高考数学圆锥曲线的综合问题复习教案

合集下载

高考数学圆锥曲线总复习教案

高考数学圆锥曲线总复习教案

九、解析几何(2)三、椭圆1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:四、双曲线1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.2、实轴和虚轴等长的双曲线称为等轴双曲线.五、抛物线1、定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.2关于抛物线焦点弦的几个结论:设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴221212,;4p x x y y p ==- ⑵22;sin pAB θ= ⑸112.||||FA FB P+= ⑶ 以AB 为直径的圆与准线相切;⑷ 焦点F 对A B 、在准线上射影的张角为2π; 3、过抛物线的焦点,作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =.六、直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系:⑴.从几何角度看:要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

⑵.从代数角度看:设直线L 的方程与圆锥曲线的方程联立得到02=++c bx ax 。

①. 若a =0,当圆锥曲线是双曲线时,直线L 与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L 与抛物线的对称轴平行或重合。

高考数学(理)一轮复习精品资料 专题53 圆锥曲线的综合问题(教学案)含解析

高考数学(理)一轮复习精品资料 专题53 圆锥曲线的综合问题(教学案)含解析

圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.高频考点一圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例1】椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,过其右焦点F与长轴垂直的弦长为1.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A,B,点P是直线x=1上的动点,直线P A与椭圆的另一交点为M,直线PB与椭圆的另一交点为N.求证:直线MN经过一定点.联立得⎩⎨⎧y =t3(x +2),x 24+y 2=1,即(4t 2+9)x 2+16t 2x +16t 2-36=0,(8分) 可知-2x M =16t 2-364t 2+9,所以x M =18-8t 24t 2+9,则⎩⎪⎨⎪⎧x M =18-8t 24t 2+9,yM =12t4t 2+9.同理得到⎩⎪⎨⎪⎧x N =8t 2-24t 2+1,y N =4t 4t 2+1.(10分)由椭圆的对称性可知这样的定点在x 轴上,不妨设这个定点为Q (m ,0), 又k MQ =12t 4t 2+918-8t 24t 2+9-m ,k NQ=4t4t 2+18t 2-24t 2+1-m , k MQ =k NQ ,所以化简得(8m -32)t 2-6m +24=0,令⎩⎪⎨⎪⎧8m -32=0,-6m +24=0,得m =4,即直线MN 经过定点(4,0).(13分)探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.【变式探究】如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N.(2)证明 由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0.因为直线AF 的方程为x =2,所以直线l 与AF 的交点M ⎝⎛⎭⎫2,2x 0-33y 0;直线l 与直线x =32的交点为N ⎝ ⎛⎭⎪⎫32,32x 0-33y 0.则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2 =43·(2x 0-3)23y 20+3(x 0-2)2, 因为P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得 |MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43,所以所求定值为|MF ||NF |=23=233. 高频考点二 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例2】 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105.(1)求椭圆C 的方程;(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点. ①设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值; ②求△OMN 面积的最大值.(2)①证明 设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2), 则B (-x 1,-y 1),因为直线AB 的斜率k AB =y 1x 1,又AB ⊥AD ,所以直线AD 的斜 率k =-x 1y 1.设直线AD 的方程为y =kx +m , 由题意知k ≠0,m ≠0.由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(1+4k 2)x 2+8mkx +4m 2-4=0. 所以x 1+x 2=-8mk 1+4k 2,因此y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2. 由题意知x 1≠-x 2,所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0),可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12.因此存在常数λ=-12使得结论成立.②解 直线BD 的方程为y +y 1=y 14x 1(x +x 1),令x =0,得y =-34y 1,即N ⎝⎛⎭⎫0,-34y 1. 由①知M (3x 1,0),可得△OMN 的面积S =12×3|x 1|×34|y 1|=98|x 1||y 1|.因为|x 1||y 1|≤x 214+y 21=1,当且仅当|x 1|2=|y 1|=22时等号成立,此时S 取得最大值98, 所以△OMN 面积的最大值为98.【感悟提升】圆锥曲线中的最值问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.【变式探究】 设点P (x ,y )到直线x =2的距离与它到定点(1,0)的距离之比为2,并记点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设M (-2,0),过点M 的直线l 与曲线C 相交于E ,F 两点,当线段EF 的中点落在由四点C 1(-1,0),C 2(1,0),B 1(0,-1),B 2(0,1)构成的四边形内(包括边界)时,求直线l 斜率的取值范围.由根与系数的关系得x 1+x 2=-8k 21+2k 2,于是x 0=x 1+x 22=-4k 21+2k 2,y 0=k (x 0+2)=2k 1+2k 2, 因为x 0=-4k 21+2k 2≤0,所以点G 不可能在y 轴的右边,又直线C 1B 2和C 1B 1的方程分别为y =x +1,y =-x -1, 所以点G 在正方形内(包括边界)的充要条件为 ⎩⎪⎨⎪⎧y 0≤x 0+1,y 0≥-x 0-1,即⎩⎪⎨⎪⎧2k 1+2k 2≤-4k 21+2k 2+1,2k 1+2k 2≥4k 21+2k 2-1, 亦即⎩⎪⎨⎪⎧2k 2+2k -1≤0,2k 2-2k -1≤0.解得-3-12≤k ≤3-12,②由①②知,直线l 斜率的取值范围是⎣⎢⎡⎦⎥⎤-3-12,3-12. 高频考点三 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.【例3】如图,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.从而|DF 1|=22.(3分) 由DF 1⊥F 1F 2,得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322.所以2a =|DF 1|+|DF 2|=22, 故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(4分)探究提高 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【变式探究】 在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →垂直?如果存在,求k 值;如果不存在,请说明理由.1.【2016高考新课标3理数】已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程. 【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.2.【2016高考浙江理数】(本题满分15分)如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.【答案】(I )22221a k a k +(II )02e <≤.所以a >因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为1a <≤,由c e a a ==得,所求离心率的取值范围为02e <≤.3.【2016高考新课标2理数】已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ))2.因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--,即3202k k -<-.由此得32020k k ->⎧⎨-<⎩,或32020k k -<⎧⎨->⎩2k <<.因此k 的取值范围是)2.4.【2016年高考北京理数】(本小题14分)已知椭圆C :22221+=x y a b(0a b >>)的离心率为2 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【答案】(1)2214x y +=;(2)详见解析.直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.5.【2016年高考四川理数】(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=.方程②的判别式为2=16(92)m ∆-,由>0∆,解得22m -<<. 由②得212124412=,33m m x x x x -+-=.所以123m PA x ==-- ,同理223m PB x =--, 所以12522(2)(2)433m mPA PB x x ⋅=---- 21212522(2)(2)()433m mx x x x =---++ 225224412(2)(2)()43333m m m m -=----+2109m =.故存在常数45λ=,使得2PT PA PB λ=⋅. 6.【2016高考上海理数】(本题满分14)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。

高中文科数学圆锥曲线教案

高中文科数学圆锥曲线教案

高中文科数学圆锥曲线教案
学科:数学
年级:高中
课时:1课时
教学目标:
1. 了解圆锥曲线的基本概念和性质;
2. 掌握圆、椭圆、双曲线和抛物线的方程及其图像特征;
3. 能够通过方程判断图像种类和位置。

教学内容:
1. 圆锥曲线的定义和分类;
2. 圆的方程和图像特征;
3. 椭圆的方程和图像特征;
4. 双曲线的方程和图像特征;
5. 抛物线的方程和图像特征。

教学步骤:
一、导入(5分钟)
1. 引导学生回顾基础知识,复习圆的相关概念;
2. 提出问题:“什么是圆锥曲线?有哪些种类?”
二、讲解(20分钟)
1. 解释圆锥曲线的概念和分类;
2. 介绍圆、椭圆、双曲线和抛物线的方程和图像特征;
3. 分别讲解每种圆锥曲线的方程及其图像形状。

三、练习(20分钟)
1. 给学生练习一些简单的题目,让他们通过方程确定图像的种类;
2. 提示学生注意每种圆锥曲线的特征,做好区分。

四、总结(10分钟)
1. 总结本节课学习的重点内容,强调圆锥曲线的分类和特征;
2. 提醒学生在以后的学习中要注意圆锥曲线的应用。

五、作业布置(5分钟)
1. 布置相关练习题目,巩固今天学习的知识;
2. 提醒学生复习圆锥曲线的相关理论。

教学反思:
本节课内容相对简单,主要是让学生掌握圆锥曲线的基本概念和特征。

教学中应注意引导学生运用所学知识解决问题,培养他们的思维能力和分析能力。

同时,也要注重引导学生合理安排学习时间,将知识运用到实际问题中,提高学习效果。

高三数学教案:圆锥曲线的综合问题

高三数学教案:圆锥曲线的综合问题

第八节 圆锥曲线的综合应用一、基本知识概要:1知识精讲:圆锥曲线的综合问题包括:解析法的应用,数形结合的思想,与圆锥曲线有关的定值、最值等问题,主要沿着两条主线,即圆锥曲线科内综合与代数间的科间综合,灵活运用解析几何的常用方法,解决圆锥曲线的综合问题;通过问题的解决,进一步掌握函数与方程、等价转化、分类讨论等数学思想.2重点难点:正确熟练地运用解析几何的方法解决圆锥曲线的综合问题,从中进一步体会分类讨论、等价转化等数学思想的运用.3思维方式:数形结合的思想,等价转化,分类讨论,函数与方程思想等.4特别注意:要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。

二、例题:例1. A ,B 是抛物线)0(22>=p px y 上的两点,且OA OB ⊥(O 为坐标原点)求证:(1)A ,B 两点的横坐标之积,纵坐标之积分别是定植; (2)直线AB 经过一个定点证明:(1)设,,2,2),,(),,(21212221212211=+∴⊥==y y x x OB OA px y px y y x B y x A 则两式相乘得2212214,4p x x p y y =-=)0,2),0,2),2(2).(2,2,),(2)2(212112112121212221p x x p p x y y p y x x y y p y y AB y y p k x x x x p y y AB 时,显然也过点(当过定点(化简得的方程所以直线当=-+=-+=-+=≠-=-所以直线AB 过定点(2p,0)例2、(2005年春季北京,18)如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b )0,0(≠>b a ,且交抛物线)(),(于22112,N ,M )0(2y x y x p px y >=两点。

(1) 写出直线l 的截距式方程 (2) 证明:by y 11121=+(3) 当p a 2=时,求MON ∠的大小。

高考数学一轮教案(圆锥曲线的综合问题)

高考数学一轮教案(圆锥曲线的综合问题)

高考数学一轮教案(圆锥曲线的综合问题)§9.8圆锥曲线的综合问题★ 知识分类★1.直线与圆锥曲线c的位置关系:通过将线l的方程代入曲线C的方程,并消除y或X,我们得到了方程AX2+BX+C=0(1)交点个数:① 当a=0或a≠ 0,s=0,曲线和直线之间只有一个交点;② 当≠ 0且s>0时,曲线与直线有两个交点;③ 当s<0时,曲线和直线之间没有交点。

(2)弦长公式:|ab|?1?k2?|x2?x1|?1?k2?(x1?x2)2?4x1?x22.对称问题:曲线上的两点与已知直线对称:① 曲线上两点的直线垂直于已知的直线(获得斜率);② 曲线上两点的直线和曲线有两个公共点(s>0);③ 曲线上两点的中点在对称直线上。

3.求出运动点的轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。

★ 重点难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法;理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重点和难点:综合运用方程、函数、不等式和轨迹知识解决相关问题1.体验解题时“设而不求”的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体验数学思维方法(主要是方程思维、变换思维、数形结合)在问题解决中的应用x2y2??1的左焦点,点a(1,1),动点p在椭圆上,则|pa|?|pf问题1:已知点f1为椭圆1|的最小值95为.刻度盘:将F2设置为椭圆的右焦点,使用定义将|Pf1 |转换为|PF2 |并组合图形,|pa|?|pf1|?6?|pa|?|pf2|,当p、a、f2共线时最小,最小值为6-2★ 热门考点问题类型分析★考点1直线与圆锥曲线的位置关系题型1:交点个数问题[示例1]让抛物线y2=8x的准直与点Q处的x轴相交。

高三数学 第十二章 圆锥曲线的综合问题 复习教案

高三数学 第十二章 圆锥曲线的综合问题  复习教案

第十一节 圆锥曲线的综合问题————热点考点题型探析一、复习目标:掌握圆锥曲线中有关定点、定值问题的解法;能利用方程求圆锥曲线的有关范围与最值;掌握对称问题的求法。

二、重难点:重点:掌握圆锥曲线中有关定点、定值问题的解法;能利用方程求圆锥曲线的有关范围与最值。

难点:圆锥曲线的有关范围与最值问题。

三、教学方法:讲练结合,探析归纳 四、教学过程 (一)、热点考点题型探析 考点1.对称问题[例1]若直线l 过圆x2+y2+4x-2y=0的圆心M 交椭圆49:22y x C +于A 、B 两点,若A 、B 关于点M 对称,求直线L 的方程.[解析] )1,2(-M ,设),(),,(2211y x B y x A ,则2,42121=+-=+y y x x又1492121=+y x ,1492222=+y x ,两式相减得:04922122212=-+-y y x x ,化简得0))((9))((421212121=-++-+y y y y x x x x ,把2,42121=+-=+y y x x 代入得982112=--=x x y y k AB故所求的直线方程为)2(211--=-x y ,即042=-+y x 所以直线l 的方程为 :8x-9y+25=0.【反思归纳】要抓住对称包含的三个条件:(1)中点在对称轴上(2)两个对称点的连线与轴垂直(3)两点连线与曲线有两个交点(0>∆),通过该不等式求范围 考点2. 圆锥曲线中的范围、最值问题题型:求某些变量的范围或最值[例2]已知椭圆22122:1(0)x y C a b a b +=>>与直线10x y +-=相交于两点A B 、.当椭圆的离心率e满足e ≤≤,且0O A O B ⋅= (O 为坐标原点)时,求椭圆长轴长的取值范围.【解题思路】通过“韦达定理”沟通a 与e 的关系[解析]由22222210b x a y a b x y ⎧+=⎨+-=⎩,得222222()2(1)0a b x a x a b +-+-= 由22222(1)0a b a b =+-> ,得221a b +>此时222121222222(1),a a b x x x x a b a b -+==++ 由0OA OB ⋅=,得12120x x y y +=,∴12122()10x x x x -++=即222220a b a b +-=,故22221a b a =- 由222222c a b e a a -==,得2222b a a e =-∴221211a e =+-由2e ≤≤得25342a ≤≤2a ≤≤【反思归纳】求范围和最值的方法:几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题代数方法:建立目标函数,再求目标函数的最值. 考点3 定点,定值的问题题型:论证曲线过定点及图形(点)在变化过程中存在不变量[例3] 已知P 、Q 是椭圆C :12422=+y x 上的两个动点,)26,1(M 是椭圆上一定点,F 是其左焦点,且|PF|、|MF|、|QF|成等差数列。

