立体几何中线面平行的经典方法+经典习题(附详细解答
立体几何中线面平行的经典方法
高中立体几何证明平行的专题(基本方法) 立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F 分别为棱AB、PD 的中点.求证:AF∥平面PCE;(第1题图)A B C A B2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥ CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;(2) 利用三角形中位线的性质4、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。
求证:PA∥平面BDE(.3)利用平行四边形的性质9.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证:D1O//平面A1BC1;10、在四棱锥P-ABCD 中,AB ∥CD ,AB=21DC ,中点为PD E .求证:AE ∥平面PBC(4)利用对应线段成比例12、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且SM AM =ND BN,求证:MN ∥平面SDC13、如图正方形ABCD与ABEF交于AB,M,N分别为AC和BF上的点且AM=FN 求证:MN∥平面BEC(5)利用面面平行14、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠= ,PB=BC=CA ,E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =.(1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ;。
线面平行典型例题和练习
线面平行典型例题和练习直线与平面、平面与平面平行的判定与性质中,都隐含着直线与直线的平行,它成为联系直线与平面、平面与平面平行的纽带,成为证明平行问题的关键. 1.运用中点作平行线 例1.已知四棱锥P ABCD -的底面是距形,M、N分别是AD、PB的中点,求证MN∥平面PCD .2.运用比例作平行线 例2.四边形ABCD与ABEF是两个全等正方形,且AM=FN,其中M AC ∈,N BF ∈,求证:MN∥平面BCE3. 运用传递性作平行线例3.求证:一条直线与两个相交平面都平行,则这条直线和它们的交线平行4.运用特殊位置作平行线 例4.正三棱柱ABC-A1B1C1的底面边长为2,点E、F分别是C1C、B1B上的点,点M是线段AC上的动点,EC=2FB=2.问当点M在何位置时MB∥平面AEF?课堂强化:1. 1.棱长都相等的四面体称为正四面体.在正四面体A-BCD 中,点M ,N 分别是CD 和AD 的中点,给出下列命题:①直线MN ∥平面ABC ; ②直线CD ⊥平面BMN ;③三棱锥B-AMN 的体积是三棱锥B-ACM 的体积的一半. 则其中正确命题的序号为A CNP D M BG图M FNC EA D BHm αβlγσn 图4k A B CE F N MB 1 A 1C 1 图52. (2012•山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.3. .(2012•辽宁)如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC= 2,AA′=1,点M,N 分别为A′B和B′C′的中点.(Ⅰ)证明:MN∥平面A′ACC′;(Ⅱ)求三棱锥A′-MNC的体积.4. (2011•上城区)如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.(1)若点G在AB上,试确定G点位置,使FG∥平面ADE,并加以证明;(2)求DB与平面ABE所成角的正弦值.5. .(2009•宁夏)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的 2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.6. 如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD 的中点,AB=1,PA=2.(I)证明:直线CE∥平面PAB;(Ⅱ)求三棱锥E-PAC的体积.7. 如图,已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,则在四棱锥P-ABCD中,M 是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.8. 已知平面α∥面β,AB、CD为异面线段,AB⊂α,CD⊂β,且AB=a,CD=b,AB与CD所成的角为θ,平面γ∥面α,且平面γ与AC、BC、BD、AD分别相交于点M、N、P、Q.且M、N、P、Q 为中点,(1)若a=b,求截面四边形MNPQ的周长;(2)求截面四边形MNPQ面积的最大值.9. 如图,在正四棱柱ABCD-A1B1C1D1中,棱长AA1=2,AB=1,E是AA1的中点.(Ⅰ)求证:A1C∥平面BDE;(Ⅱ)求点A到平面BDE的距离.10. 如图,在三棱锥P-ABC中,已知AB=AC=2,PA=1,∠PAB=∠PAC=∠BAC=60°,点D、E分别为AB、PC的中点.(1)在AC上找一点M,使得PA∥面DEM;(2)求证:PA⊥面PBC;(3)求三棱锥P-ABC的体积.11. 空间四边形ABCD的对棱AD,BC成60°的角,且AD=BC=a,平行于AD与BC的截面分别交AB,AC,CD,BD于E、F、G、H.(1)求证:四边形EFGH为平行四边形;(2)E在AB的何处时截面EFGH的面积最大?最大面积是多少?12. 如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,BG=2CG(I)求证:PC⊥BC;(II)求三棱锥C-DEG的体积;(III)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.13. 如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD 的中点,AB=1,PA=2.(I)证明:直线CE∥平面PAB;(Ⅱ)求三棱锥E-PAC的体积14. 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(Ⅰ)求证:AC ⊥SD ;(Ⅱ)若PD :SP=1:3,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE :EC 的值;若不存在,试说明理由.15.如图,在五面体中,平面ABCD ⊥平面BFEC ,Rt △ACD 、RtACB 、Rt △FCB 、Rt △FCE 为全等直角三角形,AB=AD=FB=FE=1,斜边AC=FC=2. (Ⅰ)证明:AF ∥DE ;(Ⅱ)求棱锥D-BCEF 的体积.课后作业一、选择题1.下列条件中,能判断两个平面平行的是( ) A .一个平面内的一条直线平行于另一个平面; B .一个平面内的两条直线平行于另一个平面 C .一个平面内有无数条直线平行于另一个平面 D .一个平面内任何一条直线都平行于另一个平面2、已知直线a 与直线b 垂直,a 平行于平面α,则b 与α的位置关系是( )A.b ∥αB.bαC.b 与α相交D.以上都有可能3. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ= 4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一的直线与m 平行D .α内的直线与m 都相交 5.下列命题中,错误的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .1 6.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( )A .()12MN AC BC ≥+ B .()12MN AC BC ≤+C .()12MN AC BC =+ D .()12MN AC BC <+7 .α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α,β都平行于直线a ,bB .α内有三个不共线点到β的距离相等C .a ,b 是α内两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β8.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α 9.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( ) A .a α⊄,则//a α B .//a α,b α⊂,则//a b C .//,,a b αβαβ⊂⊂,则//a b D .,,//,//P a P a βααβ∈∈,则a β⊂10.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定 11.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A .①③ B .①② C .②③ D .③④ 12.在下列命题中,错误的是 A. 若平面α内的任一直线平行于平面β,则α∥β B. 若两个平面没有公共点,则两个平面平行C. 若平面α∥平面β,任取直线a ⊂α,则必有a ∥βD. 若两条直线夹在两个平行平面间的线段长相等,则两条直线平行二、填空题13.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④14.正方体ABCD-A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 .15.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:1A .⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;;其中正确的命题是________________.16.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BD D 1. 三、解答题17.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.18、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD.证:;平面D BC AB 11//19、如图,在直三棱柱ABC-A 1B 1C 1中, D 为AC 的中点,求20.如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上. 问点E 在何处时,//PA EBD 平面,并加以证明.21、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)面111//D AB D OC 面.EP DCBAAB CA1B 1C 1D D 1ODBAC 1B 1A 1CH G FE DBAC探究习题:1.平面内两正方形ABCD与ABEF,点M,N分别在对角线AC,FB上,且AM:MC=FN:NB,沿AB折起,使得∠DAF=900(1)证明:折叠后MN//平面CBE;(2)若AM:MC=2:3,在线段AB上是否存在一点G,使平面MGN//平面CBE?若存在,试确定点G的位置.2.设平面α∥平面β,AB、CD是两条异面直线,M,N分别是AB,CD的中点,且A,C∈α,B,D∈β,求证:MN∥平面α.。
