2019-2020学年高中数学 4.4.10圆锥曲线参数方程的应用教案 新人教版选修4.doc
圆锥曲线的参数方程教案
圆锥曲线的参数方程教案一、教学目标1. 知识与技能:(1)理解圆锥曲线的概念及其标准方程;(2)掌握圆锥曲线的参数方程的定义及表示方法;(3)能够运用参数方程解决与圆锥曲线相关的问题。
2. 过程与方法:(1)通过观察实物和图形,培养学生的空间想象能力;(2)利用数形结合思想,引导学生从参数方程中揭示圆锥曲线的几何性质;(3)通过小组讨论和探究活动,提高学生合作交流的能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生勇于探索、坚持不懈的精神;(3)引导学生认识数学在实际生活中的应用价值。
二、教学内容1. 圆锥曲线的概念及其标准方程(1)介绍圆锥曲线的基本概念;(2)讲解椭圆、双曲线、抛物线的标准方程及特点。
2. 参数方程的定义及表示方法(1)引入参数方程的概念;(2)举例说明参数方程的表示方法;(3)讲解参数方程与普通方程的互化方法。
三、教学重点与难点1. 教学重点:(1)圆锥曲线的概念及其标准方程;(2)参数方程的定义及表示方法;(3)参数方程与普通方程的互化方法。
2. 教学难点:(1)圆锥曲线的几何性质的揭示;(2)参数方程在实际问题中的应用。
四、教学过程1. 导入新课:(1)通过实物和图形,引导学生回顾圆锥曲线的基本概念;(2)提问:如何用数学语言描述圆锥曲线的形状和位置?2. 讲解新课:(1)讲解圆锥曲线的标准方程及其特点;(2)引入参数方程的概念,举例说明参数方程的表示方法;(3)讲解参数方程与普通方程的互化方法。
3. 课堂练习:(1)让学生独立完成教材中的相关练习题;(2)引导学生运用参数方程解决实际问题。
五、课后作业1. 复习圆锥曲线的标准方程及其特点;2. 熟练掌握参数方程的表示方法;3. 练习互化参数方程与普通方程;4. 探索圆锥曲线参数方程在实际问题中的应用。
六、教学策略与方法1. 采用问题驱动的教学方法,引导学生从实际问题中提出圆锥曲线的参数方程需求;2. 利用数形结合思想,通过图形软件或实物展示,直观地展示圆锥曲线的几何性质;3. 组织小组讨论和探究活动,让学生合作交流,共同解决问题;4. 注重个体差异,针对不同学生提供个性化的指导和建议。
高三数学下册《曲线的参数方程》教案、教学设计
5.教学资源:
(1)充分利用多媒体教学资源,如PPT、动画、视频等,增强课堂教学的直观性和趣味性。
(2)提供丰富的课后学习资源,如网络课程、数学软件等,方便学生自主学习。
四、教学内容与过程
(一)导入新课
在课堂开始时,我将通过一个生动的实例来导入新课。我会向学生展示一个视频,内容是一个摩天轮的运动过程。摩天轮的运动形成了一个圆的轨迹,这个轨迹实际上就是一个曲线。我会引导学生观察摩天轮的运动,并提出问题:“摩天轮的运动轨迹可以用什么方式来描述?”通过这个问题,学生会自然地联想到我们之前学习的坐标系和方程。接着,我会引入曲线参数方程的概念,告诉学生我们将要通过参数方程来描述这样的曲线运动。
(2)关注学生的学习反馈,及时调整教学进度和教学方法,提高教学效果。
(3)注重培养学生的数学思维能力,引导学生从不同角度分析问题,提高解决问题的能力。
4.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、自主学习等方面的表现。
(2)终结性评价:通过课后作业、阶段测试等方式,评价学生对曲线参数方程知识的掌握程度。
1.教学方法:
(1)采用情境导入法,以实际生活中的曲线运动为例,引出曲线参数方程的概念,激发学生的学习兴趣。
(2)运用问题驱动的教学方法,引导学生自主探究、合作交流,培养学生的自主学习能力和团队合作精神。
(3)通过实例分析和课堂练习,巩固所学知识,提高学生的实际应用能力。
2.教学过程:
(1)导入:以生活中的曲线运动为例,如圆周运动、行星运动等,引出曲线参数方程的概念。
5.创设有趣、富有挑战性的教学情境,激发学生的学习兴趣,提高学生的学习积极性。
2019-2020年高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4
2019-2020年高中数学 第二讲《参数方程》全部教案 新人教A 版选修4-4教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是 (t 为参数)(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线)0,1()21,1()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==轨迹是所表示的一族圆的圆心为参数、由方程)(045243222t t ty tx y x =-+--+二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值范围。
2019-2020人教A版高中数学选修4-4课件第二讲二圆锥曲线的参数方程优质课件
知能演练轻松闯关
本部分内容讲解结束
按ESC键退出全屏播放
OA、OB.
(1)求线段AB中点M的轨迹方程;
(2)分别以弦OA、OB为直径画圆,求两圆另一交点H的轨迹.
【解】 (1)设点 A(2pt21,2pt1),B(2pt22,2pt2),M(x,y), 则 x=p(t21+t22),① y=p(t1+t2),y2=p2(t21+t22+2t1t2).② 又 OA⊥OB,且 kOA=t11,kOB=t12, 则t11·t12=-1,t1·t2=-1.③
所以,中点 M 的轨迹方程是py22=xp-2,
即 y2=p(x-2p)(p>0).
题型四 应用参数求曲线的轨迹方程
例4 设抛物线y2=2px(p>0)的准线为l,焦点为F,顶点为
O,P为抛物线上任一点,PQ⊥l于Q,求QF与OP的交点M的轨
迹方程. 【解】 设 P 点的坐标为(2pt2,2pt),当 t≠0 时,直线 OP 的方 程为 y=1t x,QF 的方程为 y=-2t(x-p2),它们的交点 M(x,y)
x=asec θ _y_=__b_t_a_n_θ____(θ
为参数,0≤θ<2π,_θ_≠__π2_,3_2π______,a>0,b>0).
4.抛物线 y2=2px(p>0)的参数方程 x=2pt2
__y_=__2_p_t ____(p>0,t 为参数,t∈R),
其中参数 t 可以视为该抛物线 y2=2px(p>0)上任一点 P 与 抛物线顶点 O 所连直线 OP 的斜率的倒数,即对抛物线上任 一点 P(x,y),都有 t=xy.
则
d1·d2=|absec
φ+abtan a2+b2
人教课标版高中数学选修4-4:《曲线的参数方程》教案-新版
第二讲 参数方程 2.1 曲线的参数方程一、教学目标 (一)核心素养通过这节课学习,了解参数方程的概念、体会参数的意义,会进行参数方程和普通方程的互化,在直观想象、数学抽象中感受不同参数方程的特点. (二)学习目标1.通过实例,了解参数方程的含义,体会参数的意义.2.能求解圆的参数方程并用圆的参数解决有关问题,了解圆的参数方程中参数的意义. 3.掌握基本的参数方程与普通方程的互化,,感受集合语言的意义和作用. (三)学习重点 1.参数方程的概念. 2.圆的参数方程及其应用. 3.参数方程与普通方程的互化. (四)学习难点1.参数方程与普通方程的互化的等价转化.2.根据几何性质选取恰当的参数,建立曲线的参数方程. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第21页至第26页,填空:一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.(2)想一想:参数方程与普通方程如何转化?一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.(3)写一写:圆的一般参数方程是什么?①圆心在原点,半径为r 的圆的参数方程为(θ为参数);②圆心在),(b a ,半径为r 的圆的参数方程为(θ为参数).2.预习自测(1)方程⎩⎨⎧x =1+sin θy =sin 2θ(θ是参数)所表示曲线经过下列点中的( )A.(1,1)B.)21,23( C.)23,23(D.)21,232(-+ 【知识点】参数方程的定义【解题过程】将选项中的点一一代入曲线的参数方程中,显然选项C 满足题意 【思路点拨】根据参数方程的定义求解 【答案】C .(2)下列方程:①⎩⎨⎧ x =m ,y =m .(m 为参数) ②⎩⎨⎧ x =m ,y =n .(m ,n 为参数) ③⎩⎨⎧x =1,y =2.④x +y =0中,参数方程的个数为( )A .1B .2C .3D .4 【知识点】参数方程的定义【解题过程】根据参数方程的定义,只有①是参数方程 【思路点拨】由参数方程的定义求解 【答案】A(3)参数方程⎩⎨⎧x =cos α,y =1+sin α(α为参数)化成普通方程为_______________.【知识点】参数方程与普通方程互化【解题过程】由⎩⎨⎧x =cos α,y =1+sin α变形整理得1sin ,cos -==y x αα,两式分别平方相加得1)1(22=-+y x【思路点拨】利用三角恒等变换消去参数 【答案】1)1(22=-+y x .(4)P (x ,y )是曲线⎩⎨⎧x =2+cos αy =sin α(α为参数)上任意一点,则P 到直线x -y +4=0的距离的最小值是________.【知识点】参数方程的应用【解题过程】由P 在曲线⎩⎨⎧x =2+cos αy =sin α上可得P 的坐标为(2+cos α,sin α),由点到直线的距离公式得d =|cos α-sin α+6|2=⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫α+π4+62,当cos ⎝ ⎛⎭⎪⎫α+π4=-1时,d 最小,d min =-2+62=-1+3 2.【思路点拨】根据参数方程的应用得到点设置,再转化为三角函数的最值问题求解 【答案】-1+3 2 (二)课堂设计 1.问题探究探究一 结合实例,认识参数方程★ ●活动① 归纳提炼概念在过去的学习中,我们已经掌握了一些求曲线方程的方法,但在求某些曲线方程时,直接确定曲线上点的坐标y x ,的关系并不容易,我们先看下来的例子:一架救援飞机在离灾区底面500m 高处以100m/s 的速度作水平直线飞行.为使投放的救援物质准确落于灾区指定的地面飞行员应如何确定投放时机?(不计空气阻力,重力加速度2/8.9s m g =)设飞机在点A 将物质投出机舱,在过飞机航线且垂直于底面的平面上建立如右图的平面直角坐标系,其中x 轴为该平面与地面的交线,y 轴经过A 点.记物质从被投出到落地这段时间内的运动曲线为C ,)(y x M ,为C 上任意点,设t 时刻时,x 表示物质的水平位移,y 表示物质距地面的高度.由物理知识,物资投出机舱后,沿Ox 方向以s m /100的速度作匀速直线运动,沿Oy 反方向作自由落体运动,即:221500100gt y t x ⎪⎩⎪⎨⎧-== 令s t y 10.10,0≈=,代入t x 100=,解得m x 1010≈.所以,飞行员在离救援点的水平距离约为m 1010时投放物资,,可以使其准确落在指定地点.由上可知:在t 的取值范围内,给定t 的一个值,就可以惟一确定y x ,的值,反之也成立. 一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.参数是联系变数y x ,的桥梁,可以是一个有物理意义或几何意义,也可以没有明显实际意义的变数.