人教版九年级数学上册第六章测试卷2套含答案
人教版九年级上册数学各单元测试卷及答案(全套)
第二十一章综合测试一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是( ) A .2550x x -+= B .2550x x +-= C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是( ) A.12x x ==B .10x =,2x =-C.1x =2x =-D.1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为( ) A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为( ) A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为( )A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为( ) A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=( ) A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为( )A .1(1)282x x += B .1(1)282x x -= C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根 二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -=的两根为1x ,2x ,则1211x x +=__________. 15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________. 16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________. 17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分) 19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=. (1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。
九年级上第六章反比例函数检测题附答案解析
第六章 反比例函数检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共30分) 1.当x >0时,函数y =-的图象在( ) A.第四象限B.第三象限C.第二象限D.第一象限2.设点A (x 1,y 1)和B (x 2,y 2)是反比例函数y =图象上的两个点,当x 1<x 2<0时,y 1<y 2,则一次函数y =-2x +k 的图象不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在同一直角坐标系中,函数xky =和3+=kx y 的图象大致是( )4. ( 2015·天津中考)已知反比例函数y =,当1<x <3时,y 的取值范围是( ) A.0<y <1B.1<y <2C.2<y <6D.y >65.(2015·江苏苏州中考)若点A (a ,b )在反比例函数y =的图象上,则代数式ab -4的值为( ) A.0B.-2C.2D.-66.(2014·兰州中考)若反比例函数y =1k x-的图象位于第二、四象限,则k 的取值可能是( ) A.0 B.2 C.3 D.47.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m 3)与体积V (单位:m 3)满足函数关系式ρ=kV(k 为常数,k ≠0),其图象如图所示,则k 的值为( ) A.9 B.-9 C. 4 D.-48.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( ) A. B.C.D.9.(2014·重庆中考) 如图,反比例函数6y x=-在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1、-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( ) A.8 B.10 C.12 D.24第7题图ρV第9题图第10题图10.如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( )A.2≤k ≤9B.2≤k ≤8C.2≤k ≤5D.5≤k ≤8 二、填空题(每小题3分,共24分) 11.( 2015·福州中考)一个反比例函数图象过点A (2,3),则这个反比例函数的表达式是________. 12.如果一个正比例函数的图象与反比例函数y =的图象交于A (x 1,y 1)、B (x 2,y 2)两点,那么(x 2-x 1)(y 2-y 1)的值为 . 13.已知反比例函数xm y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.15. ( 2015·湖北宜昌中考)如图,市煤气公司计划在地下修建一个容积为104 m 3的圆柱形煤气储存室,S (2d (单位:m )的函数图象大致是( )B. C.第15题图16.如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为 . 17.已知),(111y x P ,),(222y x P 是同一个反比例函数图象上的两点.若212+=x x ,且211112+=y y ,则这个反比例函数的表达式为 .18.(2015·兰州中考)如图,点P ,Q 是反比例函数y =图象上的两点,P A ⊥y 轴于点A ,QN ⊥x 轴于点N ,作PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连接PB ,QM ,△ABP 的面积记为,△QMN 的面积记为,则 .(填“>”或“<”或“=”)第16题图第18题图 第19题图三、解答题(共66分)19.(8分)(2014·成都中考)如图,一次函数5y kx =+(k 为常数,且0k ≠)的图象与反比例函数8yx=-的图象交于()2,A b -,B 两点. (1)求一次函数的表达式;(2)若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.20.(8分)如图,直线y =mx 与双曲线k y x=相交于A ,B 两点,A 点的坐标为(1,2).(1)求反比例函数的表达式; (2)根据图象直接写出当mx >k x时,x 的取值范围; (3)计算线段AB 的长.第20题图21.(8分)如图所示是某一蓄水池的排水速度h )与排完水池中的水所用的时间t (h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的关系式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少? (4)如果每小时排水量是,那么水池中的水要用多少小时排完? 22.(8分)若反比例函数xky =与一次函数42-=x y 的图象都经过点A (a ,2). (1)求反比例函数x ky =的表达式; (2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.23.(8分)(2014·江苏苏州中考) 如图,已知函数y =kx(x >0)的图象经过点A ,B ,点A 的坐标为 (1,2).过点A 作AC ∥y 轴,AC =1(点C 位于点A 的下方),过点C 作CD ∥x 轴,与函数的图象交于点D ,过点B 作BE ⊥CD ,垂足E 在线段CD 上,连接OC ,OD . (1)求△OCD 的面积;(2)当BE =12AC 时,求CE 的长.第23题图 第24题图24.(8分)如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x=(x)的图象分别交于点C 、D ,且C 点的坐标为(1-,2). ⑴分别求出直线AB 及反比例函数的表达式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y ?25.(8分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设 该材料温度为y (℃),从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 间的函数关系式;(2)根据工艺要求,当材料的温度低于15 ℃时,停止操作,那么从 开始加热到停止操作,共经历了多少时间?26.(10分)如图所示,一次函数y 1=x +1的图象与反比例函数y 2=(k 为常数,且k ≠0)的图象都经过点A (m ,2). (1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接比较:当x >0时,y 1与y 2的大小.第六章 反比例函数检测题参考答案1. A 解析:因为函数y =-中k =-5<0,所以其图象位于第二、四象限,当x >0时,其图象位于第四象限.2. A 解析:对于反比例函数,∵ x 1<x 2<0时,y 1<y 2,说明在同一个象限内,y 随x 的增大而增大,∴ k <0,∴ 一次函数y =-2x +k 的图象与y 轴交于负半轴,其图象经过第二、三、四象限,不经过第一象限.3.A 解析:由于不知道k 的符号,此题可以分类讨论,当时,反比例函数xky =的图象在第一、三象限,一次函数3+=kx y 的图象经过第一、二、三象限,可知A 项符合;同理可讨论当时的情况.4.C 解析:对于反比例函数y =,当x =1时,y =6;当x =3时,y =2. 又因为在每个象限内y 随x 的增大而减小,所以2<y <6,故选C.5.B 解析:∵ 点A (a ,b )在反比例函数y =2x的图象上,∴ ab =2,∴ ab -4=2-4=-2. 6.A 解析:∵ 反比例函数的图象位于第二、四象限,∴ k -1<0, ∴ k <1. 只有A 项符合题意.7. A 解析:由图象可知,函数图象经过点(6,1.5),设反比例函数的表达式为ρ=,则 1.5=,解得k =9. 8.D 解析:因为反比例函数4y x=的图象在第一、三象限,且在每个象限内y 随x 的增大而减小,所以.又因为当时,,当时,,所以,,故选D.9.C 解析:∵ 点A 、B 都在反比例函数的图象上,∴ A (-1,6),B (-3,2). 设直线AB 的表达式为0y kx b k =+≠(),则6,23,k b k b =-+⎧⎨=-+⎩解得2,8,k b =⎧⎨=⎩∴ 直线AB 的表达式为28yx =+,∴ C (-4,0).在△AOC 中,OC =4,OC 边上的高(即点A 到x 轴的距离)为6, ∴ △AOC 的面积14612.2=⨯⨯=10.A 解析:当反比例函数图象经过点C (1,2)时,k =2;当反比例函数图象与直线AB 只有一个交点时,令-x +6=,得x 2-6x +k =0,此时方程有两个相等的实数根,故24b ac -=36-4k =0,所以k =9,所以k 的取值范围是2≤k ≤9,故选A. 11. y解析:设反比例函数的表达式为y(k 0),将点A (-2,-3)代入,得k =6,所以这个反比例函数的表达式为y =.12. 24 解析:由反比例函数图象的对称性知点A 和点B 关于原点对称,所以有x 2=-x 1,y 2=-y 1.又因为点A (x 1, y 1)在反比例函数y =的图象上,所以x 1y 1=6, 故(x 2-x 1)(y 2-y 1)=-2x 1·(-2y 1)=4x 1y 1=24. 13.14.4 解析:由反比例函数xk y 3-=的图象位于第一、三象限内,得,即.又正比例函数x k y )92(-=的图象过第二、四象限,所以,所以.所以的整数值是4.15. A 解析:由圆柱的体积计算公式可得Sd =104 m 3,所以S =.由此可知S 是关于d 的反比例函数,反比例函数的图象是双曲线,又因为这是个实际问题,S 与d 的取值都为正数,所以图象只能在第一象限,故A 项正确.16.4 解析:设点A (x ,),∵ OM =MN =NC ,∴ AM =,OC =3x . 由S △AOC =·AM =·3x ·=6,解得k =4.17.x y 4=解析:设反比例函数的表达式为k y x =,因为1212,k k y y x x ==,211112+=y y ,所以2112x x k =+. 因为212+=x x ,所以122k =,解得k =4,所以反比例函数的表达式为xy 4=.18 .= 解析:设P (a ,b ),Q (c ,d ),则P A =OM =a ,OA =PM =b ,ON =BQ =c , OB =QN =d ,则AB =b -d ,MN =c -a , 所以1111()()222S PA AB a b d ab ad ==-=-,211()22S MN QN c a d ==-=1()2cd ad -.根据反比例函数中比例系数k 的几何意义可得ab =cd =k ,第18题答图所以12S S =.19.解:(1)根据题意,把点A (-2,b )的坐标分别代入一次函数和反比例函数表达式中,得2582b k b =-+⎧⎪⎨=-⎪-⎩,,解得412b k =⎧⎪⎨=⎪⎩,,所以一次函数的表达式为y =12x +5.(2)向下平移m 个单位长度后,直线AB 的表达式为152y x m =+-, 根据题意,得8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩,, 消去y ,可化为21(5)802x m x +-+=, Δ=(5-m )2-4×1802⨯=,解得m =1或9. 20. 解:(1)把A (1,2)代入ky x=中,得2k =. ∴ 反比例函数的表达式为2yx=. (2)10x -<<或1x >.(3)如图,过点A 作AC ⊥x 轴,垂足为C .第20题答图∵ A (1,2),∴ AC =2,OC =1.∴ OA = ∴ AB =2OA21.分析: (1)观察图象易知蓄水池的蓄水量.(2)与之间是反比例函数关系,所以可以设,依据图象上点(12,4)的坐标可以求得与之间的函数关系式. (3)求当 h 时的值. (4)求当时,t 的值. 解:(1)蓄水池的蓄水量为12×4=48().(2)函数的关系式为.(3).(4)依题意有,解得(h ).所以如果每小时排水量是5 ,那么水池中的水要用9.6小时排完. 22.解:(1)因为的图象过点A (),所以.因为 x ky =的图象过点A (3,2),所以,所以x y 6=.(2) 求反比例函数x y 6=与一次函数42-=x y 的图象的交点坐标,得到方程:xx 642=-,解得.所以另外一个交点是(-1,-6).画出图象,可知当或时,反比例函数y =6x的值大于一次函数24y x =-的值. 23.解:(1)反比例函数y =kx(x >0)的图象经过点A (1,2),∴ k =2. ∵ AC ∥y 轴,AC =1,∴ 点C 的坐标为(1,1).∵ CD ∥x 轴,点D 在函数图象上,∴ 点D 的坐标为(2,1).∴ CD 的长为1.∴ 1111.22OCD S =⨯⨯=△ (2)∵ BE =12AC ,AC =1,∴12BE =.∵ BE ⊥CD ,∴ 点B 的纵坐标是32. 设3,2B a (),把点3,2B a ()代入y =2x中,得324==.23a a ,∴ 即点B 的横坐标是43,∴ 点E 的横坐标是43, CE 的长等于点E 的横坐标减去点C 的横坐标.∴ CE =41133-=. 24.解:(1)将C 点坐标(1-,2)代入1y x m =+中,得,所以13y x =+.将C 点坐标(1-,2)代入2k y x=,得.所以22y x =-.(2)由方程组解得所以D 点坐标为(-2,1).(3)当1y >2y 时,一次函数图象在反比例函数图象上方, 此时x 的取值范围是21x -<<-.25.解:(1)当时,为一次函数,设一次函数表达式为,由于一次函数图象过点(0,15),(5,60), 所以解得所以.当时,为反比例函数,设函数关系式为,由于图象过点(5,60),所以.综上可知y 与x 间的函数关系式为⎪⎩⎪⎨⎧≥<≤+=).5(300),50(159x xx x y(2)当时,,所以从开始加热到停止操作,共经历了20分钟.26. 分析:(1)因为点A (m ,2)在一次函数y 1=x +1的图象上,所以当x =m 时,y 1=2.把x =m ,y 1=2代入y 1=x +1中求出m 的值,从而确定点A 的坐标.把所求点A 的坐标代入y 2=中,求出k 值,即可确定反比例函数的表达式.(2)观察图象发现,当x >0时,在点A 的左边y 1<y 2,在点A 处y 1=y 2,在点A 的右边y 1>y 2.由此可比较y 1和y 2的大小. 解:(1)∵ 一次函数y 1=x +1的图象经过点A (m ,2),∴ 2=m +1.解得m =1. ∴ 点A 的坐标为A (1,2).∵ 反比例函数y 2=的图象经过点A (1,2),∴ 2=.解得k =2, ∴ 反比例函数的表达式为y 2=.(2)由图象,得当0<x <1时,y 1<y 2;当x =1时,y 1=y 2;当x >1时,y 1>y 2. 点拨:利用函数的图象比较两个函数值的大小时,图象越高,函数值越大.。
九年级数学上第六章达标测试卷
第六章达标测试卷一、选择题(每题3分,共30分)1.下列函数是反比例函数的是()A.y=x5B.y=2xC.y=x2-2x-1 D.y=8x-42.点A(-2,5)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.10 B.5 C.-5 D.-103.正比例函数y=6x的图象与反比例函数y=6x的图象的交点位于()A.第一象限B.第二象限C.第三象限D.第一、三象限4.如果反比例函数y=kx的图象经过点(1,n2+1),那么这个函数的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限5.为了更好地保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)满足关系式V=Sh(V≠0),则S关于h的函数图象大致是()6.已知点A(2,y1),B(4,y2)都在反比例函数y=kx(k<0)的图象上,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.已知A(-1,y1),B(2,y2)两点在双曲线y=3+2mx上,且y1>y2,则m的取值范围是()A.m>0 B.m<0C.m>-32D.m<-328.已知一次函数y 1=kx +b (k <0)与反比例函数y 2=mx (m ≠0)的图象相交于A ,B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( ) A .x <-1或0<x <3 B .-1<x <0或0<x <3 C .-1<x <0或x >3D .0<x <39.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x 上,且AB ∥x 轴,C ,D 在x 轴上,若四边形ABCD 为矩形,则它的面积为( ) A .1 B .2 C .3D .4(第9题)(第10题) 10.如图,直线y =2x 与双曲线y =2x 在第一象限的交点为A ,过点A 作AB ⊥x 轴于点B ,将△ABO 绕点O 旋转90°,得到△A ′B ′O ,则点A ′的坐标为( ) A .(1,0)B .(1,0)或(-1,0)C .(2,0)或(0,-2)D .(-2,1)或(2,-1)二、填空题(每题3分,共24分)11.已知反比例函数y =kx (k 为常数,k ≠0)的图象位于第一、三象限,写出一个符合条件的k 的值:__________.12.若反比例函数y =kx (k ≠0)的图象经过点(1,-3),则一次函数y =kx -k (k ≠0)的图象经过第________象限.13.已知近视眼镜的度数y (度)与镜片焦距x (m)满足的关系式为y =100x ,则当近视眼镜为200度时,镜片焦距为________.14.已知函数y =(m 2-2)xm 2+m -3是反比例函数,且它的图象在第一、三象限,那么m =________.15.一辆汽车从甲地开往乙地,随着汽车平均速度v (km/h)的变化,到达时所用的时间t (h)的变化情况如图所示,那么行驶过程中t 与v 的关系式为____________.(第15题) (第18题)16.已知A (x 1,y 1),B (x 2,y 2)都在反比例函数y =6x 的图象上.若x 1x 2=-3,则y 1y 2=________.17.已知正比例函数y =-4x 与反比例函数y =kx 的图象交于A ,B 两点,若点A的坐标为(a ,4),则点B 的坐标为__________.18.如图,已知双曲线y =kx 与直线y =-x +6相交于A ,B 两点,过点A 作x 轴的垂线与过点B 作y 轴的垂线相交于点C ,若△ABC 的面积为8,则k 的值为________.三、解答题(19,20题每题8分,21,22题每题9分,23,24题每题10分,25题12分,共66分)19.已知函数y =kx 的图象经过点(-3,4).(1)求k 的值,并在如图所示的坐标系中画出这个函数的图象(每个小正方形的边长为1个单位长度);(2)当x 取什么值时,函数的值小于0?20.如图是反比例函数y =5-2mx 的图象的一支.根据图象解决下列问题: (1)求m 的取值范围;(2)若点A (m -3,b 1)和点B (m -4,b 2)是该反比例函数图象上的两点,请你判断b 1与b 2的大小关系,并说明理由.21.在压力不变的情况下,某物体承受的压强p (Pa)是它的受力面积S (m 2)的反比例函数,其图象如图所示. (1)求p 与S 之间的函数关系式;(2)求当受力面积为0.5 m 2时物体承受的压强; (3)若要获得2 500 Pa 的压强,受力面积应为多少?22.如图,已知在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x (m ≠0)的图象相交于A ,B 两点,且点B 的纵坐标为-12,过点A 作AC ⊥x 轴于点C ,AC =1,OC =2.求: (1)反比例函数的表达式; (2)一次函数的表达式.23.如图,点A 是x 轴上的一个动点,过点A 作x 轴的垂线AB 交双曲线y =3x 于点B .连接OB ,BO 的延长线与双曲线y =3x 交于点D ,作DC 垂直于x 轴,垂足为C ,连接BC ,AD ,则四边形ABCD 的面积是否为一个常数?若是,求出这个常数;若不是,请说明理由.24.保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2017年1月的利润为200万元,设2017年1月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2017年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例,到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及治污改造工程完工后,y 与x 之间的函数表达式. (2)治污改造工程顺利完工后经过几个月,该厂月利润才能达到200万元? (3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?25.▱ABCD在平面直角坐标系中的位置如图所示,其中A(-4,0),B(2,0),C(3,3),反比例函数y=mx的图象经过点C.(1)求此反比例函数的表达式;(2)将▱ABCD沿x轴翻折得到▱ABC′D′,请说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.答案一、1.B 2.D 3.D 4.A 5.C6.B 7.D 8.A9.B 点拨:如图,延长BA 交y 轴于点E ,易得四边形AEOD 、四边形BEOC 均为矩形.∵点A 在双曲线y =1x 上,∴矩形AEOD 的面积为1.∵点B 在双曲线y =3x 上,∴矩形BEOC 的面积为3,∴矩形ABCD 的面积为3-1=2.故选B . 10.D二、11.2(答案不唯一) 12.一、二、四 13.0.5 m 14.-2 15.t =600v16.-12 点拨:由题意可知y 1=6x 1,y 2=6x 2,所以y 1y 2=6x 1·6x 2=36x 1x 2=36-3=-12. 17.(1,-4) 点拨:易知点A 的坐标为(-1,4).因为正比例函数y =-4x 与反比例函数y =kx 的图象交于A ,B 两点,所以点A ,B 关于原点对称.所以点B 的坐标为(1,-4).18.5 点拨:由题意易知△ABC 为等腰直角三角形.∵S △ABC =8,∴12AC ·BC =8. ∴AC =BC =4.设A (a ,-a +6), 则B (a +4,2-a ).∵点A ,B 在双曲线y =kx 上, ∴a (-a +6)=(a +4)(2-a ). ∴a =1.∴A (1,5).∴k =5.三、19.解:(1)把(-3,4)代入y =kx ,得k =-3×4=-12,∴y =-12x .图象如图所示.(2)由图象可以看出,当x >0时,函数的值小于0.20.解:(1)易知图象的另一支在第三象限.∵图象在第一、三象限, ∴5-2m >0,解得m <52. (2)b 1<b 2.理由:∵m <52, ∴m -4<m -3<0.∴b 1<b 2. 21.解:(1)设p =kS (k ≠0),∵点(0.25,1 000)在这个函数的图象上,∴1 000=k0.25,∴k =250, ∴p 与S 之间的函数关系式为p =250S (S >0). (2)当S =0.5时,p =2500.5=500.故当受力面积为0.5 m 2时,物体承受的压强为500 Pa. (3)令p =2 500,则S =2502 500=0.1,要获得2 500 Pa 的压强,受力面积应为0.1 m 2.22.解:(1)∵AC ⊥x 轴,AC =1,OC =2,∴点A 的坐标为(2,1). ∵反比例函数y =mx 的图象经过点A (2,1),∴m =2. ∴反比例函数的表达式为y =2x .(2)由(1)知,反比例函数的表达式为y =2x .∵反比例函数y =2x 的图象经过点B ,且点B 的纵坐标为-12, ∴点B 的坐标为-4,-12.∵一次函数y =kx +b 的图象经过点A (2,1),B -4,-12, ∴2k +b =1,-4k +b =-12.解得k =14, b =12.∴一次函数的表达式为y =14x +12.23.解:是一个常数.由反比例函数的比例系数k 的几何意义可知S △AOB =12|k |.又因为正比例函数与反比例函数的图象都关于原点对称, 所以点B 与点D 关于原点对称,所以OA =OC ,所以△OCB 与△AOB 等底同高,其面积相等, 故S △OCB =12|k |.同理,S △OCD =S △AOD =12|k |, 从而,S 四边形ABCD =2|k |=2×3=6,所以四边形ABCD 的面积是一个常数,这个常数为6.24.解:(1)①当1≤x ≤5时,设y =kx ,把(1,200)代入,得k =200, 即y =200x ;②当x =5时,y =40,∴当x >5时,设y =20x +b ,则20×5+b =40,得b =-60,即x >5时,y =20x -60. (2)对于y =20x -60,当y =200时,20x -60=200,解得x =13. ∴治污改造工程顺利完工后经过13-5=8(个)月, 该厂月利润才能达到200万元.(3)对于y =200x ,当y =100时,x =2;对于y =20x -60,当y =100时, x =8.所以该厂资金紧张期共有8-2-1=5(个)月.25.解:(1)∵点C (3,3)在反比例函数y =m x 的图象上,∴3=m3.∴m =9.故反比例函数的表达式为y =9x .(2)如图,过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,∴∠DF A =∠CEB.∵AD ∥BC , ∴∠DAF =∠CBE.又∵AD =BC , ∴△DAF ≌△CBE. ∴AF =BE ,DF =CE.∵点A ,B ,C 的坐标分别为A (-4,0),B (2,0),C (3,3), ∴DF =CE =3,OA =4,OE =3,OB =2.∴OF =OA -AF =OA -BE =OA -(OE -OB )=4-(3-2)=3. ∴点D 的坐标为(-3,3). ∵点D ′与点D 关于x 轴对称, ∴点D ′的坐标为(-3,-3). 把x =-3代入y =9x ,得y =-3. ∴点D ′在双曲线上.(第25题)(3)△AD ′C 如图所示. ∵点C 的坐标为(3,3), 点D ′的坐标为(-3,-3),∴点C 和点D ′关于原点O 中心对称. ∴D ′O =CO =12D ′C.∴S △AD ′C =2S △AOC =2×12·AO ·CE =2×12×4×3=12.。
人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案(含两套题)
(1)如图1,点E在BC边上.
①依题意补全图1;
②若AB=6,EC=2,求BF的长;
(2)如图2,点E在BC边的延长线上,用等式表示线段BD,BE,BF之间的数量关系.
∴∠ODA=90°,AD=BD=8cm,
在Rt△ODA中,由勾股定理得
OD= cm,
∵OC=10cm,
∴CD=OC-OD=4cm,故选C.
【点睛】本题考查了垂径定理,勾股定理.能根据垂径定理求出AD的长是解题的关键.
4. B
【解析】
【分析】先求圆锥的母线,再根据公式求侧面积.
【详解】由勾股定理得:母线 ,
(1)如图1,MA=6,MB=8,∠NOB=60°,求NB的长;
(2)如图2,过点M作MC⊥AB于点C,P是MN的中点,连接MB,NA,PC,试探究∠MCP,∠NAB,∠MBA之间的数量关系,并证明.
24.(12分)已知:如图1,在平面直角坐标系中,⊙P的圆心 ,半径为5,⊙P与抛物线 的交点A、B、C刚好落在坐标轴上.
三、解答题(共9小题,总分72分)
17.(6分)已知△ABC的顶点A、B、C在格点上,按下列要求在网格中画图.
(1)△ABC绕点C顺时针旋转90°得到△A1B1C;
(2)画△A1B1C关于点O的中心对称图形△A2B2C2.
18.(6分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.
