2018年山东省烟台市中考数学模拟试题及参考答案(Word版)

合集下载

★试卷3套精选★烟台市2018年中考数学第三次阶段模拟试题

★试卷3套精选★烟台市2018年中考数学第三次阶段模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126=. 故答案为C .【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.2.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 【答案】A【解析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确; B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.3.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒【答案】B 【解析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C .【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C ,∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°,∴∠B =∠A′B′C =65°.故选B .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.4.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1 【答案】B【解析】0.056用科学记数法表示为:0.056=-25.610⨯,故选B.5.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A .12B .13C .14D .16【答案】D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米【答案】C【解析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD >0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.7.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A .B .C .D .【答案】C【解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。

2018年山东省烟台市中考数学试卷含答案

2018年山东省烟台市中考数学试卷含答案

5.甲、乙、丙、丁 4支仪仗队队员身高的平均数及方差如下表所示:甲乙丙T平均数(cm )177178178179方差0.91.6 1.10.6C.丙D.T哪支仪仗队的身高更为整齐?A.甲B.乙6.下列说法正确的是A.367人中至少有2人生日相同( ))B. 任意掷一枚均匀的骰子,抑出的点数是偶数的概率是L3C. 天气预报说明天的降水概率为90%,则明天一定会下雨D. 某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖 _ _7.利用计算器求值时,小明将按键顺序为❷®.MOW 显示结果记为Q,❻日的显示结果记为颁Q,A. a<bB. a>bC.a = b 8. 如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,第n 个图形中有120朵玫瑰花,则n 的值为()F r ……①A.28 B.299. 对角线长分别为6和8的菱形ABCD 如图所示,点。

为对角线的交点,过点O 折叠菱形,使B, B 两点重合,MN 是折痕.若= 则OV 的长为( )b 的大小关系为( )D.不能比较按此规律摆下去,② ③C.30D.31CA.7B.6C.5D.4绝密★启用前山东省烟台市2018年初中学业水平考试数学本试卷满分150分,考试时间120分钟.驴卅*一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.--的倒数是()3A.3B.-3C.-D.-i332.在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A B C D3.2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为()A.0.827xlO14B.82.7x1012C.8.27x10"D.8.27xl0144.由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9B.llC.14D.18二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)13.(&-3.14)° + tan 60° =.14.712与最简二次根式是同类二次根式,则a =.15.如图,反比例函数y=-的图象经过ABCD 对角线的交点P,巳知点A, C , D 在X坐标轴上,BD±DC, A8CD 的面积为6,贝!H .16.如图,方格纸上每个小正方形的边长均为1个单位长度,点O, A, B, C 在格点(两条网格线的交点叫格点)上,以点。

2018年山东省烟台市中考数学试卷(解析版)

2018年山东省烟台市中考数学试卷(解析版)

2018 年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D 四个备选答案,其中有且只有一个是正确的。