【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程. ●活动② 巩固基础,检查反馈例1 已知曲线C 的参数方程是⎩⎨⎧+==)(1232为参数t t y tx(1)判断点)4,5(),1,0(21M M 与曲线C 的位置关系; (2)已知点),6(a M 在曲线C 上,求a 的值. 【知识点】参数方程.【解题过程】(1)把点1M 的坐标)1,0(代入方程组,解得0=t ,所以1M 在曲线C .把点2M 的坐标)4,5(代入方程组,得⎩⎨⎧+==124352t t ,无解,所以2M 不在曲线C . (2)因为点),6(a M 在曲线C 上,所以⎩⎨⎧+==12362t a t,解得9,2==a t 【思路点拨】根据参数方程与曲线的关系来求解.【答案】(1) 1M 在曲线C ,2M 不在曲线C ; (2) 9=a .同类训练 已知某条曲线C 的参数方程为⎩⎨⎧∈=+=),(212R a t at y tx 为参数且点)4,3(-M 在该曲线上. (1)求常数a 的值;(2)判断点P (1,0),Q (3,-1)是否在曲线C 上?【知识点】参数方程.【解题过程】(1)将M (-3,4)的坐标代入曲线C 的参数方程⎩⎨⎧ x =1+2t ,y =at 2,得⎩⎨⎧-3=1+2t ,4=at 2,消去参数t ,得a =1.(2)由上述可得,曲线C 的参数方程是⎩⎨⎧x =1+2t ,y =t 2,把点P 的坐标(1,0)代入方程组,解得t =0,因此P 在曲线C 上,把点Q 的坐标(3,-1)代入方程组,得到⎩⎨⎧3=1+2t ,-1=t 2,这个方程组无解,因此点Q 不在曲线C 上. 【思路点拨】根据参数方程和曲线的关系来求解.【答案】(1)1=a ; (2) P 在曲线C 上,点Q 不在曲线C 上. 【设计意图】巩固基础,加深理解与应用. 探究二 探究圆的参数方程 ●活动① 互动交流、初步实践结合以上参数方程的定义,你能的得到圆的参数方程吗?先看下面例子当物体绕定轴作匀速转动时,物体中各个点都作匀速圆周运动(如右图).那么,怎样刻画运动中点的位置呢?如图1,设圆O 的半径是r ,点M 从初始位置M 0(t =0时的位置)出发,按逆时针方向在圆O 上作匀速圆周运动,点M 绕点O 转动的角速度为ω.以圆心O 为原点,OM 0所在的直线为x 轴,建立直角坐标系.显然,点M 的位置由时刻t 惟一确定,因此可以取t 为参数.【设计意图】通过现实问题的求解,加深对参数方程中参数的意义的理解.●活动② 建立模型,加深认识如果在时刻t ,点M 转过的角度是θ,坐标是M (x ,y ),那么θ=ωt .设|OM |=r ,如何用r 和θ表示x ,y 呢?由三角函数定义,有cos ωt =x r ,sin ωt =yr , 即⎩⎨⎧x =r cos ωt ,y =r sin ωt .(t 为参数) 考虑到θ=ωt ,也可以取θ为参数,于是有 ⎩⎨⎧x =r cos θ,y =r sin θ.(θ为参数) 这就得到了以原点为圆心,半径为r 的圆参数方程.其中θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.【设计意图】通过对问题的求解,得出圆的参数方程,同时为求圆的标准方程的参数方程作铺垫.●活动③ 归纳梳理、灵活应用若圆的圆心坐标为),(b a ,半径为r 的圆的参数方程是什么呢?此时圆的标准方程为:222)()(r b y a x =-+-,由1cos sin 22=+αα,故令θθsin ,cos =-=-rby r a x ,整理得:图2-1-2)(sin cos 为参数θθθ⎩⎨⎧+=+=r b y r a x 一般地,同一条曲线,可以选取不同的变数为参数,另外,要注明参数及参数的取值范围. 【设计意图】由特殊到一般,体会培养学生数学抽象、归类整理意识. 探究三 探究参数方程和普通方程的互化★▲ ●活动① 归纳梳理、体会内在联系我们除了用普通方程表示曲线外,还可以用参数方程表示曲线,它们是同一曲线的两种不同的表达形式.但由参数方程直接判断曲线的类型不太容易,例如⎩⎨⎧=+=θθsin 3cos y x 为何曲线?这就需要我们转化为普通再判断,那么两者如何转化?由⎩⎨⎧=+=θθsin 3cos y x 得⎩⎨⎧=-=yx θθsin 3cos , 所以1)3(22=+-y x ,表示以)0,3(为圆心,半径为1的圆. 一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.在参数方程与普通方程的互化中,必须使y x ,的取值范围保持一致,即等价转化.【设计意图】通过实例体会参数方程与普通方程的互化,培养学生数学抽象意识. ●活动② 巩固基础,检查反馈例2 如图,已知点P 是圆x 2+y 2=16上的一个动点,定点A (12,0),当点P 在圆上运动时,求线段P A 的中点M 的轨迹.【知识点】圆的参数方程、点的轨迹方程. 【数学思想】数形结合 【解题过程】设动点M (x ,y ),∵圆x 2+y 2=16的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ,(θ为参数),∴设点P (4cos θ,4sin θ), 由线段的中点坐标公式,得x =4cos θ+122,且y =4sin θ2,∴点M 的轨迹方程为⎩⎨⎧x =2cos θ+6,y =2sin θ,转化为普通方程得4)6(22=--y x因此点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.【思路点拨】借助于圆的参数方程来得到点的轨迹方程,即代入法. 【答案】点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.同类训练 将例1中的定点A 的坐标改为)0,4(,其它条件不变,求线段P A 的中点M 的轨迹 【知识点】圆的参数方程、点的轨迹方程. 【解题过程】设动点M (x ,y ),∵圆x 2+y 2=16的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ,(θ为参数),∴设点P (4cos θ,4sin θ), 由线段的中点坐标公式,得24cos 4+=θx ,且y =4sin θ2, ∴点M 的轨迹方程为2cos 22sin x y θθ=+⎧⎨=⎩,转化为普通方程得4)2(22=--y x因此点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.【思路点拨】借助于圆的参数方程来得到点的轨迹方程,即代入法. 【答案】点M 的轨迹是以点(2,0)为圆心,以2为半径的圆. 【设计意图】巩固检查参数方程与曲线的关系.例3 把下列参数方程化为普通方程,并说明它们各表示什么曲线?(1)⎩⎨⎧-=+=)(211为参数t ty t x (2)⎩⎨⎧+=+=)(2sin 1cos sin 为参数θθθθy x 【知识点】参数方程化为普通方程.【解题过程】(1)由11≥+=t x ,有1-=x t ,代入t y 21-=,得到32+-=x y .又因为11≥+=t x ,所以与参数方程等价的普通方程是)1(32≥+-=x x y ,即以)1,1(为端点的一条射线(包括端点).(2)把θθcos sin +=x 平方后减去θ2sin 1+=y ,得到 y x =2,又因为)4sin(2cos sin πθθθ+=+=x ,所以]2,2[-∈x ,即与参数方程等价的普通方程是y x =2,]2,2[-∈x ,即开口向上的抛物线的一部分.【思路点拨】先由一个方程求出参数的表达式,再代入另一个方程,或者利用三角恒等变换消去参数.【答案】(1))1(32≥+-=x x y ;(2)y x =2,]2,2[-∈x . 同类训练 化下列曲线的参数方程为普通方程,并指出它是什么曲线. (1)⎩⎨⎧x =1+2t ,y =3-4t (t 为参数);(2)⎩⎨⎧x =cos θ+sin θ,y =sin θcos θ(θ为参数).【知识点】参数方程化为普通方程. 【解题过程】(1)∵x =1+2t ,∴2t =x -1. ∵-4t =-2x +2,∴y =3-4t =3-2x +2. 即y =-2x +5(x ≥1),它表示一条射线. (2)∵x =cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4,∴x ∈[-2,2]. x 2=1+2sin θcos θ,将sin θcos θ=y 代入,得x 2=1+2y .∴普通方程为y =12x 2-12()-2≤x ≤2,它是抛物线的一部分.【思路点拨】先由一个方程求出参数的表达式,再代入另一个方程,或者利用三角恒等变换消去参数.【设计意图】巩固检查参数方程与普通方程的互化. ●活动③ 强化提升、灵活应用例4 若x ,y 满足(x -1)2+(y +2)2=4,求2x +y 的最值. 【知识点】参数方程的应用、三角函数.【数学思想】转化与化归思想.【解题过程】令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2, 故2x +y =4cos θ+2+2sin θ-2=4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.【思路点拨】考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题. 【答案】2x +y 的最大值为25,最小值为-2 5.同类训练 已知点M (x ,y )是圆x 2+y 2+2x =0上的动点,若4x +3y -a ≤0恒成立,求实数a 的取值范围.【知识点】参数方程的应用、三角函数.. 【数学思想】转化化归思想.【解题过程】由x 2+y 2+2x =0,得(x +1)2+y 2=1,又点M 在圆上, ∴x =-1+cos θ,且y =sin θ, 因此4x +3y =4(-1+cos θ)+3sin θ=-4+5sin(θ+φ)≤-4+5=1.(φ由tan φ=43确定) ∴4x +3y 的最大值为1.若4x +3y -a ≤0恒成立,则a ≥(4x +3y )max , 故实数a 的取值范围是[1,+∞).【思路点拨】考虑利用圆的参数方程将恒成立问题转化为最值,在利用求三角函数最值问题. 【答案】[1,+∞).【设计意图】熟练利用参数方程求解某些最值问题. 3.课堂总结 知识梳理(1)一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.(2)一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.(3)①圆心在原点,半径为r 的圆的参数方程为⎩⎨⎧x =r cos θ,y =r sin θ.)(为参数θ; ②圆心在),(b a ,半径为r 的圆的参数方程为)(sin cos 为参数θθθ⎩⎨⎧+=+=r b y r a x . 重难点归纳(1)参数t (也可用其它小写字母表示)是联系变数y x ,的桥梁,它可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数;参数方程和普通方程都是在直角坐标系之下同一曲线的两种不同表的形式.(2)参数方程和普通方程互化时,一定使y x ,的取值范围保持一致,即等价转化.(三)课后作业基础型 自主突破1.下列方程中能表示曲线参数方程的是( )A.032=-+t y xB.⎩⎨⎧+==t x y ty x 232C.⎩⎨⎧+=-=2342u y t xD.⎩⎨⎧+=+=ky k x 2335 【知识点】参数方程的含义.【解题过程】A 是含参数的方程,B 中的y x ,并不都由参数t 确定,C 中的y x ,不是由同一个参数确定,D 正确.【思路点拨】根据参数方程的含义进行判断.【答案】D2.