镇北大培文学校人教版高中数学二轮复习二次函数练习(无答案)

合集下载

人教版数学《 二次函数》单元测试题2(含答案)

人教版数学《 二次函数》单元测试题2(含答案)

人教版数学《 二次函数》单元测试题2一、选择题(每小题4分,共40分)1、下列函数是二次函数的是( )A .21xy -= B .12++=xz x y C .0122=-+y x D .y x xy -=2 2、已知二次函数213x y -=、2231x y -=、2323x y =,它们的图像开口由小到大的顺序是( ) A 、321y y y << B 、123y y y << C 、231y y y << D 、132y y y <<3、抛物线442+-=x x y 的顶点坐标是( )A 、(2,0)B 、(-2,0)C 、(0,2)D 、(0,-2)4、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-145、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<16、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、337、抛物线222++-=kx x y 与x 轴交点的个数为( )A 、0B 、1C 、2D 、以上都不对8、若方程02=++c bx ax 的两个根是-3和1,那么二次函数 c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =19.二次函数y=ax 2+bx+c 的图象如图所示,若M=4a+2b+c ,N=a -b+c ,P=4a+b ,则( )A .M>0,N>0,P>0B .M>0,N<0,P>0C .M<0,N>0,P>0D .M<0,N>0,P<010、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )二、填空题(每小题4分,共40分)1、若m m x m m y -+=2)(2是二次函数,则m =______;2、写出等边三角形的面积S 与其边长a 之间的函数关系式为 .3、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0; 4、抛物线()812--=x y 的对称轴为直线_________,顶点坐标为________,与y 轴的交点坐标为______;5、若二次函数2223m m x mx y -+-=的图象经过原点,则m =_________;6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是_________________;8、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;9、已知二次函数y=x 2-4x -3,若-1≤x ≤6,则y 的取值范围为___________;10、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______。

二次函数基础分类练习测试题含参考答案修订版

二次函数基础分类练习测试题含参考答案修订版

二次函数基础分类练习测试题含参考答案修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】二次函数基础分类练习题练习一二次函数1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式.2、下列函数:①23y x ;②21y x x x ;③224y x x x ;④21y x x ; ⑤1y x x ,其中是二次函数的是,其中a ,b ,c3、当m 时,函数2235y m x x (m 为常数)是关于x 的二次函数4、当____m 时,函数2221m m y m m x 是关于x 的二次函数5、当____m 时,函数2564m m y m x +3x 是关于x 的二次函数6、若点A(2,m )在函数12-=x y 的图像上,则A 点的坐标是____.7、在圆的面积公式S =πr 2中,s 与r 的关系是( ) A 、一次函数关系 B 、正比例函数关系 C 、反比例函数关系 D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是4cm ,宽是3cm ,如果将长和宽都增加xcm ,那么面积增加ycm 2, ①求y 与x 之间的函数关系式.②求当边长增加多少时,面积增加8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y=-1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是(或),顶点坐标是,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x=时,该函数有最值是;(2)抛物线221x y -=的对称轴是(或),顶点坐标是,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x=时,该函数有最值是;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是.3、抛物线y =-x 2不具有的性质是( )A 、开口向下B 、对称轴是y 轴C 、与y 轴不相交D 、最高点是原点 4、苹果熟了,从树上落下所经过的路程s 与下落时间t 满足S =12gt 2(g =9.8),则s 与t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是()A .B .C .D . 6、已知函数24m m y mx 的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值. 8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式. 练习三函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口,对称轴是,顶点坐标是,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为,再向上平移3个单位得到的抛物线的解析式为,并分别写出这两个函数的顶点坐标、.3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是.4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是,当x=时,该抛物线有最(填大或小)值,是.5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于.练习四函数()2h x a y -=的图象与性质 1、抛物线()2321--=x y ,顶点坐标是,当x 时,y 随x 的增大而减小,函数有 最值.2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个). 4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2,3)为顶点,且开口向上.____________.2、二次函数y =(x -1)2+2,当x =____时,y 有最小值.3、函数y =12(x -1)2+3,当x ____时,函数值y 随x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向平移3个单位,再向平移2个单位得到.5、已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是()A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y . (1) 确定下列抛物线的开口方向、对称轴和顶点坐标;(2) 当x=时,抛物线有最值,是.(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.(4) 求出该抛物线与x 轴的交点坐标及两交点间距离;(5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是.2、抛物线251222+-=x x y 的开口方向是,顶点坐标是.3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式.4、将y =x 2-2x +3化成y =a(x -h)2+k 的形式,则y =____.5、把二次函数215322y x x 的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于()A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为()A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ;(2)2832-+-=x x y ;(3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1)求一次函数的关系式;2)判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七c bx ax y ++=2的性质1、函数2y x px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224y mx x m m 的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线2y ax bx c 与y 轴交于点A (0,2),它的对称轴是1x ,那么acb4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第象限. 7、已知二次函数2yax bx c (0≠a )的图象如图所示,则下列结论: 1),a b 同号;2)当1x和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2y x ax b 中,若0a b ,则它的图象必经过点()10、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是()A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是()12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有()A .4个B .3个C .2个D .1个 13、抛物线的图角如图,则下列结论:①>0;②; ③>;④<1.其中正确的结论是(????).(A )①②??(B )②③??(C )②④??(D )③④14、二次函数2yax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c 15、试求抛物线2y ax bx c 与x 轴两个交点间的距离(240b ac ) 练习八二次函数解析式1、抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,1)三点,则a=,b=,c=2、把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为.3、二次函数有最小值为1,当0x时,1y,它的图象的对称轴为1x,则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过1,1、2,1两点,且与x轴仅有一个交点,求二次函数的解析式6、抛物线y=ax2+bx+c过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x轴交于A(-2,0)、B(3,0)两点,且函数有最大值是2.(1)求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.练习九二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是.2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为()A 、0B 、1C 、2D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是()A 、0,0>∆>aB 、0,0<∆>aC 、0,0>∆<aD 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为()A 、0B 、-1C 、2D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线()A 、x =-3B 、x =-2C 、x =-1D 、x =17、已知二次函数2yx px q 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值 8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围.11、已知抛物线22y x mx m .(1)求证此抛物线与x 轴有两个不同的交点;(2)若m 是整数,抛物线22y x mx m 与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B. 若M 为坐标轴上一点,且MA=MB ,求点M 的坐标.练习十二次函数解决实际问题1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线表示这种蔬菜销售价与月份之间的关系.观察图像,你能得到关于这种蔬菜销售情况的哪些信息?(至少写出四条)2、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第x 年维修、保养费累计..为y (万元),且y =ax 2+bx ,若第一年的维修、保养费为2万元,第二年的为4万元.求:y 的解析式.3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y(m)与水平距离x(m)之间的函数关系式为y =-112x 2+23x +53,求小明这次试掷的成绩及铅球的出手时的高度.4、用6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?5、商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件. ①设每件降价x 元,每天盈利y 元,列出y 与x 之间的函数关系式;②若商场每天要盈利1200元,每件应降价多少元?③每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m ,跨度为10m ,如图所示,把它的图形放在直角坐标系中.①求这条抛物线所对应的函数关系式.②如图,在对称轴右边1m处,桥洞离水面的高是多少?7、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d表示h的函数关系式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m,若行车道总宽度AB为6m,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m).练习一二次函数参考答案1:1、22t s =;2、⑤,-1,1,0;3、≠2,3,1;6、(2,3);7、D ;8、),2150(2254S 2<<+-=x x 189;9、x x y 72+=,1;10、22-=x y ;11、,244S 2x x +-=当a<8时,无解,168<≤a 时,AB=4,BC=8,当16≥a 时,AB=4,BC=8或AB=2,BC=16.练习二函数2ax y =的图象与性质参考答案2:1、(1)x=0,y 轴,(0,0),>0,,<0,0,小,0;(2)x=0,y 轴,(0,0),<,>,0,大,0;2、④;3、C ;4、A ;5、B ;6、-2;7、3-;8、021<<y y ;9、(1)2或-3,(2)m=2、y=0、x>0,(3)m=-3,y=0,x>0;10、292x y = 练习三函数c ax y +=2的图象与性质参考答案3:1、下,x=0,(0,-3),<0,>0;2、2312-=x y ,1312+=x y ,(0,-2),(0,1);3、①②③;4、322+=x y ,0,小,3;5、1;6、c.练习四函数()2h x a y -=的图象与性质 参考答案4:1、(3,0),>3,大,y=0;2、2)2(3-=x y ,2)32(3-=x y ,2)3(3-=x y ;3、略;4、2)2(21-=x y ;5、(3,0),(0,27),40.5;6、2)4(21--=x y ,当x<4时,y 随x 的增大而增大,当x>4时,y 随x 的增大而减小;7、-8,-2,4.练习五()k h x a y +-=2的图象与性质 参考答案5:1、略;2、1;3、>1;4、左、下;5、342-+-=x x y ;6、C ;7、(1)下,x=2,(2,9),(2)2、大、9,(3)<2、>2,(4)(32-,0)、(32+,0)、32,(5)(0,-3);(6)向右平移2个单位,再向上平移9个单位;8、(1)上、x=-1、(-1,-4);(2)(-3,0)、(1,0)、(0,-3)、6,(3)-4,当x>-1时,y 随x 的增大而增大;当x<-1时,y 随x 的增大而减小,(4)2)1(-=x y ;(5)向右平移1个单位,再向上平移4个单位或向上平移3个单位或向左平移1个单位;(6)x>1或x<-3、-3<x<1练习六c bx ax y ++=2的图象和性质参考答案6:1、x=-2;2、上、(3,7);3、略;4、2)1(2+-x ;5、5)1(212+--=x y ;6、(-2,0)(8,0);7、大、81;8、C ;9、A ;10、(1)1)2(212--=x y 、上、x=2、(2,-1),(2)310)34(32+--=x y 、下、34=x 、(310,34),(3)3)2(412---=x y 、下、x=2、(2,-3);11、有、y=6;12、(2,0)(-3,0)(0,6);13、y=-2x 、否;14、定价为3000元时,可获最大利润125000元练习七c bx ax y ++=2的性质参考答案7:1、1162+-=x x y ;2、(-4,-4);3、1;4、-3;5、>、<、>、>;6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、4422++-=x x y ;15、a ac b 42-练习八二次函数解析式参考答案8:1、31-、32、1;2、1082++=x x y ;3、1422+-=x x y ;4、(1)522-+=x x y、(2)3422---=x x y 、(3)41525452--=x x y 、(4)253212+-=x x y ;5、9194942+-=x x y ;6、142-+-=x x y ;7、(1)25482582582++-=x x y 、5;8、322++-=x x y 、y=-x-1或y=5x+5练习九二次函数与方程和不等式参考答案9:1、47-≥k 且0≠k ;2、一;3、C ;4、D ;5、C ;6、C ;7、2,1;8、31,3,121≤≤-=-=x x x ;9、(1)x x y 22-=、x<0或x>2;10、y=-x+1,322+--=x x y ,x<-2或x>1;11、(1)略,(2)m=2,(3)(1,0)或(0,1)练习十二次函数解决实际问题参考答案10:1、①2月份每千克3.5元 ②7月份每千克0.5克 ③7月份的售价最低 ④2~7月份售价下跌;2、y =x 2+x ;3、成绩10米,出手高度35米;4、23)1(232+--=x S ,当x =1时,透光面积最大为23m 2;5、(1)y =(40-x)(20+2x)=-2x 2+60x +800,(2)1200=-2x 2+60x +800,x 1=20,x 2=10 ∵要扩大销售 ∴x 取20元,(3)y =-2(x 2-30x)+800=-2(x -15)2+1250 ∴当每件降价15元时,盈利最大为1250元;6、(1)设y =a(x -5)2+4,0=a(-5)2+4,a =-254,∴y=-254(x -5)2+4,(2)当x =6时,y =-254+4=3.4(m);7、(1)2251x y -=,(2)h d -=410,(3)当水深超过2.76m 时;8、)64(6412≤≤-+-=x x y ,x =3,m y 75.3496=-=,m 2.325.35.075.3≈=-,货车限高为3.2m.。

2024年中考数学二轮复习模块专练—二次函数的图象和性质(含答案)

2024年中考数学二轮复习模块专练—二次函数的图象和性质(含答案)

2024年中考数学二轮复习模块专练—二次函数的图象和性质(含答案)试卷第2页,共12页A.一次函数关系,二次函数关系C.二次函数关系,一次函数关系【例1】试卷第4页,共12页【例1】A.①②B.①④【变1】(2023·四川乐山·统考中考真题)6.如图,抛物线2=++y ax bx cA.4个【例1】【例1】试卷第6页,共12页【变1】(2023·江苏无锡·统考中考真题)10.如图,在四边形ABCD若线段MN在边AD上运动,且A.132B.293试卷第8页,共12页A .1个B .2个(2023·内蒙古呼和浩特·统考中考真题)18.关于x 的二次函数26y mx =-①对于任意实数a ,都有13x =+试卷第10页,共12页212y x =()21362y x =-+()0,0()3,m 11,2⎛⎫ ⎪⎝⎭134,2⎛⎫ ⎪⎝⎭()2,2()5,811,2⎛⎫- ⎪⎝⎭132,2⎛⎫⎪⎝⎭(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下x L52-2-32-1-12-012132252Ly L52-032m32032232052-L其中,m=________.根据上表数据,在图1所示的平面直角坐标系中,通过描点画出了函数图象的一部分,请画出该函数图象的另一部分.观察图象,写出该函数的一条性质;试卷第12页,共12页参考答案:答案第2页,共27页答案第4页,共27页答案第6页,共27页∵60D ∠=︒,2CD =,∴sin 603CE CD =⋅︒=,过点B 作BF AD ⊥,答案第8页,共27页答案第10页,共27页答案第12页,共27页解题的关键.16.A【分析】设直线319y x =+与抛物线241y x x =+-对称轴左边的交点为P ,设抛物线顶点坐标为Q ,求得其坐标的横坐标,结合图象分析出1x 的范围,根据二次函数的性质得出()23224x x +=⨯-=-,进而即可求解.【详解】解:如图所示,设直线319y x =+与抛物线241y x x =+-对称轴左边的交点为P ,设抛物线顶点坐标为Q联立231941y x y x x =+⎧⎨=+-⎩解得:54x y =-⎧⎨=⎩或431x y =⎧⎨=⎩∴()5,4P -,由()224125y x x x =+-=+-,则()2,5Q --,对称轴为直线2x =-,设123m y y y ===,则点,,A B C 在y m =上,∵123y y y ==且123x x x <<,∴A 点在P 点的左侧,即15x <-,232x x <-<,当5m =-时,23x x =对于319y x =+,当5y =-,8x =-,此时18x =-,答案第14页,共27页答案第16页,共27页④当0m >且3n x ≤≤时,y 随x 的增大而减小,∵2141y n -≤≤+,∴当3x =时,5914y m =--=-,解得:1m =,∴265y x x =--,当x n =时,22651y n n n =--=+,解得:1n =-,故④不正确,不符合题意;综上:正确的有①③,共2个,故选:B .【点睛】本题主要考查了二次函数的性质,解题的关键是熟练掌握()2y x h k =-+的对称轴为x h =,顶点坐标为(),h k ;0a >时,函数开口向上,在对称轴左边,y 随x 的增大而减小,在对称轴右边,y 随x 的增大而增大,a<0时,函数开口向下,在对称轴左边,y 随x 的增大而增大,在对称轴右边,y 随x 的增大而减小.19.<【分析】先求出抛物线的对称轴,然后根据二次函数的性质解决问题.【详解】解:23y x =-的对称轴为y 轴,∵10a =>,∴开口向上,当0x >时,y 随x 的增大而增大,∵120x x <<,∴12y y <.故答案为:<.【点睛】本题主要考查了二次函数的增减性,解题的关键是根据抛物表达式得出函数的开口方向和对称轴,从而分析函数的增减性.答案第18页,共27页答案第20页,共27页根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.【点睛】本题考查二次函数、反比例函数与不等式等知识,解题的关键是理解题意,学会画答案第22页,共27页由题意得:2211522x x -+=,答案第24页,共27页由图象可知:图象关于y 轴对称;故答案为:4.(2)解:∵点()2,0A ,点()2,0B -,∴4AB =,∴1432FAB F S y =⨯⨯=△,∴32F y =,3答案第26页,共27页∴OPQ APQ ∠=∠,∵()1,0Q ,()1,4P ,∴1,4OQ PQ ==,∴17PO =,∴1sin sin 17OPQ APQ ∠=∠=,过点M 作ME PQ ⊥,过点N 作NF ⊥则:81,144q q ME NF p p -=-=-,。

「精选」人教版最新高考数学专题复习——二次函数附参考答案-精选文档

「精选」人教版最新高考数学专题复习——二次函数附参考答案-精选文档

二次函数复习(附参考答案)1.二次函数f(x)=ax 2+bx+c(a ≠0)在给定区间[]n m ,上的值域 ()1 若a >0,①当m a b<-2时. ()()[]n f m f y ,∈. ②当n ab >-2时. ()()[]m f n f y ,∈③当n a bm <-<2时.()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∈n f m f a b f y ,max ,2在比较()()n f m f ,的大小时亦可以n m ,与对称轴的距离而比较。

()2若a(⎫⎛b n f ,2.二次函数与一元二次方2++c bx ax 的根、与一元二次不等式的关系例1、(1)函数2([0,))y x bx c x =++∈+∞是单调函数的充要条件是 ( )()A 0b ≥ ()B 0b ≤ ()C 0b > ()D 0b <(2若函数2(2)3([,]y x a x x a b =+++∈)的图象关于1x =对称则b = . (3)m 取何值时,方程227(13)20x m x m m -++--=的一根大于1,一根小于1. (4) 方程0422=+-ax x 的两根均大于1,则实数a 的取值范围是___。

