哈密顿系统一些保结构算法的构造和分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈密顿系统一些保结构算法的构造和分析一切真实的,耗散可忽略不计的物理过程都可以用哈密顿系统进行描述.哈密顿系统有两个最重要的性质,一个是辛结构,另一个就是能量守恒.正确计算哈密顿系统非常重要.近年来,能够保持哈密顿系统辛结构或能量的保结构方法已经得到了很大的发展.本文讨论哈密顿系统一些保结构算法的构造和分析,主要研究成果如下:I.近几年,人们构造了等离子物理中洛伦兹力系统的保结构格式,比如保体积格式和保辛格式.然而这些格式都不能保持系统能量.我们把洛伦兹力系统写为一个非典则的哈密顿系统,然后利用Boole离散线积分方法进行求解,得到洛伦兹力系统的一个新的格式.该方法可以保持系统哈密顿能量达到机器精度.II.我们研究如何利用二,三和四阶AVF方法求解哈密顿偏微分方程.对非线性薛定谔方程,空间用Fourier拟谱方法半离散,时间用三个AVF方法进行离散,得到该方程三个不同精度的AVF格式.我们用数值实验验证了这三个格式的精度和保能量守恒特性.III.基于根树和B-级数理论,我们给出了5阶树的带入规则的具体公式.利用新得到的带入规则,我们把二阶AVF方法提高到高阶精度,给出了一个新的AVF方法.我们证明了,新方法具有6阶精度,并且可以保持哈密顿系统能量.我们利用六阶AVF方法求解非线性哈密顿系统,并测试了其精度和能量守恒特性.IV.在哈密顿偏微分方程保结构算法框架下,我们研究了基于系统弱形式的空间离散方法.首先,空间用有限元法或谱元法对偏微分方程进行半离散,把得到的常微分方程组写成一个哈密顿系统.然后,我们用一个保结构方法对这个常微分哈密顿系统进行求解,得到一个全离散保结构格式.我们用这个方法对一维非线性薛定谔(NLS)方程进行求解,其中空间用Legendre谱元法,时间用AVF
方法,得到一个新的保能量方法.同样对一维NLS方程,我们在空间用Galerkin
有限元方法,时间用Crank-Nicolson格式离散,则得到一个同时保能量和质量的格式.对二维NLS方程,空间用Galerkin谱元法,时间用Crank-Nicolson格式离散,得到一个同时保能量和质量的格式.而对Klein-Gordon-Schrodinger方程空间用Galerkin方法,时间用辛Stomer-Verlet方法离散,得到一个显式辛格式.对自旋为1的Bose-Einstein凝聚态(BEC)中耦合Gross-Pitaevskii(GP)方程,空间用Galerkin方法,时间用隐中点辛格式离散,则得到一个新的同时保系统辛结构,质量和磁场强度的格式.对自旋轨道耦合的BEC中耦合GP方程离散,空间用Galerkin方法,时间用Crank-Nicolson格式,得到的新格式可以同时保能量和质量.我们做了数值实验验证理论结果.