风管阻力计算总结

合集下载

风管阻力(1)

风管阻力(1)

通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3; l ————风管长度,mRs————风管的水力半径,m;Rs=f/P f————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种:流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。

风管沿程阻力计算公式

风管沿程阻力计算公式

风管沿程阻力计算公式
风管阻力是指风管内风流的摩擦阻力和弯曲阻力,计算风管沿程
阻力需要结合多个因素,如风管形状、风速、管道长度、管道内壁粗
糙度等。

一般来说,风管沿程阻力的计算公式包括:Darcy–Weisbach公式、Colebrook公式、Fanning公式等。

其中,Darcy–Weisbach公式比较
常用,其公式为:hf = f * (L/D) * (V^2/2g)。

其中,hf表示风管沿程阻力,f表示风管内的摩擦系数,L表示风管长度,D表示风管内直径,V表示风速,g表示重力加速度。

在实际应用中,为了更精确地计算风管沿程阻力,需要进行多次
实验和数据处理。

一般来说,可以利用CFD(计算流体动力学)软件进行模拟计算;也可以通过测试仪器测量风管内流体的速度、温度、压
力等参数,来计算阻力。

此外,在设计风管系统时,还需要充分考虑
风管的材料、管道的连接方式、管道附属设备等因素,以保证系统的
安全、稳定运行。

总之,风管沿程阻力计算是设计和优化风管系统的重要环节,应
该进行充分的实验和计算,并结合系统的实际情况,进行合理的改进
和调整,以确保系统的运行效率和稳定性。

风管沿程阻力估算

风管沿程阻力估算

风管沿程阻力估算一、引言风管是在工业、建筑等领域中常见的输送气体的设备,其设计和运行过程中需要考虑到阻力对气流的影响。

本文将探讨风管沿程阻力的估算方法。

二、风管沿程阻力的意义风管沿程阻力是指气流在风管内传输过程中所受到的阻碍力,对于风管系统的设计和运行具有重要意义。

准确估算风管沿程阻力可以帮助我们选择合适的风机和调节设备,确保系统的正常运行。

三、风管沿程阻力的计算方法1. 风管沿程阻力的计算公式风管沿程阻力可以使用Darcy-Weisbach公式进行估算。

该公式表示为ΔP= f × (L/D) × (ρv^2/2),其中ΔP为风管沿程阻力,f 为阻力系数,L为风管长度,D为风管内径,ρ为空气密度,v为气流速度。

2. 阻力系数的确定阻力系数f是风管沿程阻力计算中的重要参数,其值取决于风管的形状、内壁粗糙度以及气流速度等因素。

对于光滑内壁的圆形风管,可以使用经验公式来估算阻力系数。

3. 风管长度的考虑风管沿程阻力与风管长度成正比,通常情况下,风管长度越长,阻力越大。

因此,在进行风管沿程阻力估算时,需要考虑风管的实际长度。

四、风管沿程阻力的影响因素1. 风管形状风管的形状对沿程阻力有重要影响。

圆形风管由于其光滑的内壁,相对于其他形状的风管具有较小的沿程阻力。

2. 风管内壁粗糙度风管内壁的粗糙度也会影响沿程阻力的大小。

对于粗糙的内壁,沿程阻力会增加。

3. 气流速度气流速度越大,风管沿程阻力越大。

因此,在设计风管系统时,需要合理选择气流速度,以满足系统的要求。

五、风管沿程阻力的应用风管沿程阻力的准确估算对于风管系统的设计和运行非常重要。

在实际应用中,我们可以根据风管长度、形状和内壁粗糙度等因素,结合阻力系数和气流速度,进行风管沿程阻力的估算。

六、总结风管沿程阻力的估算是风管系统设计和运行中的重要环节。

通过合理选择阻力系数和考虑风管长度、形状和内壁粗糙度等因素,可以准确估算风管沿程阻力,确保系统的正常运行。

通风管道阻力计算

通风管道阻力计算

通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,m ;Rs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1.弯头布置管道时,应尽量取直线,减少弯头。

通风工程管道阻力计算

通风工程管道阻力计算

通风工程管道阻力计算通风工程中的管道阻力计算是重要的一项工作,它直接关系到系统的通风效果和节能效果。

本文将详细介绍通风工程中的管道阻力计算方法及其影响因素。

一、管道阻力计算方法:通风系统中的管道阻力是指空气在管道中流动时所遇到的阻力。

通常采用以下公式计算:ΔP=K×L×ρ×(V/3600)^2(1)其中,ΔP为管道阻力(Pa),K为阻力系数(Pa/m),L为管道长度(m),ρ为空气密度(kg/m³),V为风量(m³/h)。

