An optimal wavelet thresholding method for speckle noise reduction
信号处理中英文对照外文翻译文献
信号处理中英文对照外文翻译文献(文档含英文原文和中文翻译)译文:一小波研究的意义与背景在实际应用中,针对不同性质的信号和干扰,寻找最佳的处理方法降低噪声,一直是信号处理领域广泛讨论的重要问题。
目前有很多方法可用于信号降噪,如中值滤波,低通滤波,傅立叶变换等,但它们都滤掉了信号细节中的有用部分。
传统的信号去噪方法以信号的平稳性为前提,仅从时域或频域分别给出统计平均结果。
根据有效信号的时域或频域特性去除噪声,而不能同时兼顾信号在时域和频域的局部和全貌。
更多的实践证明,经典的方法基于傅里叶变换的滤波,并不能对非平稳信号进行有效的分析和处理,去噪效果已不能很好地满足工程应用发展的要求。
常用的硬阈值法则和软阈值法则采用设置高频小波系数为零的方法从信号中滤除噪声。
实践证明,这些小波阈值去噪方法具有近似优化特性,在非平稳信号领域中具有良好表现。
小波理论是在傅立叶变换和短时傅立叶变换的基础上发展起来的,它具有多分辨分析的特点,在时域和频域上都具有表征信号局部特征的能力,是信号时频分析的优良工具。
小波变换具有多分辨性、时频局部化特性及计算的快速性等属性,这使得小波变换在地球物理领域有着广泛的应用。
随着技术的发展,小波包分析 (Wavelet Packet Analysis) 方法产生并发展起来,小波包分析是小波分析的拓展,具有十分广泛的应用价值。
它能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对离散小波变换没有细分的高频部分进一步分析,并能够根据被分析信号的特征,自适应选择相应的频带,使之与信号匹配,从而提高了时频分辨率。
小波包分析 (wavelet packet analysis) 能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对小波分析没有细分的高频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相应频带 , 使之与信号频谱相匹配,因而小波包具有更广泛的应用价值。
利用小波包分析进行信号降噪,一种直观而有效的小波包去噪方法就是直接对小波包分解系数取阈值,选择相关的滤波因子,利用保留下来的系数进行信号的重构,最终达到降噪的目的。
《IEEEsignalprocessingletters》期刊第19页50条数据
《IEEEsignalprocessingletters》期刊第19页50条数据《IEEE signal processing letters》期刊第19页50条数据https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html academic-journal-foreign_ieee-signal-processing-letters_info_57_1/1.《Robust Video Hashing Based on Double-Layer Embedding》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html2.《Removal of High Density Salt and Pepper Noise Through Modified Decision Based Unsymmetric Trimmed Median Filter》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html3.《Performance Comparison of Feature-Based Detectors for Spectrum Sensing in the Presence of Primary User Traffic》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html4.《An Optimal FIR Filter With Fading Memory》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html5.《Piecewise-and-Forward Relaying in Wireless Relay Networks》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html6.《Non-Shift Edge Based Ratio (NSER): An Image Quality Assessment Metric Based on Early Vision Features》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html7.《Joint Optimization of the Worst-Case Robust MMSE MIMO Transceiver》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html8.《A New Initialization Method for Frequency-Domain Blind Source Separation Algorithms》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html9.《A Method For Fine Resolution Frequency Estimation From Three DFT Samples》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html10.《Position-Patch Based Face Hallucination Using Convex Optimization》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html11.《Signal Fitting With Uncertain Basis Functions》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html12.《Optimal Filtering Over Uncertain Wireless Communication Channels》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html13.《The Student's -Hidden Markov Model With Truncated Stick-Breaking Priors》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html14.《IEEE Signal Processing Society Information》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html15.《Acoustic Model Adaptation Based on Tensor Analysis of Training Models》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html16.《On Estimating the Number of Co-Channel Interferers in MIMO Cellular Systems》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html17.《Period Estimation in Astronomical Time Series Using Slotted Correntropy》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html18.《Multidimensional Shrinkage-Thresholding Operator and Group LASSO Penalties》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html19.《Enhanced Seam Carving via Integration of Energy Gradient Functionals》letters_thesis/020*********.html20.《Backtracking-Based Matching Pursuit Method for Sparse Signal Reconstruction》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html21.《Performance Bounds of Network Coding Aided Cooperative Multiuser Systems》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html22.《Table of Contents》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html23.《Bayesian Estimation With Imprecise Likelihoods: Random Set Approach》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html24.《Low-Complexity Channel-Estimate Based Adaptive Linear Equalizer》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html25.《Tensor Versus Matrix Completion: A Comparison With Application to Spectral Data》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html26.《Joint DOD and DOA Estimation for MIMO Array With Velocity Receive Sensors》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html27.《Regularized Subspace Gaussian Mixture Models for Speech Recognition》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html28.《Handoff Optimization Using Hidden Markov Model》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html29.《Standard Deviation for Obtaining the Optimal Direction in the Removal of Impulse Noise》letters_thesis/020*********.html30.《Energy Detection Limits Under Log-Normal Approximated Noise Uncertainty》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html31.《Joint Subspace Learning for View-Invariant Gait Recognition》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html32.《GMM-Based KLT-Domain Switched-Split Vector Quantization for LSF Coding》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html33.《Complexity Reduced Face Detection Using Probability-Based Face Mask Prefiltering and Pixel-Based Hierarchical-Feature Adaboosting》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html34.《RLS Algorithm With Convex Regularization》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html35.《Solvability of the Zero-Pinning Technique to Orthonormal Wavelet Design》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html36.《Power Spectrum Blind Sampling》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html37.《Noise Folding in Compressed Sensing》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html38.《Fast Maximum Likelihood Scale Parameter Estimation From Histogram Measurements》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html39.《Elastic-Transform Based Multiclass Gaussianization》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html40.《Improving Detection of Acoustic Signals by Means of a Time and Frequency Multiple Energy Detector》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html41.《Efficient Multiple Kernel Support Vector Machine Based Voice Activity Detection》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html42.《Performance Analysis of Dual-Hop AF Systems With Interference in Nakagami-$m$ Fading Channels》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html43.《Illumination Normalization Based on Weber's Law With Application to Face Recognition》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html44.《A Robust Replay Detection Algorithm for Soccer Video》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html45.《Regularized Adaptive Algorithms-Based CIR Predictors for Time-Varying Channels in OFDM Systems》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html46.《A Novel Semi-Blind Selected Mapping Technique for PAPR Reduction in OFDM》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html47.《Widely Linear Simulation of Continuous-Time Complex-Valued Random Signals》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html48.《A Generalized Poisson Summation Formula and its Application to Fast Linear Convolution》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html49.《Multiple-Symbol Differential Sphere Detection Aided Differential Space-Time Block Codes Using QAM Constellations》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html50.《Low Rank Language Models for Small Training Sets》原⽂链接:https:///doc/f83f6c1c4ad7c1c708a1284ac850ad02de800787.html /academic-journal-foreign_ieee-signal-processing-letters_thesis/020*********.html。
A WAVELET FILTER CRITERION FOR AN A-PRZORZ EVALUATION OF WAVELET CODING AND DENOISING PERFO
The interest of the wavelet transform analysis is the deal between frequency and spatial analysis. When a FWT is used to compute the coefficients, the performances of the transform are the performances of the filter bank. A "good" filter set must be efficient both in the frequency and in the spatial domains. In the spatial domain, the quality of a filter set can be estimated from the support of the coefficients of the impulse response of the filter bank. In the frequency domain, the quality of the filter set can be estimated from the aliasing of the filter bank. Two indexes can thus been deduced from these considerations.