(5)设y x ,是关于m 的方程0622=++-a am m 的两个实根,则22)1()1(-+-y x 的最小值是( ) (A)449-(B)18 (C)8 (D)43(6)若函数)3(log )(2+-=ax x x f a 在区间]2,(a -∞上为减函数,则a 的取值范围为( )(A) (0,1) (B)(),1+∞ (C))32,1( (D))32,1()1,0(⋃(7)方程111042x x a -⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭有正数解,则a 的取值范围为 。

例2、已知函数2244)(22+-+-=a a ax x x f 在区间[0,2]上有最小值3,求a 的值。

2024年中考数学二轮复习模块专练—二次函数与方程、不等式综合(含答案)

2024年中考数学二轮复习模块专练—二次函数与方程、不等式综合(含答案)

2024年中考数学二轮复习模块专练—二次函数与方程、不等式综合(含答案)一、二次函数与一元二次方程1.抛物线与x 轴交点的横坐标抛物线2y ax bx c =++,令y =0,则20ax bx c ++=,方程的解就是抛物线与x 轴交点的横坐标;2.抛物线与x 轴交点情况(1)抛物线2y ax bx c =++与x 轴的交点个数由判别式24b ac ∆=-的值的正负确定;(2)当240b ac ∆=->时,抛物线与x 轴有两个交点;当240b ac ∆=-=时,抛物线与x 轴只有一个交点;当24<0b ac ∆=-时,抛物线与x 轴没有交点;3.利用二次函数求一元二次方程的近似根对于一元二次方程20ax bx c ++=,令2y ax bx c =++,画出函数的图像,抛物线与x 轴的交点的横坐标就是方程的解;二、二次函数与不等式1.二次函数与一元二次不等式20ax bx c ++>的解集就是抛物线2y ax bx c =++在x 轴上方的那部分图像对应的自变量的取值范围.《义务教育数学课程标准》2022年版,学业质量要求:1.知道二次函数和一元二次方程之间的关系;2.会根据二次函数的求其图像与坐标轴的交点坐标;试卷第2页,共12页3.会利用二次函数的图像求一元二次方程的近似解;【例1】(2023·四川巴中·统考中考真题)1.规定:如果两个函数的图象关于y 轴对称,那么称这两个函数互为“Y 函数”.例如:函数3y x =+与3y x =-+互为“Y 函数”.若函数2(1)34k y x k x k =+-+-的图象与x 轴只有一个交点,则它的“Y 函数”图象与x 轴的交点坐标为.【变1】(2023·河南鹤壁·统考三模)2.已知抛物线233(0)y mx mx m m --=>与x 轴交于A 、B 两点(点A 在点B 左侧).(1)抛物线对称轴为,A 点坐标为.(2)当0m >时,不等式232m mx mx ≤-的解集为.(3)已知点(2,4)M -、1(,4)2N -,连接MN 所得的线段与该抛物线有一个交点,求m 的取值范围.【例1】(2023·四川成都·校考三模)3.在探究关于x 的二次三项式21215x x +-的值时,小明计算了如下四组值:x1.1 1.2 1.3 1.421215x x +-0.59-0.842.293.76小明说,他通过这四组值能得到方程212150x x +-=的一个近似根,这个近似根的个位是,十分位是.【变1】(2023·河南商丘·统考二模)4.为解方程31212x x -=,小舟根据学习函数的经验对其进行了探究,下面是其探究的过程,请补充完整:(1)先研究函数3122y x x =-,列表如表:x 2-1-0121252y32m324516表格中,m 的值为__________.(2)如图,在平面直角坐标系xOy 中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出了函数3122y x x =-图象的一部分,请根据剩余的点补全此函数图象.(3)观察图象,当31202x x ->时,满足条件的x 的取值范围是__________.(4)在第(2)问的平面直角坐标系中画出直线1y =.根据图象直接写出方程31212x x -=的近似根(结果保留一位小数)试卷第4页,共12页【例1】(2021·广西贺州·统考中考真题)5.如图,已知抛物线2y ax c =+与直线y kx m =+交于1(3,)A y -,2(1,)B y 两点,则关于x 的不等式2ax c kx m +≥-+的解集是()A .3x ≤-或1x ≥B .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤【变1】(2023·山西太原·校联考二模)6.请仔细阅读下面的材料,并完成相应的任务.利用二次函数图象解不等式数学活动课上,老师提出这样一个问题:我们曾经利用一次函数的图象解一元一次不等式,类比前面的学习经验,我们能否利用二次函数的图象解相应的不等式呢?例如解不等式2233x x -->-,同学们以小组为单位展开了讨论.善思小组展示了他们的方法:将不等式进一步变形为220x x ->,如图1,画出函数22y x x =-的图象,抛物线与x 轴相交于()0,0和()2,0两点,这两个点将x 轴分为三段,当0x <或2x >时,二次函数的图象位于x 轴上方,此时0y >,所以220x x ->,即2233x x -->-,所以此不等式的解集为0x <或2x >.勤学小组受善思小组的启发,画出函数2=23y x x --的图象和直线=3y -.如图2所示,它们相交于()0,3-和()2,3-两点,当0x <或2x >时,二次函数的图象位于直线=3y -的上方,此时3y >-,即2233x x -->-,所以不等式的解集为0x <或2x >.任务:(1)两个小组的方法主要运用的数学思想是______(从下面的选项中选择一个即可).A .数形结合思想B .分类讨论思想C .公理化思想(2)请你选择阅读材料中的一个方法解不等式243x x -<-.请将函数图象画在图3的平面直角坐标系中,并参照材料中的分析过程写出你的分析过程.【例1】(2023·青海西宁·统考中考真题)7.直线1y ax b =+和抛物线22y ax bx =+(a ,b 是常数,且0a ≠)在同一平面直角坐标系中,直线1y ax b =+经过点()4,0-.下列结论:试卷第6页,共12页①抛物线22y ax bx =+的对称轴是直线2x =-②抛物线22y ax bx =+与x 轴一定有两个交点③关于x 的方程2ax bx ax b +=+有两个根14x =-,21x =④若0a >,当<4x -或1x >时,12y y >其中正确的结论是()A .①②③④B .①②③C .②③D .①④【变1】(2023·江苏·统考中考真题)8.已知二次函数23y xbx =+-(b 为常数).(1)该函数图像与x 轴交于A B 、两点,若点A 坐标为()3,0,①则b 的值是_________,点B 的坐标是_________;②当<<0y 5时,借助图像,求自变量x 的取值范围;(2)对于一切实数x ,若函数值y t >总成立,求t 的取值范围(用含b 的式子表示);(3)当m y n <<时(其中m n 、为实数,m n <),自变量x 的取值范围是12x <<,求n 和b 的值以及m的取值范围.一、选择题(2023·湖北恩施·统考中考真题)9.如图,在平面直角坐标系xOy 中,O 为坐标原点,抛物线()20y ax bx c a =++≠的对称轴为1x =,与x 轴的一个交点位于()2,0,()3,0两点之间.下列结论:①20a b +>;②0bc <;③13a c <-;④若1x ,2x 为方程20ax bx c ++=的两个根,则1230x x ⋅-<<.其中正确的有()个.A .1B .2C .3D .4(2023·河北·统考中考真题)10.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A .2B .2m C .4D .22m (2023·湖南·统考中考真题)11.已知0m n >>,若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是()A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<(2023·四川自贡·统考中考真题)12.经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x 为自变量)与x 轴有交点,则线段AB 长为()A .10B .12C .13D .15(2023·浙江衢州·统考中考真题)13.已知二次函数24y ax ax =-(a 是常数,a<0)的图象上有()1,A m y 和()22,B m y 两点.若点A ,B 都在直线3y a =-的上方,且12y y >,则m 的取值范围是()A .312m <<B .423m <<C .4332m <<D .m>2二、填空题试卷第8页,共12页(2023·广东深圳·深圳市石岩公学校考模拟预测)14.如图,二次函数与x 轴交点坐标为()10-,,()20,,当0y <时,x的取值范围是(2023·江苏镇江·统考二模)15.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠的自变量和对应函数值如表:x…1-047 (1)y (01)58 (x)…2-1-04 (2)y …503-5…21y y>当时,自变量x 的取值范围是(2023·云南昆明·统考二模)16.如图,在平面直角坐标中,抛物线()20y ax bx a =+>和直线()0y kx k =>交于点O和点A ,则不等式2ax bx kx +<的解集为.(2023·江苏南京·统考二模)17.二次函数2y ax bx c =++(0,a a b c ≠、、是常数)的图象如图所示,则不等式()220ax b x c +-+>的解集是.(2023·湖南永州·统考二模)18.我们学习了一元二次方程和二次函数,综合利用它们的性质解决问题,阅读下列材料,回答问题:例:已知关于x 的方程2(2)40tx t x t +-+=有实数根,求t 的最大值?解:由题意可知,当t =0时,方程有实数解当0t ≠时,240b ac ∆=-≥即()22440t t t --⋅⋅≥∴215440t t +-≤设函数()21544f t t t =+-当()0f t ≤时,2235t -≤≤综上max 25t =(1)已知关于x 的方程2252214x mx x m m -++-=有实数根,则m 的最大值为;(2)已知方程22221x xy y -+=有实数根,则x -2y 的最大值为.三、解答题(2022·山东青岛·统考中考真题)19.已知二次函数y =x 2+mx +m 2−3(m 为常数,m >0)的图象经过点P (2,4).(1)求m 的值;(2)判断二次函数y =x 2+mx +m 2−3的图象与x 轴交点的个数,并说明理由.试卷第10页,共12页(2023·广东广州·统考模拟预测)20.如图,抛物线2y x mx =+与直线y x b =-+交于点A (2,0)和点B.(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>-+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标M x 的取值范围.(2023·河南南阳·统考三模)21.如图,抛物线23y x mx =-++与直线2y x b =-+交于点()4,5A -和点B.(1)求抛物线和直线的解析式;(2)请结合图象直接写出不等式232x mx x b -++<-+的解集;(3)点N 是抛物线对称轴上一动点,且点N 纵坐标为n ,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若点1,2P t ⎛⎫- ⎪⎝⎭在直线2y x b =-+上,且直线PN 与图象G有公共点,结合函数图象,直接写出点N 纵坐标n 的取值范围.(2023·云南·统考中考真题)22.数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++--+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.(2023·江苏盐城·统考中考真题)23.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c=++与x 轴的另一交点为点B .若14OB OA =,求b 的值.【拓展延伸】(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.试卷第12页,共12页参考答案:1.(3,0)C 或(4,0)C 【分析】根据题意2(1)34k y x k x k =+-+-与x 轴的交点坐标和它的“Y 函数”图象与x 轴的交点坐标关于y 轴对称,再进行分类讨论,即0k =和0k ≠两种情况,求出2(1)34k y x k x k =+-+-与x 轴的交点坐标,即可解答.【详解】解:①当0k =时,函数的解析式为3y x =--,此时函数的图象与x 轴只有一个交点成立,当0y =时,可得03x =--,解得3x =-,∴3y x =--与x 轴的交点坐标为()3,0-,根据题意可得,它的“Y 函数”图象与x 轴的交点坐标为()3,0;①当0k ≠时,函数2(1)34k y x k x k =+-+-的图象与x 轴只有一个交点,240∴-=b ac ,即()()214304k k k --⨯⨯-=,解得1k =-,∴函数的解析式为21244y x x =---,当0y =时,可得210244x x =---,解得4x =-,根据题意可得,它的“Y 函数”图象与x 轴的交点坐标为()4,0,综上所述,它的“Y 函数”图象与x 轴的交点坐标为(3,0)C 或()4,0C ,故答案为:(3,0)C 或(4,0)C .【点睛】本题考查了轴对称,一次函数与坐标轴的交点,抛物线与x 轴的交点问题,理解题意,进行分类讨论是解题的关键.答案第2页,共28页2.(1)32x =;3(2(2)1x ≤-或3x ≥(3)m 的取值范围为416517m ≤<或1621m =【分析】(1)根据抛物线的对称轴方程可得答案;令0y =,求出x 的值,即可得出答案.(2)由题意得,2230x x --≥,求出方程2230x x --=的解,进而可得答案.(3)分别求出抛物线顶点在线段MN 上、抛物线经过点M 或点N 时m 的值,进而可得答案.【详解】(1)解:抛物线的对称轴为3322m x m -=-=,令0y =,得2330mx mx m --=,解得12x x ==A 在B的左侧,33,,022A B ⎛⎫⎛⎫+∴ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故答案为:32x =;;(2)232m mx mx -≤ ,0m >2230x x --∴≥,解方程223=0x x --,得1213x x ,=-=,2230x x --∴≥的解集为1x ≤-或3x ≥,即不等式232m mx mx ≤-的解集为1x ≤-或3x ≥,故答案为:1x ≤-或3x ≥;(3)当抛物线233(0)y mx mx m m --=>的顶点在MN 上时,即2334mx mx m --=-有两个相等的实数根,()294340m m m ∴∆=--+=,解得10m =(舍去),21621m =;当抛物线经过线段MN 的左端点N 时,把1(,4)2N -代入233y mx mx m -=-,得133442m m m --=-,解得1617m =,当抛物线经过线段MN 的右端点M 时,把(2,4)M -代入233y mx mx m -=-,得4634m m m --=-,解得45m =;综上所述,m 的取值范围为416517m ≤<或1621m =.【点睛】本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了二次函数图象与系数的关系和抛物线与x 轴的交点问题.3.11【分析】根据表格可得0.5900.84-<<,则方程212150x x +-=的一个近似根取值范围为:1.1 1.2x <<,即可进行解答.【详解】解:根据题意可得:0.5900.84-<<,∴方程212150x x +-=的一个近似根取值范围为:1.1 1.2x <<,∴这个近似根的个位是1,十分为是1,故答案为:1,1.【点睛】本题主要考查了求一元二次方程的近似根,解题的关键是掌握正确理解表格中的数答案第4页,共28页据,根据表格得出近似根的取值范围.4.(1)1516-(2)见解析(3)20x -<<或2x >(4)231.7,0.5, 2.2x x x =-=-=【分析】(1)将12x =代入函数解析式进行求解即可;(2)根据表格,描点,连线画出函数图象即可;(3)结合图象即可得出结果;(4)图象法解方程即可.【详解】(1)解:当12x =时,311115222216y ⎛⎫=⨯-⨯=- ⎪⎝⎭,∴1516m =-,故答案为:1516-;(2)根据(1)中表格数据,描点,连线,如图,(3)解:由图象可知,当20x -<<或2x >时,图象在x 轴上方,即:31202x x ->,故答案为:20x -<<或2x >;(4)解:作图如下:由图象可得:方程的解为231.7,0.5, 2.2x x x =-=-=.【点睛】本题考查函数的图象和性质.熟练掌握函数图象的画法,利用图象法解不等式和方程,是解题的关键.5.D【分析】将要求的不等式抽象成两个函数的函数关系问题,根据二次函数图象的对称性,以及两一次函数图象的关系,求出新的一次函数与二次函数的交点,从而写出抛物线在直线上方部分的x 的取值范围即可.【详解】y kx m =+ 与y kx m =-+关于y 轴对称抛物线2y ax c =+的对称轴为y 轴,因此抛物线2y ax c =+与直线y kx m =+的交点和与直线y kx m =-+的交点也关于y 轴对称设y kx m =-+与2y ax c =+交点为A B ''、,则A '2(1,)y -,B '1(3,)y 2ax c kx m+≥-+即在点A B ''、之间的函数图像满足题意2ax c kx m ∴+≥-+的解集为:13x -≤≤故选D .【点睛】本题考查了轴对称,二次函数与不等式,数形结合是数学中的重要思想之一,解决答案第6页,共28页函数问题更是如此.理解y kx m =+与y kx m =-+关于y 轴对称是解题的关键.6.(1)A(2)见解析【分析】(1)根据材料中两个小组的做法进行判别即可;(2)根据材料中两个小组的解题步骤进行解答即可.【详解】(1)两个小组都是画出了坐标系函数图象,通过观察图象得出的结论,∴主要运用的是数形结合的思想,故答案为:A ;(2)①选择善思小组的方法:将不等式进一步变形为2430x x -+<,画出函数243y x x =-+的图象,观察图象可知:抛物线与x 轴相交于()1,0和()3,0两点,这两个点将x 轴分为三段,当13x <<时,二次函数的图象位于x 轴下方,此时0y <,即2430x x -+<,∴不等式243x x -<-的解集为13x <<.