高考数学一轮复习 第八章 平面解析几何 第九节 圆锥曲线的综合问题教案(含解析)-高三全册数学教案

高考数学一轮复习 第八章 平面解析几何 第九节 圆锥曲线的综合问题教案(含解析)-高三全册数学教案

第九节 圆锥曲线的综合问题1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F x ,y =0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=1+1k2·|y 1-y 2|=1+1k2·y 1+y 22-4y 1y 2.[小题体验]1.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解析:选A 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.2.顶点在坐标原点,焦点在x 轴上的抛物线截得直线y =2x +1所得的弦AB 的长为15,则该抛物线的标准方程为____________.解析:设抛物线的方程为y 2=mx (m ≠0),A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧y 2=mx ,y =2x +1可得4x 2+(4-m )x +1=0.所以x 1+x 2=-4-m 4,x 1x 2=14.所以|AB |=1+22[x 1+x 22-4x 1x 2]=5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-m 42-1=15,解得m =12或m =-4.所以抛物线的标准方程为y 2=12x 或y 2=-4x . 答案:y 2=12x 或y 2=-4x1.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.[小题纠偏]1.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).2.直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是( )A .1B .2C .1或2D .0解析:选A 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.考点一 直线与圆锥曲线的位置关系重点保分型考点——师生共研[典例引领]在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),若直线l 与轨迹C 恰好有一个公共点,求实数k 的取值范围.解:(1)设点M (x ,y ),依题意|MF |=|x |+1, ∴x -12+y 2=|x |+1,化简得y 2=2(|x |+x ),故轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0),C 2:y =0(x <0). 依题意,可设直线l 的方程为y -1=k (x +2).联立⎩⎪⎨⎪⎧y -1=kx +2,y 2=4x 消去x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝ ⎛⎭⎪⎫14,1. 当k ≠0时,方程①的Δ=-16(2k 2+k -1)=-16(2k -1)(k +1),② 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(ⅰ)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.所以当k <-1或k >12时,直线l 与曲线C 1没有公共点,与曲线C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若⎩⎪⎨⎪⎧Δ=0,x 0≥0,即⎩⎪⎨⎪⎧2k 2+k -1=0,2k +1k<0,解集为∅.综上可知,当k <-1或k >12或k =0时,直线l 与轨迹C 恰好有一个公共点.故实数k 的取值范围为(-∞,-1)∪{0}∪⎝ ⎛⎭⎪⎫12,+∞. [由题悟法]1.直线与圆锥曲线位置关系的判定方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数. 2.判定直线与圆锥曲线位置关系的注意点(1)联立直线与圆锥曲线的方程消元后,应注意讨论二次项系数是否为零的情况. (2)判断直线与圆锥曲线位置关系时,判别式Δ起着关键性的作用,第一:可以限定所给参数的范围;第二:可以取舍某些解以免产生增根.[即时应用]1.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为( ) A .1 B .1或3 C .0D .1或0解析:选D 由⎩⎪⎨⎪⎧y =kx +2,y 2=8x ,得k 2x 2+(4k -8)x +4=0,若k =0,则y =2,符合题意.若k ≠0,则Δ=0,即64-64k =0,解得k =1,所以直线y =kx +2与抛物线y 2=8x 有且只有一个公共点时,k =0或1.2.已知双曲线x 2a 2-y 2b2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1,5]C .(5,+∞)D .[5,+∞)解析:选C 因为双曲线的一条渐近线方程为y =b ax ,则由题意得b a >2,所以e =c a=1+⎝ ⎛⎭⎪⎫b a 2>1+4= 5.考点二 弦长问题重点保分型考点——师生共研[典例引领](2018·浙江六校联考)如图,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)和圆C 2:x 2+y 2=b 2,已知圆C 2将椭圆C 1的长轴三等分,且圆C 2的面积为π.椭圆C 1的下顶点为E ,过坐标原点O 且与坐标轴不重合的任意直线l 与圆C 2相交于点A ,B ,直线EA ,EB 与椭圆C 1的另一个交点分别是点P ,M .(1)求椭圆C 1的方程;(2)求△EPM 面积最大时直线l 的方程. 解:(1)由题意得:b =1,则a =3b , 所以椭圆C 1的方程为:x 29+y 2=1.(2)由题意得:直线PE ,ME 的斜率存在且不为0,PE ⊥EM , 不妨设直线PE 的斜率为k (k >0),则PE :y =kx -1,由⎩⎪⎨⎪⎧y =kx -1,x 29+y 2=1得⎩⎪⎨⎪⎧x =18k9k 2+1,y =9k 2-19k 2+1或⎩⎪⎨⎪⎧x =0,y =-1.所以P ⎝ ⎛⎭⎪⎫18k 9k 2+1,9k 2-19k 2+1,同理得M ⎝ ⎛⎭⎪⎫-18k k 2+9,9-k 2k 2+9,则k PM =k 2-110k,由⎩⎪⎨⎪⎧y =kx -1,x 2+y 2=1,得A ⎝ ⎛⎭⎪⎫2k 1+k 2,k 2-11+k 2,所以k AB =k 2-12k , 所以S △EPM =12|PE |·|EM |=162k +k39k 4+82k 2+9=162⎝⎛⎭⎪⎫k +1k 9k 2+82+9k 2.设t =k +1k ,则S △EPM =162t9t 2+64=1629t +64t≤278,当且仅当t =k +1k =83时取等号,所以k -1k =±237,则直线AB :y =k 2-12k x =12⎝ ⎛⎭⎪⎫k -1k x , 所以所求直线l 方程为:y =±73x . [由题悟法]弦长的3种常用计算方法(1)定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义,可优化解题. (2)点距法:将直线的方程和圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长.(3)弦长公式法:它体现了解析几何中设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系得到的.[提醒] 直线与圆锥曲线的对称轴平行或垂直的特殊情况.[即时应用](2018·温州二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,离心率为12,过右焦点的直线l 与椭圆相交于M ,N 两点,点P 的坐标为(4,3),记直线PM ,PN 的斜率分别为k 1,k 2.(1)求椭圆C 的方程;(2)当|MN |=247时,求直线l 的斜率.解:(1)∵2a =4,∴a =2,又e =c a =12,∴c =1,∴b 2=3.∴椭圆C 的方程为x 24+y 23=1.(2)椭圆右焦点(1,0),当l 斜率不存在时,|MN |=3,不合题意; 当l 斜率k 存在时,设直线l 的方程为y =k (x -1),M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =k x -1,得(3+4k 2)x 2-8k 2x +4(k 2-3)=0,Δ=144(k 2+1)>0成立, ∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-33+4k 2, ∴|MN |=1+k 2·x 1+x 22-4x 1x 2=1+k 2·⎝ ⎛⎭⎪⎫8k 23+4k 22-4×4k 2-33+4k 2=247, 解得k =±1.故直线l 的斜率为±1.考点三 定点、定值问题重点保分型考点——师生共研[典例引领]已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.解:(1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0), 所以p2=1,即p =2.所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎝ ⎛⎭⎪⎫t 24,t ,B ⎝ ⎛⎭⎪⎫t 24,-t . 因为直线OA ,OB 的斜率之积为-12,所以t t24·-t t 24=-12,化简得t 2=32. 所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8. ②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),联立方程组⎩⎪⎨⎪⎧y 2=4x ,y =kx +b ,消去x 得ky 2-4y +4b =0.由根与系数的关系得y A y B =4bk,因为直线OA ,OB 的斜率之积为-12,所以y A x A ·y B x B =-12,即x A x B +2y A y B =0.即y 2A 4·y 2B4+2y A y B =0, 解得y A y B =0(舍去)或y A y B =-32. 所以y A y B =4bk=-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综合①②可知,直线AB 过定点(8,0).[由题悟法]1.圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 2.定值问题常见的2种求法(1)从特殊入手,求出定值,再证明这个值与变量无关. (2)引进变量法:其解题流程为[即时应用]1.(2018·宁波模拟)如图,中心在坐标原点,焦点分别在x 轴和y 轴上的椭圆T 1,T 2都过点M (0,-2),且椭圆T 1与T 2的离心率均为22. (1)求椭圆T 1与椭圆T 2的标准方程;(2)过点M 引两条斜率分别为k ,k ′的直线分别交T 1,T 2于点P ,Q ,当k ′=4k 时,问直线P Q 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.解:(1)设椭圆T 1,T 2的方程分别为x 2a 2+y 2b 2=1(a >b >0),y 2a ′2+x 2b ′2=1(a ′>b ′>0),由题意得b =2,e =ca =22,又a 2=b 2+c 2,解得a =2. 同理可得a ′=2,b ′=1,所以椭圆T 1和椭圆T 2的方程分别为x 24+y 22=1,y 22+x 2=1.(2)直线MP 的方程为y =kx -2,联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx -2消去y 得(2k 2+1)x 2-42kx =0,则点P 的横坐标为42k 2k 2+1,所以点P 的坐标为⎝ ⎛⎭⎪⎫42k 2k 2+1,22k 2-22k 2+1. 同理可得点Q 的坐标为⎝ ⎛⎭⎪⎫22k ′k ′2+2,2k ′2-22k ′2+2.又k ′=4k ,则点Q 的坐标为⎝ ⎛⎭⎪⎫42k 8k 2+1,82k 2-28k 2+1, 所以k P Q =82k 2-28k 2+1-22k 2-22k 2+142k 8k 2+1-42k2k 2+1=-12k ,则直线P Q 的方程为y -22k 2-22k 2+1=-12k ⎝ ⎛⎭⎪⎫x -42k 2k 2+1, 化简得y -2=-12kx ,故直线P Q 过定点(0,2).2.(2018·嘉兴模拟)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点P ,Q(均异于点A ),证明:直线AP 与A Q 的斜率之和为定值.解:(1)由题意知c a =22,b =1, 由a 2=b 2+c 2,得a =2, 所以椭圆E 的方程为x 22+y 2=1.(2)证明:设直线P Q 的方程为y =k (x -1)+1(k ≠2), 代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由题意知Δ>0,设P (x 1,y 1),Q(x 2,y 2),且x 1x 2≠0, 则x 1+x 2=4kk -11+2k 2,x 1x 2=2k k -21+2k2, 所以直线AP 与A Q 的斜率之和k AP +k A Q =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k k -12k k -2=2k -2(k -1) =2.故直线AP 与A Q 的斜率之和为定值2.考点四 最值、范围问题重点保分型考点——师生共研[典例引领](2018·浙江原创猜题卷)设抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 交抛物线C 于P ,Q 两点,且|P Q|=8,线段P Q 的中点到y 轴的距离为3.(1)求抛物线C 的方程;(2)若点A (x 1,y 1),B (x 2,y 2)是抛物线C 上相异的两点,满足x 1+x 2=2,且AB 的中垂线交x 轴于点M ,求△AMB 的面积的最大值及此时直线AB 的方程.解:(1)设P (x P ,y P ),Q(x Q ,y Q ), 则P Q 的中点坐标为⎝ ⎛⎭⎪⎫x P +x Q 2,y P +y Q 2.由题意知x P +x Q2=3,∴x P +x Q =6,又|P Q|=x P +x Q +p =8,∴p =2, 故抛物线C 的方程为y 2=4x .(2)当AB 垂直于x 轴时,显然不符合题意, 所以可设直线AB 的方程为y =kx +b (k ≠0),由⎩⎪⎨⎪⎧y =kx +b ,y 2=4x 消去y 并整理,得k 2x 2+(2kb -4)x +b 2=0,Δ=16(1-kb )>0,∴由x 1+x 2=4-2kb k2=2,得b =2k-k , ∴直线AB 的方程为y =k (x -1)+2k.∵AB 中点的横坐标为1,∴AB 中点的坐标为⎝⎛⎭⎪⎫1,2k .可知AB 的中垂线的方程为y =-1k x +3k,∴M 点的坐标为(3,0).∵直线AB 的方程为k 2x -ky +2-k 2=0, ∴M 到直线AB 的距离d =|3k 2+2-k 2|k 4+k 2=2k 2+1|k |.由⎩⎪⎨⎪⎧k 2x -ky +2-k 2=0,y 2=4x ,得k 24y 2-ky +2-k 2=0,Δ=k 2(k 2-1)>0,∴y 1+y 2=4k ,y 1y 2=8-4k2k2,∴|AB |=1+1k 2|y 1-y 2|=4k 2+1k 2-1k2. 设△AMB 的面积为S , 则S =12|AB |·d =4⎝ ⎛⎭⎪⎫1+1k 21-1k2,设1-1k2=t ,则0<t <1,∴S =4t (2-t 2)=-4t 3+8t ,S ′=-12t 2+8, 由S ′=0,得t =63(负值舍去), 即当k =±3时,S max =1669,此时直线AB 的方程为3x ±3y -1=0.[由题悟法]解决圆锥曲线中的取值范围问题的5种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.[即时应用]1.如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解:(1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0), 可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,所以可设直线AF 的方程为x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0.故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t.又直线AB 的斜率为2tt 2-1, 故直线FN 的斜率为-t 2-12t,从而得直线FN 的方程为y =-t 2-12t(x -1).又直线BN 的方程为y =-2t,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m,0),由A ,M ,N 三点共线得2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=21-1t2,得m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).2.(2018·温州期末)已知椭圆的焦点坐标为F 1(-1,0),F 2(1,0),过F 2垂直于长轴的直线交椭圆于P ,Q 两点,且|P Q|=3,(1)求椭圆的方程;(2)如图,过F 2的直线l 与椭圆交于不同的两点M ,N ,则△F 1MN 的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.解:(1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),由焦点坐标可得c =1, 由|P Q|=3,可得2b2a=3,解得a =2,b =3,故椭圆的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),△F 1MN 的内切圆的半径为R , 则△F 1MN 的周长为4a =8,S △F 1MN =12(|MN |+|F 1M |+|F 1N |)R =4R ,因此S △F 1MN 最大,R 就最大,S △F 1MN =12|F 1F 2|(y 1-y 2)=y 1-y 2.由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧x =my +1,x 24+y23=1得(3m 2+4)y 2+6my -9=0,解得y 1=-3m +6m 2+13m 2+4,y 2=-3m -6m 2+13m 2+4, 则S △F 1MN =y 1-y 2=12m 2+13m 2+4. 令t =m 2+1,则t ≥1, 所以S △F 1MN =12t 3t 2+1=123t +1t,令f (t )=3t +1t ,则f ′(t )=3-1t2,当t ≥1时, f (t )在[1,+∞)上单调递增,有f (t )≥f (1)=4,S △F 1MN ≤ 124=3,即当t =1,m =0时,取等号,又S △F 1MN =4R ,所以R max =34,故所求内切圆面积的最大值为916π.所以直线l 的方程为x =1时,△F 1MN 的内切圆面积取得最大值916π.一保高考,全练题型做到高考达标1.(2019·台州模拟)已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-33,33 B .[-3,3]C.⎝⎛⎭⎪⎫-33,33 D .(-3,3)解析:选A 易知该双曲线的渐近线方程为y =±33x ,当过右焦点的两条直线分别与两条渐近线平行,即两条直线的斜率分别为33和-33时,这两条直线与双曲线右支分别只有一个交点,所以此直线的斜率的取值范围是⎣⎢⎡⎦⎥⎤-33,33. 2.(2018·宁波调研)已知不过原点O 的直线交抛物线y 2=2px 于A ,B 两点,若OA ,AB 的斜率分别为k OA =2,k AB =6,则OB 的斜率为( )A .3B .2C .-2D .-3解析:选 D 由题意可知,直线OA 的方程为y =2x ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =2x ,y 2=2px ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =p 2,y =p ,所以A ⎝ ⎛⎭⎪⎫p2,p ,则直线AB 的方程为y -p =6⎝ ⎛⎭⎪⎫x -p 2,即y =6x -2p ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =6x -2p ,y 2=2px ,解得⎩⎪⎨⎪⎧x =2p 9,y =-2p3或⎩⎪⎨⎪⎧x =p 2,y =p ,所以B ⎝ ⎛⎭⎪⎫2p9,-2p 3,所以直线OB 的斜率k OB =-2p32p 9=-3.3.(2018·杭州二模)倾斜角为π4的直线经过椭圆x 2a 2+y2b 2=1(a >b >0)的右焦点F ,与椭圆交于A ,B 两点,且AF =2FB ,则该椭圆的离心率为( )A.32 B.23 C.22D.33解析:选B 由题可知,直线的方程为y =x -c ,与椭圆方程联立得⎩⎪⎨⎪⎧x 2a 2+y 2b2=1,y =x -c ,∴(a 2+b 2)y 2+2b 2cy -b 4=0,且Δ>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ y 1+y 2=-2b 2c a 2+b2,y 1y 2=-b4a 2+b 2,又AF =2FB ,∴(c -x 1,-y 1)=2(x 2-c ,y 2),∴-y 1=2y 2,即⎩⎪⎨⎪⎧-y 2=-2b 2c a 2+b 2,-2y 22=-b4a 2+b2,∴12=4c 2a 2+b 2,∴e =23,故选B. 4.(2018·温州十校联考)已知点P 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)右支上一点,F 1是双曲线的左焦点,且双曲线的一条渐近线恰是线段PF 1的中垂线,则该双曲线的离心率是( )A. 2B. 3 C .2D. 5解析:选D 设直线PF 1:y =a b (x +c ),则与渐近线y =-b a x 的交点为M ⎝ ⎛⎭⎪⎫-a 2c ,ab c .因为M 是PF 1的中点,利用中点坐标公式,得P ⎝ ⎛⎭⎪⎫-2a2c+c ,2ab c ,因为点P 在双曲线上,所以满足b 2-a 22a 2c 2-4a 2b 2c 2b2=1,整理得c 4=5a 2c 2,解得e = 5.5.(2019·丽水五校联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,过点F 且倾斜角为60°的直线交C 于A ,B 两点,AM ⊥l ,BN ⊥l ,M ,N 为垂足,点Q 为MN 的中点,|Q F |=2,则p =________.解析:如图,由抛物线的几何性质可得,以AB 为直径的圆与准线相切,且切点为Q ,△MFN 是以∠MFN 为直角的直角三角形,∴|MN |=2|Q F |=4,过B 作BD ⊥AM ,垂足为D ,∴|AB |=|BD |sin 60°=432=833.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =3⎝ ⎛⎭⎪⎫x -p 2,得12x 2-20px+3p 2=0,∴x 1+x 2=53p ,∴|AB |=x 1+x 2+p =53p +p =83p =833,∴p = 3.