阻力系数K是根据流量速度(m/s)和管道直径(m)来计算的。

对于圆形截面的管道,可以使用以下公式计算:K=(0.51+0.002D)×(V/D)^2(2)其中,D为管道直径(m),V为流量速度(m/s)。

二、影响因素:1.管道材质:不同材质的管道具有不同的内表面粗糙度,粗糙度越大,摩擦阻力越大,导致管道阻力增加。

2.管道长度:管道长度越长,空气流动经过的阻力表面越多,阻力增加。

3.管道直径:管道直径越大,流通面积越大,阻力减小。

4.管道弯头和弯管:弯头和弯管的存在会增加管道的阻力,尤其是对空气流动有较大影响的90度弯头。

5.风量:风量越大,管道阻力越大。

三、实际计算:1.根据风量和设计条件选择管道直径。

2.根据管道直径计算阻力系数K。

3.根据管道直径和长度计算总阻力。

4.根据管道阻力和所需风压,判断所选管道是否满足要求。

5.根据需要,可以进行多次迭代计算,直到找到满足要求的管道尺寸。

四、优化策略:1.尽量选择材质光滑、粗糙度低的管道,以减小阻力。

2.在管道设计中尽量减少弯头和弯管的使用,或者采取流线型弯头,以减小阻力。

3.如果风量较大,可以考虑分段设计,通过增加出风口数量来减小单个风口的风量,从而减小管道阻力。

4.在实际计算中可根据实验数据进行修正,以提高计算精度。

总结:通风工程中的管道阻力计算是一个复杂的过程,需要综合考虑管道材质、直径、长度、弯头等因素,并进行科学合理的计算和优化。

通风管道阻力的计算与公式

通风管道阻力的计算与公式

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1.弯头布置管道时,应尽量取直线,减少弯头。

风管风阻计算

风管风阻计算

风管风阻计算
1.0、确定风量:(按工作室为每平方米每小时所需风量15立方米计算)
100×15
=1500(m3/h)
2.0、计算管道内空气流速:
v=Q/(3600ab)
=1500/(3600×0.15×0.45)
=6.17(m/s)
3.0、计算风压:
3.1、为了计算方便,矩形风管换算成圆形风管:
D=2√ab/3.14
=2×√0.15×0.45/3.14
=0.293(m)
3.2、计算管道沿程摩擦阻力:
1、λ=0.0125+0.0011/D
=0.0125+0.0011/0.293
=0.01625
2、R=(λ/D)*(ν^2*γ/2)
=(0.01625/0.293)*(6.17^2*1.2/2)
=1.267(Pa)
3、H=RL
=0.1267×70
=886.9(Pa)
4.0、弯头风阻计算:(不知道弯头转弯半径无法准确计算)弯头制做时,转弯半径尽可能的大,这样可以减小弯头的风阻,可近似为每米管道的风阻。

h=7×6.17
=43.19(Pa)
5.0、总阻力为:88
6.9+43.19=930(Pa)
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)
编辑版word。

风管阻力计算方法

风管阻力计算方法

PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)系统特征风机单一回风在设备附近单一回风有回风管的单一回风在中等回风管系统的多样回风有大规模回风管系统的多样回风送风% 90 80 70 60 50回风% 10 20 30 40 50☆低速风管系统的推荐和最大流速m/s应用场所(空调风管中功能段)住宅公共建筑工厂推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.5 8.0 空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8 加热排管 2.3 2.5 2.5 3.0 3.0 3.5 冷却排管 2.3 2.3 2.5 2.5 3.0 3.0 风机出口 6.0 8.5 9.0 11.0 10.0 14.0 主风管 4.0 6.0 6.0 8.0 9.0 11.0 支风管(水平) 3.0 5.0 4.0 6.5 5.0 9.0 支风管(垂直) 2.5 4.0 3.5 6.0 4.0 8.0 ☆低速风管系统的最大允许流速m/s应用场所以噪声控制以磨擦阻力控制主风管送风主管回风主管送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0 公寓、饭店房间 5.0 7.5 6.5 6.0 5.0 办公室、图书馆 6.0 10.0 7.5 8.0 6.1 大礼堂、戏院 4.0 6.5 5.5 5.0 4.0 银行、高级餐厅7.5 10.0 7.5 8.0 6.0 百货店、自助餐厅9.0 12.0 7.5 8.0 6.0 工厂12.5(上限) 15.0 9.0 11.0 7.5一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ———摩擦阻力系数ν———风管内空气的平均流速,m/s;ρ———空气的密度,Kg/m3;l———风管长度,mRs———风管的水力半径,m;Rs=f/Pf———管道中充满流体部分的横断面积,m2;P———湿周,在通风、空调系统中既为风管的周长,m;D———圆形风管直径,m。