曲线⎩⎨⎧x =1+t 2y =t -1)(为参数t 与x 轴交点的直角坐标是( ) A .(0,1) B .(1,2) C .(2,0) D .(±2,0)【知识点】曲线与参数方程.【解题过程】设与x 轴交点的直角坐标为(x ,y ),令y =0得t =1,代入x =1+t 2,得x =2, ∴曲线与x 轴的交点的直角坐标为(2,0).【思路点拨】根据曲线与参数方程的关系判断.【答案】C3.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A.在直线y =2x 上 B.在直线y =-2x 上 C.在直线y =x -1上 D.在直线y =x +1上【知识点】圆的参数方程.【解题过程】由⎩⎨⎧x =-1+cos θ,y =2+sin θ,得⎩⎨⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.故选B .【思路点拨】将圆的参数方程化为圆的标准方程.【答案】B4.若x ,y 满足x 2+y 2=1,则x +3y 的最大值为( )A .1B .2C .3D .4【知识点】参数方程的应用.【解题过程】由于圆x 2+y 2=1的参数方程为⎩⎨⎧x =cos θ,y =sin θ(θ为参数),则x +3y =3sin θ+cos θ=2sin )6(πθ+,故x +3y 的最大值为2.故选B. 【思路点拨】利用三角代换求解.【答案】B .5.圆心在点(-1,2),半径为5的圆的参数方程为________.【知识点】普通方程化为参数方程.【解题过程】因为是圆心在点(-1,2),半径为5的圆,所以参数方程为)(sin 52cos 51为参数θθθ⎩⎨⎧+=+-=y x . 【思路点拨】根据三角代换公式来求解.【答案】)(sin 52cos 51为参数θθθ⎩⎨⎧+=+-=y x .6.设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是_________.【知识点】普通方程与参数方程互化.【解题过程】把y =tx 代入x 2+y 2-4y =0得x =4t 1+t 2,y =4t 21+t 2, ∴参数方程为⎩⎪⎨⎪⎧ x =4t 1+t 2,y =4t 21+t 2(t 为参数).【思路点拨】利用代入法求解.【答案】⎩⎪⎨⎪⎧ x =4t 1+t 2,y =4t 21+t 2(t 为参数) 能力型 师生共研7.将参数方程⎩⎨⎧x =2+sin 2θy =sin 2θ(θ为参数)化为普通方程为( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1)【知识点】参数方程化为普通方程.【解题过程】消去sin 2θ,得x =2+y ,又0≤sin 2θ≤1,∴2≤x ≤3.【思路点拨】注意三角函数的有界性,参数方程的等价转化.【答案】C8.已知曲线C 的参数方程为⎩⎨⎧x =2cos θy =3sin θ(θ为参数,0≤θ<2π). 判断点A (2,0),B )23,3(-是否在曲线C 上?若在曲线上,求出点对应的参数的值. 【知识点】曲线与参数方程.【解题过程】把点A (2,0)的坐标代入⎩⎨⎧x =2cos θ,y =3sin θ,得cos θ=1且sin θ=0,由于0≤θ<2π,解之得θ=0,因此点A (2,0)在曲线C 上,对应参数θ=0.同理,把B )23,3(-代入参数方程,得 ⎩⎪⎨⎪⎧ 3=2cos θ,32=3sin θ,∴⎩⎪⎨⎪⎧ cos θ=-32,sin θ=12.又0≤θ<2π,∴θ=56π,所以点B )23,3(-在曲线C 上,对应θ=56π. 【思路点拨】利用曲线与参数方程的关系求解.【答案】A ,B 是在曲线C 上,A ,B 对应的参数的值分别为θ=0、θ=56π.探究型 多维突破9.在平面直角坐标系xOy 中,动圆x 2+y 2-8x cos θ-6y sin θ+7cos 2θ+8=0(θ∈R )的圆心为P (x ,y ),求2x -y 的取值范围.【知识点】参数方程的应用.【解题过程】由题设得⎩⎨⎧ x =4cos θ,y =3sin θ,(θ为参数,θ∈R ). 于是2x -y =8cos θ-3sin θ=73sin(θ+φ),⎝ ⎛⎭⎪⎫φ由tan φ=-83确定所以-73≤2x -y ≤73. 所以2x -y 的取值范围是[-73,73].【思路点拨】利用参数方程,转化为三角函数的最值来求解.【答案】[-73,73].10.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =4cos θy =4sin θ(θ为参数,且0≤θ<2π),点M 是曲线C 1上的动点.(1)求线段OM 的中点P 的轨迹的直角坐标方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若直线l 的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),求点P 到直线l 距离的最大值.【知识点】参数方程、极坐标、点到直线的距离.【解题过程】(1)曲线C 1上的动点M 的坐标为(4cos θ,4sin θ),坐标原点O (0,0),设P 的坐标为(x ,y ),则由中点坐标公式得x =12(0+4cos θ)=2cos θ,y =12(0+4sin θ)=2sin θ,所以点P 的坐标为(2cos θ,2sin θ),因此点P 的轨迹的参数方程为⎩⎨⎧ x =2cos θy =2sin θ(θ为参数,且0≤θ<2π), 消去参数θ,得点P 轨迹的直角坐标方程为x 2+y 2=4.(2)由直角坐标与极坐标关系得直线l 的直角坐标方程为x -y +1=0.又由(1)知,点P 的轨迹为圆心在原点,半径为2的圆,因为原点(0,0)到直线x -y +1=0的距离为|0-0+1|12+(-1)2=12=22, 所以点P 到直线l 距离的最大值为2+22.【思路点拨】普通方程侧重于判断曲线的形状,参数方程侧重于表示曲线上的点.【答案】(1)P 轨迹的直角坐标方程为x 2+y 2=4;(2)2+22. 自助餐1.下列点在方程)(2cos sin 2为参数θθθ⎩⎨⎧==y x 所表示的曲线上的是( ) A.)7,2( B.)32,31( C.)21,21( D.)1,1(- 【知识点】曲线与参数方程.【解题过程】选D.由方程(θ为参数),令1sin 2==θx ,得Z k k ∈+=,2ππθ12cos -==θy .【思路点拨】利用曲线点的与参数方程的关系求解.【答案】D2.把方程xy =1化为以t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧ x =t 12y =t -12B.⎩⎪⎨⎪⎧ x =sin t y =1sin tC.⎩⎪⎨⎪⎧ x =cos t ,y =1cos tD.⎩⎪⎨⎪⎧ x =tan t ,y =1tan t【知识点】普通方程与参数方程互化.【解题过程】A 显然代入不成立,B,C 选项中1≤x ,不成立,D 选项满足要求.【思路点拨】把选项的参数方程转化为普通方程,注意等价转化.【答案】D3.圆的参数方程为⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),若圆上一点P 对应参数θ=43π,则P 点的坐标是________.【知识点】曲线与参数方程.【解题过程】将θ=43π代入参数方程中,解得33,0-==y x ,所以)33,0(-P .【思路点拨】利用曲线上的点与参数方程的关系.【答案】(0,-33).4.点(x ,y )是曲线C :⎩⎨⎧ x =-2+cos θ,y =sin θ(θ为参数,0≤θ<2π)上任意一点,则y x 的取值范围是________.【知识点】圆的参数方程、直线斜率.【数学思想】数形结合思想【解题过程】曲线C :⎩⎨⎧x =-2+cos θ,y =sin θ是以(-2,0)为圆心,1为半径的圆,即(x +2)2+y 2=1.设y x =k ,∴y =kx .当直线y =kx 与圆相切时,k 取得最小值与最大值, ∴|-2k |k 2+1=1,k 2=13,∴y x 的范围为⎣⎢⎡⎦⎥⎤-33,33. 【思路点拨】利用数形结合的思想求解.【答案】 ⎣⎢⎡⎦⎥⎤-33,33. 5.根据所给条件,把曲线的普通方程化为参数方程:(1)012=---y x y ,设t t y ,1-=为参数;(2)14922=+y x ,设θθ,cos 3=x 为参数. 【知识点】普通方程与参数方程互化.【解题过程】(1)将,1-=t y 代入方程012=---y x y ,解得132+-=t t x ,所以参数方程为⎩⎨⎧-=+-=)(1132为参数t t y t t x (2)将,cos 3θ=x 代入方程14922=+y x θsin 2±=y ,由于参数θ的任意性,可取θsin 2=y ,所以参数方程为)(sin 2cos 3为参数θθθ⎩⎨⎧==y x .【思路点拨】普通方程化为参数方程,注意等价转化.【答案】(1)⎩⎨⎧-=+-=)(1132为参数t t y t t x ;(2))(sin 2cos 3为参数θθθ⎩⎨⎧==y x 6.在方程⎩⎨⎧ x =a +t cos θ,y =b +t sin θ(a ,b 为正常数)中, (1)当t 为参数,θ为常数时,方程表示何种曲线?(2)当t 为常数,θ为参数时,方程表示何种曲线?【知识点】参数方程的含义.【数学思想】分类讨论的思想.【解题过程】(1)方程⎩⎨⎧ x =a +t cos θ, ①y =b +t sin θ, ②(a ,b 是正常数), (1)①×sin θ-②×cos θ得 x sin θ-y cos θ-a sin θ+b cos θ=0.∵cos θ、sin θ不同时为零,∴方程表示一条直线.(2)(ⅰ)当t 为非零常数时,原方程组为⎩⎪⎨⎪⎧ x -a t =cos θ,③y -b t =sin θ. ④③2+④2得x -a 2t 2+y -b2t 2=1,即(x -a )2+(y -b )2=t 2,它表示一个圆.(ⅱ)当t =0时,表示点(a ,b ).【思路点拨】(1)运用加减消元法,消t ;(2)当t =0时,方程表示一个点,当t 为非零常数时,利用平方关系消参数θ,化成普通方程,进而判定曲线形状.【答案】(1)方程表示一条直线;(2)(ⅰ)当t为非零常数时,它表示一个圆,(ⅱ)当t=0时,表示点(a,b).。
教案:圆锥曲线的参数方程及其应用
教案:圆锥曲线的参数方程及其应用。
一、圆锥曲线的定义及分类圆锥曲线是由固定点(焦点)和固定直线(准线)所构成的几何图形。
根据焦点和准线的位置关系,圆锥曲线分为椭圆、双曲线和抛物线三种类型。
(一)椭圆椭圆是焦点到准线距离之和等于定值的所有点的集合,又称为倍长轴圆。
(二)双曲线双曲线是焦点到准线距离之差等于定值的所有点的集合,又称为哈密顿曲线。
(三)抛物线抛物线是焦点到准线距离等于点到准线距离的平方的两倍的所有点的集合。
二、圆锥曲线的参数方程圆锥曲线的参数方程是指用参数表示出曲线上一点与焦点和准线间的关系。
比较常见的有极坐标参数法和直角坐标参数法。
下面我们主要介绍直角坐标参数法。
(一)椭圆的参数方程以$x$轴和$y$轴为直角坐标系。
设椭圆的长轴方程为$x=2a\cos\theta$,短轴方程为$y=b\sin\theta$(其中$a,b$分别为椭圆长轴和短轴的长度)。
则椭圆的参数方程为:$$\begin{cases}x=2a\cos\theta \\y=b\sin\theta\end{cases}$$其中$\theta$为参数,描述曲线上的一个点与原点间的位置关系。
(二)双曲线的参数方程以$x$轴和$y$轴为直角坐标系。