答案: 36.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.解析:设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎪⎨⎪⎧x 21-y 213=1,x 22-y223=1,两式相减,得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3, ∵M ,N 关于直线y =x +m 对称,∴k MN =-1,∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝ ⎛⎭⎪⎫-m 4,3m 4,代入抛物线方程得916m 2=18×⎝ ⎛⎭⎪⎫-m 4, 解得m =0或-8,经检验都符合. 答案:0或-87.(2019·湖州六校联考)设抛物线C :y 2=4x 的焦点为F ,过点P (-1,0)作直线l 与抛物线C 交于A ,B 两点,若S △ABF =2,且|AF |<|BF |,则|AF ||BF |=________.解析:设直线l 的方程为x =my -1,将直线方程代入抛物线C :y 2=4x 的方程,得y2-4my +4=0,Δ=16(m 2-1)>0.设A (x 1,y 1),B (x 2,y 2),|y 1|<|y 2|,所以y 1+y 2=4m ,y 1·y 2=4,又S △ABF =2,所以121+m 2·|y 2-y 1|·2m 2+1=|y 2-y 1|=2,因此y 21+y 22=10,所以y 21+y 22y 1·y 2=104=52,从而⎪⎪⎪⎪⎪⎪y 1y 2=12,即|AF ||BF |=|x 1+1||x 2+1|=|my 1-1+1||my 2-1+1|=⎪⎪⎪⎪⎪⎪y 1y 2=12.答案:128.(2019·衢州模拟)已知椭圆C :x 22+y 2=1,若一组斜率为14的平行直线被椭圆C 所截线段的中点均在直线l 上,则l 的斜率为________.解析:设弦的中点坐标为M (x ,y ),设直线y =14x +m 与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,由⎩⎪⎨⎪⎧y =14x +m ,x22+y 2=1消去y ,得9x 2+8mx +16m 2-16=0,Δ=64m 2-4×9×(16m2-16)>0,解得-324<m <324,x 1+x 2=-8m 9,x 1x 2=16m 2-169,∵M (x ,y )为弦AB 的中点,∴x 1+x 2=2x ,解得x =-4m9,∵m ∈⎝ ⎛⎭⎪⎫-324,324,∴x ∈⎝ ⎛⎭⎪⎫-23,23,由⎩⎪⎨⎪⎧y =14x +m ,x =-4m9消去m ,得y =-2x ,则直线l 的方程为y =-2x ,x ∈⎝ ⎛⎭⎪⎫-23,23, ∴直线l 的斜率为-2. 答案:-29.(2018·东阳适应)已知椭圆x 2a2+y 2=1(a >1).(1)若A (0,1)到焦点的距离为3,求椭圆的离心率.(2)Rt △ABC 以A (0,1)为直角顶点,边AB ,AC 与椭圆交于两点B ,C .若△ABC 面积的最大值为278,求a 的值.解:(1)由题可得a =3,所以c =2,所以e =c a =63. (2)不妨设AB 斜率k >0,则AB :y =kx +1, AC :y =-1kx +1,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1得(1+a 2k 2)x 2+2a 2kx =0,解得x B =-2a 2k 1+a 2k 2,同理x C =2a 2k k 2+a 2, S =12|AB ||AC |=2a 4·k 1+k2a 2k 4+a 4k 2+k 2+a2 =2a 4·k +1ka 2k 2+a 2k2+a 4+1=2a 4·k +1ka 2⎝ ⎛⎭⎪⎫k +1k 2+a 2-12,设t =k +1k,则t ≥2,S =2a 4·ta 2t 2+a 2-12=2a4a 2t +a 2-12t≤a 3a 2-1,当且仅当t =a 2-1a ≥2,即a ≥1+2时取等号, 由a 3a 2-1=278,解得a =3,a =3+29716(舍), 若a <1+2,显然无解.∴a =3.10.(2019·嘉兴模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,F 1,F 2分别为椭圆C 的左、右焦点,过F 2的直线l 与C 相交于A ,B 两点,△F 1AB 的周长为4 3.(1)求椭圆C 的方程;(2)若椭圆C 上存在点P ,使四边形OAPB 为平行四边形,求此时直线l 的方程. 解:(1)∵椭圆的离心率为33,∴c a =33,∴a =3c , 又△F 1AB 的周长为43,∴4a =43, 解得a =3,∴c =1,b =2,∴椭圆C 的标准方程为x 23+y 22=1.(2)设点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),∵当直线l 的斜率不存在时,这样的直线不满足题意, ∴设直线l 的斜率为k ,则直线l 的方程为y =k (x -1), 将直线l 的方程代入椭圆方程, 整理得(2+3k 2)x 2-6k 2x +3k 2-6=0, ∴x 1+x 2=6k22+3k2,故y 1+y 2=k (x 1+x 2)-2k =6k 32+3k 2-2k =-4k2+3k 2.∵四边形OAPB 为平行四边形,∴OP =OA +OB , 从而x 0=x 1+x 2=6k 22+3k 2,y 0=y 1+y 2=-4k2+3k2,又P (x 0,y 0)在椭圆上,∴⎝ ⎛⎭⎪⎫6k 22+3k 223+⎝ ⎛⎭⎪⎫-4k 2+3k 222=1,化简得3k 4-4k 2-4=0,解得k =±2, 故所求直线l 的方程为y =±2(x -1). 二上台阶,自主选做志在冲刺名校1.(2018·湖州质检)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),不经过原点O 的直线l :y =kx+m (k >0)与椭圆E 相交于不同的两点A ,B ,直线OA ,AB ,OB 的斜率依次构成等比数列.(1)求a ,b ,k 的关系式;(2)若离心率e =12且|AB |=7⎪⎪⎪⎪⎪⎪m +1m ,当m 为何值时,椭圆的焦距取得最小值? 解:(1)设A (x 1,y 1),B (x 2,y 2), 由题意得k 2=k OA ·k OB =y 1y 2x 1x 2. 联立⎩⎪⎨⎪⎧x 2a 2+y 2b2=1,y =kx +m消去y ,整理得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0,故Δ=(2a 2km )2-4(b 2+a 2k 2)(a 2m 2-a 2b 2)>0, 即b 2-m 2+a 2k 2>0,且x 1+x 2=-2a 2km b 2+a 2k 2,x 1·x 2=a 2m 2-a 2b2b 2+a 2k 2, 所以k 2=y 1y 2x 1x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2,即km (x 1+x 2)+m 2=0,-2a 2k 2m 2b 2+a 2k2+m 2=0.又直线不经过原点,所以m ≠0,所以b 2=a 2k 2,即b =ak . (2)因为e =12,则a =2c ,b =3c ,k =32,所以x 1+x 2=-2a 2km b 2+a 2k 2=-23m 3,x 1·x 2=a 2m 2-a 2b 2b 2+a 2k 2=23m 2-2c 2, 所以|AB |=1+k2|x 1-x 2|=72x 1+x 22-4x 1·x 2=72·⎝⎛⎭⎪⎫-23m 32-4⎝ ⎛⎭⎪⎫23m 2-2c 2=72·-4m 23+8c 2=7⎪⎪⎪⎪⎪⎪m +1m , 化简得2c 2=4m 23+1m 2+2≥433+2(Δ>0恒成立),当且仅当4m 23=1m 2,即m =±4122时,焦距最小.综上,当m =±4122时,椭圆的焦距取得最小值. 2.(2018·学军适考)已知抛物线C :x 2=4y ,过点P (0,m )(m >0)的动直线l 与C 相交于A ,B 两点,抛物线C 在点A 和点B 处的切线相交于点Q ,直线A Q ,B Q 与x 轴分别相交于点E ,F .(1)写出抛物线C 的焦点坐标和准线方程; (2)求证:点Q 在直线y =-m 上;(3)判断是否存在点P ,使得四边形PE Q F 为矩形?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)焦点坐标为(0,1),准线方程为y =-1. (2)证明:由题意知直线l 的斜率存在,故设l 的方程为y =kx +m . 由方程组⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0,由题意,得Δ=16k 2+16m >0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4m , 所以抛物线在点A 处的切线方程为y -14x 21=12x 1(x -x 1),化简,得y =12x 1x -14x 21,①同理,抛物线在点B 处的切线方程为y =12x 2x -14x 22.②联立方程①②,得12x 1x -14x 21=12x 2x -14x 22,即12(x 1-x 2)x =14(x 1-x 2)(x 1+x 2),因为x 1≠x 2,所以x =12(x 1+x 2), 代入①,得y =14x 1x 2=-m ,所以点Q ⎝⎛⎭⎪⎫x 1+x 22,-m ,即Q(2k ,-m ).所以点Q 在直线y =-m 上.(3)假设存在点P ,使得四边形PE Q F 为矩形, 由四边形PE Q F 为矩形,得E Q ⊥F Q ,即A Q ⊥B Q , 所以k A Q ·k B Q =-1,即12x 1·12x 2=-1.由(2),得14x 1x 2=14(-4m )=-1,解得m =1.所以P (0,1).以下只要验证此时的四边形PE Q F 为平行四边形即可.在①中,令y =0,得E ⎝ ⎛⎭⎪⎫12x 1,0.同理得F ⎝ ⎛⎭⎪⎫12x 2,0.所以直线EP 的斜率为k EP =1-00-12x 1=-2x 1, 直线F Q 的斜率k F Q =0--112x 2-x 1+x 22=-2x 1,所以k EP =k F Q ,即EP ∥F Q. 同理PF ∥E Q.所以四边形PE Q F 为平行四边形.综上所述,存在点P (0,1),使得四边形PE Q F 为矩形. 命题点一 椭圆1.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23 B.12C.13D.14解析:选D 如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1.由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1,故|AB |=a +1+1=a +2,tan ∠PAB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14.2.(2018·浙江高考)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP ―→=2PB ―→,则当m =________时,点B 橫坐标的绝对值最大.解析:设A (x 1,y 1),B (x 2,y 2),由AP ―→=2PB ―→,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-1,即x 1=-2x 2,y 1=3-2y 2.因为点A ,B 在椭圆上,所以⎩⎪⎨⎪⎧4x 224+3-2y 22=m ,x224+y 22=m ,解得y 2=14m +34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4,所以当m =5时,点B 横坐标的绝对值最大. 答案:53.(2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 解:(1)由已知得F (1,0),l 的方程为x =1. 则点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22. 又M (2,0),所以直线AM 的方程为y =-22x +2或y =22x -2, 即x +2y -2=0或x -2y -2=0.(2)证明:当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得k MA +k MB =2kx 1x 2-3k x 1+x 2+4kx 1-2x 2-2.将y =k (x -1)代入x 22+y 2=1, 得(2k 2+1)x 2-4k 2x +2k 2-2=0, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0. 从而k MA +k MB =0, 故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB 成立.4.(2018·天津高考)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A 的坐标为(b,0),且|FB |·|AB |=6 2. (1)求椭圆的方程.(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q ,若|A Q||P Q|=524sin ∠AO Q(O 为原点),求k 的值. 解:(1)设椭圆的焦距为2c ,由已知有c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .①由已知可得|FB |=a ,|AB |=2b , 又|FB |·|AB |=62,可得ab =6.② 联立①②解得a =3,b =2. 所以椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故|P Q|sin ∠AO Q =y 1-y 2.又因为|A Q|=y 2sin ∠OAB ,而∠OAB =π4,所以|A Q|=2y 2.由|A Q||P Q|=524sin ∠AO Q ,可得5y 1=9y 2. 由方程组⎩⎪⎨⎪⎧y =kx ,x 29+y24=1消去x ,可得y 1=6k 9k 2+4.易知直线AB 的方程为x +y -2=0, 由方程组⎩⎪⎨⎪⎧y =kx ,x +y -2=0消去x ,可得y 2=2kk +1. 由5y 1=9y 2,可得5(k +1)=39k 2+4,两边平方, 整理得56k 2-50k +11=0,解得k =12或k =1128.所以k 的值为12或1128.5.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ―→+FA ―→+FB ―→=0.证明:|FA ―→|,|FP ―→|,|FB ―→|成等差数列,并求该数列的公差.解:(1)证明:设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP ―→|=32, 于是|FA ―→|=x 1-12+y 21= x 1-12+3⎝ ⎛⎭⎪⎫1-x 214 =2-x 12.同理|FB ―→|=2-x 22.所以|FA ―→|+|FB ―→|=4-12(x 1+x 2)=3.故2|FP ―→|=|FA ―→|+|FB ―→|,即|FA ―→|,|FP ―→|,|FB ―→|成等差数列.设该数列的公差为d ,则2|d |=|FB ―→|-|FA ―→|=12|x 1-x 2|=12x 1+x 22-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.命题点二 双曲线1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 解析:选A ∵e =c a =a 2+b 2a=3,∴a 2+b 2=3a 2,∴b =2a . ∴渐近线方程为y =±2x .2.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A. 5 B .2 C. 3D. 2解析:选C 法一:不妨设一条渐近线的方程为y =b ax ,则F 2到y =b ax 的距离d =|bc |a 2+b 2=b .在Rt △F 2PO 中,|F 2O |=c , 所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中, 根据余弦定理得cos ∠POF 1=a 2+c 2-6a22ac=-cos ∠POF 2=-a c,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =c a= 3.法二:如图,过点F 1向OP 的反向延长线作垂线,垂足为P ′,连接P ′F 2,由题意可知,四边形PF 1P ′F 2为平行四边形,且△PP ′F 2是直角三角形.因为|F 2P |=b ,|F 2O |=c ,所以|OP |=a .又|PF 1|=6a =|F 2P ′|,|PP ′|=2a ,所以|F 2P |=2a =b ,所以c =a 2+b 2=3a ,所以e =c a= 3.3.(2018·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1C.x 23-y 29=1 D.x 29-y 23=1解析:选C 法一:如图,不妨设A 在B 的上方,则A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a . 又双曲线的一条渐近线为bx -ay =0,则d 1+d 2=bc -b 2+bc +b 2a 2+b 2=2bcc =2b=6,所以b =3.又由e =ca=2,知a 2+b 2=4a 2,所以a = 3.所以双曲线的方程为x 23-y 29=1.法二:由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以c a =2,所以a 2+b 2a 2=4,所以a 2+9a2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1.4.(2018·全国卷Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A.32 B .3 C .2 3D .4解析:选B 法一:由已知得双曲线的两条渐近线方程为y =±13x .设两条渐近线的夹角为2α,则有tan α=13=33,所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt △ONF 中,|OF |=2,则|ON |= 3.在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan 60°=3.法二:因为双曲线x 23-y 2=1的渐近线方程为y =±33x ,所以∠MON =60°.不妨设过点F 的直线与直线y =33x 交于点M ,由△OMN 为直角三角形,不妨设∠OMN =90°,则∠MFO =60°,又直线MN 过点F (2,0),所以直线MN 的方程为y =-3(x -2),由⎩⎪⎨⎪⎧y =-3x -2,y =33x ,得⎩⎪⎨⎪⎧x =32,y =32,所以M ⎝ ⎛⎭⎪⎫32,32,所以|OM |=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322=3, 所以|MN |=3|OM |=3.5.(2018·江苏高考)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c,0)到一条渐近线的距离为32c ,则其离心率的值为________. 解析:∵双曲线的渐近线方程为bx ±ay =0, ∴焦点F (c,0)到渐近线的距离d =|bc ±0|b 2+a 2=b ,∴b =32c ,∴a =c 2-b 2=12c , ∴e =c a=2. 答案:26.(2018·北京高考)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为________.解析:法一:如图,∵双曲线N 的渐近线方程为y =±nmx ,∴n m=tan 60°=3,∴双曲线N 的离心率e 1满足e 21=1+n 2m2=4,∴e 1=2.由⎩⎪⎨⎪⎧y =3x ,x 2a 2+y 2b2=1,得x 2=a 2b 23a 2+b2.设D 点的横坐标为x ,由正六边形的性质得|ED |=2x =c ,∴4x 2=c 2. ∴4a 2b 23a 2+b2=a 2-b 2,得3a 4-6a 2b 2-b 4=0, ∴3-6b 2a2-⎝ ⎛⎭⎪⎫b 2a 22=0,解得b2a2=23-3.∴椭圆M 的离心率e 2=1-b 2a2=4-23=3-1. 法二:∵双曲线N 的渐近线方程为y =±n mx ,∴n m=tan 60°= 3.又c 1=m 2+n 2=2m , ∴双曲线N 的离心率为c 1m=2.如图,连接EC ,由题意知,F ,C 为椭圆M 的两焦点,设正六边形边长为1,则|FC |=2c 2=2,即c 2=1.又E 为椭圆M 上一点, 则|EF |+|EC |=2a , 即1+3=2a ,a =1+32.∴椭圆M 的离心率为c 2a =21+3=3-1.答案:3-1 2 命题点三 抛物线1.(2017·全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:选A 抛物线C :y 2=4x 的焦点为F (1,0), 由题意可知l 1,l 2的斜率存在且不为0. 不妨设直线l 1的斜率为k ,则l 1:y =k (x -1),l 2:y =-1k(x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =k x -1消去y ,得k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=2k 2+4k 2=2+4k2,由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k2.同理得|DE |=4+4k 2,∴|AB |+|DE |=4+4k2+4+4k 2=8+4⎝ ⎛⎭⎪⎫1k 2+k 2≥8+8=16,当且仅当1k2=k 2,即k =±1时取等号,故|AB |+|DE |的最小值为16.2.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM ―→·FN ―→=( )A .5B .6C .7D .8解析:选D 由题意知直线MN 的方程为y =23(x +2),联立⎩⎪⎨⎪⎧y =23x +2,y 2=4x ,解得⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4.不妨设M (1,2),N (4,4). ∵抛物线焦点为F (1,0), ∴FM ―→=(0,2),FN ―→=(3,4). ∴FM ―→·FN ―→=0×3+2×4=8.3.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.解析:法一:设点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2),∴k =y 1-y 2x 1-x 2=4y 1+y 2. 设AB 中点为M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足分别为A ′,B ′,则|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 中点,。