②选择勤学小组的方法:画出函数24y x x =-的图象和直线=3y -,观察图象可知:函数24y x x =-的图象和直线=3y -相交于()1,3-和()3,3-两点,当13x <<时,二次函数的图象位于直线=3y -的下方,此时3y <-,即243x x -<-,∴不等式的解集为13x <<.【点睛】本题考查了二次函数与不等式的综合,熟练运用数形结合的思想方法是解题的关键.7.B【分析】①可得40a b -+=,从而可求4b a =,即可求解;②可得2240b ac b ∆=-=≥,由0a ≠,可得20b ∆=>,即可求解;③可判断抛物线也过()4,0-,从而可得方程()20ax b a x b +--=的一个根为4x =-,可求抛物线()23y ax b a x b =+--的对称轴为直线32x =-,从而可得抛物线()23y ax b a x b =+--与x 轴的另一个交点为()1,0,即可求解;④当0a >,当41x -<<时,12y y <,即可求解.【详解】解:① 直线1y ax b =+经过点()4,0-,40a b ∴-+=,4b a ∴=,抛物线的对称轴为直线4222b a x a a=-=-=-,故①正确;答案第8页,共28页②2240b ac b ∆=-=≥,由①得4b a =,0a ≠ ,0b ∴≠,∴20b ∆=>,∴抛物线22y ax bx =+与x 轴一定有两个交点,故②正确;③当4x =-时,164y a b=-16160a a =-=,∴抛物线也过()4,0-,由2ax bx ax b +=+得∴方程()20ax b a x b +--=,∴方程的一个根为4x =-,抛物线()23y ax b a x b =+--, 43222b a a a x a a --=-=-=-,∴抛物线()23y ax b a x b =+--的对称轴为直线32x =-,与x 轴的一个交点为()4,0-,()33422x ⎛⎫∴--=--- ⎪⎝⎭,解得:1x =,∴抛物线()23y ax b a x b =+--与x 轴的另一个交点为()1,0,∴关于x 的方程2ax bx ax b +=+有两个根14x =-,21x =,故③正确;④当0a >,当41x -<<时,12y y <,故④错误;故选:B .【点睛】本题考查了二次函数的基本性质,二次函数与一次函数交点,二次函数与不等式等,理解性质,掌握解法是解题的关键.8.(1)①()2,1,0--②2<<1x --或34x <<(2)234b t <--(3)213,5,4b n m =-=-<-【分析】(1)①待定系数法求出函数解析式,令0y =,求出点B 的坐标即可;②画出函数图像,图像法求出x 的取值范围即可;(2)求出二次函数的最小值,即可得解;(3)根据当m y n <<时(其中m n 、为实数,m n <),自变量x 的取值范围是12x <<,得到1x =和2x =关于对称轴对称,进而求出b 的值,得到n 为1x =的函数值,求出n ,推出直线y m =过抛物线顶点或在抛物线的下方,即可得出结论.【详解】(1)解:①∵函数图像与x 轴交于A B 、两点,点A 坐标为()3,0,∴20333b =+-,∴2b =-,∴2=23y x x --,∴当0y =时,2230x x --=,∴121,3x x =-=,答案第10页,共28页∴点B 的坐标是()1,0-;故答案为:()21,0--,;②2=23y x x --,列表如下:xL 2-1-134L y L 504-05L画出函数图像如下:由图可知:当<<0y 5时,2<<1x --或34x <<;(2)∵2223324b b y x bx x ⎛⎫=+-=+-- ⎪⎝⎭,∴当2b x =-时,y 有最小值为234b --;∵对于一切实数x ,若函数值y t >总成立,∴234b t <--;(3)∵2223324b b y x bx x ⎛⎫=+-=+-- ⎪⎝⎭,∴抛物线的开口向上,对称轴为2b x =-,又当m y n <<时(其中m n 、为实数,m n <),自变量x 的取值范围是12x <<,∴直线y n =与抛物线的两个交点为()()1,,2,n n ,直线y m =在抛物线的下方,∴()()1,,2,n n 关于对称轴对称,∴1222b +-=,∴3b =-,∴223932132424y x x ⎛⎫⎛⎫=---=-- ⎪ ⎪⎝⎭⎝⎭,∴23211524n ⎛⎫=--=- ⎪⎝⎭,当32x =时,y 有最小值214-,∴214m <-.答案第12页,共28页【点睛】本题考查二次函数的图像和性质,熟练掌握二次函数的图像和性质,利用数形结合和分类讨论的思想进行求解,是解题的关键.本题的综合性较强,属于中考压轴题.9.B【分析】由图象得a<0,0c >,由对称轴12b x a=-=得20b a =->,20a b +=,0bc >;抛物线与x 轴的一个交点位于()2,0,()3,0两点之间,由对称性知另一个交点在(1,0)-,(0,0)之间,得0y a b c =-+<,于是13a c <-,进一步推知30c a -<<,由根与系数关系知1230x x -<< ;【详解】解:开口向下,得a<0,与y 轴交于正半轴,0c >,对称轴12b x a=-=,20b a =->,20a b +=,故①20a b +>错误;0bc >故②0bc <错误;抛物线与x 轴的一个交点位于()2,0,()3,0两点之间,对称轴为1x =,故知另一个交点在(1,0)-,(0,0)之间,故=1x -时,0y a b c =-+<∴(2)0a a c --+<,得13a c <-,故③13a c <-正确;由13a c <-,a<0,0c >知30c a -<<,∵1x ,2x 为方程20ax bx c ++=的两个根,∴12cx x a= ∴1230x x -<< ,故④正确;故选:B【点睛】本题考查二次函数图象性质,一元二次方程根与系数关系,不等式变形,掌握函数图象性质,注意利用特殊点是解题的关键.10.A【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或x m =,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),答案第14页,共28页∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.11.B【分析】把12x x ,看做是直线y m =与抛物线223y x x =+-交点的横坐标,把34x x ,看做是直线y n =与抛物线223y x x =+-交点的横坐标,画出对应的函数图象即可得到答案.【详解】解:如图所示,设直线y m =与抛物线223y x x =+-交于A 、B 两点,直线y n =与抛物线223y x x =+-交于C 、D 两点,∵0m n >>,关于x 的方程2230x x m +--=的解为()1212,x x x x <,关于x 的方程2230x x n +--=的解为3434,()x x x x <,∴1234,,,x x x x 分别是A 、B 、C 、D 的横坐标,∴1342x x x x <<<,故选B.【点睛】本题主要考查了抛物线与一元二次方程的关系,正确把一元二次方程的解转换成直线与抛物线交点的横坐标是解题的关键.12.B【分析】根据题意,求得对称轴,进而得出1c b =-,求得抛物线解析式,根据抛物线与x 轴有交点得出240b ac ∆=-≥,进而得出2b =,则1c =,求得,A B 的横坐标,即可求解.【详解】解:∵抛物线22122y x bx b c =-+-+的对称轴为直线1222b b x b a =-=-=⎛⎫⨯- ⎪⎝⎭∵抛物线经过23,()41,),(A b m B b c m -+-两点∴23412b bc b -++-=,即1c b =-,∴22221122222y x bx b c x bx b b =-+-+=-+-+-,∵抛物线与x 轴有交点,∴240b ac ∆=-≥,即()22142202b b b ⎛⎫-⨯-⨯-+-≥ ⎪⎝⎭,即2440b b -+≤,即()220b -≤,∴2b =,1211c b =-=-=,∴23264,418118b b c -=-=-+-=+-=,∴()()41238412AB b c b =+---=--=,故选:B .【点睛】本题考查了二次函数的对称性,与x 轴交点问题,熟练掌握二次函数的性质是解题的关键.13.C【分析】根据已知条件列出不等式,利用二次函数与x 轴的交点和二次函数的性质,即可解答.答案第16页,共28页【详解】解:0a < ,30y a ∴=->,点A ,B 都在直线3y a =-的上方,且12y y >,可列不等式:2483am am a ->-,0a < ,可得24830m m -+<,设抛物线21483y m m =-+,直线10x =,∴24830m m -+<可看作抛物线21483y m m =-+在直线10x =下方的取值范围,当10y =时,可得20483m m =-+,解得1213,22m m ==,40> ,21483y m m ∴=-+的开口向上,24830m m ∴-+<的解为1322m <<,根据题意还可列不等式:22448am am am am ->-,0a < ,∴可得22448m m m m -<-,整理得2340m m -+<,设抛物线2234y m m =-+,直线20x =,∴2340m m -+<可看作抛物线2234y m m =-+在直线20x =下方的取值范围,当20y =时,可得2034m m =-+,解得1240,3m m ==,30-<Q ,∴抛物线2234y m m =-+开口向下,2340m m ∴-+<的解为0m <或43m >,综上所述,可得4332m <<,故选:C .【点睛】本题考查了二次函数图象上的点的坐标特征,一次函数图象上点的坐标特征,正确列出不等式是解题的关键.14.12x -<<##21x >>-【分析】写出图象在x 轴下方所对应的自变量的范围即可.【详解】解:由图象可知,当0y <时,12x -<<.故答案为:12x -<<.【点睛】本题考查了抛物线与x 轴的交点问题,二次函数与不等式的关系,利用了转化及数形结合的数学思想.15.1x <-或4x >##4x >或1x <-【分析】利用表中数据得到直线与抛物线的交点为()10-,和()45,,画出草图,从而得到当21y y >时,自变量x 的取值范围.【详解】解:∵当=1x -时,120y y ==;当4x =时,125y y ==;∴直线与抛物线的交点为()10-,和()45,,画出草图如图所示,答案第18页,共28页当21y y >时,1x <-或>4x ,故答案为:1x <-或>4x .【点睛】本题考查了二次函数与不等式,对于二次函数2y ax bx c =++(a 、b 、c 是常数,0a ≠)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.16.03x <<【分析】根据已知图象,确定交点横坐标,再找出直线在抛物线上方的部分,即可得到答案.【详解】解:由图象可知,抛物线与直线交点的横坐标分别为0、3,当03x <<时,直线在抛物线上方,∴不等式2ax bx kx +<的解集为03x <<,故答案为:03x <<.【点睛】本题考查了二次函数与不等式的关系,利用数形结合的思想解决问题是解题关键.17.1x <或3x >【分析】利用图象法解不等式即可.【详解】解:∵()220ax b x c +-+>,∴22ax bx c x ++>,将不等式转化为两个函数:2y ax bx c =++与2y x =的交点问题,由图可知:点()()1,2,3,6在抛物线2y ax bx c =++,又∵()()1,2,3,6满足直线2y x =的解析式,∴两个函数的交点坐标为:()()1,2,3,6,由图象可知:当1x <或3x >时,22ax bx c x ++>,∴不等式()220ax b x c +-+>的解集是1x <或3x >;故答案为:1x <或3x >.【点睛】本题考查图象法求不等式的解集.解题的关键是将不等式转化为二个函数图象交点的问题,利用数形结合的思想进行求解.18.5【分析】(1)仿照例题得出()2252142104m m m ⎛⎫-+---≥ ⎪⎝⎭,进而根据二次函数的性质即可求解.(2)令2x y t -=,则2x t y =+,将2x t y =+代入,得()()2222221t y t y y y +-++=,根据题意得出222Δ43640+200b ac t t =-=-≥,进而根据二次函数的性质即可求解.【详解】解:(1)∵关于x 的方程2252214x mx x m m -++-=,即22522104x mx x m m -++--=有实数根,∴240b ac ∆=-≥,1,21a b m ==-+,25214c m m =--,即()2252142104m m m ⎛⎫-+---≥ ⎪⎝⎭答案第20页,共28页∴2540m m +-≥设函数()245f m m m =-++当()0f m ≥时,15m -≤≤综上max 5m =,故答案为:5.(2)令2x y t -=,则2x t y =+,将2x t y =+代入,()()2222221t y t y y y +-++=整理得2256210y ty t ++-=,该方程有实数根,∴222Δ43640+200b ac t t =-=-≥∴t ≤≤t即2x y -【点睛】本题考查了一元二次方程根的判别式,二次函数的性质,熟练掌握二次函数的性质是解题的关键.19.(1)m =1(2)二次函数22y x x =+-的图象与x 轴有两个交点,理由见解析.【分析】(1)把P (2,4)代入y =x 2+mx +m 2−3即可求得m 的值;(2)首先求出Δ=b 2-4ac 的值,进而得出答案.【详解】(1)解:∵二次函数y =x 2+mx +m 2−3图象经过点P (2,4),∴4=4+2m +m 2−3,即m 2+2m −3=0,解得:m 1=1,m 2=−3,又∵m >0,∴m =1;(2)解:由(1)知二次函数y =x 2+x −2,∵Δ=b 2−4ac =12+8=9>0,∴二次函数y =x 2+x −2的图象与x 轴有两个交点.【点睛】此题主要考查了抛物线与x 轴的交点以及一元二次方程的解法,得出△的值是解题关键.20.(1)2m =-,2b =;(2)不等式2x mx +>x b -+的解集为1x <-或2x >;(3)点M 的横坐标M x 的取值范围是:12M x -≤<或3M x =.【分析】(1)把A (2,0)分别代入两个解析式,即可求得m 和b 的值;(2)解方程222x x x -=-+求得点B 的坐标为(-1,3),数形结合即可求解;(3)画出图形,利用数形结合思想求解即可.【详解】解:(1)∵点A (2,0)同时在2y x mx =+与y x b =-+上,∴2022m =+,02b =-+,解得:2m =-,2b =;(2)由(1)得抛物线的解析式为22y x x =-,直线的解析式为2y x =-+,解方程222x x x -=-+,得:1221x x ==-,.∴点B 的横坐标为1-,纵坐标为23y x =-+=,∴点B 的坐标为(-1,3),观察图形知,当1x <-或2x >时,抛物线在直线的上方,答案第22页,共28页∴不等式2x mx +>x b -+的解集为1x <-或2x >;(3)如图,设A 、B 向左移3个单位得到A 1、B 1,∵点A (2,0),点B (-1,3),∴点A 1(-1,0),点B 1(-4,3),∴A A 1=BB 1=3,且A A 1∥BB 1,即MN 为A A 1、BB 1相互平行的线段,对于抛物线()22211y x x x =-=--,∴顶点为(1,-1),如图,当点M 在线段AB 上时,线段MN 与抛物线22y x x =-只有一个公共点,此时12M x -≤<,当线段MN 经过抛物线的顶点(1,-1)时,线段MN 与抛物线22y x x =-也只有一个公共点,此时点M 1的纵坐标为-1,则12M x -=-+,解得3M x =,综上,点M 的横坐标M x 的取值范围是:12M x -≤<或3M x =..【点睛】本题考查了二次函数的图象与性质;能够画出图形,结合函数图象,运用二次函数的性质求解是关键.21.(1)223y x x =-++和23y x =-+(2)0x <或4x >(3)14n ≤≤【分析】(1)将点A 的坐标代入23y x mx =-++,2y x b =-+求出m 、b 的值即可;(2)求出点B 的坐标,根据图象得出不等式的解集即可;(3)求出点P 的坐标为1,42⎛⎫- ⎪⎝⎭,直线AB 与抛物线对称轴的交点为()1,1,结合图象即可得出答案.【详解】(1)解:将点()4,5A -代入23y x mx =-++得:25443m -=-++,解得:2m =,将点()4,5A -代入2y x b =-+得:524b -=-⨯+,解得:3b =,∴抛物线和直线的解析式分别为223y x x =-++和23y x =-+.(2)解:联立22323y x x y x ⎧=-++⎨=-+⎩,解得:1103x y =⎧⎨=⎩,2145x y =⎧⎨=-⎩,∴()0,3B ,∴根据图象可知,不等式232x mx x b -++<-+的解集为0x <或>4x ;(3)解:把1,2P t ⎛⎫- ⎪⎝⎭代入23y x =-+得:4t =,∴点P 的坐标为1,42⎛⎫- ⎪⎝⎭,∵抛物线解析式为()222314y x x x =-++=--+,∴抛物线的顶点坐标为()1,4,对称轴为直线1x =,把1x =代入23y x =-+得:1y =,∴直线AB 与抛物线对称轴的交点为()1,1,根据图象可知,当直线PN 与图像G 有公共点时,14n ≤≤.答案第24页,共28页【点睛】本题主要考查了求二次函数解析式,一次函数解析式,一次函数与二次函数的交点问题,解题的关键是数形结合,熟练掌握待定系数法,以及求出两个函数解析式和交点坐标.22.(1)见解析(2)0a =或1a =-或1a =或2a =-【分析】(1)分12a =-与12a ≠-两种情况讨论论证即可;(2)当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,得2(42)(96)440a x a x a ++--+=,从而有4421a x a -=+或12x =-,根据整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,从而有211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解之即可.【详解】(1)解:当12a =-时,420a +=,函数2(42)(96)44y a x a x a =++--+为一次函数126y x =+,此时,令0y =,则1260x +=,解得12x =-,∴一次函数126y x =+与x 轴的交点为102⎛⎫- ⎪⎝⎭;当12a ≠-时,420a +≠,函数2(42)(96)44y a x a x a =++--+为二次函数,∵2(42)(96)44y a x a x a =++--+,∴()2(96)(42)444a a a ∆=+---+228110836643232a a a a =-++--214049100a a -+=。