设双曲线的$x$轴方程为$x=2a\sec\theta$,$y$轴方程为$y=2b\tan\theta$(其中$a,b$分别为双曲线距离准线最远点到准线距离的一半和准线到双曲线的距离)。
则双曲线的参数方程为:$$\begin{cases}x=2a\sec\theta \\y=2b\tan\theta\end{cases}$$其中$\theta$为参数,描述曲线上的一个点与原点间的位置关系。
(三)抛物线的参数方程以$x$轴和$y$轴为直角坐标系。
设抛物线的方程为$y=kx^2$(其中$k$为常数)。
则抛物线的参数方程为:$$\begin{cases}x=t \\y=kt^2\end{cases}$$其中$t$为参数,描述曲线上的一个点与原点间的位置关系。
2019-2020年沪教版高中数学高三理科《曲线的参数方程》教学设计附说明
2019-2020年沪教版高中数学高三理科《曲线的参数方程》教学设计附说明教学目标1、理解曲线参数方程的概念,能选取适当的参数建立参数方程;2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义;3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,形成数学抽象思维能力,初步体验参数的基本思想。
教学重点曲线参数方程的概念。
教学难点曲线参数方程的探求。
教学过程(一)曲线的参数方程概念的引入引例:2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。
并以此高度跻身世界三大摩天轮之列,居亚洲第一。
已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。
如图所示,某游客现在0P 点(其中0P 点和转轴O 的连线与水平面平行)。
问:经过t 秒,该游客的位置在何处?引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决(1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。
)(二)曲线的参数方程1、圆的参数方程的推导(1)一般的,设⊙O 的圆心为原点,半径为r ,0OP 所在直线为x 轴,如图,以0OP 为始边绕着点O 按逆时针方向绕原点以匀角速度ω作圆周运动,则质点P 的坐标与时刻t 的关系该如何建立呢?(其中r 与ω为常数,t 为变数)结合图形,由任意角三角函数的定义可知:),0[sin cos +∞∈⎩⎨⎧==t t r y t r x ωω t 为参数 ① (2)点P 的角速度为ω,运动所用的时间为t ,则角位移t ωθ=,那么方程组①可以改写为何种形式?结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈⎩⎨⎧==θθθr y r x θ为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)(3)方程①、②是否是圆心在原点,半径为r 的圆方程?为什么?由上述推导过程可知:对于⊙O 上的每一个点),(y x P 都存在变数t (或θ)的值,使t r x ωcos =,t r y ωsin =(或θsin r y =,θcos r x =)都成立。
2019-2020年高中数学 2.2 圆锥曲线的参数方程教案 新人教A版选修4-4
2019-2020年高中数学 2.2 圆锥曲线的参数方程教案 新人教A 版选修4-41.椭圆的参数方程(1)抛物线y 2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2y =2pt (t ∈R ,t 为参数).(2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.1.椭圆的参数方程中,参数φ是OM 的旋转角吗?【提示】 椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是OM 的旋转角.2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么?【提示】 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠32π.3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗?【提示】⎩⎪⎨⎪⎧x =2pt ,y =2pt 2.(p >0,t 为参数,t ∈R )椭圆的参数方程及应用将参数方程⎩⎪⎨⎪⎧x =5cos θy =3sin θ(θ为参数)化为普通方程,并判断方程表示曲线的焦点坐标.【思路探究】 根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【自主解答】 由⎩⎪⎨⎪⎧x =5cos θy =3sin θ得⎩⎨⎧cos θ=x 5,sin θ=y 3,两式平方相加,得x 252+y 232=1.∴a =5,b =3,c =4.因此方程表示焦点在x 轴上的椭圆,焦点坐标为F 1(4,0)和F 2(-4,0).椭圆的参数方程⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ,(θ为参数,a ,b 为常数,且a >b >0)中,常数a 、b 分别是椭圆的长半轴长和短半轴长,焦点在长轴上.若本例的参数方程为⎩⎪⎨⎪⎧x =3cos θy =5sin θ,(θ为参数),则如何求椭圆的普通方程和焦点坐标?【解】 将⎩⎪⎨⎪⎧x =3cos θy =5sin θ,化为⎩⎨⎧x3=cos θ,y5=sin θ,两式平方相加,得x 232+y 252=1.其中a =5,b =3,c =4.所以方程的曲线表示焦点在y 轴上的椭圆,焦点坐标为F 1(0,-4)与F 2(0,4).已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t y =3+sin t ,(t 为参数),曲线C 2:x 264+y 29=1.(1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线?(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值.【思路探究】 (1)参数方程与普通方程互化;(2)由中点坐标公式,用参数θ表示出点M 的坐标,根据点到直线的距离公式得到关于θ的函数,转化为求函数的最值.【自主解答】 (1)由⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t ,得⎩⎪⎨⎪⎧cos t =x +4,sin t =y -3. ∴曲线C 1:(x +4)2+(y -3)2=1,C 1表示圆心是(-4,3),半径是1的圆.曲线C 2:x 264+y 29=1表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.其参数方程为⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ,(θ为参数)(2)依题设,当t =π2时,P (-4,4);且Q (8cos θ,3sin θ),故M (-2+4cos θ,2+32sin θ).又C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|=55|5cos(θ+φ)-13|, 从而当cos θ=45,sin θ=-35时,(其中φ由sin φ=35,cos φ=45确定)cos(θ+φ)=1,d 取得最小值855.1.从第(2)问可以看出椭圆的参数方程在解题中的优越性.2.第(2)问设计十分新颖,题目的要求就是求动点M 的轨迹上的点到直线C 3距离的最小值,这个最小值归结为求关于参数θ的函数的最小值.(xx·开封质检)已知点P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l :x +2y =0的距离的最大值.【解】 因为P 为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈[0,2π). 又直线l :x +2y =0.因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22|sin θ+π4|5.所以,当sin(θ+π4)=1,即θ=π4时,d 取得最大值2105.双曲线参数方程的应用 求证:双曲线x 2a 2-y2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.【思路探究】 设出双曲线上任一点的坐标,可利用双曲线的参数方程简化运算.【自主解答】 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+-a 2=|a 2b 2sec 2 φ-tan 2 φ|a 2+b 2=a 2b 2a 2+b2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2 φ-tan 2 φ=1的应用.如图2-2-1,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.图2-2-1【证明】 设P (sec φ,tan φ),∵F 1(-2,0),F 2(2,0), ∴|PF 1|=sec φ+22+tan 2φ=2sec 2φ+22sec φ+1,|PF 2|=sec φ-22+tan 2φ=2sec 2φ-22sec φ+1, |PF 1|·|PF 2|=2sec 2φ+12-8sec 2φ=2sec 2φ-1. ∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2.抛物线的参数方程设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l 于Q ,求QF 与OP 的交点M 的轨迹方程.【思路探究】 解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【自主解答】 设P 点的坐标为(2pt 2,2pt )(t 为参数),当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t (x -p2),它们的交点M (x ,y )由方程组⎩⎨⎧y =1txy =-2t x -p2确定, 两式相乘,消去t ,得y 2=-2x (x -p2),∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0).当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.1.抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.(xx·天津高考)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.【解析】 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E (-p 2,±6p ),F (p 2,0),所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).【答案】 2(教材第34页习题2.2,第5题)已知椭圆x 2a 2+y 2b2=1上任意一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别与x轴交于P 、Q 两点,O 为椭圆的中心.求证:|OP |·|OQ |为定值.