断路器的分断能力

合集下载

分断能能力,壳架电流,脱扣电流

分断能能力,壳架电流,脱扣电流

1 .先说你所谓的脱扣时的额定电流,这个就叫脱扣电流,不叫脱扣额定电流;脱扣电流是指断路器所控制的线路发生过载时,能够引起断路器产生过载脱扣动作的电流,一般在断路器上标注为5-10ln,即5-10倍的额定电流。

2.额定电流,是指断路器能在厂家所规定的环境温度下长期稳定工作所能承受的电流,这也是断路器选用的首要标准,一般要求断路器的额定电流要稍大于电路的最大稳定电流。

3.分断能力,是指断路器在所控制电路发生短路事故时,能够起到短路保护分断作用,但是断路器自身又不会被过大的短路电流所烧毁时所能承受的最大短路电流。

4.对于壳架电流,同一尺寸外形的断路器外壳,可以用来生产不同额定电流和分断能力的断路器,这是出于工业效益的考虑,我们也能经常看到,几个额定电流不同的断路器,外观看起来一模一样。

而壳架电流就是针对不同额定电流的同一外形的断路器外壳而言的,它是指某一类型断路器外壳在稳定工作时不发生热变形而所能承受的最大电流,它规定了这一类型的外壳所能用来生产的不同规格的断路器其额定电流不能高于壳架电流.5、电器开关的分断能力一般分为极限分断能力Icu和运行分断能力Ics(很多微断不分),假如Icu=60KA,那么当线路中发生60KA的故障电流,断路器可以安全切断电路,而不发生触头熔接、爆炸等异常状况。

注意做过极限分断的断路器不允许再用(往往失效了),必须更换。

而如果Ics=60KA,分断该电流后,断路器允许合闸再使用,但应急后也须更换。

现在很多好的断路器可以做到Icu=Ics。

当然,对于Icu与Ics,国家有严格的定义与相关的试验,以上只是简单说说。

一些大的系统的短路电流往往会很大,现在很多断路器的Icu都可达100KA以上。

断路器的极限短路分断能力、运行短路分断能力和短时耐受电流额定极限短路分断能力(Icu),是指在一定的试验参数(电压、短路电流、功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。

断路器分断能力相关知识

断路器分断能力相关知识

断路器分断能力相关知识定义Icu----极限短路分断能力Ics----运行短路分断能力Icw----额定短时耐受电流(Rated short-time withstand current)极限短路分断能力Icu:是指在一定的试验参数(电压、短路电流、功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。

试验程序为0—t(线上)CO(“O”为分断,t为间歇时间,一般为3min,“CO”表示接通后立即分断)。

试检后要验证脱扣特性和工频耐压。

经此通断后,不再继续承载其额定电流的分断能力。

其具体试验是:把线路的电流调整到预期的短路电流值(例如380V,50KA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50KA短路电流,断路器立即开断(OPEN简称O)并熄灭电弧,断路器应完好,且能再合闸。

T为间歇时间(休息时间),一般为3min,此时线路处于热备状态,断路器再进行一次接通(CLOSE简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。

此程序即为CO。

断路器能完全分断,熄灭电弧,并无超出规定的损伤,就认定它的极限分断能力试验成功;注意做过极限分断的断路器不允许再用(往往失效了),必须更换。

运行短路分断能力Ics:是指在一定的试验参数(电压、短路电流和功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力(其次数为寿命数的5%),因此它不单要验证脱扣特性、工频耐压,还要验证温升。

试验程序为O—t(线上)CO—t(线上)CO。

C—close O—open断路器的运行短路分断能力(Ics)的试验程序比Icu的试验程序多了一次CO。

经过试验,断路器能完全分断、熄灭电弧,并无超出规定的损伤,就认定它的额定进行短路分断能力试验通过。

IEC947_2(以及1997新版IEC60947_2)和我国国家标准GB140482规定,Ics可以是极限短路分断能力Icu数值的25%、50%、75%和100%(B类断路器为50%、75%和100%,B类无25%是鉴于它多数是用于主干线保护之故)。

断路器的分断能力

断路器的分断能力

摘要:选择不同类型短路分断能力的断路器来适应不同的线路预期短路电流(当I在相同的情况时)的需要断路器的选用原则是:断路器的短路分断能力≥线路的预期短路电流。

关键词:断路器要点配电线路1、不同的负载应选用不同类型的断路器最常见的负载有配电线路、电动机和家用与类似家用(照明、家用电器等)三大类。

以此相对应的便有配电保护型、电动机保护型和家用及类似家用保护型的断路器。

这三类断路器的保护性质和保护特性是不相同的。

对配电型断路器而言,它有A类和B类之分:A类为非选择型,B类为选择型。

所谓选择型是指断路器具有过载长延时、短路短延时和短路瞬时的三段保护特性。

万能式(又称框架式)断路器中的DW15系列、DW17(ME)系列、AH系列和DW40、DW45系列中大部分是B型,而DZ5、DZ15、DZ20、TO、TG、CM1、TM30及HSM1等系列和万能式DW15、DW17的某些规格因仅有过载长延时、短路瞬时的二段保护,它们是属于非选择型的A类断路器。