专题20立体几何中的平行与垂直问题(解析版)
专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
线面平行典型例题
线面平行典型例题和练习直线与平面、平面与平面平行的判定与性质中,都隐含着 平面平行的纽带,成为证明平行问题的关键.1.运用中点作平行线例1.已知四棱锥 P ABCD 的底面是距形,M 、N 分别是AD 、PB 的中点,求证MN//平面2•运用比例作平行线例2.四边形ABCD 与ABEF 是两个全等正方形,且AM 平面BCE3.运用传递性作平行线例3.求证:一条直线与两个相交平面都平行,则这条直线和它们的交线平行课堂强化:1. 1•棱长都相等的四面体称为正四面体•在正四面体给出下列命题: ①直线MN/平面ABC4 .运用特殊位置作平行线 例4.正三棱柱ABC-A 1B 1 C 1的底面边长为2,点E 、F 分别是C 动点,EC=2FB= 2 .问当点M 在何位置时MB//平面AEF? B i B 上的点,点M 是线段AC 上的E k1C 、B i直线与直线的平行,它成为联系直线与平面、平面与 PCDB图5A-BCD 中,点 M N 分别是CD 和AD 的中点,MN//② 直线CDI 平面BMN③ 三棱锥B-AMN 的体积是三棱锥 B-ACM 的体积的一半. 则其中正确命题的序号为2.如图,几何体 E-ABCD 是四棱锥,△ ABD 为正三角形,CB=CD EC 丄BD.(I)求证:BE=DE(n)若/ BCD=120 , M 为线段 AE 的中点,求证: DM/平面BEC3..如图,直三棱柱 ABC-A' B' C',/ BAC=90 , AB=AC=2, AA' =1,点 M , N 分别为 A'B 和 B' C'的中点.求三棱锥 A -MNC 的体积.AE 和CD 都垂直于平面 ABC 且AE=AB=2 CD=1, F 为BE 的中点.(1)若点G 在AB 上,试确定G 点位置,使FG//平面ADE 并加以证明;5.如图,四棱锥 S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的(1)求证:AC 丄SD(3)在(2)的条件下,侧棱 SC 上是否存在一点 E ,使得BE//平面PAC 若存在,求SE: EC 的值;若不存在, 试说明理由.P-ABCD 中,/ ABC=Z ACD=90 , / BAC=Z CAD=60 , PA 丄平面 ABCD E 为 PD 的中点,AB=1,2倍,P 为侧棱SD 上的点.6.如图,在四棱锥 P A=2(I )证明:直线CE//平面PAB7.如图,已知四边形ABCD 是平行四边形,点P 是平面 在DM 上取一点 G 过G 和AP 作平面交平面 BDM 于GHABCD 外卜的一点,则在四棱锥 P-ABCD 中,M 是PC 的中点,求证:AP// GH8.已知平面a//面3, AB CD 为异面线段,AB? a, 丫//面a,且平面 丫与AC BC BD AD 分别相交于点 CD? 且AB=a, CD=b AB 与CD 所成的角为 0,平面 M N 、P 、Q 且M N P 、Q 为中点,9.如图,在正四棱柱 ABCD-ABQD 中,棱长 AA=2, AB=1, E 是AA 的中点.(I)求证:AC//平面BDE10.如图,在三棱锥 P-ABC 中,已知 AB=AC=2 PA=1,/ PAB=/ PAC 玄BAC=60,点 D E 分别为 AB PC 的中 点.(1)在AC 上找一点 M 使得PA//面DEM11.空间四边形 ABCD 勺对棱AD BC 成60°的角,且 AD=BC=a 平行于 AD 与BC 的截面分别交 AB, AC, CD BD 于 E 、F 、G H.(1)求证:四边形 EFGH 为平行四边形;12.如图,四棱锥 P-ABCD 中,PD 丄平面 ABCD 底面 ABCD 为正方形,BC=PD=2 E 为PC 的中点,BG=2CG (I )求证:PC 丄BCP A=2(I )证明:直线CE//平面PAB14.如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的(I)求证:AC 丄SD(n)若PD SP=1: 3,侧棱SC 上是否存在一点 E ,使得BE//平面PAC 若存在,求 SE EC 的值;若不存在, 试说明理由.,P 从平面 ABCDE 为PD 的中点,AB=1,2倍,P 为侧棱SD 上的点.(1)若a=b ,求截面四边形 MNP 啲周长;CCAM 的长;否则,说明理由.一、选择题1下列条件中,能判断两个平面平行的是()15.如图,在五面体中,平面 AB=AD=FB=FE=1 斜边 AC=FC=2(I)证明:AF// DEABCDL 平面 BFEG Rt △ ACD RtACB Rt △ FCB Rt △ FCE 为全等直角三角形,课后作业10. 一条直线若同时平行于两个相交平面, A.异面 B.相交 11. 下列四个命题中,正确的是()①夹在两条平行线间的平行线段相等; ②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面 间的相等线段平行 A.①③B .①②C .②③ 12•在下列命题中,错误的是A.若平面a 内的任一直线平行于平面3,则a/3A. B. C. D.一个平面内的一条直线平行于另一个平面;一个平面内的两条直线平行于另一个平面 一个平面内有无数条直线平行于另一个平面 一个平面内任何一条直线都平行于另一个平面,则b 与a 的位置关系是( 2、已知直线a 与直线b 垂直,a 平行于平面a A.b //a B.b U aC.b 与a 相交D.以上都有可能)C . a//c,b//c D,则下列结论成立的是 内不存在与 内的直线与 3. 直线a , b,c 及平面,,使a//b 成立的条件是( A . a// ,b B.a// , b//4.若直线m 不平行于平面 ,且mA .内的所有直线与m 异面 C.内存在唯一的直线与 m 平行 .a// , I( )m 平行的直线m 都相交 )①一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 条直线和这个平面平行;③ 线和同一平面平行; A. 4过直线外一点有且只有一个平面和这条直线平行;④⑤ a 和b 异面,则经过b 存在唯 个平面与平行B . 3过平面外一点有且只有一 平行于同一条直线的两条直6.已知空间四边形ABCD 中, MN-AC 2BC BC. MN 7 .A .B .a , a , 1AC 2是两个不重合的平面, ,3都平行于直线 内有三个不共线点到 b 是内两条直线, b 是两条异面直线且 BC D&两条直线a , b 满足a // b , .a 与 A. a //9•设 a, b 表示直线, a,贝y a//// ,a ,b个平面与 D. 1M ,N 分别是AB,CD 的中点,则下列判断正确的是(MN MN-AC BC 2 1-AC BC 2b 是两条不同直线,在下列条件下,可判定a ,a , b3的距离相等且 a /3, b /3a // ,b /, a /3, b /3,则a 与平面的关系是( )C. a 与不相交D.的是( )b W 相交a ^l表示平面, P 是空间一点,下面命题中正确的是(.a//, b,贝y a//b,贝y a//bD . P a,P ,a// , // ,则那么这条直线与这两个平面的交线的位置关系是(C.平行D.不能确定 D .③④B .若两个平面没有公共点,则两个平面平行C. 若平面a//平面任取直线 a a,则必有a /3D. 若两条直线夹在两个平行平面间的线段长相等,则两条直线平行 二、填空题 13•如下图所示,四个正方体中, A , MNP 勺图形的序号的是 B 为正方体的两个顶点, M N, P 分别为其所在棱的中点,能得到 AB//面④ B ② I I14 .正方体 ABCD-ABiGD 中,E 为 DD 中点,贝U BD 和平面ACE 位置关系是 15 . a , ① a// c b // c // c ④//a // cb ,c 为三条不重合的直线, a " b ;②a/ IIa // ;⑤〃a,3,// ca // b;③ 〃 c // c ⑥1I I 其中正确的命题是 Y 为三个不重合的平面,直线均不在平面内, 给出六个命题: I I a II 16.如图,正四棱柱 ABCD-ABGD1中,E , 点,N 是BC 中点,点M 在四边形EFGH 及其内部运动,贝U M 满足三、解答题 F , A l 17.如图, 正三棱柱 18、已知 求证: G H 分别是棱 CC , C 1D1, DD , 时,有MIN/平面B 1BD D 1.ABC A i B i C i 的底面边长是E 、F 、G EH// BD.H 为空间四边形 ABCD 勺边 DC 中2,侧棱长是谄,D 是AC 的中点.求证:B 1C//平面ABD.B1AB BC CD DA 上的点,且 EH//FG.19、如图,在直三棱柱 ABC-ABiC 中,D 为AC 的中点,求证:AB 1 //平面BC 1D ;20.如图,在正四棱锥 P ABCD 中,PA AB a ,点E 在棱PC 上. 加以证明. 21、已知正方体 A BCD A 1B C 1D 1, O 是底ABCD 对角线的交点.求证:(1 ) C 1O// 面 AB 1D 1 ; (2)面 OC 1D// 面 AB 1D 1 . 探究习题:1.平面内两正方形 ABCD 与 ABEF 点M N 分别在对角线 AC,FB 上,且AM:MC=FN:NB 沿AB 折起,使得/ DAF=90 (1)证明:折叠后MN//平面CBE⑵若AM:MC=2 3,在线段 AB 上是否存在一点 G 使平面 MGN//平面CBE 若存在,试确定点 G 的位置. 2.设平面 //平面3, AB CD 是两条异面直线, M N 分别是AB, CD 的中点,且 A , C € , B , D C3,求证: MN/平面问点E 在何处时,PA//平面EBD ,并1C。
高中立体几何证明线面平行的常见方法
高中立体几何证明线面平行的常见方法1.通过“平移”再利用平行四边形的性质题目1:四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点。
证明AF∥平面PCE。
证明:将四棱锥P-ABCD平移,使其底面平移到平面PCE上,得到四棱锥P'-A'B'C'D',其中A'B'C'D'与ABCD平行,且P'、E'、F'分别为A'B'、C'D'、A'D'的中点。
因为AF∥PD,所以AF'=PD'=C'F',又因为AD'=C'D'/2=AB'/2=AF'/2,所以AD'∥B'C'。
因此,根据平行四边形的性质,AF'∥B'C',即AF∥CE。
题目3:四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点,证明EB∥平面PAD。
证明:连接PE,因为E为PC的中点,所以PE∥AD。
又因为CD⊥AD,所以CD∥PE。
又因为CD=2AB,所以AB∥PE。
因此,根据平行四边形的性质,EB∥PA,即EB∥平面PAD。
2.利用三角形中位线的性质题目4:四面体ABCD中,E、F、G、M分别是棱AD、CD、BD、BC的中点,证明AM∥平面EFG。
证明:连接EF、EG、FG,因为E、F、G分别为三角形BCD、ACD、ABD的中点,所以EF、EG、FG分别是这三个三角形的中位线。
因此,EF∥AD,EG∥BD,FG∥AC。
又因为M为BC的中点,所以AM∥FG。
因此,AM∥平面EFG。
3.利用平行四边形的性质题目7:正方体ABCD-A' B' C' D'中O为正方形ABCD的中心,M为B'B的中点,求证D'O∥平面A'BC'。
必修二立体几何线线平行、面面平行、线面垂直判定及性质练习