(xx·徐州模拟)如图2-2-2,已知椭圆x24+y 2=1上任一点M (除短轴端点外)与短轴两端点B1、B2的连线分别交x轴于P、Q两点.图2-2-2求证:|OP |·|OQ |为定值. 【命题意图】 本题主要考查椭圆的参数方程的简单应用,考查学生推理与数学计算能力.【证明】 设M (2cos φ,sin φ)(φ为参数), B 1(0,-1),B 2(0,1).则MB 1的方程:y +1=sin φ+12cos φ·x ,令y =0,则x =2cos φsin φ+1,即|OP |=|2cos φ1+sin φ|.MB 2的方程:y -1=sin φ-12cos φx ,∴|OQ |=|2cos φ1-sin φ|.∴|OP |·|OQ |=|2cos φ1+sin φ|·|2cos φ1-sin φ|=4.因此|OP |·|OQ |=4(定值).1.参数方程⎩⎪⎨⎪⎧x =cos θy =2sin θ,(θ为参数)化为普通方程为( )A .x 2+y 24=1 B .x 2+y 22=1C .y 2+x 24=1D .y 2+x24=1【解析】 易知cos θ=x ,sin θ=y2,∴x 2+y24=1,故选A.【答案】 A2.方程⎩⎪⎨⎪⎧x cos θ=a ,y =b cos θ,(θ为参数,ab ≠0)表示的曲线是( )A .圆B .椭圆C .双曲线D .双曲线的一部分【解析】 由x cos θ=a ,∴cos θ=ax,代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |], ∴曲线应为双曲线的一部分. 【答案】 D3.(xx·陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0)4.(xx·湖南高考)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________. 【解析】 将曲线C 1与C 2的方程化为普通方程求解.∵⎩⎪⎨⎪⎧ x =t +1,y =1-2t ,消去参数t 得2x +y -3=0. 又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将(32,0)代入x 2a 2+y 29=1,得94a 2=1.又a >0,∴a=32. 【答案】32(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.曲线C :⎩⎨⎧x =3cos φy =5sin φ,(φ为参数)的离心率为( )A.23B.35C.32D.53【解析】 由题设,得x 29+y 25=1,∴a 2=9,b 2=5,c 2=4,因此e =c a =23.【答案】 A2.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2y =2+sin α,(α为参数)的普通方程是( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(1≤y ≤3)D .y 2-x 2=1(|x |≤2)【解析】 因为x 2=1+sin α,所以sin α=x 2-1. 又因为y 2=2+sin α=2+(x 2-1), 所以y 2-x 2=1.∵-1≤sin α≤1,y =2+sin α, ∴1≤y ≤ 3.∴普通方程为y 2-x 2=1,y ∈[1,3]. 【答案】 C3.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t2y =2t (参数t ∈R )上的点的最短距离为( )A .0B .1 C. 2 D .2【解析】 d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2, 由t 2≥0得d 2≥1,故d min =1. 【答案】 B4.已知曲线⎩⎪⎨⎪⎧x =3cos θy =4sin θ,(θ为参数,0≤θ≤π)上的一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点的坐标是( ) A .(3,4) B .(322,22) C .(-3,-4) D .(125,125) 【解析】 由题意知,3cos θ=4sin θ, ∴tan θ=34,又0≤θ≤π,则sin θ=35,cos θ=45,∴x =3×cos θ=3×45=125, y =4sin θ=4×35=125, 因此点P 的坐标为(125,125). 【答案】 D二、填空题(每小题5分,共10分)5.已知椭圆的参数方程⎩⎪⎨⎪⎧ x =2cos t y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.【解析】 由⎩⎨⎧x =2cos π3=1,y =4sin π3=2 3. 得点M 的坐标为(1,23).直线OM 的斜率k =231=2 3. 【答案】 236.(xx·江西高考)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 ⎩⎪⎨⎪⎧x =t ,y =t 2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.【答案】 ρcos 2θ-sin θ=0三、解答题(每小题10分,共30分)7.(xx·平顶山质检)如图2-2-3所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM 到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?图2-2-3【解】 抛物线标准方程为x 2=2y ,其参数方程为⎩⎪⎨⎪⎧ x =2t ,y =2t 2.得M (2t,2t 2).设P (x ,y ),则M 是OP 中点.∴⎩⎨⎧2t =x +02,2t 2=y +02,∴⎩⎪⎨⎪⎧x =4t y =4t 2(t 为参数), 消去t 得y =14x 2,是以y 轴对称轴,焦点为(0,1)的抛物线.8.(xx·龙岩模拟)已知直线l 的极坐标方程是ρcos θ+ρsin θ-1=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,椭圆C 的参数方程是⎩⎪⎨⎪⎧x =2cos θy =sin θ(θ为参数),求直线l 和椭圆C 相交所成弦的弦长.【解】 由题意知直线和椭圆方程可化为:x +y -1=0,①x 24+y 2=1,② ①②联立,消去y 得:5x 2-8x =0,解得x 1=0,x 2=85. 设直线与椭圆交于A 、B 两点,则A 、B 两点直角坐标分别为(0,1),(85,-35),则|AB |=-35-12+852=825. 故所求的弦长为825. 9.(xx·漯河调研)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧ x =3cos αy =sin α (α为参数). (1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,π2),判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解】 (1)把极坐标系下的点P (4,π2)化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos α+π6+42=2cos(α+π6)+22,由此得,当cos(α+π6)=-1时,d 取得最小值,且最小值为 2. 教师备选10.设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P (0,32)到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上到点P 的距离等于7的点的坐标.【解】 设椭圆的参数方程是⎩⎪⎨⎪⎧x =a cos θy =b sin θ,其中,a >b >0,0≤θ<2π. 由e 2=c 2a 2=a 2-b 2a 2=1-(b a )2可得b a =1-e 2=12即a =2b . 设椭圆上的点(x ,y )到点P 的距离为d ,则d 2=x 2+(y -32)2=a 2cos 2θ+(b sin θ-32)2 =a 2-(a 2-b 2)sin 2θ-3b sin θ+94=4b 2-3b 2sin 2θ-3b sin θ+94=-3b 2(sin θ+12b)2+4b 2+3, 如果12b >1即b <12,即当sin θ=-1时,d 2有最大值,由题设得(7)2=(b +32)2,由此得b =7-32>12,与b <12矛盾. 因此必有12b≤1成立, 于是当sin θ=-12b时,d 2有最大值, 由题设得(7)2=4b 2+3,由此可得b =1,a =2.所求椭圆的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =sin θ.由sin θ=-12,cos θ=±32可得,椭圆上的点(-3,-12),点(3,-12)到点P 的距离都是7..。
2019-2020学年高考数学 圆锥曲线的标准方程与几何性质(4)复习教学案.doc
2019-2020学年高考数学 圆锥曲线的标准方程与几何性质(4)复习教学案教学内容:圆锥曲线的标准方程与几何性质(4)教学目标:1. 掌握椭圆的标准方程与几何性质;2. 理解双曲线、抛物线的标准方程与几何性质。
3. 掌握建立直角坐标系求解轨迹方程教学重点:逻辑联结词、全称量词和存在量词椭圆的标准方程和几何性质。
教学难点:轨迹的求解教学过程:一、 基础训练:定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0<e<1),则P 点的轨迹是椭圆。
标准方程:12222=+by a x )0(>>b a 取值范围:}{a x a x ≤≤-, }{b y b x ≤≤-长轴长=a 2,短轴长=2b焦距:2c 准线方程:c a x 2±=二、例题教学:例1[例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A 、A ′是双曲线的顶点,C 、C ′是冷却塔上口直径的两个端点,B 、B ′是下底直径的两个端点,已知AA ′=14 m ,CC ′=18 m,BB ′=22m,塔高20 m.建立坐标系并写出该双曲线方程.设计意图:本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力.解:如图,建立直角坐标系xOy ,使AA ′在x 轴上,AA ′的中点为坐标原点O ,CC ′与BB ′平行于x 轴.复备栏设双曲线方程为2222b y a x -=1(a >0,b >0),则a =21AA ′=7 又设B (11,y 1),C (9,x 2)因为点B 、C 在双曲线上,所以有179,17112222222122=-=-b y b y由题意,知y 2-y 1=20,由以上三式得:y 1=-12,y 2=8,b =72 故双曲线方程为984922y x -=1. 变式训练:过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.设计意图:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强.解:由e =22=a c ,得21222=-ab a ,从而a 2=2b 2,c =b . 设椭圆方程为x 2+2y 2=2b 2,A (x 1,y 1),B (x 2,y 2)在椭圆上.