1.(3 分)﹣的倒数是()A.3 B.﹣3C.D.﹣【分析】根据乘积为1 的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的倒数是﹣3,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3 分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180 度后与原图重合.3.(3 分)2018 年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54 万亿元增加到82.7 万亿元,稳居世界第二,82.7 万亿用科学记数法表示为()A.0.827×1014 B.82.7×1012 C.8.27×1013 D.8.27×1014【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:82.7 万亿=8.27×1013,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(3 分)由5 个棱长为1 的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.18【分析】由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得.【解答】解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+3=11,故选:B.【点评】本题主要考查几何体的表面积,解题的关键是掌握涂色部分是从上、前、右三个方向所涂面积相加的结果.5.(3 分)甲、乙、丙、丁4 支仪仗队队员身高的平均数及方差如下表所示:甲乙丙丁平均数(cm)177 178 178 179方差0.9 1.6 1.1 0.6哪支仪仗队的身高更为整齐?()A.甲B.乙C.丙D.丁【分析】方差小的比较整齐,据此可得.【解答】解:∵甲、乙、丙、丁4 支仪仗队队员身高的方差中丁的方差最小,∴丁仪仗队的身高更为整齐,故选:D.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3 分)下列说法正确的是()A.367 人中至少有2 人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100 张彩票一定有1 张中奖【分析】利用概率的意义和必然事件的概念的概念进行分析.【解答】解:A、367 人中至少有2 人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100 张彩票不一定有1 张中奖,错误;故选:A.【点评】此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.7.(3 分)利用计算器求值时,小明将按键顺序为显示结果记为a,的显示结果记为b.则a,b 的大小关系为()A.a<b B.a>b C.a=b D.不能比较【分析】由计算器的使用得出a、b 的值即可.【解答】解:由计算器知a=(sin30°)﹣4=16、b= =12,∴a>b,故选:B.【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握计算器的使用.8.(3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n 个图形中有120 朵玫瑰花,则n 的值为()A.28 B.29 C.30 D.31【分析】根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即可求得相应的n 的值,从而可以解答本题.【解答】解:由图可得,第n 个图形有玫瑰花:4n,令4n=120,得n=30,故选:C.【点评】本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.9.(3 分)对角线长分别为6 和8 的菱形ABCD 如图所示,点O 为对角线的交点,过点O 折叠菱形,使B,B′两点重合,MN 是折痕.若B'M=1,则CN 的长为()A.7 B.6 C.5 D.4【分析】连接AC、BD,如图,利用菱形的性质得OC= AC=3,OD= BD=4,∠COD=90°,再利用勾股定理计算出CD=5,接着证明△OBM≌△ODN 得到DN=BM,然后根据折叠的性质得BM=B'M=1,从而有DN=1,于是计算CD﹣DN 即可.【解答】解:连接AC、BD,如图,∵点O 为菱形ABCD 的对角线的交点,∴OC= AC=3,OD= BD=4,∠COD=90°,在Rt△COD 中,CD= =5,∵AB∥CD,∴∠MBO=∠NDO,在△OBM 和△ODN 中,∴△OBM≌△ODN,∴DN=BM,∵过点O 折叠菱形,使B,B′两点重合,MN 是折痕,∴BM=B'M=1,∴DN=1,∴CN=CD﹣DN=5﹣1=4.故选:D.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了菱形的性质.10.(3 分)如图,四边形ABCD 内接于⊙O,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为()A.56°B.62°C.68°D.78°【分析】由点I 是△ABC 的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I 是△ABC 的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD 内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.11.(3 分)如图,二次函数y=ax2+bx+c 的图象与x 轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3 时,y<0;④当a=1 时,将抛物线先向上平移2 个单位,再向右平移1 个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A.①③B.②③C.②④D.③④【分析】根据二次函数图象与系数之间的关系即可求出答案.【解答】解:①图象与x 轴交于点A(﹣1,0),B(3,0),∴二次函数的图象的对称轴为x= =1∴=1∴2a+b=0,故①错误;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)2=b2,故②错误;③由图可知:当﹣1<x<3 时,y<0,故③正确;④当a=1 时,∴y=(x+1)(x﹣3)=(x﹣1)2﹣4将抛物线先向上平移2 个单位,再向右平移1 个单位,得到抛物线y=(x﹣1﹣1)2﹣4+2=(x﹣2)2﹣2,故④正确;故选:D.【点评】本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型.12.(3 分)如图,矩形ABCD 中,AB=8cm,BC=6cm,点P 从点A 出发,以lcm/s 的速度沿A→D→C 方向匀速运动,同时点Q 从点A 出发,以2cm/s 的速度沿A→B→C方向匀速运动,当一个点到达点C 时,另一个点也随之停止.设运动时间为t(s),△APQ 的面积为S(cm2),下列能大致反映S 与t 之间函数关系的图象是()A. B .C.D.【分析】先根据动点P 和Q 的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4 时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,发现是开口向上的抛物线,可知:选项C、D 不正确;②当4<t≤6 时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,发现是一次函数,是一条直线,可知:选项B 不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4 时,Q 在边AB 上,P 在边AD 上,如图1,S△APQ= AP•AQ==t2,故选项C、D 不正确;②当4<t≤6 时,Q 在边BC 上,P 在边AD 上,如图2,S△APQ= AP•AB==4t,故选项B 不正确;故选:A.【点评】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3 分)(π﹣3.14)0+tan60°=1+.【分析】直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=1+.故答案为:1+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.(3 分)与最简二次根式5 是同类二次根式,则a=2.【分析】先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a 的方程,解出即可.【解答】解:∵与最简二次根式是同类二次根式,且,∴a+1=3,解得:a=2.故答案为2.【点评】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.15.(3 分)如图,反比例函数y= 的图象经过▱ABCD 对角线的交点P,已知点A,C,D 在坐标轴上,BD⊥DC,▱ABCD 的面积为6,则k=﹣3.【分析】由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.【解答】解:过点P 做PE⊥y 轴于点E∵四边形ABCD 为平行四边形∴AB=CD又∵BD⊥x 轴∴ABDO 为矩形∴AB=DO∴S 矩形ABDO=S▱ABCD=6∵P 为对角线交点,PE⊥y 轴∴四边形PDOE 为矩形面积为3即DO•EO=3∴设P 点坐标为(x,y)k=xy=﹣3故答案为:﹣3【点评】本题考查了反比例函数比例系数k 的几何意义以及平行四边形的性质.16.(3 分)如图,方格纸上每个小正方形的边长均为1 个单位长度,点O,A,B,C 在格点(两条网格线的交点叫格点)上,以点O 为原点建立直角坐标系,则过A,B,C 三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB 的垂直平分线,根据勾股定理和半径相等得出点O 的坐标即可.【解答】解:连接CB,作CB 的垂直平分线,如图所示:在CB 的垂直平分线上找到一点D,CD═DB=DA= ,所以D 是过A,B,C 三点的圆的圆心,即D 的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置.17.(3 分)已知关于x 的一元二次方程x2﹣4x+m﹣1=0 的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m 的取值范围是3<m≤5.【分析】根据根的判别式△>0、根与系数的关系列出关于m 的不等式组,通过解该不等式组,求得m 的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m 的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c 为常数,a≠0)①当b2﹣4ac>0 时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0 时,一元二次方程有两个相等的实数根,③当b2﹣4ac <0 时,一元二次方程没有实数根.18.(3 分)如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM的长为半径画弧得到扇形MON,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF,把扇形MON 的两条半径OM,ON 重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r2,则r1:r2=:2.【分析】根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.