人教版2022--2023学年度第一学期期中测试卷
九年级 数学
(满分:120分 时间:100分钟)
题号
一
二
人教版九年级数学上册单元测试题全套及答案
九年级数学上册半月测试题姓名:分数:时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.一元二次方程x2-8x-1=0配方后为( )A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=172.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为( )A.0,5 B.0,1 C.-4,5 D.-4,13.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为( ) A.4,-2 B.-4,-2 C.4,2 D.-4,24.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为( )A.1 B.-3或1 C.3 D.-1或35.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是( )A.4 B.6 C.8 D.106.已知关于x的一元二次方程x2+2x-(m-2)=0有实数根,则m的取值范围是( )A.m>1 B.m<1 C.m≥1 D.m≤17.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,∠OBC=45°,则下列各式成立的是( )A.b-c-1=0 B.b+c+1=0C.b-c+1=0 D.b+c-1=08.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则▱ABCD的周长为( )A.4+2 2 B.12+6 2C.2+2 2 D.2+2或12+6 29.当x取何值时,代数式x2-6x-3的值最小?( )A.0 B.-3 C.3 D.-910.如图,将边长为12 cm的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为32 cm2,则它移动的距离AA′等于()A .4 cmB .8 cmC .6 cmD .4 cm 或8 cm二、填空题(每小题3分,共24分)11.把方程3x(x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为__ __.12.方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为__ __.13.若抛物线y =ax 2+bx +c 的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为__ __. 14.下面是某同学在一次测试中解答的填空题:①若x 2=a 2,则x =a ;②方程2x(x -2)=x -2的解为x =0;③已知x 1,x 2是方程2x 2+3x -4=0的两根,则x 1+x 2=32,x 1x 2=-2.其中错误的答案序号是____.15.已知一元二次方程x 2+3x -4=0的两根为x 1,x 2,则x 12+x 1x 2+x 22=___.16.如图,一个矩形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5 cm ,容积是500 cm 3的无盖长方体容器,那么这块铁皮的长为__ __,宽为__ __.17.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是__ _.18.若二次函数y =2x 2-4x -1的图象与x 轴交于A(x 1,0),B(x 2,0)两点,则1x 1+1x 2的值为__ __.三、解答题(共66分)19.(8分)用适当的方法解下列方程:(1)(x +1)(x -2)=x +1; (2)2x 2-4x =4 2.20.(8分) 已知:如图,二次函数y=ax2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M 为 它的顶点.(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB.21.(6分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.22.(8分)关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.23.(8分) 已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).(1)求证:4c=3b2;(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.24.(8分) 某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数解析式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.(10分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出__ __只粽子,利润为__ __元;(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元,并且卖出的粽子更多?26.(10分)要在一块长52 m,宽48 m的矩形绿地上,修建同样宽的两条互相垂直的甬路,下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x与小亮设计方案中的x取值相同)。
人教版九年级数学上册 期末复习(易错题精选、一元二次方程)二套含答案
人教版九年级数学上册期末复习01—易错题精选一、选择题(每小题3分,共24分)1.关于x 的方程22210m x x --+=()有实数解,那么m 的取值范围是( )A .2m ≠B .3m ≤C .3m ≥D .32m m ≤且≠2.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A .至少有两名学生生日相同B .不可能有两名学生生日相同C .可能有两名学生生日相同,但可能性不大D .可能有两名学生生日相同,且可能性很大3.如图①是33⨯正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )A .4种B .5种C .6种D .7种4.如图,在正方体的表面展开图中,要将a -、b -、c -填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字和均为零的概率为( ) A .12 B .13C .14D .16 5.有两个一元二次方程:2:0M ax bx c ++=,2:0N cx bx a ++=,其中0a c +=,下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =6.如图,在ABC △中,AB AC =,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是( )A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点7.已知二次函数2y x bx c =++的图象过点1A m (,),3B m (,),若点12M y -(,),21N y -(,),38K y (,)也在二次函数2y x bx c =++的图象上,则下列结论正确的是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.已知抛物线20y ax bx c a =++(>)过20-(,),23(,)两点,那么抛物线的对称轴( ) A .只能是1x =- B .可能是y 轴 C .在y 轴右侧 D .在y 轴左侧二、填空题(每小题4分,共32分)1.请写出一个符合下列全部条件的函数解析式________;(1)图象不经过第三象限;(2)当1x -<时,y 随x 的增大而减小;(3)图象经过点11-(,). 2.若抛物线2y ax c =+与x 轴交于点0A m (,),0B n (,),与y 轴交于点0C c (,),则ABC △称为“抛物三角形”.特别地,当0mnc <时,称ABC △为“倒抛物三角形”,此时a ,c 应分别满足条件________.3.已知圆的两条平行弦分别长6dm 和8dm ,若这圆的半径是5dm ,则两条平行弦之间的距离为________.4.如图,AB 是O e 的弦,6AB =,点C 是O e 上的一个动点,且°45ACB ∠=.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是________.5.有四张正面分别标有数字3-,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为________.6.如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转°60得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是________.7.如图,已知二次函数20y ax bx c a =++(≠)的图象经过点(1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中110x -<<,212x <<,下列结论:①0abc <;②2a b a -<<;③284b a ac +<;④10a -<<,其中正确结论的序号是________.8.如图,已知直线334y x =-+分别交x 轴、y 轴于点A ,B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是________.三、解答题(共64分)1.(6分)用四块如图①所示的瓷砖拼铺一个成正方形的地板,使拼铺的图案成轴对称图形或中心对称图形,请你在图②和③中各画出一种拼法.(要求两种拼法各不相同)2.(8分)张彬和王华两位同学为得到一张观看足球比赛的入场券,商量后计划通过转盘游戏来决定,并各自设计了一种方案:张彬:将一个可以自由转动并标有阴影区域面积的转盘(如图①),随意转动,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;王华:将分成4等分且分别标有数字1,2,3,4的转盘,随意转动两次,当指针所指两个数字之和为偶数,王华得到入场券;否则,张彬得到入场券.(1)使用张彬设计的方案,随机转动转盘一次,指针指向阴影区域的概率是多少?(2)请你运用所学的概率知识,帮助张彬和王华选出公平的游戏方案.3.(11分)如图①所示,AB 是O e 的直径,AC 是弦,直线EF 和O e 相切于点C ,AD EF ⊥,垂足为D .(1)求证:DAC BAC ∠=∠;(2)若把直线EF 向上平行移动,如图②所示,EF 交O e 于G ,C 两点,若题中的其他条件不变,试探究与DAC ∠相等的角是哪一个?说明理由.4.(12分)等腰ABC △的直角边10cm AB BC ==,点P ,Q 分别从A ,C 两点同时出发,均以1cm /秒的相同速度作直线运动,已知P 沿射线AB 运动,Q 沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t ,PCQ △的面积为S .(1)求出S 关于t 的函数关系式;(2)当点P 运动几秒时,PCQ ABC S S =△△?(3)作PE AC ⊥于点E ,当点P ,Q 运动时,线段DE 的长度是否改变?证明你的结论.5.(13分)已知Rt ABO △中,边1AB OB ==,°90ABO ∠=.【问题探究】(1)以AB 为边,在Rt ABO △的右边作正方形ABCD ,如图①,则点O 与点D 的距离为________.(2)以AB 为边,在Rt ABO △的右边作等边三角形ABC ,如图②,求点O 与点C 的距离.【问题解决】(3)若线段1DE =,线段DE 的两个端点D ,E 分别在射线OA ,OB 上滑动,以DE 为边向外作等边三角形DEF ,如图③,则点O 与点F 的距离有没有最大值?如果有,求出最大值;如果没有,说明理由.6.(14分)如图,抛物线2:L y x bx c =++经过A (0,3),B (1,0)4两点,点M 为顶点.(1)求b ,c 的值;(2)将OAB △绕点B 顺时针旋转:①当旋转°90时,点A 落在点C 的位置,将抛物线L 通过向上或向下平移后经过点C .求平移后所得抛物线1L 的表达式;②记OAB △绕点B 顺时针旋转过程中点A 的对应点为A ',点O 的对应点为O ',在抛物线1L 上是否存在A ',使得以点O ,A ,O ',A '为顶点的四边形是平行四边形?若存在,求出点A '的坐标;若不存在,请说明理由.期末复习—易错题精选参考答案一、1.【答案】B2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】D .二、1.【答案】211y x =--()(答案不唯一) 2.【答案】0a <,0c >3.【答案】1dm 7dm 或4.【答案】5.【答案】146.【答案】1.57.【答案】①②8.【答案】4144-+-或或三、1.【答案】答案不唯一.2.【答案】解:(1)根据转盘中阴影部分扇形的圆心角度数和°°°10070170+=则P (指针指向阴影区域)°°1701736036==.(2)由(1)得张彬设计的方案中,张彬得到入场券的概率为1736P =,王华得到入场券的概率为171913636P =-=,则张彬的方案不公平. 利用王华的方案画树状图如下:由树状图得,共有16种等可能的结果,两次数字之和为偶数的有8种,则王华得到入场券的概率为81162P ==,张彬得到入场券的概率为12P =,∴王华的设计方案公平. 3.【答案】(1)证明:如图①,连接OC .EF Q 与O e 相切于点C ,OC EF ∴⊥...AD EF AD OC OCA DAC ∴∴∠=∠Q ⊥,∥.OA OC OCA BAC DAC BAC =∴∠=∠∴∠=∠Q ,,(2)解:BAG ∠与DAC ∠相等.理由如下:如图②,连接BC ,则B AGD ∠=∠.AB Q 是直径,AD EF ⊥,°90BCA GDA ∴∠=∠=,°90B BAC ∴∠+∠=,°90AGD DAG ∠+∠=.BAC DAG ∴∠=∠,BAC CAG DAG CAG ∴∠-∠=∠-∠.即BAG DAC ∠=∠.4.【答案】解:(1)当10t <秒时,P 在线段AB 上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). 当10t >秒时,P 在线段AB 的延长线上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). (2)1502ABC S AB BC ==Q g △, 211010502PCQ t S t t ∴=-=△当<秒时,(). 整理,得2101000t t -+=,无解.当10t >秒时,2110502PCQ S t t =-=△().整理,得2101000t t --=,解得5t =±.∴当点P 运动5±(秒时,PCQ ABC S S =△△.(3)当点P ,Q 运动时,线段DE 的长度不会改变.证明:过Q 作QM AC ⊥,交直线AC 于点M .易证APE QCM △≌△,2AE PE CM QM ∴====. ∴四边形PEQM 是平行四边形,且DE 是对角线EM 的一半.又EM AC ==Q ,DE ∴=.∴当点P ,Q 运动时,线段DE 的长度不会改变.同理,当点P 在点B 右侧时,DE =综上所述,当点P ,Q 运动时,线段DE 的长度不会改变.5.【答案】(1(2)过点C 作CD OB ⊥,垂足为点D .连接OC ,则°30CBD ∠=.1AB BC ==Q ,∴在Rt CBD △中,12CD =,BD =,1OD ∴=+.∴在Rt CDO △中,OC ==.(3)点O 与点F 的距离有最大值. 作ODE △的外接圆M e ,连接MD ,ME ,MF ,MO ,OF ,则OF MO MF +≤. 设MF 与DE 交于点N .°°4590AOB DME ∠=∴∠=Q ,.1DE =Q ,∴可得M e 的半径为2MD ME MO ===. MD ME =Q ,DF EF =,MF ∴垂直平分DE .1122MN DE ∴==,22NF EF ==.12OF OM MF ∴+=+≤OF ∴最大值. 6.【答案】解:(1)已知抛物线L 经过点A (0,3),B (1,0),将其代入2y x bx c =++,得310c b c =⎧⎨++=⎩,,解得43.b c =-⎧⎨=⎩, 即b ,c 的值分别为4-和3.(2)①根据点A ,B 坐标,可知3OA =,1OB =,如图,将OAB △绕点B 顺时针旋转°90后,可得点C 坐标为(4,1).当4x =时,由243y x x =-+得3y =,可知抛物线L 经过点(4,3),∴将原抛物线沿y 轴向下平移2个单位后过点C .∴平移后的抛物线1L 的表达式为241y x x =-+.②存在.如图,OAB △绕点B 旋转过程中,当点A ',B ,A 三点在同一直线上时满足以点O ,A ,O ',A '为顶点的四边形是平行四边形.AB A B '=Q ,OB O B '=,∴四边形OAO A ''为平行四边形.根据图形的旋转性质,可知3O A OA ''==,1OB O B '==,且°90AOB A O B ''∠=∠=, ∴点A '的坐标为23-(,). 又Q 抛物线1L 的表达式为241y x x =-+,∴抛物线1L 的顶点坐标为23-(,). ∴点A '坐标与抛物线1L 的顶点坐标重合.∴抛物线1L 上存在一点23A '-(,),使得以点O ,A ,O ',A '为顶点的四边形是平行四边形.人教版九年级数学上册期末专项复习02—一元二次方程考点1 巧用一元二次方程的定义及相关概念求值题型1 利用一元二次方程的定义确定字母的取值1.已知231m x -=()是关于x 的一元二次方程,则m 的取值范围是( ) A .3m ≠B .3m ≥C .2m -≥D .23m m -≥且≠2.已知关于x 的方程211210m xm m x +++--=()().(1)m 取何值时,它是一元二次方程?并写出这个方程;(2)m 取何值时,它是一元一次方程?题型2 利用一元二次方程的项的概念求字母的取值1.若一元二次方程2243680a x a x a -+++-=()()没有常数项,则a 的值为________.2.已知关于x 的一元二次方程221510m x x m -++-=()的常数项为0,求m 的值.题型3 利用一元二次方程的根的概念求字母或代数式的值1.已知关于x 的方程20x bx a ++=的一个根是0a a -(≠),则a b -的值为() A .1- B .0 C .1 D .22.已知关于x 的一元二次方程2243160k x x k +++-=()的一个根为0,求k 的值.3.已知实数a 是一元二次方程2201610x x -+=的根,求代数式22120152016a a a +--的值.题型4 利用一元二次方程根的概念解决探究性问题1.已知m ,n 是方程2210x x --=的两个根,是否存在实数a 使22714367m m a n n -+--()()的值等于8?若存在,求出a 的值;若不存在,请说明理由.考点2 一元二次方程的解法归类类型1 限定方法解一元二次方程方法1 形如20x m n n +=()(≥)的一元二次方程用直接开平方法求解1.方程24250x -=的解为()A .25x = B .52x = C .52x =± D .25x =±2.用直接开平方法解下列一元二次方程,其中无解的方程为()A .255x -=B .230x -=C .240x +=D .210x +=()方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解1.用配方法解方程234x x +=,配方后的方程变为()A .227x -=()B .221x +=()C .221x -=()D .222x +=()2.解方程:2420x x +-=.3.已知221016890x x y y -+-+=,求x y的值.方法3 能化成形如0x a x b ++=()()的一元二次方程用因式分解法求解1.一元二次方程22x x x -=-()的根是()A .1-B .0C .1和2D .1-和22.解下列一元二次方程:(1)220x x -=;(2)21690x -=;(3)2441x x =-.方法4 如果一个一元二次方程易于化为它的一般式,则用公式法求解1.用公式法解一元二次方程2124x x =-,方程的解应是()A .x =B .xC .xD .x2.用公式法解下列方程.(1)23170x x +-=();(2)24352x x x --=-.类型2 选择合适的方法解一元二次方程1.方程24490x -=的解为() A .27x = B .72x =C .172x =,272x =-D .127x =,227x =- 2.一元二次方程293x x -=-的根是()A .3B .4-C .3和4-D .3和43.方程135x x +-=()()的解是()A .11x =,23x =-B .14x =,22x =-C .11x =-,23x =D .14x =-,22x = 4.解下列方程.(1)23360y y --=;(2)22310x x -+=.类型3 用特殊方法解一元二次方程方法1 构造法1.解方程:2619100x x ++=.2.若m ,n ,p 满足8m n -=,2160mn p ++=,求m n p ++的值.方法2 换元法a .整体换元1.若280a b a b +++-=()(),则a b +的值为()A .4-或2B .3或32- C .2-或4 D .3或2- 2.已知22260x xy y x y -++--=,则x y -的值是()A .2-或3B .2或3-C .1-或6D .1或6-3.解方程:223220x x ---+=()().4.解方程:123448x x x x ----=()()()().b .降次换元1.解方程:432635623560x x x x -+-+=.c .倒数换元1.解方程:2322x x x x --=-.方法3 特殊值法1.解方程:2013201420152016x x --=⨯()().考点3 根的判别式的四种常见应用题型1 利用根的判别式判断一元二次方程根的情况1.已知关于x 的方程2110kx k x +--=(),下列说法正确的是()A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解2.已知方程220x x m --=没有实数根,其中m 是实数,试判断方程2210x mx m m +++=()有无实数根.题型2 利用根的判别式求字母的值或取值范围1.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.2.已知关于x 的一元二次方程2220mx m x -++=(),(1)证明:不论m 为何值,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.题型3 利用根的判别式求代数式的值1.已知关于x 的方程22140x m x +-+=()有两个相等的实数根,求21212m m m--+()的值.2.已知关于x 的一元二次方程2200mx nx m +-=(≠)有两个相等的实数根,求222416mn m n ++-()的值.题型4 利用根的判别式确定三角形的形状1.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根,试判断此三角形的形状.2.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程204a c a c x bx -+++=()有两个相等的实数根,试判断此三角形的形状.考点4 一元二次方程与三角形的综合题型1 一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程27120x x -+=的解,则第三边的长为()A .3B .4C .3或4D .无法确定 2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3cm 和7cm ,第三边长为cm a ,且整数a 满足210210a a -+=,求三角形的周长.题型2 一元二次方程与直角三角形的结合1.已知一个直角三角形的两条直角边的长恰好是方程217600x x -+=的两个根,则这个直角三角形的斜边长为________.2.已知a ,b ,c 分别是ABC △的三边,当0m >时,关于x 的一元二次方程220c x m b x m ++--=()()有两个相等的实数根,试判断ABC △的形状,并说明理由.3.已知ABC △的三边a ,b ,c 中,1a b =-,1c b =+,又已知关于x 的方程2420120x x b -++=的根恰为b 的值,求ABC △的面积.题型3 一元二次方程与等腰三角形的综合1.等腰三角形一条边的长为3,另两条边的长是关于x 的一元二次方程2120x x k -+=的两个根,则k 的值是()A .27B .36C .27或36D .182.已知关于x 的一元二次方程220a c x bx a c +++-=()(),其中a ,b ,c 分别为ABC △的三边的长.(1)如果1x =-是方程的根,试判断ABC △的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC △的形状,并说明理由;(3)如果ABC △是等边三角形,试求这个一元二次方程的根.考点5 根与系数的关系的四种应用类型 题型1 利用根与系数的关系求代数式的值1.设方程24730x x --=的两根为1x ,2x ,不解方程求下列各式的值. (1)1233x x --()(); (2)211211x xx x +++; (3)12x x -.题型2 利用根与系数的关系构造一元二次方程1.构造一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数.题型3 利用根与系数的关系求字母的值或取值范围1.已知关于x 的一元二次方程22210x mx m --+=的两根的平方和是294,求m 的值.2.已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)若该方程的一个根为1,求a 的值及该方程的另一根.题型4 巧用根与系数的关系确定字母系数的存在性4.已知1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根,是否存在实数k ,使12123222x x x x --=-()()成立?若存在,求出k 的值;若不存在,请说明理由.考点6:可化为一元二次方程的分式方程的应用 题型1 营销问题1.某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完,第二次去采购时发现批发价每件上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件,两批玩具的售价均为2.8元,问:第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)题型2 行程问题3.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后快车在慢车前12千米,快车到达乙站比慢车早25分钟,快车和慢车每小时各行驶多少千米?应用3 工程问题4.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)若甲工程队单独施工a 天后,再由甲、乙两工程队合作________天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需收取施工费1万元,乙工程队施工每天需收取施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?考点7 几种常见的热门考点 题型1 一元二次方程的根1.若一元二次方程220150ax bx --=有一根为1x =-,则a b +=________.2.若关于x 的一元二次方程20ax bx c ++=有一根为1-,且2a =,求20162015a b c+()的值.题型2 一元二次方程的解法1.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()2.一元二次方程2230x x --=的解是() A .11x =-,23x =B .11x =,23x =-C .11x =-,23x =-D .11x =,23x =3.选择适当的方法解下列方程:(1)21210x x x -+-=()();(2)221327x x x -=+-()().题型3 一元二次方程根的判别式1.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是() A .1a <B .1a >C .1a ≤D .1a ≥2.已知关于x 的一元二次方程210x m +-=()有两个实数根,则m 的取值范围是()A .34m -≥ B .0m ≥ C .1m ≥ D .2m ≥3.在等腰三角形ABC 中,三边长分别为a ,b ,c .其中5a =,若关于x 的方程2260x b x b +++-=()() 有两个相等的实数根,求ABC △的周长.题型4 一元二次方程根与系数的关系1.已知α,β是关于x 的一元二次方程22230x m x m +++=()的两个不相等的实数根,且满足111αβ+=-,则m 的值是() A .3B .1C .3或1-D .3-或12.关于x 的方程231210ax a x a -+++=()()有两个不相等的实数根1x ,2x ,且有12121x x x x a +-=-,求a 的值.3.设1x ,2x 是关于x 的一元二次方程222420x ax a a +++-=的两个实数根,当a 为何值时,2212x x +有最小值?最小值是多少?题型5 一元二次方程的应用1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?2.某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个图形,如图所示,甲、乙两点分别从直径的两端点A ,B 出发,以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程1cm ()与时间t s ()满足关系:2131022t t t =+(≥),乙以4cm/s 的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多长时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多长时间?题型6 新定义问题1.若1x ,2x 是关于x 的方程20x bx c ++=的两个实数根,且122x x k +=(k 是整数),则称方程20x bx c ++=为“偶系二次方程”.如方程26270x x --=,2280x x --=,227304x x +-=,26270x x +-=,2440x x ++=都是“偶系二次方程”.判断方程2120x x +-=是否是“偶系二次方程”,并说明理由.期末专项复习—一元二次方程答案解析考点1 题型1 1.【答案】D【解析】由题意,得3020m m -⎧⎨+⎩≠,≥,解得2m -≥且3m ≠.2.【答案】解:(1)当21210m m ⎧+=⎨+⎩,≠时,它是一元二次方程,解得1m =.当1m =时,原方程可化为2210x x --=.(2)当22010m m ⎧-⎨+=⎩≠,或者当120m m ++-()≠且211m +=时,它是一无一次方程.