Section 2 presents the definition of the spatial and frequency indexes. Section 3 details the data used to estimate compression and denoising quality. Section 4 links the indexes to the data. A formula is given to estimate the coding quality from the spatial and frequency indexes. Another formula is givne to estimate the denoising quality from the same these indexes. The proposed works are preliminary and some improvements, tests and questions remains. They are presented in the conclusion.
基于小波域KL变换的地质雷达信号处理技术
基于小波域KL变换的地质雷达信号处理技术高永涛;徐俊【摘要】为了克服现有信号处理算法对地质雷达直耦波和噪声滤除的不足,基于KL 变换和小波变换进行算法融合设计,提出一种适用于地质雷达信号滤波的小波域 KL 变换方法.采用电磁波时域有限差分法模拟雷达检测过程,并基于理想无噪声的雷达仿真信号设计验证实验,通过与KL变换方法、小波阈值去噪方法的对比,对小波域KL变换方法的滤波效果进行定量分析和评价.实验结果表明:小波域KL变换对于直耦波的辨识能力较强,用于地质雷达信号直耦波的去除可以取得理想的效果;在采用KL变换和小波变换滤除噪声时,去噪信号的信噪比分别为10.16和15.12,而小波域KL变换对应的结果为18.34,对于噪声的滤除具有更好的效果;同时,小波域KL变换滤波结果对小波函数和分解层数的敏感度较低,对于深部噪声信号的辨识能力亦较强.基于地质雷达实测数据的测试结果同样验证了小波域 KL变换方法在实际工程应用中的良好性能.%The wavelet domain KL transform method is proposed, based on the fusion of KL transform and wavelet transform method, to overcome the shortcoming of the existed data processing methods in filtering of the GPR data.A finite difference time domain model is built to create the ideal GPR data with no noise,and after some noises are added to the ideal data, the wavelet domain KL transform method is tested with the contaminated GPR data,and the accuracy is quantitatively evaluated by comparing with the KL transform and wavelet thresholding methods.The results shows that the wavelet domain KL transform method has a strongly identification of the direct and coupled waves,as well as the noise.The SNR generated by KL transform and wavelet thresholding method is 10.16 and15.12 respectively,while the SNR generated by the wavelet domain KL transform method is 18.34.Be-sides,a better identification of the deeper noise with a lower energy and a lower sensitivity to the wavelet function and decomposition level are proved by the filtering test.Another filtering test based on the measured GPR data also verifies the good performance of the wavelet domain KL transform method in engineering applications.【期刊名称】《科学技术与工程》【年(卷),期】2018(018)010【总页数】6页(P161-166)【关键词】地质雷达;数据处理;小波域KL变换;直耦波;噪声滤除【作者】高永涛;徐俊【作者单位】北京科技大学土木与资源工程学院,北京100083;北京科技大学土木与资源工程学院,北京100083【正文语种】中文【中图分类】U458.1地质雷达(ground penetrating radar, GPR)是利用超高频(106~109 Hz)脉冲电磁波确定目标体内部介质分布的一种无损探测方法[1]。
基于3次B样条小波变换的改进自适应阈值边缘检测算法
计算技术与自动化Computing Technology and Automation第40卷第1期2 0 2 1年3月Vol. 40,No. 1Mar. 2 02 1文章编号:1003-6199( 2021 )01-0101 — 03DOI : 10. 16339/j. cnki. jsjsyzdh. 202101019基于3次B 样条小波变换的改进自适应阈值边缘检测算法王 煜J 谢 政,朱淳钊,夏建高(湖北工程职业学院建筑与环境艺术学院,湖北黄石435005)摘要:针对含噪声图像边缘提取问题,提出了一种改进NormalShrink 自适应阈值去噪算法。
该算法首先通过小波变换和局部模极大值法提取出可能包含图像边缘特征的小波系数,利用边缘像素之间特殊的空间关系以及噪声在各级小波分解尺度下的不同效应,构建适合各个尺度级的改进NormalShrink 自适应阈值,并依此对提取出的小波系数进行筛选。
实验结果表明,与改进的Candy 算子和传统的NormalShrink 自 适应阈值相比,本方法提取出的图像边缘较为完整清晰,峰值信噪比提升约6 db o关键词:边缘提取;小波变换;自适应阈值;峰值信噪比中图分类号:TP312文献标识码:AAn Improved Adaptive Threshold Edge Detection AlgorithmBased on Cubic B-spline Wavelet TransformWANG Yu f , XIE Zheng,ZHU Chun-zhao ,XIA Jian-gao(School of Architecture and Environmental Art, Hubei Engineering Institute, Huangshi, Hubei 435005, China)Abstract : In order to solve the problem of noisy image edge detection, an improved NormalShrink adaptive waveletthreshold is put forward on the foundation of combining edge detection and denoising . According to the different characteris tics of noise at different wavelet scales and the special spatial relationship between the edge pixels , the algorithm first extract wavelet coefficients which may contain image edge feature by using wavelet transform and local maximum mode, and thenconstruct an improved NormalShrink adaptive threshold of each scale level which is used to select the extracted wavelet coef ficients. Experimental results show that this method can keep imagers edges clear and increase PSNR about 6 db.Key words :edge detection ; wavelet transform ; adaptive threshold ; PSNR图像边缘信息的识别和提取在图像分割、图像 识别等领域有着重要的应用,提取出清晰有效的边缘是一个热点研究方向。
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
基于深度卷积-长短期记忆神经网络的整车道路载荷预测
拟路谱技术和基于机器学习的路谱识别技术。前者首 先通过激光扫描技术获取试验场路面不平度信号,然 后对包括轮胎、衬套悬置等弹性元件的整车模型进行 动力学仿真分析 ;后 [1-4] 者首先利用合适的机器学习模 型直接根据方便测量的整车参数预测道路载荷,然后 利用整车动力学仿真分析获取底盘结构件的动态响 应载荷 。 [5-8] 通过对比这 2 种方法,发现与虚拟路谱技术 相比,基于机器学习的路谱识别技术省去了操作复杂且 代价高昂的路面不平度测量工作,且不需要在整车动力 学模型中建立轮胎模型。
经 网 络(DCNN-LSTM)模 型 ,提 出 了 基 于 数 据 驱 动 的 整 车 轮 心 载 荷 预 测 方 法 。 对 比 试 验 结 果 表 明 ,该 方 法 预 测 的 整 车 轮 心
载荷与试验场采集数据非常接近,有利于逐步取消路谱采集试验并极大地提高整车耐久性分析的效率。
主题词:道路载荷 深度学习 数据库 疲劳耐久分析 深度卷积神经网络 长短期记忆
每小块求取统计值(如均值或最大值)即可得到池化层 的输出信息。在整车道路载荷预测中,需要处理的汽车
算和求和运算,然后通过非线性转换获得卷积层的输出 信息。在池化层,输入的数据被分为很多小块,通过对
运行参数属于一维时序数据,因此 DCNN 层选用如图 2 所示的一维卷积神经网络层。
x(1) x(2)
x(S - 1) x(S)
1 前言
在现有的汽车底盘结构疲劳耐久分析流程中,为了 获得整车的道路载荷谱,通常需要在项目开发早期开展 整车道路耐久试验,该试验需要特制的试制样车、测量 设备、试验场所以及数周的试验时间。随着控制成本和 缩减开发周期的要求日益严格,道路试验成本高、周期 长的问题更加突出,亟待解决。
Wavelet计算信号处理说明书
A. Aldroubi, Oblique and hierarchical multiwavelet bases, To appear in Applied and Camp. Harmonic Analysis, 1997.
J. Allen, Cochlear modeling, IEEE ASSP Magazine, 2:3-29, 1985.
[BMG92] A. Baskurt, I. E. Magnin, and R. Goutte, Adaptive discrete cosine transform coding algorithm for digital mammography, Optical Engineering, 31:1922-1928, Sept. 1992.