【解答】解:连OA由已知,M 为AF 中点,则OM⊥AF∵六边形ABCDEF 为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,OM=∵正六边形中心角为60°∴∠MON=120°∴扇形MON 的弧长为: a则r1= a同理:扇形DEF 的弧长为:则r2=r1:r2=故答案为::2【点评】本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题(本大题共7个小题,满分66分)19.(6 分)先化简,再求值:(1+)÷,其中x 满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式= •= •=x(x﹣2)=x2﹣2x,由x2﹣2x﹣5=0,得到x2﹣2x=5,则原式=5.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(8 分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为81°;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“微信”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】(1)用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用360°乘以“支付宝”人数所占比例即可得;(2)用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的定义求解可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.【解答】解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200 人,则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,故答案为:200、81°;(2)微信人数为200×30%=60 人,银行卡人数为200×15%=30 人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9 种等可能的结果,其中两人恰好选择同一种支付方式的有3 种,∴两人恰好选择同一种支付方式的概率为= .【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(8 分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40 千米/小时数学实践活动小组设计了如下活动:在l 上确定A,B 两点,并在AB路段进行区间测速.在l 外取一点P,作PC⊥l,垂足为点C.测得PC=30 米,∠APC=71°,∠BPC=35°.上午9 时测得一汽车从点A 到点B 用时6 秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)【分析】先求得AC=PCtan∠APC=87、BC=PCtan∠BPC=21,据此得出AB=AC﹣BC=87﹣21=66,从而求得该车通过AB 段的车速,比较大小即可得.【解答】解:在Rt△APC 中,AC=PCtan∠APC=30tan71°≈30×2.90=87,在Rt△BPC 中,BC=PCtan∠BPC=30tan35°≈30×0.70=21,则AB=AC﹣BC=87﹣21=66,∴该汽车的实际速度为=11m/s,又∵40km/h≈11.1m/s,∴该车没有超速.【点评】此题考查了解直角三角形的应用,涉及的知识有:锐角三角函数定义,熟练掌握三角函数的定义是解本题的关键.22.(9 分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B 两种不同款型,其中A 型车单价400 元,B 型车单价320 元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100 辆,总价值36800 元.试问本次试点投放的A 型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B 两车型的数量比进行投放,且投资总价值不低于184 万元.请问城区10万人口平均每100 人至少享有A 型车与B 型车各多少辆?【分析】(1)设本次试点投放的A 型车x 辆、B 型车y 辆,根据“两种款型的单车共100 辆,总价值36800 元”列方程组求解可得;(2)由(1)知A、B 型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A 型车3a辆、B 型车2a 辆,根据“投资总价值不低于184 万元”列出关于a 的不等式,解之求得a 的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A 型车x 辆、B 型车y 辆,根据题意,得:,解得:,答:本次试点投放的A 型车60 辆、B 型车40 辆;(2)由(1)知A、B 型车辆的数量比为3:2,设整个城区全面铺开时投放的A 型车3a 辆、B 型车2a 辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A 型车至少3000 辆、B 型车至少2000 辆,则城区10 万人口平均每100 人至少享有A 型车3000×=3 辆、至少享有B 型车2000×=2 辆.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程组.23.(10 分)如图,已知D,E 分别为△ABC 的边AB,BC 上两点,点A,C,E 在⊙D 上,点B,D 在⊙E 上.F 为上一点,连接FE 并延长交AC 的延长线于点N,交AB 于点M.(1)若∠EBD 为α,请将∠CAD 用含α的代数式表示;(2)若EM=MB,请说明当∠CAD 为多少度时,直线EF 为⊙D 的切线;(3)在(2)的条件下,若AD= ,求的值.【分析】(1)根据同圆的半径相等和等边对等角得:∠EDB=∠EBD=α,∠CAD=∠ACD,∠DCE=∠DEC=2α,再根据三角形内角和定理可得结论;(2)设∠MBE=x,同理得:∠EMB=∠MBE=x,根据切线的性质知:∠DEF=90°,所以∠CED+∠MEB=90°,同理根据三角形内角和定理可得∠CAD=45°;(3)由(2)得:∠CAD=45°;根据(1)的结论计算∠MBE=30°,证明△CDE 是等边三角形,得CD=CE=DE=EF=AD= ,求EM=1,MF=EF﹣EM=﹣1,根据三角形内角和及等腰三角形的判定得:EN=CE= ,代入化简可得结论.【解答】解:(1)连接CD、DE,⊙E 中,∵ED=EB,∴∠EDB=∠EBD=α,∴∠CED=∠EDB+∠EBD=2α,⊙D 中,∵DC=DE=AD,∴∠CAD=∠ACD,∠DCE=∠DEC=2α,△ACB 中,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴∠CAD= = ;(2)设∠MBE=x,∵EM=MB,∴∠EMB=∠MBE=x,当EF 为⊙D 的切线时,∠DEF=90°,∴∠CED+∠MEB=90°,∴∠CED=∠DCE=90°﹣x,△ACB 中,同理得,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴2∠CAD=180°﹣90∴=90∴,∴∠CAD=45°;(3)由(2)得:∠CAD=45°;由(1)得:∠CAD= ;∴∠MBE=30°,∴∠CED=2∠MBE=60°,∵CD=DE,∴△CDE 是等边三角形,∴CD=CE=DE=EF=AD= ,Rt△DEM 中,∠EDM=30°,DE= ,∴EM=1,MF=EF﹣EM=﹣1,△ACB 中,∠NCB=45°+30°=75°,△CNE 中,∠CEN=∠BEF=30°,∴∠CNE=75°,∴∠CNE=∠NCB=75°,∴EN=CE= ,∴= = =2+.【点评】本题考查三角形内角和定理、三角形的外角的性质、等腰三角形的性质和判定等知识,解题的关键是学会利用三角形角之间的关系确定边的关系,学会构建方程解决问题,属于中考常考题型.24.(11 分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P 是正方形ABCD 内一点,PA=1,PB=2,PC=3.你能求出∠APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC 绕点B 逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB 的度数;思路二:将△APB 绕点B 顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P 是正方形ABCD 外一点,PA=3,PB=1,PC= ,求∠APB 的度数.【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【解答】解:(1)思路一、如图1,将△BPC 绕点B 逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'= BP=2 ,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;思路二、同思路一的方法;(2)如图2,将△BPC 绕点B 逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP= ,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'= BP= ,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.【点评】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.25.(14 分)如图1,抛物线y=ax2+2x+c 与x 轴交于A(﹣4,0),B(1,0)两点,过点B 的直线y=kx+分别与y 轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P 从点O 出发,在x 轴的负半轴上以每秒1 个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4 个单位后,与x 轴,y 轴分别交于E,F 两点,在抛物线的对称轴上是否存在点M,在直线EF 上是否存在点N,使DM+MN 的值最小?若存在,求出其最小值及点M,N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE⊥x 轴、DF⊥y 轴,分P1D⊥P1C、P2D⊥DC、P3C⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.【解答】解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得,解得:,∴抛物线解析式为:y= ,∵过点B 的直线y=kx+,∴代入(1,0),得:k=﹣,∴BD 解析式为y=﹣;(2)由得交点坐标为D(﹣5,4),如图1,过D 作DE⊥x 轴于点E,作DF⊥y 轴于点F,当P1D⊥P1C 时,△P1DC 为直角三角形,则△DEP1∽△P1OC,∴= ,即= ,解得t= ,当P2D⊥DC 于点D 时,△P2DC 为直角三角形由△P2DB∽△DEB 得= ,即= ,解得:t= ;当P3C⊥DC 时,△DFC∽△COP3,∴= ,即= ,解得:t= ,∴t 的值为、、.(3)由已知直线EF 解析式为:y=﹣x﹣,在抛物线上取点D 的对称点D′,过点D′作D′N⊥EF 于点N,交抛物线对称轴于点M过点N 作NH⊥DD′于点H,此时,DM+MN=D′N最小.则△EOF∽△NHD′设点N 坐标为(a,﹣),∴= ,即= ,解得:a=﹣2,则N 点坐标为(﹣2,﹣2),求得直线ND′的解析式为y= x+1,当x=﹣时,y=﹣,∴M 点坐标为(﹣,﹣),此时,DM+MN 的值最小为= =2 .【点评】本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.。

