为∅,m 只要不小于|x +2|-|x +3|的最大值即可,即m ≥1,m 的取值范围为[1,+∞).方法二 由|x +2|-|x +3|≤|(x +2)-(x +3)|=1, |x +3|-|x +2|≤|(x +3)-(x +2)|=1, 可得-1≤|x +2|-|x +3|≤1. (1)若不等式有解,则m ∈(-∞,1). (2)若不等式的解集为R ,则m ∈(-∞,-1). (3)若不等式的解集为∅,则m ∈[1,+∞).1.不等式|x +1|>3的解集是( ) A .{x |x <-4或x >2} B .{x |-4<x <2} C .{x |x <-4或x ≥2} D .{x |-4≤x <2}答案 A解析 |x +1|>3,则x +1<-3或x +1>3, 因此x <-4或x >2.2.不等式|2x -1|-2|x +3|>0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32或x <-12 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <32 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32或x <-12且x≠-3D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32 答案 C解析 原不等式⇒⎩⎪⎨⎪⎧|2x -1|>2,x +3≠0⇒⎩⎪⎨⎪⎧2x -1<-2或2x -1>2,x≠-3⇒⎩⎪⎨⎪⎧x <-12或x >32,x≠-3.3.不等式|x +1|+|x +2|<5的所有实数解的集合是( ) A .(-3,2) B .(-1,3)C .(-4,1) D.⎝ ⎛⎭⎪⎫-32,72 答案 C解析 |x +1|+|x +2|表示数轴上一点到-2,-1两点的距离之和,根据-2,-1之间的距离为1,可得到与-2,-1距离和为5的点是-4,1.因此|x +1|+|x +2|<5解集是(-4,1).4.已知x 为实数,且|x -5|+|x -3|<m 有解,则m 的取值范围是( ) A .m >1B .m ≥1C .m >2D .m ≥2 答案 C解析 ∵|x -5|+|x -3|≥|(x -5)-(x -3)|=2, ∴m >2.5.解不等式|2x -1|+|3x +2|≥8. 解 (1)当x ≤-23时,|2x -1|+|3x +2|≥8⇔1-2x -(3x +2)≥8 ⇔-5x ≥9⇔x ≤-95,∴x ≤-95.(2)当-23<x <12时,|2x -1|+|3x +2|≥8⇔1-2x +3x +2≥8⇔x ≥5, ∴x ∈∅. (3)当x ≥12时,|2x -1|+|3x +2|≥8⇔5x +1≥8⇔5x ≥7⇒x ≥75,∴x ≥75.∴原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-95∪⎣⎢⎡⎭⎪⎫75,+∞.1.解不等式|ax +b |≤c ,|ax +b |≥c(1)当c ≥0时,|ax +b |≤c ⇔-c ≤ax +b ≤c ,解之即可;|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c ,解之即可.(2)当c <0时,由绝对值的定义知|ax +b |≤c 的解集为∅,|ax +b |≥c 的解集为R . 2.解|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c 型的不等式的核心步骤是“零点分段”,即(1)令每个绝对值符号里的一次式为零,求出相应的根; (2)把这些根由小到大排序并把实数集分为若干个区间;(3)由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集; (4)这些不等式的解集的并集就是原不等式的解集.一、选择题1.不等式x 2-|x |-2<0(x ∈R )的解集是( ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1} 答案 A解析 当x ≥0时,不等式化为x 2-x -2<0, 解得-1<x <2,所以0≤x <2;当x <0时,不等式化为x 2+x -2<0,解得-2<x <1,所以-2<x <0. 故原不等式的解集为{x |-2<x <2}.2.若关于x 的不等式|x -2|+|x -a |≥a 在R 上恒成立,则a 的最大值是( ) A .0 B .1 C .-1 D .2答案 B解析 ∵|x -2|+|x -a |≥|a -2|,∴|a -2|≥a ,即a -2≥a 或a -2≤-a ,∴a ≤1.3.设函数f (x )=错误!则使f (x )≥1的自变量x 的取值范围是( )A .(-∞,-2]∪[0,4]B .(-∞,-2]∪[0,1]C .(-∞,-2]∪[1,4]D .[-2,0]∪[1,4]答案 A4.关于x 的不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)答案 A解析 ∵|x +3|-|x -1|≤|4|=4,∴a 2-3a ≥4,即a 2-3a -4≥0,解得a ≤-1或a ≥4.5.当|x -2|<a 时,不等式|x 2-4|<1成立,则正数a 的取值范围是( )A .a >5-2B .0<a ≤5-2C .a ≥5-2D .以上都不正确答案 B解析 由|x -2|<a ,得a >0,且-a +2<x <a +2,由|x 2-4|<1,得3<x <5或-5<x <- 3. ∴⎩⎨⎧ a +2≤5,-a +2≥3,即0<a ≤5-2, 或⎩⎨⎧ a +2≤-3,-a +2≥-5,无解.∴0<a ≤5-2.二、填空题6.不等式|a +b||a|-|b|≥1成立的充要条件是________. 答案 |a |>|b |解析 |a +b||a|-|b|≥1⇔错误!≥0 ⇔(|a |-|b |)·[|a +b |-(|a |-|b |)]≥0.而|a +b |≥|a |-|b |,∴|a +b |-(|a |-|b |)≥0.∴|a |-|b |>0,即|a |>|b |.7.若关于x 的不等式|ax -2|<3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -53<x <13,则a =________. 答案 -3解析 ∵|ax -2|<3,∴-1<ax <5.当a >0时,-1a <x <5a,与已知条件不符; 当a =0时,x ∈R ,与已知条件不符;当a <0时,5a <x <-1a,又不等式的解集为 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -53<x <13x ,故a =-3. 8.已知函数f (x )=|x -a |+a ,g (x )=4-x 2,若存在x 0∈R 使g (x 0)≥f (x 0),则a 的取值范围是________.答案 ⎝⎛⎦⎥⎤-∞,178 解析 若存在x 0∈R 使g (x 0)≥f (x 0),则x 2+|x -a |+a -4≤0有解.当x ≥a 时,x 2+x -4≤0,显然有解;当x <a 时,x 2-x +2a -4≤0,由Δ=1-4(2a -4)≥0,解得a ≤178.故答案为⎝⎛⎦⎥⎤-∞,178. 9.已知函数f (x )=|2x -1|+x +3,若f (x )≤5,则x 的取值范围是________. 答案 [-1,1]解析 由题意可知,|2x -1|+x +3≤5,即|2x -1|≤2-x ,所以⎩⎪⎨⎪⎧ 2x -1≥0,2x -1≤2-x 或⎩⎪⎨⎪⎧ 2x -1<0,1-2x≤2-x ,解得12≤x ≤1或-1≤x <12, 故x 的取值范围是{x | -1≤x≤1}.10.已知集合A ={x ||x -4|+|x -1|<5},B ={x |a <x <6}且A ∩B =(2,b ),则a +b =________.答案 711.