A. Aldroubi and M. Unser, Sampling procedures in function spaces and asymptotic equivalence with Shannon's sampling theory, Numer. Funct. Anal. Optimiz., 15:1-21, 1994.
[BT92]
J. J. Benedetto and A. Teolis, An auditory motivated time scale signal representation, IEEE-SP International Symposium on Time-Frequency and Time-Scale analysis, Oct. 1992.
DSPs实验室
DSPs实验室(发布日期:2011-03-25 浏览次数:3079 )武汉大学电信学院DSPs实验室,为武大国防研究院16研究室。
本实验室在邓德祥教授的带领下,现有教授3名,副教授4名,讲师3名,博后3名,在读博士14名,在读研究生35名,已形成了一支知识结构合理、学缘结构互补、老中青相结合的优秀科研团队。
近三年来,本实验室到帐科研经费连年翻番,90%以上属于国防研究项目,并通过了国军标质量体系认证。
在高速海量数据采集、处理、传输、存储及高灰阶大动态范围图像显示等方面都具有自已独到的特色。
该室在科研开发过程中,注意充分而灵活地应用各种最新的器件和芯片,仿真软件和工具。
能硬则硬,能软则软,或软硬结合。
并注意学科之间的渗透与交叉,突出对学生综合应用知识能力的培养。
加强国际合作,拓宽学生的视野等方面都迈出了可喜的步伐。
近三年来,共申请国家发明专利4项,软件著作权9项,发表论文12篇,科研项目经费累计已突破2000万元。
主要项目和成果如下:国家发明专利:[1] 用于数据可靠存储或传输的编码和解码方法及系统(已获批)[2] 超高分辨率相机成像检测系统及方法(审理中)[3] 基于可编程逻辑器件的大容量超高速图像数字信号发生器(审理中)[4] 一种用于大幅面高位深灰阶遥感图像的快视系统((审理中)软件著作权:[1] 基于DSP的图像杂质检测软件(已获批)[2] 基于FPGA的图像数据采集软件(已获批)[3] 基于FPGA智能相机软件著作权(已获批)[4] FPGA信号发生器控制软件(已获批)[5] 图像信号发生器的人机交互软件(已获批)[6] 基于FPGA的数字下变频软件(已获批)[7] 基于FPGA的解调软件(已获批)[8] 基于DSP的解调信号识别软件(已获批)[9] 红外图像生成延时及检测软件(已获批)发表论文[1] 基于Mean Shift和分块的抗遮挡跟踪算法.光学精密工程.2009,36(2):11-15;[2] 跟踪窗口自适应的Mean Shift跟踪.光学精密工程.2009,17(10):2006-2611[3] 应用Mean Shift和分块的抗遮挡跟踪.光学精密工程.2010,6: 1-2;[4] 高速卫星通信后端数据采集与处理平台的设计与实现.空间电子学学术年会论文集.2008.10;[5] 基于相位旋转法的NCO设计与实现.系统工程与电子技术.2010;[6] 遥感图像去云雾噪声的实现.光学精密工程.2010,18(1):266-272;[7] An Image Denoising Method Based on Multiscale Wavelet Thresholding and Bilateral Filtering.武大学报自然科学版.2010,15(2): 148-152;[8] 遥感图像去雾算法的研究.航天返回与遥感.2010,31(6):46-51;[9] 一种新的H.264/AVC的帧内编码快速算法.光电子.激光.2010,21(12):845-1848;[10] 自适应搜索的快速分块跟踪.光学精密工程.2011,19(3):703-708;[11] 12位图像数据的压扩变换显示.光学精密工程.2011;[12] 航空相机像移模糊图像复原方法的研究.遥感有效载荷学术会论文集.2010:351-358;近三年研究项目:2008年,“XX星激光通信数据处理终端”2008年,“XX星数据通信数据处理终端”2008年,“CMOS相机图像压缩电路的研制”2009年,“高分辨率图像信号源”2009年,“图像快视系统”2009年,“图像数据库、遥感图像处理软件与信道误码模拟器”2009年,“图像接收显示设备”2009年,“目标跟踪板的研制”2009年,“空间相机图像快视与记录系统”2009年,“XX星激光雷达信号源”2010年,“分系统视频检测系统开发”2010年,“地面系统及图像处理软件研制”2010年,“成像电路系统研制”2010年,“计算机红外图形生成延时及性能检测仪”2010年,“激光脉冲波形采集板”2010年,“数据处理器通用检测系统”2010年,“信息处理电路研制”2010年,“视频检测系统”2010年,“数据模拟源测试软件”2010年,“TPM-DM642-CL 4kc彩色线阵图像处理控制板”2010年,“TFM-C6474-CL 8kc实时彩色线阵图像处理控制板”。
突发多进制扩频通信中自适应门限检测方法
文章编号:1009-2552(2019)04-0042-05DOI :10.13274/ki.hdzj.2019.04.010突发多进制扩频通信中自适应门限检测方法周平1,周思远1,李亮2,吴玉成2(1.扬州万方电子技术有限公司,江苏扬州225006; 2.重庆大学微电子与通信工程学院,重庆400044)摘要:针对突发多进制扩频通信系统在大频偏情况下的快速可靠检测需求,提出一种自适应门限检测方法。
利用多个短码构造前导序列以降低频偏比,将短码相关峰做差分构造新的统计量,并基于信号能量构建恒虚警概率自适应检测门限,在判决时加入滑动窗口以进一步提升检测性能。
仿真结果验证了算法可行性。
关键词:多进制扩频;自适应门限;信号检测;相关差分中图分类号:TN911文献标识码:AAdaptive threshold detection method for burst M-ary spreadspectrum communicationZHOU Ping 1,ZHOU Si-yuan 1,LI Liang 2,WU Yu-cheng 2(1.Yangzhou Wanfang Electron Technol Co.,Ltd.,Yangzhou 225006,Jiangsu Province ,China ;2.College of Microelectronics and Communication Engineering ,Chongqing University ,Chongqing 400044,China )Abstract :Aiming at the requirement of reliable fast detection for M-ary orthogonal spread spectrum communication systems in the case of large frequency offset ,an adaptive threshold detection method is proposed.Short codes are used to construct the preamble sequence and its correlation peaks are differentiated to generate a new statistic.An adaptive detection threshold of constant false alarm rate is constructed based on signal energy.To improve the detection performance ,a sliding window is added in detection judgments.Simulation results verify the feasibility of the algorithm.Key words :M-ary spread spectrum ;adaptive threshold ;signal detection ;correlation differential收稿日期:2018-11-19基金项目:江苏省重大产业创新专项(BA2018114)作者简介:周平(1951-),男,高级工程师,研究方向为智能通信技术。
ceemdan自适应噪声集合经验模态分解
ceemdan自适应噪声集合经验模态分解引言在信号和图像处理中,噪声是一个常见而且具有挑战性的问题。
为了更好地处理和分析信号数据中的噪声,许多算法和方法被提出。
而ceemdan自适应噪声集合经验模态分解就是一种用于降噪的有效算法。
ceemdan的基本原理ceemdan是一种自适应的经验模态分解方法,可以有效地处理包含噪声的信号数据。
它基于经验模态分解(EMD)的思想,但对EMD进行了改进,使其更适用于噪声处理。
1.首先,将信号分解为多个局部特征模态函数(IMF)。
IMF是一种具有局部性质的信号,它能够有效地表达信号中的局部特征。
2.然后,根据离散均值函数(DIF)将IMF进一步分解为若干个IMF-DIF分量。
3.接下来,在每个IMF-DIF分量中,使用迭代方法自适应地估计出噪声的统计特性。
4.最后,通过去噪操作将估计的噪声从IMF-DIF分量中去除,得到降噪后的信号。
ceemdan的基本原理就是在经验模态分解的基础上,通过自适应的方法估计和去除噪声,从而达到降噪的目的。
下面将详细介绍ceemdan算法的步骤和实现细节。
ceemdan算法步骤ceemdan算法包括以下几个主要步骤:步骤一:EMD分解1.将信号进行EMD分解,得到一系列IMF。
2.判断当前分解是否满足终止条件,如果满足则停止分解。
步骤二:DIF分解1.对每个IMF进行离散均值函数(DIF)分解,得到IMF-DIF分量。
2.判断当前分解是否满足终止条件,如果满足则停止分解。
步骤三:噪声统计特性估计1.对每个IMF-DIF分量,通过迭代方法自适应地估计噪声的统计特性。
2.根据估计的噪声统计特性,构造一个噪声集合。
步骤四:噪声去除1.将噪声集合与IMF-DIF分量进行去噪操作,得到降噪后的分量。
步骤五:重构信号1.将降噪后的分量进行重构,得到降噪后的信号。
ceemdan算法通过多次迭代,自适应地估计和去除噪声,从而有效地降低信号中的噪声影响。
图像去噪的基本原理、典型方法和最新方法 电子技术专业毕业设计 毕业论
摘要数字图像在其形成、传输和记录的过程中,由于成像系统、传输介质和记录设备的不完善往往使得获取的图像受到多种噪声的污染。
因此在模式识别、计算机视觉、图像分析和视频编码等领域,噪声图像的前期处理极其重要,其处理效果的好坏将直接影响到后续工作的质量和结果。
本文主要介绍图像去噪的基本原理、典型方法和最新方法。
考虑到图像去噪技术的飞速发展,本文在论述其基本理论的同时还着重介绍近年来国内有关的最新研究成果和最新方法。
本文被分成四个部分。
第一部分是绪论,论述图像去噪发展趋势及研究图像去噪的理由与意义。
第二部分论述中值滤波法和自适应平滑滤波法的基本原理,完成基于matlab中值滤波的代码实现,并对其结果进行分析。
本文提出两种新的算法,即中值滤波的改进算法即自适应加权算法,和自适应平滑滤波的改进算法。
并且也得出这两种算法的仿真结果,并且对结果进行分析。
第三部分首先论述基于频域的图像去噪方法的基本原理,然后本文对巴特沃斯低通滤波和巴特沃斯高通滤波的基本原理作了论述,并且分别完成基于matlab的巴特沃斯低通滤波和高通滤波的代码实现,对结果进行分析。
同时对程序中的重要语句分别作注释。
第四部分是本文最重要的一章,重点阐述基于小波域的两种图像去噪方法和算法,即小波阈值去噪法与小波维纳滤波去噪法。
在小波阈值去噪法中,本文重点论述小波阈值去噪的三个步骤,并介绍传统经典的阈值化方法即软阈值法、硬阈值法以及四种确定阈值的方法。
其中包括统一阈值法、基于零均值正态分布的置信区间阈值、最小最大阈值法和理想阈值估计法,并且完成小波阈值去噪法的代码实现,将小波阈值去噪法的去噪结果和中值滤波法的去噪结果进行比较分析,得出结论。
在小波维纳滤波去噪法中本文着重论述小波维纳滤波去噪法的基本原理,得到小波维纳滤波去噪法的仿真结果,并且将波维纳滤波去噪法的结果与维纳滤波去噪法的结果进行对比分析。