必修二立体几何线线平行、面面平行、线面垂直判定及性质练习本文档将介绍必修二立体几何中关于线线平行、面面平行、线面垂直的判定方法和性质,并提供相关练题。
一、线线平行的判定和性质1. 判定方法- 定理1:若两线的任意一对对应角相等,则这两条线平行。
定理1:若两线的任意一对对应角相等,则这两条线平行。
- 定理2:若一条直线与两平行线相交,则所成的对应角相等。
定理2:若一条直线与两平行线相交,则所成的对应角相等。
2. 性质- 平行线之间的距离相等。
- 平行线截取的两个平行线段成比例。
- 平行线相交的任意两对内错角相等,外错角相等。
- 平行线与一个横截线相交,所成的相应角、对应角均相等。
二、面面平行的判定1. 判定方法- 定理3:若两平面有一对平行线,则这两个平面平行。
定理3:若两平面有一对平行线,则这两个平面平行。
- 定理4:若两平面分别与一直线平行,则这两个平面平行。
定理4:若两平面分别与一直线平行,则这两个平面平行。
2. 性质- 平行面之间的距离相等。
三、线面垂直的判定1. 判定方法- 定理5:一条直线与平面垂直的充分必要条件是直线与平面内的任意一条短线都垂直。
定理5:一条直线与平面垂直的充分必要条件是直线与平面内的任意一条短线都垂直。
2. 性质- 垂直于同一平面的两条直线平行。
四、练题1. 若两线段的长度相等,能判断这两条线段平行吗?若能,请说明理由。
2. 若两平行线上的两点与另外一直线上的两点分别相连,那么这四条线段相交于一点还是两点?请说明理由。
3. 若两平面平行,能判断这两个平面之间的距离吗?请说明理由。
以上是必修二立体几何中关于线线平行、面面平行、线面垂直的判定方法和性质的介绍及练题。
通过理解和练这些内容,你将更好地掌握立体几何的基本概念和性质。
希望对你有帮助!。
第8章立体几何专题3 平行的证明常考题型专题练习——【含答案】
1平行的证明【方法总结】1.利用直线与平面平行的判定定理证明线面平行,关键是寻找平面内与已知直线平行的直线.2.证线线平行的方法常用三角形中位线定理、平行四边形性质、平行线分线段成比例定理、平行公理等.3. 应用线面平行的性质定理时,应着力寻找过已知直线的平面与已知平面的交线.4. 有时为了得到交线还需作出辅助平面,而且证明与平行有关的问题时,常与公理4等结合起来使用.【分题型练习】考向一 证明线面平行例1、如图,四棱锥P ABCD -中,90BAD ABC ︒∠=∠=,证明:BC ∥平面PAD1【答案】证明过程见详解;【解析】因为四棱锥P ABCD -中,90︒∠=∠=BAD ABC ,所以BC AD ∥,因为AD ⊂平面PAD ,BC ⊄平面PAD ,所以BC ∥平面PAD ; 例2、如图,四棱锥P ABCD -中,底面ABCD 为矩形,F 是AB 的中 点,E 是PD 的中点,//PB 平面AEC【答案】证明见解析【解析】连接BD ,设BD 与AC 的交点为O ,连接EO . 因为四边形ABCD 为矩形,所以O 为BD 的中点, 又因为E 为PD 的中点,所以//EO PB ,因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .1例3、如图,已知四棱锥P ABCD -的底面为直角梯形, //AB DC 且12DCAB =,M 是PB 的中点,证明: //MC 平面PAD【答案】证明见解析【解析】证明:取PA 中点为N ,因为,N M 分别是,PA PB 中点,所以1//2MN AB ,又因为1//2DC AB ,所以MN //DC , 所以四边形MNDC 为平行四边形,所以//MC ND ,ND ⊂平面PAD ,MC ⊄平面PAD ,所以//MC 平面PAD . 例4、如图,在四面体A BCD -中,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =求证://PQ 平面BCD .1【答案】证明见解析【解析】如下图所示,取BD 的中点O ,在线段CD 上取点F ,使得3DF FC =,连接OP 、OF 、FQ .3AQ QC =,3AQ DF QC FC ∴==,//QF AD ∴,且14QF AD =. O 、P 分别为BD 、BM 的中点,//OP AD ∴,且12OP DM =. M 为AD 的中点,14OP AD ∴=. //OP QF ∴且OP QF =,四边形OPQF 是平行四边形,//PQ OF ∴. PQ ⊄平面BCD ,OF ⊂平面BCD ,//PQ ∴平面BCD .【巩固练习】11.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,点M 为PC 中点,证明://PA 平面BDM ;【答案】(1)证明见解析;(2)证明见解析 【解析】连接AC 交BD 于点O ,连接OM , 因为底面ABCD 为平行四边形,所以O 为AC 中点. 在PAC ∆中,又M 为PC 中点,所以//OM PA .又PA ⊄平面BDM ,OM ⊂平面BDM ,所以//PA 平面BDM .2.如图,在三棱锥A -BCD 中,点M ,N 分别在棱AC ,CD 的中点,求证:AD 平面BMN【答案】详见解析1【解析】证明:在ACD 中,因为M,N 分别为棱AC ,CD 的中点, 所以//MN AD ,又AD ⊄平面BMN ,MN ⊂平面BMN ,所以AD平面BMN .3.四棱锥P ABCD -中,底面ABCD 为菱形,求证://CD 平面PAB【答案】详见解析【解析】因为四边形ABCD 是平行四边形,所以//CD AB , 又因为AB平面PAB ,CD ⊄平面PAB ,所以//CD 平面PAB 。
立体几何中线面平行的经典方法 经典题(附详细解答)
DB A 1A F高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA(第1题图)4、如图所示, 四棱锥P -ABCD 底面是直角梯形,,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点,证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。
立体几何大题(经典)
一、线面平行专题1.如图,在直三棱柱中,、分别是、的中点,求证: EF ∥平面ABC ;2.如图,正三棱柱111ABC A B C -中,D 是BC 的中点, 求证:1A B //平面1ADC .(两种方法证明)3.如图,在底面为平行四边行的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC ;(两种方法证明)4.如图,E F O 、、分别为,,的中点,是的中点,求证:平面;(两种方法证明)二、垂直专题1.如图,在直三棱柱中,点在上,。
求证:平面1A CD 平面.111ABC A B C -E F 1A B 1A C PA PB AC G OC //FG BOE 111ABC A B C -D 11B C 11A D B C ⊥⊥11BB C C PABCDE2.如图,正三棱柱111ABC A B C -中,D 是BC 的中点,AB a =. 求证:直线111A D B C ⊥;3.如图,四棱锥的底面是正方形,,点E 在棱PB 上. 求证:平面;4.如图,直三棱柱中,AB =1,,∠ABC=60.求证:;5. 直三棱柱111ABC A B C -中,90BAC ∠=,12AB AC AA ===,M N 、分别是1BC CC 、的中点,求证:1B M ⊥平面AMN ;6.如图,在三棱锥中,⊿是等边三角形, ∠PAC =∠PBC =90º。
求证:AB ⊥PCP ABCD -PD ABCD ⊥底面AEC PDB ⊥平面111ABC A B C -13AC AA ==01AB A C ⊥P ABC -PAB PBACDE PBCA三、线面角和距离1.如图,正三棱柱111ABC A B C -中,D 是BC 的中点,AB a =. 求点D 到平面1ACC 的距离;(两种方法求解)2.如图,四棱锥的底面是正方形,,且E 为PB 的中点时,求AE 与平面PDB 所成角的大小.3.如图,平面,,,,分别为的中点.求与平面所成角的正弦值. P ABCD -PD ABCD ⊥底面2PD AB =DC ⊥ABC //EB DC 120ACB ∠=22AC BC EB DC ====,P Q ,AE AB AD ABE PBADE ACDEQP4.如图3,在正三棱柱中,AB =4, ,点D 是BC 的中点,点E 在AC 上,且DE E. (Ⅰ)证明:平面平面;(Ⅱ)求直线AD 和平面所成角的正弦值。
完整版)线线、线面、面面平行练习题(含答案)
完整版)线线、线面、面面平行练习题(含答案)一、选择题1.B2.C3.B4.B5.A6.A二、填空题7.直线MN与直线BD异面。
三、解答题10.因为D是AC的中点,所以BD平分角ABC,即∠ABD=∠CBD。
又因为AB=AC,所以△ABD≌△CBD,从而BD=BD,即BD//平面ABC。
又因为A1D1//ABC,所以BD//A1D1,即BD//平面A1BD。
因此,BD//平面A1BD,即B1C1//平面A1BD,即B1C1//平面ABD。
11.1) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN//CD,MN=CD/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.所以MN=CD/2=AC/√3=BD/2√3,即MN//B1D1.2) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN=CD/2=AC/√3,EN=CG=AC/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.所以AE=BD/2=AC/√3,从而AE=EN,即AEEN是平行四边形,即AE//EN。
又因为XXX,所以AE//MN,即平面AEM//平面MNC。
又因为平面AEM与平面ABC的交线是直线AE,平面MNC与平面ABC的交线是直线MN,所以AE//MN//BD,即B1D1//平面AEM。
因此,AC1//平面AEM//B1D1,即AC1//平面EB1D1.3) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN=CD/2=AC/√3,EN=CG=AC/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.又因为D1是BD的中点,所以D1C1=BC/2=AC/2√2.所以MN=CD/2=AC/√3=D1C1√2/√3,即MN//D1C1.又因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以EG=CC1/2=AC/2√2.又因为ABCD是平行六面体,所以AD//BC,从而△ABD≌△CBA1,即AD=BC,AD=2AC/√3.所以EG=CC1/2=AC/2√2=AD/2√2,即EG//AD。
高中数学必修二立体几何线面平行专题练习(含答案)