选择性保护。

当F点短路时,只有靠近F点的QF2断路器动作,而上方位的QF1断路器不动作,这就是选择性保护(由于QF1不动作,就使未发生故障的QF3、QF4支路保持供电)。

如果QF2和QF1都是A类断路器,则F点发生短路,短路电流值达一定值时,QF1、QF2同时动作,QF1断路器回路及其下的支路全部停电,就不是选择性保护了。

能够实现选择性保护的原因是,QF1为B类断路器,它具有短路短延时性能,当F点短路时,短路电流流过QF2支路,也流过QF1回路,QF2的瞬时动作脱扣器动作(通常它的全分断时间不大于0.02s),因QF1的短延时,QF1在0.02s内不会动作(它的短延时≥0.1s或0.2、0.3、0.4s)。

在QF2动作切断故障线路时,整个系统就恢复了正常。

可见,如果要达到选择性保护的要求,上一级的断路器应选用具有三段保护的B型断路器。

对于直接保护电动机的电动机保护型断路器,它只要有过载长延时和短路瞬时的二段保护性能就够了,也就是说它可选择A类断路器(包括塑壳式和万能式),DZ5、DZ15、TO、TG、GM1、TM30、HSM1及DW15等系列除有配电保护的性能外,它们的630A及以下规格均有保护电动机的功能。

断路器的额定分断能力分为额定极限短路分断能力和额定运行短路分断能力两种

断路器的额定分断能力分为额定极限短路分断能力和额定运行短路分断能力两种

断路器的额定分断能力分为额定极限短路分断能力和额定运行短路分断能力两种。

国标《低压开关设备和控制设备低压断路器》(GB14048.2—94)对断路器额定极限短路分断能力和额定运行短路分断能力作了如下的解释:(1)断路器的额定极限短路分断能力(Icu):按规定的实验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力;(2)断路器的额定运行短路分断能力(Ics):按规定的实验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力;(3)额定极限短路分断能力(Icn)的试验程序为O—t—CO。

其具体试验是:把线路的电流调整到预期的短路电流值(例如380V ,50kA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50kA 短路电流,断路器立即开断(open简称O),断路器应完好,且能再合闸。

t为间歇时间,一般为3min,此时线路仍处于热备状态,断路器再进行一次接通(close 简称C)和紧接着的开断(O),(接通试验是考核断路器在峰值电流下的电动和热稳定性)。

此程序即为CO。

断路器能完全分断,则其极限短路分断能力合格。

(4)断路器的额定运行短路分断能力(Icn)的试验程序为O—t—CO—t—CO。

它比Icn的试验程序多了一次CO,经过试验,断路器能完全分断、熄灭电弧,就认定它的额定运行短路分断能力合格。

因此,可以看出,额定极限短路分断能力Icn指的是低压断路器在分断了断路器出线端最大三相短路电流后还可再正常运行并再分断这一短路电流一次,至于以后是否能正常接通及分断,断路器不予以保证;而额定运行短路分断能力Ics指的是断路器在其出线端最大三相短路电流发生时可多次正常分断。

IEC947—2《低压开关设备和控制设备低压断路器》标准规定:A类断路器(指仅有过载长延时、短路瞬动的断路器)的Ics可以是Ics的25%、50%、75%和100%。