2018年烟台市中考数学预测试题及答案

2018年烟台市中考数学预测试题及答案

2018年烟台市中考数学预测试题及答案(试卷满分120分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.数a 的相反数是( )A .|a|B .C .﹣aD .2.下列运算正确的是( ) C A .a•a 3=a 3B .(ab )3=a 3bC .(a 3)2=a 6D .a 8÷a 4=a 23.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是( )A .4B .5C .6D .74.在下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .5.如图,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB =6,AC =4,则四边形AEDF 的周长是( )A .10B .20C .30D .406.一元二次方程2x 2-3x +1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根7. 如右图,⊙O 的半径OD⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E , 连接EC.若AB =8,CD =2,则sin ∠ECB 为( ) A. 35 B. 31313 C. 23 D. 213138.对于二次函数y=(x+1)2﹣3,下列说法正确的是( )D A .图象开口方向向下B .图象与y 轴的交点坐标是(0,﹣3)C .图象的顶点坐标为(1,﹣3)D .抛物线在x >﹣1的部分是上升的9.不等式组的解集在数轴上可表示为( )BA .B .C .D .10. 如图,一次函数y=x+3的图象与x 轴,y 轴交于A ,B 两点,与反比例函数的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论: ①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC=BD .其中正确的结论是( )C A .①② B .①②③ C .①②③④ D .②③④二、填空题(本题共6题,每小题4分,共24分)11.PM 2.5造成的损失巨大,治理的花费更大.我国每年因为空气污染造成的经济损失高达约5659亿元.将5659亿元用科学计数法表示为 亿元.12.已知6,3,m n a a ==则2m n a += .13.直线l 1∥l 2,一块含45°角的直角三角板如右图放置,∠1=85°,则∠2= .14.若式子x -2在实数范围内有意义,则x 的取值范围是 . 15.如右图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,若∠C=15°,AB=4cm ,则⊙O 半径为 cm .16.观察下列等式:1×2=31×(1×2×3﹣0×1×2) 2×3=31×(2×3×4﹣1×2×3)3×4=31×(3×4×5﹣2×3×4)…计算:3×[1×2+2×3+3×4+…+n(n+1)]= ___ ____ _ 三、解答题(一)(本题共3题,每小题6分,共18分)17.(1)﹣0﹣4cos45°+(﹣3)218.解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2), x -12<x 3,并写出不等式组的整数解.19.如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB )是1.7m ,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M 在同一条直线上,测得旗杆顶端M 仰角为45°;小红眼睛与地面的距离(CD )是1.5m ,用同样的方法测得旗杆顶端M 的仰角为30°.两人相距28米且位于旗杆两侧(点B 、N 、D 在同一条直线上).求出旗杆MN 的高度.(参考数据:,,结果保留整数.)四、解答题(二)(本大题3小题,每小题8分,共24分)20.若中学生体质健康综合评定成绩为x 分,满分为100分.规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;a= %;C 级对应的圆心角为 度. (2)补全条形统计图;(3)若该校共有2000名学生,请你估计该校D 级学生有多少名?21.一次函数y =kx +b 的图象与两坐标轴分别交于A (2,0),B (0,-1)两点.(1)求k 、b ;(2)P 为该一次函数图象上一点,过P 作PQ ⊥x 轴,垂足为Q .若S △PAQ =4,求点P 的坐标. 22.(1)问题发现如图1,△ABC 和△ADE 均为等边三角形,点D 在边BC 上,连接CE .请填空: ①∠ACE 的度数为 ;②线段AC 、CD 、CE 之间的数量关系为 . (2)拓展探究如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC=∠DAE=90°,点D 在边BC 上,连接CE .请 判断∠ACE 的度数及线段AC 、CD 、CE 之间的数量关系,并说明理由. (3)解决问题如图3,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC 与BD 交于点E ,请直接写出线段AC 的长度.五、解答题(三)(本大题2小题,每小题12分,共24分)23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 与边AB 、BC 分别交于点D 、E .过E 的直线与⊙O 相切,与AC 的延长线交于点G ,与AB 交于点F . (1)求证:△BDE 为等腰三角形; (2)求证:GF⊥AB;(3)若⊙O 半径为3,DF =1,求CG 的长.B24.如图,抛物线213922y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,联结BC 、AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作BC 的平 行线交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式, 并写出自变量m 的取值范围;(3)在(2)的条件下,联结CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).参考答案:一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.C2.C3.B4.B5.A6.B7.B8.D9.B 10.C二、填空题(本题共6题,每小题4分,共24分)11. 5.659×103 12. 54 13.40° 14. x≥2 15. 4 16. n(n+1)(n+2)三、解答题(一)(本题共3题,每小题6分,共18分)17.解:(1)﹣0﹣4cos45°+(﹣3)2===8;18.解:解不等式①,得x≥-1,解不等式②,得x<3;∴不等式的解集是-1≤x<3不等式组的整数解是-1,0,1,2.19. 解:如图,过点A作AE⊥MN于E,过点C作CF⊥MN于F,则EF=AB﹣CD=1.7﹣1.5=0.2(m),在Rt△AEM中,∵∠AEM=90°,∠MAE=45°,∴AE=ME.设AE=ME=xm,则MF=(x+0.2)m,FC=(28﹣x)m.在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,∴MF=CF•tan∠MCF,∴x+0.2=(28﹣x),解得x≈9.7,∴MN=ME+EN=9.7+1.7≈11米.答:旗杆MN的高度约为11米.四、解答题(二)(本大题3小题,每小题8分,共24分)20.解:(1)在这次调查中,一共抽取的学生数是: =50(人),a=×100%=24%;扇形统计图中C 级对应的圆心角为×360°=72°;故答案为:50,24,72; (2)补全条形统计图如图.(3)∵2000×=160名∴若该校共有2000名学生,估计该校D 级学生有160名.21. 解:(1)由A (2,0)B (0,-1)得⎩⎨⎧0=2k +b ,-1=b .∴ ⎩⎪⎨⎪⎧k =12,b =-1.(2)由y =12x -1,可设P 1(x ,12x -1), ∴ AQ =x -2,P 1Q 1=12x -1. ∴ (x -2)(12x -1)=4×2. x 1=-2(舍),x 2=6. ∴ P 1(6,2). ∵ △P 2Q 2A ≌△P 1Q 1A , ∴ A Q 2=AQ 1=4. ∴ OQ =2. ∴ P 2(-2,-2).∴ P 1(6,2),P 2(-2,-2).22.解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF 是等腰直角三角形, 由(2)得: AC=BC+CD ,∴AC===.五、解答题(三)(本大题2小题,每小题12分,共24分) 23.(1)∵四边形ACED 是⊙O 的内接四边形,∴∠ACB+∠ADE=180°。