关键词:图像去噪,维纳滤波,中值滤波,小波变换,阈值AbstractIn its formation, transmission and recording of the process of digital images, because imaging system , transmission media and recording equipment are often imperfect, the obtained images are polluted by a variety of noises. In pattern recognition, computer vision, image analysis and video coding and other fields,noise image pre-processing is extremely important and whether its effect is good or bad will have a direct impact on the following quality and results. This paper introduces the basic principle, the typical method and the latest methods of image denoising.Taking the rapid development of technology of image denoising into account, the paper discusses the basic theory and at the same time also the latest research results and the latest methods in recent years.This paper is divided into four parts.introduction The first part is the introduction and discusses development trend of image denoising and the reasons and significance of studying image denoising. The second part, deals with the basic principles of median filter and adaptive smoothing filter, achieves the completion of median filtering code based on Matlab, and analyzes the results. This paper presents two new algorithm, which is the improved algorithms of the filtering called adaptive weighted algorithm, and the improved algorithm of adaptive smoothing. And the paper has reached this algorithm simulation results, and analyzed the results. The third part firstly discusses the basic principles of image denoising based on frequency domain . Then this paper discusses the basic principles of Butterworth low-pass filter and Butterworth high-pass filtering, and completes the code achieved based on Matlab Butterworth low-pass filter and high-pass filtering and analyzes the results. Meanwhile important statements of the procedures are explained. The fourth part of this article is the most important chapter and focuses on the two methods and algorithms of image denoising based on wavelet domain, which are the wavelet domain thresholding method and wavelet wiener filter method. In wavelet thresholding method, the paper focuses on the three steps of wavelet thresholding and discusses the traditional classical threshold methods,which are soft, and the threshold hard threshold law, and introduces four ways of determining the threshold.The four ways include a single threshold value, intervalthreshold based on the zero mean normal confidence, the largest minimum threshold value and ideal threshold estimates.The paper completes achieving code of wavelet thresholding method and comparatively analyzes the results of wavelet thresholding method and the results of denoising filter method. In wavelet wiener filter ,the paper method focuses on the basic principle of wavelet wiener filter, achieves simulation results of wavelet wiener filter method, and compares the results of wavelet wiener filter method with the results of the wiener filter method.Keywords : image denoising, Wiener filter, filtering, wavelet transform, threshold第1章绪论1.1 图像去噪的发展趋势图像信号处理中最困难的问题之一是:怎样滤出图像中的噪声而又不模糊图像的特征及边缘。
基于尺度-频率的小波微幅构造识别方法与应用——以南美厄瓜多尔X区块为例
第30卷第4期油气地质与采收率Vol.30,No.4 2023年7月Petroleum Geology and Recovery Efficiency Jul.2023引用格式:徐海,王光付,孙建芳,等.基于尺度-频率的小波微幅构造识别方法与应用[J].油气地质与采收率,2023,30(4):98-105.XU Hai,WANG Guangfu,SUN Jianfang,et al.Identification method and application of micro-structure based on scale-frequency wavelet in Block X of Ecuador,South America[J].Petroleum Geology and Recovery Efficiency,2023,30(4):98-105.基于尺度-频率的小波微幅构造识别方法与应用——以南美厄瓜多尔X区块为例徐海,王光付,孙建芳,李发有(中国石化石油勘探开发研究院,北京102206)摘要:针对构造幅度小于10m的微幅构造精细识别,受地震资料品质及解释精度限制,常规成图与分析方法面临着难以有效突出微幅构造细节与提高识别效率的问题。
以南美厄瓜多尔X区块微幅构造研究为目标,探索以小波构造分解的方法,实现对目标层3m左右微幅构造快速有效的精细识别。
目标层受安第斯造山运动弱挤压作用影响,大部分微幅构造幅度小于5m。
采用小波构造分解方法,将等深或等T0构造数据进行等间距采样,建立尺度随频率变化的“尺度-频率”小波函数,通过该函数多尺度地分解微幅构造起伏特征。
利用阈值函数控制优选低频、中频、高频构造起伏等信息,根据相应小波系数对构造低频、中频、高频成分进行多尺度重组,提高相应高频成分对微幅构造的识别权重,从而降低构造低频成分对微幅构造识别的遮蔽作用。
基于小波变换的微幅构造识别方法,可以有效识别幅度小于3m的微幅构造,极大提高了斜坡区小型微幅构造油藏预测精度与分析效率,应用该成果相继部署完钻一系列评价井,均获得成功及良好油气显示,取得了良好实钻效果。
小波消噪英文文献
Wavelet De-noising First, the wavelet threshold de-noising the signal estimateSignal processing signal de-noising is one of the classic.De-noising methods include traditional linear filtering method andnonlinear filtering methods, such as median filter and wiener filtering.De-noising method is not traditional is the entropy of the signal increasedafter transformation, can not describe the characteristics of non-stationarysignals and can not get the signal correlation. To overcome theseshortcomings, people began to signal de-noising using the wavelettransform to solve the problem.Wavelet transform has the following favorable characteristics:(1)Low Entropy of: the sparse distribution of wavelet coefficients, sothat reduces the entropy of the transformed signal;(2)Multi-resolution features: Y u to characterize the signal can be verynon-stationary features such as edges, spikes, breakpoints, etc.;(3)To relevance: the relevance of the signal can be removed, and thenoise in wavelet transform has whitening trend, the more beneficialthan the time-domain de-noising;(4)Selected based flexibility: the flexibility to choose the wavelet basisfunction can therefore be required according to the signalcharacteristics and select the appropriate wavelet de-noisingIn the field of wavelet de-noising has been more widely used.Thresholding method is a simple, better methods of wavelet de-noising. Thresholding method is the idea of layers of wavelet decomposition coefficients of the model is larger than and smaller than a certainthreshold value of the coefficient of treatment, and then re-processed the wavelet coefficients of an anti-transformation, through the reconstructed de-noised Signal. The following functions from the threshold and threshold estimation of both thresholding methods are introduced.1.Threshold functionCommonly used threshold function is mainly hard and softthreshold function threshold function.(1) Hard threshold function. Expression isη(w)=w I (∣w ∣>T).