B类断路器(有过载长延时、短路短延时、短路瞬动的三段保护的断路器)的Ics可以是Ics的50%、75%和100%。

断路器的技术参数

断路器的技术参数

断路器的技术参数一、引言在电力系统中,断路器是不可或缺的设备之一,用于控制电流的接通和断开,保障系统的安全运行。

为了深入了解断路器的性能和应用,对其技术参数进行详尽的探讨显得尤为重要。

本篇文章将详细解析断路器的各种技术参数,以帮助读者更好地理解和应用这一设备。

二、断路器技术参数概述断路器的技术参数反映了其性能特征和应用范围。

以下是几个重要的技术参数。

1.额定电流与额定电压:指断路器在设计规定的长期工作条件下,能正常工作的电流和电压。

2.短路电流:指断路器在规定时间内能承受而不损坏的电流值。

3.分断能力:指断路器在规定条件下能可靠分断的最大短路电流值。

4.操作性能与机械寿命:指断路器的操作性能以及在规定操作次数下机械部分的寿命。

5.其他参数:如体积、重量、工作环境温度等。

三、额定电流与额定电压额定电流是指在长期工作条件下,断路器能够正常工作的最大电流值。

选择合适的额定电流对于设备的正常运行和保护十分重要。

额定电压则是断路器能正常工作的最高电压值,通常与系统的额定电压相匹配。

四、短路电流短路电流是指电路中出现的异常大电流,可能导致设备损坏或火灾。

断路器的短路电流参数决定了其在短路情况下的承受能力,是选择和使用断路器的重要依据。

五、分断能力分断能力是指断路器在正常工作条件下能够可靠分断的最大短路电流值。

这一参数是衡量断路器性能的重要标准,特别是对于可能遭遇大电流冲击的系统尤为重要。

分断能力的选择应基于系统的实际需求和可能出现的最大短路电流。

六、操作性能与机械寿命断路器的操作性能包括其操作方式的便捷性、可靠性和安全性。

机械寿命则是指断路器各机械部件在规定操作次数下的预期寿命,涉及到设备的耐用性和维护成本。

良好的操作性能和长的机械寿命有助于降低维护成本和提高系统运行的稳定性。

七、其他参数除了上述主要技术参数外,还有一些其他参数如体积、重量、工作环境温度等,这些参数在特定应用场景下可能具有重要意义。

例如,对于空间有限或重量有要求的应用,体积和重量参数就显得尤为重要。

直流断路器的极限短路分断能力

直流断路器的极限短路分断能力

直流断路器的极限短路分断能力是指断路器在电路中出现短路故障时,能够承受并分断的电流大小。

这个能力决定了断路器在保护电路和设备免受短路电流破坏的能力。

具体来说,直流断路器的极限短路分断能力可以由以下几个因素决定:1. 材料与设计:断路器的材料和设计对它的极限短路分断能力有重要影响。

例如,触头的设计、材料的导电性能和耐热性能等都会影响断路器的分断能力。

高质量的材料和设计可以提高断路器的分断能力,同时也能保证触头的稳定性、可靠性和使用寿命。

2. 额定工作电流:额定工作电流是断路器正常工作时的电流值。

提高额定工作电流可以增强断路器的承载能力,但也会增加其热负荷,需要更好的散热设计。

3. 分段能力试验:这是对断路器进行的一种特殊测试,模拟电路短路的情况,测试断路器在短路时的反应速度和分断能力。

通过分段能力试验,可以确保断路器在紧急情况下能够迅速断开电路,避免电路和设备的损坏。

在实际应用中,直流断路器的极限短路分断能力可以满足各种不同的应用场景需求。

例如,在一些高电压、大电流的场合,需要使用具有更高分断能力的直流断路器来保护电路和设备。

同时,为了确保安全,在实际使用中,还需要根据电路和设备的具体情况选择合适的断路器类型,并按照正确的安装和使用说明进行操作。

此外,直流断路器的极限短路分断能力还需要与相应的保护设备如熔断器和继电器等进行配合使用,以形成一个完整的保护系统。

当电路中出现短路故障时,该系统可以迅速切断电源,防止故障扩大,保护整个电力系统的安全。

总之,直流断路器的极限短路分断能力是衡量其保护能力的重要指标,也是选择合适断路器的重要依据。

在实际应用中,我们需要根据电路和设备的具体情况选择合适的直流断路器,并确保其正确安装和使用,以保障电力系统的安全和稳定。

断路器分断能力

断路器分断能力

分断能力严格地说是短路电流的接通与分断能力的试验。

断路器的额定短路分断能力是断路器主要技术指标和其代表的技术水平(含量)。

断路器的额定短路分断能力分极限短路分断能力(Icu)和运行短路分断能力(Ics)。

1、额定极限短路分断能力Icu:是指规定的条件下(电压、电流、功率因数等)的短路分断能力。

试验程序为:O(分断)—t(冷却停顿时间不短于3分钟)——CO(接通分断)。

按规定程序动作之后,不考虑断路器继续承载它的额定电流。

分断试验结束后,还应验证2倍绝缘电压条件下的工频耐压和过载脱扣性能。

2、额定运行短路分断能力Ics:是指规定的条件下按O—t—CO—t—CO程序试验,试验后须考虑断路器继续承载它的额定电流。

分断试验结束后,除验证上述的工频耐压和过载脱扣性能外还应验证触头温升。

3、短时耐受电流Icw:按规定的试验程序所规定的条件,要求断路器能够无损地承载的短时耐受电流值。

在一定的电压、短路电流、功率因数下,忍受0.05、0.1、0.25、0.5、1或3s而断路器无任何损伤的能力,它是对断路器的电动稳定性和热稳定性的考核指标。

由于Ics试验要比Icu严酷,为此标准规定Ics的值可以为Icu的25%、50%、75%、100%(但B类断路器具有“三段”保护功能的无25%规格)。

目前塑壳式或万能式断路器大致采用75%Icu,少数技术含量高的产品Ics=Icu,(如本厂生产的CW2系列以及CM2、CM2Z和CM1L中部分规格)。

根据断路器的额定短路分断能力应大于或等于线路的预期短路电流原则,在选择产品时应该根据Icu还是Ics目前有分岐,有的认为选Ics保险系数大,应以Ics为准。

但为了保证线路在发生短路时既能可靠分断又比较经济合理应选择以Icu为准。

通常说的短路分断能力是指短路电流的对称分量有效值,而短路接通能力是指短路电流峰值。

峰值电流等于电流的有效值乘以峰值系数2Kch,其中Kch为冲击系数。

另外峰值电流与相应的功率因数cosϕ有关。

断路器的分段能力

断路器的分段能力

断路器的分段能力:极限分段能力(icu):额定极限短路分断能力指的是低压断路器在分断了断路器出线端最大三相短路电流后还可再正常运行并再分断这一短路电流一次,至于以后是否能正常接通及分断,断路器不予以保证。

运行分段能力(ics):而额定运行短路分断能力Ics指的是断路器在其出线端最大三相短路电流发生时可多次正常分断。

无论是哪种断路器,虽然都具备Icu和Ics这两个重要的技术指标。

但是,作为支线上使用的断路器,可以仅满足额定极限短路分断能力即可。

现在出现的较普遍的偏颇是宁取大,不取正合适,认为取大保险。

但取得过大,会造成不必要的浪费(同类型断路器,其H型—高分断型,比S型—普通型的价格贵1.3倍~1.8倍)。

因此支线上的断路器没有必要一味追求它的运行短路分断能力指标。

而对于干线上使用的断路器,不仅要满足额定极限短路分断能力的要求,同时也应该满足额定运行短路分断能力的要求,如果仅以额定极限短路分断能力Icu来衡量其分断能力合格与否,将会给用户带来不安全的隐患。