则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,(x 12-x 22)+2(y 12-y 22)=0,.)(221212121y y x x x x y y ++-=-- 设AB 中点为(x 0,y 0),则k AB =-002y x ,又(x 0,y 0)在直线y =21x 上,y 0=21x 0,于是-002y x = -1,k AB =-1,设l 的方程为y =-x +1.右焦点(b ,0)关于l 的对称点设为(x ′,y ′),⎩⎨⎧-='='⎪⎪⎩⎪⎪⎨⎧++'-='=-''b y x b x y b x y 11 1221解得则课后反思:由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2,b 2=89,1692=a . ∴所求椭圆C 的方程为2291698y x + =1,l 的方程为y =-x +1. 例2、如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为4π的直线l 与线段OA 相交(不经过点O 或点A )且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.设计意图:直线与圆锥曲线相交,一个重要的问题就是有关弦长的问题.本题考查处理直线与圆锥曲线相交问题的第一种方法——“韦达定理法”.解:由题意,可设l 的方程为y =x +m ,-5<m <0.由方程组⎩⎨⎧=+=xy m x y 42,消去y ,得x 2+(2m -4)x +m 2=0 ①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=(2m -4)2-4m 2=16(1-m )>0,解得m <1,又-5<m <0,∴m 的范围为(-5,0)设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=4-2m ,x 1·x 2=m 2,∴|MN |=4)1(2m -.点A 到直线l 的距离为d =25m+. ∴S △=2(5+m )m -1,从而S △2=4(1-m )(5+m )2=2(2-2m )·(5+m )(5+m )≤2(35522m m m ++++-)3=128. ∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号.故直线l 的方程为y =x -1,△AMN 的最大面积为82.巩固练习:1. A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使 ∠OPA =2π,则椭圆离心率的范围是_________.2一辆卡车高3米,宽1.6米,欲通过抛物线形隧道,拱口宽恰好是抛物线的通径长,若拱口宽为a 米,则能使卡车通过的a 的最小整数值是_________.3.已知抛物线y =x 2-1上一定点B (-1,0)和两个动点P 、Q ,当P 在抛物线上运动时,BP ⊥PQ ,则Q 点的横坐标的取值范围是_________.。
高中高三数学《曲线的参数方程》教案、教学设计
2.联系实际:介绍曲线参数方程在现实生活中的应用,如机器人运动、航空航天等领域。激发学生的兴趣,使他们认识到学习曲线参数方程的重要性。
3.教师点评:对各小组的讨论成果进行点评,强调重点,纠正错误,引导学生深入理解曲线参数方程。
(四)课堂练习
1.设计具有代表性的练习题,涵盖本节课的教学内容,让学生独立完成。
2.针对不同层次的学生,设计难易程度不同的题目,使每个学生都能得到锻炼和提高。
3.教师巡回指导,解答学生的疑问,及时发现问题,进行个别辅导。
-利用数学软件进行曲线绘制和计算,提高学生运用现代技术解决问题的能力。
2.教学过程:
(1)导入新课:通过一个实际问题,如圆的滚动,引出曲线参数方程的概念。
(2)探究新知:引导学生观察曲线图形,探索参数方程的规律,理解参数的几何意义。
(3)巩固知识:通过例题讲解和练习,使学生掌握参数方程的常见形式及其应用。
-例如,一辆汽车沿着一个半径为500米的圆形道路行驶,求汽车行驶半圈(π弧度)时的位移和路程。
3.提高拓展题:
-探讨曲线参数方程在物理学、工程学等领域的应用,举例说明,并简要阐述其原理。
-研究参数方程与极坐标方程之间的联系与区别,给出具体的例子进行说明。
4.创新思维题:
-假设你是一名科学家,请运用曲线参数方程解决一个尚未解决的物理或几何问题,并描述你的思考过程。
-理解参数方程中参数的几何意义,如极径、角度等。
-将曲线参数方程应用于实际问题,培养学生学以致用的能力。
(二)教学设想
2019-2020学年高三数学一轮复习 专题 圆锥曲线的参数方程导学案.doc
2019-2020学年高三数学一轮复习 专题 圆锥曲线的参数方程导学案 一、教学目标:知识与技能:了解圆锥曲线的参数方程及参数的意义过程与方法:能选取适当的参数,求简单曲线的参数方程情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:圆锥曲线参数方程的定义及方法教学难点:选择适当的参数写出曲线的参数方程.三、教学方法:启发、诱导发现教学.四、教学过程:(一)、复习引入:1.写出圆方程的标准式和对应的参数方程。
(1)圆222r y x =+参数方程⎩⎨⎧==θθsin cos r y r x (θ为参数)(2)圆22020)\()(r y y x x =+-参数方程为:⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数) (二)、讲解新课: 1.焦点在x 轴的椭圆:12222=+b y a x 参数方程 ⎩⎨⎧==θθsin cos b y a x (θ为参数) 2. 焦点在y 轴的椭圆22221(0)y x b a b a +=>>的参数方程是c o ss i n (2x b y a θθθθ==≤≤π⎨为参数,且0).★在利用⎩⎨⎧==θθsin cos b y a x 研究椭圆问题时,椭圆上的点的坐标可记作(acos θ,bsin θ)。
例1、已知椭圆⎩⎨⎧==θθsin 2cos 3y x (θ为参数)求 (1)6πθ=时对应的点P 的坐标 (2)直线OP 的倾斜角例2、求椭圆2211612x y +=上的点到直线l :2120x y --=的最大距离和最小距离。
变式:已知椭圆2214x y +=上任意一点M (除短轴以外)与短轴两端点1B 、2B 的连线分别交x 轴与P 、Q 两点,求证:OP OQ ∙为定值。
【课堂练习】1、当参数θ变化时,动点P (cos ,3sin 2θθ)所确定的曲线必过 ( )A .点(2,3)B .点(2,0)C .点(1,3) D.点(0,2π) 2、设O 是椭圆3cos 2sin x y ϕϕ=⎧⎨=⎩ 的中心,P 是椭圆上对应于6πϕ= 的点,那么直线OP 的斜率为( )B.C.3、椭圆22194x y +=上的点到直线240x y +-=的距离最小值为 ( )4、定点(2a ,0)和椭圆cos sin x a y b θθ=⎧⎨=⎩ (θ为参数)上个点连线段的中点轨迹方程是 A.2222()144x a y a b -+= B.2222()144x a y a b++= B.2222()144x a y a b --= D.2222()144x a y a b +-={3322x t C y t =+⎧⎨=-+⎩5、已知椭圆的方程为22(1)(2)135x y -++=,则它的参数方程为______ 6、点P (x,y )在椭圆2244x y +=上,则x+y 的最大值为____;最小值为____7、已知极点与原点重合,极轴与x 轴正半轴重合,若曲线1C 的极坐标方程为cos()4πρθ-=曲线2C的参数方程2cos x y θθ=⎧⎪⎨=⎪⎩ (θ为参数),试求曲线1C 、2C 的焦点的直角坐标.8、已知曲线1C :4cos 3sin x t y t =-+⎧⎨=+⎩ (t 为参数),2C :8cos 3sin x y θθ=⎧⎨=⎩ (θ为参数)(1)化1C 、2C 的方程为普通方程,并说明它们分别表示什么曲线;(2)若1C 上的点P 对应的参数为t=2π,Q 为2C 上的动点,求PQ 中点M 到直线3C :322x t y t =+⎧⎨=-+⎩(t 为参数)距离的最小值.(三)、巩固训练1、曲线)(11为参数t t t y t t x ⎪⎩⎪⎨⎧-=+=的普通方程为2、曲线)(sin cos 为参数θθθ⎩⎨⎧==y x 上的点到两坐标轴的距离之和的最大值是( ) A .21 B .22 C .1 D .2 4、已知椭圆⎩⎨⎧==θθsin 2cos 3y x (θ为参数)求 (1)6πθ=时对应的点P 的坐标 (2)直线OP 的倾斜角(四)、小结:本课要求大家了解圆锥曲线的参数方程及参数的意义,能选取适当的参数,求简单曲线的参数方程,通过推到椭圆及双曲线的参数方程,体会求曲线的参数方程方法和步骤,对椭圆的参数方程常见形式要理解和掌握。
高中高三数学《直线和圆锥曲线的参数方程》教案、教学设计
1.针对重点内容,采用以下教学策略:
(1)通过直观的动态演示,帮助学生理解参数方程的几何意义,增强直观感知;
(2)设计具有层次性的例题和练习,逐步引导学生掌握参数方程的应用;
(3)结合实际情境,激发学生探究参数方程的兴趣,提高学习积极性。
2.针对难点内容,采用以下教学策略:
(1)以小组合作的形式,让学生在讨论和交流中,共同探讨参数方程的推导过程,培养学生的团队合作意识和解决问题的能力;
高中高三数学《直线和圆锥曲线的参数方程》教案、教学设计
一、教学目标
(一)知识与技能
本章节主要围绕“直线和圆锥曲线的参数方程”展开,使学生掌握以下知识与技能:
1.理解并掌握直线、椭圆、双曲线和抛物线的参数方程;
2.学会运用参数方程解决直线和圆锥曲线的相关问题;
3.能够运用坐标系和参数方程描述直线和圆锥曲线的运动变化;
(8)教学评价:通过课堂提问、作业批改等方式,了解学生的学习情况,及时调整教学策略。
4.关注学生个体差异,实施差异化教学:
(1)针对基础薄弱的学生,加强基础知识的学习,提高其学习信心;
(2)针对学有余力的学生,适当拓展课外知识,培养其创新能力和数学素养。
四、教学内容与过程
(一)导入新课,500字
1.教学活动设计:以生活中的实例导入,如一颗行星在椭圆轨道上绕太阳运动,引导学生思考如何描述行星的运动轨迹。
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
(1)直线和圆锥曲线参数方程的推导过程;
(2)参数方程与普通方程互化的方法;
(3)如何运用参数方程解决实际问题。
2.教师引导:在学生讨论过程中,教师巡回指导,引导学生深入探讨参数方程的内涵和实际应用。
2019-2020学年度最新高中数学人教A版选修4-4创新应用教学案:第二讲第2节第2课时双曲线、抛物线的参数方程-