线面平行问题一.选择题(共12小题)1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交2.A,b,c为三条不重合的直线,α,β,γ为三个不重合平面,现给出六个命题①⇒a∥b ②⇒a∥b ③⇒α∥β④⇒α∥β ⑤⇒α∥a ⑥⇒α∥a其中正确的命题是()A.①②③B.①④⑤C.①④D.①③④3.下列说法正确的是()A.三点确定一个平面B.一条直线和一个点确定一个平面C.梯形一定是平面图形D.过平面外一点只有一条直线与该平面平行4.能保证直线与平面平行的条件是()A.直线与平面内的一条直线平行B.直线与平面内的某条直线不相交C.直线与平面内的无数条直线平行D.直线与平面内的所有直线不相交5.如图,各棱长均为1的正三棱柱ABC﹣A1B1C1,M,N分别为线段A1B,B1C上的动点,且MN∥平面ACC1A1,则这样的MN有()A.1条B.2条C.3条D.无数条6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B. C. D.7.在正方体ABCD﹣A1B1C1D1中,E为DD1的中点,则下列直线中与平面ACE平行的是()A.BA1B.BD1C.BC1D.BB18.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE:EB=AF:FD=1:4,又H,G 分别是BC,CD的中点,则()A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形9.在三棱锥S﹣ABC中,E,F分别为SB,SC上的点,且EF∥面ABC,则()A.EF与BC相交B.EF∥BC C.EF与BC异面D.以上均有可能10.如图是某几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点.在此几何体中,以下结论一定成立的是()A.直线BE∥PFB.B.直线EF∥平面PBCC.平面BCE⊥平面PADD.D.直线PB与DC所成角为60°11.平面α与△ABC的两边AB,AC分别交于点D,E,且AD:DB=AE:EC,如图,则BC与α的位置关系是()A.异面B.相交C.平行或相交D.平行12.如图,矩形ABCD中,AB=2AD,E是边AB的中点,将△ADE沿DE翻折成△A1DE,若M 为线段A1C的中点,则在翻折过程中,有下列四个命题:①存在某个位置,使MB∥平面A1DE;②点M在某个球面上运动;③存在某个位置使DE⊥A1C;④BM的长是定值,其中正确的结论是()A.①②③B.①②④C.①③④D.②③④二.解答题(共18小题)13.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.14.如图所示,PD垂直于正方形ABCD所在的平面,AB=2,PC与平面ABCD所成角是45°.F 是AD的中点,M是PC的中点,求证.DM∥平面PFB.15.如图,在四棱锥S﹣ABCD中,底面ABCD为菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分别是棱AD,SC,AB的中点.(1)求证:PQ∥平面SAD;(2)若SA=AB=2,求三棱锥S﹣ABC的体积.16.三棱柱ABC﹣A1B1C1中,若D为BB1上一点,M为AB的中点,N为BC的中点.求证:MN∥平面A1C1D.17.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.18.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.19.如图所示,在直三棱柱ABC﹣A1B1C1中,CA=CB,点M,N分别是AB,A1B1的中点.(1)求证:BN∥平面A1MC;(2)若A1M⊥AB1,求证:AB1⊥A1C.20.如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,,E,F分别为线段AD,PB的中点.(1)证明:PD∥平面CEF;(2)若PE⊥平面ABCD,PE=AB=2,求四面体P﹣DEF的体积.21.如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE的中点.(1)求证:MN∥平面BEC;(2)求证:AH⊥CE.22.如图,在直三棱柱ABC﹣A1B1C1中,AC=AA1=2,D为棱CC1的中点AB1∩A1B=O.(1)证明:C1O∥平面ABD;(2)已知AC⊥BC,△ABD的面积为,E为线段A1B上一点,且三棱锥C﹣ABE的体积为,求.23.如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点(1)求证:PB∥平面EFG;(2)求证:BC⊥EG.24.如图,在几何体ABC﹣A1B1C1中,点A1,B1,C1在平面ABC内的正投影分别为A,B,C,且AB⊥BC,AA1=BB1=4,AB=BC=CC1=2,E为AB1中点,(Ⅰ)求证;CE∥平面A1B1C1,(Ⅱ)求证:求二面角B1﹣AC1﹣C的大小.25.如图所示,在三棱柱ABC﹣A1B1C1中,底面ABC为等边三角形,AB=2,∠A1AB=∠A1AC=60°,M,N分別为AB,A1C1的中点.(1)证明:MN∥平面BCC1B1;(2)若MN=,求三棱柱ABC﹣A1B1C1的侧面积.26.如图,四棱柱ABCD﹣A1B1C1D1的底面为菱形,∠BAD=120°,AB=2,E,F为CD,AA1中点.(1)求证:DF∥平面B1AE;(2)若AA1⊥底面ABCD,且直线AD1与平面B1AE所成线面角的正弦值为,求AA1的长.27.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,BC1∩B1C=E.求证:(Ⅰ)DE∥平面AA1C1C;(Ⅱ)BC1⊥AB1.28.四边形ABCD是正方形,O是正方形的中心,PO⊥平面ABCD,E是PC的中点.(1)求证:PA∥平面BDE;(2)求证:BD⊥PC.29.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC.30.如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.(1)求证:AC∥平面BEF;(2)求四面体BDEF的体积.参考答案一.选择题(共12小题)1.解:根据线面平行的定义可知直线与平面无交点∵直线a∥平面α,∴直线a与平面α没有公共点从而直线a与平面α内任意一直线都没有公共点,则不相交故选:D.2.解:根据平行公理可知①正确;根据面面平行的判定定理可知④正确;对于②错在a、b可能相交或异面.对于③错在α与β可能相交,对于⑤⑥错在a可能在α内.故选:C.3.解:∵不在一条直线上的三点确定一个平面,三点在一条直线上时不能确定平面∴A不正确;∵点在直线上时,不能确定平面,∴B不正确;∵梯形有两条边平行,两条平行线确定一个平面,梯形的两腰也在平面内,∴C正确;∵过平面外一点与平面平行的平面内,过该点的直线都符合条件,∴D不正确.故选:C.4.解:A不正确,因为由直线与平面内的一条直线平行,不能推出直线与平面平行,直线有可能在平面内.B不正确,因为由直线与平面内的某条直线不相交,不能推出直线与平面平行,直线有可能在平面内,也可能和平面相交.C不正确,因为由直线与平面内的无数条直线平行,不能推出直线与平面平行,直线有可能在平面内.D正确,因为由直线与平面内的所有直线不相交,依据直线和平面平行的定义可得直线与平面平行.故选:D.5.解:如图,任取线段A1B上一点M,过M作MH∥AA1,交AB于H,过H作HG∥AC交BC于G,过G作CC1的平行线,与CB1一定有交点N,且MN∥平面ACC1A1,则这样的MN有无数个.故选:D.6.解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.7.解:连结BD1,AC、BD,设AC∩BD=O,连结OE,∵在正方体ABCD﹣A1B1C1D1中,E为DD1的中点,∴O是BD中点,∴OE∥BD1,∵OE⊂平面ACE,BD1⊄平面ACE,∴BD1∥平面ACE.故选:B.8.解:如图,由条件知,EF∥BD,,GH∥BD,且;∴EF∥HG,且;∴四边形EFGH为梯形;EF∥BD,EF⊄平面BCD,BD⊂平面BCD;∴EF∥平面BCD;若EH∥平面ADC,则EH∥FG,显然EH不平行FG;∴EH不平行平面ADC;∴选项B正确.故选:B.9.证明:如图∵E,F分别为SB,SC上的点,且EF∥面ABC,又∵EF⊂平面SBC,平面SBC∩平面ABC=BC,∴EF∥BC.故选:B.10.解:如图所示,连接EF,BE∥PF显然不正确,是异面直线;∵E、F分别为PA、PD的中点,∴EF∥AD,∵AD∥BC,∴EF∥BC,∴直线EF∥平面PBC,选项B正确;EF∥BC,∵EF⊄平面PBC,BC⊂平面PBC,④由于不能推出线面垂直,故平面BCE⊥平面PAD不成立.选项C不正确;直线PB与DC所成角就是PB与AB所成角,不确定为60°,选项D不正确;故选:B.11.证明:∵AD:DB=AE:EC,∴DE∥BC,∵DE⊂平面α,BC⊄平面α,∴BC∥平面α.故选:D.12.解:对于①:取CD中点F,连接MF,BF,则MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故①正确对于②:∵B是定点,∴M是在以B为球心,MB为半径的球上,故②正确,对于③:若③成立,则由DE⊥CE,可得DE⊥面A1EC∴DE⊥A1E,而这与DA1⊥A1E矛盾,故③错误.对于④:由∠A1DE=∠MFB,MF=A1D=定值,FB=DE=定值,由余弦定理可得MB2=MF2+FB2﹣2MF•FB•cos∠MFB,所以MB是定值,故④正确.故正确的命题有:①②④,故选:B.二.解答题(共18小题)13.证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)14.证明:∵PD垂直于正方形ABCD所在的平面,AB=2,PC与平面ABCD所成角是45°.F是AD的中点,M是PC的中点,∴以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,D(0,0,0),M(0,1,1),P(0,0,2),F(1,0,0),B(2,2,0),=(0,1,1),=(1,0,﹣2),=(2,2,﹣2),设平面PFB的法向量=(x,y,z),则,取z=1,得=(2,﹣1,1),∵=0,DM⊄平面PFB,∴DM∥平面PFB.15.证明:(1)取CD中点G,连结PG、QG,∵在四棱锥S﹣ABCD中,E,P,Q分别是棱AD,SC,AB的中点.∴PG∥SD,QG∥AD,∵PG∩QG=G,SD∩AD=D,∴平面PGQ∥平面SDA,∵PQ⊂平面PGQ,∴PQ∥平面SAD.(2)∵在四棱锥S﹣ABCD中,底面ABCD为菱形,∠BAD=60°,SA=SD,SA=AB=2,∴SE⊥AD,SE=,∵平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,∴SE⊥平面ABC,∵S△ABC==,∴三棱锥S﹣ABC的体积V===1.16.证明:三棱柱ABC﹣A1B1C1中,M为AB的中点,N为BC的中点,∴MN∥AC,又AC∥A1C1,∴MN∥A1C1,又MN⊄面A1C1D,A1C1⊂面A1C1D,∴MN∥面A1C1D.17.证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.18.解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G连接MG,AN⊥HG,AN⊥MH,HG∩MH=H∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是19.证明:(1)因为ABC﹣A1B1C1是直三棱柱,所以AB∥A1B1,且AB=A1B1,又点M,N分别是AB、A1B1的中点,所以MB=A1N,且MB∥A1N.所以四边形A1NBM是平行四边形,从而A1M∥BN.又BN⊄平面A1MC,A1M⊂平面A1MC,所以BN∥平面A1MC;(2)因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥底面ABC,而AA1⊂侧面ABB1A1,所以侧面ABB1A1⊥底面ABC.又CA=CB,且M是AB的中点,所以CM⊥AB.则由侧面ABB1A1⊥底面ABC,侧面ABB1A1∩底面ABC=AB,CM⊥AB,且CM⊂底面ABC,得CM⊥侧面ABB1A1.