二次函数专题练习(word版

二次函数专题练习(word版

二次函数专题练习(Wgd 版一、初三数学二次函数易错题压轴题(难)1.如图1,抛物线C :y = X 2经过变换可得到抛物线C] :x =qx(x —勺),G 与X 轴的正 半轴交于点A ,且其对称轴分别交抛物线C 、Cl 于点B∣、卩,此时四边形O B 1A 1D 1恰为 正方形;按上述类似方法,如图2,抛物线C l ιy l =πl x(x-b l )经过变换可得到抛物线 C 2'.y 2=a 2x(x-b 2), C?与X 轴的正半轴交于点儿,且对称轴分别交抛物线G 、G 于 点B2、D It 此时四边形OB 2A 2D 2也恰为正方形:按上述类似方法,如图3,可得到抛物 线G :)'3 =弔兀(/一仇)与正方形O 尽九2,请探究以下问题:(1) 填空:= __________________ , b ∖= ______________ :(2) 求岀C?与C3的解析式:(3) 按上述类似方法,可得到抛物线C n '.y ll =a l ,x(x-b tl )与正方形O B n AnD II (∕z≥l). ①请用含n 的代数式直接表示出C n 的解析式;②当X 取任意不为O 的实数时,试比较北阴与Now 的函数值的大小关系,并说明理由•对 一 2x (〃 ≥ 1),②)‘2018>,2019 ・【解析】【分析】(1) 求与X 轴交点金坐标,根据正方形对角线性质表示出址的坐标,代入对应的解析式 即可求出对应的bj 的值,写出6的坐标,代入内的解析式中可求得6的值;(2) 求与X 轴交点金坐标,根据正方形对角线性质表示岀B?的坐标,代入对应的解析式 即可求岀对应的b2的值,写出D2的坐标,代入他的解析式中可求得Q2的值,写出抛物线 C2的解析式;再利用相同的方法求抛物线C3的解析式;(3) ①根据图形变换后二次项系数不变得出a n =a.=l,由弘坐标(1, 1) . &坐标(3, 3)、&坐标(7, 7)得弘坐标(2n -l, 2π-l),则亦2 (2n -l) =2π*1-2 (n≥l),写出抛物 线G 解析式・ 1 2x3" Z O②根据规律得到抛物线GoiS和抛物线C2Oie的解析式,用求差法比较出V2015与Xzoie的函数值的大小.【详解】解:(1) yf=O 时,GLX (x-bι)二0,×ι=0> ×2=b l9:.Al (bn 0),由正方形OBIA l D I得:OA I=Bi.Dι=b lt,b l b x h l b i∕∙βι ( —, -------------- — ) , DI (—, ),2 2 2 2I&在抛物线C上,则S,2 2解得:b1=0 (不符合题意),b1=2,:.DI (1, -1),把Dl (1» -1)代入yι=αιx (x-bι)中得:-l=-ai»故答案为1,2:(2)当比=0时,有a2x(x-b2) = 0, 解得X = $或X = O ,・•・4 (妇0)・由正方形OB2A2D2,得B2D2=OA2=b29T b ( b•••民在抛物线G上,.∙.今=今|今一2 解得”2 =4或b2=0 (不合舍去),.∙.Z)2(2,-2)∙∙∙ D2在抛物线C?上,.•.-2 = 26(2-4).解得a2=^.∙∙∙ C2的解析式是力=丄X(X— 4),即比=-X2-2X .2 2 同理,当儿=0时,有α∕(x-E) = 0, 解得x = b5,或X = 0..∙∙4(⅛,o).由正方形OB.A.D.9得BQ=O入=儿呵箸),啥勺.•・•侏在抛物线C?上,.⅛=I[⅛Y-2A.…2 2[ 2 ) 2解得4 = 12或E=O (不合舍去),.∙. A (6,-6) ∙∙∙Q在抛物线°3上,.∙.-6 = 6α3(6-12).解得佝=丄.6・・G的解析式是儿=τ"x(x-12)9 BP y3= ~χ— 2兀・6 6(3)解:①C”的解析式是Λ=^‰-X2-2X(Π≥1).②由①可得 >'2018 = ° X ;(H6 F 一2x,>f2019 = ω X ^2017X2-2X.当XHo 时,)‘2018 —『2019・•〉‘2018>)‘2019 ・【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、左理和二次函数的知识,并注总挖掘题目中的一些隐含条件•就此题而言:①求岀抛物线与X轴交点坐标电尸0代入汁算,把函数问题转化为方程问题:② 利用正方形对角线相等且垂直平分表示出对应弘、B2. B i. B n的坐标;③根据规律之间得到解析式是关键・已知A(70),C(0,3).(1)求此抛物线的关系式:(2)设点P是线段BC上方的抛物线上一动点,过点P作y轴的平行线,交线段BC于点D,当的而积最大时,求点D的坐标;(3)点M是抛物线上的一动点,当(2)中A BCP的而积最大时,请直接写出使ZPDM= 45。

人教数学 二次函数的专项 培优练习题附详细答案

人教数学 二次函数的专项 培优练习题附详细答案

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC .(1)求抛物线的解析式;(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253). 【解析】试题分析: (1)利用待定系数法求二次函数的解析式;(2)设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94n+3),则D (n ,﹣34n+3),G (0,﹣34n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:(1)由OC=3OA ,有C (0,3),将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, 故抛物线的解析式为:y=﹣234x +94x+3; (2)如图2,设P (m ,﹣34m 2+94m+3),△PFD 的周长为L , ∵直线BC 经过B (4,0),C (0,3),设直线BC 的解析式为:y=kx+b ,则403k b b +=⎧⎨=⎩ 解得:343k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为:y=﹣34x+3, 则D (m ,﹣334m +),PD=﹣2334m m +, ∵PE ⊥x 轴,PE ∥OC ,∴∠BDE=∠BCO ,∵∠BDE=∠PDF ,∴∠PDF=∠BCO ,∵∠PFD=∠BOC=90°,∴△PFD ∽△BOC , ∴=PED PD BOC BC的周长的周长, 由(1)得:OC=3,OB=4,BC=5,故△BOC 的周长=12,∴2334125m m L -+=, 即L=﹣95(m ﹣2)2+365,∴当m=2时,L 最大=365; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3, 当点Q 落在y 轴上时,四边形CDPQ 是菱形,理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD , 当点Q 落在y 轴上时,CQ ∥PD ,∴∠PCQ=∠CPD ,∴∠PCD=∠CPD ,∴CD=PD ,∴CD=DP=PQ=QC ,∴四边形CDPQ 是菱形,过D 作DG ⊥y 轴于点G ,设P (n ,﹣234n +94n+3),则D (n ,﹣34n+3),G (0,﹣334n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣34n+3)﹣3]2+n 2=22516n , 而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34n+3)|=|﹣234n +3n|, ∵PD=CD ,∴﹣235344n n n +=①, ﹣235344n n n +=-②, 解方程①得:n=73或0(不符合条件,舍去), 解方程②得:n=173或0(不符合条件,舍去), 当n=73时,P (73,256),如图3,当n=173时,P (173,﹣253),如图4,综上所述,存在这样的Q点,使得四边形CDPQ是菱形,此时点P的坐标为(73,256)或(173,﹣253).点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.2.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【答案】(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=94;②P(2,﹣3)或(22﹣2).【解析】【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3;(2)设BC 的解析式为y=kx+b ,将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n=﹣(n ﹣32)2+94, 当n=32时,PM 最大=94; ②当PM=PC 时,(﹣n 2+3n )2=n 2+(n 2﹣2n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2=2,n 2﹣2n ﹣3=-3,P (2,-3);当PM=MC 时,(﹣n 2+3n )2=n 2+(n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2(不符合题意,舍),n 3,n 2﹣2n ﹣,P (,综上所述:P (2,﹣3)或(,2﹣).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.3.如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F 位于直线AD 的下方,请问线段EF 是否有最大值?若有,求出最大值并求出点E 的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】(1)抛物线的解析式为y=13x2+23x﹣1;(2)4912,(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).【解析】【分析】(1)利用待定系数法确定函数关系式;(2)由函数图象上点的坐标特征:可设点E的坐标为(m,m+3),点F的坐标为(m,1 3m2+23m﹣1),由此得到EF=﹣13m2+13m+4,根据二次函数最值的求法解答即可;(3)分三种情形①如图1中,当EG为菱形对角线时.②如图2、3中,当EC为菱形的对角线时,③如图4中,当ED为菱形的对角线时,分别求解即可.【详解】解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=13,∴抛物线的解析式为y=13x2+23x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,13m2+23m﹣1)∴y=(m+3)﹣( 13m2+23m﹣1)=﹣13m2+13m+4即y=-13(m﹣12) 2+4912,此时点E的坐标为(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG 垂直平分CD∴点E 的纵坐标y =132-+=1, 将y =1带入y =x +3,得x =﹣2.∵EG 关于y 轴对称,∴点G 的坐标为(2,1);②如图2,当四边形CDEG 为菱形时,以点D 为圆心,DC 的长为半径作圆,交AD 于点E ,可得DC =DE ,构造菱形CDEG设点E 的坐标为(n ,n +3),点D 的坐标为(0,3)∴DE =22(33)n n ++-=22n∵DE =DC =4,∴22n =4,解得n 1=﹣22,n 2=22.∴点E 的坐标为(﹣22,﹣22+3)或(22,22+3)将点E 向下平移4个单位长度可得点G ,点G 的坐标为(﹣22,﹣22﹣1)(如图2)或(22,22﹣1)(如图3)③如图4,“四边形CDGE 为菱形时,以点C 为圆心,以CD 的长为半径作圆,交直线AD 于点E ,设点E 的坐标为(k ,k +3),点C 的坐标为(0,﹣1).∴EC =22(0)(31)k k -+++=22816k k ++.∵EC =CD =4,∴2k 2+8k +16=16,解得k 1=0(舍去),k 2=﹣4.∴点E 的坐标为(﹣4,﹣1)将点E 上移1个单位长度得点G .∴点G 的坐标为(﹣4,3).综上所述,点G 的坐标为(2,1),(﹣22,﹣22﹣1),(22,22﹣1),(﹣4,3).【点睛】本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.4.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C (0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是线段EF上一动点,M(m,0)是x 轴一个动点,若∠MNC=90°,请求出m的取值范围.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(1,2)或(2,1)或(3﹣2,23)55 4m-≤≤【解析】【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,再设P(t,3﹣t),即可得D(t,﹣t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n﹣32)2﹣54,然后根据n的取值得到最小值.【详解】解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),∴103b c c --+=⎧⎨=⎩,解得b =2,c =3. 故该抛物线解析式为:y =﹣x 2+2x +3.(2)令﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,则330b k b ''=⎧⎨+=⎩, 解得:k=-1,b’=3故直线BC 的解析式为y =﹣x +3;∴设P (t ,3﹣t ),∴D (t ,﹣t 2+2t +3),∴PD =(﹣t 2+2t +3)﹣(3﹣t )=﹣t 2+3t ,∵OB =OC =3,∴△BOC 是等腰直角三角形,∴∠OCB =45°,当CD =PC 时,则∠CPD =∠CDP ,∵PD ∥y 轴,∴∠CPD =∠OCB =45°,∴∠CDP =45°,∴∠PCD =90°,∴直线CD 的解析式为y =x +3,解2323y x y x x =+⎧⎨=-++⎩得03x y =⎧⎨=⎩或14x y =⎧⎨=⎩∴D (1,4),此时P (1,2);当CD =PD 时,则∠DCP =∠CPD =45°,∴∠CDP =90°,∴CD ∥x 轴,∴D 点的纵坐标为3,代入y =﹣x 2+2x +3得,3=﹣x 2+2x +3,解得x =0或x =2,此时P (2,1);当PC =PD 时,∵PC t , ∴=﹣t 2+3t ,解得t =0或t =3,此时P (3);综上,当△CDP 为等腰三角形时,点P 的坐标为(1,2)或(2,1)或(3﹣2,2) (3)如图2,由(1)y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (2m ,32), ∵∠MNC =90°, ∴NQ =12CM , ∴4NQ 2=CM 2, ∵NQ 2=(1﹣2m )2+(n ﹣32)2, ∴4[(1﹣2m )2+(n ﹣32)2]=m 2+9, 整理得,m =(n ﹣32)2﹣54, ∵0≤n ≤4,当n =32时,m 最小值=﹣54,n =4时,m =5, 综上,m 的取值范围为:﹣54≤m ≤5.【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.5.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=()22AM [11](m 0)=--+-AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.抛物线的解析式为2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+.当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=()22[11](0)AM m =--+-分三种情况考虑:①当90AMC ∠=时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-,∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,列出关于m 的方程.6.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】 (1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩,解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4;(2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a . 又∵PE=3PF , ∴PC PBPF PE=. ∴∠FPC=∠EPB . ∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a , ∴OF=20﹣3a . ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去). ∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.7.如图,已知A (﹣2,0),B (4,0),抛物线y=ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y=﹣12x ﹣1交于点C . (1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.【答案】(1)抛物线解析式为:y=211184x x --,抛物线对称轴为直线x=1;(2)存在P 点坐标为(1,﹣12);(3)N 点坐标为(4,﹣3)或(2,﹣1) 【解析】分析:(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC+PO 最小即可;(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N 坐标,表示点M 坐标代入抛物线解析式即可.详解:(1)把A (-2,0),B (4,0)代入抛物线y=ax 2+bx-1,得042101641a b a b --⎧⎨+-⎩==解得1814a b ⎧⎪⎪⎨⎪-⎪⎩==∴抛物线解析式为:y=18x2−14x−1∴抛物线对称轴为直线x=-141228ba-=-⨯=1(2)存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-12∴y=-12x则P点坐标为(1,-12)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,-12a-1)由△EDN∽△OAC∴ED=2a∴点D 坐标为(0,-52a−1) ∵N 为DM 中点∴点M 坐标为(2a ,32a−1) 把M 代入y=18x 2−14x−1,解得 a=4则N 点坐标为(4,-3)当△AOC ∽△CNM 时,∠CAO=∠NCM∴CM ∥AB 则点C 关于直线x=1的对称点C′即为点N 由(2)N (2,-1)∴N 点坐标为(4,-3)或(2,-1)点睛:本题为代数几何综合题,考查了待定系数、两点之间线段最短的数学模型构造、三角形相似.解答时,应用了数形结合和分类讨论的数学思想.8.如图,在平面直角坐标系中,已知点B 的坐标为()1,0-,且4OA OC OB ==,抛物线()20y ax bx c a =++≠图象经过,,A B C 三点.(1)求,A C 两点的坐标; (2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD AC ⊥于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.【答案】解:(1)点A 、C 的坐标分别为(4,0)、(0,﹣4);;(2)抛物线的表达式为:234y x x =﹣﹣ ; (3)PD 有最大值,当x =2时,其最大值为2,此时点P (2,﹣6). 【解析】 【分析】(1)OA =OC =4OB =4,即可求解;(2)抛物线的表达式为:234y x x =a (x+1)(x-4)=a(﹣﹣) ,即可求解; (3)224342--++=()PD x x x ,即可求解. 【详解】解:(1)OA =OC =4OB =4,故点A 、C 的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:234y x x =a (x+1)(x-4)=a(﹣﹣), 即﹣4a =﹣4,解得:a =1,故抛物线的表达式为:234y x x --= ;(3)直线CA 过点C ,设其函数表达式为:4y kx -=, 将点A 坐标代入上式并解得:k =1, 故直线CA 的表达式为:y =x ﹣4, 过点P 作y 轴的平行线交AC 于点H ,∵OA =OC =4,45OAC OCA ∴∠∠︒== ,∵//PH y 轴,45PHD OCA ∴∠∠︒==,设点234P x x x --(,),则点H (x ,x ﹣4), 22243422222--+++=()=-PD x x x x x∵22-<0,∴PD 有最大值,当x =2时,其最大值为22 此时点P (2,﹣6). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图象的面积计算等,其中(3),用函数关系表示PD ,是本题解题的关键9.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.【答案】(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m 22,1,2. 【解析】分析:(1)根据待定系数法,可得函数解析式;(2)根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案; (3)根据等腰三角形的定义,可得关于m 的方程,根据解方程,可得答案. 详解:(1)将A (1,0),B (3,0)代入函数解析式,得309330a b a b ++⎧⎨++⎩==, 解得14a b ⎧⎨-⎩==,这个二次函数的表达式是y=x 2-4x+3; (2)当x=0时,y=3,即点C (0,3),设BC 的表达式为y=kx+b ,将点B (3,0)点C (0,3)代入函数解析式,得30k b b +⎧⎨⎩==, 解这个方程组,得13k b -⎧⎨⎩== 直线BC 的解析是为y=-x+3, 过点P 作PE ∥y 轴,交直线BC于点E(t,-t+3),PE=-t+3-(t2-4t+3)=-t2+3t,∴S△BCP=S△BPE+S CPE=12(-t2+3t)×3=-32(t-32)2+278,∵-32<0,∴当t=32时,S△BCP最大=278.(3)M(m,-m+3),N(m,m2-4m+3)MN=m2-3m,BM=2|m-3|,当MN=BM时,①m2-3m=2(m-3),解得m=2,②m2-3m=-2(m-3),解得m=-2当BN=MN时,∠NBM=∠BMN=45°,m2-4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,-(m2-4m+3)=-m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m的值为2,-2,1,2.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m的方程,要分类讨论,以防遗漏.10.一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.【答案】(1)点C(2,);(2)①y=x2-x;②y=-x2+2x+.【解析】试题分析:(1)求得二次函数y=ax2-4ax+c对称轴为直线x=2,把x=2代入y=x求得y=,即可得点C的坐标;(2)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax2-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A 点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax2-4ax+c即可求得函数表达式.试题解析:(1)y=ax2-4ax+c=a(x-2)2-4a+c.∴二次函数图像的对称轴为直线x =2.当x=2时,y=x=,∴C(2,).(2)①∵点D与点C关于x轴对称,∴D(2,-),∴CD=3.设A(m,m)(m<2),由S△ACD=3,得×3×(2-m)=3,解得m=0,∴A(0,0).由A(0,0)、 D(2,-)得解得a=,c=0.∴y=x2-x.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,AC==(2-m),∵CD=AC,∴CD=(2-m).由S△ACD=10得×(2-m)2=10,解得m=-2或m=6(舍去),∴m=-2.∴A(-2,-),CD=5.若a>0,则点D在点C下方,∴D(2,-),由A(-2,-)、D(2,-)得解得∴y=x2-x-3.若a<0,则点D在点C上方,∴D(2,),由A(-2,-)、D(2,)得解得∴y=-x2+2x+.考点:二次函数与一次函数的综合题.。