(2) Soft threshold function. Expression isη(w)=(w-sgn(w)T)I (∣w ∣>T)In general, the hard thresholding method can preserve the signal edge of the other local features, soft threshold is relatively smooth, but will cause the edge of the blurring distortion. To overcome theseshortcomings, recently proposed a semi-soft threshold function. It can take into account the soft threshold and hard threshold method has the advantage, and its expression isη(w)=sgn(w) )()()(2211212T w wI T w T T T T w T >+<<--The basis of the soft threshold, you can improve them with theirmore advanced. It can be seen in the noise (wavelet coefficients) and the useful signal (wavelet coefficients) there is a smooth transition between the areas, more in line with the natural signal / image of continuous features. Its expression isη(w)=⎪⎪⎪⎩⎪⎪⎪⎨⎧>++-≤+<+-++T w w -T w 12)12(112122k T T w T k k T T w w T k k 2. Threshold estimationDonoho proposed in 1994 VisuShrink method (or uniformthresholding method). It is for the multi-dimensional joint distribution of independent normal variables, when the dimension tends to infinity the conclusions of the maximum estimate of the minimum constraints derived optimal threshold. The choice of thresholds meets:T=N n ln 2σDonoho prove that given estimates of the signal is Besov set,obtained in a number of risks similar to the ideal function of the risk of noise reduction. A unified method of Donoho threshold effect in the practical application unsatisfactory, resulting in the phenomenon of over kill, put forward in 1997 Janse unbiased estimate based on the thresholdcalculation. Risk function is defined as:N t R f f -=^)(2Orthogonality of wavelet transform, the risk function can be written in the same form in the wavelet domainN t t R X Y -=)(2)(η SetN t t R Y Y -=)(2)(ηSo⎥⎦⎤⎢⎣⎡-<++≥<-+==---X Y t E N V E N t ER t N ET t t n Y X X Y Y Y )(21,2)(12222)()(ηηηση Finally, the expression of risk function can be obtained:)(2)(2)()(11222122)^(t I N i t I N t ET t ER Y t Y Y i N i N i n n i N i n n <-+=>+-=∑∑∑===σσσσN 1Where is the indicator function, taking the number of two small. Thus, the best threshold selection can be obtained by minimizing the risk function, i.e.)(min arg 0*t ER t t >= MA TLAB to achieve the threshold of signal de-noising,including the threshold and the thresholding for the two parties . The following description of them.Second, the wavelet de-noising function in MA TLAB1) ThresholdsImplemented in MA TLAB function of signal threshold for a ddencmp, thselect, wbmpen and wdcbm, following the use of their simple instructions. Ddencmp call the format of the following three(1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2, X)(2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X)(3)[THR,SORH,KEEPAPP]=ddencmp(IN1,'wv',X)Function ddencmp used to obtain in the process of de-noising or compression the default threshold. Input parameter X is one or two dimensional signals; IN1 value for the 'den' or 'crop', den, said thede-noising, crop that is compressed; IN2 value for the 'wv' or 'wp', wv, said selection of wavelet , wp said the choice of wavelet packets. Return value is the return threshold THR; SORH is soft or hard threshold threshold selection parameters; KEEPAPP that kept low frequency signal; CRIT is the entropy of name (only used in the choice of wavelet packet).Function thselect call the following format:THR=thselect(X,TPTR)THR=thselect(X,TPTR) according to the definition of the string TPTR threshold selection rules to select the signal X of the adaptive threshold.Adaptive threshold selection rules include the following four.TPTR = 'rigrsure', adaptive threshold choose to use Stein's unbiased risk estimate principle.TPTR = 'heursure', using the heuristic threshold selection.TPTR = 'sqtwolog', the threshold value is equal to sqrt (2 * log (1ength(X))). TPTR = 'minimaxi', with the minimax principle of selection threshold.Threshold selection rule based on the model, A is the Gaussian noise N (O, 1).Function wbmpen call the following format:THR = wbmpen (C, L, SIGMA, ALPHA)THR = wbmpen (C, L, SIGMA, ALPHA) returns the global de-noising threshold THR. THR by a given selection rules calculated wavelet coefficients, wavelet coefficients selection rule using theBirge-Massart penalty algorithm. [C, L] is the de-noising of the signal or the wavelet decomposition structure; SIGMA is a zero mean Gaussian white noise of standard deviation; ALPHA adjust the parameters used for punishment, it must be a real number greater than 1, a Shares take ALPHA = 2.Let t * is the crit (t) =- sum (c (k) ^ 2, k <= t) +2 * SIGMA ^ 2 * t * (ALPHA + log (n / t)) minimum, where c ( k) are ordered from largest to smallest absolute value of wavelet packet coefficients, n is the number of coefficients, the THR = c (t *).wbmpen (C, L, SIGMA, ALPHA, ARG) calculated the threshold and draw the three curves.2 * SIGMA ^ 2 * t * (ALPHA +10 g (n / t))Sum (c (k) ^ 2, k <= t)crit (t)Function wdcbm call the following two formats:(1) [THR, NKEEP] = wdcbm (C, L, ALPHA)(2) [THR, NKEEP] = wdcbm (C, L, ALPHA, M)Function wdcbm using Birge-Massart method for one-dimensional wavelet transform to obtain the threshold. Return value THR is the threshold and scale independent, NKEEP is the number of coefficients. [C, L] is to carry out signal de-noising or compression in the j = length (L) -2 layer breakdown structure; ALPHA and M must be a real number greater than 1; THR is about j of the vector, THR (i) is the i-layer threshold; NKEEP is a vector on the j, NKEEP (i) is the coefficient of i layer number. 1.5 for the general compression ALPHA, ALPHA de-noising take 3. 2) Signal threshold de-noisingMA TLAB, the threshold for signal de-noising function has wden, wdencmp, wthresh, wthcoef, wpthcoef and wpdencmp. Following the usage of their brief. Function wden call the following two formats:(1) [XD, CXD, LXD] = wden (X, TPTR, SORH, SCAL, N,'wname')(2) [XD, CXD, LXD] = wden (C, L, TPTR, SORH, SCAL, N, 'wname')Function wden for the automatic one-dimensional signalde-noising. X is the original signal, [C, L] for the signal decomposition, N is the number of layers of wavelet decomposition.TPTR the threshold selection rules, TPTR the following four values:TPTR = 'rigrsure', by Stein unbiased likelihood estimation.TPTR = 'heursure', using heuristic threshold selection.TPTR = 'sqtwolog', take universal threshold N2lnTPTR = 'minimaxi', using the maximum threshold for the minimum value selection. SORH is soft or hard threshold threshold selection (corresponding to 's' and 'h'). SCAL refers to the threshold used by the need to re-adjust, including the bottom three:SCAL = 'one', do not adjust.SCAL = 'sln', according to the first layer of the estimated coefficients to adjust the noise floor threshold.SCAL = 'mln', according to different estimates to adjust the noise level threshold. XD for the noised signal, [CXD, LXD] for the signal after de-noising wavelet decomposition structure. Format (1) returns the signal X through N layers decomposed wavelet coefficients after thresholding and signal de-noising signal XD XD the wavelet decomposition structure [CXD, LXD]. Format (2) return parameters and format (1), but its structure by direct decomposition of the signal structureof [C, L] obtained by threshold processing.Function wdencmp call the following three formats:(1)[XC, CXC, LXC, PERF0, PERFL2] = wdenemp('gbl', X,'wname', N,THR, SORH, KEEPAPP)(2) [XC, CXC, LXC, PERF0, PERFL2] = wdencmp ('1 vd ', X,' wname ', N, THR, SORH)(3) [XC, CXC, LXC, PERF0, PERFL2] = wdencmp ('1 vd ', C, L,' wname ', N, THR, SORH)Function wdencmp for one or two dimensional signalde-noising or compression. wname wavelet function is used, gbl (global abbreviation) that each have adopted a threshold for the same treatment, lvd that each use different thresholds for treatment, N said that the number of layers of wavelet decomposition, THR is the threshold vector For Format (2) and (3) requires each department has a threshold value, so the threshold vector length THR N, SORH that choice of soft or hard threshold threshold (value, respectively, for the 's' and' h) , the parameter KEEPAPP value to 1, the frequency factor is not quantified by threshold, on the contrary, the low-frequency coefficients of the threshold to be quantified. XC is the elimination of noise or the compressed signal, [CXC, LXC] is the XC of the wavelet decomposition structure, PERF0 and PERFL2 is to restore and compress the percentage of the norm. If [C, L] is the wavelet decomposition structure of X, then)norm vector C norm vector CXC *1002(2=PERFT ; If X is a one-dimensional signal, wavelet wname is a wavelet, then the X XC PERFL 221002= Function wthresh call the following format:Y = wthresh (X, SORH, T)Y = wthresh (X, SORH, T) returns the input vector or matrix of X by the soft threshold (if SORH = 's') or Hard threshold (if SORH = 'h') after the signal. T is the threshold.Y = wthresh (X, 's', T) returns )()(T X X SING Y -+∙=, namely,the absolute value of the signal compared with the threshold value, less than or equal to the threshold point to 0, the point becomes greater than the threshold value The point value and the threshold of the difference. Y = _wthresh (X, 'h', T) returns 1)(T X X Y >∙=, namely, theabsolute value of the signal compared with the threshold value, less than or equal to the threshold point to 0, greater than the threshold value of the point remains the same .An, the use of hard threshold signal after treatment than the soft threshold signal is more rough.Function wpthcoef call the following format:T = wpthcoef (T, KEEPAPP, SORH, THR)NT = wpthcoef (T, KEEPAPP, SORH, THR) by the coefficients of wavelet packet tree T after the threshold value returns a new wavelet packet tree NT. If KEEPAPP = 1, then the details of the signal factor is not the threshold processing; Otherwise, it is necessary for thresholdprocessing. If SORH = 's', using the soft threshold, if SORH = 'h', then use the hard threshold. THR is the threshold.Call function wthcoef following four formats:(1) NC = wthcoef ('d', C, L, N, P)(2) NC = wthcoef ('d', C, L, N)(3) NC = wthcoef ('a', C, L)(4) NC = wthcoef ('t', C, L, N, T, SORH)Function wthcoef for one dimensional signal thresholding wavelet coefficients.Format (1) returns the wavelet decomposition structure [C, L] defined by the vector of N and P after the compression rate of decomposition of the new vector NC, [NC, L] that constitutes a new wavelet decomposition structure. N contains the details to be compressed vector, P is set to 0, the smaller the percentage of coefficient vectors of information. N and P must be the same length, the vector N must satisfy 1 ≤N (i) ≤length (L) -2.Format (2) returns wavelet decomposition structure [C, L] after the vector N is specified in detail coefficients set to 0 after the wavelet decomposition vector NC.Format (3) returns wavelet decomposition structure [C, L] after approximate coefficients set to 0 after the wavelet decomposition vector NC.Format (4) returns wavelet decomposition structure [C, L] N as the vector after treatment, the wavelet threshold vector NC. If SORH = 's', was soft threshold; if SORH = 'h', was a hard threshold. N contains the details of the scale vector, T is the N vector of the corresponding threshold. N and T must be equal in length.Function wpdencmp call the following two formats:(1) [XD, TREED, PERF0, PERFL2] = wpdencmp (X, SORH, N, 'wname', CRIT, PAR, KEEPAPP)(2) [XD, TREED, PERF0, PERFL2] = wpdencmp (TREE, SORH, CRIT, PAR, KEEPAPP) Function wpdencmp for the signalusing wavelet packet compression or de-noising.Forma (1) returns the input signal X (one and two dimensional) of the signal after de-noising or compression XD. XD TREED outputparameters are the best wavelet packet decomposition tree; PERFL2 and PERF0 is the energy recovery and the percentage of L2 compression.) ts coefficien packet wavelet the of ts coefficien packet wavelet the of norm (2*1002X XD PERFL =. If X is a one-dimensional signal, wname is an orthogonal wavelet, the X XC PERFL 221002=. SORH values for the 's' or 'h', that is soft or hard threshold threshold.Input parameter N is the number of layers wavelet packetdecomposition, wname string that contains the wavelet name. Functionuses the definition of entropy by the string CRIT criteria and threshold parameters for optimal decomposition of PAR. If KEEPAPP = 1, then the approximation of wavelet coefficients are not quantified by threshold; Otherwise, proceed to quantify.Format (2) format (1) of the output parameter, the input options are the same, but it from the signal using wavelet packet decomposition tree TREE directly de-noising or compression.Third, the wavelet threshold de-noising examples of signalAn to say, signal de-noising include the following three-step basic steps:(1)signal decomposition;(2)high-frequency coefficients of wavelet thresholding;(3)Signal wavelet reconstruction. Use of low frequencycoefficients of wavelet decomposition and thresholding thehigh frequency coefficients after wavelet reconstruction.。