又AB1⊂侧面ABB1A1,所以AB1⊥CM.又AB1⊥A1M,A1M、MC平面A1MC,且A1M∩MC=M,所以AB1⊥平面A1MC.又A1C⊂平面A1MC,所以AB⊥A1C.20.(1)证明:连接BE、BD,BD交CE于点O,∵E为线段AD的中点,AD∥BC,,∴BC∥ED,∴四边形BCDE为平行四边形,∴O为BD的中点,又F是BP的中点,∴OF∥PD,又OF⊂平面CEF,PD⊄平面CEF,∴PD∥平面CEF;(2)解:由(1)知,四边形BCDE为平行四边形,∴BE∥CD,∵四边形ABCD为等腰梯形,AD∥BC,,∴AB=AE=BE,∴三角形ABE是等边三角形,∴,做BH⊥AD于H,则,∵PE⊥平面ABCD,PE⊂平面PAD,∴平面PAD⊥平面ABCD,又平面PAD∩平面ABCD=AD,BH⊥AD,BH⊂平面ABCD,∴BH⊥平面PAD,∴点B到平面PAD的距离为,又∵F为线段PB的中点,∴点F到平面PAD的距离等于点B到平面PAD的距离的一半,即,又,∴=.21.证明:(1)取CD中点F,连结NF、MF,∵矩形ABCD所在平面与三角形ABE所在平面互相垂直,M,N,H分别为DE,AB,BE的中点.∴NF∥BC,MF∥CE,∵NF∩MF=F,BC∥CE=C,NF、MF⊂平面MNF,BC、CE⊂平面BCE,∴平面BCE∥平面MNF,∵MN⊂平面MNF,∴MN∥平面BEC.(2)∵AE=AB,H为BE的中点,∴AH⊥BE.∵矩形ABCD所在平面与三角形ABE所在平面互相垂直,∴BC⊥平面ABE,∴BC⊥AH,∵BE∩BC=B,∴AH⊥平面BCE,∴AH⊥CE.22.证明:(1)取AB的中点F,连接OF,DF,∵侧面ABB1A1为平行四边形,∴O为AB1的中点,∴,又,∴,∴四边形OFDC1为平行四边形,则C1O∥DF.∵C1O⊄平面ABD,DF⊂平面ABD,∴C1O∥平面ABD.解:(2)过C作CH⊥AB于H,连接DH,∵DC⊥平面ABC,∴DC⊥AB.又CH∩CD=C,∴AB⊥平面CDH,∴AB⊥DH.设BC=x,则,,,∴△ABD的面积为,∴x=2.设E到平面ABC的距离为h,则,∴h=1,∴E与O重合,.23.证明:(1)∵点F,G分别为BC,PC,的中点,∴GF∥PB,∵PB⊄平面EFG,FG⊂平面EFG,∴PB∥平面EFG.(2)∵在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点,∴EF∥AC,GF∥PB,∴EF⊥BC,GF⊥BC,∵EF∩FG=F,∴BC⊥平面EFG,∵EG⊂平面EFG,∴BC⊥EG.24.(Ⅰ)证明:∵点A1,B1,C1在平面ABC内的正投影分别为A,B,C,∴AA1∥BB1∥CC1,取A1B1中点F,连接EF,FC,则EF∥A1A,EF=A1A,∵AA14,CC1=2,∴CC1∥A1A,CC1=A1A,∴CC1∥EF,CC1=EF,∴四边形EFC1C为平行四边形,∴CE∥C1F,∵CE⊄平面A1B1C1,C1F⊂平面A1B1C1,∴CE∥平面A1B1C1;(Ⅱ)解:建立如图所示的坐标系,则A(2,0,0),C(0,2,0),B1(0,0,4),C1(0,2,2),∴=(﹣2,2,0),=(0,0,2),=(﹣2,0,4),=(0,2,﹣2).设平面ACC1的法向量为=(x,y,z),则,令x=1,则=(1,1,0).同理可得平面AB1C1的法向量为=(2,1,1),∴cos<,>==.由图可知二面角B1﹣AC1﹣C为钝角,∴二面角B1﹣AC1﹣C的大小为150°.25.证明:(1)如图,取BC中点P,连接MP,C1P.∵M为AB的中点,∴MP∥AC,且MP=AC.又AC∥A1C1,AC=A1C1,且NC1=,∴NC1∥MP,且NC1=MP.∴四边形MNC1P为平行四边形,∴NM∥PC1.又PC1⊂平面BCC1B1,MN⊄平面BCC1B1,∴MN∥平面BCC1B1.…………(4分)解:(2)如图,作BH⊥A1A,交AA1于H,连接CH.∵AC=AB,∠A1AB=∠A1AC,AH为公共边,∴△ABH≌△ACH,∴∠CHA=∠BHA.∴BH⊥AA1,⊥AA1.而BH∩CH=H,∴A1A⊥平面BCH,A1A⊥BC.又A1A∥C1C,∴C1C⊥BC.在直角△C1CP中,CP==1,C1P=MN=,∴C1C=.在直角△ABH中,BH=ABsin60°=.∴三棱柱ABC﹣A1B1C1的侧面积S=4×.……(12分)26.证明:(1)设G为AB1的中点,连EG,GF,因为FG,又DE,所以FG DE,所以四边形DEGF是平行四边形,所以DF∥EG又DF⊄平面B1AE,EG⊂平面B1AE,所以DF∥平面B1AE.解:(2)因为ABCD是菱形,且∠ABD=60°,所以△ABC是等边三角形取BC中点G,则AG⊥AD,因为AA1⊥平面ABCD,所以AA1⊥AG,AA1⊥AD建立如图的空间直角坐标系,令AA1=t(t>0),则A(0,0,0),,,D1(0,2,t),,,,设平面B1AE的一个法向量为,则且,取,设直线AD1与平面B1AE所成角为θ,则,解得t=2,故线段AA1的长为2.27.证明:(1)∵在直三棱柱ABC﹣A1B1C1中,BC1∩B1C=E,∴E是B1C的中点,∵AB1的中点为D,∴DE∥AC,∵AC⊂平面AA1C1C,DE⊄平面AA1C1C,∴DE∥平面AA1C1C.(2)∵在直三棱柱ABC﹣A1B1C1中,BC=CC1,∴BC1⊥B1C,AC⊥CC1,又AC⊥BC,BC∩CC1=C,∴AC⊥平面BCC1B1,∴AC⊥BC1,∵AC∩B1C=C,∴BC1⊥平面ACB1,∴BC1⊥AB1.28.证明:(1)连接AC,OE,则AC经过正方形中心点O,且O是AC的中点,又E是PC的中点,∴OE∥PA,又OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.(2)∵PO⊥平面ABCD,BD⊂平面ABCD,∴PO⊥BD,四边形ABCD是正方形,∴BD⊥AC,又PO∩AC=O,PO⊂平面PAC,AC⊂平面PAC,∴BD⊥平面PAC,又PC⊂平面PAC,∴BD⊥PC.29.(1)证明:由直四棱柱,得BB1∥DD1,又∵BB1=DD1,∴BB1D1D是平行四边形,∴B1D1∥BD.而BD⊂平面A1BD,B1D1⊄平面A1BD,∴B1D1∥平面A1BD.(2)证明∵BB1⊥平面ABCD,AC⊂平面ABCD,∴BB1⊥AC.又∵BD⊥AC,且BD∩BB1=B,∴AC⊥平面BB1D.而MD⊂平面BB1D,∴MD⊥AC.30.证明:(1)设AC∩BD=O,取BE中点G,连接FG,OG,所以,OG∥DE,且OG=DE.因为AF∥DE,DE=2AF,所以AF∥OG,且OG=AF,从而四边形AFGO是平行四边形,FG∥OA.因为FG⊂平面BEF,AO⊄平面BEF,所以AO∥平面BEF,即AC∥平面BEF.…(6分)解:(2)因为平面ABCD⊥平面ADEF,AB⊥AD,所以AB⊥平面ADEF.因为AF∥DE,∠ADE=90°,DE=DA=2AF=2 所以△DEF的面积为S△DEF=×ED×AD=2,所以四面体BDEF的体积V=•S△DEF×AB=(12分)。
必修二立体几何线面平行、面面平行、线面垂直判定及性质练习
线面平行、面面平行、线面垂直判定及性质练习一、线面平行判定及性质1.如图,在三棱锥P-ABC中,点Ο、D分别是AC、PC的中点,求证: OD//平面PABDOCBAP2.如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点. 求证:SA∥平面MDB.3.如图在四棱锥P-ABCD中,M、N分别是AB,PC的中点,若ABCD是平行四边形,求证:MN//平面PAD4.已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥平面BDC .求证:EH ∥BD .H G FE D BAC练习5.正方形ABCD 交正方形ABEF 于AB ,M 、N 在对角线AC 、FB 上,且M ,N 是对角线AC 、FB 的中点.求证://MN 平面BCE6.如图,S 是平行四边形ABCD 平面外一点,,M N 分别是,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SBC二、面面平行判定及性质1.2.PMN D 1C 1B 1A 1D CA三、线面垂直判定及性质1.已知E ,F 分别是正方形ABCD 边AD ,AB 的中点,EF 交AC 于M ,GC 垂直于ABCD 所在平面.求证:EF ⊥平面GMC .M E ABCD G2.在三棱锥P ABC -中,AC BC =,ABP 为正三角形,D AB 记是的中点.求证:AB PCD ⊥平面.3.如图AB 是圆O 的直径,C 是圆周上异于A 、B 的任意一点,⊥PA 平面ABC .求证:BC ⊥平面P AC .4.在长方体1111D C B A ABCD -中,底面ABCD 是边长为1的正方形,侧棱21=AA ,EAC B P是侧棱1BB 的中点。
求证:AE ⊥平面11A D E .A综合题:如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12,1AA AC BC ===,E 、F 分别为11A C 、BC 的中点.(1)求证:AB ⊥平面11B BCC ;(2)求证:1//C F 平面ABE ;(3)求三棱锥E ABC -的体积. C 1B 1A 1FE C BA。
线面平行典型例题
线面平行典型例题1.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。
需要证明:(1) C1O∥面AB1D1.证明:连接C1O,AB1,D1O,由于O是底面ABCD的对角线交点,所以AO=BO=CO=DO,又因为O是C1D1的中点,所以C1O=1/2D1O。
因此,三角形AB1D1和三角形C1O1D1中,∠AB1D1=∠C1O1D1,∠B1D1O1=∠D1C1O1,且AO=CO,所以根据AA准则,可以得出C1O∥面AB1D1.2.已知三棱柱ABC-D1A1D,其中D为线段A1C1中点。
需要证明:BC1∥平面AB1D。
证明:连接AC1,BD,因为D为线段A1C1中点,所以BD∥A1C1,又因为ABCD为平行六面体,所以AC1=BD,所以AC1∥BD。
又因为D1为平面ABC和平面A1B1C1的交点,所以D1在这两个平面的公共垂线上,所以D1在直线AC1和BD的公共垂线上,所以D1在平面AB1D的公共垂线上,所以BC1∥平面AB1D。
3.如图所示,正三棱柱ABC-AB1C1中,D是BC的中点,需要判断A1B与平面ADC1的位置关系,并证明结论。
解答:连接A1D,B1D,因为D是BC的中点,所以AD=B1D,又因为AB1C1为平行四边形,所以B1C1∥AB,所以∠A1B1C1=∠ABC=90°,所以A1B1垂直于平面ABC,所以A1B1与平面ADC1平行。
4.在正方体ABCD-A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,需要证明:PQ∥平面DCC1D1.证明:连接PQ,因为AP=BQ,所以APBQ是平行四边形,所以PQ∥AB,又因为AB∥平面DCC1D1,所以PQ∥平面DCC1D1.5.正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ,需要证明:PQ∥平面BCE。
证明:连接PQ,因为AP=DQ,所以APDQ是平行四边形,所以PQ∥AD,又因为AD∥平面BCE,所以PQ∥平面BCE。
立体几何中线面平行的经典方法经典题(附详细解答)