人教中考数学复习二次函数专项综合练及详细答案

人教中考数学复习二次函数专项综合练及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题)1.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题2.如图1,对称轴为直线x=1的抛物线y=1 2x2+bx+c,与x轴交于A、B两点(点A在点B的左侧),且点A坐标为(-1,0).又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.(1)求点B 的坐标和抛物线的表达式;(2)当AE:EP=1:4 时,求点E 的坐标;(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到OC ′,旋转角为α(0°<α<90°),连接C ′D、C′B,求C ′B+23C′D 的最小值.【答案】(1)B(3,0);抛物线的表达式为:y=12x2-x-32;(2)E(1,6);(3)C′B+23C′D4103【解析】试题分析:(1)由抛物线的对称轴和过点A,即可得到抛物线的解析式,令y=0,解方程可得B的坐标;(2)过点P作PF⊥x轴,垂足为F.由平行线分线段弄成比例定理可得AEAP=AGAF=EGPF=15,从而求出E的坐标;(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,得到D(0,3).如图,取点M(0,43),连接MC′、BM.则可求出OM,BM的长,得到△MOC′∽△C′OD.进而得到MC′=23C′D,由C′B+23C′D=C′B+MC′≥BF可得到结论.试题解析:解:(1)∵抛物线y=12x2+bx+c的对称轴为直线x=1,∴-122b=1,∴b=-1.∵抛物线过点A(-1,0),∴12-b+c=0,解得:c=-32,即:抛物线的表达式为:y=12x2-x-32.令y=0,则12x2-x-32=0,解得:x1=-1,x2=3,即B(3,0);(2)过点P作PF⊥x轴,垂足为F.∵EG∥PF,AE:EP=1:4,∴AEAP =AGAF=EGPF=15.又∵AG=2,∴AF=10,∴F(9,0).当x=9时,y=30,即P(9,30),PF=30,∴EG=6,∴E(1,6).(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,则D(0,3).∵原点O与点C关于该对称轴成轴对称,∴EG=6,∴C(2,0),∴OC′=OC=2.如图,取点M(0,43),连接MC′、BM.则OM=43,BM=2243()3+=97.∵423'23OMOC==,'23OCOD=,且∠DOC′=∠C′OD,∴△MOC′∽△C′OD.∴'2'3MCC D=,∴MC′=23C′D,∴C′B+23C′D=C′B+MC′≥BM=4103,∴C′B+23C′D的最小值为4103.点睛:本题是二次函数的综合题,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的性质和判定,求得AF的长是解答问题(2)的关键;和差倍分的转化是解答问题(3)的关键.3.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:2y mx2mx3m=--(m<0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值. 【答案】(1)A (,0)、B (3,0).(2)存在.S △PBC 最大值为2716(3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】 【分析】(1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值. 【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=. ∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--.设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+().∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -), ∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+. ∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+, 解得:12m =-,22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+, 解得:1m 1=-,2m 1=(舍去) . 综上所述,2m 2=-或1m =-时,△BDM 为直角三角形.4.如图,在平面直角坐标系中,抛物线y=ax 2+bx ﹣3(a≠0)与x 轴交于点A (﹣2,0)、B (4,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使S △CBK :S △PBQ =5:2,求K 点坐标.【答案】(1)y=38x 2﹣34x ﹣3 (2)运动1秒使△PBQ 的面积最大,最大面积是910(3)K 1(1,﹣278),K 2(3,﹣158)【解析】 【详解】试题分析:(1)把点A 、B 的坐标分别代入抛物线解析式,列出关于系数a 、b 的解析式,通过解方程组求得它们的值;(2)设运动时间为t 秒.利用三角形的面积公式列出S △PBQ 与t 的函数关系式S △PBQ =﹣910(t ﹣1)2+910.利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC 的解析式为y=34x ﹣3.由二次函数图象上点的坐标特征可设点K 的坐标为(m ,38m 2﹣34m ﹣3).如图2,过点K 作KE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △CBK =94.则根据图形得到:S △CBK =S △CEK +S △BEK =12EK•m+12•EK•(4﹣m ),把相关线段的长度代入推知:﹣34m 2+3m=94.易求得K 1(1,﹣278),K 2(3,﹣158).解:(1)把点A (﹣2,0)、B (4,0)分别代入y=ax 2+bx ﹣3(a≠0),得423016430a b a b --=⎧⎨+-=⎩, 解得3834a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以该抛物线的解析式为:y=38x 2﹣34x ﹣3;(2)设运动时间为t 秒,则AP=3t ,BQ=t . ∴PB=6﹣3t .由题意得,点C 的坐标为(0,﹣3). 在Rt △BOC 中,BC=2234+=5. 如图1,过点Q 作QH ⊥AB 于点H .∴QH ∥CO , ∴△BHQ ∽△BOC , ∴HB OC BGBC=,即Hb 35t=,∴HQ=35t.∴S△PBQ=1 2PB•HQ=12(6﹣3t)•35t=﹣910t2+95t=﹣910(t﹣1)2+910.当△PBQ存在时,0<t<2∴当t=1时,S△PBQ最大=910.答:运动1秒使△PBQ的面积最大,最大面积是910;(3)设直线BC的解析式为y=kx+c(k≠0).把B(4,0),C(0,﹣3)代入,得403k cc+=⎧⎨=-⎩,解得3k4c3⎧=⎪⎨⎪=-⎩,∴直线BC的解析式为y=34x﹣3.∵点K在抛物线上.∴设点K的坐标为(m,38m2﹣34m﹣3).如图2,过点K作KE∥y轴,交BC于点E.则点E的坐标为(m,34m﹣3).∴EK=34m﹣3﹣(38m2﹣34m﹣3)=﹣38m2+32m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=910.∴S△CBK=94.S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m)=12×4•EK=2(﹣38m2+32m)=﹣34m2+3m.即:﹣34m2+3m=94.解得 m1=1,m2=3.∴K1(1,﹣278),K2(3,﹣158).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.5.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D(31524,);②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:309330a ba b-+⎧⎨++⎩==,解得:12ab-⎧⎨⎩==,∴抛物线的表达式为y=-x2+2x+3.(2)(I)当点P的横坐标为-12时,点Q的横坐标为72,∴此时点P的坐标为(-12,74),点Q的坐标为(72,-94).设直线PQ的表达式为y=mx+n,将P(-12,74)、Q(72,-94)代入y=mx+n,得:17247924m nm n⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154mn-⎧⎪⎨⎪⎩==,∴直线PQ的表达式为y=-x+54.如图②,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8. ∵-2<0,∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3), ∴DE=-x 2+2x+3-[-2(t+1)x+t 2+4t+3]=-x 2+2(t+2)x-t 2-4t ,∴S △DPQ =12DE•(x Q -x P )=-2x 2+4(t+2)x-2t 2-8t=-2[x-(t+2)]2+8. ∵-2<0,∴当x=t+2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I )利用三角形的面积公式找出S △DPQ =-2x 2+6x+72;(II )利用三角形的面积公式找出S △DPQ =-2x 2+4(t+2)x-2t 2-8t .6.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得:4b+c-16=0,b+c-1="3" ,解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+.y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4).(2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ).三角形POF 的面积为:1/2×4×|n|= 2|n|,三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20,所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0)又n=-2m +4m ,所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0)故所求m 、n 的值分别为 5,-5.7.如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m .(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s 时,足球离地面最高,最大高度是4.5m ;(2)能.【解析】试题分析:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t 2+5t+,当t=时,y 最大=4.5;(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5),∴, 解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.8.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.9.如图,在平面直角坐标系中,已知抛物线y=12x2+32x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l 的解析式;(2)若直线x=m (m <0)与该抛物线在第三象限内交于点E ,与直线l 交于点D ,连接OD .当OD ⊥AC 时,求线段DE 的长;(3)取点G (0,﹣1),连接AG ,在第一象限内的抛物线上,是否存在点P ,使∠BAP=∠BCO ﹣∠BAG ?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)y=122x --;(2)DE=3225;(3)存在点P (139,9881),使∠BAP=∠BCO ﹣∠BAG ,理由见解析.【解析】【分析】(1)根据题目中的函数解析式可以求得点A 和点C 的坐标,从而可以求得直线l 的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB ,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.【详解】(1)∵抛物线y=12x 2+32x-2, ∴当y=0时,得x 1=1,x 2=-4,当x=0时,y=-2,∵抛物线y=12x 2+32x-2与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C , ∴点A 的坐标为(-4,0),点B (1,0),点C (0,-2),∵直线l 经过A ,C 两点,设直线l 的函数解析式为y=kx+b , 402k b b -+⎧⎨-⎩==,得122k b ⎧-⎪⎨⎪-⎩==, 即直线l 的函数解析式为y=−12x−2; (2)直线ED 与x 轴交于点F ,如图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°,∴5∴45525=, ∵OD ⊥AC ,OA ⊥OC ,∠OAD=∠CAO ,∴△AOD ∽△ACO , ∴AD AO AO AC =, 即425AD =,得85, ∵EF ⊥x 轴,∠ADC=90°,∴EF ∥OC ,∴△ADF ∽△ACO , ∴AF DF AD AO OC AC==, 解得,AF=165,DF=85, ∴OF=4-165=45, ∴m=-45, 当m=-45时,y=12×(−45)2+32×(-45)-2=-7225, ∴EF=7225, ∴DE=EF-FD=7225−85=3225; (3)存在点P ,使∠BAP=∠BCO-∠BAG ,理由:作GM ⊥AC 于点M ,作PN ⊥x 轴于点N ,如图2所示,∵点A (-4,0),点B (1,0),点C (0,-2),∴OA=4,OB=1,OC=2,∴tan ∠OAC=2142OC OA ==,tan ∠OCB=12OB OC =,5, ∴∠OAC=∠OCB ,∵∠BAP=∠BCO-∠BAG ,∠GAM=∠OAC-∠BAG ,∴∠BAP=∠GAM , ∵点G (0,-1),5OA=4,∴OG=1,GC=1,∴17,••22AC GM CG OA =25?142GM ⨯, 解得,25, ∴22AG GM -222595(17)()55-=, ∴tan ∠GAM=2525995GM AM =, ∴tan ∠PAN=29, 设点P 的坐标为(n ,12n 2+32n-2), ∴AN=4+n ,PN=12n 2+32n-2, ∴2132222 49n n n +-+=, 解得,n 1=139,n 2=-4(舍去),当n=139时,12n2+32n-2=9881,∴点P的坐标为(139,9881),即存在点P(139,9881),使∠BAP=∠BCO-∠BAG.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.10.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,3),点B(3,﹣3),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC 的大小及点C的坐标.【答案】(1)22353y x x=;(2)t>4;(3)∠BOC=60°,C(323【解析】分析:(1)将已知点坐标代入y=ax2+bx,求出a、b的值即可;(2)利用抛物线增减性可解问题;(3)观察图形,点A,点B到直线OC的距离之和小于等于AB;同时用点A(13点B(33详解:(1)把点A(13B(33y=ax2+bx得3=393a ba b⎧+⎪⎨-=+⎪⎩,解得2353ab⎧=⎪⎪⎨⎪=⎪⎩∴y=﹣2235333x x (2)由(1)抛物线开口向下,对称轴为直线x=54, 当x >54时,y 随x 的增大而减小, ∴当t >4时,n <m . (3)如图,设抛物线交x 轴于点F ,分别过点A 、B 作AD ⊥OC 于点D ,BE ⊥OC 于点E∵AC≥AD ,BC≥BE ,∴AD+BE≤AC+BE=AB ,∴当OC ⊥AB 时,点A ,点B 到直线OC 的距离之和最大.∵A (13B (33∴∠AOF=60°,∠BOF=30°,∴∠AOB=90°,∴∠ABO=30°.当OC ⊥AB 时,∠BOC=60°,点C 坐标为(323 点睛:本题考查综合考查用待定系数法求二次函数解析式,抛物线的增减性.解答问题时注意线段最值问题的转化方法.。

人教中考数学复习二次函数专项综合练附详细答案

人教中考数学复习二次函数专项综合练附详细答案

一、二次函数真题与模拟题分类汇编(难题易错题)1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【答案】(1)b=﹣2a,顶点D的坐标为(﹣12,﹣94a);(2)2732748aa--;(3)2≤t<94.【解析】【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【详解】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=-2a,∴y=ax2+ax+b=ax2+ax-2a=a(x+12)2-94a,∴抛物线顶点D 的坐标为(-12,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2, ∴y=2x-2,则2222y x y ax ax a -⎧⎨+-⎩==, 得ax 2+(a-2)x-2a+2=0, ∴(x-1)(ax+2a-2)=0, 解得x=1或x=2a-2, ∴N 点坐标为(2a-2,4a -6),∵a <b ,即a <-2a , ∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为122a x a =-=-, ∴E (-12,-3), ∵M (1,0),N (2a-2,4a -6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =12|( 2a -2)-1|•|-94a -(-3)|=274−3a −278a ,(3)当a=-1时,抛物线的解析式为:y=-x 2-x+2=-(x+12)2+94,由222y x xy x⎧=--+⎨=-⎩,-x2-x+2=-2x,解得:x1=2,x2=-1,∴G(-1,2),∵点G、H关于原点对称,∴H(1,-2),设直线GH平移后的解析式为:y=-2x+t,-x2-x+2=-2x+t,x2-x-2+t=0,△=1-4(t-2)=0,t=94,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<94.【点睛】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.2.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c 的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或>【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t-+=21322t t-+,②如图3,当点P在点M下方时,即t<0或t >3时,PM=223t t--﹣(t﹣3)=23t t-,∴S=12PM×QF=12(23t t-)=21322t t-.综上所述,S=2213(03)22{13(03)22t t tt t t t或-+<<-.考点:二次函数综合题;分类讨论.3.已知,点M为二次函数2()41y x b b=--++图象的顶点,直线5y mx=+分别交x 轴正半轴,y轴于点,A B.(1)如图1,若二次函数图象也经过点,A B,试求出该二次函数解析式,并求出m的值.(2)如图2,点A坐标为(5,0),点M在AOB∆内,若点11(,)4C y,23(,)4D y都在二次函数图象上,试比较1y与2y的大小.【答案】(1)2(2)9y x=--+,1m=-;(2)①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<【解析】【分析】(1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y x y x =+⎧⎨=-+⎩,得45215x y ⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E ,(0,1)F ∵点M 在AOB ∆内,∴405b <<当点,C D 关于抛物线对称轴(直线x b =)对称时,1344b b -=-,∴12b = 且二次函数图象的开口向下,顶点M 在直线41y x =+上 综上:①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y <.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.【答案】(1)y=38x2﹣34x﹣3(2)运动1秒使△PBQ的面积最大,最大面积是9 10(3)K1(1,﹣278),K2(3,﹣158)【解析】【详解】试题分析:(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式S△PBQ=﹣9 10(t﹣1)2+910.利用二次函数的图象性质进行解答;(3)利用待定系数法求得直线BC的解析式为y=34x﹣3.由二次函数图象上点的坐标特征可设点K的坐标为(m,38m2﹣34m﹣3).如图2,过点K作KE∥y轴,交BC于点E.结合已知条件和(2)中的结果求得S△CBK=94.则根据图形得到:S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m),把相关线段的长度代入推知:﹣34m2+3m=94.易求得K1(1,﹣278),K2(3,﹣158).解:(1)把点A (﹣2,0)、B (4,0)分别代入y=ax 2+bx ﹣3(a≠0),得423016430a b a b --=⎧⎨+-=⎩, 解得3834a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以该抛物线的解析式为:y=38x 2﹣34x ﹣3; (2)设运动时间为t 秒,则AP=3t ,BQ=t . ∴PB=6﹣3t .由题意得,点C 的坐标为(0,﹣3).在Rt △BOC 中,BC=2234+=5. 如图1,过点Q 作QH ⊥AB 于点H .∴QH ∥CO , ∴△BHQ ∽△BOC , ∴HB OC BGBC=,即Hb 35t=,∴HQ=35t . ∴S △PBQ =12PB•HQ=12(6﹣3t )•35t=﹣910t 2+95t=﹣910(t ﹣1)2+910.当△PBQ 存在时,0<t <2 ∴当t=1时,S △PBQ 最大=910. 答:运动1秒使△PBQ 的面积最大,最大面积是910; (3)设直线BC 的解析式为y=kx+c (k≠0). 把B (4,0),C (0,﹣3)代入,得403k c c +=⎧⎨=-⎩, 解得3k 4c 3⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为y=34x ﹣3. ∵点K 在抛物线上.∴设点K 的坐标为(m ,38m 2﹣34m ﹣3). 如图2,过点K 作KE ∥y 轴,交BC 于点E .则点E 的坐标为(m ,34m ﹣3).∴EK=34m ﹣3﹣(38m 2﹣34m ﹣3)=﹣38m 2+32m .当△PBQ 的面积最大时,∵S △CBK :S △PBQ =5:2,S △PBQ =910. ∴S △CBK =94. S △CBK =S △CEK +S △BEK =12EK•m+12•EK•(4﹣m ) =12×4•EK =2(﹣38m 2+32m )=﹣34m 2+3m . 即:﹣34m 2+3m=94.解得 m 1=1,m 2=3.∴K 1(1,﹣278),K 2(3,﹣158).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.5.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 30),抛物线的对称轴为x 32)点P 的坐标为3034);(33 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的3,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:22390ax ax a --=,∵a ≠0,∴22390x x --=,解得:x =3x =33∴点A 30),B (330),∴抛物线的对称轴为x 3(2)∵OA 3OC =3,∴tan ∠CAO 3∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =33AO =1,∴点D 的坐标为(0,1). 设点P 的坐标为(3,a ). 依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2.当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 的坐标为(3,0). 当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P 的坐标为(3,﹣4). 综上所述,点P 的坐标为(3,0)或(3,﹣4).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:330m -+=,解得:m =3,∴直线AC 的解析式为33y x =+.设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k -,0),∴AN =13k-+=31k -. 将33y x =+与y =kx +1联立解得:x =3k -,∴点M 的横坐标为3k -.过点M 作MG ⊥x 轴,垂足为G .则AG =33k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG 233k -233k k -,∴11AM AN +323231k k k ---33232k k --3(32(31)k k -3 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.6.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.7.如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C,顶点为D ,已知A (﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c = ∴抛物线解析式为:()214y x =--+, 令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=;在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=;在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++;设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩, ∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J .∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-,∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.8.如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C (0,﹣43),OA=1,OB=4,直线l 过点A ,交y 轴于点D ,交抛物线于点E ,且满足tan ∠OAD=34. (1)求抛物线的解析式;(2)动点P 从点B 出发,沿x 轴正方形以每秒2个单位长度的速度向点A 运动,动点Q 从点A 出发,沿射线AE 以每秒1个单位长度的速度向点E 运动,当点P 运动到点A 时,点Q 也停止运动,设运动时间为t 秒.①在P 、Q 的运动过程中,是否存在某一时刻t ,使得△ADC 与△PQA 相似,若存在,求出t 的值;若不存在,请说明理由.②在P 、Q 的运动过程中,是否存在某一时刻t ,使得△APQ 与△CAQ 的面积之和最大?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)抛物线的解析式为y=21433x x +-;(2)①存在t=10047或t=3534,使得△ADC 与△PQA 相似;②当t=139时,△APQ 与△CAQ 的面积之和最大. 【解析】 分析:(1)应用待定系数法求解析式(2)①分别用t 表示△ADC 、△PQA 各边,应用分类讨论相似三角形比例式,求t 值; ②分别用t 表示△APQ 与△CAQ 的面积之和,讨论最大值.详解:(1)∵OA=1,OB=4,∴A (1,0),B (﹣4,0),设抛物线的解析式为y=a (x+4)(x ﹣1),∵点C (0,﹣43)在抛物线上, ∴﹣4=4(1)3a ⨯⨯-, 解得a=13. ∴抛物线的解析式为y=2114(4)(1)333x x x x +-=+-. (2)存在t ,使得△ADC 与△PQA 相似. 理由:①在Rt △AOC 中,OA=1,OC=43, 则tan ∠ACO=34OA OC =, ∵tan ∠OAD=34, ∴∠OAD=∠ACO , ∵直线l 的解析式为y=3(1)4x -, ∴D (0,﹣34),∵点C(0,﹣43),∴CD=4373412-=,由AC2=OC2+OA2,得AC=53,在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t,由∠PAQ=∠ACD,要使△ADC与△PQA相似,只需AP CDAQ AC=或AP ACAQ CD=,则有7521253tt-=或5523712tt-=,解得t1=10047,t2=3534,∵t1<2.5,t2<2.5,∴存在t=10047或t=3534,使得△ADC与△PQA相似;②存在t,使得△APQ与△CAQ的面积之和最大,理由:作PF⊥AQ于点F,CN⊥AQ于N,在△APF中,PF=AP•sin∠PAF=352)5t-(,在△AOD中,由AD2=OD2+OA2,得AD=54,在△ADC中,由S△ADC=11··22AD CN CD OA=,∴CN=71·7125154CD OAAD⨯==,∴S △AQP +S △AQC =21137313169()[(52)]()2251559135AQ PF CN t t t +=--+=--+ , ∴当t=139时,△APQ 与△CAQ 的面积之和最大. 点睛:本题为代数、几何综合题,考查待定系数法、相似三角形判定、二次函数最值,应用了分类讨论和数形结合思想.9.空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD 的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.【答案】(1)利用旧墙AD 的长为10米.(2)见解析.【解析】【分析】(1)按题意设出AD ,表示AB 构成方程;(2)根据旧墙长度a 和AD 长度表示矩形菜园长和宽,注意分类讨论s 与菜园边长之间的数量关系.【详解】(1)设AD=x 米,则AB=1002x 米 依题意得,(100)2x x -=450 解得x 1=10,x 2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD 的长为10米.(2)设AD=x 米,矩形ABCD 的面积为S 平方米①如果按图一方案围成矩形菜园,依题意得:S=2(100)1(50)125022x x x ---+=,0<x <a∵0<a <50∴x <a <50时,S 随x 的增大而增大当x=a 时,S 最大=50a-12a 2②如按图2方案围成矩形菜园,依题意得S=22(1002)[(25)](25)244x a x a a x =+---+++,a≤x <50+2a 当a <25+4a <50时,即0<a <1003时, 则x=25+4a 时,S 最大=(25+4a )2=21000020016a a ++, 当25+4a ≤a ,即1003≤a <50时,S 随x 的增大而减小 ∴x=a 时,S 最大=(1002)2a a a +-=21502a a -, 综合①②,当0<a <1003时,21000020016a a ++-(21502a a -)=2(3100)16a ->0 21000020016a a ++>21502a a -,此时,按图2方案围成矩形菜园面积最大,最大面积为21000020016a a ++平方米 当1003≤a <50时,两种方案围成的矩形菜园面积最大值相等. ∴当0<a <1003时,围成长和宽均为(25+4a )米的矩形菜园面积最大,最大面积为21000020016a a ++平方米; 当1003≤a <50时,围成长为a 米,宽为(50-2a )米的矩形菜园面积最大,最大面积为(21502a a -)平方米. 【点睛】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.10.一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.【答案】(1)点C(2,);(2)①y=x2-x;②y=-x2+2x+.【解析】试题分析:(1)求得二次函数y=ax2-4ax+c对称轴为直线x=2,把x=2代入y=x求得y=,即可得点C的坐标;(2)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax2-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A 点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax2-4ax+c即可求得函数表达式.试题解析:(1)y=ax2-4ax+c=a(x-2)2-4a+c.∴二次函数图像的对称轴为直线x =2.当x=2时,y=x=,∴C(2,).(2)①∵点D与点C关于x轴对称,∴D(2,-),∴CD=3.设A(m,m)(m<2),由S△ACD=3,得×3×(2-m)=3,解得m=0,∴A(0,0).由A(0,0)、 D(2,-)得解得a=,c=0.∴y=x2-x.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,AC==(2-m),∵CD=AC,∴CD=(2-m).由S△ACD=10得×(2-m)2=10,解得m=-2或m=6(舍去),∴m=-2.∴A(-2,-),CD=5.若a>0,则点D在点C下方,∴D(2,-),由A(-2,-)、D(2,-)得解得∴y=x2-x-3.若a<0,则点D在点C上方,∴D(2,),由A(-2,-)、D(2,)得解得∴y=-x2+2x+.考点:二次函数与一次函数的综合题.。