粒子群算法用于局部放电小波阈值去噪
粒子群算法用于局部放电小波阈值去噪李蓝青;赵刚【期刊名称】《电气自动化》【年(卷),期】2018(40)1【摘要】Wavelet threshold de-noising produces a good effect when it is applied to the monitoring and analysis of partial discharge (PD) signals,and selection of the threshold for the wavelet coefficient is a key factor for determining the distortion and error of the denoised PD signal.Under consideration of the characteristics of PD pulse spectrum,this paper proposed an optimal wavelet threshold selection method based on the particle swarm optimization (PSO) for de-noising of PD pulse signals.The wavelet was used to decompose PD signal,and generalized cross validation (GCV) was adopted as the criterion in the estimation of the optimal threshold.PSO was used for global search to greatly improve the threshold optimization effect.De-noising and quantitative analysis was conducted on the artificially simulated noise-adding signal and the typical PD pulse simulation signal.The results show that,compared with standard soft threshold method or Donoho threshold calculation method,better de-noising effect is produced with PD signals and that has a good application prospect and value.%小波阈值去噪在局放信号监测分析方面应用效果较好,而小波系数阈值的选取是决定局放信号去噪后的失真和误差的关键因素.针对局放脉冲频谱特征,提出了一种基于粒子群算法的小波最优阈值选择方法,用于局放脉冲信号去噪.采用小波对局放信号进行分解,在估计最优阈值时以广义交叉验证为标准,利用粒子群算法进行全局搜索,使阈值寻优效果大大提升.对人工模拟加噪信号和典型局放脉冲仿真信号进行去噪处理和定量分析,结果表明与标准软阈值法以及Donoho 阈值计算法相比,对局放信号的去噪效果更好,有着非常好的应用前景和价值.【总页数】4页(P112-115)【作者】李蓝青;赵刚【作者单位】上海交通大学电气工程系电力传输与功率变换控制教育部重点实验室,上海200240;上海交通大学电气工程系电力传输与功率变换控制教育部重点实验室,上海200240【正文语种】中文【中图分类】TM411【相关文献】1.基于自适应粒子群算法的变压器局部放电定位研究 [J], 白晨;王旭红2.GIS局部放电小波阈值去噪算法的改进 [J], 陈迅;秦海亭;刘利;王黎明3.用于电力电缆局部放电检测的频率可调振荡波电路研究 [J], 顾哲屹;刘亨洋4.一种用于车载变压器的局部放电高精度协同定位方法 [J], 贾步超;梁爽;郎光娅5.局部放电在线监测中小波阈值去噪法的最优阈值自适应选择 [J], 李剑;孙才新;杨霁;杨洋;唐炬因版权原因,仅展示原文概要,查看原文内容请购买。
基于自适应阈值正交小波变换兰姆波去噪方法
基于自适应阈值正交小波变换兰姆波去噪方法李静;陈晓【期刊名称】《信息技术》【年(卷),期】2012(000)003【摘要】An algorithm of ultrasonic lamb waves signal denoising( Wl'-AL) is proposed based on the theory of orthogonal wavelet transform and adaptive threshold denoising method. The algorithm uses the orthogonal wavelet transform to reduce the self-correlation of ultrasonic flaw echo signal, and then different scales and threshold of orthogonal wavelet transform coefficients are handled by the adaptive threshold denoising method. The experimental results show that the algorithm can remove the noise which is contained by the lamb waves signals measured actually better.%提出了基于自适应阈值正交小波变换兰姆波去噪方法(WT - AL).首先利用正交小波变换降低含噪兰姆波信号的自相关性,然后利用自适应阈值方法自适应地对不同尺度的正交小波变换系数进行阈值处理,最后利用小波重构获得重构信号.实验结果表明:该方法去噪后信号信噪比明显提高,均方误差明显降低.【总页数】5页(P56-59,64)【作者】李静;陈晓【作者单位】南京信息工程大学电子与信息工程学院,南京210044;南京信息工程大学电子与信息工程学院,南京210044【正文语种】中文【中图分类】TP301.6【相关文献】1.基于改进阈值函数和自适应阈值的小波去噪方法 [J], 周帅;左东广2.基于自适应阈值函数的小波阈值去噪方法 [J], 吴光文;王昌明;包建东;陈勇;胡扬坡3.基于正交小波变换的心冲击图自适应去噪方法 [J], 金晶晶;王旭;于艳波;蒋芳芳4.基于无下采样的正交小波变换的阈值去噪方法 [J], 董勇;李梦霞;陈忠5.基于小波变换的阈值自适应寻优去噪方法 [J], 牛宏侠; 张肇鑫; 宁正; 陈光武因版权原因,仅展示原文概要,查看原文内容请购买。
基于峰值信噪比和小波方向特性的图像奇异值去噪技术
基于峰值信噪比和小波方向特性的图像奇异值去噪技术王敏;周磊;周树道;叶松【期刊名称】《应用光学》【年(卷),期】2013(034)001【摘要】提出一种利用小波变换子图像不同的方向特性和峰值信噪比进行奇异值分解的图像去噪算法.由于图像经过小波变换后,低频子图像集中了原图像的大部分能量噪声,故仅作简单维纳滤波;而噪声则主要集中在小波域中的三个不同方向的高频子图中,且系数较小,因此可以利用奇异值分解进行去噪处理,即用较大的奇异值和对应的特征向量重构出去噪图像,然而由于奇异值分解固有的行列方向性,对于高频对角线子图重构出的图像去噪效果不理想,故采取旋转至行列方向后再进行常用的奇异值滤波;最后将去噪后的低频和高频子图进行小波反变换重构出最终的去噪图像,其中重构所需的奇异值个数由图像的峰值信噪比确定.实验结果表明,该方法在有效去噪的同时较好的保留了原有的高频细节信息.%An optimized image singular value decomposition (SVD) denoising algorithm based on wavelet transform directional information and peak signal to noise ratio (PSNR) was proposed. As most of the energy noises were concentrated in low-frequency sub-image after wavelet transform, the simple Wiener filtering was made; on the other hand, the image noises were mainly concentrated in the high-frequency sub-image with three different directions and the coefficient was smaller, so the larger singular values of SVD and their corresponding eigenvectors were used to reconstruct denoising image; however, because of the inherent directional feature of the SVD, thedenoising result of image reconstructed from high-frequency diagonal sub-image was not satisfied, so the diagonal sub-image was rotated to the level (vertical) direction, then the SVD filtering was done; finally, the anti-wavelet transform was used to reconstruct the denoising image based on the low-frequency and high-frequency sub-images, and the required number of singular values was determined by PSNR of the image. Experimental results show that this method has effective denoising effect, while retaining the high-frequency original details.【总页数】5页(P85-89)【作者】王敏;周磊;周树道;叶松【作者单位】解放军理工大学气象海洋学院,江苏南京211101【正文语种】中文【中图分类】TN911.73【相关文献】1.基于小波变换方向信息的奇异值图像去噪研究 [J], 王敏;周树道;叶松2.基于方向小波变换的自适应图像去噪方法 [J], 马宁;周则明;罗立民3.基于HAAR小波域边缘方向特征的SAR图像去噪 [J], 章明珠;郑敏;廖开阳4.基于小波变换的多尺度多方向图像去噪 [J], 史丽虹5.基于提升小波的方向扩散算法实现侧扫声纳图像去噪 [J], 赵四能;张丰;杜震洪;刘仁义;刘南因版权原因,仅展示原文概要,查看原文内容请购买。
基于奇异值能量谱的 Morlet 小波尺度优化
基于奇异值能量谱的 Morlet 小波尺度优化耿宇斌;赵学智【摘要】针对尺度对 Morlet 小波变换结果具有决定性影响的问题,提出一种奇异值能量谱方法,实现 Morlet 小波尺度的优化并提取故障特征。
首先采用Shannon 熵的方法优化 Morlet 小波中心频率与带宽参数,针对 Shannon 熵计算结果中无明确极小值点的情况,通过比较不同参数下的小波变换结果,得到了最优小波参数。
然后,根据实际频率与尺度的对应关系,选择有效尺度范围进行连续Morlet 小波变换。
最后,将每一尺度下的小波系数进行奇异值分解并计算奇异值能量谱,通过选择能量谱峰值来确定最优尺度参数,实现对故障特征的提取。
对仿真信号和实际轴承信号的分析表明,此方法克服了以往方法的缺点,在低信噪比时具有良好的故障特征提取效果。