FGGABCDECA BDEFDEB 1A 1C 1CM高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ;(Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点,M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ;(Ⅱ)C 1D ∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EAE FBACDP(第1题图)4、如图所示, 四棱锥P ABCD 底面是直角梯形,,,AD CD AD BA CD=2AB, E 为PC 的中点,证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC的中点。
必修2-2.2线面平行面面平行的经典7道证明题
D CA 1A For personal use only in study and research; not for commercial use必修2 —2.2线面平行、面面平行的证明经典练习1.直三棱柱111C B A ABC -中,D 是AB 的中点,证明:1BC //平面1ACD 2.如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点。
求证:直线EF ∥平面PCD ;3.4.5.如图,在四棱锥P —ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F 。
证明PA//平面EDB ;6.正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点。
求证://1C B 平面BD A 1;7.两个边长均为3的正方形ABCD 和ABEF 所在平面垂直相交于AB ,,AC M∈FB N ∈,且FN AM =.(1)证明://MN 平面BCE ;仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文。
名师辅导 立体几何 第3课 线面平行(含答案解析)
名师辅导 立体几何 第3课 线面平行(含答案解析)●考试目标 主词填空1.直线和平面平行如果一条直线和一个平面没有公共点,那么就说这条直线和这个平面平行. 2.平行关系的判定定理和性质定理(1)直线和平面平行的判定定理和性质定理判定定理:平面外一条直线,如果和平面内的一条直线平行,那么这条直线和这个平面平行. 判定定理:两平面平行,其中一个平面内的直线必平行于另一个平面.性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.●题型示例 点津归纳【例1】 设直线a 在平面M 内,则平面M 平行于平面N 是直线a 平行于面N 的 ( ) A.充分条件但非必要条件 B. 必要条件但非充分条件 C.充分必要条件D.非充分条件,也非必要条件.【解前点津】 因为当平面M ∥平面N 时,a 平面M ,则有a ∥平面N ,反之,当直线a ∥平面N 时,直线a ⊂M ,则平面M 与平面N 有可能平行也可能相交,因此,当a ⊂M 时,平面M 平行于平面N 是直线a 平行于平面N 的充分非必要条件.【规范解答】 A.【解后归纳】 要注意对基本概念的理解和灵活运用.【例2】 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上, 点M 在B 1C ,且CM =DN ,求证:MN ∥平面AA 1B 1B .【解前点津】 若能证明MN 平行于平面AA 1B 1B 中的一条直线, 则依线面平行判定定理,MN ∥平面AA 1B 1B .于是有以下添辅助线的方法.【规范解答】 如图,作ME ∥BC , 交BB 1于E ;作NF ∥AD , 交 AB 于F ,连结EF ,则EF 平面AA 1B 1B .∵BD =B 1C ,DN =CM ,∴B 1M =BN .∵,,11BD BN AD NF C B M B BC ME ==∴,AD NFBD BN BC ME == ∴ME =NF .又ME ∥BC ∥AD ∥NF ,∴MEFN 为平行四边形. ∴MN ∥EF .∴MN ∥平面AA 1B 1B .【解后归纳】 证明直线l 与平面α平行,通常有以下两个途径:(1)通过线线平行来证明,即证明该直线l 平行于平面α内的一条直线; (2)通过面面平行来证明,即证明过该直线l 的一个平面平行于平面α.【例3】 如图所示,在空间四边形ABCD 中,AC 、BD 为其对角线,E 、F 、G 、H 分别为AC 、BC 、BD 、AD 上各一点,若四边形EFGH 为平行四边形,求证:AB ∥平面EFGH 且CD ∥平面EFGH .例2题图例2题图解【解前点津】 判定线面平行,根据线面平行的判定定理,只要在面内找到一条直线和面外的该直线平行就可以解决问题.根据题意易知GH ∥EF,这样可以推证GH ∥平面ABC ,进一步推证GH ∥AB ,利用线面平行的判定定理解决问题.【规范解答】 ∵EFGH 是平行四边形,∴EF ∥GH ,⎪⎭⎪⎬⎫=⋂⊂⇒⎪⎭⎪⎬⎫⊄⊂BA ABD ABC ABC GH ABCGH ABC GH ABC EF GHEF 平面平面平面平面平面平面////E F G H AB EFGH AB EFGH GH BAGH 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊂【解后归纳】 请同学们完成CD ∥平面EFGH 的证明.【例4】 如图,在三棱锥S —ABC 中,已知∠ABC =90°,SA ⊥平面ABC ,AN ⊥SB ,AM ⊥SC ,试证明:SC ⊥平面AMN .【规范解答】 SA ⊥平面ABC 而AB 为SB 在平面ABC 中 的射影,又由∠ABC =90°知BC ⊥AB ,由三垂线定理,BC ⊥SB , ∴BC ⊥平面SAB∵AN 平面SAB ,∴BC ⊥AN , ∵AN ⊥SB ,∴AN ⊥平面SBC ,∴AN ⊥SC ,∵AM ⊥SC ,∴SC ⊥平面AMN .【解后归纳】 本题在运用判定定理证明线面垂直(SC ⊥平面AMN )时,将问题化为证明线线垂直(SC ⊥AN );而证明此线线垂直时,又转化为证明线面垂直(AN ⊥平面SBC )这种相互转化的方法,是本课的重要而又基本的证明方法.●对应训练 分阶提升 一、基础夯实1.“直线与平面α内无数条直线垂直”是“直线与平面α垂直”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知直线m ,n 和平面α,那么m ∥n 的一个必要而不充分的条件是 ( ) A.m ∥α,n ∥α B.m ⊥α,n ⊥α C.n α且m ∥α D.m ,n 与α成等角3.过直线l 外的两点作与l 平行的平面,则这样的平面 ( )A.不可能作出B.只能作一个C.能作出无数个D.以上情况都有可能 4.a 、b 是异面直线,P 为a 、b 外的任一点,下列结论正确的是 ( )A.过P 可作一平面与a 、b 都平行B.过P 可作一平面与a 、b 都垂直相交C.过P 可作一直线与a 、b 都平行D.过P 可作一直线与a 、b 成等角 5.α、β表示平面,a 、b 表示直线,则a ∥α的一个充分条件是 ( )A.a ⊥β且α⊥βB.α∩β=b 且a ∥bC.a ∥b 且b ∥αD.α∥β且a β 6.已知直线a 、b ,以及平面α、β,下列命题正确的是 ( )A.若b α,a ∥b ,则a ∥αB.若a ⊥α,b ⊥α,则a ∥bC.若a ∥b ,α∩β=b ,则a ∥αD.若a α,b α,l ⊥a ,l ⊥b ,则l ⊥α例3题图例4题图7.若一条直线和一个平面平行,夹在直线和平面间的两条线段相等,那么这两条线段的位置关系是 ( )A.平行B.相交C.异面D.平行、相交或异面 8.已知直线m 、n 、l ,平面α、β. ①m ∥α,n ∥α,则m ∥n ;②若二面角α—l —β是直二面角,m ⊥l ,则m ⊥β; ③设m 、n 是异面直线,若m ∥α,则n 与α相交; ④若m ⊥n ,m ⊥α,n α,则n ∥α. 以上正确命题的个数是 ( ) A.0 B.1 C.2 D.39.等边△ABC 的边长为a ,过△ABC 的中心O 作OP ⊥平面ABC 且OP =a 36,则点P 到△ABC 的边BC 的距离为 ( )A.aB.a 23 C.a 33 D.a 36 10.已知直线a 、b 和平面α、β,下列命题中,真命题是 ( )A.若a α,b β,a ⊥b ,则α⊥βB.若a α,b β,a ∥b ,则α∥βC.若a ∥α,a ⊥b ,则b ⊥αD.若a ∥α,a ⊥β,则α⊥β 二、思维激活11.如图所示,直角三角形ABC 的直角顶点C 在平面α内,斜边AB ∥α,并且AB 与α间的距离为6,A 与B 在α内的射影分别为A 1,B 1,且A 1C =3,B 1C =4,则AB= ,∠A 1CB 1= .12.如图所示,在四棱锥P —ABCD 中,O 为CD 上的动点,四边形ABCD 满足条件 时V P-AOB 恒为定值(写出你认为正确的一个条件即可).13.已知长方体ABCD -A 1B 1C 1D 1中,棱A 1A =5,AB =12,那么直线B 1C 1与平面A 1BCD 1的距离 是 .14.如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 中点.点M 在四 边形EFGH 及其内部运动,则M 只须满足条件 时,就有MN ∥平面B 1BDD 1(请填上你认为正确的一个条件即可,不必考虑全部可能情况).三、能力提高15.已知正四棱锥P —ABCD 的各条棱长均为13.M 、N 分别是PA 、BD 上的点,且PM ∶MA =BN ∶ND =5∶8.(1)求证:MN ∥平面PBC . (2)求线段MN 长.第11题图 第12题图 第14题图16.如图所示,a 、b 是异面直线,AB 是a 、b 的公垂线,垂足分别是A 、B ,平面α过AB 的中点P 且与a 、b 都平行,M 、N 分别是a 、b 上的点,MN 交平面α于Q .(1)求证:MQ =QN .(2)若a ⊥b ,AM =6,问BN 等于何值时,PQ 的长为5.17.如图所示,正方体ABCD —A 1B 1C 1D 1的棱长为1,M 、N 分别为面对角线AD 1、BD 上的点,且AM =BN =x .(1)求证:MN ∥平面CDD 1C 1. (2)求证:MN ⊥AD .(3)当x 为何值时,MN 的长取得最小值,并求出这个最小值.18.如图所示,已知二面角P —AC —B 为60°,BC ⊥AC ,PA ⊥AC ,AC =a ,BC =PA =2a ,点P 在平面ABC 内的射影为D .(1)求证:AD ∥平面PBC . (2)求点A 到平面PBC 的距离.19.如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD ,试问:截面在什么位置时,其截面积最大?第16题图第17题图第18题图第3课 线面平行习题解答1.B 平面内可以有无数条直线与平面的斜线在平面内的射影垂直,由三垂线定理知它们都与斜线垂直,但斜线不垂直于平面.2.D 要m ∥n 能推出四个选择中的某个结论,而此结论为条件又不能推出m ∥n .因m ∥n ,则m ,n 与α成等角,而m ,n 与α成等角,可以不同方向上成等角,不能推出m ∥n .3.D 当两点所确定的直线与l 平行时作无数个;与l 异面时作一个;与l 相交时不能作.4.D 过点P 作平面α,若b ∥α且a α,则A 不正确.5.D 由面面平行的性质定理知D 正确.6.B 垂直于同一平面的两直线平行.7.D 画图可知两线段可平行、相交或异面. 8.B 只有④正确.9.B 如图所示,连结AO 并延长交BC 于Q 点,由于PO ⊥平面 ABC ,所以AO 是PQ 在平面ABC 上的射影.点O 是正三角形的 中心,所以AO ⊥BC ,由三垂线定理知,BC ⊥PQ .因此PQ 的长是点P 到△ABC 的边BC 的距离,计算得PQ =a 23. 