人教中考数学二轮 二次函数 专项培优含详细答案

人教中考数学二轮 二次函数 专项培优含详细答案

一、二次函数 真题与模拟题分类汇编(难题易错题)1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标; (2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =.【解析】 【分析】(1)先利用对称轴公式x=2a12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值. 【详解】 解:(1)∵2ax 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=. ∵2y ax ax 3=-+人最大值为4, ∴抛物线过点()1,4. 得a 2a 34-+=, 解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -. 易得直线CD 的方程为y x 3=+. 把()P t,0代入,得t 3=-. ∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-.∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.(2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=.当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点.所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.(3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=.()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.2.如图,直线y =-12x-3与x 轴,y 轴分别交于点A ,C ,经过点A ,C 的抛物线y =ax 2+bx ﹣3与x 轴的另一个交点为点B(2,0),点D 是抛物线上一点,过点D 作DE ⊥x 轴于点E ,连接AD ,DC .设点D 的横坐标为m . (1)求抛物线的解析式;(2)当点D 在第三象限,设△DAC 的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;(3)连接BC ,若∠EAD =∠OBC ,请直接写出此时点D 的坐标.【答案】(1)y =14x 2+x ﹣3;(2)S △ADC =﹣34(m+3)2+274;△ADC 的面积最大值为274;此时D(﹣3,﹣154);(3)满足条件的点D 坐标为(﹣4,﹣3)或(8,21). 【解析】 【分析】(1)求出A 坐标,再用待定系数法求解析式;(2)设DE 与AC 的交点为点F.设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3),根据S △ADC =S △ADF +S △DFC 求出解析式,再求最值;(3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC .②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),直线AD′的解析式为y =32x+9,解方程组求出函数图像交点坐标. 【详解】解:(1)在y =﹣12x ﹣3中,当y =0时,x =﹣6, 即点A 的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y =ax 2+bx ﹣3得:366304230a b a b --=⎧⎨+-=⎩, 解得:141a b ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为:y =14x 2+x ﹣3; (2)设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3), 设DE 与AC 的交点为点F.∴DF =﹣12m ﹣3﹣(14m 2+m ﹣3)=﹣14m 2﹣32m , ∴S △ADC =S △ADF +S △DFC=12DF•AE+12•DF•OE =12DF•OA =12×(﹣14m 2﹣32m)×6 =﹣34m 2﹣92m =﹣34(m+3)2+274,∵a =﹣34<0, ∴抛物线开口向下,∴当m =﹣3时,S △ADC 存在最大值274, 又∵当m =﹣3时,14m 2+m ﹣3=﹣154,∴存在点D(﹣3,﹣154),使得△ADC 的面积最大,最大值为274; (3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC . ②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),直线AD′的解析式为y=3 2x+9,由2392134y xy x x⎧=+⎪⎪⎨⎪=+-⎪⎩,解得6xy=-⎧⎨=⎩或821xy=⎧⎨=⎩,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)【点睛】本题属于二次函数综合题,考查了待定系数法,一次函数的应用,二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会构建一次函数解决实际问题,属于中考压轴题..3.已知抛物线2(5)6y x m x m=-+-+-.(1)求证:该抛物线与x轴总有交点;(2)若该抛物线与x轴有一个交点的横坐标大于3且小于5,求m的取值范围;(3)设抛物线2(5)6y x m x m=-+-+-与y轴交于点M,若抛物线与x轴的一个交点关于直线y x=-的对称点恰好是点M,求m的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m==或【解析】【分析】(1)本题需先根据判别式解出无论m为任何实数都不小于零,再判断出物线与x轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m的取值范围,即可得到结果.(3)根据抛物线y=-x2+(5-m)x+6-m,求出与y轴的交点M的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m∆=-=-+-=-≥∴抛物线与x轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:257m m x ()-±-=即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+ ∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0), 它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -), 由题意,可得:6166m m m 或-+=-+=- 56m m ∴==或 【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.4.(10分)(2015•佛山)如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y=﹣x 2+4x 刻画,斜坡可以用一次函数y=x 刻画.(1)请用配方法求二次函数图象的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;(3)连接抛物线的最高点P 与点O 、A 得△POA ,求△POA 的面积;(4)在OA 上方的抛物线上存在一点M (M 与P 不重合),△MOA 的面积等于△POA 的面积.请直接写出点M 的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P 的坐标;(2)联立两解析式,可求出交点A 的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题5.(12分)如图,在平面直角坐标系xOy中,二次函数()的图象与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【答案】(1);(2)E的坐标为(,)、(0,﹣4)、(,);(3),(,).【解析】试题分析:(1)采用待定系数法求得二次函数的解析式;(2)先求得直线BC的解析式为,则可设E(m,),然后分三种情况讨论即可求得;(3)利用△PBD的面积即可求得.试题解析:(1)∵二次函数()的图象与x轴交于A(﹣2,0)、C (8,0)两点,∴,解得:,∴该二次函数的解析式为;(2)由二次函数可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数可知B(0,﹣4),设直线BC的解析式为,∴,解得:,∴直线BC的解析式为,设E(m,),当DC=CE时,,即,解得,(舍去),∴E(,);当DC=DE时,,即,解得,(舍去),∴E(0,﹣4);当EC=DE时,,解得=,∴E(,).综上,存在点E,使得△CDE为等腰三角形,所有符合条件的点E的坐标为(,)、(0,﹣4)、(,);(3)过点P作y轴的平行线交x轴于点F,∵P点的横坐标为m,∴P点的纵坐标为:,∵△PBD的面积===,∴当m=时,△PBD的最大面积为,∴点P的坐标为(,).考点:二次函数综合题.6.课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】(1)2407mm,4807mm;(2)PN=60mm,40PQ mm.【解析】【分析】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm),根据平行得出△APN和△ABC 相似,根据线段的比值得出y的值,然后得出边长;(2)、根据第一题同样的方法得出y与x的函数关系式,然后求出S与x的函数关系式,根据二次函数的性质得出最大值.【详解】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm)∵PN∥BC,∴=,△APN∽△ABC∴=∴=∴=解得 y=∴2y=∴这个矩形零件的两条边长分别为mm ,mm (2)、设PQ=x (mm ),PN=y (mm ),矩形面积为S ,则AE=80-x (mm )..由(1)知= ∴= ∴ y=则S=xy=== ∵∴ S 有最大值∴当x=40时,S 最大=2400(mm 2) 此时,y==60 .∴面积达到这个最大值时矩形零件的两边PQ 、PN 长分别是40 mm ,60 mm .考点:三角形相似的应用7.在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.【答案】(1)A (﹣3,0),C (0,3),D (﹣1,4);(2)E (37-,0);(3)P(2,﹣5)或(1,0).【解析】试题分析:(1)令抛物线解析式中y=0,解关于x 的一元二次方程即可得出点A 、B 的坐标,再令抛物线解析式中x=0求出y 值即可得出点C 坐标,利用配方法将抛物线解析式配方即可找出顶点D 的坐标;(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,由点C 的坐标可找出点C′的坐标,根据点C′、D 的坐标利用待定系数法即可求出直线C′D 的解析式,令其y=0求出x 值,即可得出点E 的坐标;(3)根据点A 、C 的坐标利用待定系数法求出直线AC 的解析式,假设存在,设点F (m ,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A 、F 点的坐标找出点P 的坐标,将其代入抛物线解析式中即可得出关于m 的一元二次方程,解方程求出m 值,再代入点P 坐标中即可得出结论.试题解析:(1)当223y x x =--+中y=0时,有2230x x --+=,解得:1x =﹣3,2x =1,∵A 在B 的左侧,∴A (﹣3,0),B (1,0).当223y x x =--+中x=0时,则y=3,∴C (0,3).∵223y x x =--+=2(1)4x -++,∴顶点D (﹣1,4).(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,如图1所示.∵C (0,3),∴C′(0,﹣3).设直线C′D 的解析式为y=kx+b ,则有:3{4b k b =--+=,解得:7{3k b =-=-,∴直线C′D 的解析式为y=﹣7x ﹣3,当y=﹣7x ﹣3中y=0时,x=37-,∴当△CDE 的周长最小,点E 的坐标为(37-,0). (3)设直线AC 的解析式为y=ax+c ,则有:3{30c a c =-+=,解得:1{3a c ==,∴直线AC 的解析式为y=x+3.假设存在,设点F (m ,m+3),△AFP 为等腰直角三角形分三种情况(如图2所示): ①当∠PAF=90°时,P (m ,﹣m ﹣3),∵点P 在抛物线223y x x =--+上,∴2323m m m --=--+,解得:m 1=﹣3(舍去),m 2=2,此时点P 的坐标为(2,﹣5);②当∠AFP=90°时,P (2m+3,0)∵点P 在抛物线223y x x =--+上,∴20(23)2(23)3m m =-+-++,解得:m 3=﹣3(舍去),m 4=﹣1,此时点P 的坐标为(1,0);③当∠APF=90°时,P (m ,0),∵点P 在抛物线223y x x =--+上,∴2023m m =--+,解得:m 5=﹣3(舍去),m 6=1,此时点P 的坐标为(1,0).综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).考点:二次函数综合题;最值问题;存在型;分类讨论;综合题.8.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N 为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;(3)M1(1132+,0)、N1131);M2(1132+,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可.【详解】(1)∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:203a a cc++=⎧⎨=⎩,解得:13ac=-⎧⎨=⎩,∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,所以点G的坐标为(1,4);(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴33,则点B′的坐标为(m+1,0),点G′的坐标为(13),将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:24043m kk m⎧-+-=⎪⎨-=⎪⎩,解得:114mk=⎧⎨=⎩(舍),2231mk⎧=⎪⎨=⎪⎩,∴k=1;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均为钝角,∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y=﹣1于点H ,则∠QHN=∠OMQ=90°,又∵△AOQ ≌△PQN ,∴OQ=QN ,∠AOQ=∠PQN ,∴∠MOQ=∠HQN ,∴△OQM ≌△QNH (AAS ),∴OM=QH ,即x=﹣x 2+2x+2+1,解得:x=113±(负值舍去), 当x=1132+时,HN=QM=﹣x 2+2x+2=1312-,点M (1132+,0), ∴点N 坐标为(113++131-,﹣1),即(13,﹣1); 或(113+﹣131-,﹣1),即(1,﹣1); 如图3,同理可得△OQM ≌△PNH ,∴OM=PH ,即x=﹣(﹣x 2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,当x=4时,点M 的坐标为(4,0),HN=QM=﹣(﹣x 2+2x+2)=6,∴点N 的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1); 综上点M 1(113+,0)、N 1(13,﹣1);M 2(113+,0)、N 2(1,﹣1);M 3(4,0)、N 3(10,﹣1);M 4(4,0)、N 4(﹣2,﹣1).【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.9.如图,在平面直角坐标系中,已知点B 的坐标为()1,0-,且4OA OC OB ==,抛物线()20y ax bx c a =++≠图象经过,,A B C 三点.(1)求,A C 两点的坐标;(2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD AC ⊥于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.【答案】解:(1)点A 、C 的坐标分别为(4,0)、(0,﹣4);;(2)抛物线的表达式为:234y x x =﹣﹣ ; (3)PD 有最大值,当x =2时,其最大值为2,此时点P (2,﹣6).【解析】【分析】(1)OA =OC =4OB =4,即可求解;(2)抛物线的表达式为:234y x x =a (x+1)(x-4)=a(﹣﹣) ,即可求解; (3)224342--++=()PD x x x ,即可求解. 【详解】 解:(1)OA =OC =4OB =4,故点A 、C 的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:234y x x =a (x+1)(x-4)=a(﹣﹣),即﹣4a =﹣4,解得:a =1,故抛物线的表达式为:234y x x --= ;(3)直线CA 过点C ,设其函数表达式为:4y kx -=,将点A 坐标代入上式并解得:k =1,故直线CA 的表达式为:y =x ﹣4,过点P 作y 轴的平行线交AC 于点H ,∵OA =OC =4,45OAC OCA ∴∠∠︒== ,∵//PH y 轴,45PHD OCA ∴∠∠︒==,设点234P x x x --(,),则点H (x ,x ﹣4), 22243422222--+++=()=-PD x x x x x ∵22- <0,∴PD 有最大值,当x =2时,其最大值为22 此时点P (2,﹣6).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图象的面积计算等,其中(3),用函数关系表示PD ,是本题解题的关键10.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.【答案】(1)抛物线的表达式为:228y x x =-++,直线AB 的表达式为:21y x =-;(2)存在,理由见解析;点P (6,16)-或(4,16)--或(17,2)+或(17,2).【解析】【分析】(1)二次函数表达式为:y=a (x-1)2+9,即可求解;(2)S △DAC =2S △DCM ,则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯,,即可求解;(3)分AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:()219y a x =-+,将点A 的坐标代入上式并解得:1a =-,故抛物线的表达式为:228y x x =-++…①,则点()3,5B ,将点,A B 的坐标代入一次函数表达式并解得:直线AB 的表达式为:21y x =-;(2)存在,理由:二次函数对称轴为:1x =,则点()1,1C ,过点D 作y 轴的平行线交AB 于点H ,设点()2,28D x x x -++,点(),21H x x -, ∵2DAC DCM S S ∆∆=, 则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯, 解得:1x =-或5(舍去5),故点()1,5D -;(3)设点(),0Q m 、点(),P s t ,228t s s =-++,①当AM 是平行四边形的一条边时,点M 向左平移4个单位向下平移16个单位得到A ,同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++,解得:6s =或﹣4,故点()6,16P -或()4,16--;②当AM 是平行四边形的对角线时,由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =± 故点()17,2P 或()17,2;综上,点()6,16P -或()4,16--或()17,2或()17,2.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.。