已知函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a =________.答案 -4或8解析 ①当a ≤2时,f (x )=⎩⎪⎨⎪⎧ -3x -a -1,x <-1,-x +1-a ,-1≤x≤-a 2,3x +a +1,x >-a 2. ②当a >2时,f (x )=⎩⎪⎨⎪⎧ -3x -a -1,x <-a 2,x +a -1,-a 2≤x≤-1,3x +a +1,x >-1,由①②可得f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=⎪⎪⎪⎪⎪⎪-a 2+1=3,解得a =-4或8. 三、解答题 12.已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2.(1)解不等式|g (x )|<5;(2)若对任意x 1∈R ,都存在x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围. 解 (1)由||x -1|+2|<5,得-5<|x -1|+2<5,即-7<|x -1|<3,得不等式的解集为{x |-2<x <4}.(2)因为对任意x 1∈R ,都存在x 2∈R ,使得f (x 1)=g (x 2)成立,所以{y |y =f (x )}⊆{y |y =g (x )}.又f (x )=|2x -a |+|2x +3|≥|(2x -a )-(2x +3)|=|a +3|,g (x )=|x -1|+2≥2,所以|a +3|≥2,解得a ≥-1或a ≤-5.故实数a 的取值范围为[-1,+∞)∪(-∞,-5].13.已知a +b =1,对任意的a ,b ∈(0,+∞),1a +4b≥|2x -1|-|x +1|恒成立,求x 的取值范围.解 因为a >0,b >0且a +b =1,所以1a +4b =(a +b )⎝ ⎛⎭⎪⎫1a +4b =5+b a +4a b ≥9, 故1a +4b的最小值为9, 因为对任意的a ,b ∈(0,+∞),使1a +4b≥|2x -1|-|x +1|恒成立, 所以|2x -1|-|x +1|≤9,当x ≤-1时,2-x ≤9,所以-7≤x ≤-1;当-1<x <12时,-3x ≤9,所以-1<x <12; 当x ≥12时,x -2≤9,所以12≤x ≤11. 综上所述,x 的取值范围是[-7,11].四、探究与拓展14.(2018·全国Ⅱ)设函数f (x )=5-|x +a |-|x -2|.(1)当a =1时,求不等式f (x )≥0的解集;(2)若f (x )≤1,求a 的取值范围.解 (1)当a =1时,f (x )=5-|x +1|-|x -2|=⎩⎪⎨⎪⎧ 2x +4,x≤-1,2,-1<x≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}.(2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当(x +a )(x -2)≤0时等号成立.故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).15.设函数f (x )=|x -1|+|x -2|.(1)画出函数y =f (x )的图象;(2)若不等式|a +b |+|a -b |≥|a |f (x )(a ≠0,a ,b ∈R )恒成立,求实数x 的取值范围. 解 (1)当x ≤1时,f (x )=-(x -1)-(x -2)=-2x +3;当1<x ≤2时,f (x )=(x -1)-(x -2)=1;当x >2时,f (x )=(x -1)+(x -2)=2x -3.所以f (x )=⎩⎪⎨⎪⎧ -2x +3,x≤1,1,1<x≤2,2x -3,x >2.图象如图所示.(2)由|a +b |+|a -b |≥|a |f (x ),得|a +b|+|a -b||a|≥f (x ). 又因为|a +b|+|a -b||a|≥|a +b +a -b||a|=2, 所以2≥f (x ),解不等式2≥|x -1|+|x -2|,得12≤x ≤52.。
北师大版高三数学(文科)一轮复习选修4-5第2讲不等式的证明学案
第2讲 不等式的证明[学生用书P223]1.不等式证明的方法 (1)比较法 ①作差比较法:知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b 只要证明a -b >0即可,这种方法称为作差比较法.②作商比较法:由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明ab >1即可,这种方法称为作商比较法.(2)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫综合法.即“由因导果”的方法.(3)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫分析法.即“执果索因”的方法.(4)反证法和放缩法①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫做反证法.②在证明不等式时,有时要把所证不等式的一边适当地放大或缩小,此利于化简并使它与不等式的另一边的关系更为明显,从而得出原不等式成立,这种方法称为放缩法.(5)数学归纳法一般地,当要证明一个命题对于不小于某正整数n 0的所有正整数n 都成立时,可以用以下两个步骤:①证明当n =n 0时命题成立;②假设当n =k (k ∈N *,且k ≥n 0)时命题成立,证明n =k +1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n 0的所有正整数都成立.这种证明方法称为数学归纳法.2.几个常用基本不等式(1)二维形式的柯西不等式 ①定理1(二维形式的柯西不等式)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立. ②(二维变式)a 2+b 2·c 2+d 2≥|ac +bd |,a 2+b 2·c 2+d 2≥|ac |+|bd |.③定理2(柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.④定理3(二维形式的三角不等式)设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥⑤(三角变式)设x 1,y 1,x 2,y 2,x 3,y 3∈R ,则(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(2)柯西不等式的一般形式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)排序不等式设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,则有:a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时,反序和等于顺序和.排序原理可简记作:反序和≤乱序和≤顺序和.若a >b >1,x =a +1a ,y =b +1b ,则x 与y 的大小关系是( )A .x >yB.x <y C .x ≥y D .x ≤y解析:选A .x -y =a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab .由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0,即x -y >0,所以x >y .