风管阻力计算

风管阻力计算

通风管道阻力计算对于空调通风专业来说,我们最终的目的是让整个系统到达或接近设计及业主的要求。

对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、干净度等。

可见无论空调是否对新风做处理,我们送到房间的风量是一定要到达要求。

否那么别的就更不用考虑了。

管道内风量主要是由风管内阻力影响的。

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比拟集中的能量损失,称为局部阻力。

下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进展修正。

一:摩擦阻力(沿程阻力)计算摩擦阻力(沿程阻力)计算一:〔公式推导法〕根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D以上各式中:ΔPm———摩擦阻力(沿程阻力),Pa。

λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经历公式:其中最常用的公式为:, ?K-管壁的当量绝对粗糙度,mm 〔见表1-1〕;D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准那么数,〔见表1-1〕;其实λ一般由莫台图所得,见图】莫台曲线图表1-1 一般通风管道中K、Re、λ的经历取值类别材料新装风管K值旧用风管K值新装风管Re值旧用风管Re值新装风管λ值旧用风管λ值工业通风镀锌板〔常用〕5 8×1042×104查图查图材料K值范围Re值范围λ值范围镀锌板8×103 -9×104PVC、PP板5×104 -4×106玻璃钢板、6×103 -6×104ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速〔m/s〕类别风管材料干管支管室内进风口室内回风口新空气入口工业建筑通风薄钢板6--14 2--8 ——ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=05Kg/m3; 见表1-3】表1-3 标准大气压、不同温度下的空气密度〔℃〕温度〔℃〕密度〔Kg/m3〕温度〔℃〕密度〔Kg/m3〕0 355 4010 5015 6020 7025 8030 90L ———风管长度,m 【横断面形状不变的管道长度】D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直径:;圆形风管D为风管直径】摩擦阻力(沿程阻力)计算二:〔比摩阻法〕由以上计算看出计算V和D较容易而计算λ难度很大,所以我们选择查表更适宜快捷。

(完整版)管道阻力的基本计算方法

(完整版)管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。

对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。

对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。

因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。

计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。

υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。

在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。

图5—2是计算圆形钢板风管的线解图。

它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。

风管阻力计算

风管阻力计算

CSU625风机总风量为18000m 3/h ,从静压箱总共分三根风管,每根风管的风量为L=6000m 3/h(下图为其中一根风管)。

风管尺寸为1000*350,风口尺寸为800*300。

l=3470 1 l=2200 2 l=2200 3P v1 v2 v3v v v公式: Pq=Pd+Pj Pj=Pq-Pd-(Rm+Z)沿程阻力和局部阻力假设开口处全压为P ,各风口均匀送风,所以风管各处速度为:v1=4.76m/s v2=3.17m/s v3=1.59m/s风口速度为: v=2.32m/s1口静压为:P=Pj1+Pd1+Rm*l1=Pj1+212ρ⨯v +Rm ×l1 =Pj1+21.276.42⨯+0.1×3.47 (比摩阻查表得Rm=0.1) =Pj1+13.6+0.35Pj1=P-13.952口静压为:Pq2=Pq1-Rm*l2-Z2Pj2+ Pd2=Pj1+Pd1-(Rm*l2+Z2)Pj2=Pj1+Pd1-(Rm*l2+Z2)-Pd2Pj2=Pj1+212ρ⨯v -(Rm ×l2+ξ×212ρ⨯v )-222ρ⨯v (局部阻力系数ξ查表得ξ=0.016)Pj2=Pj1+2 1.276.42⨯-(0.1×2.2+0.016×2 1.276.42⨯)-21.217.32⨯ Pj2=P-13.95+13.6-0.44-6.33Pj2=P-7.123口静压为:Pq3=Pq2-Rm*l3-Z3Pj3+ Pd3=Pj2+Pd2-(Rm*l3+Z3)Pj3=Pj2+Pd2-(Rm*l3+Z3)-Pd3Pj3=Pj2+222ρ⨯v -(Rm ×l3+ξ×222ρ⨯v )-232ρ⨯v (局部阻力系数ξ查表得ξ=0.7)Pj3=Pj2+2 1.217.32⨯-(0.1×2.2+0.7×2 1.217.32⨯)-21.259.12⨯ Pj3=P-7.12+6.33-4.65-1.52Pj3=P-6.96从以上数据可以看出,三个送风口处的静压不相等,所以送风量也不相等。