IEC947—2《低压开关设备和控制设备低压断路器》标准规定:A类断路器(指仅有过载长延时、短路瞬动的断路器)的Ics可以是Icu的25%、50%、75%和100%。

B类断路器(有过载长延时、短路短延时、短路瞬动的三段保护的断路器)的Ics可以是Icu的50%、75%和100% 。

因此可以看出,额定运行短路分断能力是一种比额定极限短路分断电流小的分断电流值,Ics是Icu的一个百分数。

断路器的1P,2P的意思:1. 1P表示直控制火线的输出。

就是我们常用的空气开关。

2. 2P表示同时可以控制火线和零线的。

但不是漏电保护器。

漏电保护器要控制底线的。

2.3P是指三相电的,可控制三相电的3根火线。

4. 4P是指可以控三根火线和1根零线。

1P、2P、3P、4P指断路器的极数,电相序的排序是A、B、C、N。

ABC指三相电的火线,N指三相四线的零线。

1P断路器可接任意一相火线,2P断路器可接任意一相火线和一零线,3P断路器接三相火线,但前后相序要正确,即ACB。

断路器短路电流分段能力

断路器短路电流分段能力

断路器短路电流分段能力
断路器的短路电流分段能力是指断路器能够承受及断开的最大短路电流的分段能力。

短路电流是指在电路中出现故障时,电流突然增大的现象。

当发生短路时,电流会急剧增大,可能达到非常高的水平,如果断路器无法承受这种高电流,就会导致断路器的烧毁或故障,无法正常保护电路和设备。

为了确保断路器能够正常工作并安全地断开短路电流,断路器必须具备足够的分断能力。

这个能力通常通过断路器的额定短路分断能力来表示,单位是千安(kA)。

断路器的短路电流分段能力是指断路器在不同短路电流等级下的分断能力。

根据电气设备的需求和安全要求,断路器的短路电流分段能力通常分为几个等级,如10kA、20kA、30kA等。

不同等级的断路器具有不同的分断能力,能够安全地断开对应等级以下的短路电流。

断路器的短路电流分段能力是根据电路中的短路电流大小、电气设备的额定电流和电源的供电能力等因素来确定的。

在设计电路和选型断路器时,需要根据实际情况有针对性地选择合适的分段能力,以保证电路和设备的安全运行。

断路器分断能力计算公式

断路器分断能力计算公式

断路器分断能力计算公式
断路器分断能力是指断路器在发生故障时,能够安全地切断电路的能力。

它是电气系统中非常关键的参数,直接影响到电气设备和人员的安全。

断路器分断能力的计算公式如下:
断路器分断能力 = 故障电流 × 额定电压
其中,故障电流是指电路中发生故障时的电流值,额定电压是指断路器所能承受的最大电压值。

在实际应用中,断路器分断能力的计算需要考虑多个因素。

首先,要确定电路中可能出现的故障类型和故障电流,这需要通过对电力系统进行全面的分析和计算。

其次,要根据断路器的额定电压来确定其分断能力。

一般来说,断路器的额定电压应大于电路中的最高电压,以确保断路器能够正常工作。

在电力系统设计和维护中,断路器分断能力的计算是一项非常重要的工作。

它能够帮助工程师评估断路器的可靠性和安全性,并为电气设备的选型和电路的布置提供依据。

同时,合理计算断路器的分断能力也能够降低故障发生时对电气设备和人员的危害。

断路器分断能力的计算是电力系统设计和维护中的一项重要任务。

通过合理计算断路器的分断能力,可以确保电气设备和人员的安全,
并提高电力系统的可靠性和稳定性。

断路器的分断能力、壳架电流、脱扣电流有什么区别

断路器的分断能力、壳架电流、脱扣电流有什么区别

3.分断能力,是指断路器在所控制电路发生短路事故时,能够起到短路保护分断作用,但是断路器自身又不会被过大的短路电流所烧毁时所能承受的最大短路电流。
4.对于壳架电流,同一尺寸外形的断路器外壳,可以用来生产不同额定电流和分断能力的断路器,这是出于工业效益的考虑,我们也能经常看到,几个额定电流不同的断路器,外观看起来一模一样。而壳架电流就是针对不同额定电流的同一外形的断路器外壳而言的,它是指某一类型断路器外壳在稳定工作时不发生热变形而所能承受的最大电流,它规定了这一类型的外壳所能用来生产的不同规格的断路器其额定电流不能高于壳架电流.
1 .先说你所谓的脱扣时的额定电流,这个就叫脱扣电流,不叫脱扣额定电流;脱扣电流是指断路器所控制的线路发生过载时,能够引起断路器产生过载脱扣动作的电流,一般在断路器上标注为,是指断路器能在厂家所规定的环境温度下长期稳定工作所能承受的电流,这也是断路器选用的首要标准,一般要求断路器的额定电流要稍大于电路的最大稳定电流。

断路器的分断能力是什么?是不是越大越好?