%Aiming at the fact that the scale has a tremendous impact on results of Morlet wavelet transformation,a method based on energy spectrum of singular values was proposed to optimize Morlet wavelet scale and extract fault features.Firstly,Shannon entropy was used to optimize the central frequency and bandwidth parameter of Morlet wavelet. Aiming at the situation that there was no minimum value in calculation results of Shannon entropy,Morlet wavelet decomposition results with different parameters were compared to obtain the optimal wavelet parameters.Then,the effective scale ranges were chosen to do Morlet wavelet transformation according to the relationship between practical frequencies and wavelet scale parameters.Finally,the wavelet coefficients under each scale were decomposed into singular values and the energy spectrum of singular values was calculated.The optimal scalewas obtained by choosing the peak values in energy spectrum,and then the faults feature were extracted.The experimental results and simulation ones of rolling bearing signals showed that the proposed method overcomes disadvantages of previous methods and has a good effect on fault feature extraction when the signal-to-noise ratio(SNR)is low.【期刊名称】《振动与冲击》【年(卷),期】2015(000)015【总页数】7页(P133-139)【关键词】Morlet小波;Shannon熵;奇异值能量谱;特征提取【作者】耿宇斌;赵学智【作者单位】华南理工大学机械与汽车工程学院,广州 510640;华南理工大学机械与汽车工程学院,广州 510640【正文语种】中文【中图分类】TH911;TH165Optimization of Morlet wavelet scale based on energy spectrum of singula r valuesKey words:Morlet wavelet; Shannon entropy; energy spectrum of singular v alue; feature extraction小波变换和奇异值分解(Singular Value Decomposition,SVD)这两种方法的结合近年来在信号处理领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z =x v (1) where x is the signal and v is the noise. The
ij ij ij ij ij v
speckle noise has a negative exponent distribution 4] with mean 1 and variance 2 . Lee 1] has shown that an optimal linear approximation of (1) can be obtained by
1. INTRODUCTION
Speckle phenomena are caused by the interference of coherent light or waves which are scattered from the rough surface of an object or nonuniform transmission medium. When high resolution images are needed from the replay of laser holograms, speckle noise is the main noise source which causes the degradation of the images. In our applications, a hologram is recorded of a 3D mechanical structure. To check for any failures in the structure, especially nding features as small as 40 m, such as a crack on a pipe, we can not directly use the images captured from the replay of the hologram. In this situation, the noise ltering techniques is a very important issue. There are various speckle reduction ltering approaches to process SAR images 1{3]. Some appear to have good visual interpretation, some have good speckle smoothing capability. The use of these lters relies on the requirements of a particular application. This paper proposes a method using optimal thresholding of wavelet coe cients for speckle reduction. Our approach minimizes the di erence between the standard deviations of the estimated and removed noise. Donoho 5] has proposed a wavelet thresholding procedure for optimally recovering functions from data with additive Gaussian noise: so called soft thresholding. Donoho soft thresholding algorithm uses a nonlinear function: w = sgn(w)(jwj ? t)+ , ~ where w is wavelet coe cients, t a threshold chop 2log(n)=(n), where n is the numsen as t = ber of data points, the noise level, and a constant, for reconstructing the wavelet coe cients of the wavelet transform. Guo et al 6] used Donoho's soft thresholding on the speckle image
Speckle noise in the image formed by the replay of a laser hologram was removed by thresholding the wavelet coe cients. The optimal threshold value was obtained by iteratively approaching the minimum of the di erence between the estimated noise standard deviation and the removed noise standard deviation. Results show that this method can e ectively reduce speckle noise, while maintaining edge sharpness.
z = vx + x(v ? v) (2) where v is the mean of v. As the mean of v is
can be rewritten as
ij ij ij ij ij ij
z =x +u (3) where u = x(v ? v). u has zero mean, and standard deviation = x . We obtain an approximated additive noise model of the speckle noise image. It is then possible to use a proper
u v
3 wavelet shrinkage method to reduce the noise from the observed image. 2. Perform wavelet transform to obtain the wavelet coe cients w; 3. Set initial threshold value t = t0 ; 4. Threshold wavelet coe cients w to get w by using equation (5); 5. Perform inverse transform of w to obtain noise image; 6. Calculate ^ of the noise image; 7. Calculate = ^ ? ^ . If K , go to 9; 8. Renew threshold t = t + k . Go to 4; 9. Subtract noise image from the original image to obtain speckle reduced image; 10. End.
for noise reduction, and compared soft thresholding and hard thresholding, i.e. direct truncating the wavelet coe cients, results. From results obtained by Guo, the hard thresholding appears to give a signi cant improvement in reducing speckle noise. The question is how to choose a proper threshold for hard thresholding. Guo used the estimated noise variance to determine a range of thresholds. Here, we present a novel thresholding approach which is to minimize the di erence between the estimated noise standard deviation and the removed noise standard deviation.
1
2
An optimal wavelet thresholding method for speckle noise reduction
R.Yu, A.R.Allen, and J.Watson Department of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
u u u
3. AN OPTIMAL THRESHOLDING APPROACH
Speckle noise appears as a form of chaotic and unordered high frequency noise. In the wavelet transform of the speckle noise image, those coefcients which represent the noise will not be the main part of the coe cients. A hard thresholding scheme can be used to eliminate them. It can be expressed as w = w :: if jwj > t ^ (4) 0 otherwise where w are the wavelet coe cients, t is the threshold. Performing the inverse transform of w will recover the noise reduced image. On the ^ other hand, the thresholded coe cients w, expressed as (5) w = w :: if jwj t 0 otherwise represent the noise component. If we perform an inverse transform of w, we will obtain the noise image. The measure of this noise image can be used to adjust the threshold t to obtain an optimal value. To do this, we set a performance function: f = minf ^ ? ^ g (6) where ^ is the estimated standard deviation of speckle noise, ^ is the standard deviation of the removed noise obtained from inverse transform of w. The algorithm is to nd the best t so that (6) approaches a minimum.