2018年山东省烟台市中考数学试卷及解析

2018年山东省烟台市中考数学试卷及解析

2018年山东省烟台市中考数学试卷及解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。

1.(3分)﹣的倒数是()A.3 B.﹣3 C.D.﹣【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的倒数是﹣3,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82。

7万亿元,稳居世界第二,82。

7万亿用科学记数法表示为()A.0。

827×1014B.82.7×1012C.8。

27×1013 D.8.27×1014【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8。

27×1013,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.18【分析】由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得.【解答】解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+3=11,故选:B.【点评】本题主要考查几何体的表面积,解题的关键是掌握涂色部分是从上、前、右三个方向所涂面积相加的结果.5.(3分)甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:甲乙丙丁平均数(cm)177178178179方差0。

最新-2018年山东烟台市中招考试数学试题卷及答案【word版】 精品

最新-2018年山东烟台市中招考试数学试题卷及答案【word版】 精品

2018年烟台市中考数学试题(时间120分钟满分150分)一、选择题(本题共 12 个小题,每小题 4 分,满分 48 分)1、12-的相反数是()BA、12B、12- C、2 D、2-2、下列交通标志中,不是轴对称图形的是()C3、如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置立方体的个数,则这个几何体的主视图是()A4、如图,小明从A 处出发沿北偏东60°向行走至B处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是()AA、右转80°B、左传80°C、右转100°D、左传100°5、正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针旋转90°后,B点的坐标为()DA、(-2,2)B、(4,1)C、(3,1)D、(4,0)6、关于不等式22x a -+≥的解集如图所示,a 的值是( )AA 、0B 、2C 、-2D 、-47、已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是( )D A 、ab B 、abC 、a b +D 、a b -8、已知2,2a b = )C A 、3 B 、4 C 、5 D 、69、如图,水平地面上有一面积为230cm π的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )CA 、20cmB 、24cmC 、10cm πD 、30cm π10、在反比例函数12my x -=的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是( )CA 、0m <B 、0m >C 、12m <D 、12m > 11、如图,四幅图象分别表示变量之间的关系,请按图象..的顺序,将下面的四种情境与之对应排序.① ② ③ ④ .a 运动员推出去的铅球(铅球的高度与时间的关系).b 静止的小车从光滑的斜面滑下(小车的速度与时间的关系).c 一个弹簧由不挂重物到所挂重物的质量逐渐增加(弹簧的长度与所挂重物的质量的关系).d 小明从A 地到B 地后,停留一段时间,然后按原速度原路返回(小明离A 地的距离与时间的关系) 正确的顺序是( )DA 、abcdB 、adbcC 、acbdD 、acdb12、如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( )AA 、b a c =+B 、b ac =C 、222b a c =+D 、22b a c ==二、填空题(本题共6个小题,每小题 4 分,满分24分)13、2018 年 5 月 12 日,我国四川省坟川县发生了里氏 8.0级特大地震.地动天不塌,大震有大爱.地震发生后一周,我国接受国内外捐赠的款物共118 . 34亿元,118.34 亿元用科学记数法表示是________元.101.083410⨯14、请选择一组,a b 的值,写出一个关于x 的形如2ab x =-的分式方程,使它的解是0x =,这样的分式方程可以是______________.答案不唯一,如212x -=- 15、七(1)班四个绿化小组植树的棵树如下:10,10,x ,8,已知这组数据的众数和平均数相等,那么这组数据的中位数是_______棵. 1016、红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_______2.cm17、表2是从表1中截取的一部分,则_____.a =1818、如图是某工程队在“村村通”工程中,修筑的公路长度y (米)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是______米.518三、解答题(本大题共8小题,满分78分) 19、(本题满分6分) 已知()()213x x x y ---=-,求222x y xy +-的值.20、(本题满分8分)某地震救援队探测出某建筑物废墟下方点 C 处有生命迹象,已知废墟一侧地面上两探测点A 、B 相距 3 米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度.(结果精确到0.1米,参考数据:1.41 1.73≈≈)21、(本题满分8分)为了减轻学生的作业负担,烟台市教育局规定:初中学段学生每晚的作业总量不超过1.5小时.一个月后,九(1)班学习委员亮亮对本班每位同学晚上完成作业的时间进行了一次通缉,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)该班共有多少名学生?(2)将①的条形图补充完整.(3)计算出作业完成时间在0.5~1小时的部分对应的扇形圆心角.(4)完成作业时间的中位数在哪个时间段内?(5)如果九年级共有500名学生,请估计九年级学生完成作业时间超过1.5小时的有多少人?22、(本题满分8分)据研究,当洗衣机中洗衣粉的含量在0.2%~0.5%之间时,衣服的洗涤效果较好,因为这时表面活性较大.现将4.94kg的衣服放入最大容量为15kg的洗衣机中,欲使洗衣机中洗衣粉的含量达到0.4%,那么洗衣机中需要加入多少千克水,多少匙洗衣粉?(1匙洗衣粉约0.18kg,假设洗衣机以最大容量洗涤)23、(本题满分10分)如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(),x y 落在第二象限内的概率;(2)直接写出点(),x y 落在函数1y x=-图象上的概率.或根据题意,画表格24、(本题满分10分)如图,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC 于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.25、(本题满分14分)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.25、(本题满分14分)如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由; (3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.。

【精编】山东省烟台市2018年中考数学试题(含解析)

【精编】山东省烟台市2018年中考数学试题(含解析)

2018年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。

1.(3分)﹣的倒数是()A.3 B.﹣3 C.D.﹣2.(3分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A. B.C.D.3.(3分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为()A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×10144.(3分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.185.(3分)甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:A.甲B.乙C.丙D.丁6.(3分)下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖7.(3分)利用计算器求值时,小明将按键顺序为显示结果记为a,的显示结果记为b.则a,b的大小关系为()A.a<b B.a>b C.a=b D.不能比较8.(3分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28 B.29 C.30 D.319.(3分)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A.7 B.6 C.5 D.410.(3分)如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°11.(3分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x ﹣2)2﹣2.其中正确的是()A.①③B.②③C.②④D.③④12.(3分)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s 的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)(π﹣3.14)0+tan60°=.14.(3分)与最简二次根式5是同类二次根式,则a= .15.(3分)如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k= .16.(3分)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.17.(3分)已知关于x 的一元二次方程x 2﹣4x+m ﹣1=0的实数根x 1,x 2,满足3x 1x 2﹣x 1﹣x 2>2,则m 的取值范围是 .18.(3分)如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2= .三、解答题(本大题共7个小题,满分66分)19.(6分)先化简,再求值:(1+)÷,其中x 满足x 2﹣2x ﹣5=0.20.(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“ ”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.21.(8分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)22.(9分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?23.(10分)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD=,求的值.24.(11分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.25.(14分)如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.2018年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。

2018年山东省烟台市中考数学试卷及解析

2018年山东省烟台市中考数学试卷及解析

2018年山东省烟台市中考数学试卷及解析一、选择题(本题共 个小题,每小题 分,满分 分✆每小题都给出标号为✌, , , 四个备选答案,其中有且只有一个是正确的。