下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③|b a +ab |≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A .1B.2 C .3 D .4解析:选C .log x 10+lg x =1lg x+lg x ≥2(x >1);①正确.ab ≤0时,|a -b |=|a |+|b |,②不正确; 因为ab ≠0,b a 与ab 同号,所以|b a +b a |=|b a |+|ab |≥2,③正确;由|x -1|+|x -2|的几何意义知, |x -1|+|x -2|≥1恒成立,④也正确, 综上①③④正确.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________. 解析:由柯西不等式得(ma +nb )2≤(m 2+n 2)(a 2+b 2),即m 2+n 2≥5,所以m 2+n 2≥ 5,所以m 2+n 2的最小值为5.答案: 5若a ,b ,c ∈(0,+∞),且a +b +c =1,求a +b +c 的最大值. 解:(a +b +c )2=(1×a +1×b +1×c )2 ≤(12+12+12)(a +b +c )=3. 当且仅当a =b =c =13时,等号成立.所以(a +b +c )2≤3. 故a +b +c 的最大值为3.设x >0,y >0,若不等式1x +1y +λx +y ≥0恒成立,求实数λ的最小值.解:因为x >0,y >0,所以原不等式可化为-λ≤(1x +1y )(x +y )=2+y x +x y .因为2+y x +xy ≥2+2y x ·xy=4,当且仅当x =y 时等号成立.所以⎣⎡⎦⎤(1x +1y )(x +y )min=4, 即-λ≤4,λ≥-4. 所以λ的最小值为-4.用综合法、分析法证明不等式 [学生用书P224][典例引领](2017·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.[通关练习]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立, 只需证a +b a +a +b b ≥4成立,即证b a +ab ≥2成立,因为a >0,b >0,所以b a +a b ≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a≥1. 证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,所以a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.放缩法证明不等式[学生用书P225][典例引领]若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b | ⇒1|a +b |≥1|a |+|b |,所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1.(2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.[通关练习]设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n=1.所以原不等式成立.柯西不等式的应用[学生用书P225][典例引领]已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值. 【解】 (1)证明:因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z+3)=27.所以3x +1+3y +2+3z +3≤33. 当且仅当x =23,y =13,z =0时取等号.(2)因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187.(1)使用柯西不等式证明不等式的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )(1a 21+1a 22+…+1a 2n )≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.[通关练习]1.设x ,y ,z ∈R ,x 2+y 2+z 2=25,试求x -2y +2z 的最大值与最小值. 解: 根据柯西不等式,有(1·x -2·y +2·z )2≤[12+(-2)2+22](x 2+y 2+z 2), 即(x -2y +2z )2≤9×25, 所以-15≤x -2y +2z ≤15,故x -2y +2z 的最大值为15,最小值为-15.2.已知大于1的正数x ,y ,z 满足x +y +z =33.求证:x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥32.证明: 由柯西不等式及题意得,⎝ ⎛⎭⎪⎫x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ·[(x +2y +3z )+(y +2z +3x )+(z +2x +3y )]≥(x +y +z )2=27.又(x +2y +3z )+(y +2z +3x )+(z +2x +3y )=6(x +y +z )=183, 所以x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥27183=32,当且仅当x =y =z =3时,等号成立.排序不等式的应用[学生用书P226][典例引领]设a ,b ,c 为任意正数,求a b +c +b c +a +c a +b的最小值. 【证明】 不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b ,由排序不等式得,ab +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b , 上述两式相加得:2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3, 即ab +c +b c +a +c a +b ≥32. 当且仅当a =b =c 时, ab +c +b c +a +c a +b 取最小值32.求最小(大)值时,往往所给式子是顺(反)序和式.然后利用顺(反)序和不小(大)于乱序和的原理构造出适当的一个或两个乱序和,从而求出其最小(大)值.[通关练习]设0<a ≤b ≤c 且abc =1.试求1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值.解: 令S =1a 3(b +c )+1b 3(a +c )+1c 3(a +b ),则S =(abc )2a 3(b +c )+(abc )2b 3(a +c )+(abc )2c 3(a +b )=bca (b +c )·bc +ac b (a +c )·ac +abc (a +b )·ab .由已知可得:1a (b +c )≥1b (a +c )≥1c (a +b ),ab ≤ac ≤bc .所以S ≥bc a (b +c )·ac +ac b (a +c )·ab +abc (a +b )·bc=ca (b +c )+a b (a +c )+bc (a +b ).又S ≥bc a (b +c )·ab +ac b (a +c )·bc +abc (a +b )·ac=ba (b +c )+c b (a +c )+ac (a +b ),两式相加得:2S ≥1a +1b +1c ≥331abc=3.所以S ≥32,即1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值为32.证明不等式的常用方法与技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.证明不等式需要注意的2个问题(1)在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要分析每次使用时等号是否成立.