高考数学一轮复习总教案:9.5 圆锥曲线综合问题

高考数学一轮复习总教案:9.5 圆锥曲线综合问题

9.5 圆锥曲线综合问题典例精析题型一 求轨迹方程【例1】已知抛物线的方程为x2=2y ,F 是抛物线的焦点,过点F 的直线l 与抛物线交于A 、B 两点,分别过点A 、B 作抛物线的两条切线l1和l2,记l1和l2交于点M.(1)求证:l1⊥l2;(2)求点M 的轨迹方程.【解析】(1)依题意,直线l 的斜率存在,设直线l 的方程为y =kx +12. 联立⎪⎪⎩⎪⎪⎨⎧=+=22121x y kx y 消去y 整理得x2-2kx -1=0.设A 的坐标为(x1,y1),B 的坐标为(x2,y2),则有x1x2=-1,将抛物线方程改写为y =12x2,求导得y′=x. 所以过点A 的切线l1的斜率是k1=x1,过点B 的切线l2的斜率是k2=x2. 因为k1k2=x1x2=-1,所以l1⊥l2.(2)直线l1的方程为y -y1=k1(x -x1),即y -x212=x1(x -x1). 同理直线l2的方程为y -x222=x2(x -x2). 联立这两个方程消去y 得x212-x222=x2(x -x2)-x1(x -x1), 整理得(x1-x2)(x -x1+x22)=0, 注意到x1≠x2,所以x =x1+x22. 此时y =x212+x1(x -x1)=x212+x1(x1+x22-x1)=x1x22=-12. 由(1)知x1+x2=2k ,所以x =x1+x22=k ∈R. 所以点M 的轨迹方程是y =-12. 【点拨】直接法是求轨迹方程最重要的方法之一,本题用的就是直接法.要注意“求轨迹方程”和“求轨迹”是两个不同概念,“求轨迹”除了首先要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种基本曲线方程和它的形态的对应关系了如指掌.【变式训练1】已知△ABC 的顶点为A(-5,0),B(5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( )A.x29-y216=1B.x216-y29=1 C.x29-y216=1(x >3)D.x216-y29=1(x >4)【解析】如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,所以|CA|-|CB|=8-2=6,根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x >3),故选C. 题型二 圆锥曲线的有关最值 【例2】已知菱形ABCD 的顶点A 、C 在椭圆x2+3y2=4上,对角线BD 所在直线的斜率为1.当∠ABC =60°时,求菱形ABCD 面积的最大值.【解析】因为四边形ABCD 为菱形,所以AC ⊥BD.于是可设直线AC 的方程为y =-x +n.由⎩⎨⎧+-==+n x y y x ,4322得4x2-6nx +3n2-4=0.因为A ,C 在椭圆上,所以Δ=-12n2+64>0,解得-433<n <433. 设A ,C 两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n 2,x1x2=3n2-44, y1=-x1+n ,y2=-x2+n.所以y1+y2=n 2. 因为四边形ABCD 为菱形,且∠ABC =60°,所以|AB|=|BC|=|CA|.所以菱形ABCD 的面积S =32|AC|2. 又|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S =34(-3n2+16) (-433<n <433). 所以当n =0时,菱形ABCD 的面积取得最大值4 3.【点拨】建立“目标函数”,借助代数方法求最值,要特别注意自变量的取值范围.在考试中很多考生没有利用判别式求出n 的取值范围,虽然也能得出答案,但是得分损失不少.【变式训练2】已知抛物线y =x2-1上有一定点B(-1,0)和两个动点P 、Q ,若BP ⊥PQ ,则点Q 横坐标的取值范围是 .【解析】如图,B(-1,0),设P(xP ,x2P -1),Q(xQ ,x2Q -1),由kBP ·kPQ =-1,得x2P -1xP +1·x2Q -x2P xQ -xP=-1. 所以xQ =-xP -1xP -1=-(xP -1)-1xP -1-1. 因为|xP -1+1xP -1|≥2,所以xQ≥1或xQ≤-3. 题型三 求参数的取值范围及最值的综合题【例3】(2019浙江模拟)已知m >1,直线l :x -my -m22=0,椭圆C :x2m2+y2=1,F1,F2分别为椭圆C 的左、右焦点.(1)当直线l 过右焦点F2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF1F2,△BF1F2的重心分别为G ,H.若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.【解析】(1)因为直线l :x -my -m22=0经过F2(m2-1,0), 所以m2-1=m22,解得m2=2, 又因为m >1,所以m = 2.故直线l 的方程为x -2y -1=0.(2)A(x1,y1),B(x2,y2),由⎪⎪⎩⎪⎪⎨⎧=++=1,22222y m x m my x 消去x 得2y2+my +m24-1=0, 则由Δ=m2-8(m24-1)=-m2+8>0知m2<8, 且有y1+y2=-m 2,y1y2=m28-12. 由于F1(-c,0),F2(c,0),故O 为F1F2的中点,由AG =2GO , BH =2HO ,得G(x13,y13),H(x23,y23), |GH|2=(x1-x2)29+(y1-y2)29. 设M 是GH 的中点,则M(x1+x26,y1+y26), 由题意可知,2|MO|<|GH|,即4[(x1+x26)2+(y1+y26)2]<(x1-x2)29+(y1-y2)29, 即x1x2+y1y2<0.而x1x2+y1y2=(my1+m22)(my2+m22)+y1y2=(m2+1)(m28-12). 所以m28-12<0,即m2<4. 又因为m >1且Δ>0,所以1<m <2.所以m 的取值范围是(1,2).【点拨】本题主要考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.【变式训练3】若双曲线x2-ay2=1的右支上存在三点A 、B 、C 使△ABC 为正三角形,其中一个顶点A 与双曲线右顶点重合,则a 的取值范围为 .【解析】设B(m ,m2-1a ),则C(m ,-m2-1a)(m >1), 又A(1,0),由AB =BC 得(m -1)2+m2-1a=(2m2-1a )2, 所以a =3m +1m -1=3(1+2m -1)>3,即a 的取值范围为(3,+∞). 总结提高1.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标法”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、待定系数法.2.最值问题的代数解法,是从动态角度去研究解析几何中的数学问题的主要内容,其解法是设变量、建立目标函数、转化为求函数的最值.其中,自变量的取值范围由直线和圆锥曲线的位置关系(即判别式与0的关系)确定.3.范围问题,主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围.其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.。

高三数学复习教案:高考数学圆锥曲线复习教案

高三数学复习教案:高考数学圆锥曲线复习教案

高三数学复习教案:高考数学圆锥曲线复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。

因此小编在此为您编辑了此文:高三数学复习教案:高考数学圆锥曲线复习教案希望能为您的提供到帮助。

本文题目:高三数学复习教案:高考数学圆锥曲线复习教案1.已知直线L:的右焦点F,且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E。

(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。

(文)若为x轴上一点,求证:2.已知圆定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。

(1)求曲线E的方程;(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足的取值范围。

3.设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且⑴求椭圆C的离心率;⑵若过A、Q、F三点的圆恰好与直线l:相切,求椭圆C的方程.4.设椭圆的离心率为e=(1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.(2)求b为何值时,过圆x2+y2=t2上一点M(2,)处的切线交椭圆于Q1、Q2两点,而且OQ1OQ2.5.已知曲线上任意一点P到两个定点F1(- ,0)和F2( ,0)的距离之和为4.(1)求曲线的方程;(2)设过(0,-2)的直线与曲线交于C、D两点,且为坐标原点),求直线的方程.6.已知椭圆的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n). (Ⅰ)当m+n0时,求椭圆离心率的范围;(Ⅱ)直线AB与⊙P能否相切?证明你的结论.7.有如下结论:圆上一点处的切线方程为,类比也有结论:椭圆处的切线方程为,过椭圆C:的右准线l上任意一点M引椭圆C的两条切线,切点为A、B.(1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积8.已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.9.椭圆的对称中心在坐标原点,一个顶点为,右焦点与点的距离为。

陈美珍圆锥曲线复习课教案

陈美珍圆锥曲线复习课教案

陈美珍圆锥曲线复习课教案一、教学目标1. 回顾圆锥曲线的定义、性质和图形,加深对圆锥曲线的基本概念的理解。

2. 巩固圆锥曲线的相关公式和定理,提高解题能力。

3. 通过复习,培养学生对圆锥曲线的空间想象能力和直观感知能力。

二、教学内容1. 圆锥曲线的定义和性质2. 圆锥曲线的标准方程3. 圆锥曲线的相关公式和定理4. 圆锥曲线的图形特点5. 圆锥曲线在实际问题中的应用三、教学重点与难点1. 圆锥曲线的定义和性质2. 圆锥曲线的标准方程及其推导3. 圆锥曲线的相关公式和定理的应用4. 圆锥曲线的图形特点的识别和运用四、教学方法1. 采用讲授法,讲解圆锥曲线的定义、性质、标准方程和相关公式定理。

2. 利用多媒体展示圆锥曲线的图形,增强学生的空间想象能力。

3. 通过例题解析,引导学生运用圆锥曲线的性质和公式定理解决实际问题。

4. 组织学生进行小组讨论和交流,分享学习心得和解题经验。

五、教学过程1. 导入:简要回顾圆锥曲线的定义和性质,激发学生的学习兴趣。

2. 新课:讲解圆锥曲线的标准方程及其推导,强调相关公式和定理。

3. 案例分析:分析圆锥曲线在实际问题中的应用,引导学生运用所学知识解决实际问题。

4. 课堂练习:布置具有代表性的练习题,巩固所学知识。

5. 总结:对本节课的内容进行总结,强调圆锥曲线的图形特点和应用。

6. 作业布置:布置课后作业,巩固所学知识。

六、教学评估1. 课堂问答:通过提问的方式,了解学生对圆锥曲线基本概念的理解程度。

2. 练习题解答:检查学生对圆锥曲线相关公式和定理的应用能力。

3. 小组讨论:观察学生在小组讨论中的参与程度,了解他们对圆锥曲线图形特点的认识。

七、课后作业1. 复习圆锥曲线的定义、性质、标准方程和相关公式定理。

2. 完成课后练习题,包括简单应用题和综合题。

3. 准备课堂小测验,测试自己对圆锥曲线的掌握情况。

八、教学反思1. 总结本节课的教学效果,反思教学方法是否适合学生的需求。

高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(教师版) 新人教版

高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(教师版) 新人教版

【考纲解读】1.了解圆锥曲线的简单应用,理解数形结合的思想. 2.领会转化的数学思想,提高综合解题能力.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】1.圆锥曲线中的最值问题2.圆锥曲线中的面积问题3.圆锥曲线中的定点或定值问题 【例题精析】考点一 圆锥曲线中的最值与面积问题 例1. (2012年高考重庆卷文科21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且△12AB B 是面积为4的直角三角形。

(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B 作直线交椭圆于,P Q ,22PB QB ,求△2PB Q 的面积【答案】(Ⅰ)220x +24y =116102PB Q 的面积121211610||||29S B B y y =-= 当2m =- 时,同理可得(或由对称性可得)2PB Q 的面积16109S =综上所述,2PB Q 的面积为16109. 【名师点睛】本小题主要考查直线与椭圆,考查了圆锥曲线中的面积问题,熟练基本知识是解决本类问题的关键. 【变式训练】1.(2012年高考安徽卷文科20)(本小题满分13分)如图,21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求,a b 的值.法二:设2BF m =;则12BF a m =-,则在12BFF ∆中,由余弦定理可得考点二定点(定值)问题例2.(2012年高考福建卷文科21)(本小题满分12分)如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上。