2019-2020学年度最新高中数学人教A 版选修4-4创新应用教学案:第二讲第2节第2课时双曲线、抛物线的参数方程-含答案[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程(1)抛物线y 2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,t ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,则焦点在x 轴上; 如果y 对应的参数形式是a sec φ,则焦点在y 轴上.3.若抛物线的参数方程表示为⎩⎨⎧x =2ptan 2α,y =2p tan α.则参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 本题考查双曲线的参数方程的应用,解答本题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),则B ′(-a sec α,a tan α). ∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a ,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[精讲详析] 本题考查抛物线的参数方程的求法及其应用.解答本题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2,变形为y 0=14x 20,即x 2=4y .表示的为抛物线.在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.已知抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 本题考查椭圆及双曲线的参数方程,解答本题需要先将双曲线化为普通方程并求得渐近线方程,然后根据已知条件求出椭圆的参数方程求解即可.∵x 216-y 29=1, ∴右焦点(5,0),右顶点(4,0). 设椭圆x 2a 2+y 2b 2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin (θ-φ)|5(tan φ=54).∴d max =3415.对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(广东高考)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为______________.解析:由⎩⎪⎨⎪⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R )得x =54y 2.联立方程可得⎩⎨⎧x 25+y 2=1,x =54y 2则5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),则x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.天津高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](天津高考)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =________.[命题立意] 本题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用.[解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EF A 中,|EF |=2|F A |,即3+p2=2p ,得p =2.答案:2一、选择题1.下列参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos 2tC.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2tD.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数范围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.下列双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1 C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3(sin 2θ+cos 2θ)cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t 只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t2y =4t 得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t -2-t ,y =2t+2-t (t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得: x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4, 即y 2-x 2=4.又注意到2t >0,2t +2-t ≥22t ·2-t =2,即y ≥2.可见与以上参数方程等价的普通方程为: y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 二、填空题5.(陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,则焦点坐标为(1,0).答案:(1,0)6.已知抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O不重合),P (x ,y )是线段OM 的中点,则点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),则x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0)7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎪⎨⎪⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48. ∴焦点坐标为(0,±43). 答案:(0,±43)8.(广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.解析:由⎩⎪⎨⎪⎧x =t ,y = t ,得y =x ,又由⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,得x 2+y 2=2.由⎩⎪⎨⎪⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1, 即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1)三、解答题9.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),则中点为M (a2(sec α+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β) =-a (sec α-sec β)b (tan α-tan β)[x -a 2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a (sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2. ∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2),则k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2.又设MN 的中点为P (x ,y ),则⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴k AP =4(t 1+t 2)4(t 21+t 22)-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4(t 21+t 22),y =4(t 1+t 2),则y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1). ∴所求轨迹方程为y 2=4(x -1).11.已知圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2 =(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。
高中数学新课圆锥曲线方程教案
一、教案基本信息高中数学新课圆锥曲线方程教案课时安排:2课时教学对象:高中数学学生教学目标:1. 理解圆锥曲线的概念及其特点。
2. 掌握圆锥曲线的基本方程。
3. 能够运用圆锥曲线方程解决实际问题。
教学方法:1. 采用问题导入法,激发学生兴趣。
2. 利用多媒体课件,直观展示圆锥曲线的图形。
3. 采用小组讨论法,引导学生探究圆锥曲线方程的推导过程。
4. 运用例题讲解法,帮助学生掌握圆锥曲线方程的应用。
教学内容:1. 圆锥曲线的概念及特点2. 圆锥曲线的基本方程3. 圆锥曲线方程的推导过程4. 圆锥曲线方程的应用二、教学过程第一课时:1. 导入:利用多媒体课件,展示圆锥曲线的图形,引导学生观察其特点。
2. 新课讲解:1. 讲解圆锥曲线的概念及特点。
2. 引导学生探究圆锥曲线的基本方程。
3. 讲解圆锥曲线方程的推导过程。
3. 例题讲解:运用例题,讲解圆锥曲线方程的应用。
4. 课堂练习:布置练习题,让学生巩固所学内容。
第二课时:1. 复习导入:复习上一课时所讲的内容,提问学生圆锥曲线方程的应用。
2. 课堂讲解:讲解圆锥曲线方程在实际问题中的应用。
3. 例题讲解:运用例题,讲解圆锥曲线方程解决实际问题的方法。
4. 小组讨论:布置讨论题,让学生分组讨论圆锥曲线方程的应用。
5. 课堂总结:总结本节课所讲内容,强调圆锥曲线方程的重要性。
6. 课后作业:布置作业,让学生巩固所学知识。
三、教学评价1. 课后问卷调查,了解学生对圆锥曲线方程的掌握程度。
2. 课堂练习及作业批改,评估学生运用圆锥曲线方程解决实际问题的能力。
3. 课堂表现,观察学生在讨论、回答问题等方面的参与度。
四、教学反思1. 针对学生的掌握情况,调整教学方法,提高教学效果。
2. 结合学生反馈,优化教学内容,使课堂更贴近学生需求。
3. 注重培养学生的动手操作能力和实际应用能力,提高学生的综合素质。
五、教学资源1. 多媒体课件:展示圆锥曲线的图形,生动直观。
人教课标版高中数学选修4-4《圆锥曲线的参数方程》教案-新版