(完整版)管道阻力的基本计算方法

(完整版)管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:242v R R s m(5—3) 式中Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。

对圆形风管:4D R s(5—4)式中D ——风管直径,m 。

对矩形风管)(2b a ab R s(5—5)式中a ,b ——矩形风管的边长,m 。

因此,圆形风管的单位长度摩擦阻力22v D R m (5—6)摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。

计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21D K (5—7)式中K ——风管内壁粗糙度,mm ;Re ——雷诺数。

vd Re(5—8) 式中υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。

在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。

图5—2是计算圆形钢板风管的线解图。

它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

通风管道阻力计算

通风管道阻力计算

通风管道阻力计算 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l————风管长度,m;Rs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

风管局部阻力计算公式

风管局部阻力计算公式

风管局部阻力计算公式风管局部阻力是指风管系统中风管弯头、风管缩径、风管弯曲等部位对空气流动的阻力。

在风管设计中,准确计算局部阻力非常重要,可以帮助工程师选择合适的风管尺寸和设计合理的风管布局,以降低系统的能耗并提高系统的效率。

以下将介绍一些常见的风管局部阻力计算公式:风管弯头的阻力通常由弯头半径和弯头角度来确定。

根据实验结果,可以使用以下公式计算风管弯头的阻力系数(K):K=0.125*(1-(r/d)^2)^2/(r/d)其中,r为弯头的内曲率半径,d为弯头直径。

阻力系数K通常在0.2到0.3之间,可以根据具体情况进行选择。

风管缩径会导致空气流速增加,从而增加阻力。

根据实验结果,可以使用以下公式计算风管缩径的阻力系数(K):K=0.5*(1-(a/A)^2)^2其中,a为风管缩径段的面积,A为管道进口的面积。

当风管发生多次连续的弯曲时,每个弯曲都会增加空气流动的阻力。

根据实验结果,可以使用以下公式计算风管弯曲的阻力系数(K):K=(5+6*θ/π)*(1-(r1/r0)^2)其中,θ为弯曲的角度,r0为首次弯曲的内曲率半径,r1为非首次弯曲的内曲率半径。

当风管发生多次连续的变径时,每一次变径都会导致空气流速的变化,从而增加阻力。

根据实验结果,可以使用以下公式计算风管变径的阻力系数(K):K=0.5*(1-(a1/a0)^2)^2*(1-(a2/a1)^2)^2*...其中,ai为第i段风管的面积。

综上所述,风管局部阻力的计算利用了一系列实验结果和经验公式,帮助工程师优化风管系统的设计。

通过合理计算和选择,可以降低系统的能耗和运行成本,提高系统的效率和舒适性。

风管阻力计算总结

风管阻力计算总结

通风管道阻力计算对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求.对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等.可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。

否则别的就更不用考虑了.管道内风量主要是由风管内阻力影响的。

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。

一:摩擦阻力(沿程阻力)计算摩擦阻力(沿程阻力)计算一:(公式推导法)根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D以上各式中:ΔPm—-—摩擦阻力(沿程阻力),Pa。

λ———-摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式:其中最常用的公式为:,《K—管壁的当量绝对粗糙度,mm(见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】莫台曲线图面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1—2 一般通风系统中常用空气流速(m/s)ρ————空气的密度,Kg/m3;【在压力B0=101。

3kPa、温度t0=20℃、一般情况下取ρ=1。

205Kg/m3; 见表1—3】表1—3 标准大气压、不同温度下的空气密度(℃)L ———风管长度,m 【横断面形状不变的管道长度】D—-—风管的当量直径,m;【矩形风管流速当量直径:;流量当量直径:;圆形风管D为风管直径】摩擦阻力(沿程阻力)计算二:(比摩阻法)由以上计算看出计算V和D较容易而计算λ难度很大,所以我们选择查表更合适快捷。