解得1m =-或0m =.故当1m =-或0m =时,它是一元一次方程. 题型2 1.【答案】8【解析】由题意得80240.a a -=⎧⎨-⎩,≠解得8a =.2.【答案】由题意,得21010m m ⎧-=⎨-⎩,≠,解得1m =-.题型3 1.【答案】A【解析】∵关于x 的方程20x bx a ++=的一个根是0a a -(≠),20a ab a ∴-+=.10a a b ∴-+=().0a Q ≠,1.a b ∴-=-2.【答案】解:把0x =代入2243160k x x k +++-=(),得2160k -=,解得14k =,24k =-.40k +Q ≠,4k ∴-≠,4k ∴=.3.【答案】解:∵实数a 是一元二次方程2201610x x -+=的根,2201610a a ∴-+=.221201620161a a a a ∴+=-=-,.22222120162015201520152016120162016a aa a a a a a a a a +∴--=--=--=-=-题型41.【答案】解:由题意可知22210210m m n n --=--=,,22227143677232773747m m a n n m m a n n a a ⎡⎤⎡⎤∴-+--=-+--=+-=-+⎣⎦⎣⎦()()()()()()(),由 478a -+=()得9a =-,故存在满足要求的实数a ,且a 的值等于9-.考点2 类型1 方法1 1.【答案】C 2.【答案】C 方法2 1.【答案】C2.【答案】解:22242042262x x x x x x +-=+=+=+=,,(),1222x x =-=-3.【答案】解:2222221016890102516640580x x y y x x y y x y -+-+=-++-+=-+-=,()(),()(),558.8x x y y ∴==∴=,,方法3 1.【答案】D2.【答案】解:(1)21220200 2.x x x x x x -=-===,(),, (2)21233169043430.44x x x x x -=+-==-=,()(),, (3)2221214414410210.2x x x x x x x =--+=-===,,(),方法4 1.【答案】B2.【答案】解:(1)2231703730x x x x +-=-+=(),,224743313b ac ∴-=--⨯⨯=(),12x x x ∴=∴= (2)2243524430x x x x x --=---=,,224444364b ac x ∴-=--⨯⨯-=∴=()(),1231.22x x ∴==-,类型2 1.【答案】C 2.【答案】C 3.【答案】B4.【答案】解:(1)22221919133360200442422y y y y y y y y --=--=-+-=-=-=±,,,(),,122 1.y y ∴==-,(2)2223231043421122x x b ac x ±-+=-=--⨯⨯=∴=⨯,(),,即1211.2x x ∴==, 类型3 方法11.【答案】解:将原方程两边同乘6,得26196600x x +⨯+=()().解得615x =-或64x =-.1252.23x x ∴=-=-,2.【答案】解:因为8m n -=,所以8m n =+.将8m n =+代入2160mn p ++=中,得28160n n p +++=(),所以228160n n p +++=,即 2240n p ++=().又因为240n +()≥,20p ≥,所以400n p +=⎧⎨=⎩,,解得40.n p =-⎧⎨=⎩,所以84m n =+=,所以4400m n p ++=+-+=() 方法2 a1.【答案】A2.【答案】B3.【答案】223220.x x ---+=()()设2x y -=,原方程化为2320y y -+=, 解得121 2.y y ==,当1y =时,213x x -==,, 当2y =时,22 4.x x -==, 原方程的解为1234x x ==,.4.【答案】解:原方程即[][]142348x x x x ----=()()()(),即22545648x x x x -+-+=()().设255y x x =-+,则原方程变为1148y y -+=()(). 解得1277y y ==-,.当2557x x -+=时,解得12x x ==当2557x x -+=-时,254112230∆=--⨯⨯=-()<,方程无实数根.∴原方程的根为12x x = b1.【答案】解:经验证0x =不是方程的根,原方程两边同除以2x ,得22356635620x x x x -+-+=, 即2211635620x x x x +-++=()(). 设1y x x =+,则22212x y x+=-,原方程可变为26235620y y --+=(). 解得152y =,2103y =. 当152x x +=时,解得12x =,212x =;当1103x x +=时,解得33x =,413x =.经检验,均符合题意.∴原方程的解为12x =,212x =,33x =,413x =. c1.【答案】解:设2x y x-=,则原方程化为32y y -=,整理得2230y y --=,∴13y =,21y =-.当3y =时,23x x -=,∴1x =-. 当1y =-时,21x x-=-,∴1x =.经检验,1x =±都是原方程的根, ∴原方程的根为11x =,21x =-. 方法31.【答案】解:方程组2013201620142015x x -=⎧⎨-=⎩,的解一定是原方程的解,解得4029x =.方程组2013201520142016x x -=-⎧⎨-=-⎩,的解也一定是原方程的解,解得2x =-.∵原方程最多有两个实数解, ∴原方程的解为14029x =,22x =-.【解析】解本题也可采用换元法.设2014x t -=,则20131x t -=+,原方程可化为120152016t t +=⨯(),先求出t ,进而求出x . 考点3 题型1 1.【答案】C【解析】当0k =时,方程为一元一次方程,解为1x =;当0k ≠时,因为222141211k k k k k ∆=--⋅-=++=+()()()≥0,所以当1k =时,4∆=,方程有两个不相等的实数解;当1k =-时,0∆=,方程有两个相等的实数解; 当0k ≠时,0∆≥,方程总有两个实数解.故选C . 2.【答案】解:220x x m --=Q 没有实数根,2124440m m ∴∆=--⋅-=+()()<,即1m -<.对于方程2210x mx m m +++=(),2224144m m m m ∆=-⋅+=-()()>,∴方程2210x mx m m +++=()有两个不相等的实数根. 题型21.【答案】解:(1)根据题意得2444242080b ac k k -=--=-()>, 解得25k <.(2)由k 为正整数,可得1k =或2k =.利用求根公式可求出方程的根为1x =- ∵方程的根为整数,∴52k -为完全平方数, ∴k 的值为2.2.【答案】(1)证明:[]22228442m m m m m ∆=-+-=-+=-()(). ∵不论m 为何值,220m -()≥,即0△≥.∴不论m 为何值,方程总有实数根.(2)解:解关于x 的一元二次方程2220mx m x -++=(),得222m m x m +±-=().∴12x m=,21x =. ∵方程的两个根都是正整数,∴2m 是正整数,∴1m =或2m =.又∵方程的两个根不相等,∴2m ≠,∴1m =. 题型31.【答案】解:∵关于x 的方程22140x m x +-+=()两个相等的实数根,∴2214140m ∆=--⨯⨯=(),即214m -=±.∴52m =或32m =-. 当52m =时,25111221216514m m m --==-++(); 当32m =-时,231152********m m m ---==--+-(). 2.【答案】解:由题意可知,22480b ac n m -=+=, ∴28m n =-,∴222222222222222416816168mn mn mn mn mn m n m m n m m n m n n m ====++-+++-++-+(). ∵0m ≠,2228mn n m m∴==-.题型41.【答案】解:∵一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根, ∴[]2240a b b c b a ---⋅-=()()(), ∴40a b a c --=()(), ∴a b =或a c =, ∴此三角形是等腰三角形.2.【答案】解:∵方程204a ca c x bx -+++=()有两个相等的实数根, ∴2222404a cb ac b a c -∆=-+⋅=--=()(), 即222b c a +=,∴此三角形是直角三角形. 考点4 题型1 1.【答案】C2.【答案】解:由已知可得410a <<,则a 可取5,6,7,8,9.(第一步) 当5a =时,代入2210215105210a a -+=-⨯+≠,故5a =不是方程的根. 同理可知6a =,8a =,9a =都不是方程的根,7a =是方程的根.(第二步) ∴ABC △的周长是37717cm ++=(). 题型2 1.【答案】132.【答案】解:ABC △是直角三角形.理由如下:原方程可化为20b c x cm bm +-+-=(), 2222444ma m c b c b m a b c ∆--++-=()()=(). ∵0m >,且原方程有两个相等的实数根,∴2220a b c +-=,即222a b c +=∴ABC △是直角三角形.3.【答案】解:将x b =代入原方程,整理得2419120b b -+=,解得14b =,234b =.当14b =时,3a =,5c =,∵222345+=,即222a b c +=,∴ABC △为直角三角形,且°90C ∠=.∴1134622ABC S ab ==⨯⨯=△; 当234b =时,3104a =-<,不合题意,舍去.因此,ABC △的面积为6. 题型3 1.【答案】B2.【答案】解:(1)ABC △是等腰三角形.理由如下:把1x =-入原方程,得20a c b a c +-+-=,所以a b =,故ABC △是等腰三角形.(2)ABC △是直角三角形.理由如下:方程有两个相等的实数根,则2240b a c a c ∆=-+-=()()(),所以2220b a c -+=,所以222a b c =+,故ABC △是直角三角形.(3)如果ABC △是等边三角形,则a b c ==,所以方程可化为2220ax ax +=,所以210ax x +=(),所以方程的解为10x =,21x =-. 考点5 题型11.【答案】解:根据一元二次方程根与系数的关系,有1274x x +=,1234x x =-. (1)12121237333939344x x x x x x --=-++=--⨯+=()()(). (2)2222122111212121212122112121212112====111111x x x x x x x x x x x x x x x x x x x x x x x x x x x x +++++++-+++++++++++++()()()()()()()27372101444=3732144-⨯-+-++()().(3)222121212127397=4=4=4416x x x x x x x x -+--⨯-∴-==Q()()()(),. 题型21.【答案】解:设方程25230x x +-=的两根为1x ,2x , 则1225x x +=-,1235x x =-. 设所求方程为20y py q ++=,其两根为1y ,2y , 令111y x =-,221y x =-.∴121212*********==3x x p y y x x x x x x +=-+=--=+()(),12121211153q y y x x x x ==--==-()(). ∴所求的方程为225+033y y -=,即23250y y +-=. 题型31.【答案】解:设方程两根为1x ,2x ,由已知得1212=221=.2m x x m x x ⎧+⎪⎪⎨-+⎪⎪⎩,∵222121212292=4x x x x x x +=+-(),即221292224m m -+-⨯=(), ∴28330m m +-=. 解得111m =-,23m =.当111m =-时,方程为2211230x x ++=,21142230∆=-⨯⨯<,方程无实数根,∴11m =-不合题意,舍去;当3m =时,方程为22235034250x x --=∆=--⨯⨯-,()()>,方程有两个不相等的实数根,符合题意. ∴m 的值为3.2.【答案】解:(1)∵224121240a a -⨯⨯-=-()>,解得3a <. ∴a 的取值范围是3a <.(2)设方程的另一根为1x ,由根与系数的关系得111212x x a +=-⎧⎨⋅=-⎩,,解得113.a x =-⎧⎨=-⎩,题型44.【答案】解:不存在.理由如下:∵一元二次方程24410kx kx k -++=有两个实数根,∴0k ≠,且24441160k k k k ∆=--⨯+=-()()≥,∴0k <.∵1x ,2x 是方程24410kx kx k -++=的两个实数根, ∴121x x +=,1214k x x k+=.∴212121212922294k x x x x x x x x k+--=+-=-()()(). 又∵12123222x x x x --=-()(), ∴939425k k k +-=-∴=,. 又∵0k <,∴不存在实数k ,使12123222x x x x --=-()()成立. 考点61.【答案】解:方法一:设第二次采购玩具x 件,则第一次采购玩具10x -()件,由题意得1001500.510x x+=-. 整理得211030000x x -+=, 解得150x =,260x =,经检验150x =,260x =都是原方程的解.当50x =时,第二次采购时每件玩具的批发价为150503÷=(元),高于玩具的售价,不合题意,舍去; 当60x =时,第二次采购时每件玩具的批发价为15060 2.5÷=(元),低于玩具的售价,符合题意,因此第二次采购玩具60件.方法二:设第一次采购玩具x 件,则第二次采购玩具10x +()件,由题意得1001500.510x x +=+, 整理得29020000x x -+=, 解得140x =,250x =,经检验,140x =,250x =都是原方程的解.第一次采购40件时,第二次采购401050+=(件),批发价为150503÷=(元),不合题意,舍去; 第一次采购50件时,第二次采购401060+=(件),批发价为15060 2.5÷=(元),符合题意.因此第二次采购玩具60件. 题型23.【答案】解:设慢车每小时行驶x 千米,则快车每小时行驶12x +()千米,依题意得150150251260x x -=+.解得172x =-(不合题意,舍去),260x =.所以1272x +=.∴快车每小时行驶72千米,慢车每小时行驶60千米. 应用34.【答案】解:(1)设乙工程队单独施工x 天完成此项工程,则甲工程队单独施工30x +()天完成此项工程,由题意得1120130x x +=+(),整理,得2106000x x --=, 解得130x =,220x =-.经检验130x =,220x =-都是分式方程的解,但220x =-不符合题意,应舍去,故30x =,3060x +=. 故甲、乙两工程队单独完成此项工程分别需要60天,30天. (2)203a -()(3)由题意得11 2.520643a a +++-()()≤,解得36a ≥.故甲工程队至少要单独施工36天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元. 考点7 题型11.【答案】2015【解析】把1x =-代入方程中得到20150a b +-=,即2015a b +=.2.【答案】解:∵2a =,∴40c -≥且40c -≥,即4c =,则2a =-.又∵1-是一元二次方程20ax bx c ++=的根,∴0a b c -+=,∴242b a c =+=-+=.∴原式201622020154-+==⨯().题型2 1.【答案】D 2.【答案】A3.【答案】解:(1)21210x x x -+-=()(),1120x x x --+=()(), 1310x x --=()(),12113x x ==,.(2)221327x x x -=+-()(),22441327x x x x -+=+-, 2680x x -+=,1224x x ==,.题型3 1.【答案】B 2.【答案】B3.【答案】解:∵关于x 的方程2260x b x b +++-=()()有两个相等的实数根,∴22460b b ∆=+--=()(),∴12b =,210b =-(舍去).当a 为腰时,ABC △周长为55212=++. 当b 为腰时,225+<,不能构成三角形. ∴ABC △的周长为12. 题型4 1.【答案】A2.【答案】解:由题意,得1231a x x a ++=,1221a x x a +=(),∴31211a a a a a++-=-(),∴210a -=,即1a =±.又∵方程有两个不相等的实数根,∴[]2314210a a a ∆=-+-⋅+()()>,即210a -()>,∴1a ≠,∴1a =-.3.【答案】解:∵方程有两个实数根,∴2224420a a a ∆=-+-()()≥,∴12a ≤.又∵122x x a +=-,21242x x a a =+-,∴22221212122224x x x x x x a +=+-=--()(). ∵12a ≤,且2220a -()≥,∴当12a =时,2212x x +的值最小. 此时222121122422x x +=--=(),即最小值为12.【解析】本题中考虑0△≥从而确定a 的取值范围这一过程易被忽略. 题型51.【答案】解:设每件商品降价x 元,则售价为每件60x -()元,每星期的销量为30020x +()件. 根据题意,得6040300206080x x --+=()(). 解得11x =,24x =.又要顾客得实惠,故取4x =,即销售单价为56元. 答:应将销售单价定为56元.2.【答案】解:(1)当4t =时,221313144142222t t =+=⨯+⨯=. 答:甲运动4s 后的路程是14cm . (2)设它们运动了s m ,根据题意, 得21342122m m m ++=.解得:13m =,214m =-(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3s .(3)设它们运动了s n 后第二次相遇,根据题意,得213421322n n n ++=⨯(). 解得17n =,218n =-(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7s . 题型61.【答案】解:不是.理由如下:解方程2120x x +-=,得14x =-,23x =.12432 3.5x x +=+=⨯.∵3.5不是整数,∴方程2120x x +-=不是“偶系二次方程”.。
初三数学上册第六章试卷
一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…(循环小数)D. 32. 在下列各式中,正确的是()A. a² = aB. (a - b)² = a² - 2ab + b²C. (a + b)² = a² + 2ab + b²D. (a - b)³ = a³ - 3a²b + 3ab² - b³3. 若m和n是方程x² - (m + n)x + mn = 0的两个根,则下列结论正确的是()A. m + n = 1B. mn = 1C. m + n = mnD. m - n = 14. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x² + 2x - 3C. y = 3x³ + 2x² - xD. y = 4x - 55. 已知二次函数y = ax² + bx + c的图象开口向上,且顶点坐标为(-2, 3),则a的取值范围是()A. a > 0C. a = 0D. a ≠ 06. 若二次函数y = ax² + bx + c的图象与x轴有两个交点,则下列结论正确的是()A. a > 0B. a < 0C. b² - 4ac > 0D. b² - 4ac < 07. 下列关于一元二次方程ax² + bx + c = 0(a ≠ 0)的说法正确的是()A. 若a > 0,则方程有两个正根B. 若a < 0,则方程有两个负根C. 若b² - 4ac > 0,则方程有两个不相等的实数根D. 若b² - 4ac = 0,则方程有两个相等的实数根8. 已知二次函数y = -2x² + 4x - 1的图象与x轴的交点坐标为(1, 0),则该函数的顶点坐标是()A. (1, 2)B. (1, -2)C. (-1, 2)D. (-1, -2)9. 若二次函数y = ax² + bx + c的图象开口向上,且顶点坐标为(-1, 4),则a 的取值范围是()A. a > 0B. a < 0D. a ≠ 010. 下列关于一元二次方程ax² + bx + c = 0(a ≠ 0)的说法正确的是()A. 若a > 0,则方程有两个正根B. 若a < 0,则方程有两个负根C. 若b² - 4ac > 0,则方程有两个不相等的实数根D. 若b² - 4ac = 0,则方程有两个相等的实数根二、填空题(每题3分,共30分)1. 二次函数y = x² - 6x + 9的顶点坐标是__________。
最新人教版初中数学九年级上册全册分章单元测试合集含答案
最新人教版数学九年级上册全册分章单元检测卷(含答案解析)目录第21章一元二次方程全章测试及答案解析 (1)第22章二次函数全章测试及答案解析 (4)第23章旋转全章测试及答案解析 (11)第24章圆全章测试及答案解析 (15)第25章概率全章测试及答案解析 (20)第二十一章 一元二次方程全章测试一、填空题1.一元二次方程x 2-2x +1=0的解是______.2.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.3.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是x =______.4.当a ______时,方程(x -b )2=-a 有实数解,实数解为______.5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =______. 6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =______. 7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =______.8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化简结果是______. 二、选择题9.方程x 2-3x +2=0的解是( ). A .1和2 B .-1和-2 C .1和-2 D .-1和2 10.关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ).A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定 11.已知a ,b ,c 分别是三角形的三边,则方程(a +b )x 2+2cx +(a +b )=0的根的情况是( ).A .没有实数根B .可能有且只有一个实数根C .有两个不相等的实数根D .有两个不相等的实数根12.如果关于x 的一元二次方程0222=+-kx x 没有实数根,那么k 的最小整数值是( ). A .0 B .1 C .2 D .3 13.关于x 的方程x 2+m (1-x )-2(1-x )=0,下面结论正确的是( ).A .m 不能为0,否则方程无解B .m 为任何实数时,方程都有实数解C .当2<m <6时,方程无实数解D .当m 取某些实数时,方程有无穷多个解 三、解答题14.选择最佳方法解下列关于x 的方程:(1)(x +1)2=(1-2x )2. (2)x 2-6x +8=0.(3).02222=+-x x (4)x (x +4)=21.(5)-2x 2+2x +1=0. (6)x 2-(2a -b )x +a 2-ab =0.15.应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取任何实数值,二次三项式的值都是正数.16.关于x 的方程x 2-2x +k -1=0有两个不等的实数根.(1)求k 的取值范围;(2)若k +1是方程x 2-2x +k -1=4的一个解,求k 的值.17.已知关于x 的两个一元二次方程:方程:02132)12(22=+-+-+k k x k x ① 方程:0492)2(2=+++-k x k x ②(1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.18.已知a ,b ,c 分别是△ABC 的三边长,当m >0时,关于x 的一元二次方程+2(x c02)()2=--+ax m m x b m 有两个相等的实数根,试说明△ABC 一定是直角三角形.19.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m ,BD =6m ,动点M 从A 出发沿AC方向以2m/s 匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,ΔMON 的面积为?m 412答案与提示第二十一章 一元二次方程全章测试1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤5.4. 6.⋅-497.2. 8.3. 9.A. 10.A. 11.A. 12.D. 13.C. 14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x(4)x 1=-7,x 2=3; (5);231,23121-=+=x x (6)x 1=a ,x 2=a -b .15.变为2(x -1)2+4,证略. 16.(1)k <2;(2)k =-3.17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆ 2>0> ∆ 1;(3)k =5时,方程②的根为;2721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2. 19.设出发后x 秒时,⋅=∆41MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--41)3)(24(21x x解得);s (225,2)s (225,21-=∴<±=x x x x Θ (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(21x x --⋅=41解得);s (2521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(21x x ⋅41解得).s (225+=x 综上所述,出发后s,225+或s 25时,△MON 的面积为.m 412第二十二章 二次函数全章测试一、填空题1.抛物线y =-x 2+15有最______点,其坐标是______.2.若抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,则过A ,B 两点的直线的解析式为____________.3.若抛物线y =ax 2+bx +c (a ≠0)的图象与抛物线y =x 2-4x +3的图象关于y 轴对称,则函数y =ax 2+bx +c 的解析式为______.4.若抛物线y =x 2+bx +c 与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,S △ABC =3,则b =______.5.二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =______.6.二次函数22212--=x x y 的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式为____________. 二、选择题7.把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( ) A .(-5,1) B .(1,-5) C .(-1,1) D .(-1,3)8.若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( ) A .ab x -= B .x =1 C .x =2 D .x =39.已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <410.二次函数y =a (x +k )2+k ,当k 取不同的实数值时,图象顶点所在的直线是( )A .y =xB .x 轴C .y =-xD .y 轴 11.图中有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k >nC .k =nD .h >0,k >012.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a+b +c =2;21>a ③;④b <1.其中正确的结论是( )A .①②B .②③C .②④D .③④ 13.下列命题中,正确的是( )①若a +b +c =0,则b 2-4ac <0;②若b =2a +3c ,则一元二次方程ax 2+bx +c =0有两个不相等的实数根;③若b 2-4ac >0,则二次函数y =ax 2+bx +c 的图象与坐标轴的公共点的个数是2或3;④若b >a +c ,则一元二次方程ax 2+bx +c =0,有两个不相等的实数根. A .②④ B .①③ C .②③ D .③④三、解答题14.把二次函数43212+-=x x y 配方成y =a (x -k )2+h 的形式,并求出它的图象的顶点坐标、对称轴方程,y <0时x 的取值范围,并画出图象.15.已知二次函数y =ax 2+bx +c (a ≠0)的图象经过一次函数323+-=x y 的图象与x 轴、y 轴的交点,并也经过(1,1)点.求这个二次函数解析式,并求x 为何值时,有最大(最小)值,这个值是什么? 16.已知抛物线y =-x 2+bx +c 与x 轴的两个交点分别为A (m ,0),B (n ,0),且4=+n m ,⋅=31n m (1)求此抛物线的解析式;(2)设此抛物线与y 轴的交点为C ,过C 作一条平行x 轴的直线交抛物线于另一点P ,求△ACP的面积.17.已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与x轴的交点B 及与y轴的交点C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.18.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?四、附加题19.如图甲,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图乙),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y cm2.求y与x之间的函数关系式.答案与提示第二十二章 二次函数全章测试1.高,(0,15). 2.y =-x -2. 3.y =x 2+4x +3. 4.b =-4.5.c =5或13. 6.⋅+--=21212x x y7.C . 8.D . 9.A . 10.C . 11.C . 12.B . 13.C . 14.221)3(21--=x y 顶点坐标)21,3(-,对称轴方程x =3,当y <0时,2<x <4,图略.15.,325212+-=x x y 当25=x 时,⋅-=81最小值y16.