.( 分)﹣的倒数是()✌. .﹣ . .﹣【分析】根据乘积为 的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的倒数是﹣ ,故选: .【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键..( 分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是()✌. . . .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:✌、是轴对称图形,不是中心对称图形,故此选项错误; 、是轴对称图形,也是中心对称图形,故此选项错误;、不是轴对称图形,是中心对称图形,故此选项正确;、是轴对称图形,也是中心对称图形,故此选项错误.故选: .【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转  度后与原图重合..( 分)  年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从 万亿元增加到  万亿元,稳居世界第二,  万亿用科学记数法表示为()✌.  ×  .  × .  ×  .  × 【分析】科学记数法的表示形式为♋× ⏹的形式,其中 ≤ ♋< ,⏹为整数.确定⏹的值时,要看把原数变成♋时,小数点移动了多少位,⏹的绝对值与小数点移动的位数相同.当原数绝对值> 时,⏹是正数;当原数的绝对值< 时,⏹是负数.【解答】解:  万亿  × ,故选: .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为♋× ⏹的形式,其中 ≤ ♋< ,⏹为整数,表示时关键要正确确定♋的值以及⏹的值..( 分)由 个棱长为 的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()✌. .  .  . 【分析】由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得.【解答】解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为 ,故选: .【点评】本题主要考查几何体的表面积,解题的关键是掌握涂色部分是从上、前、右三个方向所涂面积相加的结果..( 分)甲、乙、丙、丁 支仪仗队队员身高的平均数及方差如下表所示:甲乙丙丁平均数(♍❍)    方差   哪支仪仗队的身高更为整齐?()✌.甲 .乙 .丙 .丁【分析】方差小的比较整齐,据此可得.【解答】解:∵甲、乙、丙、丁 支仪仗队队员身高的方差中丁的方差最小,∴丁仪仗队的身高更为整齐,故选: .【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定..( 分)下列说法正确的是()✌. 人中至少有 人生日相同.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是.天气预报说明天的降水概率为 ,则明天一定会下雨.某种彩票中奖的概率是 ,则买 张彩票一定有 张中奖【分析】利用概率的意义和必然事件的概念的概念进行分析.【解答】解:✌、 人中至少有 人生日相同,正确;、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;、天气预报说明天的降水概率为 ,则明天不一定会下雨,错误;、某种彩票中奖的概率是 ,则买 张彩票不一定有 张中奖,错误;故选:✌.【点评】此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念..( 分)利用计算器求值时,小明将按键顺序为显示结果记为♋,的显示结果记为♌.则♋,♌的大小关系为()✌.♋<♌ .♋>♌ .♋♌ .不能比较【分析】由计算器的使用得出♋、♌的值即可.【解答】解:由计算器知♋(♦♓⏹ )﹣ 、♌ ,∴♋>♌,故选: .【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握计算器的使用..( 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第⏹个图形中有 朵玫瑰花,则⏹的值为()✌. . . . 【分析】根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为 ,即可求得相应的⏹的值,从而可以解答本题.【解答】解:由图可得,第⏹个图形有玫瑰花: ⏹,令 ⏹ ,得⏹ ,故选: .【点评】本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律..( 分)对角线长分别为 和 的菱形✌如图所示,点 为对角线的交点,过点 折叠菱形,使 , 两点重合, ☠是折痕.若  ,则 ☠的长为()✌. . . .【分析】连接✌、 ,如图,利用菱形的性质得 ✌ ,   ,∠  ,再利用勾股定理计算出 ,接着证明△ ≌△ ☠得到 ☠,然后根据折叠的性质得  ,从而有 ☠ ,于是计算 ﹣ ☠即可.【解答】解:连接✌、 ,如图,∵点 为菱形✌的对角线的交点,∴ ✌ ,   ,∠  ,在 ♦△ 中,  ,∵✌∥ ,∴∠ ∠☠,在△ 和△ ☠中,∴△ ≌△ ☠,∴ ☠,∵过点 折叠菱形,使 , 两点重合, ☠是折痕,∴  ,∴ ☠ ,∴ ☠﹣ ☠﹣ .故选: .【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了菱形的性质..( 分)如图,四边形✌内接于⊙ ,点✋是△✌的内心,∠✌✋ ,点☜在✌的延长线上,则∠ ☜的度数为()✌.  .  . . 【分析】由点✋是△✌的内心知∠ ✌∠✋✌、∠✌∠✋✌,从而求得∠   ﹣(∠ ✌∠✌)  ﹣ (  ﹣∠✌✋),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点✋是△✌的内心,∴∠ ✌∠✋✌、∠✌∠✋✌,∵∠✌✋ ,∴∠   ﹣(∠ ✌∠✌) ﹣ (∠✋✌∠✋✌) ﹣ (  ﹣∠✌✋) ,又四边形✌内接于⊙ ,∴∠ ☜∠  ,故选: .【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质..( 分)如图,二次函数⍓♋⌧ ♌⌧♍的图象与⌧轴交于点✌(﹣ , ), ( , ).下列结论:① ♋﹣♌;②(♋♍) <♌ ;③当﹣ <⌧< 时,⍓< ;④当♋ 时,将抛物线先向上平移 个单位,再向右平移 个单位,得到抛物线⍓(⌧﹣ ) ﹣ .其中正确的是()✌.①③ .②③ .②④ .③④【分析】根据二次函数图象与系数之间的关系即可求出答案.【解答】解:①图象与⌧轴交于点✌(﹣ , ), ( , ),∴二次函数的图象的对称轴为⌧∴∴ ♋♌,故①错误;②令⌧﹣ ,∴⍓♋﹣♌♍,∴♋♍♌,∴(♋♍) ♌ ,故②错误;③由图可知:当﹣ <⌧< 时,⍓< ,故③正确;④当♋ 时,∴⍓(⌧ )(⌧﹣ ) (⌧﹣ ) ﹣将抛物线先向上平移 个单位,再向右平移 个单位,得到抛物线⍓(⌧﹣ ﹣ ) ﹣ (⌧﹣ ) ﹣ ,故④正确;故选: .【点评】本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型..( 分)如图,矩形✌中,✌ ♍❍, ♍❍,点 从点✌出发,以●♍❍♦的速度沿✌❼❼方向匀速运动,同时点✈从点✌出发,以 ♍❍♦的速度沿✌❼❼方向匀速运动,当一个点到达点 时,另一个点也随之停止.设运动时间为♦(♦),△✌✈的面积为 (♍❍ ),下列能大致反映 与♦之间函数关系的图象是()✌. .. .【分析】先根据动点 和✈的运动时间和速度表示:✌♦,✌✈♦,①当 ≤♦≤ 时,✈在边✌上, 在边✌上,如图 ,计算 与♦的关系式,发现是开口向上的抛物线,可知:选项 、 不正确;②当 <♦≤ 时,✈在边 上, 在边✌上,如图 ,计算 与♦的关系式,发现是一次函数,是一条直线,可知:选项 不正确,从而得结论.【解答】解:由题意得:✌♦,✌✈♦,①当 ≤♦≤ 时,✈在边✌上, 在边✌上,如图 ,△✌✈ ✌❿✌✈ ♦ ,故选项 、 不正确;②当 <♦≤ 时,✈在边 上, 在边✌上,如图 ,△✌✈ ✌❿✌ ♦,故选项 不正确;故选:✌.【点评】本题考查了动点问题的函数图象,根据动点 和✈的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出 与♦的函数关系式.二、填空题(本大题共 个小题,每小题 分,满分 分✆.( 分)(⇨﹣ ) ♦♋⏹ .【分析】直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式 .故答案为: .【点评】此题主要考查了实数运算,正确化简各数是解题关键..( 分)与最简二次根式 是同类二次根式,则♋ .【分析】先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于♋的方程,解出即可.【解答】解:∵与最简二次根式是同类二次根式,且,∴♋ ,解得:♋.故答案为 .【点评】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式..( 分)如图,反比例函数⍓的图象经过 ✌对角线的交点 ,已知点✌, , 在坐标轴上, ⊥ , ✌的面积为 ,则 ﹣ .【分析】由平行四边形面积转化为矩形 ✌面积,在得到矩形 ☜面积,应用反比例函数比例系数 的意义即可.【解答】解:过点 做 ☜⊥⍓轴于点☜∵四边形✌为平行四边形∴✌又∵ ⊥⌧轴∴✌为矩形∴✌ ✌ ∴矩形✌∵ 为对角线交点, ☜⊥⍓轴∴四边形 ☜为矩形面积为即 ❿☜∴设 点坐标为(⌧,⍓)⌧⍓﹣故答案为:﹣【点评】本题考查了反比例函数比例系数 的几何意义以及平行四边形的性质..( 分)如图,方格纸上每个小正方形的边长均为 个单位长度,点 ,✌, , 在格点(两条网格线的交点叫格点)上,以点 为原点建立直角坐标系,则过✌, , 三点的圆的圆心坐标为(﹣ ,﹣ ).【分析】连接 ,作 的垂直平分线,根据勾股定理和半径相等得出点 的坐标即可.【解答】解:连接 ,作 的垂直平分线,如图所示:在 的垂直平分线上找到一点 ,═ ✌,所以 是过✌, , 三点的圆的圆心,即 的坐标为(﹣ ,﹣ ),故答案为:(﹣ ,﹣ ),【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置..( 分)已知关于⌧的一元二次方程⌧ ﹣ ⌧❍﹣ 的实数根⌧ ,⌧ ,满足 ⌧ ⌧ ﹣⌧ ﹣⌧ > ,则❍的取值范围是 <❍≤ .【分析】根据根的判别式△> 、根与系数的关系列出关于❍的不等式组,通过解该不等式组,求得❍的取值范围.【解答】解:依题意得:,解得 <❍≤ .故答案是: <❍≤ .【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于❍的不等式,注意:一元二次方程♋⌧ ♌⌧♍(♋、♌、♍为常数,♋≠ )①当♌ ﹣ ♋♍> 时,一元二次方程有两个不相等的实数根,②当♌ ﹣ ♋♍时,一元二次方程有两个相等的实数根,③当♌ ﹣ ♋♍< 时,一元二次方程没有实数根..