风管阻力计算方法介绍7

风管阻力计算方法介绍7

风管阻力计算☆风管阻力计算方法送风机静压Ps (Pa)按下式计算P S = P D + P A式中:P D——风管阻力(Pa), P D = RL (1 + K )说明:R――风管的单位磨擦阻力,Pa/m ;L ――到最远送风口的送风管总长加上到最远回风口的回风管总长,m ;K――局部阻力与磨擦阻力损失的比值。

推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)P D = R (L + Le)式中Le为所有局部阻力的当量长度。

PA――空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)☆低速风管系统的推荐和最大流速m/s☆低速风管系统的最大允许流速m/s风管阻力计算☆风管阻力计算方法送风机静压Ps (Pa)按下式计算P S = P D + P A式中:P D——风管阻力(Pa),P D = RL(1 + K)说明:R――风管的单位磨擦阻力,Pa/m ;L ――到最远送风口的送风管总长加上到最远回风口的回风管总长,m ;K――局部阻力与磨擦阻力损失的比值。

推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)P D = R (L + Le)式中Le为所有局部阻力的当量长度。

PA――空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)☆低速风管系统的推荐和最大流速m/s☆低速风管系统的最大允许流速m/s☆推荐的送风口流速m/s☆以噪声标准控制的允许送风流速m/s☆回风格栅的推荐流速m/s根据YORK公司产品手册整理2004年4月3日常用单位换算公式集合大全常用单位换算公式集合大全换算公式面积换算1 平方公里(km2)=100 公顷(ha)=247.1 英亩(acre)=0.386 平方英里(mile2 )1 平方米(m2)=10.764平方英尺(ft2 )1 平方英寸(in2)=6.452 平方厘米(cm2)1 公顷(ha)=10000 平方米(m2 )=2.471 英亩(acre)1 英亩(acre)=0.4047 公顷(ha)=4.047 M0-3 平方公里(km2)=4047 平方米(m2)1 英亩(acre)=0.4047 公顷(ha)=4.047 M0-3 平方公里(km2)=4047 平方米(m2)1平方英尺(ft2 )=0.093平方米(m2)1 平方米(m2)=10.764平方英尺(ft2)1 平方码(yd2)=0.8361 平方米(m2)1 平方英里(mile2 )=2.590 平方公里(km2)体积换算1 美吉耳(gi)=0.118升(1)1 美品脱(pt)=0.473升(1)1 美夸脱(qt)=0.946升(1)1 美加仑(gal)=3.785 升(1)1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1英亩英尺=1234立方米(m3)1 立方英寸(in3)=16.3871 立方厘米(cm3)1 英加仑(gal)=4.546升(1)10亿立方英尺(bcf)=2831.7万立方米(m3)1万亿立方英尺(tcf)=283.17亿立方米(m3)1百万立方英尺(MMcf )= 2.8317万立方米(m3)1千立方英尺(mcf)=28.317立方米(m3)1 立方英尺(ft3)=0.0283 立方米(m3)=28.317升(liter)1 立方米(m3)=1000 升(liter)=35.315 立方英尺(ft3 )=6.29 桶(bbl)长度换算1 千米(km)=0.621 英里(mile) 1 米(m)=3.281 英尺(ft)=1.094 码(yd)1 厘米(cm)=0.394 英寸(in)1 英寸(in)=2.54 厘米(cm)1 海里(n mile )=1.852 千米(km)1 英寻(fm)=1.829(m)1 码(yd)=3 英尺(ft)1 杆(rad)=16.5 英尺(ft)1 英里(mile)=1.609 千米(km)1 英尺(ft)=12 英寸(in)1 英里(mile)=5280 英尺(ft)1 海里(n mile )=1.1516 英里(mile)质量换算1长吨(long ton )=1.016 吨(t)1千克(kg)=2.205磅(lb)1 磅(lb)=0.454千克(kg)[常衡]1 盎司(oz)=28.350 克(g)1 短吨(sh.ton)=0.907吨(t)=2000 磅(lb)1 吨(t)=1000 千克(kg)=2205 磅(lb)=1.102 短吨(sh.ton)=0.984 长吨(long ton )密度换算1 磅/英尺3 (lb/ft3)=16.02 千克/米3 (kg/m3 )API 度=141.5/15.5C时的比重一131.51 