高三数学一轮复习圆锥曲线的综合问题

高三数学一轮复习圆锥曲线的综合问题

备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2

-y0=λy1

高考数学一轮复习 第九章 平面解析几何 10 第10讲 圆锥曲线的综合问题教学案

高考数学一轮复习 第九章 平面解析几何 10 第10讲 圆锥曲线的综合问题教学案

第10讲 圆锥曲线的综合问题圆锥曲线中的定点、定值问题(2020·杭州七校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,焦点与短轴的两顶点的连线与圆x 2+y 2=34相切.(1)求椭圆C 的方程;(2)过点(1,0)的直线l 与C 相交于A ,B 两点,在x 轴上是否存在点N ,使得NA →·NB →为定值?如果有,求出点N 的坐标及定值;如果没有,请说明理由.【解】 (1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,焦点与短轴的两顶点的连线与圆x 2+y 2=34相切,所以⎝ ⎛e =c a =12bc =32 b 2+c 2a 2=b 2+c2,解得c 2=1,a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设其方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),⎩⎪⎨⎪⎧3x 2+4y 2=12y =k (x -1)⇒(3+4k 2)x 2-8k 2x +4k 2-12=0, 则Δ>0,⎩⎪⎨⎪⎧x 1+x 2=8k24k 2+3x 1x 2=4k 2-124k 2+3, 若存在定点N (m ,0)满足条件, 则有NA →·NB →=(x 1-m )(x 2-m )+y 1y 2 =x 1x 2+m 2-m (x 1+x 2)+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(m +k 2)(x 1+x 2)+k 2+m 2=(1+k 2)(4k 2-12)4k 2+3-(m +k 2)8k 24k 2+3+k 2+m 2=(4m 2-8m -5)k 2+3m 2-124k 2+3. 如果要使上式为定值,则必须有4m 2-8m -53m 2-12=43⇒m =118,验证当直线l 斜率不存在时,也符合.故存在点N ⎝⎛⎭⎪⎫118,0满足NA →·NB →=-13564.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.(2020·杭州、宁波二市三校联考)已知抛物线C :y 2=2px (p >0)过点M (m ,2),其焦点为F ′,且|MF ′|=2.(1)求抛物线C 的方程;(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆F :(x -1)2+y 2=1相切,切点分别为A ,B ,求证:直线AB 过定点.解:(1)抛物线C 的准线方程为x =-p2,所以|MF ′|=m +p2=2,又4=2pm ,即4=2p ⎝ ⎛⎭⎪⎫2-p 2,所以p 2-4p +4=0,所以p =2, 所以抛物线C 的方程为y 2=4x .(2)证明:设点E (0,t )(t ≠0),由已知切线不为y 轴,设直线EA :y =kx +t ,联立⎩⎪⎨⎪⎧y =kx +t y 2=4x,消去y ,可得k 2x 2+(2kt -4)x +t 2=0,① 因为直线EA 与抛物线C 相切,所以Δ=(2kt -4)2-4k 2t 2=0,即kt =1,代入①可得1t 2x 2-2x +t 2=0,所以x =t 2,即A (t 2,2t ).设切点B (x 0,y 0),则由几何性质可以判断点O ,B 关于直线EF :y =-tx +t 对称,则⎩⎪⎨⎪⎧y 0x 0×t -00-1=-1y 02=-t ·x 02+t ,解得⎩⎪⎨⎪⎧x 0=2t 2t 2+1y 0=2t t 2+1,即B ⎝ ⎛⎭⎪⎫2t2t 2+1,2t t 2+1.直线AF 的斜率为k AF =2tt 2-1(t ≠±1), 直线BF 的斜率为k BF =2tt 2+1-02t 2t 2+1-1=2tt 2-1(t ≠±1),所以k AF =k BF ,即A ,B ,F 三点共线.当t =±1时,A (1,±2),B (1,±1),此时A ,B ,F 三点共线. 所以直线AB 过定点F (1,0).圆锥曲线中的范围、最值问题(高频考点)圆锥曲线中的范围(最值)问题是高考命题的热点,多以解答题的第二问呈现,试题难度较大.主要命题角度有:(1)建立目标函数求范围、最值; (2)利用基本不等式求最值; (3)利用判别式构造不等关系求范围. 角度一 建立目标函数求范围、最值如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.【解】 (1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +32(k 2+1). 因为|PA |= 1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|PQ |= 1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1, 所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,|PA |·|PQ |取得最大值2716.角度二 利用基本不等式求最值(2020·浙江省名校协作体联考)若椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成了3∶1的两段.(1)求椭圆的离心率;(2)过点C (-1,0)的直线l 交椭圆于不同的两点A ,B ,且AC →=2CB →,当△AOB 的面积最大时,求直线l 的方程.【解】 (1)由题意知,c +b2=3⎝ ⎛⎭⎪⎫c -b 2,所以b =c ,a 2=2b 2,所以e =ca=1-⎝ ⎛⎭⎪⎫b a 2=22. (2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =ky -1(k ≠0), 因为AC →=2CB →,所以(-1-x 1,-y 1)=2(x 2+1,y 2), 即2y 2+y 1=0,①由(1)知,a 2=2b 2,所以椭圆方程为x 2+2y 2=2b 2.由⎩⎪⎨⎪⎧x =ky -1x 2+2y 2=2b 2,消去x ,得(k 2+2)y 2-2ky +1-2b 2=0, 所以y 1+y 2=2kk 2+2,② 由①②知,y 2=-2k k 2+2,y 1=4kk 2+2, 因为S △AOB =12|y 1|+12|y 2|,所以S △AOB =3·|k |k 2+2=3·12|k |+|k |≤32·12|k |·|k |=324,当且仅当|k |2=2,即k =±2时取等号, 此时直线l 的方程为x =2y -1或x =-2y -1. 角度三 利用判别式构造不等关系求范围已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,中心在原点.若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的标准方程;(2)设直线y =kx +m (k ≠0)与椭圆相交于不同的两点M ,N .当|AM |=|AN |时,求m 的取值范围.【解】 (1)依题意可设椭圆方程为x 2a2+y 2=1,则右焦点F (a 2-1,0),由题设|a 2-1+22|2=3,解得a 2=3.所以所求椭圆的方程为x 23+y 2=1.(2)设P (x P ,y P ),M (x M ,y M ),N (x N ,y N ),P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1, 得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 因为直线与椭圆相交,所以Δ=(6mk )2-4(3k 2+1)×3(m 2-1)>0⇒m 2<3k 2+1.① 所以x P =x M +x N2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk,又因为|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1.②把②代入①,得m 2<2m ,解得0<m <2; 由②得k 2=2m -13>0,解得m >12.综上,m 的取值范围是⎝ ⎛⎭⎪⎫12,2.范围、最值问题的求解策略(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.1.如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.解:(1)由题意可得,抛物线上的点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4xx =sy +1,消去x 得y 2-4sy -4=0,故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t .从而得直线FN :y =-t 2-12t (x-1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得2t t 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1.所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).2.(2020·杭州中学高三月考)如图,以椭圆x 2a 2+y 2=1的右焦点F 2为圆心,1-c 为半径作圆F 2(其中c 为已知椭圆的半焦距),过椭圆上一点P 作此圆的切线,切点为T .(1)若a =54,P 为椭圆的右顶点,求切线长|PT |;(2)设圆F 2与x 轴的右交点为Q ,过点Q 作斜率为k (k >0)的直线l 与椭圆相交于A ,B 两点,若OA ⊥OB ,且|PT |≥32(a -c )恒成立,求直线l 被圆F 2所截得弦长的最大值. 解:(1)由a =54得c =34,则当P 为椭圆的右顶点时|PF 2|=a -c =12,故此时的切线长|PT |= |PF 2|2-(1-c )2=34. (2)当|PF 2|取得最小值时|PT |取得最小值,而|PF 2|min =a -c ,由|PT |≥32(a -c )恒成立,得(a -c )2-(1-c )2≥32(a -c ),则34≤c <1. 由题意知Q 点的坐标为(1,0),则直线l 的方程为y =k (x -1),代入x 2a2+y 2=1,得(a 2k 2+1)x 2-2a 2k 2x +a 2k 2-a 2=0, 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=2a 2k 2a 2k 2+1,x 1x 2=a 2k 2-a2a 2k 2+1,可得y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=k 2(1-a 2)a 2k 2+1,又OA ⊥OB ,则x 1x 2+y 1y 2=k 2-a 2a 2k 2+1=0⇒k =a ,可得直线l 的方程为ax -y -a =0,圆心F 2(c ,0)到直线l 的距离d =|ac -a |a 2+1,半径r =1-c ,则直线l 被圆F 2所截得弦长s =2(1-c )2-a 2(1-c )2a 2+1=2(1-c )c 2+2,设1-c =t ,则0<t ≤14,又1s =123t 2-2t +1=12 3⎝ ⎛⎭⎪⎫1t -132+23, 则当t =14时1s 的最小值为412,即当c =34时s 的最大值为24141.圆锥曲线中的探索性问题(2020·温州中学高三模拟)设直线l 与抛物线x 2=2y 交于A ,B 两点,与椭圆x 24+y 23=1交于C ,D 两点,直线OA ,OB ,OC ,OD (O 为坐标原点)的斜率分别为k 1,k 2,k 3,k 4,若OA ⊥OB .(1)是否存在实数t ,满足k 1+k 2=t (k 3+k 4),并说明理由; (2)求△OCD 面积的最大值.【解】 设直线l 方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4). 联立y =kx +b 和x 2=2y ,得x 2-2kx -2b =0,则x 1+x 2=2k ,x 1x 2=-2b ,Δ=4k 2+8b >0. 由OA ⊥OB ,所以x 1x 2+y 1y 2=0,得b =2. 联立y =kx +2和3x 2+4y 2=12,得 (3+4k 2)x 2+16kx +4=0,所以x 3+x 4=-16k 3+4k 2,x 3x 4=43+4k 2.由Δ2=192k 2-48>0,得k 2>14.(1)因为k 1+k 2=y 1x 1+y 2x 2=k ,k 3+k 4=y 3x 3+y 4x 4=-6k ,所以k 1+k 2k 3+k 4=-16. 即存在实数t =-16,满足k 1+k 2=-16(k 3+k 4).(2)根据弦长公式|CD |=1+k 2|x 3-x 4|,得 |CD |=43·1+k 2·4k 2-13+4k2,根据点O 到直线CD 的距离公式,得d =21+k2,所以S △OCD =12|CD |·d =43·4k 2-13+4k2,设4k 2-1=t >0,则S △OCD =43t t 2+4≤3,所以当t =2,即k =±52时,S △OCD 的最大值为 3.探索性问题的求解策略(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.(2020·温州十五校联合体联考)如图,已知抛物线C 1:y 2=2px (p >0),直线l 与抛物线C 1相交于A ,B 两点,且当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,有|AB |=13.(1)求抛物线C 1的方程; (2)已知圆C 2:(x -1)2+y 2=116,是否存在倾斜角不为90°的直线l ,使得线段AB 被圆C 2截成三等分?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,直线l 的方程为y =3(x-p 2),联立方程组⎩⎪⎨⎪⎧y =3(x -p 2)y 2=2px,即3x 2-5px +34p 2=0,所以|AB |=5p 3+p =13,即p =18,所以抛物线C 1的方程是y 2=14x .(2)假设存在直线l ,使得线段AB 被圆C 2截成三等分,令直线l 交圆C 2于C ,D ,设直线l 的方程为x =my +b ,A (x 1,y 1),B (x 2,y 2),由题意知,线段AB 与线段CD 的中点重合且有|AB |=3|CD |,联立方程组⎩⎪⎨⎪⎧4y 2=x x =my +b,即4y 2-my -b =0,所以y 1+y 2=m 4,y 1y 2=-b 4,x 1+x 2=m 24+2b ,所以线段AB 的中点坐标M 为(m 28+b ,m8),即线段CD的中点为(m 28+b ,m8),又圆C 2的圆心为C 2(1,0),所以kMC 2=m8m28+b -1=-m ,所以m 2+8b -7=0,即b =78-m28,又因为|AB |=1+m 2·m 216+b =141+m 2·14-m 2,因为圆心C 2(1,0)到直线l 的距离d =|1-b |1+m2,圆C 2的半径为14, 所以3|CD |=6116-(1-b )21+m 2=343-m 2(m 2<3), 所以m 4-22m 2+13=0,即m 2=11±63, 所以m =±11-63,b =33-24,故直线l 的方程为x =±11-63y +33-24. [基础题组练]1.已知椭圆E 的中心在坐标原点,左、右焦点F 1,F 2在x 轴上,离心率为12,在其上有一动点A ,A 到点F 1距离的最小值是1.过A ,F 1作一个平行四边形,顶点A ,B ,C ,D 都在椭圆E 上,如图所示.(1)求椭圆E 的方程;(2)判断▱ABCD 能否为菱形,并说明理由.解:(1)依题,令椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),c 2=a 2-b 2(c >0),所以离心率e =c a =12,即a =2c .令点A 的坐标为(x 0,y 0),所以x 20a 2+y 20b2=1,焦点F 1(-c ,0),即|AF 1|=(x 0+c )2+y 20 =x 20+2cx 0+c 2+b 2-b 2x 20a2=c 2a 2x 20+2cx 0+a 2=|c ax 0+a |, 因为x 0∈[-a ,a ],所以当x 0=-a 时,|AF 1|min =a -c , 由题a -c =1,结合上述可知a =2,c =1,所以b 2=3, 于是椭圆E 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),直线AB 不能平行于x 轴,所以令直线AB 的方程为x =my -1,设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧3x 2+4y 2-12=0x =my -1,得(3m 2+4)y 2-6my -9=0, 所以y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4.连接OA ,OB ,若▱ABCD 是菱形,则OA ⊥OB ,即OA →·OB →=0,于是有x 1x 2+y 1y 2=0,又x 1x 2=(my 1-1)(my 2-1)=m 2y 1y 2-m (y 1+y 2)+1,所以有(m 2+1)y 1y 2-m (y 1+y 2)+1=0,得到-12m 2-53m 2+4=0,可见m 没有实数解, 故▱ABCD 不能是菱形.2.(2020·金华十校第二期调研)已知抛物线C :y =x 2,点P (0,2),A ,B 是抛物线上两个动点,点P 到直线AB 的距离为1.(1)若直线AB 的倾斜角为π3,求直线AB 的方程;(2)求|AB |的最小值. 解:(1)设直线AB 的方程:y =3x +m ,则|m -2|1+()32=1,所以m =0或m =4,所以直线AB 的方程为y =3x 或y =3x +4. (2)设直线AB 的方程为y =kx +m ,则|m -2|1+k2=1,所以k 2+1=(m -2)2.由⎩⎪⎨⎪⎧y =kx +m y =x 2,得x 2-kx -m =0,所以x 1+x 2=k ,x 1x 2=-m ,所以|AB |2=()1+k 2[()x 1+x 22-4x 1x 2]=()1+k 2()k 2+4m =()m -22()m 2+3,记f (m )=()m -22(m 2+3),所以f ′(m )=2(m -2)(2m 2-2m +3),又k 2+1=()m -22≥1,所以m ≤1或m ≥3,当m ∈(]-∞,1时,f ′(m )<0,f (m )单调递减, 当m ∈[)3,+∞时,f ′(m )>0,f (m )单调递增,f (m )min =f (1)=4,所以|AB |min =2.3.(2020·宁波市高考模拟)已知椭圆方程为x 24+y 2=1,圆C :(x -1)2+y 2=r 2.(1)求椭圆上动点P 与圆心C 距离的最小值;(2)如图,直线l 与椭圆相交于A ,B 两点,且与圆C 相切于点M ,若满足M 为线段AB 中点的直线l 有4条,求半径r 的取值范围.解:(1)设P (x ,y ),|PC |=(x -1)2+y 2=34x 2-2x +2=34(x -43)2+23,由-2≤x ≤2,当x =43时,|PC |min =63.(2)当直线AB 斜率不存在且与圆C 相切时,M 在x 轴上,故满足条件的直线有2条;当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 21=1x224+y 22=1,整理得y 1-y 2x 1-x 2=-14×x 1+x2y 1+y 2,则k AB =-x 04y 0,k MC =y 0x 0-1,k MC ×k AB =-1,则k MC ×k AB =-x 04y 0×y 0x 0-1=-1,解得x 0=43,由M 在椭圆内部,则x 204+y 20<1,解得y 20<59,由r 2=(x 0-1)2+y 20=19+y 20,所以19<r 2<23,解得13<r <63.所以半径r 的取值范围为(13,63) .4.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称. (1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解:(1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.①将线段AB 的中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 5.(2020·湘中名校联考)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ,若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2. 所以a =2,b =1.(2)由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0),代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*)设点P 的坐标为(x P ,y P ), 因为直线l 过点B ,所以x =1是方程(*)的一个根.由根与系数的关系,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,所以点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0)得点Q 的坐标为(-k -1,-k 2-2k ). 所以AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).因为AP ⊥AQ ,所以AP →·AQ →=0, 即-2k2k 2+4[k -4(k +2)]=0. 因为k ≠0,所以k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意.故直线l 的方程为y =-83(x -1).6.(2020·学军中学高三模拟)已知椭圆x 2a2+y 2=1(a >1),过直线l :x =2上一点P 作椭圆的切线,切点为A ,当P 点在x 轴上时,切线PA 的斜率为±22. (1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值.解:(1)当P 点在x 轴上时,P (2,0),PA :y =±22(x -2),⎩⎪⎨⎪⎧y =±22(x -2)x2a 2+y 2=1⇒(1a 2+12)x 2-2x +1=0,Δ=0⇒a 2=2,椭圆方程为x 22+y 2=1.(2)设切线为y =kx +m ,设P (2,y 0),A (x 1,y 1),则⎩⎪⎨⎪⎧y =kx +m x 2+2y 2-2=0⇒(1+2k 2)x 2+4kmx +2m 2-2=0⇒Δ=0⇒m 2=2k 2+1, 且x 1=-2km 1+2k 2,y 1=m1+2k2,y 0=2k +m , 则|PO |=y 20+4,PO 的直线为y =y 02x ⇒A 到直线PO 距离d =|y 0x 1-2y 1|y 20+4,则S △POA =12|PO |·d =12|y 0x 1-2y 1|=12|(2k +m )-2km 1+2k 2-2m1+2k2| =|1+2k 2+km 1+2k 2m |=|k +m |=|k +1+2k 2|, 所以(S -k )2=1+2k 2⇒k 2+2Sk -S 2+1=0,Δ=8S 2-4≥0⇒S ≥22,此时k =±22,所以△POA 面积的最小值为22. [综合题组练]1.(2020·浙江高考冲刺卷)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),点F ,B 分别是椭圆的右焦点与上顶点,O 为坐标原点,记△OBF 的周长与面积分别为C 和S .(1)求CS的最小值; (2)如图,过点F 的直线l 交椭圆于P ,Q 两点,过点F 作l 的垂线,交直线x =3b 于点R ,当C S取最小值时,求|FR ||PQ |的最小值.解:(1)△OBF 的周长C =b 2+c 2+b +c .△OBF 的面积S =12bc .C S =b 2+c 2+b +c 12bc=2b 2+c 2+b +c bc ≥2·2bc +2bc bc =2+22,当且仅当b =c 时,CS的最小值为2+2 2. (2)由(1)得当且仅当b =c 时,CS的最小值为2+2 2.此时椭圆方程可化为x 22c 2+ y 2c2=1.依题意可得过点F 的直线l 的斜率不能为0,故设直线l 的方程为x =my +c .联立⎩⎪⎨⎪⎧x =my +c x 2+2y 2=2c 2,整理得(2+m 2)y 2+2mcy -c 2=0. y 1+y 2=-2mc 2+m 2,y 1y 2=-c 22+m 2,|PQ |=1+m2(y 1+y 2)2-4y 1y 2=1+m 2×8c 2(m 2+1)2+m 2=22c ×m 2+1m 2+2. 当m =0时,PQ 垂直横轴,FR 与横轴重合,此时|PQ |=2c ,|FR |=3b -c =2c ,|FR ||PQ |=2c 2c = 2.当m ≠0时,设直线FR :y =-m (x -c ),令x =3c 得R (3c ,-2mc ),|FR |=2c m 2+1, |FR ||PQ |=2c m 2+1×m 2+222c (m 2+1)=m 2+22m 2+1 =22(m 2+1+1m 2+1)>22×2=2, 综上所述:当且仅当m =0时,|FR ||PQ |取最小值为 2.2.(2020·杭州市第一次高考数学检测)设点A ,B 分别是x ,y 轴上的两个动点,AB =1.若AC →=λBA →(λ>0).(1)求点C 的轨迹Γ;(2)过点D 作轨迹Γ的两条切线,切点分别为P ,Q ,过点D 作直线m 交轨迹Γ于不同的两点E ,F ,交PQ 于点K ,问是否存在实数t ,使得1|DE |+1|DF |=t|DK |恒成立,并说明理由.解:(1)设A (a ,0),B (0,c ),C (x ,y ),则BA →=(a ,-c ),AC →=(x -a ,y ).由AB =1得a 2+c 2=1,所以⎩⎪⎨⎪⎧x -a =λa y =-λc,消去a ,c ,得点C 的轨迹Γ为x 2(λ+1)2+y 2λ2=1.(2)设点E ,F ,K 的横坐标分别为x E ,x F ,x K ,设点D (s ,t ),则直线PQ 的方程为s (λ+1)2x +tλ2y =1. 设直线m 的方程:y =kx +b ,所以t =ks +b .计算得x K =1-tλ2b s(λ+1)2+t λ2k .将直线m 代入椭圆方程,得⎝ ⎛⎭⎪⎫k 2λ2+1(λ+1)2x 2+2kb λ2x +b 2λ2-1=0,所以x E +x F =-2kbλ2(λ+1)2+k 2,x E x F =b 2-λ2λ2(λ+1)2+k 2,所以|DK ||DE |+|DK ||DF |=|x D -x K ||x D -x E |+|x D -x K ||x D -x F |=⎪⎪⎪⎪⎪⎪s -1-t λ2b s (λ+1)2+t λ2k ·|2x D -(x F +x E)||x 2D -x D (x F +xE )+xF x E|=2.验证当m 的斜率不存在时成立.故存在实数t =2,使得1|DE |+1|DF |=t|DK |恒成立.。