断路器的分断能力是什么?是不是越大越好?

断路器的分断能⼒是什么?是不是越⼤越好?
断路器的分断能⼒是断路器的⼀项重要指标,是指断路器安全切断故障电流的能⼒,⼀般分
为额定极限短路分断能⼒ICU和额定运⾏短路分断能⼒ICS。

分断能⼒有35KA、50KA、
60KA、80KA等多种规格,⽽国内的⼩型断路器其极限短路能⼒⼀般在4-6KA之间,⽽且分断可
靠性不⾼。

假如ICU=50KA,那么当电路中发⽣50KA故障电流时,断路器可以安全的切断电路,⽽不会
发⽣触头粘接、爆炸等状况,但发⽣极限短路分断的断路器不可以再使⽤。

⽽假如IUS=50KA,
当发⽣50KA故障电流时,断路器可以安全切断电路,在故障排除时可以再合闸使⽤,当然最好
也是更换断路器。

选择断路器的⼀项重要原则就是断路器的极限短路分断能⼒要⼤于线路的预期短路电流。


论哪种断路器,它的极限短路分断能⼒都⼤于或等于其运⾏短路分断能⼒。

断路器的分断能⼒是否越⼤越好呢,那是肯定的。

分断能⼒越⼤,安全性越⾼。

例如当选择
ICU为35KA时,如果线路中短路电流为20KA时为及时安全切断;但如果ICU为20KA,则短路
电流为35KA时就⽆法断开了。

虽然分断能⼒越⼤越好,但是价格也会越⾼,还是要根据⾃⾝使
⽤情况在保证⾜够安全的前提下,经济的选择合适的断路器。

留⾔处⼤家可以补充⽂章解释不对或⽋缺的部分,这样下⼀个看到的⼈会学到更多,你知道的
正是⼤家需要的。

开关柜中断路器极限分断能力和额定分断能力选择分析

开关柜中断路器极限分断能力和额定分断能力选择分析

开关柜中断路器极限分断能力和额定分断能力选择分析一、引言开关柜中断路器是电力系统中的重要设备,其主要功能是在发生故障时快速切断电路以保护设备和人员安全。

在选购开关柜中断路器时,必须考虑到其极限分断能力和额定分断能力,以确保设备能够可靠工作。

本文将重点分析开关柜中断路器极限分断能力和额定分断能力的选择问题。

二、开关柜中断路器的极限分断能力极限分断能力是指在特定条件下,开关柜中断路器能够可靠地切断电路的能力。

其值越大,表明分断能力越强。

选择极限分断能力时,需要考虑以下因素:1. 电路故障类型:不同故障类型对开关柜中断路器的极限分断能力有不同的要求。

例如,对于短路故障,需要选择具有较高极限分断能力的断路器,以确保能够迅速有效地切断电路。

2. 电流水平:电流水平对开关柜中断路器的极限分断能力有很大影响。

通常情况下,电流越大,所需的极限分断能力也越高。

因此,在选购开关柜中断路器时,需要根据电路的额定电流确定所需的极限分断能力。

3. 过载能力:开关柜中断路器的极限分断能力还需要考虑设备的过载能力。

在选择开关柜中断路器时,需要确保其能够承受额定负载电流并具备一定的过载能力,以应对临时过载情况。

4. 时间限制:开关柜中断路器的极限分断能力还受到时间限制的限制。

在选择时,需要考虑所需的分断时间,并选择能够在规定时间内切断电路的断路器。

三、开关柜中断路器的额定分断能力额定分断能力是指开关柜中断路器能够安全切断的电流水平。

它是根据设备的结构、材料和工作环境等因素确定的。

选择额定分断能力时,需要考虑以下因素:1. 电流特性:不同电路有不同的电流特性,需要选择适合的额定分断能力。

例如,对于高频电路,需要选择具有较高额定分断能力的断路器。

2. 设备保护需求:在选购开关柜中断路器时,需要根据电路设备的保护需求来确定额定分断能力。

例如,对于高值设备,需要选择具有较高额定分断能力的断路器,以确保设备的安全运行。

3. 环境条件:开关柜中断路器的额定分断能力还需考虑工作环境条件。

断路器分断能力分析

断路器分断能力分析

断路器分断能力分析断路器是一种用于保护电路安全的重要电气设备,能够在电路出现故障时迅速分断电流,以防止设备受损甚至发生火灾。

断路器的分断能力是评价其性能的关键指标之一,本文将对断路器的分断能力进行分析。

断路器的分断能力是指它能够安全分断的最大故障电流。

断路器的设计最初是为了防止电气故障引起的过电流,例如短路或过载。

当电路中出现短路或过载情况时,电流将迅速增大,断路器需要能够快速分断电流,以保护电气设备和人身安全。