磅/英加仑(lb/gal)=99.776 千克/米3(kg/m3)1波美密度(B)= 140/15.5 C时的比重一1301 磅/英寸3(lb/in3 )=27679.9 千克/米3(kg/m3)1 磅/美加仑(lb/gal)=119.826 千克/米3 (kg/m3)1 磅/(石油)桶(lb/bbl )=2.853 千克/米3(kg/m3 )1 千克/米3(kg/m3)=0.001 克/厘米3 (g/cm3)=0.0624 磅/英尺3(lb/ft3 )运动粘度换算1 斯(St)=10-4 米2/秒(m2/s )=1 厘米2/秒(cm2/s)1 英尺2/秒(ft2/s)=9.29030 10-2 米2/秒(m2/s)1 厘斯(cSt)=10-6 米2/秒(m2/s)=1 毫米2/秒(mm2/s)动力粘度换算动力粘度1泊(P)= 0.1帕秒(Pas) 1厘泊(cP)=10-3帕秒(Pas)1 磅力秒/英尺2 (lbf s/ft2)=47.8803 帕秒(Pa s)1 千克力秒/米2 (kgf s、m2)=9.80665 帕秒(Pa s)力换算1 牛顿(N)= 0.225 磅力(lbf)=0.102 千克力(kgf)1 千克力(kgf)=9.81 牛(N)1 磅力(lbf)=4.45 牛顿(N)1 达因(dyn)=10-5 牛顿(N)温度换算K = 5/9「F+459.67)K=C +273.15nC =(5/9 n+32) F n °=[(n-32) 5/9] C1 ° F=5/9 C (温度差)压力换算压力1 巴(bar)=105 帕(Pa)1 达因/厘米2(dyn/cm2)=0.1 帕(Pa)1 托(Torr)=133.322 帕(Pa)1 毫米汞柱(mmHg )=133.322 帕(Pa)1毫米水柱(mmH2O )=9.80665帕(Pa)1工程大气压=98.0665千帕(kPa)1 千帕(kPa)=0.145 磅力/英寸2 (psi)=0.0102 千克力/厘米2(kgf/cm2 )=0.0098 大气压(atm)1 磅力/英寸2(psi)=6.895 千帕(kPa)=0.0703 千克力/厘米2(kg/cm2)=0.0689 巴(bar)=0.068 大气压(atm)1 物理大气压(atm)=101.325 千帕(kPa)=14.696 磅/英寸2(psi)=1.0333 巴(bar)传热系数换算1 千卡/米2时(kcal/m2 h)=1.16279 瓦/米2 (w/m2 )1 千卡/ (米2 时C)〔1kcal/(m2 h-C)〕= 1.16279 瓦/ (米2 开尔文)〔w/(m2 K)〕1 英热单位/ (英尺2 时°)〔Btu/(ft2 h:F)〕=5.67826 瓦/ (米2 开尔文)〔(w/m2 -K)〕1 米2 时:C /千卡(m2・h -C/kcal)=0.86000 米2 开尔文/瓦(m2・K/W )热导率换算1 千卡(米时C)〔kcal/(m h -C)〕= 1.16279 瓦/ (米开尔文)〔W/(m -K)〕1英热单位/ (英尺时° )〔But/(ft h °=)= 1.7303瓦/ (米开尔文)〔W/(m - K)〕比容热换算1 千卡/ (千克;C)〔kcal/(kg C)〕= 1 英热单位/ (磅°F):Btu/(lb °)〕=4186.8焦耳/(千克开尔文)〔J/(kg K)〕热功换算1 卡(cal)=4.1868 焦耳(J)1 大卡=4186.75 焦耳(J)1千克力米(kgf m)=9.80665焦耳(J)1英热单位(Btu )= 1055.06焦耳(J)1千瓦小时(kW- h)=3.6 M06焦耳(J)1 英尺磅力(ft lbf)=1.35582 焦耳(J)1米制马力小时(hp h)=2.64779 X06焦耳(J)1英马力小时(UKHp- h)=2.68452 X06焦耳1焦耳=0.10204千克米=2.778 X10- 7千瓦小时=3.777 X10 —7公制马力小时=3.723 X10 —7英制马力小时=2.389 X10 —4 千卡=9.48 >10— 4英热单位功率换算1 英热单位/时(Btu/h )=0.293071 瓦(W)1 千克力■米/秒(kgf m/s)=9.80665 瓦(w)1 卡/秒(cal/s)= 4.1868 瓦(W)1 米制马力(hp)=735.499 瓦(W)速度换算1 英里/时(mile/h )=0.44704 米/秒(m/s)1 英尺/秒(ft/s)=0.3048 米/秒(m/s)渗透率换算1达西= 1000毫达西1 平方厘米(cm2)= 9.81 >107达西地温梯度换算1°F/100 英尺= 1.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通风管道阻力计算
对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。