10.D 在α内作直线a ′∥a 故a ′⊥β,∴α⊥β.11.AB =37,∠A 1CB 1=120°AC =632+=15,BC=22642=+. ∴AB =3722=+BC AC . cos ∠A 1CB 1=2134237916-=⨯⨯-+.∴∠A 1CB 1=120°.12.AB ∥CD 只须△AOB 的面积为定值即可. 13.1360作B 1M ⊥A 1B 于M , ∵A 1D 1⊥平面A 1B 1BA ,∴A 1D 1⊥B 1M ,∵B 1C 1∥平面A 1BCD 1,于是B 1M 长是B 1C 1与平面A 1BCD 1的距离. ∵A 1A =5,AB =12,∴A 1B=13.第9题图解于是所求的距离为1360. 14.M 在FH 上 平面FHN ∥平面BDD 1B 1.15.第(1)小题有多种证法,不管用哪种证法,证明的关键 都是证MN 与面PBC 中的一条线平行. (1)证明:如图,连AN 交BC 于K ,连PK . ∴△AND ∽△BNK . ∴AMPMND BN AN NK ==.∴MN ∥PK . 又PK 面PBC ,∴MN ∥面PBC . (2)解:∵△AND ∽△BNK ,∴85==ND BN AD BK ,又AD =13, ∴8513=BK ,∴BK =8135⨯, △PBK 中,PK 2=PB 2+BK 2-2PB ·BK ·cos60°,∴PK =871321813513281351322⨯=⨯⨯⨯⨯-⎪⎭⎫⎝⎛⨯+. ∵MN ∥PK ∴AP AMPK MN =,∴5888713+=⨯MN ,∴MN =7. 16.(1)证明:连AN 交α于R ,连PR 、RQ ,∵b ∥α,α∩平面ABN =RP ,b 平面ANB ,∴b ∥RP ,由AP =PB 得AR =RN ,同理QR ∥a ,由AR =RN 得QM =QN . (2)解:由(1)知∠PRQ 就是a 与b 所成角,由a ⊥b 知∠PRQ =90°,AM =6,∴RQ =3.又PQ =5, ∴PR =4,∴BN =8.17.(1)过M 作MR ⊥AD ,垂足为R ,则MR ⊥平面ABCD .连结RN ,则RN ⊥AD .过M 、N 分别作MQ ⊥DD 1,NP ⊥CD ,垂足分别为Q 、P .因为MD 1=ND ,所以MQ ∥RD ∥NP ,MQ =RD =NP ,故MNPQ 是平行四边形.所以MN ∥PQ ,从而MN ∥平面CDD 1C 1. (2)∵AD ⊥RN ,∴AD ⊥MN (三垂线定理). (3)MN 2=MR 2+RN 2=…=(x -22)2+21. 当x =22即M 、N 分别为AD 1、BD 的中点时,MN min =22.18.(1)(2)由(1)知A 到平面PBC 的距离就是点D 到平面PBC 的距离.第15题图解∵⇒⎭⎬⎫⊥⊥AC AD AC PA ∠PAD 为二面角P —AC —B 的平面角,∴∠PAD =60°.又∵PA =BC =2a ,∴在Rt △PDA 中,可求得PD =3a ,AD =a ,过D 作DE ⊥BC ,垂足为E ,连PE ,则BC ⊥平面PDE .∴面PBC ⊥面PDE ,交线为PE ,过D 作DF ⊥PE ,垂足为F , 则DF 即为D 到平面PBC 的距离.在Rt △PDE 中,PD =3a ,DE =a ,∴PE =2a .由PE ·DF =DE ·PD ,得DF =a PE DE PD 23=⋅, 即点A 到平面PBC 的距离为.23a 19.AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG ,EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证,EF ∥GH . ∴截面EFGH 是平行四边形设AB =a ,CD =b ,∠FGH =α(a ,b ,α均为定值其中α为异面直线AB 与CD 所成的角) 又设FG =x ,GH =y ,由平面几何知识,得.,BC BG b y CB CG a x == 两式相加得1=+b y a x 即)(x a aby -=.∴S EFGH =FG ·GH ·sin α=x ·ab(a -x )·sin α=)(sin x a x a b -⋅α.∵x >0,a -x >0且x +(a -x )=a 为定值. ∴当且仅当x =a -x 即x =2a时, (SEFGH )max =4sin αab , 故当截面EFGH 的顶点E ,F ,G ,H 为棱AD ,AC ,BC ,BD 的中点时,截面面积最大.。
线面平行判定练习(总结较全)
线面平行判定练习(总结较全)第1题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.答案:证明:m m m a a b a m b βγααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第2题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( )A.a b // B.a b ⊥ C.a ,b 相交但不垂直 D.a ,b 异面答案:A.第3题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .答案:证明:连结AF 并延长交BC 于M .连结PM ,AD BC ∵//,BF MF FD FA =∴,又由已知PE BF EA FD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM ,又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第4题. 如图,长方体1111ABCD A B C D -中,11E F 是平面11A C 上的线段,求证:11E F //平面AC .答案:证明:如图,分别在AB 和CD 上截取11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,11A E ∴平行且等于AE ,11D F 平行且等于DF ,故四边形11AEE A ,11DFF D 为平行四边形.1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD ,∴11E F //平面ABCD .第5题. 如图,在正方形ABCD 中,BD 的圆心是A ,半径为AB ,BD 是正方形ABCD 的对角线,正方形以AB 所在直线为轴旋转一周.则图中Ⅰ,Ⅱ,Ⅲ三部分旋转所得几何体的体积之比为 .答案:111∶∶第6题. 如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13,M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶. (1) 求证:直线MN //平面PBC ; (2) 求线段MN 的长.(1) 答案:证明:连接AN 并延长交BC 于E ,连接PE ,则由AD BC //,得BN NEND AN=. BN PM ND MA =∵,NE PMAN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,MN ⊄平面PBC , ∴MN //平面PBC .(2) 解:由13PB BC PC ===,得60PBC ∠=; 由58BE BN AD ND ==,知5651388BE =⨯=, 由余弦定理可得918PE =,8713MN PE ==∴.第7题. 如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点, 求证:PD //平面MAC .答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //.PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .第8题. 如图,在正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,11C D 的中点,求证:EF //平面11BB D D .答案:证明:如图,取11D B 的中点O ,连接OF ,OB ,OF ∵ 平行且等于1112B C ,BE 平行且等于1112B C ,OF ∴ 平行且等于BE ,则OFEB 为平行四边形, EF ∴//BO .EF ⊄∵平面11BB D D ,BO ⊂平面11BB D D ,∴EF //平面11BB D D .第9题. 如图,在正方体1111ABCD A B C D -中,试作出过AC 且与直线1D B 平行的截面,并说明理由.答案:解:如图,连接DB 交AC 于点O ,取1D D 的中点M ,连接MA ,MC ,则截面MAC 即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.第10题. 设a ,b 是异面直线,a ⊂平面α,则过b 与α平行的平面( ) A.不存在 B.有1个 C.可能不存在也可能有1个 D.有2个以上答案:C.第11题. 如图,在正方体1111ABCD A B C D -中,求证:平面1A BD //平面11CD B .答案:证明:111111B B A A B B D D A A D D ⎧⎪⇒⎨⎪⎩∥ ∥ ∥ ⇒ 四边形11BB D D 是平行四边形⇒ 111111D B DBDB A BD D B A BD⎧⎪⊂⎨⎪⊄⎩平面平面//⇒111111111D B A BDB C A BD D B B C B⎧⎪⎨⎪=⎩平面同理平面//// ⇒111B CD A BD 平面平面//.第12题. 如图,M 、N 、P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM MB CN NB CP PD ==∶∶∶.求证:(1)AC //平面MNP ,BD //平面MNP ; (2)平面MNP 与平面ACD 的交线AC //.答案:证明:(1)AM CN MN AC MB NBAC MNP AC MNP MN MNP⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.CN CP PN BD NB PDBD MNP BD MNP PN MNP⎫=⇒⎪⎪⊄⎬⎪⊂⎪⎭//平面//平面平面.(2)MNP ACD PE AC ACD PE AC AC MNP =⎫⎪⊂⇒⎬⎪⎭设平面平面平面//,//平面 MNP ACD AC 即平面与平面的交线//.第13题. 如图,线段AB ,CD 所在直线是异面直线,E ,F ,G ,H 分别是线段AC ,CB ,BD ,DA 的中点.(1) 求证:EFGH 共面且AB ∥面EFGH ,CD ∥面EFGH ; (2) 设P ,Q 分别是AB 和CD 上任意一点,求证:PQ 被平面EFGH 平分.答案:证明:(1)∵E ,F ,G ,H 分别是AC ,CB ,BD ,DA 的中点.,EH CD ∴//,FG CD //,EH FG ∴//.因此,E ,F ,G ,H 共面. CD EH ∵//,CD ⊄平面EFGH ,EH ⊂平面EFGH , CD ∴//平面EFGH .同理AB //平面EFGH .(2)设PQ平面EFGH =N ,连接PC ,设PCEF M =.PCQ △所在平面平面EFGH =MN ,CQ ∵//平面EFGH ,CQ ⊂平面PCQ ,CQ MN ∴//.EF ∵ 是ABC △是的中位线,M ∴是PC 的中点,则N 是PQ 的中点,即PQ 被平面EFGH 平分.第14题. 过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( ) A.都平行B.都相交且一定交于同一点 C.都相交但不一定交于同一点 D.都平行或都交于同一点答案:D.