人教备战中考数学二轮 二次函数 专项培优附详细答案

人教备战中考数学二轮 二次函数 专项培优附详细答案

一、二次函数真题与模拟题分类汇编(难题易错题)1.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【答案】(1)y=﹣x2+2x+3.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(3)y=﹣x+3;P点到直线BC 92,此时点P的坐标为(32,154).【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+3;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+3,∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段=∴P点到直线BC2728⨯=,此时点P的坐标为(32,154).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.2.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D(31524,);②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x 2+6x+72,再利用二次函数的性质即可解决最值问题; (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+4(t+2)x-2t 2-8t ,再利用二次函数的性质即可解决最值问题. 详解:(1)将A (-1,0)、B (3,0)代入y=ax 2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==, ∴抛物线的表达式为y=-x 2+2x+3. (2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72,∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94).设直线PQ 的表达式为y=mx+n , 将P (-12,74)、Q (72,-94)代入y=mx+n ,得:17247924m n m n ⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154m n -⎧⎪⎨⎪⎩==,∴直线PQ 的表达式为y=-x+54. 如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54), ∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8.∴当x=32时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(32,154).(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=12DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.3.如图,抛物线y=ax2+bx(a≠0)过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由;(4)若点M在直线BH上运动,点N在x轴正半轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);(4)52或5.试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P所处象限的特点即可求;(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.试题解析:(1)将A(4,0),B(1,3)代入到y=ax2+bx中,得16403a ba b+=⎧⎨+=⎩,解得14ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+4x.(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.4.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣4,∴n=0﹣(﹣4)=4,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.5.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.6.在平面直角坐标系xOy中(如图).已知抛物线y=﹣12x2+bx+c经过点A(﹣1,0)和点B(0,52),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.【答案】(1)抛物线解析式为y=﹣12x2+2x+52;(2)线段CD的长为2;(3)M点的坐标为(0,72)或(0,﹣72).【解析】【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y=﹣12(x ﹣2)2+92,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,92﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得到关于t的方程,从而解方程可得到CD 的长;(3)P 点坐标为(4,92),D 点坐标为(2,52),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到12•(m+52+2)•2=8当m <0时,利用梯形面积公式得到12•(﹣m+52+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.【详解】(1)把A (﹣1,0)和点B (0,52)代入y=﹣12x 2+bx+c 得 10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩,∴抛物线解析式为y=﹣12x 2+2x+52; (2)∵y=﹣12(x ﹣2)2+92,∴C (2,92),抛物线的对称轴为直线x=2, 如图,设CD=t ,则D (2,92﹣t ), ∵线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处, ∴∠PDC=90°,DP=DC=t ,∴P (2+t ,92﹣t ), 把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得﹣12(2+t )2+2(2+t )+52=92﹣t ,整理得t 2﹣2t=0,解得t 1=0(舍去),t 2=2, ∴线段CD 的长为2;(3)P 点坐标为(4,92),D 点坐标为(2,52),∵抛物线平移,使其顶点C(2,92)移到原点O的位置,∴抛物线向左平移2个单位,向下平移92个单位,而P点(4,92)向左平移2个单位,向下平移92个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,12•(m+52+2)•2=8,解得m=72,此时M点坐标为(0,72);当m<0时,12•(﹣m+52+2)•2=8,解得m=﹣72,此时M点坐标为(0,﹣72);综上所述,M点的坐标为(0,72)或(0,﹣72).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.7.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC 于点D,求△DMH周长的最大值.【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3)【解析】试题分析:(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.试题解析:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想8.复习课中,教师给出关于x的函数(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.【答案】①真,②假,③假,④真,理由和所用的数学方法见解析.【解析】试题分析:根据方程思想,特殊与一般思想,反证思想,分类思想对各结论进行判断.试题解析:①真,②假,③假,④真.理由如下:①将(1,0)代入,得,解得.∴存在函数,其图像经过(1,0)点.∴结论①为真.②举反例如,当时,函数的图象与坐标轴只有两个不同的交点.∴结论②为假.③∵当时,二次函数(k是实数)的对称轴为,∴可举反例如,当时,二次函数为,当时,y随x的增大而减小;当时,y随x的增大而增大.∴结论③为假.④∵当时,二次函数的最值为,∴当时,有最小值,最小值为负;当时,有最大值,最大值为正.∴结论④为真.解决问题时所用的数学方法有方程思想,特殊与一般思想,反证思想,分类思想考点:1.曲线上点的坐标与方程的关系;2.二次函数的性质;3.方程思想、特殊元素法、反证思想和分类思想的应用.9.(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x 轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1);(2)12;(3)t=或t=或t=14.【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t=或t=或t=14.考点:二次函数综合题.10.(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(-1,0),;(2);(3)P的坐标为(1,)或(1,-4).【解析】试题分析:(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD=4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面积的最大值为,而△ACE的面积的最大值为,所以,解得;(3)令,即,解得,,得到D (4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:①若AD是矩形的一条边,②若AD是矩形的一条对角线.试题解析:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直线l经过点A,∴,,∴,令,即,∵CD=4AC,∴点D的横坐标为4,∴,∴,∴直线l的函数表达式为;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面积的最大值为,∵△ACE的面积的最大值为,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴抛物线的对称轴为,设P(1,m),①若AD是矩形的一条边,则Q(-4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,),m =,则P(1,8a),∵四边形APDQ为矩形,∴∠APD=90°,∴,∴,即,∵,∴,∴P2(1,-4).综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,)或(1,-4).考点:二次函数综合题.。

二次函数精练 (3)

二次函数精练 (3)

二次函数综合练习基础训练:1、抛物线y= 21x 2-6x+24的顶点坐标是 ( )A (—6,—6)B (—6,6)C (6,6)D (6,—6) 2、抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:容易看出,()20-,是它与x 轴的一个交点,则它与x 轴的另一个交点的坐标为_________. 3、已知抛物线2y ax bx c =++经过点(1,2)与(1-,4),则a+c 的值是 . 4、抛物线2(0)y ax bx c a =++≠的对称轴是2x =,且经过点(30)P ,.则a b c ++的值为 ( )A.1- B.0 C.1 D.2 5、二次函数2y ax bx c =++图象上部分点的对应值如下表:则使0y <的x 的取值范围为 .题型归纳:1.解析式、待定系数法若()2f x x bx c =++,且()10f =,()30f =,求()1f -的值.变式1:若二次函数()2f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为(0,11),则 ( )A .1,4,11a b c ==-=-B .3,12,11a b c ===C .3,6,11a b c ==-=D .3,12,11a b c ==-=变式2:若()()223,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______.2.图像特征将函数()2361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像.变式1:已知二次函数()2f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则122x x f +⎛⎫= ⎪⎝⎭( ) A .2b a - B .ba- C . c D .244ac b a -变式2:函数()2f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、()1f 的大小关系是 ( )A .()()()110f f f <-<B .()()()011f f f <-<C .()()()101f f f <<-D .()()()101f f f -<<变式3:已知二次函数 f (x ) = a x 2 + bx (a 、b 为常数,且 a ≠ 0),满足条件 f (1 + x ) = f (1-x ),且方程 f (x ) = x 有等根,求 f (x ) 的解析式。

贵州省贵阳清镇北大培文学校人教版高中数学二轮复习函数奇偶性练习(无答案).docx

贵州省贵阳清镇北大培文学校人教版高中数学二轮复习函数奇偶性练习(无答案).docx

专题二函数的奇偶性一、函数奇偶性的本质1、代数:当自变量互为相反数时,函数值的相等与相反的关系。

2、几何:函数图像关于坐标原点或者关于y轴的对称性。

二、函数奇偶性的定义与意义1、定义:若函数的定义域D关于原点对称,若(1)都有/(-X)= -/(X)恒成立,则称y =于(兀)为奇函数;(2)都有f(-x) = f(x)恒成立,则称y = f(x)为偶函数。

三要素:①自变量互为相反数②函数值的关系③ 奇函数或偶函数2、几何意义:(1)奇函数图像关于原点成中心对称,偶函数图像关于y轴对称。

(2)奇函数在对称区间内单调性相同,偶函数在对称区间内单调性相反。

三、几种基本函数的奇偶性1、一次函数(y = Ax + b):当k = 0为偶函数;当/? = 0为奇函数。

2、二次函数(y =股2+bx + c(aH0)):当b = 0为偶函数。

3、反比例函数(y =《):为奇函数X4、双勾函数(y = x + ±(£>0)):奇函数X5、y = x2,\neZ)偶函数;y = x2,t+}(ne Z)奇函数。

6^ y = : 0为奇数时为奇函数;0为偶数时为偶函数。

7> y = sin cox , y = tan 亦奇函数;y = cos cox偶函数。

四、函数奇偶性的运算1、奇+奇二奇偶+偶二偶2、奇X奇二偶偶X偶二偶奇X偶二奇五、函数奇偶性的应用I、定义与意义的应用1、求值与求解析式方法:取兀值一变相反数一代入化简一下结论例1:设/(对为定义域为的奇函数。

当XGfO,+oo)时,/(X)=%2_4%O(1)求 /(-2);(2)求/(兀)解析式。

例2: /(x)为定义域为7?的奇函数。

当(0,4-00)时,/(X)=-2X2+3X+1O求/⑴解析式。

2、求参数取值方法:(1)、利用定义域的对称性(定义域带有参数)2 x例1:若函数f(x) =——-——为奇函数,求实数加的取值(X-1)(x4-77?)例2:若函数/(x) = ln士竺为奇函数,求实数〃的取值。

贵州省贵阳清镇北大培文学校人教版高中数学二轮复习函数单调性练习(无答案).docx

贵州省贵阳清镇北大培文学校人教版高中数学二轮复习函数单调性练习(无答案).docx

专题一函数单调性一、单调性的研究本质1、研究木质:研究函数y = /(x)自变量增大时,函数值的大小变化。

①自变量知勺的大小关系(条件)2、三要素:②函数值/(兀)/(兀2)的大小关系(推理)》=>知二求第三③函数的单调增或单调减(结论)二、函数单调性的定义与意义1、定义:(1) x{<x2e D v f(x l)<f(x2)^单调增nQ 为增区间,QuD。

(2)占兀2)=>单调减=>口为减区间,QuD。

2、几何意义:(1)函数y = f(x)单调递增,图像从左至右逐渐升高。

(2)函数,y = /(x)单调递减,图像从左至右逐渐降低。

函数单调性的儿何意义例1:做出下列函数的图像并写岀单调区间(1) f(x) = |x| (2) f(x) = \2x-4\(3) /(x) = |2x-3| + 3x例2 :做出下列函数的图像并写出单调区间3、最人值与最小值:函数图像上最高点的纵坐标为函数值最人值函数图像上最低点纵坐标为函数值最小值。

三、几种基本函数的单调性一分类讨论,结合图像一次函数二次函数反比例函数双勾函数解析式y = kx+b(k^0)y = ax2 +bx + c(aH0)y = -(k^O)Xmy = xH——(加>0)X图像单调性四、函数单调性的运算1、同性相加,异性相减I + f = f , 1 + 1 = 1; f — I = f , I — f = I 02、正数保序性,负数变序行设y = (1)若Q>0,则y 二妙(x)T; (2)若G<0,贝lj y = cif(x) J- o3、常见的幕运算设/(x)>0 ,则当加>0 时,y = [/(x)rT;当加<0 时,y = [f(x)]m I. 自己举例验证五、函数单调性的应用(I)定义的应用一三要素的应用1、判定与证明单调性①自变量西,吃的大小关系②函数值/(石),/(兀2)的大小关系n③函数的单调增或单调减解析式图像单调性例1:求证f (x ) = -- 在XG (l,+oo )单调递减。

人教版中考第二轮复习专题卷--二次函数

人教版中考第二轮复习专题卷--二次函数

数学中考二轮复习专题卷-二次函数学校:___________姓名:___________班级:___________考号:___________一、选择题1.二次函数2y 2x 13=--+()的图象的顶点坐标是【 】 A .(1,3) B .(1-,3) C .(1,3-)D .(1-,3-)2.下列函数是二次函数的是【 】 A .y 2x 1=+B .y 2x 1=-+C .2y x 2=+D .1y x 22=-3.将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式结果为 ( )A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D . y =(x -1)2+24.二次函数y =-3x 2-6x +5的图像的顶点坐标是A .(-1,2)B .(1,-4)C .(-1,8)D .(1,8))5.如图,抛物线21y x =+与双曲线ky x=的交点A 的横坐标是1,则关于x 的不等式012<++-x xk的解集是( )A .x>1B .x <1C .0<x<1D .-1<x<06.已知二次函数)0,(22<+-=m n m n mx mx y 为常数,且,下列自变量取值范围中y 随x 增大而增大的是( ).A .x<2B .x<-1C .0<x<2D .x>-17.直角坐标平面上将二次函数y=x 2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )A .(0,0)B .(1,﹣1)C .(0,﹣1)D .(﹣1,﹣1) 8.已知二次函数3)1(2--=x y ,则此二次函数( )A. 有最大值1B. 有最小值1C. 有最大值-3D. 有最小值-39.如图,已知抛物线c bx x y ++=2的对称轴为1x =,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(n ,3),则点B 的坐标为 ( ).A .(n+2,3)B .(2n -,3)C .(2n -,3)D .(22n -,3) 10.将抛物线22y x =向下平移1个单位,得到的抛物线是( ).A .221y x =+B .221y x =-C .22(1)y x =+D .22(1)y x =-11.已知二次函数2y x 3x m =-+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程2x 3x m 0-+=的两实数根是A .x 1=1,x 2=-1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=312.若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点【 】A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)13.若一次函数y=ax+b (a≠0)的图象与x 轴的交点坐标为(﹣2,0),则抛物线y=ax 2+bx 的对称轴为【 】A .直线x=1B .直线x=﹣2C .直线x=﹣1D .直线x=﹣414.若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是【 】 A .抛物线开口向上B .抛物线的对称轴是x=1C .当x=1时,y 的最大值为﹣4D .抛物线与x 轴的交点为(-1,0),(3,0)15.如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图象大致是【 】A .B .C .D .16.如图,二次函数2y ax bx c =++的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是【 】A .abc <0B .2a +b <0C .a -b +c <0D .4ac -b 2<017.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,在下列五个结论中: ①2a ﹣b <0;②abc <0;③a+b+c <0;④a ﹣b+c >0;⑤4a+2b+c >0, 错误的个数有【 】A .1个B .2个C .3个D .4个18.若二次函数2y ax bx c =++ (a≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则下列判断正确的是A .a>0B .b 2-4ac≥0C .x 1<x 0<x 2D .a(x 0-x 1)( x 0-x 2)<019.如图,Rt △OAB 的顶点A (-2,4)在抛物线2y ax =上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为A .22 , B .()22 ,C .)22,D .(22 ,20.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列说法错误的是A 、图象关于直线x=1对称B 、函数ax 2+bx+c (a≠0)的最小值是﹣4C 、﹣1和3是方程ax 2+bx+c (a≠0)的两个根 D 、当x <1时,y 随x 的增大而增大二、填空题21.在平面直角坐标系中,抛物线2y=x -3x-4与x 轴的交点的个数是___________. 22.二次函数y=x 2+1的图象的顶点坐标是 .23.二次函数y=﹣x 2+bx+c 的图象如图所示,则一次函数y=bx+c 的图象不经过第 象限.24.在平面直角坐标系中,把抛物线21y x 12=-+向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是 . 25.抛物线2y x 1=+的最小值是 .26.2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y (米)与水平距离x (米)之间满足关系22810y x x 999=-++,则羽毛球飞出的水平距离为 米.27.已知二次函数y=x 2+2mx+2,当x >2时,y 的值随x 值的增大而增大,则实数m 的取值范围是 .28.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下结论:①b 2>4ac ;②abc>0;③2a ﹣b=0;④8a+c <0;⑤9a+3b+c <0,其中结论正确的是 .(填正确结论的序号)29.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 .30.抛物线y=ax 2+bx+c (a≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c= .31.若抛物线y=x 2+bx+c 与x 轴只有一个交点,且过点A (m ,n ),B (m+6,n ),则n= . 32.如图,已知抛物线y=ax 2+bx+c(a ≠0)经过原点和点(-2,0),则2a-3b 0.(>、<或=)33.如图,已知⊙P 的半径为2,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为34.如图,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C1,它与x 轴交于点O ,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P (37,m )在第13段抛物线C13上,则m =_________.35.在平面直角坐标系xOy 中,直线y=kx (k 为常数)与抛物线21y x 23=-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,﹣4),连接PA ,PB .有以下说法:①PO 2=PA•PB;②当k >0时,(PA+AO )(PB ﹣BO )的值随k 的增大而增大; ③当3k 3=-时,BP 2=BO•BA; ④△PAB 面积的最小值为46.其中正确的是 (写出所有正确说法的序号)三、计算题36. 已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式. 设函数y =kx 2+(2k +1)x +1(k 为实数).37.写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中用描点法画出这两个特殊函数的图象38.根据所画图象,猜想出:对任意实数k ,函数的图象都具有的特征,并给予证明 39.对任意负实数k ,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值四、解答题40.已知二次函数的图象以)4,1(-A 为顶点,且过点)5,2(-B .(1)求该二次函数的解析式;(2)求该二次函数图象与坐标轴的交点坐标;41.某公司销售一种进价为20元/个的计算机,其销售量y (万个)与销售价格x (元/个)的变化如下表:价格x (元/个) … 30 40 50 60 … 销售量y (万个) … 5 4 3 2 … 同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y (万个)与x (元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z (万个)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?42.如图,抛物线经过A (﹣1,0),B (5,0),C (0,52-)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.43.一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)x 3000 3200 3500 4000 y100969080(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y (辆)与每辆车的月租金x (元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x (x≥3000)的代数式填表: 租出的车辆数 未租出的车辆数 租出每辆车的月收益 所有未租出的车辆每月的维护费(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.44.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,23-),点M 是抛物线C 2:2y mx 2mx 3m=--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值.45.如图,已知抛物线21y x bx 2=+与直线y 2x =交于点O (0,0),()A 12a,。