对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。

可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。

否则别的就更不用考虑了。

管道内风量主要是由风管内阻力影响的。

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。

一:摩擦阻力(沿程阻力)计算
摩擦阻力(沿程阻力)计算一:(公式推导法)
根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D
以上各式中:
ΔPm———摩擦阻力(沿程阻力),Pa。

λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式:
其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】
莫台曲线图
表1-1 一般通风管道中K、Re、λ的经验取值
类别材料
新装风
管K值
旧用风管
K值
新装风管
Re值
旧用风管
Re值
新装风管
λ值
旧用风管
λ值
工业通风
镀锌板
(常用)
0.15 0.17 8×1042×104查图查图
材料K值范围Re值范围λ值范围
镀锌板0.15-0.18 8×103 -9×1040.017-0.034
PVC、PP板0.01-0.05 5×104 -4×1060.010-0.025
玻璃钢板、0.2-0.3 6×103 -6×1040.024-0.045
ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s)
类别风管材料干管支管室内进风口室内回风口新空气入口
工业建筑通风薄钢板6--14 2--8 1.5—3.5 2.5—3.5 5.5--6.5
ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】
表1-3 标准大气压、不同温度下的空气密度(℃)温度(℃)密度(Kg/m3)温度(℃)密度(Kg/m3)
0 1.239 35 1.146
5 1.270 40 1.128
10 1.248 50 1.093
15 1.226 60 1.060
20 1.205 70 1.029
25 1.185 80 1.000
30 1.165 90 0.973
L ———风管长度,m 【横断面形状不变的管道长度】
D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直径:;圆形风管D为风管直径】
摩擦阻力(沿程阻力)计算二:(比摩阻法)
由以上计算看出计算V和D较容易而计算λ难度很大,所以我们选择查表更合适快捷。

风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D
摩擦阻力(沿程阻力)计算公式可改写为:ΔPm= Rs×L
为了便于工程设计计算, 人们对Rm的确定已作出了线解图, 设计时只需根据管内【(风量Q、流量当量直径D L、管壁粗糙度K)或(流速V、流速当量直径D V:管壁粗糙度K)由线解图上即可查出Rm值, 】
比摩阻计算参考下列(其中在说明中的K值按表1-1选取)
空调风管比摩阻计
算.xls
摩擦阻力(沿程阻力)计算三:(综合摩擦阻力系数法)
由:摩擦阻力(沿程阻力):ΔPm=λν2ρL/2D
风管内空气的平均流速ν=Q/F,m/s;
设综合摩擦阻力系数K M =λρL/2DF2 ,N·S2/m8。

则摩擦阻力(沿程阻力):ΔPm= K M×Q2 采用此计算式更便于管道系统的分析及风机的选择,因此,在管网系统运行分析与调节计算时,多采用该计算式。

软件应用:
现在的科技发展出现了很多软件计算,所以沿程阻力计算请参考下列软件
二:局部阻力计算
当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)由于流动方向、速度、风量的改变而产生局部漩涡和撞击,也要产生阻力、损失能量称为局部损失。

一般由实验测出管件前后的全压差即局部阻力。

局部阻力计算:ΔPm=ξν2ρ/2
式中ξ——局部阻力系数(由于通风、空调系统中空气的流动都处于自模区,局部阻力系数ξ只取决于管件的形状,一般不考虑相对粗糙度和雷诺数的影响)。

局部阻力系数一般用实验方法确定。

有的还整理成经验公式,但必须注意ξ值所对应的气流速度。

常见的几种局部阻力用下列软件计算:
消声器和消声弯头计算公式ΔPm=ξ5ν2r/g(Pa),设η=ξr.则有ΔPm=η5ν2/g(Pa)
不同消声系列产品的η值
材料名称η值备注材料名称η值备注
复合阻抗消声器0.73 平均值双层微孔板消声器0.99 平均值
复合阻抗消声弯头0.074 平均值单层微孔板消声弯头0.067 平均值
复合阻抗短壁消声弯头0.060 平均值双层微孔板消声弯头0.079 平均值。

相关文档
最新文档