(2)柯西不等式使用的关键是出现其结构形式,也要注意等号成立的条件.[学生用书P353(单独成册)]1.(2018·长春质量检测(二))(1)如果关于x 的不等式|x +1|+|x -5|≤m 的解集不是空集,求实数m 的取值范围;(2)若a ,b 均为正数,求证:a a b b ≥a b b a .解:(1)令y =|x +1|+|x -5|=⎩⎪⎨⎪⎧-2x +4,x ≤-16,-1<x <52x -4,x ≥5,可知|x +1|+|x -5|≥6,故要使不等式|x +1|+|x -5|≤m 的解集不是空集,只需m ≥6.(2)证明:因为a ,b 均为正数,所以要证a a b b ≥a b b a ,只需证a a -b b b -a ≥1,即证(a b )a -b ≥1,当a ≥b 时,a -b ≥0,a b ≥1,可得(ab )a -b ≥1;当a <b 时,a -b <0,0<a b <1,可得(a b )a -b >1,故a ,b 均为正数时,(ab )a -b ≥1,当且仅当a =b 时等号成立,故a a b b≥a b b a 成立.2.(2018·湘中名校联考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+3bt 的最大值.解:(1)由|x +a |<b ,可得-b -a <x <b -a , 所以-b -a =2且b -a =4.解得a =-3,b =1. (2)利用柯西不等式,可得-3t +12+3t =3(4-t +t )≤3(1+1)(4-t +t )=6×4-t +t =26,当且仅当t =4-t ,即t =2时等号成立.当t =2时,at +12+3bt 的最大值为26.3.已知实数a ,b ,c ,d 满足a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d. 证明: 法一:因为⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d )=⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d [(a -b )+(b -c )+(c -d )] ≥331a -b ·1b -c ·1c -d ·33(a -b )(b -c )(c -d )=9, 当且仅当a -b =b -c =c -d 时取等号,所以1a -b +1b -c +1c -d ≥9a -d. 法二:因为⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d ) =⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d [(a -b )+(b -c )+(c -d )] ≥⎝ ⎛⎭⎪⎫ 1a -b ·a -b +1b -c ·b -c +1c -d ·c -d 2=9, 当且仅当a -b =b -c =c -d 时取等号,所以1a -b +1b -c +1c -d ≥9a -d. 4.设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3;(2)a bc +b ac +c ab≥3(a +b +c ). 证明:(1)要证a +b +c ≥3;由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立.(2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac 2, b ac ≤ab +bc 2,c ab ≤bc +ac 2, 所以a bc +b ac +c ab ≤ab +bc +ca .(当且仅当a =b =c =33时等号成立) 所以原不等式成立.1.求证:112+122+132+ (1)2<2. 证明:因为1n 2<1n (n -1)=1n -1-1n, 所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2. 2.(2018·成都第二次诊断性检测)(1)求证:a 2+b 2+3≥ab +3(a +b );(2)已知a ,b ,c 均为实数,且a =x 2+2y +π2,b =y 2+2z +π3,c =z 2+2x +π6,求证:a ,b ,c 中至少有一个大于0.证明:(1)因为a 2+b 2≥2ab ,a 2+3≥23a ,b 2+3≥23b ,将此三式相加得2(a 2+b 2+3)≥2ab +23a +23b ,所以a 2+b 2+3≥ab +3(a +b ).(2)假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0,因为a =x 2+2y +π2,b =y 2+2z +π3,c =z 2+2x +π6, 所以a +b +c =(x 2+2y +π2)+(y 2+2z +π3)+(z 2+2x +π6)=(x +1)2+(y +1)2+(z +1)2+π-3>0,即a +b +c >0与a +b +c ≤0矛盾,故假设错误,原命题成立,即a , b ,c 中至少有一个大于0.3.设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1),得a +b >c +d . ②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.综上,a +b > c +d 是|a -b |<|c -d |的充要条件.4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪13a +16b <14.(2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12, 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2 =(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.。
人教版-高中数学选修4-5-柯西不等式
尝试给出以上柯西不等式的推广 的严密证明。
合作探究问题4: 尝试发现柯西不等式其他的推
广与应用。
2021/3/10
14
研究性学习的课题
数学具有现实的性质,它来源于现实生活, 再应用到现实生活中去。正如均值不等式在 实际生活中有许多应用,那么,柯西不等式 在现实生活中也应该有它的数学情境。
我们共同探究了柯西不等式的几何背景, 表示形式,得出其不同证明方法,同时也 发现了很多值得我们进一步研究的有价值 的问题。更重要的是我们通过自主探究, 发现问题,解决问题,更多的体验到数学 发展过程。数学是一门通过数学思想方法 逐渐将问题化繁为简的科学,它有深刻的 文化底蕴和内涵,我们更应该在今后的学 习中不断的挖掘和发现,真正体验到数学 学习带来的美感和快感。
2021/3/10
5
二、诱思发现,剖析论证
(一)柯西不等式的表达形式(二维形式)
注意观察此不等式的简洁性,对称性,深刻体现出 数学形式的美。
2021/3/10
6
(二)柯西不等式的证明方法
共同思考,讨论发现。借助以往的知识和经验, 运用类比联想与化归转化的思想,探究用什么方法来 证明它。
归纳总结
1.向量法:(类比数学模型) 2.比较法:(不等式证明的基本方法) 3.构造法:(类比联想,利用二次函数的性质) 4.几何法:(利用余弦定理)
我们从中可进一步观察体验柯西不等式所蕴含的形式上的
对称美,简洁美及和谐性。
2021/3/10Leabharlann 16四、应用举例,能力提高
2021/3/10
17
尝试解决:
选作 1:
选作 2:
2021/3/10
18
例2:
人教数学选修4-5全册精品课件:第四讲二用数学归纳法证明不等式
【思路点拨】
本题由递推公式先计算前几项,然
后再进行猜想,最后用数学归纳法进行证明;对于 (2)中的第①题,要利用数学归纳法进行证明;②利 用放缩法证明.