(1)由31,4==+n m n m 得m =1,n =3.∴y =-x 2+4x -3;(2)S △ACP =6.17.(1)直线y =x -3与坐标轴的交点坐标分别为B (3,0),C (0,-3),以A 、B 、C三点的坐标分别代入抛物线y =ax 2+bx +c 中,得⎪⎩⎪⎨⎧-==++=+-,3,039,0c c b a c b a 解得⎪⎩⎪⎨⎧-=-==.3,2,1c b a ∴所求抛物线的解析式是y =x 2-2x -3. (2)y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点坐标为(1,-4).(3)经过原点且与直线y =x -3垂直的直线OM 的方程为y =-x ,设M (x ,-x ), 因为M 点在抛物线上,∴x 2-2x -3=-x .⎪⎪⎩⎪⎪⎨⎧⋅±-=±=2131,2131y x 因点M 在第四象限,取,2131+=x ).2131,2131(+-+∴M18.解:(1)一件商品在3月份出售时利润为:6-1=5(元).(2)由图象可知,一件商品的成本Q (元)是时间t (月)的二次函数,由图象可知, 抛物线的顶点为(6,4), ∴可设Q =a (t -6)2+4. 又∵图象过点(3,1),∴1=a (3-6)2+4,解之⋅-=31a,84314)6(3122-+-=+--=∴t t t Q 由题知t =3,4,5,6,7.(3)由图象可知,M (元)是t (月)的一次函数,∴可设M =kt +b .∵点(3,6),(6,8)在直线上,⎩⎨⎧=+=+∴.86,63b k b k 解之⎪⎩⎪⎨⎧==.4,32b k.432+=∴t M)8431(4322-+--+=-=∴t t t Q M W 12310312+-=t t 311)5(312+-=t 其中t =3,4,5,6,7. ∴当t =5时,311=最小值W 元 ∴该公司在一月份内最少获利11000030000311=⨯元. 19.解:在Rt △PMN 中,∵PM =PN ,∠P =90°,∴∠PMN =∠PNM =45°.延长AD 分别交PM 、PN 于点G 、H ,过G 作GF ⊥MN 于F ,过H 作HT ⊥MN 于T .∵DC =2cm ,∴MF =GF =2cm ,TN =HT =2cm . ∵MN =8cm ,∴MT =6cm ,因此,矩形ABCD 以每秒1cm 的速度由开始向右移动到停止,和 Rt △PMN 重叠部分的形状,可分为下列三种情况: (1)当C 点由M 点运动到F 点的过程中(0≤x ≤2),如图①所示,设CD 与PM 交于点E ,则重叠部分图形是Rt △MCE ,且MC =EC =x ,EC MC y ⋅=∴21,即);20(212≤≤=x x y图①(2)当C 点由F 点运动到T 点的过程中(2<x ≤6),如图②所示,重叠部分图形是直角梯形MCDG .图②∵MC =x ,MF =2,∴FC =DG =x -2,且DC =2,);62(22)(21≤<-=⋅+=∴x x DC GD MC y (3)当C 点由T 点运动到N 点的过程中(6<x ≤8),如图③所示,设CD 与PN 交于点Q ,则重叠部分图形是五边形MCQHG .图③∵MC =x ,∴CN =CQ =8-x ,且DC =2,).86(12)8(2121)(212≤<+--=⨯-⋅+=∴x x CQ CN DC GH MN y第二十三章旋转全章测试一、填空题1.如图,正方形ABCD和正方形CEFG中,BC⊥EC,它们的边长为10cm.1题图(1)正方形ABCD可看成是由正方形CEFG向______平移______cm得到的.(2)正方形ABCD又可看成是由正方形CEFG绕______点,旋转______角得到的,并且它们成______对称,对称中心是______.2.图形的旋转是由______和______决定的,图形在旋转过程中,它的______和______都不会发生变化.3.如图,若△ABD绕A点逆时针方向旋转60°得到△ACE,则旋转中心是______,旋转角度是______,△ABC和△ADE都是______.3题图4.如图,若O是正方形ABCD的中心,直角∠MON绕O点旋转,则∠MON与正方形围成的四边形的面积是正方形ABCD面积的______.4题图5.如图,当△AED绕正方形ABCD的顶点D旋转到与△DCF重合时,∠DEF的度数为______.5题图6.若点A(2m-1,2n+3)与B(2-m,2-n)关于原点O对称,则m=______且n=______.二、选择题7.如图,四边形ABCD是中心对称图形,对称中心为点O,过点O的直线与AD,BC分别交于E,F,则图中相等的线段有( ).A.3对B.4对C.5对D.6对8.下列关于旋转的说法不正确的是( ).A.旋转中心在旋转过程中保持不动B.旋转中心可以是图形上的一点,也可以是图形外的一点C.旋转由旋转中心、旋转方向和旋转角度所决定D.旋转由旋转中心所决定9.下列说法正确的是( ).A.中心对称图形是旋转对称图形B.旋转对称图形是中心对称图形C.轴对称图形是旋转对称图形D.轴对称图形是中心对称图形10.下列图形中,既是轴对称图形又是中心对称图形的是( )三、解答题11.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度?(2)连结CD,试判断△CBD的形状;(3)求∠BDC的度数.12.已知:两点A(-2,1),B(-3,0).(1)把△ABO绕O点顺时针旋转90°,得到△A1B1O,求A1,B1点的坐标;(2)把△A1B1O沿x轴向右平移2个单位长度,得到△A2B2C,求A2,B2,C点的坐标;(3)作△A 2B 2C 关于原点O 的对称图形,得到△A 3B 3D ,求A 3,B 3,D 点的坐标.13.已知:反比例函数⋅-=xy 6(1)若将反比例函数xy 6-=的图象绕原点O 旋转90°,求所得到的双曲线C 的解析式并画图;(2)双曲线C 上是否存在到原点O 距离为13的点P ,若存在,求出点P 的坐标.14.已知:如图,P 是正方形ABCD 内一点,∠.7,1,135===AP BP APB ο求PC 的长.答案与提示第二十三章 旋转全章测试1.(1)左,.210 (2)C ,180°,中心,C 点.2.旋转中心,旋转角,形状、大小. 3.A 点,60°,正三角形.4.⋅415.45°. 6.-1, -5.7.C . 8.D . 9.A . 10.B . 11.(1)150°;(2)等腰三角形;(3)15°. 12.(1)A 1(1,2),B 1(0,3);(2)A 2(3,2),B 2(2,3),C (2,0);(3)A 3(-3,-2),B 2(-2,-3),D (-2,0).13.(1);6xy =(2)P 1(2,3),P 2(3,2),P 3(-2,-3),P 4(-3,-2).14.PC =3.提示:将△ABP 绕B 点顺时针旋转90°,这时A 点与C 点重合,P 点的对应点是P ',连结PP ′,则△ABP ≌△CBP ′,△PBP ′为等腰直角三角形,∠PP ′C =90°,.3)7()2(''2222=+=+=C P PP PC第二十四章 圆全章测试一、选择题1.若P 为半径长是6cm 的⊙O 内一点,OP =2cm ,则过P 点的最短的弦长为( ). A .12cmB .cm 22C .cm 24D .cm 282.四边形ABCD 内接于⊙O ,BC 是⊙O 的直径,若∠ADC =120°,则∠ACB 等于( ). A .30° B .40° C .60° D .80°3.若⊙O 的半径长是4cm ,圆外一点A 与⊙O 上各点的最远距离是12cm ,则自A 点所引⊙O 的切线长为( ). A .16cmB .cm 34C .cm 24D .cm 644.⊙O 的半径为10cm ,弦AB ∥CD .若AB =12cm ,CD =16cm ,则AB 和CD 的距离为( ). A .2cm B .14cm C .2cm 或14cm D .2cm 或10cm 5.⊙O 中,∠AOB =100°,若C 是上一点,则∠ACB 等于( ).A .80°B .100°C .120°D .130° 6.三角形的外心是( ). A .三条中线的交点 B .三个内角的角平分线的交点 C .三条边的垂直平分线的交点 D .三条高的交点7.如图,A 是半径为2的⊙O 外的一点,OA =4,AB 是⊙O 的切线,点B 是切点,弦BC ∥OA ,则的长为( ).7题图A .π32 B .π38C .πD .3π328.如图,图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿,,,路线爬行,乙虫沿路线爬行,则下列结论正确的是( ).8题图A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定9.如图,同心圆半径分别为2和1,∠AOB =120°,则阴影部分的面积为( ).9题图A .πB .π34 C .2π D .4π10.某工件形状如图所示,圆弧的度数为60°,AB =6cm ,点B 到点C 的距离等于AB ,∠BAC =30°,则工件的面积等于( ).10题图A .4πB .6πC .8πD .10π11.如图,⊙O 1的弦AB 是⊙O 2的切线,且AB ∥O 1O 2,如果AB =12cm ,那么阴影部分的面积为( ).11题图A .36πcm 2B .12πcm 2C .8πcm 2D .6πcm 2二、填空题12.如图,在⊙O 中,AB 为⊙O 的直径,弦CD ⊥AB ,∠AOC =60°,则∠B =______.12题图13.如图,边长为1的菱形ABCD 绕点A 旋转,当B ,C 两点恰好落在扇形AEF 的弧上时,的长度等于______.13题图14.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为________.14题图15.若圆锥的底面半径是2cm ,母线长是4cm ,则圆锥的侧面积是________cm 2. 16.如图,在△ABC 中,AB =2,,2AC 以A 为圆心,1为半径的圆与边BC 相切,则∠BAC 的度数是______.16题图17.Rt △ABC 中,∠C =90°,AC =4,BC =3,则以直线AB 为轴旋转一周所得的几何体的表面积为______.18.已知半径为2cm 的两圆外切,半径为4cm 且和这两个圆都相切的圆共有______个. 三、解答题 19.已知:如图,P 是△ABC 的内心,过P 点作△ABC 的外接圆的弦AE ,交BC 于D 点.求证:BE =PE .20.如图,△ABC 的三个顶点都在⊙O 上,AP ⊥BC 于P ,AM 为⊙O 的直径.求证:∠BAM =∠CAP .21.如图,⊙O中,=,点C在上,BH⊥AC于H.求证:AH=DC+CH.22.已知:等腰△ABC内接于半径为6cm的⊙O,AB=AC,点O到BC的距离OD的长等于2cm.求AB的长.23.已知:如图,在两个同心圆中,大圆的弦AB切小圆于C点,AB=12cm.求两个圆之间的圆环面积.答案与提示第二十四章 圆全章测试1.D . 2.A . 3.B . 4.C . 5.D . 6.C . 7.A . 8.C . 9.C . 10.B . 11.A .12.30°. 13.cm.3π14.cm.32 15.8πcm . 16.105°. 17.πcm.58418.五.19.提示:连结BP . 20.提示:连结BM .21.提示:延长CH 到E ,使CE =CD ,连结BE ,证:△ABH ≌△EBH . 22.cm 64或cm.3423.36 cm 2.提示:连结OC 、OA .第二十五章 概率初步全章测试一、选择题1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ). A .0 B .1 C .0.5 D .不能确定 3.关于频率与概率的关系,下列说法正确的是( ). A .频率等于概率B .当试验次数很多时,频率会稳定在概率附近C .当试验次数很多时,概率会稳定在频率附近D .试验得到的频率与概率不可能相等 4.下列说法正确的是( ). A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 5.下列说法正确的是( ).A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .81 7.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ). A .31 B .32 C .61 D .918.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( ).A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ).(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%” (3)小李说,这次考试我得90分以上的概率是200%(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小 A .3 B .2 C .1 D .0 10.下列说法正确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生 二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:_______ __________.12.掷一枚均匀的骰子,2点向上的概率是______,7点向上的概率是______. 13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A 为“取出的是红球”,事件B 为“取出的是黄球”,事件C 为“取出的是蓝球”,则P (A )=______,P (B )=______,P (C )=______.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回地从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是______.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为______.16.从下面的6张牌中,一次任意抽取两张,则其点数和是奇数的概率为______.17.在一个袋子中装有除颜色外其他均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是______.18.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为32,则n =______. 三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000 满意人数m 9999981002 1002 1000 满意频率nm(2)读者对该杂志满意的概率约是多少? (3)从中你能说明频率与概率的关系吗?20.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.21.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 651241783024815991803摸到白球的频率nm0.65 0.62 0.593 0.604 0.601 0.599 0.601 (2)假如摸一次,你到白球的概率P (白球)=______; (3)试估算盒子里黑、白两种颜色的球各有多少只?答案与提示第二十五章 概率初步全章测试1.C . 2.C . 3.B . 4.D . 5.B . 6.C . 7.D . 8.D . 9.D . 10.C .11.略. 12..0,6113.P (A )=0.375,P (B )=0.5,P (C )=0.125.14.0.4. 15..31 16.⋅15817.0.4. 18.1.19.(1)见下表:被调查人数n 1001 1000 1004 1003 1000 满意人数m 999 998 1002 1002 1000 满意频率nm 0.9980.9980.9980.9991.000(3)概率是通过大量重复试验中频率的稳定性得到的一个0~1的常数. 20.解:(1)⋅==2142)2(抽到P 个P2 23 6 2 22 22 23 26 2 22 22 23 26 332 32 33 36 662626366第一次抽第二次抽从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种, ∵P (两位数不超过32)=851610=. ∴游戏不公平.21.(1)0.6; (2)0.6; (3)16只黑球,24只白球.。
(精)新人教版九年级数学上册全单元测试卷(含答案)
新人教版九年级数学上个单元测试卷(含答案)第二十一章过关自测卷 (100分,45分钟)一、选择题(每题3分,共21分)1.下列方程是关于x 的一元二次方程的是( ) A.ax 2+bx +c =0 B.211x x=2 C.x 2+2x =y 2-1 D.3(x +1)2=2(x +1)2.若一元二次方程ax 2+bx +c =0有一根为0,则下列结论正确的是( ) A.a =0 B.b =0 C.c =0 D.c ≠03.一元二次方程x 2-2x -1=0的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根4.方程x 2+6x =5的左边配成完全平方式后所得方程为( ) A.(x +3)2=14 B.(x -3)2=14C.(x +6)2=12D.以上答案都不对 5.已知x =2是关于x 的方程32x 2-2a =0的一个根,则2a -1的值是( ) A.3 B.4 C.5 D.66.某县为发展教育事业,加强了对教育经费的投入,2012年投入3亿元,预计2014年投入5亿元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .3(1+x )2=5 B .3x 2=5C. 3(1+x %)2=5D. 3(1+x ) +3(1+x )2=57.使代数式x 2-6x -3的值最小的x 的取值是( ) A.0 B.-3 C.3 D.-9 二、填空题(每题3分,共18分)8.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为________. 9.如果方程ax 2+2x +1=0有两个不等实数根,则实数a 的取值范围是____________.10.已知α、β是一元二次方程x 2-4x -3=0的两实数根,则代数式(α-3)(β-3)=________.11.在一幅长50 cm ,宽30 cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是1 800 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为________________.112.已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为________.13.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是_______________.三、解答题(14、19题每题12分,15题8分,16题9分,其余每题10分,共61分)14.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①x 2-3x +1=0;②(x -1)2=3;③x 2-3x =0;④x 2-2x =4.15.已知关于x 的方程x 2+kx -2=0的一个解与方程11x x +-=3的解相同. (1)求k 的值;(2)求方程x 2+kx -2=0的另一个解.16.关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.17.〈绍兴〉某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?18.中秋节前夕,旺客隆超市采购了一批土特产,根据以往销售经验,每天的售价与销售量之间有如下表的关系:(2)如果这种土特产的成本价是20元/千克,为使某一天的利润为780元,那么这一天的销售价应为多少元/千克?(利润=销售总金额-成本)19.如图2,A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向点D移动.(1)P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?图2 (2)P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?第二十二章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为()A.-2B.2C.15D.-152.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是()图1 图2A.y=-2x2B.y=2x2C.y=-12x2 D.y=12x23.〈恩施州〉把抛物线y=12x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.y=12(x+1)2-3B.y=12(x-1)2-3C.y=12(x+1)2+1D.y=12(x-1)2+12a≠0)中的x与y的部分对应值如下表:给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3;(2)当-12<x<2时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3 B.2C.1D.05.〈舟山〉若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=-2C.直线x=-1D.直线x=-46.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足()C.α<1<β<2D.α<1且β>27.〈内江〉若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)8.〈南宁〉已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大图3二、填空题(每题4分,共32分)9.已知抛物线y=-13x2+2,当1≤x≤5时,y的最大值是______.10.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是__________.11.已知函数y=(k-3)x2+2x+1的图象与x轴有公共点,则k的取值范围是________.12.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是________.13.二次函数y=ax2+bx的图象如图4,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为__________.图4 图514.如图5,已知函数y=-3x与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+3x=0的解为_______.15.将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是__________ cm2.16.如图6,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为__________.图6三、解答题(每题12分,共36分)17.〈牡丹江〉如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3). (1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.图718.在平面直角坐标系xOy中,O为坐标原点,已知抛物线y=x2-(k+2)x+14k2+1.(1)k取什么值时,此抛物线与x轴有两个交点?(2)若此抛物线与x轴交于A(x1,0)、B(x2,0)两点(点A在点B左侧),且x1+x2=3,求k的值.19.〈广州〉已知抛物线y 1=ax 2+bx +c 过点A (1,0),顶点为B ,且抛物线不经过第三象限. (1)使用a 、c 表示b ;(2)判断点B 所在象限,并说明理由;(3)若直线y 2=2x +m 经过点B ,且与该抛物线交于另一点C ,8c b a ⎛⎫+ ⎪⎝⎭,求当x ≥1时y 1的取值范围.第二十三章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.已知下列命题:①关于一点对称的两个图形一定不全等;②关于一点对称的两个图形一定是全等图形;③两个全等的图形一定关于一点对称.其中真命题的个数是()A.0 B.1 C.2 D.32.〈江苏泰州〉下列标志图(图1)中,既是轴对称图形,又是中心对称图形的是()图13.如图2,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()图2A.10°B.15°C.20°D.25°4.如图3①,将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是图3②中的()图35.如图4所示的图案中,绕自身的某一点旋转180°后还能与自身重合的图形的个数是()图4A.1B.2C.3D.4C.第三象限D.第四象限7.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图5①.在图5②中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图5①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()图5A.6 B.5 C.3 D.28.如图6,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A. 30,2B.60,2C.60D.60图6二、填空题(每题4分,共24分)9.如图7,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则α=_______.图710.如图8,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是_______.图8A′、C′仍落在格点上,则线段AB扫过的图形的面积是_______平方单位(结果保留π).图9 图1012.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为_______.13.如图10,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,若AP=3,则PP′的长是_______.14.如图11①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图11②、图11③、…,则旋转得到的图11⑩的直角顶点的坐标为_______.图11三、解答题(17题10分,18题12分,19题14分,其余每题8分,共52分)15.如图12,在平面直角坐标系中,三角形②③是由三角形①依次旋转后所得的图形.图12(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图中画出再次旋转后的三角形④.16.如图13所示,(1)观察图①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:图13(2)借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所给出的两个共同特征.(注意:①新图案与图①~④的图案不能重合;②只答第(2)问而没有答第(1)问的解答不得分)17.如图14,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由;图14(2)若矩形ABCD面积为2,求四边形BDEG的面积.18.如图15,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD顶点都在格点上,其中,点A的坐标为(1,1).(1)若将正方形ABCD绕点A顺时针方向旋转90°,点B到达点B1,点C到达点C1,点D到达点D1,求点B1、C1、D1的坐标;图15(2)若线段AC1的长度与点D1的横坐标的差恰好是一元二次方程x2+ax+1=0的一个根,求a的值.19.〈潍坊〉如图16①所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至长方形CE′F′D′,旋转角为α.图16(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图16②,G为BC中点,且0°<α<90°,求证:GD′= E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.第二十四章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.〈重庆〉如图1,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°图1 图22.〈甘肃兰州〉如图2是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8 cm,水面最深地方的高度为2 cm,则该输水管的半径为()A.3 cm B.4 cm C.5 cm D.6 cm3.〈甘肃兰州〉圆锥底面圆的半径为3 cm,其侧面展开图是半圆,则圆锥母线长为()A.3 cm B.6 cm C.9 cm D.12 cm图3 图44.如图3,边长为a的六角螺帽在桌面上滚动(没有滑动)一周,则它的中心O点所经过的路径长为()A.6a B.5a C.2aπD aπEB的中点,则下列结论不成立的是()5.〈山东泰安〉如图4,已知AB是⊙O的直径,AD切⊙O于点A,点C是⌒A.OC//AE B.EC=BCC.∠DAE=∠ABE D.AC⊥OE6.〈2013,晋江市质检〉如图5,动点M,N分别在直线AB与CD上,且AB//CD,∠BMN与∠MND的平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是()图5A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.以上都有可能7.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120°B.125°C.135°D.150°8.〈贵州遵义〉如图6,将边长为1 cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()图6A.32πcm B.322⎛⎫+⎪⎝⎭πcm C.43πcm D.3 cm二、填空题(每题4分,共24分)9.〈四川巴中〉如图7,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD 等于________.图7 图810.〈重庆〉如图8,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为________(结果保留π).11.〈贵州遵义〉如图9,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为________(结果保留根号).图9 图1012.如图10,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为每秒1个单位长度,以O ABC的边第二次相切时是出发后第________秒.13.