9.7 圆锥曲线的综合问题(试题部分) 高考数学(课标版,理科)复习教学案

9.7 圆锥曲线的综合问题(试题部分) 高考数学(课标版,理科)复习教学案

9.7 圆锥曲线的综合问题探考情 悟真题 【考情探究】考点内容解读5年考情预测热度考题示例 考向 关联考点 1.定值与定点问题 掌握与圆锥曲线有关的定值与定点问题2018课标Ⅰ,19,12分 定值问题 角平分线的性质, 斜率公式★★★2017课标Ⅰ,20,12分 定点问题 根与系数的关系、 斜率公式 2.最值与 范围问题 掌握与圆锥曲线有关的参数范围问题 2016课标Ⅱ,20,12分 范围问题 椭圆的几何性质★★★3.存在性问题了解并掌握与圆锥曲线有关的存在性问题2015课标Ⅱ,20,12分存在性问题根与系数的关系、 斜率公式★★☆ 分析解读 1.会处理动曲线(含直线)过定点的问题.2.会证明与曲线上的动点有关的定值问题.3.会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.4.能与其他知识交汇,从假设结论成立入手,通过推理论证解答存在性问题.5.本节在高考中围绕直线与圆锥曲线的位置关系,展开对定值、最值、参数取值范围等问题的考查,注重考查学生的数学运算、逻辑推理的核心素养,分值约为12分,难度偏大.破考点 练考向 【考点集训】考点一 定值与定点问题1.(2018重庆綦江模拟,9)已知圆C:x 2+y 2=1,点P 为直线x+2y-4=0上一动点,过点P 向圆C 引两条切线PA,PB,A,B 为切点,则直线AB 经过定点( ) A.(12,14) B.(14,12)C.(√34,0)D.(0,√34) 答案 B2.(2020届河南名校联盟9月月考,19)已知O 为坐标原点,过点M(1,0)的直线l 与抛物线C:y 2=2px(p>0)交于A,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =-3. (1)求抛物线C 的方程;(2)过点M 作直线l'⊥l,交抛物线C 于P 、Q 两点,记△OAB,△OPQ 的面积分别为S 1,S 2,证明:1S 12+1S 22为定值.解析 (1)易知直线l 的斜率不为0,故设直线l 的方程为x=my+1, 与抛物线C:y 2=2px(p>0)联立,消去x 得y 2-2pmy-2p=0.设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=2pm,y 1y 2=-2p.由OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =-3,得x 1x 2+y 1y 2=(my 1+1)(my 2+1)+y 1y 2 =(1+m 2)y 1y 2+m(y 1+y 2)+1 =(1+m 2)·(-2p)+2pm 2+1 =-2p+1=-3,解得p=2, ∴抛物线C 的方程为y 2=4x.(2)证明:易知直线l,l'的斜率均存在且不为0.由(1)知,点M(1,0)是抛物线C 的焦点,所以|AB|=x 1+x 2+p=my 1+my 2+2+p=4m 2+4,又原点到直线l 的距离为√1+m 2,所以△OAB 的面积S 1=12×√1+m2×4(m 2+1)=22, 又直线l'过点M,且l'⊥l,所以△OPQ 的面积S 2=2√1+(-1m )2=2√1+m2m 2,所以1S 12+1S 22=14(1+m 2)+m 24(1+m 2)=14,即1S 12+1S 22为定值.考点二 最值与范围问题1.(2018河北百校联盟4月联考,16)已知抛物线C:x 2=8y 的焦点为F,准线为l 1,直线l 2与抛物线C 相切于点P,记点P 到直线l 1的距离为d 1,点F 到直线l 2的距离为d 2,则d 2d 1+2的最大值为 .答案122.(2020届四川成都摸底考试,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1(-√3,0),F 2(√3,0),且经过点A (√3,12).(1)求椭圆C 的标准方程;(2)过点B(4,0)作一条斜率不为0的直线l 与椭圆C 相交于P,Q 两点,记点P 关于x 轴对称的点为P',若直线P'Q 与x 轴相交于点D,求△DPQ 面积的最大值.解析 本题主要考查椭圆的方程及定义、直线与椭圆的位置关系、直线方程、基本不等式,考查的核心素养是逻辑推理、数学运算.(1)由椭圆的定义,可知2a=|AF 1|+|AF 2|=√(2√3)2+(12)2+12=4,解得a=2.又b 2=a 2-c 2=22-(√3)2=1,∴椭圆C 的标准方程为x 24+y 2=1.(2)由题意,设直线l 的方程为x=my+4(m ≠0),P(x 1,y 1),Q(x 2,y 2),则P'(x 1,-y 1). 由{x =my +4,x 24+y 2=1消去x,可得(m 2+4)y 2+8my+12=0. ∵Δ=16(m 2-12)>0,∴m 2>12. ∴y 1+y 2=-8m m 2+4,y 1y 2=12m 2+4.∵k P'Q =y 2+y1x 2-x 1=y 2+y 1m(y2-y 1),∴直线P'Q 的方程为y+y 1=y 2+y 1m(y2-y 1)(x-x 1),令y=0,可得x=m(y 2-y 1)y 1y 1+y 2+my 1+4.∴x=2my 1y 2y 1+y 2+4=2m ·12m 2+4-8m m 2+4+4=24m -8m+4=1,∴D(1,0).∴S △DPQ =|S △BDP -S △BDQ |=12|BD|·|y 1-y 2|=32√(y 1+y 2)2-4y 1y 2=6√m 2-12m 2+4.令t=√m 2-12,t ∈(0,+∞), 则S △DPQ =6tt 2+16=6t+16t≤34,当且仅当t=4,即m=±2√7时等号成立, ∴△DPQ 面积的最大值为34.思路分析(1)首先由椭圆的定义求出a,然后由椭圆中a,b,c的关系求b,从而求得椭圆的方程;(2)设出直线l的方程与点P,Q的坐标,联立直线l与椭圆的方程,利用斜率公式求得直线P'Q的斜率,进而得直线P'Q的方程,由此求得点D的坐标,再利用面积公式求得S△DPQ的表达式,从而利用换元法与基本不等式求出其最大值.考点三 存在性问题(2019内蒙古通辽五中模拟,20)已知椭圆x 2a2+y 2b 2=1(a>b>0)的离心率e=√63,过点A(0,-b)和B(a,0)的直线与原点的距离为√32. (1)求椭圆的方程;(2)已知定点E(-1,0),若直线y=kx+2(k ≠0)与椭圆交于C 、D 两点,问:是否存在这样的实数k,使得以CD 为直径的圆过E 点?若存在,请求出k 值,若不存在,请说明理由. 解析 (1)直线AB 的方程为bx-ay-ab=0, 依题意可得{ca=√63,√a 2+b 2=√32,又c 2=a 2-b 2,解得a 2=3,b 2=1,∴椭圆的方程为x 23+y 2=1.(2)存在,k=76.理由:假设存在这样的实数k, 由{y =kx +2,x 2+3y 2-3=0,得(1+3k 2)x 2+12kx+9=0, ∴Δ=(12k)2-36(1+3k 2)>0.① 设C(x 1,y 1),D(x 2,y 2), 则{x 1+x 2=-12k1+3k 2,②x 1·x 2=91+3k2,③ y 1·y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4, 要使以CD 为直径的圆过点E(-1,0),只需CE ⊥DE, 即y 1y 2+(x 1+1)(x 2+1)=0,∴(k 2+1)x 1x 2+(2k+1)(x 1+x 2)+5=0,④ 将②③代入④整理得k=76,经验证,k=76时,①成立.故存在k=76使得以CD 为直径的圆过点E.炼技法 提能力 【方法集训】方法 最值问题的求解方法1.(2019河南郑州一中4月模拟,10)已知F 为抛物线y 2=x 的焦点,点A,B 在该抛物线上且位于x 轴的两侧,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =6(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( ) A.17√23B.3C.3√38D.3√132答案 D2.(2019甘肃兰州铁一中模拟,15)已知F 是抛物线x 2=4y 的焦点,P 为抛物线上的动点,且点A 的坐标为(0,-1),则√2|PA|+|PF||PF|的最大值是 .答案 3【五年高考】A 组 统一命题·课标卷题组考点一 定值与定点问题(2017课标Ⅰ,20,12分)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0),四点P 1(1,1),P 2(0,1),P 3(-1,√32),P 4(1,√32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)证明:设直线l 不经过P 2点且与C 相交于A,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点. 解析 (1)由于P 3,P 4两点关于y 轴对称,故由题设知C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,C 不经过点P 1,所以点P 2在C 上.因此{1b 2=1,1a 2+34b 2=1,解得{a 2=4,b 2=1.故C 的方程为x 24+y 2=1. (2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l:x=t,由题设知t ≠0,且|t|<2,可得A,B 的坐标分别为(t,√4-t 22),(t,-√4-t 22).则k 1+k 2=√4-t 2-22t-√4-t 2+22t=-1,得t=2,不符合题设.从而可设l:y=kx+m(m ≠1).将y=kx+m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx+4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2,由题设k 1+k 2=-1,故(2k+1)x 1x 2+(m-1)(x 1+x 2)=0, 即(2k+1)·4m 2-44k 2+1+(m-1)·-8km4k 2+1=0. 解得k=-m+12.当且仅当m>-1时,Δ>0,于是l:y=-m+12x+m,即y+1=-m+12(x-2),所以l 过定点(2,-1).思路分析 (1)利用椭圆的对称性易知点P 3,P 4在椭圆上,将点P 1(1,1)代入椭圆方程,经过比较可知点P 1(1,1)不在椭圆上,进而可列方程组求出椭圆方程;(2)设出直线l 的方程,将直线l 与椭圆的方程联立并消元,利用根与系数的关系使问题得解,在解题中要注意直线斜率不存在的情况. 方法点拨 定点问题的常见解法:(1)根据题意选择参数,建立一个含参数的直线系或曲线系方程,经过分析、整理,对方程进行等价变形,以找出满足方程且与参数无关的坐标,该坐标对应的点即为所求的定点. (2)从特殊位置入手,找出定点,再证明该定点符合题意.考点二 最值与范围问题(2016课标Ⅱ,20,12分)已知椭圆E:x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k(k>0)的直线交E 于A,M 两点,点N 在E 上,MA ⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN 的面积;(2)当2|AM|=|AN|时,求k 的取值范围. 解析 (1)设M(x 1,y 1),则由题意知y 1>0. 当t=4时,E 的方程为x 24+y 23=1,A(-2,0).(1分)由已知及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y=x+2.(2分) 将x=y-2代入x 24+y 23=1得7y 2-12y=0.解得y=0或y=127,所以y 1=127.(4分)因此△AMN 的面积S △AMN =2×12×127×127=14449.(5分)(2)由题意,t>3,k>0,A(-√t ,0).将直线AM 的方程y=k(x+√t ) 代入x 2t +y 23=1得(3+tk 2)x 2+2√t ·tk 2x+t 2k 2-3t=0.(7分)由x 1·(-√t )=t 2k 2-3t3+tk 2得x 1=√t(3-tk 2)3+tk 2, 故|AM|=|x 1+ √t |√1+k 2=6√t(1+k 2)3+tk 2.(8分)由题设,直线AN 的方程为y=-1k (x+√t ), 故同理可得|AN|=6k√t(1+k 2)3k +t .(9分)由2|AM|=|AN|得23+tk 2=k3k 2+t ,即(k 3-2)t=3k(2k-1). 当k=√23时上式不成立,因此t=3k(2k -1)k 3-2.(10分) t>3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0.(11分)由此得{k -2>0,k 3-2<0或{k -2<0,k 3-2>0,解得√23<k<2.因此k 的取值范围是(√23,2).(12分)疑难突破 第(1)问中求出直线AM 的倾斜角是解决问题的关键;第(2)问利用2|AM|=|AN|得出t 与k 的关系式,由t>3,建立关于k 的不等式,从而得出k 的取值范围.本题主要考查椭圆的几何性质,直线与椭圆的位置关系以及方程思想的应用,考查学生的运算求解能力及逻辑思维能力.挖掘出题目中t>3这一隐含条件是把等式转化为不等式的关键.考点三 存在性问题(2015课标Ⅱ,20,12分)已知椭圆C:9x 2+y 2=m 2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(m3,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解析 (1)设直线l:y=kx+b(k ≠0,b ≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b=9bk 2+9.于是直线OM 的斜率k OM =yM x M=-9k,即k OM ·k=-9. 所以直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.因为直线l 过点(m3,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k ≠3. 由(1)得OM 的方程为y=-9k x.设点P 的横坐标为x P .由{y =-9k x,9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√k 2+9.将点(m 3,m)的坐标代入l 的方程得b=m(3-k)3,因此x M =k(k -3)m 3(k 2+9).四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是3√k 2+9=2×k(k -3)m3(k 2+9),解得k 1=4-√7,k 2=4+√7.因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-√7或4+√7时,四边形OAPB 为平行四边形.思路分析 (1)设出直线l 的方程,与椭圆方程联立并消元,利用韦达定理求得AB 的中点M 的坐标,进而可得出结论;(2)要使四边形OAPB 为平行四边形,则线段AB 与线段OP 互相平分,即x P =2x M ,由此结合已知条件建立相应方程,进而通过解方程使问题得解.B 组 自主命题·省(区、市)卷题组考点一 定值与定点问题(2019北京,18,14分)已知抛物线C:x 2=-2py 经过点(2,-1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M,N,直线y=-1分别交直线OM,ON 于点A 和点B.求证:以AB 为直径的圆经过y 轴上的两个定点.解析 本题主要考查抛物线、直线和圆的基本概念,重点考查直线与抛物线的位置关系,考查学生对数形结合思想的应用以及逻辑推理能力,通过直线与抛物线的位置关系考查了数学运算的核心素养. (1)由抛物线C:x 2=-2py 经过点(2,-1),得p=2. 所以抛物线C 的方程为x 2=-4y,其准线方程为y=1.(2)证明:抛物线C 的焦点为F(0,-1). 设直线l 的方程为y=kx-1(k ≠0). 由{y =kx -1,x 2=-4y 得x 2+4kx-4=0. 设M(x 1,y 1),N(x 2,y 2),则x 1x 2=-4, 直线OM 的方程为y=y1x 1x.令y=-1,得点A 的横坐标x A =-x1y 1.同理得点B 的横坐标x B =-x2y 2.设点D(0,n),则DA ⃗⃗⃗⃗⃗ =(-x1y 1,-1-n),DB⃗⃗⃗⃗⃗⃗ =(-x 2y2,-1-n), DA ⃗⃗⃗⃗⃗ ·DB⃗⃗⃗⃗⃗⃗ =x 1x 2y 1y2+(n+1)2=x 1x 2(-x 124)(-x 224)+(n+1)2=16x1x 2+(n+1)2=-4+(n+1)2.令DA ⃗⃗⃗⃗⃗ ·DB⃗⃗⃗⃗⃗⃗ =0,即-4+(n+1)2=0,得n=1或n=-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).考点二 最值与范围问题1.(2019北京,8,5分)数学中有许多形状优美、寓意美好的曲线,曲线C:x 2+y 2=1+|x|y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过√2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( ) A.① B.② C.①② D.①②③答案 C2.(2017山东,21,14分)在平面直角坐标系xOy 中,椭圆E:x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,焦距为2. (1)求椭圆E 的方程;(2)如图,动直线l:y=k 1x-√32交椭圆E 于A,B 两点,C 是椭圆E 上一点,直线OC 的斜率为k 2,且k 1k 2=√24.M 是线段OC 延长线上一点,且|MC|∶|AB|=2∶3,☉M 的半径为|MC|,OS,OT 是☉M 的两条切线,切点分别为S,T.求∠SOT 的最大值,并求取得最大值时直线l 的斜率.解析 (1)由题意知e=c a =√22,2c=2,所以a=√2,b=1,因此椭圆E 的方程为x 22+y 2=1.(2)设A(x 1,y 1),B(x 2,y 2),联立{x 22+y 2=1,y =k 1x -√32,消y 整理得(4k 12+2)x 2-4√3k 1x-1=0,由题意知Δ>0,且x 1+x 2=2√3k 12k 12+1,x 1x 2=-12(2k 12+1),所以|AB|=√1+k 12|x 1-x 2|=√2·√1+k 12√1+8k 121+2k 12.由题意可知圆M 的半径r=23|AB|=2√23·√1+k 12√1+8k 122k 12+1.由题设知k 1k 2=√24,所以k 2=√24k 1, 因此直线OC 的方程为y=√24k 1x. 联立{x 22+y 2=1,y =√24k 1x,得x 2=8k 121+4k 12,y 2=11+4k 12, 因此|OC|=√x 2+y 2=√1+8k 121+4k 12.由题意可知sin∠SOT 2=rr+|OC|=11+|OC|r,而|OC|r=√1+8k 121+4k 122√23·√1+k 1√1+8k 11+2k 12=3√24·12√1+4k 1√1+k 1,令t=1+2k 12,则t>1,1t ∈(0,1),因此|OC|r=32·√2t 2+t -1=32·√2+t -t 2=32·√-(t -2)2+4≥1,当且仅当1t =12,即t=2时等号成立,此时k 1=±√22, 所以sin ∠SOT 2≤12,因此∠SOT 2≤π6,所以∠SOT 的最大值为π3.综上所述,∠SOT 的最大值为π3,取得最大值时直线l 的斜率k 1=±√22.思路分析 (1)由离心率和焦距,利用基本量运算求解;(2)联立直线l 与椭圆方程,利用弦长公式求出|AB|,联立直线OC 与椭圆方程求|OC|,进而建立sin∠SOT 2与k 1之间的函数关系,利用二次函数的性质求解.疑难突破把角的问题转化为三角函数问题,即由sin∠SOT2=11+|OC|r=f(k1)求解是解题的突破口.解题反思最值问题一般利用函数的思想方法求解,利用距离公式建立sin∠SOT2与k1之间的函数关系是解题关键.牢固掌握基础知识和方法是求解的前提.本题的完美解答体现了数学知识、能力、思想、方法的完美结合.考点三 存在性问题(2015四川,20,13分)如图,椭圆E:x 2a2+y 2b 2=1(a>b>0)的离心率是√22,过点P(0,1)的动直线l 与椭圆相交于A,B两点.当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为2√2. (1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q,使得|QA||QB|=|PA||PB|恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.解析 (1)由已知得,点(√2,1)在椭圆E 上. 因此,{ 2a 2+1b 2=1,a 2-b 2=c 2,c a =√22,解得a=2,b=√2.所以椭圆E 的方程为x 24+y 22=1.(2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C,D 两点. 如果存在定点Q 满足条件, 则有|QC||QD|=|PC||PD|=1, 即|QC|=|QD|.所以Q 点在y 轴上,可设Q 点的坐标为(0,y 0). 当直线l 与x 轴垂直时, 设直线l 与椭圆相交于M,N 两点, 则M,N 的坐标分别为(0,√2),(0,-√2). 由|QM||QN|=|PM||PN|,有0√2||y +√2|=√2-√2+1, 解得y0=1或y 0=2.所以,若存在不同于点P 的定点Q 满足条件,则Q 点坐标只可能为(0,2).下面证明:当Q 的坐标为(0,2)时,对任意直线l,均有|QA||QB|=|PA||PB|. 当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为y=kx+1,A,B 的坐标分别为(x 1,y 1),(x 2,y 2). 联立{x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx-2=0. 其判别式Δ=(4k)2+8(2k 2+1)>0,所以,x 1+x 2=-4k2k 2+1,x 1x 2=-22k 2+1.因此1x 1+1x 2=x 1+x2x 1x2=2k. 易知,点B 关于y 轴对称的点B'的坐标为(-x 2,y 2). 又k QA =y 1-2x 1=kx 1-1x 1=k-1x 1,k QB'=y 2-2-x2=kx 2-1-x 2=-k+1x 2=k-1x 1,所以k QA =k QB',即Q,A,B'三点共线. 所以|QA||QB|=|QA||QB'|=|x 1||x 2|=|PA||PB|.故存在与P 不同的定点Q(0,2), 使得|QA||QB|=|PA||PB|恒成立.C 组 教师专用题组考点一 定值与定点问题1.(2018北京,19,14分)已知抛物线C:y 2=2px 经过点P(1,2).过点Q(0,1)的直线l 与抛物线C 有两个不同的交点A,B,且直线PA 交y 轴于M,直线PB 交y 轴于N. (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM⃗⃗⃗⃗⃗⃗ =λQO ⃗⃗⃗⃗⃗⃗ ,QN ⃗⃗⃗⃗⃗⃗ =μQO ⃗⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值. 解析 (1)因为抛物线y 2=2px 过点(1,2),所以2p=4,即p=2.故抛物线C 的方程为y 2=4x,由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y=kx+1(k ≠0). 由{y 2=4x,y =kx +1得k 2x 2+(2k-4)x+1=0. 依题意Δ=(2k -4)2-4×k 2×1>0,解得k<0或0<k<1.又PA,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明:设A(x 1,y 1),B(x 2,y 2), 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2.直线PA 的方程为y-2=y 1-2x 1-1(x-1). 