【解】 (1)由 a1=2,得 a2=a2-a1+1=3;由 a2= 1 3,得 a3=a2-2a2+1=4;由 a3=4,得 a4=a2-3a3 2 3 +1=5. 由此猜想:an=n+1(n∈N+). (2)①用数学归纳法证明: 当 n=1 时,a1≥3=1+2,不等式成立; 假设当 n=k(k≥1)时,不等式成立,即 ak≥k+2. 那么当 n=k+1 时,ak+1=a2-kak+1=ak(ak-k)+ k 1≥(k+2)(k+2-k)+1=2(k+2)+1≥k+3=(k+1) +2,也就是说,当 n=k+1 时,ak+1≥(k+1)+2. 综上可得,对于所有 n≥1,有 an≥n+2.
=k+1成立时没有进行推证,而是直接写出结论, 这样是不符合数学归纳法要求的.
【自我校正】 (1)同上. (2)假设当 n=k(k≥1)时,结论成立. kk+1 k+12 即 <ak< . 2 2 当 n=k+1 时,ak+1=ak+ k+1k+2 kk+1 kk+1 > + k+1k+2> +(k+1) 2 2 k+1[k+1+1] = . 2
当 n=k+1 时, k+1k+2 ak+1=ak+ k+1k+2> . 2 k+2 2 又 ak+1=ak+ k+1k+2<( ), 2 ∴当 n=k+1 时,结论也成立. 由(1)、(2)知,对一切 n∈N+,不等式成立.
【错因】
错误出在(2)中,从n=k成立,证明n
假设当n=k时, 起始自然数)不等式成立 ______________________;第二步是_____________
高中数学第一章不等关系与基本不等式3平均值不等式学案北师大版选修4_5
§3 平均值不等式1.掌握定理1和定理2及其证明,并能灵活应用. 2.理解定理3和定理4及其证明,并能简单应用. 3.会用相关定理解决简单的最大(最小)值问题.1.二元均值不等式 (1)定理1:对任意实数a ,b ,有a 2+b 2≥____(此式当且仅当a =b 时取“=”号). (2)定理2:对任意两个正数a ,b ,有______≥ab (此式当且仅当a =b 时取“=”号). 我们称______为正数a 与b 的算术平均值,______为正数a 与b 的几何平均值. 定理2可叙述为:两个正数的__________不小于它们的__________.【做一做1-1】函数y =1x -3+x (x >3)的最小值是( ).A .5B .4C .3D .2【做一做1-2】“a >b >0”是“ab <a 2+b 22”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 2.三元均值不等式及其推广 (1)定理3:对任意三个正数a ,b ,c ,有a 3+b 3+c 3≥____(此式当且仅当a =b =c 时取“=”号). (2)定理4:对任意三个正数a ,b ,c ,有a +b +c3≥3abc (此式当且仅当a =b =c 时取“=”号).定理4可叙述为:三个正数的__________不小于它们的__________. (3)n 个正数的算术几何平均不等式:一般地,对n 个正数a 1,a 2,…,a n (n ≥2),我们把数值______________,__________分别称为这n 个正数的算术平均值与几何平均值,且有______________≥na 1a 2…a n ,此式当且仅当____________时取“=”号,即n 个正数的算术平均值不小于它们的__________.【做一做2】设x ,y ,z ∈R +,且x +y +z =1.求证:1x +4y +9z≥36.答案: 1.(1)2ab (2)a +b 2a +b2ab 算术平均值 几何平均值【做一做1-1】A 原式变形为y =1x -3+x -3+3. ∵x >3,∴x -3>0,∴1x -3>0. ∴y ≥2x -3 ·1x -3+3=5. 当且仅当x -3=1x -3,即x =4时等号成立. 【做一做1-2】A 当a >b >0时,a 2+b 22>2ab 2=ab 成立,当ab <a 2+b 22时,不能推出“a >b >0”,故选A .2.(1)3abc (2)算术平均值 几何平均值(3)a 1+a 2+…+a n n n a 1a 2…a n a 1+a 2+…+a nna 1=a 2=…=a n 几何平均值【做一做2】分析:本题需变式出现积为定值的情况,而条件中是和为定值x +y +z =1,所以对所证不等式的左边需变形出现积为定值的情况.证明:1x +4y +9z =x +y +z x +4 x +y +z y+9 x +y +z z=14+⎝ ⎛⎭⎪⎫y x +4x y +⎝ ⎛⎭⎪⎫z x +9x z +⎝ ⎛⎭⎪⎫4z y +9y z ≥14+4+6+12=36.当且仅当y x =4x y ,z x =9x z ,4z y =9y z ,且x +y +z =1,即x =16,y =13,z =12时取等号.对定理1和定理2的理解剖析:(1)a 2+b 2≥2ab 与a +b 2≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.有些同学易忽略这一点,例如:(-1)2+(-4)2≥2×(-1)×(-4)成立,而 -1 + -42≥ -1 × -4 不成立.(2)这两个不等式都带有等号,应从两方面理解,“当且仅当……时,取‘=’号”这句话:①当a =b 时,取等号,其意义是a =b ⇒a +b2=ab ;②仅当a =b 时,取等号,其意义是a +b2=ab ⇒a =b .综合起来,其意义是:a =b 是a +b2=ab 成立的充要条件.(3)从这两个不等式我们可以得到如下结论:a b +b a ≥2(ab >0);21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0). (4)式子中的a ,b 可以是数字,也可以是复杂的代数式.题型一 利用平均值不等式证明不等式【例1】若x >0,y >0,x +y =1,求证:⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9.