第二讲 参数方程 2.2 圆锥曲线的参数方程一、教学目标 (一)核心素养通过这节课学习,了解圆锥曲线的参数方程及参数的意义、体会参数方程的应用,会选择适当的参数写出曲线的参数方程,通过观察、探索、发现的创造性过程,培养创新意识. (二)学习目标1.借助于圆的参数方程,理解椭圆的参数方程及其应用. 2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. (三)学习重点1.椭圆的参数方程及其应用. 2.双曲线、抛物线的参数方程.3.通过具体问题,体会某些曲线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性. (四)学习难点1.椭圆参数方程的参数几何意义的理解.2.利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. 3.选择适当的圆锥曲线的参数方程. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第27页至第33页,填空:椭圆12222=+by a x )0(>>b a 参数方程⎩⎨⎧==θθsin cos b y a x (θ为参数),参数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角.双曲线的参数方程的推导:双曲线12222=-b y a x )0(>>b a 参数方程⎩⎨⎧==θθtan sec b y a x (θ为参数)抛物线的参数方程:抛物线)0(22>=p px y 参数方程⎩⎨⎧==pty pt x 222(t 为参数),t 为以抛物线上一点),(y x 与其顶点连线斜率的倒数. (2)写一写:圆锥曲线上点的坐标怎么设置?2.预习自测(1)参数方程)(sin 2cos 为参数θθθ⎩⎨⎧==y x 表示的曲线为( )【知识点】椭圆的参数方程【解题过程】消去参数得椭圆的普通方程为1422=+y x ,所以选B【思路点拨】消去参数化为普通方程来判定 【答案】B(2)椭圆⎩⎨⎧==θθsin 2cos 5y x (θ为参数)的焦距为( )A .21B .29C .221D .229【知识点】椭圆的参数方程、椭圆的性质【解题过程】消去参数得椭圆的普通方程为142522=+y x ,所以21,4,25222===c b a ,故焦距2122=c【思路点拨】消去参数化为普通方程求解 【答案】C(3)圆锥曲线⎩⎨⎧x =t 2,y =2t(t 为参数)的焦点坐标是________.【知识点】抛物线的参数方程【解题过程】消去参数得曲线的普通方程为x y 42=,所以为抛物线,根据抛物线的定义得焦点坐标为(1,0)【思路点拨】消去参数化为普通方程求解 【答案】(1,0). (4)曲线⎩⎪⎨⎪⎧x =t +1t,y =2t -2t(t 为参数)的顶点坐标是________.【知识点】双曲线的参数方程 【解题过程】方程变形为⎩⎪⎨⎪⎧x =t +1t ,y 2=t -1t ,两式平方相减,得x 2-y 24=4,即x 24-y 216=1,∴曲线是焦点在x 轴上的双曲线,顶点坐标为(±2,0). 【思路点拨】消去参数化为普通方程求解 【答案】(±2,0) (二)课堂设计 1.知识回顾(1)写出圆方程的标准式和对应的参数方程.圆222r y x =+参数方程⎩⎨⎧==θθsin cos r y r x (θ为参数),圆22020)()(r y y x x =-+-参数方程为:⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)2.问题探究探究一 结合旧知,类比探究椭圆参数方程★ ●活动① 归纳提炼公式上一节我们学习了圆的参数方程以及参数方程中参数的意义,那么椭圆)0(12222>>=+b a b y a x 的参数方程是什么呢,参数方程中的参数有何意义?如右图,以原点O 为圆心,分别以b a ,(a >b >0)为半径作两个同心圆,设A 为大圆上的任意一点,连接OA,与小圆交于点B ,过点A 作Ox AN ⊥,垂足为N ,过点B 作AN BM ⊥,垂足为M .设ϕ=∠xOA ,由三角函数的定义有:)sin ,cos (),sin ,cos (ϕϕϕϕb b B a a A设),(y x M ,依题意可得:)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x 当OA 绕原点旋转一周时,就可以得到点M 的轨迹方程了。
2019-2020学年高二数学 圆锥曲线方程教案11 苏教版.doc
2019-2020学年高二数学圆锥曲线方程教案11 苏教版一、教学目标(一)知识教学点使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.(二)能力训练点从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力.(三)学科渗透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,这样才能解决抛物线中的弦、最值等问题.二、教材分析1.重点:抛物线的几何性质及初步运用.(解决办法:引导学生类比椭圆、双曲线的几何性质得出.)2.难点:抛物线的几何性质的应用.(解决办法:通过几个典型例题的讲解,使学生掌握几何性质的应用.)3.疑点:抛物线的焦半径和焦点弦长公式.(解决办法:引导学生证明并加以记忆.)三、活动设计提问、填表、讲解、演板、口答.四、教学过程(一)复习1.抛物线的定义是什么?请一同学回答.应为:“平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.”2.抛物线的标准方程是什么?再请一同学回答.应为:抛物线的标准方程是y2=2px(p>0),y2=-2px(p>0),x2=2py(p >0)和x2=-2py(p>0).下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p>0)出发来研究它的几何性质.(二)几何性质怎样由抛物线的标准方程确定它的几何性质?以y2=2px(p>0)为例,用小黑板给出下表,请学生对比、研究和填写.填写完毕后,再向学生提出问题:和椭圆、双曲线的几何性质相比,抛物线的几何性质有什么特点?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但是没有渐近线.(2)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线或与顶点和焦点的连线重合,抛物线没有中心.(3)抛物线只有一个顶点,它是焦点和焦点在准线上射影的中点.(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比较.其结果是应规定抛物线的离心率为1.注意:这样不仅引入了抛物线离心率的概念,而且把圆锥曲线作为点的轨迹统一起来了.(三)应用举例为了加深对抛物线的几何性质的认识,掌握描点法画图的基本方法,给出如下例1.例1 已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点解:因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点程是y2=4x.后一部分由学生演板,检查一下学生对用描点法画图的基本方法掌握情况.第一象限内的几个点的坐标,得:(2)描点作图描点画出抛物线在第一象限内的一部分,再利用对称性,就可以画出抛物线的另一部分(如图2-33).例2 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.解法一:由焦半径关系,设抛物线方程为y2=-2px(p>0),则准线方因为抛物线上的点M(-3,m)到焦点的距离|MF|与到准线的距离得p=4.因此,所求抛物线方程为y2=-8x.又点M(-3,m)在此抛物线上,故m2=-8(-3).解法二:由题设列两个方程,可求得p和m.由学生演板.由题意在抛物线上且|MF|=5,故本例小结:(1)解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离.可得焦半径公式:设P(x0,这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握.(2)由焦半径不难得出焦点弦长公式:设AB是过抛物线焦点的一条弦(焦点弦),若A(x1,y1)、B(x2,y2)则有|AB|=x1+x2+p.特别地:当AB⊥x轴,抛物线的通径|AB|=2p(详见课本习题).例3 过抛物线y2=2px(p>0)的焦点F的一条直线与这抛物线相交于A、B两点,且A(x1,y1)、B(x2,y2)(图2-34).证明:(1)当AB与x轴不垂直时,设AB方程为:此方程的两根y1、y2分别是A、B两点的纵坐标,则有y1y2=-p2.或y1=-p,y2=p,故y1y2=-p2.综合上述有y1y2=-p2又∵A(x1,y1)、B(x2,y2)是抛物线上的两点,本例小结:(1)涉及直线与圆锥曲线相交时,常把直线与圆锥曲线方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法.(2)本例命题1是课本习题中结论,要求学生记忆.(四)练习1.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=6,求|AB|的值.由学生练习后口答.由焦半径公式得:|AB|=x1+x2+p=82.证明:与抛物线的轴平行的直线和抛物线只有一个交点.请一同学演板,其他同学练习,教师巡视.证明:可设抛物线方程故抛物线y2=2px与平行于其轴的直线只有一个交点.(五)全课小结1.抛物线的几何性质;2.抛物线的应用.五、布置作业1.在抛物线y2=12x上,求和焦点的距离等于9的点的坐标.2.有一正三角形的两个顶点在抛物线y2=2px上,另一顶点在原点,求这个三角形的边长.3.图2-35是抛物线拱桥的示意图,当水面在l时,拱顶高水面2m,水面宽4m,水下降11m后,水面宽多少?4.求证:以抛物线的焦点弦为直径的圆,必与抛物线的准线相切.作业答案:3.建立直角坐标系,设拱桥的抛物线方程为x2=-2py,可得抛物线4.由抛物线的定义不难证明六、板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 4.4.10圆锥曲线参数方程的应用教案 新
人教版选修4
一、教学目标:
知识与技能:利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题 过程与方法:选择适当的参数方程求最值。
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:选择适当的参数方程求最值。
教学难点:正确使用参数式来求解最值问题
三、教学模式:讲练结合,探析归纳
四、教学过程:
(一)、复习引入:
通过参数θ简明地表示曲线上任一点坐标将解析几何中以计算问题化为三角问题,从而运用三角性质及变换公式帮助求解诸如最值,参数取值范围等问题。
(二)、讲解新课:
例1、方程{t t t t x y e e
e e --=+
=-(t 为参数)的图形是 双曲线右支 。
学生练习,教师准对问题讲评。
反思归纳:判断曲线形状的方法。
例2、设P 是椭圆22364
1y x +=在第一象限部分的弧AB 上的一点,求使四边形OAPB 的面积最大的点P 的坐标。
分析:本题所求的最值可以有几个转化方向,即转化为求,POA poB OAPB s s S ∆+∆的最大值或者求点P 到AB 的最大距离,或者求四边形OAPB 的最大值。
学生练习,教师准对问题讲评。
【θ=4
π
时四边形OAPB 的最大值
P 为(
2)。
】
(三)、巩固训练
1、直线)(sin cos 为参数θθθ⎩
⎨⎧==t y t x 与圆)(sin 2cos 24为参数ϕϕϕ⎩⎨⎧=+=y x 相切,那么直线的倾斜角为(A )
A .6π或65π
B .4π或43π
C .3π或32π
D .6π-或6
5π- 2、椭圆 122
22=+b
y a x (0>>b a )与x 轴正向交于点A ,若这个椭圆上存在点P ,使OP ⊥AP ,(O 为原点),求离心率e 的范围。
3、抛物线x y 42=的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三角形的周长。
4、设P 为等轴双曲线122=-y x 上的一点,1F ,2F 为两个焦点,证明221OP P F P F =⋅
5、求直线为参数)t t y t
x (11⎩⎨⎧-=+=与圆422=+y x 的交点坐标。
解:把直线的参数方程代入圆的方程,得(1+t)2+(1-t)2=4,得t=±1,分别代入直线方程,
得交点为(0,2)和(2,0)。
(三)、小结:本节课我们利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题,选择适当的参数方程正确使用参数式来求解最值问题,要求理解和掌握求解方法。
(四)、作业:
练习:在抛物线ax y 42=)0(>a 的顶点,引两互相垂直的两条弦OA ,OB ,求顶点O 在AB 上射影H 的轨迹方程。
五、教学反思:。