令x=0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由QM ⃗⃗⃗⃗⃗⃗ =λQO ⃗⃗⃗⃗⃗⃗ ,QN ⃗⃗⃗⃗⃗⃗ =μQO ⃗⃗⃗⃗⃗⃗ 得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M+11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.方法总结 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式有关的等式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的表达式,再利用题设条件化简、变形即可求得;(3)求某线段长度为定值.利用两点间的距离公式求得线段长度的表达式,再依据条件对表达式进行化简、变形即可求得.2.(2016北京,19,14分)已知椭圆C:x 2a2+y 2b2=1(a>b>0)的离心率为√32,A(a,0),B(0,b),O(0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M,直线PB 与x 轴交于点N.求证:|AN|·|BM|为定值. 解析 (1)由题意得{ c a =√32,12ab =1,a 2=b 2+c 2,解得a=2,b=1.所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知,A(2,0),B(0,1).设P(x 0,y 0),则x 02+4y 02=4.当x 0≠0时,直线PA 的方程为y=y 0x 0-2(x-2).令x=0,得y M =-2y 0x-2,从而|BM|=|1-y M |=|1+2y 0x0-2|.直线PB 的方程为y=y 0-1x 0x+1.令y=0,得x N =-x 0y 0-1,从而|AN|=|2-x N |=|2+x 0y 0-1|.所以|AN|·|BM|=|2+x0y 0-1|·|1+2y 0x0-2|=|x 02+4y 02+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2|=|4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2|=4.当x 0=0时,y 0=-1,|BM|=2,|AN|=2, 所以|AN|·|BM|=4. 综上,|AN|·|BM|为定值.一题多解 (2)点P 在曲线(x 2)2+(y 1)2=1上,不妨设P(2cos θ,sin θ),当θ≠kπ且θ≠kπ+π2(k ∈Z )时,直线AP 的方程为y-0=sinθ2(cosθ-1)(x-2),令x=0,得y M =sinθ1-cosθ; 直线BP 的方程为y-1=sinθ-12cosθ(x-0),令y=0,得x N =2cosθ1-sinθ. ∴|AN|·|BM|=2|1-cosθ1-sinθ|·|1-sinθ1-cosθ||=2×2=4(定值).=2|2(1-sinθ)(1-cosθ)(1-sinθ)(1-cosθ)(k∈Z)时,M、N是定点,易得|AN|·|BM|=4.综上,|AN|·|BM|=4. 当θ=kπ或θ=kπ+π2考点二 最值与范围问题1.(2018浙江,21,15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C:y 2=4x 上存在不同的两点A,B 满足PA,PB 的中点均在C 上.(1)设AB 中点为M,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x<0)上的动点,求△PAB 面积的取值范围.解析 本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.(1)设P(x 0,y 0),A (14y 12,y 1),B (14y 22,y 2).因为PA,PB 的中点在抛物线上, 所以y 1,y 2为方程(y+y 02)2=4·14y 2+x 02,即y 2-2y 0y+8x 0-y 02=0的两个不同的实根.所以y 1+y 2=2y 0, 因此,PM 垂直于y 轴. (2)由(1)可知{y 1+y 2=2y 0,y 1y 2=8x 0-y 02,所以|PM|=18(y 12+y 22)-x 0=34y 02-3x 0,|y 1-y 2|=2√2(y 02-4x 0).因此,△PAB 的面积S △PAB =12|PM|·|y 1-y 2|=3√24(y 02-4x 0)32.因为x 02+y 024=1(x 0<0),所以y 02-4x 0=-4x 02-4x 0+4∈[4,5].因此,△PAB 面积的取值范围是[6√2,15√104].疑难突破 解析几何中“取值范围”与“最值”问题在解析几何中,求某个量(直线斜率,直线在x 、y 轴上的截距,弦长,三角形或四边形面积等)的取值范围或最值问题的关键是利用条件把所求量表示成关于某个变量(通常是直线斜率,动点的横、纵坐标等)的函数,并求出这个变量的取值范围(即函数的定义域),将问题转化为求函数的值域或最值.2.(2015浙江,19,15分)已知椭圆x 22+y 2=1上两个不同的点A,B 关于直线y=mx+12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).解析 (1)由题意知m ≠0,可设直线AB 的方程为y=-1m x+b.由{x 22+y 2=1,y =-1m x +b消去y,得(12+1m 2)x 2-2bmx+b 2-1=0. 因为直线y=-1mx+b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 的中点M (2mbm 2+2,m 2bm 2+2)代入直线方程y=mx+12,解得 b=-m 2+22m 2.②由①②得m<-√63或m>√63. (2)令t=1m∈(-√62,0)∪(0,√62), 则|AB|=√t 2+1·√-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d=t 2+12√t 2+1.设△AOB 的面积为S(t),所以S(t)=12|AB|·d=12√-2(t 2-12)2+2≤√22. 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为√22.3.(2015天津,19,14分)已知椭圆x 2a2+y 2b 2=1(a>b>0)的左焦点为F(-c,0),离心率为√33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c,|FM|=4√33. (1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于√2,求直线OP(O 为原点)的斜率的取值范围. 解析 (1)由已知有c 2a2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k(k>0),则直线FM 的方程为y=k(x+c).由已知,有(√k 2+1)2+(c 2)2=(b 2)2,解得k=√33.(2)由(1)得椭圆方程为x 23c2+y 22c2=1,直线FM 的方程为y=√33(x+c),两个方程联立,消去y,整理得3x 2+2cx-5c 2=0,解得x=-53c 或x=c.因为点M 在第一象限,可得M 的坐标为(c,2√33c). 由|FM|=√(c +c)2+(2√33c -0)2=4√33,解得c=1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x,y),直线FP 的斜率为t,得t=yx+1,即y=t(x+1)(x ≠-1),与椭圆方程联立得{y =t(x +1),x 23+y 22=1,消去y,整理得2x 2+3t 2(x+1)2=6.又由已知,得t=√6-2x 23(x+1)2>√2,解得-32<x<-1或-1<x<0.设直线OP 的斜率为m,得m=y x,即y=mx(x ≠0),与椭圆方程联立,整理可得m 2=2x2-23.①当x ∈(-32,-1)时,有y=t(x+1)<0,因此m>0,于是m=√2x 2-23,得m ∈(√23,2√33). ②当x ∈(-1,0)时,有y=t(x+1)>0,因此m<0,于是m=-√2x2-23,得m ∈(-∞,-2√33). 综上,直线OP 的斜率的取值范围是(-∞,-2√33)∪(√23,2√33). 本题主要考查椭圆的标准方程和几何性质、直线方程和圆的方程、直线与圆的位置关系、一元二次不等式等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力以及用函数与方程思想解决问题的能力.4.(2015山东,20,13分)平面直角坐标系xOy 中,已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的离心率为√32,左、右焦点分别是F 1,F 2.以F 1为圆心,以3为半径的圆与以F 2为圆心,以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E:x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y=kx+m 交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q. (i)求|OQ||OP|的值;(ii)求△ABQ 面积的最大值.解析 (1)证明:由题意知2a=4,则a=2. 又c a =√32,a 2-c 2=b 2,可得b=1,所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1. (i)设P(x 0,y 0),|OQ||OP|=λ,由题意知Q(-λx 0,-λy 0). 因为x 024+y 02=1,又(-λx 0)216+(-λy 0)24=1,即λ24(x 024+y 02)=1, 所以λ=2,即|OQ||OP|=2.(ii)设A(x 1,y 1),B(x 2,y 2). 将y=kx+m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx+4m 2-16=0,由Δ>0,可得m 2<4+16k 2.①由韦达定理有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2. 所以|x 1-x 2|=4√16k 2+4-m 21+4k 2.因为直线y=kx+m 与y 轴交点的坐标为(0,m), 所以△OAB 的面积S=12|m||x 1-x 2| =2√16k 2+4-m 2|m|1+4k 2=2√(16k 2+4-m 2)m 21+4k 2=2√(4-m 21+4k 2)m 21+4k 2. 设m 21+4k 2=t.将y=kx+m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx+4m 2-4=0,由Δ≥0,可得m 2≤1+4k 2.②由①②可知0<t ≤1,因此S=2√(4-t)t =2√-t 2+4t ,故S ≤2√3, 当且仅当t=1,即m 2=1+4k 2时取得最大值2√3.由(i)知,△ABQ 面积为3S, 所以△ABQ 面积的最大值为6√3.考点三 存在性问题(2015北京,19,14分)已知椭圆C:x 2a2+y 2b 2=1(a>b>0)的离心率为√22,点P(0,1)和点A(m,n)(m ≠0)都在椭圆C 上,直线PA 交x 轴于点M.(1)求椭圆C 的方程,并求点M 的坐标(用m,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N.问:y 轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q 的坐标;若不存在,说明理由.解析 (1)由题意得{b =1,ca=√22,a 2=b 2+c 2,解得a 2=2.故椭圆C 的方程为x 22+y 2=1. 设M(x M ,0).因为m ≠0,所以-1<n<1. 直线PA 的方程为y-1=n -1m x, 所以x M =m1-n ,即M (m1-n ,0).(2)因为点B 与点A 关于x 轴对称,所以B(m,-n). 设N(x N ,0),则x N =m1+n .“存在点Q(0,y Q )使得∠OQM=∠ONQ ”等价于“存在点Q(0,y Q )使得|OM||OQ|=|OQ||ON|”,即y Q 满足y Q 2=|x M ||x N |.因为x M =m 1-n ,x N =m1+n ,m 22+n 2=1,所以y Q 2=|x M ||x N |=m 21-n 2=2.所以y Q =√2或y Q =-√2.故在y 轴上存在点Q,使得∠OQM=∠ONQ. 点Q 的坐标为(0,√2)或(0,-√2).【三年模拟】一、选择题(每小题5分,共20分)1.(2019江西南昌重点中学调研考试,11)设点M 为抛物线C:y 2=4x 的准线上一点(不同于准线与x 轴的交点),过抛物线C 的焦点F 且垂直于x 轴的直线与C 交于A,B 两点,设MA,MF,MB 的斜率分别为k 1,k 2,k 3,则k 1+k 3k 2的值为( ) A.2B.2√2C.4D.4√2答案 A2.(2020届山西太原五中第二次诊断,12)已知A(0,3),若点P 是抛物线x 2=8y 上任意一点,点Q 是圆x 2+(y-2)2=1上任意一点,则|PA|2|PQ|的最小值为( )A.4√3-4B.2√2-1C.2√3-2D.4√2+1答案 A3.(2018河南中原名校4月联考,11)已知抛物线C:y 2=4x 的焦点为F,过点F 且斜率为1的直线与抛物线C 交于点A,B,以线段AB 为直径的圆E 上存在点P,Q,使得以PQ 为直径的圆过点D(-2,t),则实数t 的取值范围为( )A.(-∞,-1]∪[1,+∞)B.[-1,3]C.(-∞,2-√7]∪[2+√7,+∞)D.[2-√7,2+√7]答案 D4.(2020届山东夏季高考模拟,6)已知点A为曲线y=x+4x(x>0)上的动点,B为圆(x-2)2+y2=1上的动点,则|AB|的最小值是()A.3B.4C.3√2D.4√2答案 A二、填空题(共5分)5.(2019四川成都第二次适应性考试,16)已知F为抛物线C:x2=4y的焦点,过点F的直线l与抛物线C相交于不同的两点A,B,抛物线C在A,B两点处的切线分别是l1,l2,且l1,l2相交于点P,则|PF|+32|AB|的最小值是.答案 6三、解答题(共60分)6.(2020届河南安阳9月月考,20)如图,过点P(1,0)作两条直线x=1和l,分别交抛物线y2=4x于A,B和C,D(其中A,C位于x轴上方,l的斜率大于0),直线AC,BD交于点Q.(1)求证:点Q在定直线上;(2)若λ=S△PQCS△PBD,求λ的最小值.解析本题考查直线与抛物线的位置关系,三角形面积比,基本不等式求最值,体现了逻辑推理,数学运算的核心素养.(1)证明:设C(c 24,c),D(d24,d),l:x=ty+1,将x=ty+1代入y2=4x,得y2-4ty-4=0,所以cd=-4.又A(1,2),B(1,-2),所以l AC:4x-(c+2)y+2c=0, l BD:4x-(d-2)y-2d=0,联立消y 得x=cd -c+d c -d+4=-1,故点Q 在定直线x=-1上. (2)由题意可得S △PQCS△PQA=c 24+12,S △PBD S△PQB=1-d 242.因为S △PQA =S △PQB , 所以λ=S △PQC S △PBD =c 2+44-d 2=c 2(c 2+4)4(c 2-4),令c 2-4=t,则t>0, 代入得λ=(t+4)(t+8)4t=t 4+8t+3≥2√2+3,当且仅当c 2=4+4√2时取得等号, 所以λ的最小值为2√2+3. 思路分析 (1)设C (c 24,c),D (d 24,d),l:x=ty+1,直线与抛物线方程联立可得y 2-4ty-4=0,所以cd=-4,由直线AC,BD 交于点Q,将两直线方程联立求解可得x=cd -c+dc -d+4=-1,从而证明点Q 在定直线上. (2)由题意可得S △PQCS △PQA=c 24+12,S △PBD S△PQB=1-d 242.根据S △PQA =S △PQB ,用c 表示出λ,利用换元法、基本不等式可求λ的最小值.7.(2018安徽蚌埠二中4月月考,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左顶点为M,上顶点为N,直线2x+y-6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)若直线l:y=kx+m 与椭圆C 交于E,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.解析 (1)由题意知,M(-a,0),N(0,b),直线MN 的斜率k=b a =12,∴a=2b. ∵点N 是线段MB 的中点, ∴B(a,2b),∵点B 在直线2x+y-6√3=0上, ∴2a+2b=6√3,又a=2b, ∴b=√3,a=2√3,∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E(x 1,y 1),F(x 2,y 2),G(x 0,y 0),将y=kx+m 代入x 212+y 23=1,消去y 整理得(1+4k 2)x 2+8kmx+4m 2-12=0,则x 1+x 2=-8km 1+4k,x 1·x 2=4m 2-121+4k,y 1+y 2=k(x 1+x 2)+2m=2m1+4k ,∵四边形OEGF 为平行四边形, ∴OG ⃗⃗⃗⃗⃗ =OE ⃗⃗⃗⃗⃗ +OF ⃗⃗⃗⃗⃗ =(x 1+x 2,y 1+y 2),得G (-8km 1+4k2,2m1+4k 2),将G 点坐标代入椭圆C 的方程得m 2=34(1+4k 2),又易得点O 到直线EF 的距离d=√1+k 2,|EF|=√1+k 2|x 1-x 2|,∴平行四边形OEGF 的面积S=d ·|EF|=|m||x 1-x 2|=|m|·√(x 1+x 2)2-4x 1x 2=4·|m|√3-m 2+12k 21+4k 2=4·|m|√3m 21+4k 2=4√3·m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.8.(2020届山西太原五中第二次诊断,19)已知椭圆C:x 2a2+y 2b2=1(a>b>0)的左,右焦点分别为F 1,F 2,离心率为12,P 是椭圆C 上的一个动点,且△PF 1F 2面积的最大值为√3. (1)求椭圆C 的方程;(2)设斜率存在的直线PF 2与椭圆C 的另一个交点为Q,是否存在点T(0,t),使得|TP|=|TQ|?若存在,求出t 的取值范围;若不存在,请说明理由.解析(1)由题意得{ca=12,12×2c ×b =√3,a 2=b 2+c 2,∴a=2,b=√3,c=1. 故椭圆C 的方程为x 24+y 23=1.(2)设直线PQ 的方程为y=k(x-1),当k ≠0时,将y=k(x-1)代入x 24+y 23=1,得(3+4k 2)x 2-8k 2x+4k 2-12=0.设P(x 1,y 1),Q(x 2,y 2),线段PQ 的中点为N(x 0,y 0), 则x 0=x 1+x 22=4k 23+4k 2,y 0=y 1+y 22=k(x 0-1)=-3k3+4k 2,即N (4k 23+4k 2,-3k3+4k 2).∵|TP|=|TQ|,∴直线TN 为线段PQ 的垂直平分线,∴TN⊥PQ,即k TN ·k PQ =-1. ∴-3k4k 2+3-t 4k 24k 2+3·k=-1⇒t=k 4k 2+3=14k+3k.当k>0时,∵4k+3k ≥4√3,∴t∈(0,√312]. 当k<0时,∵4k+3k ≤-4√3,∴t∈[-√312,0). 当k=0时,t=0符合题意. 综上,t 的取值范围为[-√312,√312].9.(2019黑龙江大庆三模,21)已知点F(1,0),动点M 到直线l:x=4的距离为d,且|MF|d=12,设动点M 的轨迹为曲线E.(1)求曲线E 的方程;(2)过点F 作互相垂直的两条直线,分别交曲线E 于点A,B 和C,D,求四边形ABCD 面积的最小值. 解析 (1)设M(x,y),∵|MF|=12d, ∴√(x -1)2+y 2=12|x-4|.整理得曲线E 的方程为x 24+y 23=1.(2)解法一:当直线AB 的斜率为0时,|AB|=2a=4,|CD|=2b 2a=3,∴四边形ACBD 的面积S=12|AB|×|CD|=6.当直线AB 的斜率不为0时,设直线AB 的方程为x=ty+1,A(x 1,y 1),B(x 2,y 2). 联立{x =ty +1,3x 2+4y 2=12,消去x 得(3t 2+4)y 2+6ty-9=0,由题意可知Δ>0恒成立, ∴y 1+y 2=-6t 3t 2+4,y 1y 2=-93t 2+4.∴|AB|=√(1+t 2)[(y 1+y 2)2-4y 1y 2] =√(1+t 2)[(-6t 3t 2+4)2+363t 2+4]=12(t 2+1)3t 2+4.同理可求得|CD|=12(t 2+1)3+4t 2.∴四边形ACBD 的面积S=12|AB|×|CD|=72(t 2+1)2(3t 2+4)(3+4t 2)=6(1-112t 2+12t2+25)≥6(12√12t ×12t2+25)=28849,当且仅当12t 2=12t 2,即t=±1时取等号.∵28849<6,∴四边形ACBD 面积的最小值为28849. 解法二:当直线AB 的斜率不存在时,|AB|=2b 2a=3,|CD|=2a=4,∴四边形ACBD 的面积S=12|AB|×|CD|=6.当直线AB 的斜率存在且不为0时,设直线AB 的方程为y=k(x-1),A(x 1,y 1),B(x 2,y 2).联立{y =k(x -1),3x 2+4y 2=12,消去y 得(3+4k 2)x 2-8k 2x+4k 2-12=0.由题意可知Δ>0恒成立, ∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,∴|AB|=√(1+k 2)[(x 1+x 2)2-4x 1x 2] =√(1+k 2)[(8k 23+4k )2-4·4k 2-123+4k ]=12(1+k 2)3+4k .∵直线AB,CD 互相垂直,∴用-1k替换上式中的k 可求得|CD|=12(k 2+1)3k +4.∴四边形ACBD 的面积S=12|AB|×|CD|=72(k 2+1)2(3k 2+4)(3+4k 2)=6(1-112k 2+12k2+25)≥6(12√12k 2×k 2+25=28849,当且仅当12k 2=12k 2,即k=±1时取等号.∵28849<6,∴四边形ACBD 面积的最小值为28849.10.(2020届山西大同高三学情调研,21)椭圆x 2a2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,且离心率e=√63.(1)设E 是直线y=x+2与椭圆的一个交点,求|EF 1|+|EF 2|取最小值时椭圆的方程;(2)已知N(0,1),是否存在斜率为k 的直线l 与(1)中的椭圆交于不同的两点A,B,使得点N 在线段AB 的垂直平分线上?若存在,求出直线l 在y 轴上截距的范围;若不存在,请说明理由.解析 本题主要考查了椭圆的方程、几何性质及直线与椭圆的位置关系,考查的核心素养是逻辑推理与数学运算.(1)∵e=√63,∴b 2a =13,∴椭圆的方程可化为x 23b2+y 2b2=1,将x 23b2+y 2b2=1与y=x+2联立,消去y 并化简得4x 2+12x+12-3b 2=0,由Δ=144-16×(12-3b 2)≥0,解得b 2≥1,即b ≥1,∴|EF 1|+|EF 2|=2a=2√3b ≥2√3,当且仅当b=1时,|EF 1|+|EF 2|取最小值2√3, ∴椭圆的方程为x 23+y 2=1.(2)设直线l 在y 轴上的截距为t,则直线l 的方程为y=kx+t,代入x 23+y 2=1,消去y 并整理得(1+3k 2)x 2+6ktx+3t 2-3=0,∵直线l 与椭圆交于不同的两点,∴Δ1=(6kt)2-12(t 2-1)(1+3k 2)>0,即t 2<1+3k 2. 设A(x 1,y 1),B(x 2,y 2),AB 的中点为Q, 则x 1+x 2=-6kt1+3k 2,x 1x 2=3t 2-31+3k 2,y 1+y 2=k(x 1+x 2)+2t=2t1+3k 2,∴AB 的中点Q 的坐标为(-3kt 1+3k2,t 1+3k 2),当k ≠0时,k QN =t1+3k 2-1-3kt 1+3k 2=-1k ,化简得1+3k 2=-2t,代入t 2<1+3k 2,得-2<t<0,又-2t=1+3k 2>1,∴t<-12,故-2<t<-12. 当k=0时,-1<t<1.综上,k ≠0时,直线l 在y 轴上截距的范围为(-2,-12); k=0时,直线l 在y 轴上截距的范围为(-1,1).。