如图11,正六边形ABCDEF中,AB=2,P是ED的中点,连接AP,则AP的长为________.图11 图1214.如图12,AB为半圆O的直径,C为半圆的三等分点,过B,C两点的半圆O的切线交于点P,若AB的长是2a,则P A的长是________.三、解答题(15题9分,16题10分,17题11分,18题14分,共44分)15. 如图13所示,△ABC中,∠ACB=90°,AC=2 cm,BC=4 cm,CM是AB边上的中线,以C长为半径画圆,则点A,B,M与⊙C的位置关系如何?图1316. 如图14,已知CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.(1)求证:AB是⊙O的切线;图14(2)若⊙O的半径为2,求⌒BD的长.17.如图15,从一个直径为4的圆形铁片中剪下一个圆心角为90°的扇形ABC.(1)求这个扇形的面积;图15(2)在剩下的材料中,能否从③中剪出一个圆作为底面,与扇形ABC围成一个圆锥?若不能,请说明理由;若能,请求出剪的圆的半径是多少.18. 如图16,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;图16(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.第二十五章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.〈大连〉一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.352.〈牡丹江〉小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A.110B.25C.15D.3103.〈贵阳〉一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6 B.10 C.18 D.204.一纸箱内有红、黄、蓝、绿四种颜色的纸牌,且图1所示为各颜色纸牌数量的统计图.若小华自箱内抽出一张牌,且每张牌被抽出的机会相等,则他抽出红色牌或黄色牌的机(概)率为()A.15B.25C.13D.12图15.小江玩投掷飞镖的游戏,他设计了一个如图2所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A. 13B.23C.12D.34图26.〈临沂〉如图3,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A. 34B.13C.23D.12图3 图47.在学习概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟试验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值;②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值;③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图4),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的试验中,不科学的有()A.0个B.1个C.2个D.3个8.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上一个反面向上,则小亮赢;若出现一个正面向上两个反面向上,则小文赢.下面说法正确的是()A.小强赢的概率最小B.小文赢的概率最小C.小亮赢的概率最小D.三人赢的概率相等二、填空题(每题3分,共18分)9.〈长沙〉在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是_______.10.一只昆虫在如图5所示的树枝上爬行,假定昆虫在每个岔路口都会随机地选择一条路径,则它停留在A 叶面的概率是_______.图5 图611.如图6,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤⑥都可使这个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为_______.12.王红和刘芳两人在玩转盘游戏,如图7,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是_______.图713.〈重庆〉在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为_______.14.〈济宁〉甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是_______.三、解答题(18题10分,19,20题每题12分,其余每题8分,共58分)15.已知口袋内装有黑球和白球共120 个,请你设计一个方案估计一下口袋内有多少个黑球,多少个白球?16.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次摸出的小球的标号相同;(2)两次摸出的小球标号的和等于4.17.〈扬州〉端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图8).规定:同一日内,顾客在本商场每消费满100元就可以转转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得_______元购物券,最多可得______元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.图818.〈包头〉甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图9所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲胜;若指针所指两个区域的数字之和为4的倍数,则乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树状图的方法,求甲获胜的概率;图9(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.19.有三张正面分别写有数-2 ,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数作为y的值,两次结果记为(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使代数式2223x xy yx y x y-+--有意义的(x ,y )出现的概率;(3)化简代数式2223x xy yx y x y-+--,并求使代数式的值为整数的(x ,y )出现的概率.20.〈潍坊〉 随着我国汽车产业的发展,城市道路拥堵问题日益严峻,某部门对15个城市的交通状况进行了调查,得到的数据如下表所示.(1)根据上班花费时间,将下面的频数分布直方图(如图10)补充完整;图10(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定:城市的堵车率=-上班堵车时间上班花费时间上班堵车时间×100%,比如,北京的堵车率=145214-×100%≈36.8%;沈阳的堵车率=123412-×100%≈54.5%,某人欲从北京,沈阳,上海,温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.期末选优拔尖测试(120分,90分钟)一、选择题(每题3分,共24分)1.如图1所示的图形中,既是轴对称图形又是中心对称图形的是( )图12.下列成语所描述的事件是必然事件的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖3.如图2,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.75°B.72°D.65°图2 图34.有一块长为30 m,宽为20 m的矩形菜地,准备修筑同样宽的三条直路(如图3),把菜地分成六块作为试验田,种植不同品种的蔬菜,并且种植蔬菜面积为矩形菜地面积的34,设道路的宽度为x m,下列方程:①30x+20x×2=30×20×14;②30x+20x×2-2x2=30×20×14;③(30-2x)(20-x)=30×20×34,其中正确的是()A.①②B.①③C.②③D.①②③5.已知关于x的一元二次方程x2-2x=m有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<-2C.m=0 D.m>-16.半径相等的圆内接正三角形、正方形、正六边形的边长之比为()A.1B∶1C.3∶2∶1 D.1∶2∶3图47.如图4,点A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿O-C-D-O的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则如图5所示图象中表示y与t之间函数关系最恰当的是()图5 图68.二次函数y=ax2+bx+c(a≠0)的图象如图6所示,则下列5个代数式:ab,ac,a-b+c,b2-4ac,2a+b中,值大于0的个数为()A.5 B.4 C.3 D.2二、填空题(每题3分,共21分)9.(陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则m的最小值为_______.10.已知点P(a,-3)关于原点的对称点为P1(-2,b),则a+b的值是_______.11.已知2x2-4x+c=0的一个根,则方程的另一个根是_______.12.如图7所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8 m,两侧距地面3 m高处各有一壁灯,两壁灯间的水平距离为6 m,则厂门的高度约为_______.(精确到0.1 m)图713.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6 cm,则此圆锥的表面积为_______cm2.14.已知⊙O1和⊙O2的半径分别是一元二次方程x2-5x+6=0的两根,且O1O2=1,则⊙O1和⊙O2的位置关系是_______.15.如图8,Rt△ABC的边BC位于直线l上,AC∠ACB=90°,∠A= 30°;若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为_______ (结果用含π的式子表示).图8三、解答题(16~18题每题6分,19~22题每题8分,23题11分,24题14分,共75分)16.已知抛物线经过两点A(1,0),B(0,-3),且对称轴是直线x=2,求此抛物线的解析式.17.解方程x2-4x+2=0.(用配方法)18.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+1)x+k(k+1)=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.19.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”“2”“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.20.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图9(1),连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;图9(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图9(2)为例说明理由.21.如图10,AC是⊙O的直径,P A切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;图10(2)若⊙O的半径为2,求弦AB及P A,PB的长.22.“五一”期间,小明和同学一起到游乐场游玩.如图11为某游乐场大型摩天轮的示意图,其半径是20m,它匀速旋转一周需要24分钟,最底部点B离地面1m.小明乘坐的车厢经过点B时开始计时.(1)计时4分钟后小明离地面的高度是多少?图11 (2)在旋转一周的过程中,小明将有多长时间连续保持在离地面31m以上的空中?23.为了实现“畅通市区”的目标,市地铁一号线准备动工,市政府现对地铁一号线第15标段工程进行招标,施工距离全长为300米.经招标协定,该工程由甲、乙两公司承建,甲、乙两公司施工方案及报价分别为:(1)甲公司施工单价y1(万元/米)与施工长度x(米)之间的函数关系为y1=27.8-0.09x,(2)乙公司施工单价y2(万元/米)与施工长度x(米)之间的函数关系为y2=15.8-0.05x.(注:工程款=施工单价×施工长度)(1)如果不考虑其他因素,单独由甲公司施工,那么完成此项工程需工程款多少万元?(2)考虑到设备和技术等因素,甲公司必须邀请乙公司联合施工,共同完成该工程.因设备共享,两公司联合施工时市政府可节省工程款140万元(从工程款中扣除).①如果设甲公司施工a米(0<a<300),那么乙公司施工______米,其施工单价y2=_______万元/米,试求市政府共支付工程款P(万元)与a(米)之间的函数关系式;②如果市政府支付的工程款为2 900万元,那么应将多长的施工距离安排给乙公司施工?24.如图12,y关于x的二次函数y=-3m (x+m)(x-3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于点D.以AB为直径作圆,圆心为点C,定点E的坐标为(-3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;。
九年级数学(上)第六章+反比例函数检测题参考答案
第六章 反比例函数检测题参考答案1. B 解析:∵ 函数y =中k =2>0,∴ 函数的图象在第一、三象限.2. D 解析:因为反比例函数表达式是y =,所以k =xy .又点(2,-4)在该函数图象上,所以k =xy =-8,所以该反比例函数表达式是y =-.把各选项分别代入y =-中,可知只有选项D 符合此函数表达式,所以选项D 正确.3.A 解析:由于不知道k 的符号,此题可以分类讨论,当时,反比例函数xky =的图象在第一、三象限,一次函数3+=kx y 的图象经过第一、二、三象限,可知A 项符合;同理可讨论当时的情况.4.D 解析:方法1:将A 代入反比例函数表达式y =中,可得==-0.6,将B 代入反比例函数表达式y =中,可得==-1, 将C代入反比例函数表达式y =中,可得==1.5,∴ .故选D.方法2:点A ,B ,C 在反比例函数图象上的位置如图所示:.故选D.观察图形,可得方法3:∵ k =3>0,∴ 反比例函数的图象位于第一、三象限.∴ 点A ,B 位于第三象限,点C 位于第一象限. ∴ <0,<0,>0.∵ k =3>0,∴ 在每个象限内反比例函数y 随x 的增大而减小. 又∵ -5<-3,∴ <0.∴ .故选D.5.B 解析:∵ 点A (a ,b )在反比例函数y =2x的图象上,∴ ab =2,∴ ab -4=2-4=-2. 6.A 解析:∵ 反比例函数的图象位于第二、四象限,∴ k -1<0, ∴ k <1. 只有A 项符合题意.7. A 解析:由图象可知,函数图象经过点(6,1.5),设反比例函数的表达式为ρ=, 则1.5=,解得k =9. 8.D 解析:因为反比例函数4y x=的图象在第一、三象限,且在每个象限内y 随x 的增大而减小,所以.又因为当时,,当时,,所以,,故选D.9.C 解析:∵ 点A 、B 都在反比例函数的图象上,∴ A (-1,6),B (-3,2).设直线AB 的表达式为0y kx b k =+≠(), 则6,23,k b k b =-+⎧⎨=-+⎩解得2,8,k b =⎧⎨=⎩∴ 直线AB 的表达式为28y x =+,∴ C (-4,0).在△AOC 中,OC =4,OC 边上的高(即点A 到x 轴的距离)为6, ∴ △AOC 的面积14612.2=⨯⨯=10.A 解析:当反比例函数图象经过点C (1,2)时,k =2;当反比例函数图象与直线AB 只有一个交点时,令-x +6=,得x 2-6x +k =0,此时方程有两个相等的实数根,故24b ac -=36-4k =0,所以k =9,所以k 的取值范围是2≤k ≤9,故选A. 11. m <1 解析:∵ 双曲线y =在每个象限内,y 随x 的增大而增大,∴ m -1<0,∴ m <1.12. 24 解析:由反比例函数图象的对称性知点A 和点B 关于原点对称,所以有x 2=-x 1,y 2=-y 1.又因为点A (x 1, y 1)在反比例函数y =的图象上,所以x 1y 1=6, 故(x 2-x 1)(y 2-y 1)=-2x 1·(-2y 1)=4x 1y 1=24.13.> 解析:在反比例函数y =中,k =2>0,所以在每一个象限内,y 随x 的增大而减小.因为<0,所以.14.4 解析:由反比例函数xk y 3-=的图象位于第一、三象限内,得,即.又正比例函数x k y )92(-=的图象过第二、四象限,所以,所以.所以的整数值是4.15. A 解析:由圆柱的体积计算公式可得Sd =104 m 3,所以S =.由此可知S 是关于d 的反比例函数,反比例函数的图象是双曲线,又因为这是个实际问题,S 与d 的取值都为正数,所以图象只能在第一象限,故A 项正确.16.4 解析:设点A (x ,),∵ OM =MN =NC ,∴ AM =,OC =3x . 由S △AOC =·AM =·3x ·=6,解得k =4.17.x y 4=解析:设反比例函数的表达式为k y x =,因为1212,k k y y x x ==,211112+=y y ,所以2112x x k =+. 因为212+=x x ,所以122k =,解得k =4,所以反比例函数的表达式为xy 4=. 18 .= 解析:设P (a ,b ),Q (c ,d ),则P A =OM =a ,OA =PM =b ,ON =BQ =c ,OB =QN =d ,则AB =b -d ,MN =c -a , 所以1111()()222S PA AB a b d ab ad ==-=-,211()22S MN QN c a d ==-=1()2cd ad -.根据反比例函数中比例系数k 的几何意义可得ab =cd =k , 第18题答图所以12S S =.19.解:(1)根据题意,把点A (-2,b )的坐标分别代入一次函数和反比例函数表达式中,得2582b k b =-+⎧⎪⎨=-⎪-⎩,,解得412b k =⎧⎪⎨=⎪⎩,,所以一次函数的表达式为y =12x +5.(2)向下平移m 个单位长度后,直线AB 的表达式为152y x m =+-, 根据题意,得8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩,, 消去y ,可化为21(5)802x m x +-+=, ()21=54802∆--⨯⨯=m ,解得m =1或9.20. 解:(1)把A (1,2)代入kyx =中,得2k =. ∴ 反比例函数的表达式为2y x=.(2)10x -<<或1x >.(3)如图,过点A 作AC ⊥x 轴,垂足为C . ∵ A (1,2),∴AC =2,OC =1.∴ OA= ∴ AB =2OA21.分析: (1)观察图象易知蓄水池的蓄水量. (2)与之间是反比例函数关系,所以可以设,依据图象上点(12,4)的坐标可以求得与之间的函数关系式. (3)求当 h 时的值. (4)求当时,t 的值. 解:(1)蓄水池的蓄水量为12×4=48().(2)函数的关系式为.(3).(4)依题意有,解得(h ).所以如果每小时排水量是5,那么水池中的水要用9.6小时排完.22.解:(1)因为的图象过点A (),所以.因为 x ky =的图象过点A (3,2),所以,所以x y 6=.(2) 求反比例函数x y 6=与一次函数42-=x y 的图象的交点坐标,得到方程:xx 642=-,解得.所以另外一个交点是(-1,-6).画出图象,可知当或时,反比例函数y =6x的值大于一次函数24y x =-的值. 23.解:(1)反比例函数y =kx(x >0)的图象经过点A (1,2),∴ k =2. ∵ AC ∥y 轴,AC =1,∴ 点C 的坐标为(1,1).∵ CD ∥x 轴,点D 在函数图象上,∴ 点D 的坐标为(2,1).∴ CD 的长为1.∴ 1111.22OCD S =⨯⨯=△ (2)∵ BE =12AC ,AC =1,∴12BE =.∵ BE ⊥CD ,∴ 点B 的纵坐标是32. 设3,2B a (),把点3,2B a ()代入y =2x中,得324==.23a a ,∴ 即点B 的横坐标是43,∴ 点E 的横坐标是43,CE 的长等于点E 的横坐标减去点C 的横坐标.∴ CE =41133-=. 24.解:(1)将C 点坐标(1-,2)代入1y x m =+中,得,所以13y x =+.将C 点坐标(1-,2)代入2k y x=,得.所以22y x =-.(2)由方程组解得所以D 点坐标为(-2,1).(3)当1y >2y 时,一次函数图象在反比例函数图象上方, 此时x 的取值范围是21x -<<-.25.解:(1)当时,为一次函数,设一次函数表达式为,由于一次函数图象过点(0,15),(5,60), 所以解得所以.当时,为反比例函数,设函数关系式为,由于图象过点(5,60),所以.综上可知y 与x 间的函数关系式为⎪⎩⎪⎨⎧≥<≤+=).5(300),50(159x xx x y(2)当时,,所以从开始加热到停止操作,共经历了20分钟.26. 分析:(1)因为点A (m ,2)在一次函数y 1=x +1的图象上,所以当x =m 时,y 1=2.把x =m ,y 1=2代入y 1=x +1中求出m 的值,从而确定点A 的坐标.把所求点A 的坐标代入y 2=中,求出k 值,即可确定反比例函数的表达式.(2)观察图象发现,当x >0时,在点A 的左边y 1<y 2,在点A 处y 1=y 2,在点A 的右边y 1>y 2.由此可比较y 1和y 2的大小. 解:(1)∵ 一次函数y 1=x +1的图象经过点A (m ,2),∴ 2=m +1.解得m =1. ∴ 点A 的坐标为A (1,2).∵ 反比例函数y 2=的图象经过点A (1,2), ∴ 2=.解得k =2,∴ 反比例函数的表达式为y 2=.(2)由图象,得当0<x <1时,y 1<y 2;当x =1时,y 1=y 2;当x >1时,y 1>y 2. 点拨:利用函数的图象比较两个函数值的大小时,图象越高,函数值越大.。
人教版九年级数学上册全册单元测试卷含答案
人教版九年级数学上册全册单元
测试卷含答案
今天分享给大家的信息是:人教版九年级数学上册单元试卷,包含答案。
这套试卷的配套教材有:人民教育出版社出版的九年级数学上册教材。
试卷集包含5个单元试卷,对应教材中的5个单元,每个单元1张试卷,期末1张试卷,共6张试卷。
这套卷子适合每节新课结束时的单元复习。
先地毯式复习本单元知识点,然后做一份单元试卷,找出本单元没有掌握好的知识点进行重点突破。
这套卷子也可以在期末考试前两周用于期末复习。
先做每个单元的试题找出薄弱环节,然后复习巩固,再做最后的模拟卷,复习效果会很好。
以下是这组试卷的部分截图。
如果你需要试卷的电子版,请咨询我获取。
(北师大版)初中数学九年级上册 第六章综合测试试卷02及答案
第六章综合测试一、选择题(共10题;共30分)1.关于反比例函数4y x=图象,下列说法正确的是( )A.必经过点()1,1 B.两个分支分布在第二、四象限C.两个分支关于x 轴成轴对称D.两个分支关于原点成中心对称2.若点()17,A y -,()24,B y -,()35,C y 在反比例函数3y x=的图象上,则1y 2y ,3y 的大小关系是( )A.132y y y << B.213y y y << C.321y y y << D.123y y y <<3.反比例函数3k y x+=的图象位于二、四象限,则k 的取值范围是( )A.3k -> B.3k ³- C.3k -< D.3k £-4.如图,已知点A 为反比例函数()0ky x x=<的图象上一点,过点A 作AB y ⊥轴,垂足为B ,若OAB △的面积为3,则k 的值为( )A.3B.3-C.6D.6-5.如图,若0ab <,则正比例函数y ax =与反比例函数by x=在同一坐标系的大致图象可能是( )A. B. C. D.6.如图,函数y kx =(0k >)与函数2y x=的图象相交于A ,C 两点,过A 作AB y ⊥轴于B ,连结BC ,则三角形ABC 的面积为( )A.1B.2C.2kD.22k 7.如图,ABO △的顶点A 在函数ky x=(0x >)的图象上,90ABO Ð=°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为( )A.9B.12C.15D.188.矩形ABCO 如图摆放,点B 在y 轴上,点C 在反比例函数ky x=(0x >)上,2OA =,4AB =,则k 的值为( )A.4B.6C.325D.4259.如图,平面直角坐标系xOy 中,线段BC x ∥轴、线段AB y ∥轴,点B 坐标为()4,3,反比例函数4y x=(0x >)的图像与线段AB 交于点D ,与线段BC 交于点E ,连结DE ,将BDE △沿DE 翻折至B DE ¢△处,则点B ¢的纵坐标是( )A.715B.1125C.512D.72410.如图,已知点A ,点C 在反比例函数ky x=上(0k >,0x >)的图象上,AB x ⊥轴于点B ,连结OC 交AB 于点D ,若2CD OD =,则BDC △与ADO △的面积比为( )A.13B.14C.15D.16二、填空题(共6题;共24分)11.已知点()2,2-在反比例函数ky x=的图象上,则这个反比例函数的表达式是________.12.某中学要在校园内划出一块面积为2100 m 的矩形土地做花圃,设这个矩形的相邻两边长分别为 m x 和m y ,那么y 关于x 的函数解析式为________.13.如图,在平面直角坐标系中,直线y kx m =-+与双曲线8y x=(0x >)交于A 、B 两点,点A 的横坐标为1,点B 的纵坐标为2,点P 是y 轴上一动点,当PAB △的周长最小时,点P 的坐标是________.14.如图,已知直线2y x =-+分别与x 轴,y 轴交于A ,B 两点,与双曲线ky x=交于E ,F 两点,若2AB EF =,则k 的值是________.15.如图,11POA △、212P A A △是等腰直角三角形,点1P 、2P 在函数()40y x x=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是________.16.如图,已知点A 在反比例函数()0ky x x=>的图象上,作Rt ABC △,边BC 在x 轴上,点D 为斜边AC 的中点,连结DB 并延长交y 轴于点E ,若BCE △的面积为6,则k =________.三、解答题(共7题;共66分)17.已知正比例函数3y x =-与反比例函数5m y x-=交于点()1,P n -,求反比例函数的表达式.18.如图,一次函数y kx b =+(k 、b 为常数,0k ¹)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数ny x=(n 为常数,且0n ¹)的图象在第二象限交于点C .CD x ⊥轴,垂足为D ,若2312OB OA OD ===.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求CDE △的面积;(3)直接写出不等式nkx b x+£的解集.19.经过实验获得两个变量()0x x >,()0y y >的一组对应值如下表.x 123456y62.921.51.21(1)请画出相应函数的图象,并求出函数表达式.(2)点()11,A x y ,()22,B x y 在此函数图象上.若12x x <,则1y ,2y 有怎样的大小关系?请说明理由.20.如图,菱形的一边OA 在x 轴负半轴上.O 是坐标原点,点()13,0A -,对角线AC 与OB 相交于点D ,且130AC OB ×=,若反比例函数ky x=(x <0)的图象经过点D ,并与BC 的延长线交于点E .(1)求双曲线ky x=的解析式;(2)求:AOB OCE S S △△之值.21.如图,一次函数1y k x b =+(10k ¹)与反比例函数2k y x=(20k ¹)的图象交于点()1,2A -,(),1B m -.(1)求这两个函数的表达式;(2)在x 轴上是否存在点(),0P n (0n >),使ABP △为等腰三角形?若存在,求n 的值;若不存在,说明理由.22.如图,已知一次函数y kx b =+(0k ¹)的图象与x 轴、y 轴分别交于点A 、B 两点,且与反比例函数my x=的图象在第一象限内的部分交于点C ,CD 垂直于x 轴于点D ,其中2OA OB OD ===.(1)直接写出点A 、C 的坐标;(2)求这两个函数的表达式;(3)若点P 在y 轴上,且14ACP S =△,求点P 的坐标.23.如图,在平面直角坐标系中,点(),0A a 是x 轴正半轴上一点,PA x ⊥轴,点B 坐标为()0,b (0b >),动点M 在y 轴正半轴上B 点上方的点,动点N 在射线AP 上,过点B 作AB 的垂线,交射线AP 于点D ,交直线MN 于点Q ,连结AQ ,取AQ 的中点为C .(1)若2a b =,点D 坐标为(),m n ,求mn的值;(2)当点Q 在线段BD 上时,若四边形BQNC 是菱形,面积为B ,Q 两点的直线解析式;(3)当点Q 在射线BD 上时,且3a =,1b =,若以点B ,C ,N ,Q 为顶点的四边形是平行四边形,求这个平行四边形的周长.第六章综合测试答案解析一、1.【答案】D【解析】解:A .把()1,1代入得:左边¹右边,故A 选项不符合题意;B .40k =>,图象在第一、三象限,故B 选项不符合题意;C .沿x 轴对折不重合,故C 选项不符合题意;D .两曲线关于原点对称,故D 选项符合题意;故答案为:D.2.【答案】B【解析】解:∵点()17,A y -,()24,B y -,()35,C y 在反比例函数3y x=的图象上,30k =>,∴该函数在每个象限内,y 随x 的增大而减小,函数图象在第一、三象限,7405--∵<,<,2130y y y ∴<<<,即213y y y <<,故答案为:B.3.【答案】C【解析】解:根据题意得:30k +<,解得3k -<.故答案为:C.4.【答案】D 【解析】由题意得32k=,解得6k =或6k =-,∵图象在第二象限,0k ∴<,6k =-∴,故答案为:D.5.【答案】B【解析】0ab ∵<,∴当0a >时,0b <,此时正比例函数y ax =经过第一、三象限,反比例函数图像在二、四象限,没有符合条件的图像;当0a <时,0b >,此时此时正比例函数y ax =经过第二、四象限,反比例函数图像在一、三象限,B 选项符合条件.故答案为:B.6.【答案】B【解析】设点A 坐标2,x x æöç÷èø,则点C 坐标2,x x æö--ç÷èø,AB y ∵⊥轴,()114222A C ABC S AB y y x x=×-=×=△∴,故答案为:B.7.【答案】D【解析】解:NQ MP OB ∵∥∥,ANQ AMP AOB ∴△∽△∽△,M ∵、N 是OA 的三等分点,12AN AM =∴,13AN AO =,14ANQ AMPS S =△△∴,∵四边形MNQP 的面积为3,134ANQ ANQS S =+△△∴,1ANQ S =△∴,2119AOBAN S AO æö==ç÷èø△∵,9AOB S =△∴,218AOB k S ==△∴,故答案为:D.8.