断路器的分断能力取决于多个因素,其中包括断路器的电流等级、断路器的热稳定性和机械强度、以及电路的特性和运行条件等。

下面我们将从这些方面对断路器的分断能力进行分析。

首先是断路器的电流等级。

断路器的电流等级通常是根据电路的额定电流来确定的,常见的有100A、200A、400A等。

电流等级越高,断路器的分断能力也越大,可以分断更高的故障电流。

因此,在选择断路器时,应根据实际电路的负荷情况来合理选择电流等级,以确保断路器具有足够的分断能力。

其次是断路器的热稳定性和机械强度。

断路器在分断故障电流时会产生大量的热量,因此需要具有良好的热稳定性,以防止热量积聚导致器件损坏。

同时,断路器在分断故障电流时也会受到较大的机械应力,需要具有足够的机械强度,以确保正常工作。

因此,在设计和制造断路器时,需要考虑材料的热稳定性和机械强度,以满足断路器的分断能力要求。

此外,电路的特性和运行条件也会影响断路器的分断能力。

电路的短路电流和过电流的大小、故障电流的波形等都会对断路器的分断能力产生影响。

例如,短时间内的高峰值故障电流对断路器的分断能力要求更高。

此外,断路器还要在不同的环境温度、湿度和海拔高度等条件下正常工作,因此需要考虑这些因素对断路器性能的影响。

最后,对于大功率断路器,还需要考虑其分断能力与电弧的特性。

在断路器分断电流时,会产生电弧,电弧的持续时间和能量将对断路器的分断能力产生影响。

因此,需要采取措施来限制电弧的持续时间和能量,以确保断路器能够有效地分断电流。

断路器的分断能力和短时耐受电流

断路器的分断能力和短时耐受电流

断路器的分断能力和短时耐受电流短时耐受电流(I c w),是指在一定的电压、短路电流、功率因数下,忍受0.05、0.1、0.25、0.5或1s而断路器不允许脱扣的能力,I c w是在短延时脱扣时,对断路器的电动稳定性和热稳定性的考核指标,它是针对B类断路器的,通常I c w的最小值是:当I n≤2500A时,它为12I n或5k A,而I n>2500A时,它为30k A(D W45_2000的I c w为400V、50k A,D W45_3200的I c w为400V、65k A)。

运行短路分断能力的试验条件极为苛刻(一次分断、二次通断),由于试后它还要继续承载额定电流(其次数为寿命数的5%),因此它不单要验证脱扣特性、工频耐压,还要验证温升。

I E C947_2(以及1997新版I E C60947_2)和我国国家标准G B140482规定,I c s可以是极限短路分断能力I c u数值的25%、50%、75%和100%(B类断路器为50%、75%和100%,B类无25%是鉴于它多数是用于主干线保护之故)。

上文提到的选择断路器的一个重要原则是断路器的短路分断能力≥线路的预期短路电流,这个断路器的短路分断能力通常是指它的极限短路分断能力。

无论A类或B类断路器,它们的运行短路分断能力绝大多数是小于它的极限短路分断能力I c u的。

A类:D Z20系列I c s=50%~77%I c u,C M1系列I c s=58%~7 2%I c u,T M30系列I c s=50%~75%I c u,(个别产品I c s=I c u)。

B类:D W15系列I c s=60%左右的I c u,(个别的如630A I c s=I c u,但短路分断能力仅400V时30k A),D W45系列I c s=62.5%~80%I c u。

不管是A类或B类断路器,只要它的I c s符合I E C947_2(或G B14048.2)标准规定的I c u百分比值都是合格产品。

断路器分断能力的选择和使用

断路器分断能力的选择和使用

断路器分断能力的选择和使用断路器是一种非常重要的电气保护设备,用于在电路发生过载、短路等故障时,能够及时切断电源,防止设备损坏和人身安全。

选择和使用适合的断路器分断能力,对于保护电路的可靠性和安全性至关重要。

本文将从选择断路器分断能力的原则、断路器的额定分断能力和断路器分断能力的使用等方面进行探讨。

首先,选择断路器的分断能力应遵循以下原则:1.满足负载电流要求:断路器的分断能力应能够满足负载电流要求,即在正常工作条件下,断路器能够稳定地通过额定负载电流而不被过载。