高三数学专题复习 1.6.3直线与圆锥曲线的综合问题教案(第1课时)

高三数学专题复习 1.6.3直线与圆锥曲线的综合问题教案(第1课时)
2 2
c a
3 ,知 a= 3c.过点 F 且与 x 轴垂直的直线为 x=-c, 3
-c y 6 代入椭圆方程 + 2=1,解得 y=± b, a2 b 3 2 6 4 于是 b= 3,∴b= 2, 3 3 又 a -c =b , 从而可得 a= 3,c=1, ∴椭圆的方程为 + =1. 3 2 (2)设点 C(x1,y1),D(x2,y2),由 F(-1,0)得直线 CD 的方程为 y=k(x+1),
x 轴垂直的直线被椭圆截得的线段长为
(1)求椭圆的方程;
4 3 . 3
→ → (2)设 A, B 分别为椭圆的左、 右顶点, 过点 F 且斜率为 k 的直线与椭圆交于 C, D 两点. 若AC·DB → → +AD·CB=8,求 k 的值. [思路点拨](1)由离心率和椭圆基本量之间的关系建立方程,求得椭圆方程;(2)联立直线与椭 圆方程,由韦达定理,结合向量的坐标运算求解. 解 (1)设 F(-c,0),由 =
2 2 2
AC·DB+AD·CB=(x1+ 3,y1)·( 3-x2,-y2)+(x2+ 3,y2)·( 3-x1,-y1)
=6-2x1x2-2y1y2=6-2x1x2-2k (x1+1)(x2+1) =6-(2+2k )x1x2-2k (x1+x2)-2k
2 2 2 2
→ → →
2k +12 =6+ 2 . 2+3k 2k +12 由已知得 6+ 2 =8,解得 k=± 2. 2+3k [探究提升] 1.(1)本题最常见的是计算错误, 关键在于细心认真, 平 时强化计算能力训练. (2) 用代数方法研究曲线的性质,关键是方程思想的应用. 2.直线与圆锥曲线的位置关系问题,常联立方程,充分利用根与系数的关系建立等式(或不等 式)整体代入求解,并注意判别式满足的条件限制,防止增解. 【变式训练 1】 在平面直角坐标系 xOy 中,已知椭圆 C1: 2+ 2=1(a>b>0)的左焦点为 F1(- 1 ,0),且点 P(0,1)在 C1 上. (1)求椭圆 C1 的方程; (2)设直线 l 同时与椭圆 C1 和抛物线 C2:y =4x 相切,求直线 l 的方程. 解 (1)因为椭圆 C1 的左焦点为 F1(-1,0),

圆锥曲线综合问题(一)教案

圆锥曲线综合问题(一)教案

圆锥曲线综合问题(一)定点、定值问题教学目标:(1)理解并初步掌握圆锥曲线中的定点、定值问题的基本思维路径和解题方法;(2)培养学生“设而不求,整体代换”等数学思想方法和技巧,简化数学运算,达到直接、快速、准确的解题效果,提升学生运算水平;(3)通过引导学生分析、思考解决圆锥曲线中的定点、定值问题,提升学生解答综合问题的水平。

重点:培养学生“设而不求,整体代换”等数学思想方法和技巧。

难点:体会感悟解决定点、定值问题的基本思维路径和解法。

学情分析:圆锥曲线是中学数学知识的一个重要交汇点,它常与函数、方程、导数、不等式、数列、平面向量等内容交汇渗透,知识跨度大,题型新颖别致、解法灵活,思维抽象强,水平要求高,它既是高考的热点题型,又是颇难解决的重点题型,在高考中占据着举足轻重的地位。

近年来,虽然高考对圆锥曲线的考查总体难度有所降低,但常因其综合性强、运算水平要求高而成为考生望而生畏的难题。

课时安排:两课时。

课题引入:【高考定位】圆锥曲线的综合问题包括:探索性问题、定点与定值问题、范围与最值问题等,一般试题难度较大.这类问题以直线和圆锥曲线的位置关系为载体,以参数处理为核心,需要综合使用函数与方程、不等式、平面向量等诸多知识以及数形结合、分类讨论等多种数学思想方法实行求解,对考生的代数恒等变形水平、计算水平等有较高的要求.【问题提出】在解析几何中,有些几何量与参数无关,这就构成了定值问题;对满足一定条件的曲线上两点连结所得直线过定点或满足一定条件的曲线过定点,这又构成了过定点问题。

定点、定值问题是每年高考中的热点题型,也是高考中很多考生望而生畏的难题。

所以我们下面来专题探寻定点、定值问题的基本思维路径和方法。

第一课时:定点问题教学过程:一、【考点整合】1.定点问题:在解析几何中,有些含有参数的直线或曲线,不论参数如何变化,其都过某定点,这类问题称为定点问题.2.解答定点问题的基本思维方法:恒过定点问题,可设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相对应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决,主要以两种形式表现:点斜式方程和过定点的直线系或曲线系方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学圆锥曲线的综合问题复习教案9.8圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C的位置关系:将直线的方程代入曲线C的方程,消去y或者消去x,得到一个关于x(或y)的方程ax2+bx+c=0.(1)交点个数:①当a=0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当a≠0,⊿>0时,曲线和直线有两个交点;③当⊿<0 时,曲线和直线没有交点。

(2) 弦长公式:2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。

3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。

★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法;理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点为椭圆的左焦点,点,动点在椭圆上,则的最小值为.点拨:设为椭圆的右焦点,利用定义将转化为,结合图形,,当共线时最小,最小值为★热点考点题型探析★考点1直线与圆锥曲线的位置关系题型1:交点个数问题[例1 ] 设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是()A.[-,] B.[-2,2] C.[-1,1] D.[-4,4]【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法[解析] 易知抛物线的准线与x轴的交点为Q (-2 , 0),于是,可设过点Q (-2 , 0)的直线的方程为,联立其判别式为,可解得,应选C.【名师指引】(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线)(3)联立方程组、消元后得到一元二次方程,不但要对进行讨论,还要对二次项系数是否为0进行讨论【新题导练】1. (09摸底)已知将圆上的每一点的纵坐标压缩到原来的,对应的横坐标不变,得到曲线C;设,平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.(1)求曲线的方程;(2)求m的取值范围.[解析](1)设圆上的动点为压缩后对应的点为,则,代入圆的方程得曲线C的方程:(2)∵直线平行于OM,且在y轴上的截距为m,又,∴直线的方程为. 由, 得∵直线与椭圆交于A、B两个不同点,∴解得.∴m的取值范围是.题型2:与弦中点有关的问题[例2](08韶关调研)已知点A、B的坐标分别是,.直线相交于点M,且它们的斜率之积为-2. (Ⅰ)求动点M的轨迹方程;(Ⅱ)若过点的直线交动点M的轨迹于C、D两点, 且N为线段CD的中点,求直线的方程.【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解[解析] (Ⅰ)设,因为,所以化简得:(Ⅱ) 设当直线⊥x轴时, 的方程为,则,它的中点不是N,不合题意设直线的方程为将代入得............(1) (2)(1)-(2)整理得:直线的方程为即所求直线的方程为解法二: 当直线⊥x轴时,直线的方程为,则,其中点不是N,不合题意.故设直线的方程为,将其代入化简得由韦达定理得,又由已知N为线段CD的中点,得,解得,将代入(1)式中可知满足条件.此时直线的方程为,即所求直线的方程为【名师指引】通过将C、D的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁【新题导练】2.椭圆的弦被点所平分,求此弦所在直线的方程。

[解析]设弦所在直线与椭圆交于两点,则,,两式相减得:,化简得,把代入得故所求的直线方程为,即3.已知直线y=-x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x-2y=0上,求此椭圆的离心率[解析] 设,AB的中点为,代入椭圆方程得,,两式相减,得.AB的中点为在直线上,,,而题型3:与弦长有关的问题[例3](山东泰州市联考)已知直线被抛物线截得的弦长为20,为坐标原点.(1)求实数的值;(2)问点位于抛物线弧上何处时,△面积最大?【解题思路】用“韦达定理”求弦长;考虑△面积的最大值取得的条件[解析](1)将代入得,由△可知,弦长AB ,解得;(2)当时,直线为,要使得内接△ABC面积最大,则只须使得,即,即位于(4,4)点处.【名师指引】用“韦达定理”不要忘记用判别式确定范围【新题导练】4. (山东省济南市高三统一考试)已知椭圆与直线相交于两点.(1)当椭圆的半焦距,且成等差数列时,求椭圆的方程;(2)在(1)的条件下,求弦的长度;[解析](1)由已知得:,∴所以椭圆方程为:(2),由,得∴∴(文)已知点和,动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线交于D、E两点,求线段DE的长.(文)解:根据双曲线的定义,可知C的轨迹方程为.设,,联立得.则.所以.故线段DE的长为.考点2:对称问题题型:对称的几何性质及对称问题的求法(以点的对称为主线,轨迹法为基本方法)【新题导练】[例4 ] 若直线l过圆x2+y2+4x-2y=0的圆心M交椭圆=1于A、B两点,若A、B关于点M对称,求直线l的方程.[解析] ,设,则又,,两式相减得:,化简得,把代入得故所求的直线方程为,即所以直线l的方程为:8x-9y+25=0.5.已知抛物线y2=2px上有一内接正△AOB,O为坐标原点.求证:点A、B关于x轴对称;[解析]设,,,,即,,,,故点A、B关于x轴对称6.在抛物线y2=4x上恒有两点关于直线y=kx+3对称,求k的取值范围.[解析] (1)当时,曲线上不存在关于直线对称的两点.(2)当k≠0时,设抛物线y2=4x上关于直线对称的两点,AB的中点为,则直线直线的斜率为直线,可设代入y2=4x得,在直线y=kx+3上,,代入得即,又恒成立,所以-1<k<0.综合(1)(2),k的取值范围是(-1,0)考点3 圆锥曲线中的范围、最值问题题型:求某些变量的范围或最值[例5]已知椭圆与直线相交于两点.当椭圆的离心率满足,且(为坐标原点)时,求椭圆长轴长的取值范围.【解题思路】通过“韦达定理”沟通a与e的关系[解析]由,得由,得此时由,得,∴即,故由,得∴由得,∴所以椭圆长轴长的取值范围为【名师指引】求范围和最值的方法:几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题代数方法:建立目标函数,再求目标函数的最值.【新题导练】7. 已知P是椭圆C:的动点,点关于原点O的对称点是B,若|PB|的最小值为,求点P 的横坐标的取值范围。

[解析]由,设,,,解得或又或8. 定长为3的线段AB的两个端点在抛物线上移动,记线段AB的中点为M,求点M到y 轴的最短距离,并求此时点M的坐标.[解析] 设,,因AB与x轴不平行,故可设AB的方程为,将它代入得由得即,将代入得当且仅当即时取等号,此时,所以,点M 为或时,到y轴的最短距离最小,最小值为.9.直线m:y=kx+1和双曲线x2-y2=1的左支交于A,B两点,直线过点P(-2,0)和线段AB的中点M,求在y轴上的截距b的取值范围.[解析] 由消去y得:解得设M(x0,y0)则三点共线令上为减函数.10.已知椭圆,A(4,0),B(2,2)是椭圆内的两点,P是椭圆上任一点,求:(1)求的最小值;(2)求|PA|+|PB|的最小值和最大值.[解析](1)最小值为(2)最大值为10+|BC|=;最小值为10-|BC|=.考点4 定点,定值的问题题型:论证曲线过定点及图形(点)在变化过程中存在不变量[例6] 已知P、Q是椭圆C:上的两个动点,是椭圆上一定点,是其左焦点,且|PF|、|MF|、|QF|成等差数列。

求证:线段PQ的垂直平分线经过一个定点A;【解题思路】利用“|PF|、|MF|、|QF|成等差数列”找出两动点间的坐标关系证明:设知同理①当,从而有设PQ的中点为,得线段PQ的中垂线方程为②当线段PQ的中垂线是x轴,也过点【名师指引】定点与定值问题的处理一般有两种方法:(1)从特殊入手,求出定点和定值,再证明这个点(值)与变量无关;(2)直接推理、计算,并在计算过程中消去变量,从而得到定点(定值).【新题导练】11.已知抛物线C的方程为y=x2-2m2x-(2m2+1) (m∈R),则抛物线C恒过定点[解析](-1,0) [令x=-1得y=0]12.试证明双曲线-=1(a>0,b>0)上任意一点到它的两条渐近线的距离之积为常数. [解析] 双曲线上任意一点为,它到两渐近线的距离之积考点6 曲线与方程题型:用几种基本方法求轨迹方程[例7]已知抛物线C:y2=4x,若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l 分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;【解题思路】探求动点满足的几何关系,在转化为方程[解析]由抛物线y2=4x,得焦点F(1,0),准线x=-1(1)设P(x,y),则B(2x-1,2y),椭圆中心O′,则|FO′|∶|BF|=e,又设点B到l的距离为d,则|BF|∶d=e,∴|FO′|∶|BF|=|BF|∶d,即(2x-2)2+(2y)2=2x(2x-2),化简得P点轨迹方程为y2=x-1(x>1)[名师指引] 求曲线方程的方法主要有:直接法、定义法、代入法、参数法,本题用到直接法,但题目条件需要转化【新题导练】13.点P为双曲线上一动点,O为坐标原点,M为线段OP中点,则点M的轨迹方程是.[解析] [相关点法]14.过双曲线C: 的右焦点F作直线l与双曲线C交于P、Q两点,,求点M的轨迹方程.[解析]右焦点(2,0),设得,,直线l的斜率又, ,两式相减得,把,,代入上式得15.已知动点与双曲线的两个焦点、的距离之和为定值,且的最小值为.求动点的轨迹方程;[解析](1)由条件知,动点的轨迹为椭圆,其中半焦距为,点P在y轴上时最大,由余弦定理得,动点的轨迹方程.16. (广东实验中学)已知圆C: .(1)直线过点P(1,2),且与圆C交于A、B两点,若,求直线的方程;(2)过圆C上一动点M作平行于y轴的直线m,设m与x轴的交点为N,若向量,求动点的轨迹方程.(3) 若点R(1,0),在(2)的条件下,求的最小值.解析(1)①当直线垂直于轴时,则此时直线方程为,与圆的两个交点坐标为和,其距离为,满足题意……1分②若直线不垂直于轴,设其方程为,即…2分设圆心到此直线的距离为,则,得∴,,………4分故所求直线方程为3x-4y+5=0综上所述,所求直线为3x-4y+5=0或x=1 ……………5分(2)设点M的坐标为(x0,y0),Q点坐标为(x,y)则N点坐标是(x0, 0)∵,∴即,………7分又∵,∴…………9分直线m //y轴,所以,,∴点的轨迹方程是( )……10分(3)设Q坐标为(x,y),,,……11分又( )可得:.………13分…………14分★课后训练★基础巩固训练1. 已知是三角形的一个内角,且,则方程表示(A)焦点在x轴上的椭圆(B)焦点在y轴上的椭圆(C)焦点在x 轴上的双曲线(D)焦点在y 轴上的双曲线1.[解析] B. 由知,2. 已知点M(3,4)在一椭圆上,则以点M为顶点的椭圆的内接矩形的面积是()(A)12 (B)24 (C)48 (D)与椭圆有关2. [解析] C [由椭圆的对称性可知];3. 已知点F(,直线,点B是l上的动点.若过B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是()A.双曲线B.椭圆C.圆D.抛物线3.[解析]D. [MB=MF]4. 过双曲线的右焦点作直线交双曲线于A、B两点,且,则这样的直线有___________条.4.[解析] 3;垂直于实轴的弦长为4,实轴长为2.5. 是椭圆的左、右焦点,点在椭圆上运动,则的最大值是.5.[解析] ≤;6. 若双曲线与圆有公共点,则实数的取值范围为.6. [解析] [ ]综合提高训练7. 已知抛物线的弦AB经过点P(4,2)且OA⊥OB(O为坐标原点),弦AB所在直线的方程为7.[解析] 12x —23y—2=0 记住结论:8.已知椭圆,直线l到原点的距离为求证:直线l与椭圆必有两上交点.8.[解析] 证明:当直线l垂直x轴时,由题意知:不妨取代入曲线E的方程得:即G(,),H(,-)有两个不同的交点,当直线l不垂直x轴时,设直线l的方程为:由题意知:由∴直线l与椭圆E交于两点, 综上,直线l必与椭圆E交于两点9. 求过椭圆内一点A(1,1)的弦PQ的中点M的轨迹方程.9.[解析]解:设动弦PQ的方程为,设P(),Q(),M(),则:①②①-②得:当时,由题意知,即③③式与联立消去k,得④当时,k不存在,此时,,也满足④.故弦PQ的中点M的轨迹方程为:10 .已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B.若,求a的取值范围.10 .[解析]直线的方程为,将,得: .设直线与抛物线的两个不同交点的坐标为、,则又,∴.∵,∴.解得.11. 过抛物线的焦点作一条斜率为k(k≠0)的弦,此弦满足:①弦长不超过8;②弦所在的直线与椭圆3x2 +2y2 =2相交,求k的取值范围.11. 解析:抛物线的焦点为(1,0),设弦所在直线方程为由得2分∴故由,解得k≥1由得8分由,解得k2 < 3 因此1≤k2 < 3∴k的取值范围是[ ,-1]∪[1,]12. 在直角坐标平面内,已知两点A(-2,0)及B(2,0),动点Q到点A的距离为6,线段BQ的垂直平分线交AQ于点P。

相关文档
最新文档