【答案】C【解析】解:∵四边形ABCO 是矩形,90A AOC Ð=Ð=°∴,OC AB =,2OA =∵,4AB =,∴过C 作CD x ⊥轴于D ,90CDO A Ð=Ð=°∴,90COD COB COB AOB Ð+Ð=Ð+Ð=°,COD AOB Ð=Ð∴,AOB DOC ∴△∽△,OB AB OAOC CD OD==∴,42CD OD==,CD =∴OD =C ∴,325k =∴,故答案为:C.9.【答案】B【解析】解:∵四边形OABC 是矩形,CB x ∴∥轴,AB y ∥轴,∵点B 坐标为()4,3,D ∴的横坐标为4,E 的纵坐标为3,D E ∵、在反比例函数4y x=(0x >)的图像上,D ∴的坐标为:()4,1,E 的坐标为:4,33æöç÷èø,48BE 4BD 31233=-==-=∴,10ED 3==∴,连接BB ¢,交ED 于F ,过B ¢作B G BC ¢⊥于G ,如图:B B ¢∵,关于ED 对称,BF B F BB ED ¢¢=∴,⊥,BF ED BE BD ×=×∴,即:108BF 233´=´,8BF 5=∴,16BB 2BF 5¢==∴,设EG x =,则8BG 3x =-,22222BB BG B G EB GE ¢¢¢-==-,22221688533x x æöæöæö--=-ç÷ç÷ç÷èøèøèø∴,解得:5675x =,56EG 75=∴,64BG 25===∴,则点B ¢的纵坐标为:641132525-=,故答案为:B.10.【答案】B【解析】解:如图,过C 作CE x ⊥轴,CE BD ∴∥,111222AOB COE S OB AB S OB CE k =´==´=△△∵,2CD OD =∵,22:::1:9BOD COE S S BD CE OD OC ===△△∴,1119218BOD S k k =´=△∴,129BDC BOD S S k ==△△∴,1142189AOD ABD BDC S S S k k k =-=-=△△△∵,BDC ∴△与ADO △的面积比为:14:1:499k k =.故答案为:B.二、11.【答案】4y x=-【解析】解:∵反比例函数()0k y k x =¹的图象上一点的坐标为()2,2-,224k =-´=∴,∴反比例函数解析式为4y x=-,故答案为:4y x=-.12.【答案】()1000y x x =>【解析】解:由题意,得y 关于x 的函数解析式是()1000y x x =>.故答案为()1000y x x=>.13.【答案】340,5æöç÷èø【解析】解:作A 关于y 轴的对称点为A ¢,连接A B ¢,交y 轴于P 点,此时PA PB A B ¢+=,则PAB △的周长最小,把1x =代入8y x=得,8y =,()1,8A ∴,把2y =代入8y x =得,82x=,解得4x =,()4,2B ∴,()1,8A ¢-∴,把()1,8A ¢-,()4,2B 代入y kx m =-+得842k m k m +=ìí-+=î,解得65345k m ì=ïïíï=ïî,∴直线为63455y x =-+,令0x =,则345y =,340,5P æöç÷èø∴,故答案为340,5æöç÷èø.14.【答案】34【解析】解:如图,作FH x ⊥轴,EC y ⊥轴,FH 与EC 交于D,由直线2y x =-+可知A 点坐标为()2,0,B 点坐标为()0,2,2OA OB ==,AOB ∴△为等腰直角三角形,AB =∴,12EF AB ==∴,DEF ∴△为等腰直角三角形,1FD DE ===∴,设F 点横坐标为t ,代入2y x =-+,则纵坐标是2t -+,则F 的坐标是:(),2t t -+,E 点坐标为()1,1t t +-+,()()()-211t t t t +=+×-+∴,解得12t =,E ∴点坐标为31,22æöç÷èø,313224k =´=∴.故答案为:34.15.【答案】()【解析】作1PB y ⊥轴,1P A x ⊥轴,2P D x ⊥轴,11212POA P A A ∵△,△是等腰直角三角形,11122AP BP A D DA DP ===∴,,则4OA OB ×=,1124OA OB AA OA ====∴,,设1A D x =,则有()44x x +=,解得2x =-+,或2x =--(舍去),则24244OA x =+=-+=,2A 坐标为().16.【答案】12【解析】解:BD ∵为Rt ABC △的斜边AC 上的中线,BD DC =∴,DBC ACB Ð=Ð∴,又DBC EBO Ð=Ð,EBO ACB Ð=Ð∴,又90BOE CBA Ð=Ð=°,BOE CBA ∴△∽△,BO OE BC AB=∴,即BC OE BO AB ´=´.又6BEC S =△∵,162BC EO ×=∴,即12BC OE BO AB k ´==´=.∵反比例函数图象在第一象限,0k >.12k =∴.故答案是:12.三、17.【答案】解:将点P 的坐标代入正比例函数3y x =-中,得()313n =-´-=,故P 点坐标为()1,3-将点()1,3P -代入反比例函数5m y x -=中,得531m -=-解得:2m =故反比例函数的解析式为:3y x=-.18.【答案】(1)解:由已知,6OA =,12OB =,4OD =CD x ∵⊥轴OB CD∴∥ABO ACD∴△∽△OA OB AD CD=∴61210CD=∴20CD =∴∴点C 坐标为()4,20-80n xy ==-∴∴反比例函数解析式为:80y x=-把点()6,0A ,()0,12B 代入y kx b =+得:0612k b b =+ìí=î解得:112k b =-ìí=î∴一次函数解析式为:212y x =-+(2)当80212x x-=-+时,解得110x =,24x =-当10x =时,8y =-∴点E 坐标为()10,8-11201081014022CDE CDA EDA S S S =+=´´+´´=△△△∴(3)不等式n kx b x+£,从函数图象上看,表示一次函数图象不高于反比例函数图象∴由图象得,10x ³,或40x -£<.19.【答案】(1)解:设函数解析式为ky x =∵图像经过点()1,6166k =´=∴∴此函数解析式为6y x=;图像如下(2)解:60k =∵>∴在第一象限内,y 随x 的增大而减小,∵点()11,A x y ,()22,B x y 在此函数图象上,12x x <,12y y ∴>.20.【答案】(1)解:作CG AO ⊥于点G ,作BH x ⊥轴于点H ,130AC OB ×=∵,1652OABC S AC OB =××=菱形∴,16522OAC OABC S S ==△菱形∴,即16522AO CG ×=,()13,0A -∵,即13OA =,根据勾股定理得5CG =,在Rt OGC △中,13OC OA ==∵,12OG =∴,则()12,5C --,∵四边形OABC 是菱形,AB OC AB OC =∴∥,,BAH COG Ð=Ð∴,在BAH △和COG △中BAH COG AHB OGCAB OC Ð=ÐìïÐ=Ðíï=î()BAH COG AAS ∴△≌△,512BH CG AH OG ====∴、,()25,5B -∴,D ∵为BO 的中点,255,22D æö--ç÷èø∴,D ∵在反比例函数图象上,255125224k æö=-´-=ç÷èø∴,即反比例函数解析式为1254y x=(2)解:当5y =-时,254x =-,则点25,54E æö--ç÷èø,234CE =∴,1123115116551352248222OCE AOB S CE CG S AO BH =××=´´==××=´´=△△∵,,65115::52:2328AOB OCE S S ==△△∴.21.【答案】(1)解:把()1,2A -代入2k y x =,得到22k =-,∴反比例函数的解析式为2y x =-.(),1B m -∵在2y x =-上,2m =∴,由题意11221k b k b -+=ìí+=-î,解得111k b =-ìí=î,∴一次函数的解析式为1y x =-+(2)解:()()1,22,1A B --∵,,AB =∴①当PA PB =时,()()221421n n ++=-+,0n =∴,0n ∵>,0n =∴不合题意舍弃.②当AP AB =时,()(22221n ++=,0n ∵>,1n =-∴③当BP BA =时,()(22212n +-=,0n ∵>,2n =+∴综上所述,1n =-或2+.22.【答案】(1)A 点坐标为()2,0-,C 点坐标为()2,4(2)解:把()2,4C 代入m y x=得248m =´=,∴反比例函数解析式为8y x=,把()2,0A -,()0,2B 代入y kx b =+得202k b b -+=ìí=î,解得12k b =ìí=î,∴一次函数解析式为2y x =+(3)解:设()0,P t ,14ACP S =△∵,而PBA PBC PAC S S S +=△△△,124142t -´=∴,解得9t =或5t =-,∴点P 的坐标为()0,9或()0,5-.23.【答案】(1)解:90AOB ABD PA x Ð=Ð=°∵,⊥轴90OAD Ð=°∴90OAB BAD Ð+Ð=°∴90OBA OAB Ð+Ð=°∵BAD OBAÐ=Ð∴AOB DBA∴△∽△OB AB AB AD=∴()()(),00,2,A a B b a b D m n =∵,,,2OA b AB ==∴,,25m OA b n AD b====∴,25m n =∴(2)解:如图,∵四边形BQNC 是菱形,BQ BC NQ BQC NQC ==Ð=Ð∴,AB BQ ∵⊥,C 是AQ 的中点,12BC CQ AQ ==∴6030BQC BAQ Ð=°Ð=°∴,在ABQ △和ANQ △中,BQ NQ BQA NQA QA QA =ìïÐ=Ðíï=î∵,()ABQ ANQ SAS ∴△≌△30BAQ NAQ Ð=Ð=°∴30BAO Ð=°∴BQNC S =四边形∵AB ==∴162OB AB OA AD ====∴,(B,(D 设经过点B ,Q 两点的直线解析式为y kx b =+,把(B,(D代入解析式得,6b k b ì=ïí+=ïî解得,k b ìïí=ïî∴经过点B ,Q两点的直线解析式为:y =+(3)解:13OB OA ==∵,,AB =∴DA x ∵⊥轴,DA y ∴∥轴,DAB ABO Ð=Ð∴,又AOB DBAÐ=ÐAOB DBA ∴△∽△,OB OA AB BD=∴BD =∴.①如图,当点Q 在线段BD 上,AB BD ∵⊥,C 为AQ 的中点,12BC AQ =∴∵四边形BQNC 是平行四边形,QN BC CN BQ CN BD ==∴,,∥12CN AC QD AQ ==∴,13BQ CN BD ===∴AQ =∴BQNC C =四边形∴.②如图,当点Q 在线段BD 的延长线上,AB BD ∵⊥,C 为AQ 的中点,12BC CQ AQ ==∴∴四边形BQNC 是平行四边形,BN CQ =,BN CQ ∥12BD BN QD AQ ==∴3BQ BD ==∴AQ ===∴2BQNC C AQ ==平行四边形∴。
九年级数学上《第6章反比例函数》单元测试含答案
《第6章反比例函数》一、填空题:1.u与t成反比,且当u=6时,t=,这个函数解析式为u=______.2.反比例函数y=的图象经过点(﹣2,﹣1),那么k的值为______.3.函数和函数的图象有______个交点.4.反比例函数的图象经过(﹣,5)、(a,﹣3)及(10,b)点,则k=______,a=______,b=______.5.若反比例函数y=(2k﹣1)的图象在二、四象限,则k=______.6.已知y﹣2与x成反比例,当x=3时,y=1,则y与x的函数关系式为______.7.函数的图象,在每一个象限内,y随x的增大而______.8.如图是反比例函数y=的图象,那么k与0的大小关系是k______0.9.反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是______.10.是y关于x的反比例函数,且图象在第二、四象限,则m的值为______.二、选择题:(分数3分×9=27分)11.下列函数中,y与x的反比例函数是()A.x(y﹣1)=1 B.y=C.y=D.y=12.已知反比例函数的图象经过点(a,b),则它的图象一定也经过()A.(﹣a,﹣b)B.(a,﹣b)C.(﹣a,b)D.(0,0)13.如果反比例函数y=的图象经过点(﹣3,﹣4),那么函数的图象应在()A.第一,三象限 B.第一,二象限 C.第二,四象限 D.第三,四象限14.若y与﹣3x成反比例,x与成正比例,则y是z的()A.正比例函数B.反比例函数C.一次函数 D.不能确定15.函数y=的图象经过点(﹣4,6),则下列各点中在y=的图象上的是()A.(3,8) B.(﹣4,﹣6)C.(﹣8,﹣3)D.(3,﹣8)16.正比例函数y=kx与反比例函数y=在同一坐标系中的图象为()A.B.C.D.17.在同一直角坐标平面内,如果y=k1x与没有交点,那么k1和k2的关系一定是()A.k1<0,k2>0 B.k1>0,k2<0 C.k1、k2同号D.k1、k2异号18.已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣919.在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.20.如图:A,B是函数y=的图象上关于原点O点对称的任意两点,AC垂直于x轴于点C,BD垂直于y轴于点D,设四边形ADBC的面积为S,则()A.S=2 B.2<S<4 C.S=4 D.S>4三、解答题:(第小题各10分,共40分)21.在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I与R之间的函数关系式;(2)当电流I=0.5安培时,求电阻R的值.22.反比例函数的图象过点(2,﹣2).(1)求反比例函数y与自变量x之间的关系式,它的图象在第几象限内?(2)y随x的减小如何变化?(3)试判断点(﹣3,0),(﹣3,﹣3)是否在此函数图象上?23.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.24.已知如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.《第6章反比例函数》参考答案与试题解析一、填空题:1.u与t成反比,且当u=6时,t=,这个函数解析式为u= .【解答】解:设u=(k≠0),将u=6,t=代入解析式可得k=,所以.故答案为:.2.反比例函数y=的图象经过点(﹣2,﹣1),那么k的值为 2 .【解答】解:∵反比例函数y=的图象经过点(﹣2,﹣1),∴﹣1=,解得k=2.故答案为:2.3.函数和函数的图象有0 个交点.【解答】解:联立两函数关系式,得,两式相乘,得y2=﹣1,无解,∴两函数图象无交点.4.反比例函数的图象经过(﹣,5)、(a,﹣3)及(10,b)点,则k= ,a= ,b= ﹣.【解答】解:∵反比例函数的图象经过(﹣,5),∴k=﹣×5=﹣,∴y=﹣,∵点(a,﹣3)及(10,b)在直线上,∴﹣=﹣3,=b,∴a=,b=﹣,故答案为:﹣,,﹣;5.若反比例函数y=(2k﹣1)的图象在二、四象限,则k= 0 .【解答】解:根据题意,3k2﹣2k﹣1=﹣1,2k﹣1<0,解得k=0或k=且k<,∴k=0.故答案为:0.6.已知y﹣2与x成反比例,当x=3时,y=1,则y与x的函数关系式为y=﹣+2 .【解答】解:设y﹣2=,当x=3时,y=1,解得k=﹣3,所以y﹣2=﹣,y=﹣+2.7.函数的图象,在每一个象限内,y随x的增大而增大.【解答】解:∵k=﹣2<0,∴函数的图象位于二、四象限,在每个象限内,y随x的增大而增大.故答案为:增大.8.如图是反比例函数y=的图象,那么k与0的大小关系是k >0.【解答】解:因为反比例函数y=的图象经过第一象限,所以k>0.故答案是:>.9.反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是 2 .【解答】解:由题意得:S△MOP=|k|=1,k=±2,又因为函数图象在一象限,所以k=2.10.是y关于x的反比例函数,且图象在第二、四象限,则m的值为﹣3 .【解答】解:由题意得:m2﹣m﹣7=﹣1,且m﹣1≠0,解得:m1=﹣3,m2=﹣2,∵图象在第二、四象限,∴m﹣1<0,∴m<1,∴m=﹣3,故答案为:﹣3.二、选择题:(分数3分×9=27分)11.下列函数中,y与x的反比例函数是()A.x(y﹣1)=1 B.y=C.y=D.y=【解答】解:A,B,C都不符合反比例函数的定义,错误;D符合反比例函数的定义,正确.故选D.12.已知反比例函数的图象经过点(a,b),则它的图象一定也经过()A.(﹣a,﹣b)B.(a,﹣b)C.(﹣a,b)D.(0,0)【解答】解:因为反比例函数的图象经过点(a,b),故k=a×b=ab,只有A案中(﹣a)×(﹣b)=ab=k.故选A.13.如果反比例函数y=的图象经过点(﹣3,﹣4),那么函数的图象应在()A.第一,三象限 B.第一,二象限 C.第二,四象限 D.第三,四象限【解答】解:y=,图象过(﹣3,﹣4),所以k=12>0,函数图象位于第一,三象限.故选A.14.若y与﹣3x成反比例,x与成正比例,则y是z的()A.正比例函数B.反比例函数C.一次函数 D.不能确定【解答】解:由题意可列解析式y=,x=∴y=﹣z∴y是z的正比例函数.故选A.15.函数y=的图象经过点(﹣4,6),则下列各点中在y=的图象上的是()A.(3,8) B.(﹣4,﹣6)C.(﹣8,﹣3)D.(3,﹣8)【解答】解:∵函数y=的图象经过点(﹣4,6),∴k=﹣4×6=﹣24,四个选项中只有只有D选项中(3,﹣8),3×(﹣8)=﹣24.故选D.16.正比例函数y=kx与反比例函数y=在同一坐标系中的图象为()A.B.C.D.【解答】解:k>0时,函数y=kx与y=同在一、三象限,B选项符合;k<0时,函数y=kx与y=同在二、四象限,无此选项.故选B.17.在同一直角坐标平面内,如果y=k1x与没有交点,那么k1和k2的关系一定是()A.k1<0,k2>0 B.k1>0,k2<0 C.k1、k2同号D.k1、k2异号【解答】解:∵直线y=k1x与双曲线没有交点,∴k1x=无解,∴x2=无解,∴<0.即k1和k2异号.故选D.18.已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣9【解答】解:设反比例函数的解析式为y=(k≠0).把x=3,y=﹣6代入,得﹣6=,k=﹣18.故函数的解析式为y=﹣,当y=3时,x=﹣=﹣6.故选B.19.在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.【解答】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,故A选项正确;B、由函数y=的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,故B选项错误;C、由函数y=的图象可知k<0与y=kx+3的图象k<0矛盾,故C选项错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,故D选项错误.故选:A.20.如图:A,B是函数y=的图象上关于原点O点对称的任意两点,AC垂直于x轴于点C,BD垂直于y轴于点D,设四边形ADBC的面积为S,则()A.S=2 B.2<S<4 C.S=4 D.S>4【解答】解:∵A,B是函数y=的图象上关于原点O对称的任意两点,且AC垂直于x轴于点C,BD 垂直于y轴于点D,∴S△AOC=S△BOD=×2=1,假设A点坐标为(x,y),则B点坐标为(﹣x,﹣y),则OC=OD=x,∴S△AOD=S△AOC=1,S△BOC=S△BOD=1,∴四边形ADBC面积=S△AOD+S△AOC+S△BOC+S△BOD=4.故选C.三、解答题:(第小题各10分,共40分)21.在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I与R之间的函数关系式;(2)当电流I=0.5安培时,求电阻R的值.【解答】解:(1)设∵当电阻R=5欧姆时,电流I=2安培.∴U=10∴I与R之间的函数关系式为;(2)当I=0.5安培时,解得R=20(欧姆).22.反比例函数的图象过点(2,﹣2).(1)求反比例函数y与自变量x之间的关系式,它的图象在第几象限内?(2)y随x的减小如何变化?(3)试判断点(﹣3,0),(﹣3,﹣3)是否在此函数图象上?【解答】解:(1)设y=,把(2,﹣2)代入得k=2×(﹣2)=﹣4,所以反比例函数y与自变量x之间的关系式为y=﹣,它的图象在第二、四象限;(2)在每一象限内,y随x的增大而增大;(3)因为﹣3×0=0,﹣3×(﹣3)=9,所以点(﹣3,0),(﹣3,﹣3)都不在在此函数图象上.23.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.24.已知如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.【解答】解:(1)据题意,反比例函数的图象经过点A(﹣2,1),∴有m=xy=﹣2∴反比例函数解析式为y=﹣,又反比例函数的图象经过点B(1,n)∴n=﹣2,∴B(1,﹣2)将A、B两点代入y=kx+b,有,解得,∴一次函数的解析式为y=﹣x﹣1,(2)一次函数的值大于反比例函数的值时,x取相同值,一次函数图象在反比例函数上方即一次函数大于反比例函数,∴x<﹣2或0<x<1,。
(好题)初中数学九年级数学上册第六单元《反比例函数》检测卷(含答案解析)(2)
一、选择题1.函数5y x =的图象位于() . A .第三象限B .第一、三象限C .第二、四象限D .第二象限【答案】B【分析】根据直角坐标系、反比例函数的性质分析,即可得到答案.【详解】 ∵5y x=∴5xy =,即x 和y 符号相同 ∴5y x=的图象位于第一、三象限 故选:B .【点睛】 本题考查了反比例函数、直角坐标系的知识;解题的关键是熟练掌握反比例函数、直角坐标系的性质,从而完成求解.2.若反比例函数1y k x +=(k 是常数)的图象在第一、三象限,则k 的取值范围是( ) A .0k <B .0k >C .1k <-D .1k >- 【答案】D【分析】先根据反比例函数的性质得出k+1>0,再解不等式即可得出结果.【详解】解:∵反比例函数1y k x+=(k 为常数)的图象在第一、三象限, ∴k+1>0,解得k>-1.故选:D .【点睛】本题考查了反比例函数的图象和性质:当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.3.如图,在平面直角坐标系中,菱形ABCO 的顶点O 在坐标原点,且与反比例函数y=kx的图象相交于A (m ,),C 两点,已知点B (k 的值为( )A .-6B .-62C .-12D .-122【答案】A【分析】 根据菱形的性质、平行线的性质和全等三角形的判定与性质可以求得点A 的坐标,然后根据点A 在反比例函数图象上,即可求k 的值;【详解】作AE ⊥x 轴交x 轴于点E ,作CF ⊥x 轴交x 轴于点F ,作BD ∥x 轴交AE 于点D ,AB 与y 轴交点记为M ;∵四边形AOCB 是菱形,∴AB ∥CO ,AB=CO ,∴∠ABO=∠COB ,又∵BD ∥x 轴,∴∠DBO=∠FOB ,∴∠ABD=∠COF ,∵AD ⊥BD ,CF ⊥OF ,∴∠ADB=∠CFO=90°,在△ADB 和△CFO 中,⎧⎪⎨⎪⎩∠ABD=∠COF ∠ADB=∠CFO AB=CO , ∴△ADB ≌△CFO (AAS ),∴AD=CF ,∵A(m ,32,B(2222∴2,∴2,∵四边形AOCB 是菱形,∴∠AOB=∠COB ,∵B(),∴∠BOF=∠BOM=45°,∵AE ∥y 轴,∴∠EAO=∠AOM ,∴∠AOM=∠COF ,∴∠EAO=∠COF ,∵AE ⊥x ,CF ⊥x 轴,∴∠AEO=∠CFO ,在△AEO 和△OFC 中,OAE COF AEO OFC OA OC =⎧⎪=⎨⎪=⎩∠∠∠∠∴△AEO ≌△OFC (AAS ),∴,∴点A 的坐标为(,∵点A 在反比例函数图象上,∴=,解得:k=-6,故选:A .【点睛】本题考查了反比例函数的图象和性质、菱形的性质、解题本题的关键是明确题意,利用数形结合的思想解答;4.若点()12,A y -,()21,B y -,()31,C y 在反比例函数6y x=-的图象上,则下列结论正确的是( )A .123y y y >>B .312y y y >>C .213y y y >>D .231y y y >> 【答案】C【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点A 和点B 的纵坐标的大小即可.【详解】解:∵反比例函数的比例系数为-6,∴图象的两个分支在二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点A 、B 在第二象限,点C 在第四象限,∴y 3最小,∵-1>-2,y 随x 的增大而增大,∴y 2>y 1,∴y 2>y 1>y 3.故选:C .【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y 随x 的增大而增大.5.某口罩生产企业于2020年1月份开始了技术改造,其月利润y (万元)与月份x 之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是( )A .4月份的利润为45万元B .改造完成后每月利润比前一个月增加30万元C .改造完成前后共有5个月的利润低于135万元D .9月份该企业利润达到205万元【答案】D【分析】先根据图象求出反比例函数的解析式,将横坐标为4代入求得利润即可判断A ,根据图象求出一次函数的解析式,即可判断B ,将135代入两个函数求对应的x 的值即可;将x=9代入求利润即可;【详解】A 、由图象得反比例函数经过点(1,180),∴ 反比例函数的解析式为:180y x= , 将x=4代入得:y=45,故该选项不符合题意;B 、将(4,45),(5,75)代入一次函数解析式,45=4755k b k b+⎧⎨=+⎩ ,解得3075k b =⎧⎨=-⎩, 求得一次函数解析式为:3075y x =- ,故该选项不符合题意;C 、将y=135代入180y x =和3075y x =-中, 180135x = 解得:x=43; 135=3075x - 解得:x=7,故该选项不符合题意;D 、将x=9代入3075y x =-,求得y=270-75=195≠205,故该选项符合题意; 故选:D .【点睛】本题考查了反比例函数与一次函数的图象的性质,以及函数的解析式的求法;正确理解图是解题的关键;6.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AD ,若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点,A F ,且AF EF =,若ABE △的面积为24,则k 的值为( )A .8B .16C .18D .24【答案】B【分析】 如图,连接BD ,OF ,过点A 作AN ⊥OE 于N ,过点F 作FM ⊥OE 于M .证明BD ∥AE ,推出S △ABE =S △AOE =24,推出12∆=EOF S S △AOE =12,可得143∆∆==FME EOF S S ,由此即可解决问题.【详解】解:如图,连接BD ,OF ,过点A 作AN ⊥OE 于N ,过点F 作FM ⊥OE 于M .∵AN ∥FM ,AF=FE ,∴MN=ME ,1,2=FM AN ∵A ,F 在反比例函数的图象上, ∴S 2∆∆==AON FOM k S 1122∴⋅⋅=⋅⋅ON AN OM FM ∴ON 12=OM ∴ON=MN=EM , ∴ME 13=OE ∴13S ∆∆=FME FOE S ∵AD 平分∠OAE ,∴∠OAD=∠EAD , ∵四边形ABCD 是矩形,∴OA=OD ,∴∠OAD=∠ODA=∠DAE ,∴AE ∥BD ,∴S △ABE =S △AOE ,∴S △AOE =24,∵AF=EF , ∴1122S ∆∆==EOF AOE S ∴143S ∆∆==FME EOF S ∴S 12482∆∆∆=-=-==FOM FOE FME k S S ∴k=16.故选:B .【点睛】本题考查反比例函数的性质,矩形的性质,平行线的判断和性质,等高模型等知识,解题的关键是证明BD ∥AE ,利用等高模型解决问题,属于中考选择题中的压轴题.7.如图,在平面直角坐标系中,BC y ⊥轴于点C ,90B ∠=︒,双曲线k y x =过点A ,交BC 于点D ,连接OD ,AD .若34AB OC =,5OAD S =△,则k 的值为( )A .92B .72C .73D .83【答案】D【分析】如详解图:过点A 作AH 垂直于x 轴于点H ,可得四边形OCBH 为矩形,根据34AB OC =,设3,4AB a OC a ==,根据矩形的性质可求AH a =,则可得点A 坐标(,k a a ),点D 的坐标(,44k a a ),4k CD a =,k OH BC a ==,344k k k BD BC CD a a a=-=-=,可求出矩形OCBH 的面积等于44k BC CO a k a ⨯=⨯=,2k =△COD S ,2AOH k S =△,98ABD k S =△,5OAD S =△,则有945228k k k k =+++,即可解出k 的值. 【详解】 如图:过点A 作AH 垂直于x 轴于点H ,设4OC a =34AB OC =, ∴3,AB a =BC y ⊥轴,∴90B C COH ∠=∠=∠=︒∴四边形OCBH 为矩形,∴OH=BC ,CO=BH 4a =∴AH=BH-AB=4a-3a=a ,∴点A 坐标(,k a a ),k BC OH a==, 双曲线k y x=与BC 交于点D , ∴点D 的坐标(,44k a a), ∴4k CD a =,344k k k BD BC CD a a a=-=-=, S 矩形COHB 44k CO BC a k a=⨯=⨯=, 1142242k k OC CD a a =⨯⨯=⨯⨯=△COD S , 11222AOH k k S AH OH a a =⨯⨯=⨯⨯=△, 113932248ABD k k S AB BD a a =⨯⨯=⨯⨯=△, 5OAD S =△,S 矩形COHB COD AOH ABD OAD S S S S =+++△△△△, ∴945228k k k k =+++, 整理得:1540k =, 解得:83k =, 故选:D .【点睛】本题考查了反比例函数的几何综合,以及矩形的性质和判定,解题关键是利用矩形的面积等于几个三角形的面积之和进行求解.8.如图,在平面直角坐标系内,正方形OABC 的顶点A ,B 在第一象限内,且点A ,B 在反比例函数()k y k 0x=≠的图象上,点C 在第四象限内.其中,点A 的纵坐标为4,则k 的值为( )A .434B .454C .838D .858【答案】D【分析】 作AE ⊥x 轴于E ,BF ∥x 轴,交AE 于F ,根据图象上点的坐标特征得出A (4k ,4),证得△AOE ≌△BAF (AAS ),得出OE=AF ,AE=BF ,即可得到B(44k +,44k -),根据系数k 的几何意义得到k=4444k k ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭解得即可. 【详解】解:作AE ⊥x 轴于E ,BF//x 轴,交AE 于F ,∵∠OAE+∠BAF =90°=∠OAE+∠AOE ,∴∠BAF =∠AOE ,在△AOE 和△BAF 中, AOE BAF AEO BFA 90OA AB ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△AOE ≌△BAF (AAS ),∴OE =AF ,AE =BF ,∵点A ,B 在反比例函数y =k x (k≠0)的图象上,点A 的纵坐标为4, ∴A (4k ,4), ∴ B(44k +,44k -), ∴k =4444k k ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭, 解得k =﹣5∴k =58,故选择:D ..