贵州省贵阳清镇北大培文学校人教版高中数学二轮复习换元法练习(无答案).docx

贵州省贵阳清镇北大培文学校人教版高中数学二轮复习换元法练习(无答案).docx

专题四换元法一、利用换元法求解析式例1:(1)已知/(2X-1)=4X2-2X +1,求/(兀)的解析式。

(2)已知/(A/X+T)=4X+2,求.f(兀)的解析式。

(3)已知于(頁+ 1) = 4兀+2仁3,求.f⑴的解析式。

二、利用换元法求单调性与值域例1:求下列函数的值域(1)/(兀)=2兀 + Jx + l (2) /(x) = 2兀-厶+1(3)/(兀)=4”一2加_3;(氏[一1,2])例2:函数/(兀)=(丄产心曲在(_oo,4]上单调递增,求实数a的取值范围。

2例3:判定〃)屯尺的单调性并证明。

例4:求函数/(X)= log2y/x - log2(2x)2的最小值。

例5:已知/W = (|)\xG[-l,l],函数g(x) = /2U)-2^(x) + 3的最小值为力⑷。

J丿(1)求力⑷;(2)是否存在实数加/同时满足以下条件:①m>n>3;②当也)定义域为[仏加]时,值域为[n\m2]o若存在,求出加,〃的取值; 若不存在,请说明理由。

三、利用换元法处理方程根与函数零点问题例1 :设函数y(x) = {;『,罕°)。

(1)求方程/[/(X)] = 0的实数根。

(2)求方程f2(x)-f(x) = 0的实数根。

In Y ' (JtHO)例2:设函数/(劝= 八 \则求方程f\x)-f(x) = 0的实数根。

〔0;(%=0)例3:关于X的方程(〒一1)2一兀2_1+“0,下列命题中正确的个数为_________①存在实数使得方程恰有2个不同的实数根。

②存在实数使得方程恰有4个不同的实数根。

③存在实数S使得方程恰有5个不同的实数根。

使得方程恰有8个不同的实数根。

例4:已知二次函数f(x) = ax2+bx + 3是偶函数,且图像过点(2,7)。

g(x)二兀+ 4。

(1)求/(兀)解析式;(2)求函数F(兀) = /(2") + g(2讪)的值域;(3)若/(兀)三肌¥+加+ 4对任意的xe [2,6]恒成立,求实数附的取值范围。

2020届高考二轮数学二轮复习重点模块练:函数(4)一次函数、二次函数Word版含答案

2020届高考二轮数学二轮复习重点模块练:函数(4)一次函数、二次函数Word版含答案

一次函数、二次函数1、二次函数 y24 x 2 的极点坐标、对称轴分别是( ) xA. ( 2,6), x 2B. (2,6), x 2C. (2,6), x 2D. ( 2,6), x 22、y 2k 1 x b 是R上的减函数,则有( )1A. k21B. k21C. k21D. k23、若函数 f x = ax2+2(a-1)x+2 在区间 (-,4] 上为减函数,则 a 的取值范围为 ( )A. 0 a 1B. 0 a1C. 0 a1D. a1 5 5 5 54、已知函数y x2 2x 2, x 3,2 ,则该函数的值域为( )A. 1,17B. 3,11C. 2,17D. 2,45、已知 1 b 3 ,则函数 f x ax2 bx c a 0 在2,3 上有 ( )2 2aA. 最大值f2 ,最小值 fb2aB.最大值f b,最小值f2 2aC.最大值 f 3 ,最小值 fb 2aD.最大值 fb,最小值 f 3 2a6、若二次函数y x2 ax 1对于全部 x 0, 1 恒有 y 0 建立,则 a 的最小值是 ( )2A.0B.25D. 3 C.27、已知函数 f ( x) x2 mx 1在区间, 1 上是减函数,在区间 1, 上是增函数,则实数 m 的取值范围是()A. 2,2B. ( , 2]C. 2,D.R8、已知函数 y x2 4x 1 的定义域为 [1,t] ,在该定义域内,函数的最大值与最小值之和为5 t的取值范围是( )- ,则实数A. 1,3 B. 2,3 C. 1,2 D. 2,39、将进货单价为 80 元的商品按 90 元一个销售时,能卖出400 个,依据经验,若该商品每个涨 1 元,则其销售量就减少20 个,为获取最大收益,每个商品的售价应定为( )A.94 元B.93 元C.96 元D.95 元10、已知函数 f x x2 x a 2 有两个零点 x1 , x2 ,函数 g x x2 a 1 x 2 有两个零点x3 , x4,且 x3 x1 x4 x2,则实数 a 的取值范围是 ( )A. 9B.9C. ( 2,0)D. (1, ), 2 ,04 411、函数 f ( x) x2 2 x m 的零点有两个,则实数m 取值范围是.12、若一次函数 f x 的定义域为 [-3, 2] ,值域为2, 7 ,则fx ________.13、若函数 f x m 2 x2 m 1 x 2 是偶函数,则 f x 的单一递加区间是________.14、在必定范围内,某种产品的购置量y 吨与单价 x 元之间知足一次函数关系,假如购置1000 吨,那么单价为 800 元,假如购置2000 吨,那么单价为700 元,则客户购置400 吨时,单价应当为 __________ 元 .15、已知二次函数 f ( x) x2 2mx 2m 3 .(1) x [0,1] 时,求函数 f (x) 最小值;(2)若函数 f (x) 有两个零点,在区间 ( 2,0) 上只有一个零点,务实数m 取值范围 .答案以及分析1 答案及分析:答案: A分析:二次函数y x2 4 x 2x26 ,2函数的极点坐标2,6 ,对称轴方程为:x 2 .应选A.2答案及分析:答案: C分析:若 y 2k 1 x b 是R上的减函数,则必有2k 1 0 ,因此 k 1.应选 C. 23 答案及分析:答案: B分析:当 a 0 时,函数f x 的对称轴为 a 1x ,a∵ f x 在 (-,4] 上为减函数,∴图象张口向上, a 0 且 a 1 4 ,得 0 a 1 .a 5当 a=0 时,fx =- 2 x+2 ,明显在(-,4] 上为减函数 . 应选 B.4答案及分析:答案: A分析:函数y x2 2 x 2 ( x 1)2 1,x 3,2 ,∴当x3,1 时,此函数单一递减,可得y 1,17 ;当 x 1,2 时,此函数单一递加,可得y 1,2 . 综上可得,此函数的值域为1,17 .应选 A.5答案及分析:答案: A分析: Q a 0 ,二次函数图象的张口向上,当 xb时,函数有最小值 . 2aQ 1b 3 , f 2 f 3 ,2 2af x 在2,3 上有最大值 f 2 ,最小值 fb.应选 A.2a6答案及分析:答案: C分析:二次函数y x2 ax 1 对于全部 x 0, 1 恒有 y 0 建立,2即x 2, a x1, yx 1 , y 1 1 0 ,ax 1 0 x x x2因此函数 y x 1 在0,1 上单一递加,y x 1 的最大值为 5 , a 5 .应选x 2 x 2 2C.7答案及分析:答案: A分析:由题意,函数 f x x2 mx 1 表示张口向上,且对称轴的方程为x m,要使2得函数 f x 在区间, 1 上是减函数,在区间 1, 上是增函数,则 1 m1 ,2解得 2 m 2 ,应选A.8答案及分析:答案: B分析:∵函数 y x2 4x 1 ,∴函数 y x2 4x 1 是张口向上,对称轴为x 2 的抛物线,∵函数 y x2 4x 1 的定义域为1,t,∴当 x 1时,y 2 ,当x 2时,y 3 ,∵函数在定义域内函数的最大值与最小值之和为-5,∴当 y 2 时,x1或 x 3,∴ 2 t 3 .应选B.9答案及分析:答案: D分析:设每个商品的售价定为(90 x) 元,则卖出商品后获取的收益y (90 x 80)(400 20x) 20(10 x)(20 x) 20( x2 10x 200) ,∴当x 5 时,y获得最大值,即每个商品的售价应定为90 5 95 (元).应选 D.10答案及分析:答案: C分析:解法一(数形联合):由于g x f x a 1 x ,由题易知a0 ,画出函数 f x与g x的图象,如图 1 所示,联合图象知,g x1 f x1 a 1 x1 a(1 x1) 0 , g x2 f x2 a(1 x2 ) a 1 x2 0 .若 a 0 ,则 x1 1 ,不切合题意,则 a 0 .当 a 0 时, x1 1 x2,因此 f 1 a 2 0 ,即 a 2 ,因此实数 a 的取值范围是( 2,0) .应选 C.解法二:同方法一,有g x3 f x3 a 1 x3 0 a 1 x3,g x4 f x4 a 1 x4 0 a 1 x4 .易得 a 0 ,x3 1 x4,故 g 1 a 2 0 ,即 a 2 ,因此实数a的取值范围是( 2,0) .应选 C.解法三(分类议论):由于函数 f x x2x a 2 有两个零点x1, x2,因此方程x2x2 a的根分别为 x 1, x 2 .由于函数 g x x 2a1 x2 有两个零点x 3 , x 4 ,因此方程x 2x2ax 的根分别为x 3 , x 4 .令 h x x 2 x 2 .① 若 a 0 ,画出函数 h x 、直线y ax与直线y a的图象,如图 2 所示,由图象知,总有 x 1 x 3 ,不切合题意 .②若 a 0 ,画出函数 h x 、直线 y ax 与直线 y a 的图象,如图 3 所示,由图象知,总有 x 3 x 1 ,欲使 x 4x 2 ,29,因此 a亦即a1a 2a 91 4aa22a 94a 9,22即 0 a 2 2a 9 4a9 a ,两边平方,化简可得4a 91,因此 a2 .因此实数 a 的取值范围是 ( 2,0) .应选 C.11 答案及分析:答案: m0 或 m1分析:由题意可得y x 22 x 的图象(红色部分)和直线y m 有2 个交点,如下图:故有 m 0 或 m 1.12 答案及分析: 答案: x 5 或 x 4分析:设 y = kx + b ,则当 k >0 3k b2 k 1 3k b 7时,b,解得 b;当 k <0 时,2k b ,2k 7 52k1解得b 4 .因此 f ( x)x 5 或 x 4 .13 答案及分析: 答案:,0分析:若函数 f xm 2 x 2m 1 x 2 是偶函数,则函数 f x 对于 y 轴对称,因此m 10 ,即 m 1 ,因此fxx 2 2 .因此函数 f x 的单一递加区间是 ,0 .14 答案及分析:答案: 860分析:∵该种产品的购置量 y 吨与单价 x 元之间知足一次函数关系,∴可设 ykx b( k 0) .1000 800k b由题意可得700k ,2000bk 10 解得, b 9000∴ y 10x 9000 .当 y400 时,有 400 10x 9000,解得 x860 .15 答案及分析:答案:( 1 )函数 f ( x) 对称轴为 x m ,当 m 0 时, f (x)minf (0) 2m 3,0 m 1 时, f (x) minf (m)m 22m 3 ,m 1时, f ( x) minf (1) 4 ,2m 3, m 0f ( x) minm 22m 3, m 1 ,4 ,m 1(2 )函数 f ( x)x 2 2mx 2m 3 ,在区间 ( 2,0) 上只有一个零点,f ( 2) f (0) 0 ,得3 m72 .6考虑界限状况:由 f ( 2)0 ,得 m7 ,∴ f (x) x 2 7 x 2 ,∴ x2 或 x1 ,633 3∴ m7知足 .63 3由 f (0)0 ,得 m,∴ f ( x) x 2 3x ,∴ x 3 或 x 0 ,∴ m.2237 综上,得m .26。

人教版中考数学二次函数复习测验

人教版中考数学二次函数复习测验

《二次函数》复习测试题(一)时间90分钟;满分100分一. 选择题(每题3分,共30分)1.下列函数不属于二次函数的是 ( )A. y =(x -1)(x +2)B. y =21(x +1)2C. y =1-3x 2D. y =2(x +3)2-2x 22. 函数y =-x 2-4x +3图象顶点坐标是 ( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3.函数y=2x 2-3x+4经过的象限是 ( )A .一、二、三象限B . 一、二象限C .三、四象限D . 一、二、四象限4.下列说法错误的是 ( )A .二次函数y =3x 2中,当x >0时,y 随x 的增大而增大B .二次函数y =-6x 2中,当x =0时,y 有最大值0C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y =a x 2(a ≠0)的顶点一定是坐标原点5.下列二次函数的图象,不能通过函数y =3x 2的图象平移得到的是( )A .y =3x 2+2B .y =3(x -1)2C .y =3(x -1)2+2D .y =2x 26. 二次函数y =-x 2+bx +c 的图形如图所示,若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 2xyO第3题第4题7. 二次函数y=ax2+bx+c图象如图所示,则下列结论成立的是()A. a>0,b>0,c>0B. a<0,b<0,c>0C. a>0,b<0,c<0D. a<0,b>0,c>08.如图,小强在今年的校运会跳远比赛中跳出了满意的一跳,函数h=3.5t-4.9t2(t的单位∶s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.0.71 s B.0.70 s C.0.63 s D.0.36 s第8题第9题9. 已知函数y1=x2与函数y2=−12x+3的图象大致如图,若y1<y2,则自变量x 的取值范围是()A.−32<x<2 B.x>2或x<−32C.-2<x<32D.x<-2或x>3210.已知二次函数y=a x2+b x+c(a≠0)的图象如图,现有下列结论:①b2-4ac >0;②a>0;③b>0;④c>0;⑤9a+3b+c<0,⑥8a+c>0;⑦3a+c<0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三 二次函数
一、解析式问题
1、三种解析式
(1)一般式 2(0)y ax bx c a =++≠
(2)顶点式 2()(0)y a x h k a =-+≠ 其中(,)h k 为顶点坐标
(3)两根式12()()(0)y a x x x x a =--≠ 其中12(,0),(,0)x x 为二次函数图像与x 轴交点。

2、方法:待定系数法
二、单调性与区间问题
方法:① 数形结合 ② 分类讨论 ③ 从左至右,顺序进行
1、二次函数在区间上的单调性问题
例1:函数2()2(1)2f x x a x =+-+的单调减区间是(,4]-∞,求实数a 的取值范围。

例2:函数2
()2(1)2f x x a x =+-+在区间(,4]-∞上单调递减,求实数a 的取值范围。

2、二次函数在区间上的最大值最小值问题
例1:求函数2()23([1,2])f x x ax x =-+∈-的最小值。

例2:求函数2()23([1,2])f x x ax x =-+∈-的最大值。

例3:已知二次函数2()(21)1f x ax a x =+-+在区间3[,2]2
-
上的最大值为3,求实数a 的取值范围。

例4:函数2()f x x ax =-在区间[0,1]上的最大值为()g a 。

(1)求()g a ;
(2)求()g a 的最小值。

例5:已知函数()23f x x x a x =-+-。

(1)当[]4,2,5a x =∈时,求函数()f x 的最大值与最小值;
(2)当[]
1,2x ∈时,不等式()22f x x -≤恒成立,求实数a 的取值范围。

三、分式值域问题
方法:利用方程思想,将函数问题转化为一元二次方程的问题
例1:求函数22223
x x y x x -=-+的值域。

例2:已知函数21
ax b y x +=
+的值域为[2,4]-,求实数,a b 的值。

例3:已知函数2281
mx x n y x ++=+的定义域为(,)-∞+∞,值域为[1,9],求实数,m n 的值。

四、“三个二次”之间的转化
例1:已知函数()f x =
R ,求实数a 的取值范围。

例2:已知函数2()lg(21)f x ax x =++;
(1)若定义域为R ,求实数a 的取值范围。

(2)若值域为R ,求实数a 的取值范围。

例3:已知函数221()31
kx f x k x kx +=
++定义域为R ,求实数k 的取值范围。

例4:若对于任意的[1,)x ∈+∞,不等式290x ax ++>,求实数a 的取值范围。

五、可化为二次函数的问题
方法:换元法→双图像→一拆为二→同增异减
例1:求出函数2
()lg(23)f x x x =--的单调区间。

例2:求出函数2451()()3
x x f x --=的单调区间。

例3:求函数2()42
6,[2,2]x x f x x +=-+∈-的值域。

例4:求函数22
2()log log (2)f x x =的最小值。

例5:已知33
log log (01)a t t y a a a a =>且≠。

(1)设x t a =,求函数()y f x =的解析式;
(2)在(1)的条件下,若(0,2)x ∈,min ()8f x =,求,a x 的取值。

相关文档
最新文档