分析:本题是有条件的证明不等式问题,要巧用“x +y =1”来证明.反思:利用平均值不等式证明不等式时,要注意把握平均值不等式的结构特点,以便灵活地用于解题,另外,式子的灵活变形,进行拆项、凑项,也是常用的方法.题型二 利用平均值不等式求最值【例2】设x ≥0,y ≥0,x 2+y 22=1,求x 1+y 2的最大值.分析:利用x 2+y 22=1,将式子进行变形再利用定理进行求解.反思:在解题过程中,要拼凑出和为定值,利用ab ≤a +b2(a >0,b >0)来求解最大值.【例3】求函数f (x )=x (5-2x )2⎝⎛⎭⎪⎫0<x <52的最大值.分析:对于x (5-2x )2无法直接利用平均值不等式求最值,可先拼凑出平均值不等式的形式后再求最值.反思:利用a +b +c ≥33abc 应注意不等式成立的条件.在求最值时,除了注意“一正”、“二定”、“三相等”之外,还要掌握配项、凑系数等变形技巧,有时为了便于应用公式,还用换元法,多用于分母中有根式的情况.题型三 利用平均值不等式解决实际问题【例4】如图,为处理含有某种杂质的污水,要制造一个底面宽为2 m 的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长为a m ,高为b m ,已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60 m 2,问当a ,b 各为多长时,沉淀后流出的水中该杂质的质量分数最小?(A ,B 孔的面积忽略不计)分析:题意中的“杂质的质量分数”可按“杂质的含量”理解,设为y .由题意y 与ab 成反比,可设比例系数为k ,则y =k ab.又由于箱体材料多少的限制,a ,b 之间应有一定的关系式,即2×2b +2ab +2a =60,因此该题的数学模型是:已知ab +a +2b =30,a >0,b >0,求a ,b 为何值时,y =kab最小. 反思:(1)对于分母是一次式,分子是二次式的分式Ax 2+Bx +CDx +E,可采用本题中的变形方法.(2)本题的难度不在于建立数学模型,而在于建模后如何求函数的最值,这需要扎实的数学知识和灵活应用基本定理、公式解题的能力.(3)可以说解应用题需要过两关:一关是如何对由文字给出的应用问题建立数学模型;另一关就是对于建模后的数学模型,如何用相关的数学知识将其解答出来.题型四 易错辨析【例5】设a ,b ,x ,y ∈R ,且有a 2+b 2=3,x 2+y 2=6,求ax +by 的最大值.错解:∵ax ≤a 2+x 22,by ≤b 2+y 22,∴ax +by ≤12(a 2+b 2+x 2+y 2)=92,∴ax +by 的最大值为92.错因分析:错解中不等式取等号的条件是当且仅当x =a ,y =b ,由条件知这是不可能的,所以不可能取到上述的最大值.反思:在利用平均值不等式进行证明或求解时,一定要注意等号取得的条件是否满足,即“一正、二定、三相等”的原则.答案:【例1】证明:证法一:左边=1+1x +1y +1xy =1+x +y xy +1xy =1+2xy ≥1+2⎝ ⎛⎭⎪⎫x +y 22=9=右边.当且仅当x =y =12时,等号成立.证法二:左边=⎝ ⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =5+2⎝ ⎛⎭⎪⎫y x +x y ≥5+4=9=右边.当且仅当x =y =12时,等号成立.证法三:利用三角函数来证明.令x =cos 2θ,y =sin 2θ,0<θ<π2.左边=⎝ ⎛⎭⎪⎫1+1cos 2θ⎝ ⎛⎭⎪⎫1+1sin 2θ=1+1cos θ+1sin θ+1cos θsin θ=1+2sin θcos θ=1+8sin 22θ≥1+8=9=右边.当0<2θ<π,且θ=π4,即x =y =12时取等号.【例2】解:∵x ≥0,y ≥0,x 2+y 22=1,∴x 1+y 2=x 21+y 2=2x 2·1+y22≤2·x 2+1+y 222=2·x 2+y 22+122=324.当且仅当x =32,y =22时⎝ ⎛⎭⎪⎫即x 2=1+y 22时,x 1+y 2取得最大值324. 【例3】解:f (x )=14×4x ×(5-2x )(5-2x )≤14⎝ ⎛⎭⎪⎫4x +5-2x +5-2x 33=25027. 当且仅当4x =5-2x ,即x =56时,等号成立.∴当x =56时,函数f (x )=x (5-2x )2⎝⎛⎭⎪⎫0<x <52有最大值25027. 【例4】解:设流出的水中杂质的质量分数为y ,由题意,得y =k ab,其中k 为比例系数(k >0).根据题意,得2×2b +2ab +2a =60(a >0,b >0).∴b =30-a 2+a(由a >0,b >0,可得0<a <30).∴y =k ab =k30a -a 22+a .令t =a +2,则a =t -2.从而30a -a 22+a =30 t -2 - t -2 2t =34t -t 2-64t =34-⎝ ⎛⎭⎪⎫t +64t ,∴y =k ab≥k 34-2t ·64t=k18. 当且仅当t =64t ,即a +2=64a +2时,取“=”号,∴a =6.由a =6,可得b =3.综上所述,当a =6,b =3时,经沉淀后流出的水中杂质的质量分数最小.【例5】正解:∵a 2y 2+b 2x 2≥2aybx ,∴(a 2+b 2)(x 2+y 2)≥(ax +by )2, 当且仅当ay =bx 时取等号. ∴ax +by ≤3×6=32,当且仅当ax =by 且a 2+b 2=3且x 2+y 2=6时,等号成立.1下列结论正确的是( ).A .当x >0且x ≠1时,lg x +1lg x≥2B .当x >0时,x +1x≥2C .当x ≥2时,x +1x的最小值为2D .当0<x ≤2时,x -1x无最大值2已知a ,b ,c ∈R +,且a +b +c =1,则1a +1b +1c与9的大小关系是( ).A .1a +1b +1c ≥9 B.1a +1b +1c<9C .1a +1b +1c=9 D .