【点睛】本题考查了正方形的性质,全等三角形的性质与判定,反比例函数的图象与性质,关键是构造全等三角形.9.双曲线(0)a y a x =≠的图象过点()1,2A -,(),4B m -,则m 的值是( ) A .2B .2-C .12D .12- 【答案】C【分析】把A 点坐标代入,求出比例系数a ,再把B 点坐标代入即可.【详解】解:把()1,2A -代入(0)a y a x=≠得, 21a =-, 解得,a =-2, ∴双曲线解析式为:2y x -=, 把(),4B m -代入2y x-=得, 24m--=, 解得,m=12, 故选C .【点睛】本题考查了用待定系数法求反比例函数解析式和利用反比例函数解析式求点的坐标,熟练运用待定系数法是解题关键.10.已知点A 、点B 在反比例函数(0)ky k x=≠图象的同一支曲线上,则点A 、点B 的坐标有可能是( )A .A (2,3)、B (-2,-3) B .A (1,4)、B (4,1)C .A (4,3)、B (4,-3)D .A (3,3)、B (2,2)【答案】B 【分析】在反比例函数图象的同一支上,一定满足同一函数解析式且在同一象限. 【详解】解:A. A (2,3)、B (-2,-3)两点均在同一反比例函数图象上,但不在同一支上,故选项A 不符合题意;B. A (1,4)、B (4,1)两点均在同一反比例函数图象上,且在同一支上,故选项B 符合题意;C. A (4,3)、B (4,-3)两点不在同一反比例函数图象上,故选项C 不符合题意;D. A (3,3)、B (2,2)两点不在同一反比例函数图象上,故选项D 不符合题意. 故选:B . 【点睛】本题主要考查了反比例函数图象的特点,掌握两点在反比例函数图象的同一支曲线上的条件是解答本题的关键.11.如图,Rt △AOB 中,∠AOB =90°,且点A 在反比例函数8y x=的图象上,点B 在反比例函数18y x=-的图象上,则tan B 的值是( )A .12B .13C .23D .49【答案】C 【分析】过A 、B 作AC y ⊥轴,BD y ⊥轴,根据条件得到:ACO ODB ∽,根据反比例函数比例系数k 的几何意义得出:4:9S ACO S ODB =,利用相似三角形面积比等于相似比的平方即可求解. 【详解】过A 、B 作AC y ⊥轴,BD y ⊥轴,∵∠AOB =90°,∴90AOC BOD ∠+∠=︒, ∵90DBO BOD ∠+∠=︒, ∴DBO AOC ∠=∠, ∵90BDO ACO ∠=∠=︒, ∴ACO ODB ∽,∵A 在反比例函数8y x =的图象上,点B 在反比例函数18y x=-的图象上, ∴:4:9S ACO S ODB =,∴2tan 3OA ABO OB ==∠, 故选:C .【点睛】本题考查的是相似三角形的判定和性质,反比例函数、比例函数k 的几何意义,反比例函数图像上点的坐标特征,利用相似三角形的性质得到两边之比是解答本题的关键.12.如图,双曲线ky x=经过点(2,4)A 与点(4,)B m ,则AOB 的面积为( )A .3B .4C .5D .6【答案】D 【分析】过A 、B 分别作x 轴的垂线,垂足分别为C 、D ,把点A (2,4)代入双曲线ky x=确定k的值,再把点B (4,m )代入双曲线ky x=,确定点B 的坐标,根据S △AOB =S △AOC +S 梯形ABDC −S △BOD 和三角形的面积公式与梯形的面积公式进行计算即可. 【详解】过A 、B 分别作x 轴的垂线,垂足分别为C 、D ,如图,∵双曲线ky x=经过点A (2,4), ∴k =2×4=8, 而点B (4,m )在8y x=上, ∴4m =8,解得m =2, 即B 点坐标为(4,2), ∴S △AOB =S △AOC +S 梯形ABDC -S △BOD =12OC•AC +12×(AC +BD )×CD−12OD×BD =12×2×4+12×(4+2)×(4−2)−12×4×2=4+6-4=6. 故选:D .【点睛】本题考查了点在图象上,点的横纵坐标满足图象的解析式;也考查了利用坐标表示线段的长以及利用规则的几何图形的面积的和差计算不规则的图形面积.二、填空题13.点A 1(2,)y -,2(5,)B y 在反比例函数y =2k x-图象上,且12y y >,则k 的范围为___.14.若点(4,3)A ,(2,)B m 在同一个反比例函数的图象上,则m 的值为_______. 15.已知点,C D 分别在反比例函数(32550,2)p p p y y p x x -=≠=≠⎛⎫ ⎪⎝⎭的图象上,若点C 与点D 关于x 轴对称,则p 的值为______.16.若三个点(-2,1y ),(-1,2y ),(2,3y )都在反比例函数6y x=-的图像上,则1y 、2y 、3y 的大小关系是________. 17.当m __时,函数y =1m x-的图象在第二、四象限内. 18.点()12()1,1,a y a y -+在反比例函数()0ky k x=>的图像上.若12y y <,则a 的范围是_________________.19.分别以矩形OABC 的边OA ,OC 所在的直线为x 轴,y 轴建立平面直角坐标系,点B 的坐标是(4,2),将矩形OABC 折叠使点B 落在G(3,0)上,折痕为EF ,若反比例函数ky x=的图象恰好经过点E ,则k 的值为_______.20.如图,在平面直角坐标系中,△ABO 的边AB 平行于y 轴,反比例函数y =kx(x >0)的图象经过OA 中点C 和点B ,且△OAB 的面积为6,则k =_____.三、解答题21.如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象与反比例函数m y x=的图象都经过A (2-,4-),B (4,a )两点. (1)求反比例函数和一次函数的表达式;(2)过O ,A 两点的直线与反比例函数图象交于点C ,连接BC ,求△ABC 的面积.22.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x(x <0)的图象相交于点A (﹣1,2)、点B (﹣4,n ).(1)求此一次函数和反比例函数的表达式; (2)求△AOB 的面积; (3)若点H (﹣12,h )也在双曲线上,那么在y 轴上存在一点P ,使得|PB ﹣PH |的差最大,求出点P 的坐标.23.如图,已知一次函数y =ax +b 与反比例函数()0ky x x=>的图象相交于点A (1,3)和B (m ,1).(1)求反比例函数与一次函数的表达式;(2)根据图象回答,当x 取何值时,反比例函数的值大于一次函数的值;(3)以点O 为位似中心画三角形,使它与△OAB 位似,且相似比为2,请在图中画出所有符合条件的三角形.24.如图,反比例函数ky x=的图象与一次函数y ax b =+的图象交于点A ,B ,点B 的纵坐标是1-,过点A 作AC x ⊥轴于点C ,且1OC =,AOC △的面积为1.(1)求反比例函数和一次函数表达式;(2)若点D 是反比例函数图象上一点,且到点A ,C 的距离相等,求点D 的坐标.25.如图,直线y x =和双曲线()0ky k x=≠交于A ,B 两点,AE x ⊥轴,垂足为E ,射线AC AD ⊥,AC 交y 轴于点C ,AD 交x 轴于点D ,且四边形ACOD 的面积为1.(1)求双曲线ky x=的解析式. (2)求A ,B 两点的坐标.26.如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (1.2),B (n ,-1)两点.(1)求一次函数和反比例函数的表达式;(2)直线AB 交x 轴于点C ,点P 是x 轴上的点,若△ACP 的面积是5,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.无 2.无 3.无 4.无 5.无 6.无 7.无8.无 9.无 10.无 11.无 12.无二、填空题13.k <2【分析】把点AB 坐标代入反比例函数可知==k-2变形得=由与异号且可得<0<可知点A 在第二象限点B 在第四象限进而解不等式即可【详解】根据题意把点AB 坐标代入反比例函数y=可知==k-2∴=∴与 解析:k <2 【分析】把点A 、B 坐标代入反比例函数12=2k y --,225k y -=,可知1-2y =25y =k-2.变形得1y =25-2y ,由1y 与2y 异号且12y y >可得2y <0<1y ,可知点A 在第二象限,点B 在第四象限进而20k -<解不等式即可. 【详解】根据题意,把点A 、B 坐标代入反比例函数y=2k x-. 12=2k y --,225k y -=, 可知1-2y =25y =k-2. ∴1y =25-2y , ∴1y 与2y 异号, ∵12y y >, ∴2y <0<1y ,∴点A 在第二象限,点B 在第四象限, ∴20k -<, ∴2k <. 故答案为:2k <. 【点睛】本题主要考查反比例函数性质与图像,掌握反比例函数性质与图像位置与k-2的关系.会根据函数值的大小确定点的位置是解题关键.14.;【分析】设反比例函数解析式为y=根据反比例函数图象上点的坐标特征得到k=4×3=2m 然后解关于m 的方程即可【详解】解:设反比例函数解析式为y=根据题意得k=4×3=2m 解得m=6故答案为6【点睛】解析:6; 【分析】设反比例函数解析式为y=kx,根据反比例函数图象上点的坐标特征得到k=4×3=2m ,然后解关于m 的方程即可. 【详解】解:设反比例函数解析式为y=k x, 根据题意得k=4×3=2m , 解得m=6. 故答案为6. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .15.1【分析】根据题意设出点C 和点D 的坐标再根据点C 与点D 关于x 轴对称即可求得p 的值【详解】解:∵点分别在反比例函数的图象上∴设点C 的坐标为点D 的坐标为∵点与点关于轴对称∴∴p=1故答案为:1【点睛】本解析:1 【分析】根据题意,设出点C 和点D 的坐标,再根据点C 与点D 关于x 轴对称,即可求得p 的值 【详解】解:∵点,C D 分别在反比例函数(32550,2)p p p y y p x x -=≠=≠⎛⎫ ⎪⎝⎭的图象上, ∴设点C 的坐标为3m m ,⎛⎫⎪⎝⎭p ,点D 的坐标为2p 5(,)-n n , ∵点C 与点D 关于x 轴对称,∴3p 2p 5-m n mn =⎧⎪-⎨=⎪⎩∴p=1 故答案为:1 【点睛】本题考查反比例函数图象上点的坐标特征、关于x 轴、y 轴对称的点的坐标特点,解答本题的关键是明确题意,利用函数的思想解答.16.y3<y1<y2【分析】由-6<0得到反比例函数的图象在二四象限在各象限y 随x的增大而增大根据三个点的横坐标-2<-1<01>0可得y1>0y2>0y3<0进而根据反比例函数的增减性即可得到纵坐标的解析:y3<y1<y2【分析】由-6<0,得到反比例函数6yx=-的图象在二、四象限,在各象限y随x的增大而增大,根据三个点的横坐标-2<-1<0,1>0,可得y1>0,y2>0,y3<0,进而根据反比例函数的增减性即可得到纵坐标的大小关系.【详解】∵反比例函数6yx=-中,k=-6<0,∴反比例函数6yx=-的图象在二、四象限,在各象限y随x的增大而增大,∵-2<-1<0,1>0,∴y1>0,y2>0,y3<0,∴y3<y1<y2,故答案为:y3<y1<y2【点睛】此题考查反比例函数的图象的性质,对于反比例函数kyx=(k≠0),当k>0时,图象在一、三选项,在各象限y随着x的增大而减小;当k<0时,图象在二、四选项,在各象限y随着x的增大而增大;熟练掌握反比例函数的性质是解题关键.17.<1【分析】根据反比例函数的性质结合反比例函数图象所在象限求出m 的取值范围【详解】解:∵函数y=的图象在第二四象限内∴m﹣1<0∴m<1故当m<1时函数y=的图象在第二四象限内故答案为:<1【点睛】解析:<1【分析】根据反比例函数的性质,结合反比例函数图象所在象限,求出m的取值范围.【详解】解:∵函数y=1mx-的图象在第二、四象限内,∴m﹣1<0,∴m<1,故当m<1时,函数y=1mx-的图象在第二、四象限内,故答案为:<1.【点睛】本题主要考查了反比例函数的性质,象限内点的坐标特征,关键是根据反比例函数图象的位置确定m 的取值范围.18.-1<a <1【分析】反比例函数中k >0则同一象限内y 随x 的增大而减小由于y1<y2而a-1必小于a+1则说明两点应该在不同的象限得到a-1<0<a+1从而得到a 的取值范围【详解】解:∵在反比例函数y解析:-1<a <1【分析】反比例函数中k >0,则同一象限内y 随x 的增大而减小,由于y 1<y 2,而a-1必小于a+1,则说明两点应该在不同的象限,得到a-1<0<a+1,从而得到a 的取值范围.【详解】解:∵在反比例函数y=k x中,k >0, ∴在同一象限内y 随x 的增大而减小,∵a-1<a+1,y 1<y 2∴这两个点不会在同一象限,∴a-1<0<a+1,解得-1<a <1故答案为:-1<a <1.【点睛】本题考察了反比例函数的性质,解题的关键是熟悉反比例函数的增减性,当k >0,在每一象限内y 随x 的增大而减小;当k <0,在每一象限内y 随x 的增大而增大.19.3【分析】设CE 的长为a 利用折叠的性质得到EG=BE=4-aED=3-a 在Rt △EGD 中利用勾股定理可求得a 的值得到点E 的坐标即可求解【详解】过G 作GD ⊥BC 于D 则点D(32)设CE 的长为a 根据折叠解析:3【分析】设CE 的长为a ,利用折叠的性质得到EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,利用勾股定理可求得a 的值,得到点E 的坐标,即可求解.【详解】过G 作GD ⊥BC 于D ,则点D(3,2),设CE 的长为a ,根据折叠的性质知:EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,222EG ED DG =+,∴()()2224a 3a 2-=-+, 解得:32a =, ∴点E 的坐标为(32,2), ∵反比例函数k y x =的图象恰好经过点E , ∴3232k xy ==⨯=, 故答案为:3.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理的应用,反比例函数图象上点的特征,作出辅助线构造直角三角形是解题的关键.20.4【分析】如图延长AB 交x 轴于D 根据反比例函数y =(x >0)的图象经过点B 设B (x )则OD =x 根据△OAB 的面积为6列等式可表示AB 的长表示点A 的坐标根据线段中点坐标公式可得C 的坐标从而得出结论【详解析:4【分析】如图,延长AB 交x 轴于D ,根据反比例函数y =k x(x >0)的图象经过点B ,设B (x ,k x),则OD =x ,根据△OAB 的面积为6,列等式可表示AB 的长,表示点A 的坐标,根据线段中点坐标公式可得C 的坐标,从而得出结论.【详解】解:如图,延长AB 交x 轴于D ,∵AB ∥y 轴,∴AD ⊥x 轴,∵反比例函数y =k x (x >0)的图象经过OA 中点C 和点B , ∴设B (x ,k x),则OD =x ,∵△OAB 的面积为6, ∴162AB OD ⋅⋅=,即162AB x ⋅=, ∴AB =12x , ∴A (x ,12k x+), ∵C 是OA 的中点, ∴C (12x ,122k x +), ∴k =11222k x x+⋅, ∴k =4,故答案为:4.【点题】 此题主要考查了反比例函数上点的坐标特征,线段的中点坐标公式,三角形面积公式,解本题的关键是设未知数建立方程解决问题.三、解答题21.(1)8y x =;2y x =- ;(2)12 【分析】(1)由点A 的坐标利用反比例函数图象上点的坐标特征即可求出m 值,从而得出反比例函数表达式,再由点B 的坐标和反比例函数表达式即可求出a 值,结合点A 、B 的坐标利用待定系数法即可求出一次函数表达式;(2)利用分解图形求面积法, 利用ABC ACD BCD S S S ∆∆∆=+,求面积即可.【详解】解:(1)将A(-2,-4)代入m y x =得到-4-2m =,即:m = 8. ∴反比例函数的表达式为:8y x =. 将B(4,a)代入8y x =,得:84a =,即:a =2. 将A(-2,-4),B(4,2)代入y kxb =+,得:2442k b k b -+=-⎧⎨+=⎩,解得:12k b =⎧⎨=-⎩∴一次函数的表达式为:2y x =-.(2)设AB 交x 轴于点D ,连接CD ,过点A 作AE ⊥CD 交CD 延长线于点E ,作BF ⊥CD 交令20y x =-=,则2x =,∴点D 的坐标为(2,0),A(-2,-4)关于原点的对称性点C 坐标:(2,4),∴点C 、点D 横坐标相同,∴CD ∥y 轴,ABC ACD BCD S S S ∆∆∆=+1122CD AE CD BF =⋅+⋅ 1()2CD AE BF =+ 12A B CD x x =⋅- 1462=⨯⨯ =12.【点睛】本题考查了反比例函数与一次函数的交点坐标、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是:(1)利用待定系数法求函数表达式;(2)利用分割图形求面积法求出△AOB 的面积.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.22.(1)y =12x +52, y =﹣2x ;(2)S △AOB =154;(3)P (0,92). 【分析】(1)把点A 的坐标代入反比例函数解析式求出m 的值,然后再把点B 的坐标代入反比例函数求出n 的值,从而求出点B 的坐标,再把A 、B 的坐标代入一次函数表达式,利用待定系数法即可求出一次函数的解析式;(2)求得直线AB 与x 轴的交点,然后根据三角形的面积公式即可求解;(3)根据题意,P 点是直线BH 与y 轴的交点;(1)∵点A(﹣1,2)在反比例函数图象上, ∴21k -=2, 解得k 2=﹣2, ∴反比例函数的解析式是y =﹣2x , ∵点B(﹣4,n)在反比例函数图象上,∴n =21=42-- , ∴点B 的坐标是(﹣4,12), ∵一次函数1y k x b =+的图象经过点A(﹣1,2)、点B(﹣4,12). ∴112142k b k b -+=⎧⎪⎨-+=⎪⎩ 解得11252k b ⎧=⎪⎪⎨⎪=⎪⎩ . ∴一次函数解析式是1522y x =+ ; (2)设直线AB 与x 轴的交点为C , 1522y x =+中,令y =0,则x =﹣5, ∴直线与x 轴的交点C 为(﹣5,0), ∴S △AOB =S △AOC ﹣S △BOC 11115=525=2224⨯⨯-⨯⨯ ; (3)∵点H(﹣12,h)也在双曲线上, ∴2=412h =--, ∴H(﹣12,4), ∵在y 轴上存在一点P ,使得|PB ﹣PH|最大,∴P 点是直线BH 与y 轴的交点,设直线BH 的解析式为y =kx+m ,∴1 42142k mk m⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得192km=⎧⎪⎨=⎪⎩,∴直线BH的解析式为y=x+92,令x=0,则y=92,∴P(0,92).【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积,会利用待定系数法求一次函数解析式;运用两点之间线段最短解决最短路径问题是解题的关键;23.(1)3,4y y xx==-+;(2)01x<<或3x>;(3)见解析【分析】(1)由反比例函数图象过点A,可求出反比例函数的表达式,再求出点B的坐标,然后将A点坐标代入y=﹣x+b,可求一次函数的表达式;(2)根据图象即可得到结论;(3)根据题意画出图形即可.【详解】解:(1)∵反比例函数y=kx(k≠0)图象经过A(1,3),∴k=1×3=3,∴反比例函数的表达式是y=3x,∵反比例函数y=3x的图象过点B(m,1),∴m=3,∴B(3,1).∵一次函数y=ax+b图象相交于A(1,3),B(3,1).∴331a b a b +=⎧⎨+=⎩, 解得14a b =-⎧⎨=⎩, ∴一次函数的表达式是y =﹣x +4;(2)由图象知,当0<x <1或x >3时,反比例函数的值大于一次函数的值; (3)如图所示△OA ′B ′和△OA ″B ″即为所求.【点睛】本题考查了反比例函数综合题,一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.24.(1)2y x =,1y x =+;(2)D 点坐标为()2,1 【分析】(1)先求点A 的坐标,再确定反比例函数解析式,利用反比例函数解析式求B 点坐标,利用“两点法”求一次函数解析式;(2)根据中点坐标公式可求点D 的纵坐标,再根据反比例函数图象上点的坐标特征即可求解.【详解】(1)解:∵1OC =,1AOC S =△ ∴112OC AC ⋅=,2AC = ∴()1,2A把()1,2A 代入k y x =得:21k =则2k =∴2y x= ∵B 点的纵坐标是1- ∴21x -=解得:2x =- ∴()2,1B --把()1,2A ,()2,1B --代入y ax b =+212a b a b =+⎧⎨-=-+⎩解得:11a b =⎧⎨=⎩所以得:1y x =+(2)解:∵点D 到A ,C 的距离相等∴点D 的纵坐标为1把1y =代入2y x=得2x =. ∴D 点坐标为()2,1【点睛】本题考查了反比例函数与一次函数的交点问题.关键是由已知条件求交点坐标,根据交点坐标求反比例函数、一次函数的解析式.25.1)双曲线的解析式为1y x=;(2)A(1,1),B(-1,-1). 【分析】(1)过A 作AF ⊥y 轴于F ,利用角平分线性质可得AE=AF ,可证△CAF ≌△DAE (ASA ),可证S △CAF =S △DAE ,可求S 正方形OFAE =S 四边形CADO =1即可; (2)联立方程组1y x y x =⎧⎪⎨=⎪⎩,解方程组即可. 【详解】解:(1)过A 作AF ⊥y 轴于F ,∵直线y x =是一三象限的角平分线,AE x ⊥轴,AF ⊥y 轴,∴AE=AF ,∵AC AD ⊥,∴∠CAD=90°,∴∠CAF+∠FAD=90°,∠FAD+∠DAE=90°,∴∠CAF=∠DAE ,∵∠CFA=∠DEA=90°∴△CAF ≌△DAE (ASA ),∴S △CAF =S △DAE ,∴S 正方形OFAE =S 四边形OFAD +S △DAE = S 四边形OFAD +S △CAF =S 四边形CADO =1,∴k=1,双曲线的解析式为1 yx=;(2)∵直线y x=和双曲线1yx=交于A,B两点,∴联立方程组1y xyx=⎧⎪⎨=⎪⎩,消去y得2=1x,解得=1x±,∴y=x=±1,A(1,1),B(-1,-1).【点睛】本题考查反比例函数解析式,三角形全等,面积和差计算,解方程组,掌握反比例函数解析式,三角形全等,面积和差计算,解方程组,引辅助线构造三角形全等是解题关键.26.(1)y=x+1,2yx=;(2)P(4,0)或(-6,0)【分析】(1)先根据点A坐标求出反比例函数解析式,再求出点B的坐标,继而根据点A、B坐标可得直线解析式;(2)先根据直线解析式求出点C的坐标,再设P(m,0),知PC=|-1-m|,根据三角形面积公式列方程求出m的值即可得出答案.【详解】解:(1)将点A(1,2)代入myx=,得:m=2,∴2yx=,当y=-1时,x=-2,∴B(-2,-1),将A(1,2)、B(-2,-1)代入y=kx+b,得:221k bk b+=⎧⎨-+=-⎩,解得11 kb=⎧⎨=⎩,∴y=x+1;∴一次函数解析式为y=x+1,反比例函数解析式为y=2x;(2)在y=x+1中,当y=0时,x+1=0,解得x=-1,∴C(-1,0),设P(m,0),则PC=|-1-m|,∵S△ACP=12×2PC=5,∴|-1-m|=5,解得m=4或m=-6,∴点P的坐标为(4,0)或(-6,0).【点睛】本题主要考查反比例函数与一次函数的交点问题,解题的关键是掌握待定系数法求函数解析式及两点间的距离公式、三角形的面积问题.。
九年级上册第6章综合测试及答案同步训练
九年级上册第6章综合检测一、判断题(每小题7分,共28分)1.投针实验中,针与平行线相交的概率是21( ) 2.投一枚均匀的般子,偶数面朝上的频率是21( ) 3.李叔叔买了10张彩票,中了一个三等奖,买这种彩票中三等奖的概率是101.( ) 4.如果有2组牌,每组3张,牌面上的数字分别是1、2、3.若从每组牌中摸出一张牌,那么两张牌牌面数字和分别是2、3、4、5、6,共五种情况,所以摸出牌面数字和为4的概率是51.( ) 二、填空题(每空5分,共35分)1.有两个完全相同的抽屉和3个完全相同的白色球,要求抽屉不能空着.那么第一个抽屉中有2个球的概率是2.在一次摸球实验中,一个袋子中有黑色和红色和白色三种颜色除外,其他都相同.若从中任意摸出一球,记下颜色后再放回去,再摸,若重复这样的实验400次,98次摸出了黄球,则我们可以估计从口袋中随机摸出一球它为黄球的概率是3.某城镇共有10万人,随机调查2500人,发现每天早上买“城市早报”这种报纸的人为400人,请问在这个城镇中随便问一个人,他早上买乡“城市早报”的概率是 这家报纸的发行量大约是每天 份.4.一水塘里有鲤鱼、卿鱼、链鱼共1000尾,一渔民通过多次捕捞实验后发现,鲤鱼、卿鱼出现的频率是31%和42%,则这个水塘里有鲤鱼 尾,纲鱼尾、缝鱼 尾。
三、解答题(共87分)1、(17分)小明说:“我投均匀的一枚硬币2次,会出现两次都为反、一正一反和两次都为正三种情况,所以出现一正一反这种情况的概率是31”,你觉得他的说法有道理吗?说明你的理由.2、(17分)两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中摸出一个球,请用列表法表示出可能出现的情况,并求出摸出的球颇色相同的概率。
3、(18分)有一个矩形,将它四边中点连结起来,会得到一个什么图形(阴影部分)?若将一骰子(看做一个点,不考虑它的面积)投到这个矩形中,那么投到阴影部分的概率是多少?你能用计算器模拟这个实验吗?说明实验过程.4.(17分)如果手头没有硬币,但想知道掷一次这种均匀的硬币正面朝上的概率是多少,请问你能用三种不同的方法进行模拟实验吗?请写出实验过程.5.(18分)某小鱼塘放养鱼苗500尾,成活率为80%,成熟后,平均质:VE 1. 5斤以上的鱼为优质鱼,若在一天中随机捞出一条鱼,称出其质量,再放回去,不断重复上面的实验,共捞了50次,有32条鱼的平均质量在1.5斤以上,若优质鱼的利润为2元/斤,则这个小鱼塘在优质鱼上可获利多少元?。
九年级数学上册第六章检测题(含答案)
第六章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下面的等式中,y 是x 的反比例函数的是( B )A .y =1x 2B .y =12xC .y =x 2D .y =1x+12.对于函数y =2x,下列说法错误的是( C )A .它的图象分布在第一、三象限,关于原点中心对称B .它的图象分布在第一、三象限,是轴对称图形C .当x >0时,y 的值随x 的增大而增大D .当x <0时,y 的值随x 的增大而减小3.(雅安中考)平面直角坐标系中,点P ,Q 在同一反比例函数图象上的是( C ) A .P(-2,-3),Q(3,-2) B .P(2,-3),Q(3,2)C .P(2,3),Q(-4,-32) D .P(-2,3),Q(-3,-2)4.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx(x>0)的图象经过顶点B ,则k 的值为( D ) A .12 B .20 C .24 D .325.(天津中考)若点A(-1,y 1),B(1,y 2),C(3,y 3)在反比例函数y =-3x的图象上,则y 1,y 2,y 3的大小关系是( B )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 36.(徐州中考)如图,在平面直角坐标系中,函数y =kx +b(k ≠0)与y =mx(m ≠0)的图象相交于点A(2,3),B(-6,-1),则不等式kx +b >mx的解集为( B )A .x <-6B .-6<x <0或x >2C .x >2D .x <-6或0<x <27.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化规律用图象大致表示为( C )8.(贺州中考)一次函数y =ax +a(a 为常数,a ≠0)与反比例函数y =ax(a 为常数,a ≠0)在同一平面直角坐标系内的图象大致为( C )9.(盘锦中考)如图,双曲线y =-32x(x <0)经过▱ABCO 的对角线交点D ,已知边OC 在y轴上,且AC ⊥OC 于点C ,则▱OABC 的面积是( C )A .32B .94C .3D .6 10.已知点A 在双曲线y =-2x上,点B 在直线y =x -4上,且A ,B 两点关于y 轴对称.设点A 的坐标为(m ,n),则m n +nm的值是( A )A .-10B .-8C .6D .4 二、填空题(每小题3分,共18分)11.(济宁中考)请写出一个过点(1,1),且与x 轴无交点的函数表达式:__y =1x(答案不唯一)__.12.小玲将一篇8000字的社会调查报告录入电脑,那么完成录入的时间t(秒)与录入文字的速度v(字/秒)的函数关系式是__t =8000v__.13.(河南中考)已知点A(1,m),B(2,n)在反比例函数y =-2x的图象上,则m 与n 的大小关系为__m <n__.14.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m )成反比例函数关系,其图象如图所示,点P(4,3)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是__1.2__m .15.(西宁中考)如图,点A 在双曲线y =3x (x >0)上,过点A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当AC =1时,△ABC 的周长为.16.(菏泽中考)直线y =kx(k >0)与双曲线y =6x交于A(x 1,y 1)和B(x 2,y 2)两点,则3x 1y 2-9x 2y 1的值为__36__.三、解答题(共72分)17.(6分)已知y =y 1+y 2,其中y 1与3x 成反比例,y 2与-x 2成正比例,且当x =1时,y =5;当x =-1时,y =-2.求当x =3时,y 的值.解:设y =k 13x +k 2(-x 2),由题意可求得y =72x +32x 2,当x =3时,y =44318.(6分)(湘潭中考)已知反比例函数y =kx的图象过点A(3,1).(1)求反比例函数的表达式;(2)若一次函数y =ax +6(a ≠0)的图象与反比例函数的图象只有一个交点,求一次函数的表达式.解:(1)y =3x(2)由题意联立方程,得⎩⎪⎨⎪⎧y =3x ,y =ax +6,即ax 2+6x -3=0,∵一次函数y =ax +6(a ≠0)的图象与反比例函数的图象只有一个交点,∴Δ=36+12a =0,∴a =-3,∴一次函数的表达式为y =-3x +619.(6分)已知直线y =-3x 与双曲线y =m -5x交于点P (-1,n).(1)求m 的值;(2)若点A (x 1,y 1),B(x 2,y 2)在双曲线y =m -5x上,且x 1<x 2<0,试比较y 1,y 2的大小.解:(1)∵点P(-1,n)在直线y =-3x 上,∴n =3.∴点P 的坐标为(-1,3).∵点P(-1,3)在双曲线y =m -5x上,∴m =2(2)由(1)得,双曲线的表达式为y =-3x.在第二象限内,y 随x 的增大而增大,∴当x 1<x 2<0时,y 1<y 220.(7分)(大庆中考)如图,反比例函数y =kx的图象与一次函数y =x +b 的图象交于A ,B 两点,点A 和点B 的横坐标分别为1和-2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式; (2)当点C 的坐标为(0,-1)时,求△ABC 的面积.