第15题. a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( ) A.过A 且平行于a 和b 的平面可能不存在 B.过A 有且只有一个平面平行于a 和b C.过A 至少有一个平面平行于a 和b D.过A 有无数个平面平行于a 和b答案:A.第16题. 若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为 . 答案:20.第17题. 在空间四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 上的一点,且EFGH 为菱形,若AC //平面EFGH ,BD //平面EFGH ,AC m =,BD n =,则AE BE =: .答案:m n ∶.第18题. 如图,空间四边形ABCD 的对棱AD 、BC 成60的角,且AD BC a ==,平行于AD 与BC 的截面分别交AB 、AC 、CD 、BD 于E 、F 、G 、H . (1)求证:四边形EGFH 为平行四边形;(2)E 在AB 的何处时截面EGFH 的面积最大?最大面积是多少?答案:(1)证明:BC ∵//平面EFGH ,BC ⊂平面ABC , 平面ABC 平面EFGH EF =,BC EF ∴//.同理BC GH //, EF GH ∴//,同理EH FG //, ∴四边形EGFH 为平行四边形. (2)解:∵AD 与BC 成60角,∴60HGF ∠=或120,设:AE AB x =,∵EF AEx BC AB==, BC a =,∴EF ax =,由1EH BEx AD AB==-, 得(1)EH a x =-.∴sin 60EFGH S EF EH =⨯⨯四边形(1)2ax a x =⨯-⨯22()2a x x =-+2211()24x ⎡⎤=--+⎢⎥⎣⎦. 当12x =时,28S a =最大值, 即当E 为AB的中点时,截面的面积最大,最大面积为28a .第19题. P 为ABC △所在平面外一点,平面α//平面ABC ,α交线段PA ,PB ,PC 于ABC ''',23PA AA =∶∶'',则AB C ABC S S =△△∶''' .答案:425∶第20题. 如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点.求证:MN //平面PAD .答案:证明:如图,取CD 的中点E ,连接NE ,ME ∵M ,N 分别是AB ,PC 的中点,NE PD ∴//,ME AD //,可证明NE //平面PAD ,ME //平面PAD . 又NE ME E =,∴平面MNE //平面PAD ,又MN ⊂平面MNE ,∴MN //平面PAD .第21题. 已知平面α//平面β,AB ,CD 是夹在两平行平面间的两条线段,A ,C 在α内,B ,C 在β内,点E ,F 分别在AB ,CD 上,且AE EB CF FDm n ==∶∶∶. 求证:EF //平面α.答案:证明:分AB ,CD 是异面、共面两种情况讨论. (1) 当AB ,CD 共面时,如图(a )αβ∵//,AC BD ∴//,连接E ,F .AE EB CF FD =∶∶∵,EF AC BD ∴////且EF α⊄,AC α⊂,∴EF //平面α.(2) 当AB ,CD 异面时,如图(b ),过点A 作AH CD // 交β于点H .在H 上取点G ,使AG GH m n =∶∶,连接EF ,由(1)证明可得GF HD //,又AG GH AE EB =∶∶得EG BH //.∴平面EFG //平面β//平面α.又EF ⊂面EFG ,∴EF //平面α.第22题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.答案:证明:m m m a a b a m b βαααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第23题. 三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB 、CD 都平行,则截面MNPQ 的周长是( ).A.4a B.2aC.32aD.周长与截面的位置有关答案:B.第24题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( ). A.a b // B.a b ⊥C.a 、b 相交但不垂直 D.a 、b 异面答案:A.第25题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E 、F 分别是PA 、BD 上的点且:PE EA BF =答案:证明:连结AF 并延长交BC 于M . 连结PM ,AD BC ∵//,BF MFFD FA=∴, 又由已知PE BF EAFD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM , 又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第26题. 如图,长方体1111ABCD A B C D -中,平面ABCD .答案:证明:如图,分别在AB 和CD 上截得11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD ,∴11E F //平面ABCD .第27题. 已知正方体1111ABCD A B C D -, 求证:平面11AB D //平面1C BD .答案:证明:因为1111ABCD A B C D -为正方体, 所以1111D C A B //,1111D C A B =. 又11AB A B //,11AB A B =, 所以11D C AB //,11D C AB =, 所以11D C BA 为平行四边形.所以11D A C B //.由直线与平面平行的判定定理得1D A //平面1C BD .同理11D B //平面1C BD ,又1111D A D B D =,所以,平面11AB D //平面1C BD .第28题. 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.如图,已知直线a ,b 平面α,且a b //,a α//,a ,b 都在α外. 求证:b α//.答案:证明:过a 作平面β,使它与平面α相交,交线为c . 因为a α//,a β⊂,c αβ=,所以a c //.因为a b //, 所以b c //.又因为c α⊂,b α⊄, 所以b α//.第29题. 如图,直线AA ',BB ',CC '相交于O ,AO AO =',BO B O =',CO C O ='. 求证:ABC //平面ABC '''.答案:提示:容易证明AB AB //'',AC AC //''. 进而可证平面ABC //平面ABC '''.第30题. 直线a 与平面α平行的充要条件是( ) A.直线a 与平面α内的一条直线平行 B.直线a 与平面α内两条直线不相交C.直线a 与平面α内的任一条直线都不相交 D.直线a 与平面α内的无数条直线平行答案:C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
F
高中立体几何证明平行的专题
(基本方法)
立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法:
(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等
等。
(1)通过“平移”再利用平行四边形的性质
1棱则易
证2、AB 过A ADE
沿
3、
M 为4角梯
形,分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形
(2)利用三角形中位线的性质
5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。
求证:PA ∥7D 为AC
8
BAD ∠是平行四边形; 四点是否共面?为什么?
(.39为正方形ABCD 的中心,BB 1的10 A
B C
D E
F
G M
求证:AE ∥平面PBC ;
分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形
11、在如图所示的几何体中,四边形ABCD 为平行四边形,∠?ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG; 二
(I ACB ∠在ABCD 中,又FA ⊂平面ABFE ,GM ⊄平面ABFE ,所以GM//平面AB 。
(4)利用对应线段成比例
12、如图:S 是平行四边形ABCD 平面外一
点,M 、N 分别是SA 、BD 上的点,
且
SM
AM =ND
BN ,
求证:MN ∥平面SDC
分析:过M 作ME//AD ,过N 作NF//AD 利用相似比易证MNFE 是平行四边形
13上的
(5)1490,PB=BC=CA ,E 为2FP =1A B C D 2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四
面体中与过E ,F ,G 的截面平行的棱的条数是 A .0B .1 C .2D .3
3.直线,a b c ,及平面αβ,,使//a b 成立的条件是() A .//,a b αα⊂B .//,//a b ααC .//,//a c b c D .//,a b ααβ=
4.若直线m不平行于平面α,且m⊄α,则下列结论成立的是()A.α内的所有直线与m异面B.α内不存在与m平行的直线C.α内存在唯一的直线与m平行D.α内的直线与m都相交5.下列命题中,假命题的个数是()
①一条直线平行于一个平面,这条直线就和这个平面内的任
过b
6
A.
C.
7,
平
8.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是
①②
③
④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1
中点,则BD 1和平
面ACE 位置关系是.
10.是AC
11.1中,E ,M ,(1平面
EB 1D 1.2.3.C
【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b αα
β=则//a b 或,a b 异面,所以
D
错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.
4.B
【提示】若直线m不平行于平面α,且m⊄α,则直线m于平面α相交,α内不存在与m平行的直线.
5.B
【提示】②③④错误.②过平面外一点有且只有一个平面和这个平
6.
7
CD于F E,
ABD.
故AB//面MNP,对于②④,过AB找一个平面与平面MNP相交,AB 与交线显然不平行,故②④不能推证AB//面MNP.
9.平行
,OEC平面ACE,【提示】连接BD交AC于O,连OE,∴OE∥BD
1
∴BD 1
∥平面ACE.
三、解答题
10.证明:设1
AB 与B A 1相交于点P ,连接PD ,则P 为1
AB 中点,
D
为AC 中点,∴PD//C B 1
.
又 PD ⊂平面B A 1
D ,∴C B 1
//平面B A 1
D
11.
又 (2 E 是AC 1⊄BB 1中1
1//面
EB 1D (3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH 因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG
又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形.所以BD//B 1D 1.
BD⋂DG=G,∴面EB1D1//面BDG。