因此,在选择断路器时,应根据负载电流的大小来确定所需的额定分断能力,一般来说,断路器的额定电流应略大于负载电流。

2.适应故障电流:断路器的分断能力还应能够适应短路或故障电流的要求。

当电路发生短路时,电流会瞬间增大,此时断路器需要能够迅速切断电源,以保护电气设备和人身安全。

因此,在选择断路器时,应参考电路的短路电流水平,并选择具备相应额定分断能力的断路器。

其次,断路器的额定分断能力是指断路器在规定条件下的最大分断能力,也是其最重要的性能参数之一、额定分断能力通常由两个参数来表示,即额定电流和额定短路分断能力。

额定电流是指断路器能够稳定地通过的最大电流值,一般用安培(A)表示。

额定短路分断能力是指在额定电流下,断路器能够迅速切断电源的最大短路电流值,一般用千安(kA)表示。

在使用断路器的过程中,应注意以下几点:1.合理匹配断路器分断能力:在实际应用中,要根据电路的实际情况选择合适的断路器分断能力。

如果断路器的分断能力过低,可能无法有效分断电流,导致设备损坏或电路无法正常工作;而分断能力过高,可能会增加采购和维护成本,甚至无法与电路其他部分协调工作。

因此,在选择断路器时,应根据电路的特点和负载情况,选取适当的断路器分断能力。

2.正确使用额定分断能力:断路器的额定分断能力是指在设计和制造阶段确定的参数,也是断路器正常工作的基础。

使用者应该根据断路器的额定分断能力来规划和操作电路,避免超过其额定能力,以确保电路的安全和可靠。

断路器选型 短路分断能力ka 计算方法

断路器选型 短路分断能力ka 计算方法

断路器选型及短路分断能力ka计算方法1.概述在电气系统中,断路器是一种非常重要的电气设备,它主要用于在电路发生短路故障时迅速切断电路,保护电气设备和人身安全。

选择合适的断路器并正确计算其短路分断能力ka至关重要。

本文将对断路器选型和短路分断能力ka的计算方法进行探讨。

2.断路器选型当选择断路器时,首先需要考虑的是电路的额定电流。

额定电流是断路器能够正常运行的最大电流值,通常以安培(A)为单位。

在选择断路器时,需要确保其额定电流大于或等于电路的最大负荷电流,以保证正常运行。

还需要考虑到负载类型、电气设备的特性和系统的工作环境等因素。

3.短路分断能力ka的重要性短路故障是指电路中出现的异常高电流,它可能导致设备的烧毁、电路的损坏甚至是火灾等严重后果。

断路器的短路分断能力ka成为了一个至关重要的指标。

短路分断能力ka是指断路器能够在一定时间内将短路电流迅速切断的能力,通常以千安(kA)为单位。

选择合适的断路器短路分断能力ka能够有效地避免因短路故障而导致的安全事故。

4.短路分断能力ka的计算方法短路分断能力ka的计算方法通常分为两种:理论计算和实验测试。

在理论计算中,需要考虑电路的参数、电气设备的特性以及故障电流的大小等因素,根据一定的公式和标准来进行计算。

而实验测试则是通过对断路器进行实际测试,以确定其短路分断能力ka的数值。

一般情况下,实验测试得到的结果更为准确可靠,但在一些特殊情况下,理论计算也可以作为参考依据。

5.个人观点和总结作为一名电气工程师,我个人认为断路器选型和短路分断能力ka 的计算方法对于电气系统的安全性和可靠性至关重要。

在实际工程中,我们需要根据具体的电路参数和要求来选择合适的断路器,并通过严格的短路分断能力ka计算,确保断路器能够有效地保护电气设备和人身安全。

我也建议在进行断路器选型和计算时,可以根据不同的应用场景和要求,进行一定程度的过载试验和短路试验,以验证其性能和可靠性。

电器开关的分断能力

电器开关的分断能力

电器开关的分断能力电器开关的分断能力开关的分断能力有36KA、50KA等规格,断路器的分断能力是指该断路器安全切断故障电流的能力(往往也是价格的决定因素),如同空调分为1P、2P。

与其额定电流无必然联系。

一般分为极限分断能力Icu和运行分断能力Ics(很多微断不分),假如Icu=60KA,那么当线路中发生60KA的故障电流,断路器可以安全切断电路,而不发生触头熔接、爆炸等异常状况。

注意做过极限分断的断路器不允许再用(往往失效了),必须更换。

而如果Ics=60KA,分断该电流后,断路器允许合闸再使用,但应急后也须更换。

现在很多好的断路器可以做到Icu=Ics。

当然,对于Icu与Ics,国家有严格的定义与相关的试验,以上只是简单说说。

一些大的系统的短路电流往往会很大,现在很多断路器的Icu都可达100KA以上。

断路器的极限短路分断能力、运行短路分断能力和短时耐受电流极限短路分断能力(Icu),是指在一定的试验参数(电压、短路电流、功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。

它的试验程序为0—t(线上)C0(“0”为分断,t为间歇时间,一般为3min,“C0”表示接通后立即分断)。

试检后要验证脱扣特性和工频耐压。

运行短路分断能力(Ics),是指在一定的试验参数(电压、短路电流和功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力,它的试验程序为0—t(线上)C0—t(线上)C0。

短时耐受电流(Icw),是指在一定的电压、短路电流、功率因数下,忍受0.05、0.1、0.25、0.5或1s而断路器不允许脱扣的能力,Icw 是在短延时脱扣时,对断路器的电动稳定性和热稳定性的考核指标,它是针对B类断路器的,通常Icw的最小值是:当In≤2500A时,它为12In或5kA,而In>2500A时,它为30kA(DW45_2000的Icw为400V、50kA,DW45_3200的Icw为400V、65kA)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

断路器的分断能力
断路器的分段能力对于断路器来说极其重要,那么什么是分段能力?又如何来选择断路器的分段能力?中国电器交易网将为你一一揭晓。

分断能力是指断路器开关的一种特殊功能。

断路器的分断能力是指该断路器安全切断故障电流的能力(往往也是价格的决定因素),与其额定电流无必然联系。

一般分为极限分断能力Icu和运行分断能力Ics(很多微断不分),假如Icu=60KA,那么当线路中发生60KA 的故障电流,断路器可以安全切断电路,而不发生触头熔接、爆炸等异常状况。