不确定3若x ,y 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是__________. 4设计一幅宣传画,要求画面面积为4 840 cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm 的空白,左、右各留5 cm 的空白.怎样确定画面的高与宽,才能使宣传画所用纸张面积最小?答案:1.B 在选项A 中,0<x <1时,lg x <0不成立;选项C 中,等号取不到;选项D 中,x -1x为增函数,当x =2时取得最大值.2.A 1a +1b +1c =a +b +c a +a +b +c b+a +b +c c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9.当且仅当a =b =c =13时取等号.3.4 原式=x 2+14x 2+y 2+14y 2+x y +y x.∵x >0,y >0,∴原式≥2·12+2·12+2=4,当且仅当x =y =22时,等号成立. 4.解:设画面的宽为x cm ,则画面的高为4 840xcm ,设纸张面积为S cm 2,则S =(x +10)⎝⎛⎭⎪⎫4 840x +16=5 000+16⎝ ⎛⎭⎪⎫x +3 025x ≥5 000+16×2x ·3 025x=6 760.当且仅当x =3 025x,即x =55时,S 取得最小值.此时高为4 84055=88 cm ,λ=5588=58<1.答:画面的高为88 cm ,宽为55 cm 时,才能使宣传画所用纸张面积最小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012—2013学年下学期高二文数学案第7周第一节 不等式的基本性质(第1课时)编写人:丁淑红 审核人:文数数学组 2013.04.04学习目标:1. 理解并掌握不等式的性质,能灵活运用实数的性质;2. 掌握比较两个实数大小的一般步骤学习重点:比较两个实数大小学习难点:应用不等式性质证明不等式学习过程:一、新知探究1. 实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总 左边的点所表示的数,可知:0b a b a -⇔>; 0b a b a -⇔=; 0b a b a -⇔<结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2. 不等式的基本性质:①对称性:b a >⇔ ;②传递性:⇒>>c b b a , ; ③可加性:⇒>b a ;④同向可加性:⇒>>d c b a , ; ⑤同乘性:⇒>>0,c b a ,⇒<>0,c b a ; ⑥同向可乘性:⇒>>>>0,0d c b a ; ⑦可乘方性:⇒∈>>+N n b a ,0 ; ⑧可开方性:⇒∈>>+N n b a ,0 ;⑨可倒性:⇒>>0b a .3.比较两数大小的一般方法:比差法与比商法(两正数).二、例题展示例1、比较(3)(7)x x ++和(4)(6)x x ++的大小变式训练:()1若0x y <<,试比较()()22x y x y +-与()()22x y x y -+的大小;()2设0a >,0b >,且a b ≠,试比较a b a b 与b a a b 的大小.例2、已知0,0a b c d >>>>> .例3、 若2()f x ax c =-满足4-≤(1)f ≤1,1-≤(2)f ≤5,求(3)f 的取值范围.变式训练:已知22ππαβ-≤<≤,求+22αβαβ-,的取值范围例4、若0a b a >>>-,0c d <<,则下列命题中能成立的个数是( )()1ad bc >;()20a b d c +<;()3a c b d ->-;()4()()a d c b d c ->-.A 1 .B 2 .C 3 .D 4.三、巩固练习1.若0a b <<,则下列结论不正确的是( ) .A 22a b < .B 2ab b < .C 2b a a b+> .D a b a b -=- 2.设,(,0)a b ∈-∞,则“a b >”是“11a b a b->-”成立的( ) .A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既不充分也不必要条件 3.下列不等式:其中正确的个数为( )①232()x x x R +≥∈;② 553223(,)a b a b a b a b R +≥+∈;③222(1)a b a b +≥--..A 0 .B 1 .C 2 .D 34.在下列命题中真命题的个数有( )①若0,0,a b c d >>>>;②已知,,a b c 都是正数,并且,a m a a b b m b +<>+则;③ 423x x--的最大值是2-; ④ 若,a b R ∈,则()22522a b a b ++≥-。
.A 3个 .B 2个 .C 1个 .D 0个5.若,a b c R a b ∈>、、,则下列不等式成立的是( ).A b a 11< .B 22b a > .C 1122+>+c b c a .D ||||c b c a >6.给出下列条件①1a b <<;②01a b <<<;③01a b <<<.其中,11log log log b a a b b b<<成立的充分条件是 (填所有可能的条件的序号) 7.设0,0x y >>且x y ≠,比较 2222xy y x +与x y y x + 的大小 8.已知m R ∈,1a b >>,()1mx f x x =-,试比较()f a 与()f b 的大小. 9.已知13a b -<+<且24a b <-<,求23a b +的取值范围四、课堂总结作差法比较大小步骤:作差→变形(分解因式、配方、分式变形、有理化等)→定号→结论作商法比较大小步骤:作商→变形→与1比较大小→结论2012—2013学年下学期高二文数学案第7周第一节 基本不等式(第2课时)编写人:丁淑红 审核人:文数数学组 2013.04.05学习目标1. 掌握重要不等式、基本不等式的内容2. 理解利用基本不等式求最值时的要点,提高应用基本不等式解决问题的能力。