( 分)如图,点 为正六边形✌☜☞的中心,点 为✌☞中点,以点 为圆心,以 的长为半径画弧得到扇形 ☠,点☠在 上;以点☜为圆心,以 ☜的长为半径画弧得到扇形 ☜☞,把扇形 ☠的两条半径 , ☠重合,围成圆锥,将此圆锥的底面半径记为❒ ;将扇形 ☜☞以同样方法围成的圆锥的底面半径记为❒ ,则❒ :❒ : .【分析】根据题意正六边形中心角为 且其内角为 .求出两个扇形圆心角,表示出扇形半径即可.【解答】解:连 ✌由已知, 为✌☞中点,则 ⊥✌☞∵六边形✌☜☞为正六边形∴∠✌ 设✌♋∴✌✌♋, ∵正六边形中心角为 ∴∠ ☠ ∴扇形 ☠的弧长为:♋则❒ ♋同理:扇形 ☜☞的弧长为:则❒❒ :❒故答案为::【点评】本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题(本大题共 个小题 满分 分✆.( 分)先化简,再求值:( )÷,其中⌧满足⌧ ﹣ ⌧﹣ .【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式 ❿ ❿ ⌧(⌧﹣ ) ⌧ ﹣ ⌧,由⌧ ﹣ ⌧﹣ ,得到⌧ ﹣ ⌧,则原式 .【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键..( 分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:( )这次活动共调查了 人;在扇形统计图中,表示❽支付宝❾支付的扇形圆心角的度数为  ;( )将条形统计图补充完整.观察此图,支付方式的❽众数❾是❽微信❾;( )在一次购物中,小明和小亮都想从❽微信❾、❽支付宝❾、❽银行卡❾三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】( )用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用 乘以❽支付宝❾人数所占比例即可得;( )用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的定义求解可得;( )首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.【解答】解:( )本次活动调查的总人数为(  )÷( ﹣ ﹣ ) 人,则表示❽支付宝❾支付的扇形圆心角的度数为 ×  ,故答案为: 、  ;( )微信人数为 × 人,银行卡人数为 ×  人,补全图形如下:由条形图知,支付方式的❽众数❾是❽微信❾,故答案为:微信;( )将微信记为✌、支付宝记为 、银行卡记为 ,画树状图如下:画树状图得:∵共有 种等可能的结果,其中两人恰好选择同一种支付方式的有 种,∴两人恰好选择同一种支付方式的概率为 .【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率 所求情况数与总情况数之比..( 分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路●,其间设有区间测速,所有车辆限速 千米 小时数学实践活动小组设计了如下活动:在●上确定✌, 两点,并在✌路段进行区间测速.在●外取一点 ,作 ⊥●,垂足为点 .测得  米,∠✌  ,∠  .上午 时测得一汽车从点✌到点 用时 秒,请你用所学的数学知识说明该车是否超速.(参考数据:♦♓⏹ ≈  ,♍☐♦ ≈  ,♦♋⏹ ≈  ,♦♓⏹  ≈  ,♍☐♦ ≈  ,♦♋⏹ ≈  )【分析】先求得✌♦♋⏹∠✌ 、 ♦♋⏹∠  ,据此得出✌✌﹣  ﹣ ,从而求得该车通过✌段的车速,比较大小即可得.【解答】解:在 ♦△✌中,✌♦♋⏹∠✌ ♦♋⏹ ≈ ×   ,在 ♦△ 中, ♦♋⏹∠  ♦♋⏹ ≈ ×   ,则✌✌﹣  ﹣ ,∴该汽车的实际速度为 ❍♦,又∵ ❍♒≈  ❍♦,∴该车没有超速.【点评】此题考查了解直角三角形的应用,涉及的知识有:锐角三角函数定义,熟练掌握三角函数的定义是解本题的关键..( 分)为提高市民的环保意识,倡导❽节能减排,绿色出行❾,某市计划在城区投放一批❽共享单车❾这批单车分为✌, 两种不同款型,其中✌型车单价 元, 型车单价 元.( )今年年初,❽共享单车❾试点投放在某市中心城区正式启动.投放✌, 两种款型的单车共 辆,总价值 元.试问本次试点投放的✌型车与 型车各多少辆?( )试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中✌, 两车型的数量比进行投放,且投资总价值不低于 万元.请问城区 万人口平均每 人至少享有✌型车与 型车各多少辆?【分析】( )设本次试点投放的✌型车⌧辆、 型车⍓辆,根据❽两种款型的单车共 辆,总价值 元❾列方程组求解可得;( )由( )知✌、 型车辆的数量比为 : ,据此设整个城区全面铺开时投放的✌型车 ♋辆、 型车 ♋辆,根据❽投资总价值不低于 万元❾列出关于♋的不等式,解之求得♋的范围,进一步求解可得.【解答】解:( )设本次试点投放的✌型车⌧辆、 型车⍓辆,根据题意,得:,解得:,答:本次试点投放的✌型车 辆、 型车 辆;( )由( )知✌、 型车辆的数量比为 : ,设整个城区全面铺开时投放的✌型车 ♋辆、 型车 ♋辆,根据题意,得: ♋× ♋× ≥  ,解得:♋≥ ,即整个城区全面铺开时投放的✌型车至少 辆、 型车至少 辆,则城区 万人口平均每 人至少享有✌型车 × 辆、至少享有 型车 × 辆.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程组..( 分)如图,已知 ,☜分别为△✌的边✌, 上两点,点✌, ,☜在⊙ 上,点 , 在⊙☜上.☞为上一点,连接☞☜并延长交✌的延长线于点☠,交✌于点 .( )若∠☜为↑,请将∠ ✌用含↑的代数式表示;( )若☜,请说明当∠ ✌为多少度时,直线☜☞为⊙ 的切线;( )在( )的条件下,若✌,求的值.【分析】( )根据同圆的半径相等和等边对等角得:∠☜∠☜↑,∠ ✌∠✌,∠ ☜∠ ☜↑,再根据三角形内角和定理可得结论;( )设∠ ☜⌧,同理得:∠☜∠ ☜⌧,根据切线的性质知:∠ ☜☞ ,所以∠ ☜∠ ☜ ,同理根据三角形内角和定理可得∠ ✌ ;( )由( )得:∠ ✌ ;根据( )的结论计算∠ ☜ ,证明△ ☜是等边三角形,得 ☜☜☜☞✌,求☜ , ☞☜☞﹣☜﹣ ,根据三角形内角和及等腰三角形的判定得:☜☠☜,代入化简可得结论.【解答】解:( )连接 、 ☜,⊙☜中,∵☜☜,∴∠☜∠☜↑,∴∠ ☜∠☜∠☜↑,⊙ 中,∵ ☜✌,∴∠ ✌∠✌,∠ ☜∠ ☜↑,△✌中,∠ ✌∠✌∠ ☜∠☜  ,∴∠ ✌ ;( )设∠ ☜⌧,∵☜,∴∠☜∠ ☜⌧,当☜☞为⊙ 的切线时,∠ ☜☞ ,∴∠ ☜∠ ☜ ,∴∠ ☜∠ ☜ ﹣⌧,△✌中,同理得,∠ ✌∠✌∠ ☜∠☜  ,∴ ∠ ✌  ﹣ ∴ ∴,∴∠ ✌ ;( )由( )得:∠ ✌ ;由( )得:∠ ✌;∴∠ ☜ ,∴∠ ☜∠ ☜,∵ ☜,∴△ ☜是等边三角形,∴ ☜☜☜☞✌,♦△ ☜中,∠☜ , ☜,∴☜ , ☞☜☞﹣☜﹣ ,△✌中,∠☠   ,△ ☠☜中,∠ ☜☠∠ ☜☞ ,∴∠ ☠☜ ,∴∠ ☠☜∠☠ ,∴☜☠☜,∴ .【点评】本题考查三角形内角和定理、三角形的外角的性质、等腰三角形的性质和判定等知识,解题的关键是学会利用三角形角之间的关系确定边的关系,学会构建方程解决问题,属于中考常考题型..( 分)【问题解决】一节数学课上,老师提出了这样一个问题:如图 ,点 是正方形✌内一点, ✌ , ,  .你能求出∠✌的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△ 绕点 逆时针旋转 ,得到△ ✌,连接 ,求出∠✌的度数;思路二:将△✌绕点 顺时针旋转 ,得到△ ,连接 ,求出∠✌的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图 ,若点 是正方形✌外一点, ✌ ,  , ,求∠✌的度数.【分析】( )思路一、先利用旋转求出∠  , ,✌ ,利用勾股定理求出 ,进而判断出△✌是直角三角形,得出∠✌ ,即可得出结论;思路二、同思路一的方法即可得出结论;( )同( )的思路一的方法即可得出结论.【解答】解:( )思路一、如图 ,将△ 绕点 逆时针旋转 ,得到△ ✌,连接 ,∴△✌≌△ ,∴∠  , ,✌ ,在 ♦△ 中, ,∴∠  ,根据勾股定理得,  ,∵✌ ,∴✌  ,∵✌ ,∴✌  ✌ ,∴△✌是直角三角形,且∠✌ ,∴∠✌∠✌∠     ;思路二、同思路一的方法;( )如图 ,将△ 绕点 逆时针旋转 ,得到△ ✌,连接 ,∴△✌≌△ ,∴∠  ,  ,✌,在 ♦△ 中,  ,∴∠  ,根据勾股定理得,  ,∵✌ ,∴✌   ,∵✌ () ,∴✌  ✌ ,∴△✌是直角三角形,且∠✌ ,∴∠✌∠✌﹣∠  ﹣  .【点评】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键..( 分)如图 ,抛物线⍓♋⌧ ⌧♍与⌧轴交于✌(﹣ , ), ( , )两点,过点 的直线⍓⌧分别与⍓轴及抛物线交于点 , .( )求直线和抛物线的表达式;( )动点 从点 出发,在⌧轴的负半轴上以每秒 个单位长度的速度向左匀速运动,设运动时间为♦秒,当♦为何值时,△ 为直角三角形?请直接写出所有满足条件的♦的值;( )如图 ,将直线 沿⍓轴向下平移 个单位后,与⌧轴,⍓轴分别交于☜,☞两点,在抛物线的对称轴上是否存在点 ,在直线☜☞上是否存在点☠,使 ☠的值最小?若存在,求出其最小值及点 ,☠的坐标;若不存在,请说明理由.【分析】( )利用待定系数法求解可得;( )先求得点 的坐标,过点 分别作 ☜⊥⌧轴、 ☞⊥⍓轴,分 ⊥ 、 ⊥ 、 ⊥ 三种情况,利用相似三角形的性质逐一求解可得;( )通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.【解答】解:( )把✌(﹣ , ), ( , )代入⍓♋⌧ ⌧♍,得,解得:,∴抛物线解析式为:⍓,∵过点 的直线⍓⌧,∴代入( , ),得: ﹣,∴ 解析式为⍓﹣;( )由得交点坐标为 (﹣ , ),如图 ,过 作 ☜⊥⌧轴于点☜,作 ☞⊥⍓轴于点☞,当 ⊥ 时,△ 为直角三角形,则△ ☜ ∽△ ,∴ ,即 ,解得♦,当 ⊥ 于点 时,△ 为直角三角形由△ ∽△ ☜得 ,即 ,解得:♦;当 ⊥ 时,△ ☞∽△  ,∴ ,即 ,解得:♦,∴♦的值为、、.( )由已知直线☜☞解析式为:⍓﹣⌧﹣,在抛物线上取点 的对称点 ,过点 作 ☠⊥☜☞于点☠,交抛物线对称轴于点过点☠作☠☟⊥ 于点☟,此时, ☠☠最小.则△☜☞∽△☠☟设点☠坐标为(♋,﹣),∴ ,即 ,解得:♋﹣ ,则☠点坐标为(﹣ ,﹣ ),求得直线☠的解析式为⍓⌧ ,当⌧﹣时,⍓﹣,∴ 点坐标为(﹣,﹣),此时, ☠的值最小为 .【点评】本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.。