注意做过极限分断的断路器不允许再用(往往失效了),必须更换。

而如果Ics=60KA,分断该电流后,断路器允许合闸再使用,但应急后也须更换。

现在很多好的断路器可以做到Icu=Ics。

当然,对于Icu与Ics,国家有严格的定义与相关的试验,当然以上只是中国电器交易网对于分段能力的简单介绍。

下面进入正题如何选择断路器的分断能力,中国电器交易网经过详细的调查选择断路器的分断能力有两种方法:
一.按线路预期短路电流的计算来选择断路器的分断能力
精确的线路预期短路电流的计算是一项极其繁琐的工作,因此便有一些误差不很大而工程上可以被接受的简捷计算方法:
1.对于10/0.4KV电压等级的变压器,可以考虑高压侧的短路容量为无穷大(10KV侧的短路容量一般为200~400MVA甚至更大,因此按无穷大来考虑,其误差不足10%)。

2.GB50054-95《低压配电设计规范》的2.1.2条规定:“当短路点附近所接电动机的额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响”,若短路电流为30KA,取其1%,应是300A,电动机的总功率约在150KW,且是同时启动使用时此时计入的反馈电流应是6.5∑In。

3.变压器的阻抗电压UK表示变压器副边短接(路),当副边达到其额定电流时,原边电压为其额定电压的百分值。

因此当原边电压为额定电压时,副边电流就是它的预期短路电流。

4.变压器的副边额定电流=Se/1.732U式中Se为变压器的容量(KVA),Ue 为副边额定电压(空载电压),在10/0.4KV时Ue=0.4KV因此简单计算变压器的副边额定电流应是:1.44~.50Se。

5.按(3)对Uk的定义,副边的短路电流(三相短路)为I(3)对Uk的定义,副边的短路电流(三相短路)为I(3)=Ie/Uk,此值为交流有效值。

6.在相同的变压器容量下,若是两相之间短路,则I(2)=1.732I(3)/2=0.866I(3)以上计算均是变压器出线端短路时的电流值,这是最严重的短路事故。

如果短路点离变压器有一定的距离,考虑到线路阻抗,短路电流将减小。

例如SL7系列变压器(配导线为三芯铝线电缆),容量为200KVA,变压器出线端短路时,三相短路电流I(3)为7210A。

短路点离变压器的距离为100m时,短路电流I(3)降为4740A;当变压器容量为100KVA时其出线端的短路电流为3616A。

离变压器的距离为100m处短路时,短路电流为2440A。

远离100m时短路电流分别为0m的65.74%和6
7.47%。

所以,用户在设计时,应计算安装处(线路)的额定电流和该处可能出现的最大短路电流。

并按以下原则选择断路器:因此,在选择断路器上,不必把余量放得过大,以免造成浪费。

二、断路器的极限短路分断能力和运行短路分断能力
在IEC947-2和GB4048.2中对断路器极限短路分断能力和运行短路分断能
力作了如下的定义:断路器的额定极限短路分断能力(Icu):按规定的试验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力;断路器的额定运行短路分断能力(Ics):按规定的试验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力。

极限短路分断能力Icu的试验程序为OTCO。

其具体试验是:把线路的电流调整到预期的短路电流值(例如380V,50KA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50KA短路电流,断路器立即开断(OPEN 简称O)并熄灭电弧,断路器应完好,且能再合闸。

T为间歇时间(休息时间),一般为3min,此时线路处于热备状态,断路器再进行一次接通(CLOSE简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。

此程序即为CO。

断路器能完全分断,熄灭电弧,并无超出规定的损伤,就认定它的极限分断能力试验成功;断路器的运行短路分断能力(Icu)的试验程序为OTCOTCO,它比Icu的试验程序多了一次CO。

经过试验,断路器能完全分断、熄灭电弧,并无超出规定的损伤,就认定它的额定进行短路分断能力试验通过。

Icu和Ics短路分断试验后,还要进行耐压、保护特性复校等试验。

由于运行短路分断后,还要承载额定电流,所以Ics短路试验后还需增加一项温升的复测试验。

据中国电器交易网了解Icu和Ics短路或实际考核的条件不同,后者比前者更严格、更困难,因此IEC947-2和GB14048.2确定Icu有四个或三个值,分别是25%、50%、75%和100%Icu(对A类断路器即塑壳式)或50%、75%、100%Icu(对B类断路器,即万能式或框架式)。

断路器的制造厂所确定的Ics值,凡符合上述标准规定的Icu百分值都是有效的、合格的产品。

万能式断路器,绝大部分都具有过载长延时、短路短延时和短路瞬动的三段保护功能,能实现选择性保护,因此大多数主干线(包括变压器的出线端)都采用它作主开关,因为主干线切除故障电流后更换断路器要慎重,主干线停电要影响一大片用户,所以发生短路故障时要求两个CO,而且要求继续承载一段时间的额定电流,因此万能式断路器偏重于它的Icu值;而使用在支路上的塑壳式断路器,经过极限短路电流的分断和再次的合、分后,已完成其使命,它不再承载额定电流,可以更换新的(停电的影响较小),一般只注重其Ics值。

但是,无论是万能式或塑壳式断路器,都有必须具备Icu和Ics这两个重要的技术指标。

只有Ics值在两类断路器上表现略有不同,塑壳式的最小允许Ics可以是25%Icu,万能式最小允许Ics是50%Icu,有些断路器应用的设计人员,按其所计算的线路预期短路电流选择断路器时,以断路器的额定运行短路分断能力来衡量,由此判定某种断路器(此断路器的极限短路能力大于线路预期短路电流,而运行短路分断能力则低于计算电流)为不合格。

这是一个误解。

相关文档
最新文档