解:(1)由题意,得1+b +(-2)+b =1,解得b =1,一次函数的表达式为y =x +1,当x =1时,y =x +1=2,即A(1,2),将A 点坐标代入,得k 1=2,即k =2,反比例函数的表达式为y =2x(2)当x =-2时,y =-1,即B(-2,-1).BC =2,S △ABC =12BC ·(y A -y C )=12×2×[2-(-1)]=321.(7分)一辆汽车匀速通过某段公路,所需时间t(h )与行驶速度v(km /h )满足函数关系:t =kv,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m ,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60 km /h ,则汽车通过该路段最少需要多少时间?解:(1)将(40,1)代入t =k v ,得1=k 40,解得k =40.∴该函数的表达式为t =40v.当t=0.5时,0.5=40m,解得m =80.所以k =40,m =80(2)令v =60,得t =4060=23.结合函数图象可知,汽车通过该路段最少需要23小时22.(9分)如图,一次函数y =kx +b 与反比例函数y =6x(x >0)的图象交于A(m ,6),B(3,n)两点.(1)求一次函数的表达式;(2)根据图象直接写出kx +b -6x<0的x 的取值范围;(3)求△AOB 的面积.解:(1)∵A(m ,6),B(3,n)两点在反比例函数y =6x(x >0)的图象上,∴m =1,n =2,∴A(1,6),B(3,2).又∵A(1,6),B(3,2)两点在一次函数y =kx +b 的图象上,∴⎩⎪⎨⎪⎧6=k +b ,2=3k +b ,解得⎩⎪⎨⎪⎧k =-2,b =8,∴一次函数的表达式为y =-2x +8(2)根据图象可知kx +b -6x<0的x 的取值范围是0<x <1或x >3(3)分别过点A ,B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为点E ,C ,直线AB 交x 轴于点D.令y =-2x +8=0,得x =4,即D(4,0).∵A(1,6),B(3,2),∴AE =6,BC =2.∴S △AOB=S △AOD -S △DOB =12×4×6-12×4×2=823.(9分)(杭州中考)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x ,y.①求y 关于x 的函数表达式;②当y ≥3时,求x 的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?解:(1)①由题意可得:xy =3,则y =3x(x>0);②当y ≥3时,3x≥3,解得:x ≤1,故x 的取值范围是:0<x ≤1(2)∵一个矩形的周长为6,∴x +y =3,∴x +3x=3,整理得:x 2-3x +3=0,∵Δ=b 2-4ac =9-12=-3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x +y =5,∴x +3x=5,整理得:x 2-5x +3=0,∵Δ=b 2-4ac =25-12=13>0,∴矩形的周长可能是10,所以方方的说法对24.(10分)如图,点A ,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C ,AO =CD =2,AB =DA =5,反比例函数y =kx(k>0)的图象过CD 的中点E.(1)求证:△AOB ≌△DCA ; (2)求k 的值;(3)△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 是否在反比例函数的图象上,并说明理由.解:(1)∵点A ,B 分别在x ,y 轴上,DC ⊥x 轴于点C ,∴∠AOB =∠DCA =90°,∵AO =CD =2,AB =DA =5,∴△AOB ≌△DCA(2)∵∠DCA =90°,DA =5,CD =2,∴AC =DA 2-CD 2=(5)2-22=1,∴OC =OA+AC =3,∵E 是CD 的中点,∴CE =DE =1,∴E(3,1),∵反比例函数y =kx的图象过点E ,∴k =3(3)∵△BFG 和△DCA 关于某点成中心对称,∴BF =DC =2,FG =AC =1,∵点F 在y 轴上,∴OF =OB +BF =1+2=3,∴G(1,3),把x =1代入y =3x中得y =3,∴点G 在反比例函数图象上25.(12分)(江西中考)如图,直线y =k 1x(x ≥0)与双曲线y =k 2x(x >0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB ,将Rt △AOB 沿OP 方向平移,使点O 移动到点P ,得到△A ′PB ′.过点A ′作A ′C ∥y 轴交双曲线于点C.(1)求k 1与k 2的值;(2)求直线PC 的表达式;(3)直接写出线段AB 扫过的面积.解:(1)把点P(2,4)代入直线y =k 1x ,可得4=2k 1,∴k 1=2,把点P(2,4)代入双曲线y =k 2x,可得k 2=2×4=8(2)∵A(4,0),B(0,3),∴AO =4,BO =3,延长A ′C 交x 轴于D ,由平移可得,A ′P =AO =4,又∵A ′C ∥y 轴,P(2,4),∴点C 的横坐标为2+4=6,当x =6时,y =86=43,即C(6,43),设直线PC 的表达式为y =kx +b ,把P(2,4),C(6,43)代入可得⎩⎪⎨⎪⎧4=2k +b ,43=6k +b ,解得⎩⎪⎨⎪⎧k =-23,b =163,∴直线PC 的表达式为y =-23x +163(3)如图,延长A ′C 交x 轴于D ,由平移可得,A ′P ∥AO ,又∵A ′C ∥y 轴,P(2,4), ∴点A ′的纵坐标为4,即A ′D =4,过B ′作B ′E ⊥y 轴于E ,∵PB ′∥y 轴,P(2,4), ∴点B ′的横坐标为2,即B ′E =2,又∵△AOB ≌△A ′PB ′,∴线段AB 扫过的面积=平行四边形POBB ′的面积+平行四边形AOPA ′的面积=BO ×B ′E +AO ×A ′D =3×2+4×4=22。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章测试卷一、选择题(每题3分,共30分)1.下列函数中,y是x的反比例函数的是()A.y=15x B.y=2x-3 C.xy=-3 D.y=8x22.已知反比例函数y=kx(k≠0)的图象经过点P(2,-3),则这个函数的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3.已知反比例函数y=3x,下列结论中不正确的是()A.图象经过点(-1,-3)B.图象在第一、三象限C.当x>1时,0<y<3D.当x<0时,y随着x的增大而增大4.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例函数关系.如图所示的是该电路中电流I与电阻R之间的函数关系的图象,当电阻R为5Ω时,电流I为()A.6 AB.5 AC.1.2 AD.1 A5.若在同一直角坐标系中,正比例函数y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的图象无交点,则有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<06.已知点A(-1,y1),B(2,y2)都在双曲线y=3+mx上,且y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>-3 D.m<-37.函数y=kx与y=kx+k(k为常数且k≠0)在同一平面直角坐标系中的图象可能是()8.如图,分别过反比例函数y=2x(x>0)图象上任意两点A,B作x轴的垂线,垂足分别为点C,D,连接OA,OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1,S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定9.如图,A,B两点在反比例函数y=k1x的图象上,C,D两点在反比例函数y=k2x的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=3,EF=10 3,则k2-k1的值为()A.4 B.143 C.163D.610.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B.当点M在y=ax(x>0)的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,点B是MD的中点.其中正确结论的个数是()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.一个反比例函数的图象过点A (1,2),则这个反比例函数的表达式是________. 12.若点(2,y 1),(3,y 2)在函数y =-2x 的图象上,则y 1________y 2(填“>”“<”或“=”). 13.若反比例函数y =kx 的图象与一次函数y =mx 的图象的一个交点的坐标为(1,2),则它们的另一个交点的坐标为________.14.某气球内充满了一定质量的气体,当温度不变时,气球内气体的压强p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示,则当气球内气体体积V (m 3)的范围是0.8<V <2时,气体的压强p (kPa)的范围是________. 15.如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,且△ABP 的面积为6,则这个反比例函数的表达式为________.16.如图,已知矩形ABCD ,AB 在x 轴的正半轴上(点A 与点O 重合),AB =3,BC =1,连接AC ,BD ,交点为M .将矩形ABCD 沿x 轴向右平移,当平移距离为________时,点M 在反比例函数y =1x 的图象上.17.如图,已知点A 在双曲线y =4x 上,点B 在双曲线y =kx (k ≠0)上,AB ∥x 轴,分别过点A ,B 向x 轴作垂线,垂足分别为点D ,C ,若四边形ABCD 的面积是8,则k 的值为________.18.如图,在反比例函数y =10x (x >0)的图象上,有一系列点A 1,A 2,A 3,…,A n ,A n +1,若点A 1,A 2,A 3,…的横坐标分别为2,4,6,…,现分别过点A 1,A 2,A 3,…,A n ,A n +1作x 轴、y 轴的垂线段,构成若干个矩形,将图中阴影部分的面积从左到右依次记为S 1,S 2,S 3,…,S n ,则S 1=________,S 1+S 2+S 3+…+S n =________(用含n 的代数式表示).三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车行驶时间为t h,平均速度为v km/h(汽车行驶速度不超过100 km/h).根据经验,v,t 的几组对应值如下表:(1)根据表中数据,求出平均速度v(km/h)关于行驶时间t(h)的函数表达式.(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由.(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.20.在平面直角坐标系xOy中,直线y=x+b与双曲线y=mx的一个交点为A(2,4),与y轴交于点B.(1)求m的值和点B的坐标;(2)点P在双曲线y=mx上,△OBP的面积为8,直接写出点P的坐标.21.如图,已知四边形OABC是菱形,OC在x轴上,点B的坐标为(18,6),反比例函数y=kx(k≠0)的图象经过点A,与OB交于点E.(1)求k的值;(2)求OEEB的值.22.如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=-8 x的图象交于A(-2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后,与反比例函数的图象有且只有一个公共点,求m的值.23.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在y轴,x轴上,点B的坐标为(4,2),直线y=-12x+3分别交AB,BC于点M,N,反比例函数y=kx的图象经过点M,N.(1)求反比例函数的表达式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.24.为推进钢铁行业的供给侧改革,某市关停了所有的小型钢铁厂,并投入巨资对几个大、中型钢铁厂进行技术改造.设2017年1月为第1个月,该市2017年1月份钢铁行业的利润为2 000万元,第x个月的利润为y万元.该市决定从2017年1月底起对钢铁行业进行减产改造,导致月利润明显下降,从1月到5月,y与x成反比例函数关系,到5月底,技术改造工程顺利完工,从这时起,该市钢铁行业每月的利润比前一个月增加200万元.y与x之间的函数图象如图所示.(1)分别求该市钢铁行业技术改造期间及改造工程完工后,y与x之间的函数表达式;(2)技术改造工程顺利完工后经过几个月,该市钢铁行业的月利润才能达到2 000万元?(3)当该市钢铁行业月利润少于1 000万元时,为该市钢铁行业资金紧张期,问该市钢铁行业资金紧张期共有几个月?25.如图,正比例函数y=2x的图象与反比例函数y=kx的图象交于A,B两点,过点A作AC垂直x轴于点C,连接BC,若△ABC的面积为2.(1)求k的值.(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.答案一、1.C 2.B 3.D 4.C 5.D6.D 点拨:由题意知,反比例函数图象在第二、四象限,所以3+m <0,即m <-3. 7.A8.C 点拨:∵点A ,B 均在反比例函数y =2x (x >0)的图象上,∴S △AOC =S △BOD=1.由题图可知,△AOC 与△BOD 有一个公共部分△COE ,因此△AOE 与梯形ECDB 的面积相等,即S 1=S 2,故选C.9.A 点拨:设A 点的坐标为⎝ ⎛⎭⎪⎫m ,k 1m ,B 点的坐标为⎝ ⎛⎭⎪⎫n ,k 1n ,则C 点的坐标为⎝ ⎛⎭⎪⎫m ,k 2m ,D 点的坐标为⎝ ⎛⎭⎪⎫n ,k 2n , 由题意,得⎩⎪⎨⎪⎧n -m =103,k 1-k2m =2,解得k 2-k 1=4.k 2-k 1n =3,10.D 点拨:①由于点A ,B 在同一反比例函数y =2x 的图象上,∴S △ODB =S △OCA =12×2=1,∴①正确;②由于矩形OCMD ,△ODB ,△OCA 的面积为定值,∴四边形OAMB 的面积不会发生变化,∴②正确;③连接OM ,当点A 是MC 的中点时,S △OAM =S △OAC .∵S △ODM =S △OCM =a2,S △ODB =S △OCA , ∴S △OBM =S △OAM .∴S △OBD =S △OBM .∴点B 一定是MD 的中点.∴③正确. 二、11.y =2x 12.<13.(-1,-2) 点拨:∵反比例函数y =kx 的图象关于原点成中心对称,一次函数y =mx 的图象经过原点,且关于原点成中心对称,∴它们的交点也关于原点成中心对称.又∵点(1,2)关于原点成中心对称的点为(-1,-2),∴它们的另一个交点的坐标为(-1,-2). 14.48<p <12015.y =12x 点拨:连接OA ,则△ABP 与△ABO 的面积相等,都等于6,∴反比例函数的表达式是y =12x .16.12 点拨:将矩形ABCD 沿x 轴向右平移后,过点M 作ME ⊥AB 于点E ,则AE =12AB =32,ME =12BC =12.设OA =m ,则OE =OA +AE =m +32,∴M ⎝ ⎛⎭⎪⎫m +32,12.∵点M 在反比例函数y =1x 的图象上, ∴12=1m +32,解得m =12. 17.12 18.5;10n n +1点拨:∵点A 1,A 2在反比例函数y =10x (x >0)的图象上,∴A 1(2,5),A 2⎝ ⎛⎭⎪⎫4,52, ∴S 1=2×⎝ ⎛⎭⎪⎫5-52=5.易知A n ⎝ ⎛⎭⎪⎫2n ,102n ,A n +1⎝ ⎛⎭⎪⎫2n +2,102n +2, ∴S 2=2×⎝ ⎛⎭⎪⎫104-106=53, S 3=2×⎝ ⎛⎭⎪⎫106-108=56,…,S n =2×⎝ ⎛⎭⎪⎫102n -102n +2=10n (n +1). ∵1n (n +1)=1n -1n +1,∴S 1+S 2+S 3+…+S n=10×⎣⎢⎡⎦⎥⎤12+16+…+1n (n +1)=10×⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=10n n +1. 三、19.解:(1)根据表中的数据,可画出v 关于t 的函数图象,根据图象形状,选择反比例函数模型进行尝试.设v 与t 的函数表达式为v =kt .∵当v =75时,t =4,∴k =4×75=300.∴v =300t .将点(3.75,80),(3.53,85),(3.33,90),(3.16,95)的坐标代入v =300t 验证:3003.75=80,3003.53≈85,3003.33≈90,3003.16≈95,∴v 与t 的函数表达式为v =300t (t ≥3). (2)不能.理由:10时-7时30分=2时30分,当t =2.5时,v =3002.5=120>100.∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场. (3)由图象或反比例函数的性质,得当3.5≤t ≤4时,75≤v ≤6007. 答:平均速度v 的取值范围是75≤v ≤6007.易错点拨:解此类问题容易出错的地方是建立数学模型时,设出的函数表达式不符合题意而导致解答错误.20.解:(1)∵双曲线y =mx 经过点A (2,4),∴m =8.∵直线y =x +b 经过点A (2,4), ∴b =2.∴此直线与y 轴的交点B 的坐标为(0,2). (2)点P 的坐标为(8,1)或(-8,-1).21.解:(1)如图,过点B 作BF ⊥x 轴于点F ,由题意可得BF =6,OF =18.∵四边形OABC 是菱形,∴OC =BC .在Rt △BCF 中,62+(18-BC )2=BC 2,解得BC =10, ∴点A 的坐标为(8,6),将点A(8,6)的坐标代入y =kx ,解得k =48.(2)由(1)知y =48x ,可设E ⎝ ⎛⎭⎪⎫a ,48a ,如图,过点E 作EG ⊥x 轴于点G ,则OG=a ,EG =48a ,∵EG ⊥x 轴,BF ⊥x 轴,∴EG ∥BF , 易得△OGE ∽△OFB ,∴EG BF =OG OF ,即48a 6=a18,解得a =12. ∴OE OB =OG OF =1218=23,∴OE EB =21=2.22.解:(1)根据题意,把A (-2,b)的坐标分别代入一次函数和反比例函数的表达式,得⎩⎪⎨⎪⎧b =-2k +5,b =-8-2. 解得⎩⎪⎨⎪⎧b =4,k =12.∴一次函数的表达式为y =12x +5.(2)将直线AB 向下平移m (m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m . 由⎩⎪⎨⎪⎧y =-8x ,y =12x +5-m , 得12x 2+(5-m )x +8=0.Δ=(5-m )2-4×12×8=0,解得m =1或m =9.23.解:(1)由题意易得点M 的纵坐标为2.将y =2代入y =-12x +3,得x =2.∴M (2,2).把点M 的坐标代入y =kx ,得k =4, ∴反比例函数的表达式是y =4x . (2)由题意得S △OPM =12OP ·AM ,∵S 四边形BMON =S 矩形OABC -S △AOM -S △CON =4×2-2-2=4,S △OPM =S 四边形BMON , ∴12OP ·AM =4.又易知AM =2,∴OP =4.∴点P 的坐标是(0,4)或(0,-4).24.解:(1)设从1月到5月,y 与x 的函数表达式为y =k x ,把(1,2 000)的坐标代入,得k =2 000, 即当1≤x ≤5时,y =2 000x . 当x =5时,y =400, 设当x >5时,y =200x +b ,将(5,400)的坐标代入,得200×5+b =400,解得b =-600, 即当x >5时,y =200x -600. (2)对于y =200x -600,当y =2 000时,200x -600=2 000, 解得x =13. 13-5=8,所以技术改造工程顺利完工后经过8个月,该市钢铁行业的月利润才能达到2 000万元.(3)对于y =2 000x ,当y =1 000时,x =2. 对于y =200x -600,当y =1 000时,x =8.故该市钢铁行业资金紧张期为3月、4月、5月、6月、7月,共有5个月. 25.解:(1)∵正比例函数图象与反比例函数图象的两个交点关于原点对称,∴S △AOC =S △BOC =12S △ABC =1. 又∵AC 垂直于x 轴,∴k =2.(2)假设存在这样的点D ,设点D 的坐标为(m ,0). 由⎩⎪⎨⎪⎧y =2x ,y =2x 解得⎩⎨⎧x 1=1,y 1=2,⎩⎨⎧x 2=-1,y 2=-2.∴A (1,2),B (-1,-2).∴AD=(1-m)2+22,BD=(m+1)2+22,AB=(1+1)2+(2+2)2=2 5. 当D为直角顶点时,∵AB=25,∴OD=12AB= 5.∴点D的坐标为(5,0)或(-5,0).当A为直角顶点时,由AB2+AD2=BD2,得(25)2+(1-m)2+22=(m+1)2+22,解得m=5,即D(5,0).当B为直角顶点时,由BD2+AB2=AD2,得(m+1)2+22+(25)2=(1-m)2+22,解得m=-5,即D(-5,0).∴存在这样的点D,使△ABD为直角三角形,点D的坐标为(5,0)或(-5,0)或(5,0)或(-5,0).第六章达标测试卷一、选择题(每题3分,共30分)1.下列函数是反比例函数的是()A.y=x5B.y=2x C.y=x2-2x-1 D.y=8x-42.点A(-2,5)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.10 B.5 C.-5 D.-103.如果反比例函数y=kx的图象经过点(1,n2+1),那么这个函数的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.为了更好地保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)满足关系式V=Sh(V≠0),则S关于h的函数图象大致是()5.在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx-1(k为常数,k>0)的图象可能是()6.已知正比例函数y=-4x与反比例函数y=kx的图象交于A,B两点,若点A(m,4),则点B的坐标为()A.(1,-4) B.(-1,4) C.(4,-1) D.(-4,1)7.已知A(-1,y1),B(2,y2)两点在双曲线y=3+2mx上,且y1>y2,则m的取值范围是()A.m>0 B.m<0 C.m>-32D.m<-328.已知一次函数y1=kx+b(k<0)与反比例函数y2=mx(m≠0)的图象相交于A,B两点,其横坐标分别是-1和3,当y1>y2时,实数x的取值范围是() A.x<-1或0<x<3 B.-1<x<0或0<x<3C.-1<x<0或x>3 D.0<x<39.若一次函数y=mx+6与反比例函数y=nx的图象在第一象限有公共点,则有()A.mn≥-9且m≠0,n>0 B.-9≤mn≤0 C.mn≥-4 D.-4≤mn≤010.如图,点A在双曲线y=1x上,点B在双曲线y=3x上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,则它的面积为()(第10题) A.1B.2C.3D.4二、填空题(每题3分,共30分)11.已知反比例函数y=kx(k为常数,k≠0)的图象位于第二、四象限,写出一个符合条件的k的值:________________________________________.12.对于反比例函数y=2x,下列说法:①点(2,1)在它的图象上;②它的图象在第一、三象限;③当x>0时,y随x的增大而增大;④当x<0时,y随x的增大而减小.上述说法中,正确的序号是________(填上所有你认为正确的序号).13.若点A(1,y1),B(2,y2)是双曲线y=3x上的点,则y1________y2(填“>”“<”或“=”).14.若反比例函数y=kx(k≠0)的图象经过点(1,-3),则一次函数y=kx-k的图象经过第________象限.15.已知近视眼镜的度数y(度)与镜片焦距x(m)满足的关系式为y=100x,则当近视眼镜为200度时,镜片焦距为________.16.已知函数y=(m2-2)xm2+m-3是反比例函数,且它的图象在第一、三象限,那么m=________.17.一辆汽车从甲地开往乙地,随着汽车平均速度v(km/h)的变化,到达时所用的时间t(h)的变化情况如图所示,那么行驶过程中t与v的函数表达式为____________.18.已知A(x1,y1),B(x2,y2)都在反比例函数y=6x的图象上.若x1x2=-3,则y1y2=________.19.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y轴,反比例函数y=2x与y=-2x的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是________.20.如图,已知双曲线y=kx与直线y=-x+6相交于A,B两点,过点A作x轴的垂线与过点B作y轴的垂线相交于点C,若△ABC的面积为8,则k的值为________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图是反比例函数y=5-2mx的图象的一支.根据图象解决下列问题:(1)求m的取值范围;(2)若点A(m-3,b1)和点B(m-4,b2)是该反比例函数图象上的两点,请你判断b1与b2的大小关系,并说明理由.(第21题)22.在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其图象如图所示.(1)求p与S之间的函数表达式;(2)求当受力面积为0.5 m2时物体承受的压强;(3)若要获得2 500 Pa的压强,受力面积应为多少?(第22题) 23.如图,已知直线y1=-2x经过点P(-2,a),点P关于y轴的对称点P′在反比例函数y2=kx(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的表达式,并直接写出当y2<2时自变量x的取值范围.(第23题) 24.如图,已知在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象相交于A,B两点,且点B的纵坐标为-12,过点A作AC⊥x轴于点C,AC=1,OC=2.求:(1)反比例函数的表达式;(2)一次函数的表达式.(第24题)25.如图,直线y=12x+b与x轴负半轴交于点A,与y轴正半轴交于点B,线段OA的长是方程x2-7x-8=0的一个根.(1)求点B的坐标;(2)双曲线y=kx(k≠0,x>0)与直线AB交于点C,且AC=55,求k的值.(第25题)26.保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2019年1月的利润为200万元,设2019年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2019年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例,到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及治污改造工程完工后,y与x之间的函数表达式.(2)治污改造工程顺利完工后经过几个月,该厂月利润才能达到200万元?(3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?(第26题)答案一、1.B 2.D 3.A 4.C 5.B 6.A 7.D8.A9.A10.B二、11.-1(答案不唯一)12.①②④13.>14.一、二、四15.0.5 m16.-217.t=600v18.-1219.820.5三、21.解:(1)易知图象的另一支在第三象限.∵图象在第一、三象限,∴5-2m>0,解得m<5 2.(2)b1<b2.理由如下:∵m<5 2,∴m-4<m-3<0. ∴b1<b2.22.解:(1)设p=kS(k≠0),∵点(0.25,1 000)在这个函数的图象上,∴1 000=k0.25,∴k=250,∴p与S之间的函数表达式为p=250S(S>0).(2)当S=0.5时,p=2500.5=500.故当受力面积为0.5 m2时物体承受的压强为500 Pa.(3)令p=2 500,则S=2502 500=0.1,故若要获得2 500 Pa的压强,受力面积应为0.1 m2. 23.解:(1)∵直线y1=-2x经过点P(-2,a),∴a=-2×(-2)=4.∴点P的坐标是(-2,4).∴点P关于y轴的对称点P′的坐标是(2,4).(2)∵点P′(2,4)在反比例函数y2=kx(k≠0)的图象上,∴4=k2,解得k=8,∴反比例函数的表达式是y2=8 x.在反比例函数表达式中,令y2=2,得x=4,∴当y2<2时,自变量x的取值范围是x>4或x<0.24.解:(1)∵AC ⊥x 轴,AC =1,OC =2,∴点A 的坐标为(2,1).∵反比例函数y =m x 的图象经过点A (2,1),∴m =2.∴反比例函数的表达式为y =2x . (2)由(1)知,反比例函数的表达式为y =2x .∵反比例函数y =2x 的图象经过点B ,且点B 的纵坐标为-12, ∴点B 的坐标为⎝ ⎛⎭⎪⎫-4,-12. ∵一次函数y =kx +b 的图象经过点A (2,1),B ⎝ ⎛⎭⎪⎫-4,-12, ∴⎩⎪⎨⎪⎧2k +b =1,-4k +b =-12,解得⎩⎪⎨⎪⎧k =14,b =12.∴一次函数的表达式为y =14x +12.25.解:(1)解方程x 2-7x -8=0,得x =8或x =-1.∵线段OA 的长是方程x 2-7x -8=0的一个根,∴OA =8.∴A (-8,0).将A (-8,0)的坐标代入y =12x +b ,得-4+b =0,解得b =4,∴B (0,4).(2)在R t △AOB 中,OA =8,OB =4,∴AB =OA 2+OB 2=82+42=4 5.如图,过点C 作CH ⊥x 轴于点H .(第25题)则∠AHC =∠AOB =90°.又∵∠CAH =∠BAO , ∴△AHC ∽△AOB . ∴CH OB =AC AB =AH OA .∵AC =55,∴CH 4=5545=AH 8. 解得CH =5,AH =10, ∴OH =AH -AO =10-8=2. ∴C (2,5).∵双曲线y=kx(k≠0,x>0)经过点C,∴k=2×5=10.26.解:(1)当1≤x≤5时,设y=kx,把(1,200)的坐标代入,得k=200,即y=200 x;当x=5时,y=40.当x>5时,设y=20x+b,则20×5+b=40,解得b=-60,即y=20x-60.故治污期间,y与x之间的函数表达式为y=200x(1≤x≤5).治污改造工程完工后,y与x之间的函数表达式为y=20x-60(x>5).(2)对于y=20x-60,当y=200时,20x-60=200,解得x=13.所以治污改造工程顺利完工后经过13-5=8(个)月,该厂月利润才能达到200万元.(3)对于y=200x,当y=100时,x=2;对于y=20x-60,当y=100时,x=8.所以该厂资金紧张期共有8-2-1=5(个)月.。