3. 探究出两个不等式的代数证明与几何解释,体验数形结合的思想,增强应用数学的意识。
学习重点:利用基本不等式求最值学习难点:两个不等式的几何意义一、新知探究探究一:两个不等式的代数证明及几何解释1、重要不等式定理1:如果R b a ∈,,那么22b a + ab 2,当且仅当 时,等号成立。
代数证明:几何解释:2、基本不等式定理2:如果+∈R b a ,,当且仅当 时,等号成立。
代数证明:几何解释:我们把2b a +称为b a ,的 ,ab 称为b a ,的 , 基本不等式可以表述为: 。
基本不等式的几何意义是: 。
探究二:利用基本不等式求最值。
例1、求证:(1)在所有周长相同的矩形中,正方形的面积最大;(2)在所有面积相同的矩形中,正方形的周长最短。
结论:1、基本不等式的两个变形式① ;② 。
2、两个正数的积为定值时, 有 ;两个正数的和为定值时, 有 。
3、利用基本不等式求最值时的要点 。
二、应用举例例2、利用基本不等式解决实际问题。
某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200平方米的十字型地域,计划在正方形MNPQ 上建一座花坛,造价为每平方米4200元,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角(图中四个三角形)上铺草坪,造价为每平方米80元。
(1)设总造价为S 元,AD 长为x 米,试建立S 关于x 的函数关系式;(2)当x 为何值时,S 最小?并求出这个最小值。
例3、利用均值不等式求解不等式中的恒成立问题 已知不等式1()()9a x y x y ++≥对任意正实数,x y 恒成立,求正实数a 的最小值。
变式训练:(1)若,x y a 的最小值为 ;(2),a b c n R >>∈,且11n a b b c a c+≥---,则n 的最大值为 。
三、巩固练习1.求下列函数的最值 ①若0>x ,则xx y 4+=的最小值 ; ②若0>x ,则)1(x x y -=的最大值 ; ③若0<x ,则xx y 4+=的最大值 ; ④若0>x ,则)21(x x y -=的最大值 ; ⑤若3≥x ,则xx y 4+=的最小值 ;⑥若3≥x ,则)21(x x y -=的最大值 ; ⑦3>x ,则34-+=x x y 的最小值 ; ⑧已知0,0a b >>且21a b +=,则11t a b =+的最小值为 ; ⑨已知00,228x y x y xy >>++=,,则2x y +的最小值为 ;⑩当1x >-时,则函数231()1x x f x x -+=+的最小值为 。
2012—2013学年下学期高二文数学案第7周第一节 三个正数的算术-几何平均不等式(第3课时)编写人:丁淑红 审核人:文数数学组 2013.04.07学习目标:1.能利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题;2.了解基本不等式的推广形式。
学习重点:三个正数的算术-几何平均不等式学习难点:利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题学习过程:一、知识学习:定理3:如果+∈R c b a ,,,那么33abc c b a ≥++。
当且仅当c b a ==时,等号成立。
推广: na a a n +++ 21≥n n a a a 21 。
当且仅当n a a a === 21时,等号成立。
语言表述:n 个正数的算术平均数不小于它们的几何平均数。
思考:类比基本不等式,是否存在:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时,等号成立)呢?试证明。
二、例题分析:例1、求函数)0(322>+=x x x y 的最小值。
变式训练1 bb a a b a R b a )(1,,-+>∈+求且若的最小值。
由此题,你觉得在利用不等式解决这类题目时关键是要_____________________例2 、如下图,把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿名着虚线折转成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?变式训练2 已知:长方体的全面积为定值S,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值.由例题,我们应该更牢记 一 ____ 二 _____ 三 ________,三者缺一不可。
另外,由不等号的方向也可以知道:积定____________,和定______________.例3、已知+,,x y z R ∈,求证:3()27x y z xyz ++≥变式训练(1)已知+,,,1a b c R a b c ∈++=,求证:已知22213a b c ++≥(2)已知+,,a b c R ∈求证: ①()()9a b c b c a b c a a b c ++++≥; ②222()()9a b c a b c abc ++++≥三、巩固练习1.函数)0(1232>+=x x x y 的最小值是 ( ) A.6 B.66 C.9 D.122.函数222)1(164++=x x y 的最小值是____________ 3.函数)20)(2(24<<-=x x x y 的最大值是( )A.0B.1C.2716 D. 2732 4.设0x >,求函数241y x x =++的最小值。
5.设c b a ,,为正实数,求证:32111333≥+++abc c b a2012—2013学年下学期高二文数学案第7周第二节 绝对值三角不等式(第1课时)编写人:丁淑红 审核人:文数数学组 2013.04.08学习目标:1.理解绝对值的定义,理解不等式基本性质的推导过程;2.了解定理1的两种证明思路及其几何意义;3.理解绝对值三角不等式。