2018年山东省烟台市中考数学试卷及解析

2018年山东省烟台市中考数学试卷及解析

2018年山东省烟台市中考数学试卷及解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。

1.(3分)﹣的倒数是()A.3 B.﹣3 C.D.﹣【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的倒数是﹣3,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为()A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×1014【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.18【分析】由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得.【解答】解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+3=11,故选:B.【点评】本题主要考查几何体的表面积,解题的关键是掌握涂色部分是从上、前、右三个方向所涂面积相加的结果.5.(3分)甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:甲乙丙丁平均数(cm)177178178179方差0.9 1.6 1.10.6哪支仪仗队的身高更为整齐?()A.甲B.乙C.丙D.丁【分析】方差小的比较整齐,据此可得.【解答】解:∵甲、乙、丙、丁4支仪仗队队员身高的方差中丁的方差最小,∴丁仪仗队的身高更为整齐,故选:D.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖【分析】利用概率的意义和必然事件的概念的概念进行分析.【解答】解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选:A.【点评】此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.7.(3分)利用计算器求值时,小明将按键顺序为显示结果记为a,的显示结果记为b.则a,b的大小关系为()A.a<b B.a>b C.a=b D.不能比较【分析】由计算器的使用得出a、b的值即可.【解答】解:由计算器知a=(sin30°)﹣4=16、b==12,∴a>b,故选:B.【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握计算器的使用.8.(3分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28 B.29 C.30 D.31【分析】根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即可求得相应的n的值,从而可以解答本题.【解答】解:由图可得,第n个图形有玫瑰花:4n,令4n=120,得n=30,故选:C.【点评】本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.9.(3分)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A.7 B.6 C.5 D.4【分析】连接AC、BD,如图,利用菱形的性质得OC=AC=3,OD=BD=4,∠COD=90°,再利用勾股定理计算出CD=5,接着证明△OBM≌△ODN得到DN=BM,然后根据折叠的性质得BM=B'M=1,从而有DN=1,于是计算CD﹣DN即可.【解答】解:连接AC、BD,如图,∵点O为菱形ABCD的对角线的交点,∴OC=AC=3,OD=BD=4,∠COD=90°,在Rt△COD中,CD==5,∵AB∥CD,∴∠MBO=∠NDO,在△OBM和△ODN中,∴△OBM≌△ODN,∴DN=BM,∵过点O折叠菱形,使B,B′两点重合,MN是折痕,∴BM=B'M=1,∴DN=1,∴CN=CD﹣DN=5﹣1=4.故选:D.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了菱形的性质.10.(3分)如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.11.(3分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A.①③B.②③C.②④D.③④【分析】根据二次函数图象与系数之间的关系即可求出答案.【解答】解:①图象与x轴交于点A(﹣1,0),B(3,0),∴二次函数的图象的对称轴为x==1∴=1∴2a+b=0,故①错误;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)2=b2,故②错误;③由图可知:当﹣1<x<3时,y<0,故③正确;④当a=1时,∴y=(x+1)(x﹣3)=(x﹣1)2﹣4将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣1﹣1)2﹣4+2=(x﹣2)2﹣2,故④正确;故选:D.【点评】本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型.12.(3分)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s 的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,=AP•AQ==t2,S△APQ故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,=AP•AB==4t,S△APQ故选项B不正确;故选:A.【点评】本题考查了动点问题的函数图象,根据动点P和Q的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S与t的函数关系式.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)(π﹣3.14)0+tan60°=1+.【分析】直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=1+.故答案为:1+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.(3分)与最简二次根式5是同类二次根式,则a= 2 .【分析】先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.【解答】解:∵与最简二次根式是同类二次根式,且,∴a+1=3,解得:a=2.故答案为2.【点评】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.15.(3分)如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k= ﹣3 .【分析】由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.【解答】解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO =S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3【点评】本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.16.(3分)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O 的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置.17.(3分)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是3<m≤5 .【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.18.(3分)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O 为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2= :2 .【分析】根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.【解答】解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,OM=∵正六边形中心角为60°∴∠MON=120°∴扇形MON的弧长为:a则r1=a同理:扇形DEF的弧长为:则r2=r 1:r2=故答案为::2【点评】本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简,再求值:(1+)÷,其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x,由x2﹣2x﹣5=0,得到x2﹣2x=5,则原式=5.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了200 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为81°;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“微信”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】(1)用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用360°乘以“支付宝”人数所占比例即可得;(2)用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的定义求解可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.【解答】解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,故答案为:200、81°;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)【分析】先求得AC=PCtan∠APC=87、BC=PCtan∠BPC=21,据此得出AB=AC ﹣BC=87﹣21=66,从而求得该车通过AB段的车速,比较大小即可得.【解答】解:在Rt△APC中,AC=PCtan∠APC=30tan71°≈30×2.90=87,在Rt△BPC中,BC=PCtan∠BPC=30tan35°≈30×0.70=21,则AB=AC﹣BC=87﹣21=66,∴该汽车的实际速度为=11m/s,又∵40km/h≈11.1m/s,∴该车没有超速.【点评】此题考查了解直角三角形的应用,涉及的知识有:锐角三角函数定义,熟练掌握三角函数的定义是解本题的关键.22.(9分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?【分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程组.23.(10分)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD=,求的值.【分析】(1)根据同圆的半径相等和等边对等角得:∠EDB=∠EBD=α,∠CAD=∠ACD,∠DCE=∠DEC=2α,再根据三角形内角和定理可得结论;(2)设∠MBE=x,同理得:∠EMB=∠MBE=x,根据切线的性质知:∠DEF=90°,所以∠CED+∠MEB=90°,同理根据三角形内角和定理可得∠CAD=45°;(3)由(2)得:∠CAD=45°;根据(1)的结论计算∠MBE=30°,证明△CDE是等边三角形,得CD=CE=DE=EF=AD=,求EM=1,MF=EF﹣EM=﹣1,根据三角形内角和及等腰三角形的判定得:EN=CE=,代入化简可得结论.【解答】解:(1)连接CD、DE,⊙E中,∵ED=EB,∴∠EDB=∠EBD=α,∴∠CED=∠EDB+∠EBD=2α,⊙D中,∵DC=DE=AD,∴∠CAD=∠ACD,∠DCE=∠DEC=2α,△ACB中,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴∠CAD==;(2)设∠MBE=x,∵EM=MB,∴∠EMB=∠MBE=x,当EF为⊙D的切线时,∠DEF=90°,∴∠CED+∠MEB=90°,∴∠CED=∠DCE=90°﹣x,△ACB中,同理得,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴2∠CAD=180°﹣90∴=90∴,∴∠CAD=45°;(3)由(2)得:∠CAD=45°;由(1)得:∠CAD=;∴∠MBE=30°,∴∠CED=2∠MBE=60°,∵CD=DE,∴△CDE是等边三角形,∴CD=CE=DE=EF=AD=,Rt△DEM中,∠EDM=30°,DE=,∴EM=1,MF=EF﹣EM=﹣1,△ACB中,∠NCB=45°+30°=75°,△CNE中,∠CEN=∠BEF=30°,∴∠CNE=75°,∴∠CNE=∠NCB=75°,∴EN=CE=,∴===2+.【点评】本题考查三角形内角和定理、三角形的外角的性质、等腰三角形的性质和判定等知识,解题的关键是学会利用三角形角之间的关系确定边的关系,学会构建方程解决问题,属于中考常考题型.24.(11分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【解答】解:(1)思路一、如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;思路二、同思路一的方法;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=BP=,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.【点评】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.25.(14分)如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求解可得;(2)先求得点D的坐标,过点D分别作DE⊥x轴、DF⊥y轴,分P1D⊥P1C、P 2D⊥DC、P3C⊥DC三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.【解答】解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得,解得:,∴抛物线解析式为:y=,∵过点B的直线y=kx+,∴代入(1,0),得:k=﹣,∴BD解析式为y=﹣;(2)由得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴=,即=,解得t=,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得=,即=,解得:t=;当P3C⊥DC时,△DFC∽△COP3,∴=,即=,解得:t=,∴t的值为、、.(3)由已知直线EF解析式为:y=﹣x﹣,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小.则△EOF∽△NHD′设点N坐标为(a,﹣),∴=,即=,解得:a=﹣2,则N点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=x+1,当x=﹣时,y=﹣,∴M点坐标为(﹣,﹣),此时,DM+MN的值最小为==2.【点评】本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.。

山东省烟台市2018年中考数学试题(含解析)-推荐

山东省烟台市2018年中考数学试题(含解析)-推荐

2018年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。

1.(3分)﹣的倒数是()A.3 B.﹣3 C.D.﹣2.(3分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A. B. C.D.3.(3分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为()A.0.827×1014 B.82.7×1012C.8.27×1013D.8.27×10144.(3分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.185.(3分)甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:哪支仪仗队的身高更为整齐?()A.甲B.乙C.丙D.丁6.(3分)下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖7.(3分)利用计算器求值时,小明将按键顺序为显示结果记为a,的显示结果记为b.则a,b的大小关系为()A.a<b B.a>b C.a=b D.不能比较8.(3分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28 B.29 C.30 D.319.(3分)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A.7 B.6 C.5 D.410.(3分)如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°11.(3分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A.①③B.②③C.②④D.③④12.(3分)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s 的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)(π﹣3.14)0+tan60°=.14.(3分)与最简二次根式5是同类二次根式,则a= .15.(3分)如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k= .16.(3分)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.17.(3分)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.18.(3分)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r 2,则r1:r2= .三、解答题(本大题共7个小题,满分66分)19.(6分)先化简,再求值:(1+)÷,其中x满足x2﹣2x﹣5=0.20.(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.21.(8分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)22.(9分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?23.(10分)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD=,求的值.24.(11分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB 的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.25.(14分)如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.2018年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。

2018年山东省烟台市中考数学试卷(解析版)

2018年山东省烟台市中考数学试卷(解析版)

2018 年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D 四个备选答案,其中有且只有一个是正确的。

1.(3 分)﹣的倒数是( )A.3 B.﹣3C.D.﹣【分析】根据乘积为1 的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的倒数是﹣3,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3 分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180 度后与原图重合.3.(3 分)2018 年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54 万亿元增加到82.7 万亿元,稳居世界第二,82.7 万亿用科学记数法表示为( )A.0.827×1014 B.82.7×1012 C.8.27×1013 D.8.27×1014【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:82.7 万亿=8.27×1013,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(3 分)由5 个棱长为1 的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为( )A.9 B.11 C.14 D.18【分析】由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得.【解答】解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+3=11,故选:B.【点评】本题主要考查几何体的表面积,解题的关键是掌握涂色部分是从上、前、右三个方向所涂面积相加的结果.5.(3 分)甲、乙、丙、丁4 支仪仗队队员身高的平均数及方差如下表所示:甲乙丙丁平均数(cm)177 178 178 179方差0.9 1.6 1.1 0.6哪支仪仗队的身高更为整齐?( )A.甲B.乙C.丙D.丁【分析】方差小的比较整齐,据此可得.【解答】解:∵甲、乙、丙、丁4 支仪仗队队员身高的方差中丁的方差最小,∴丁仪仗队的身高更为整齐,故选:D.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3 分)下列说法正确的是( )A.367 人中至少有2 人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100 张彩票一定有1 张中奖【分析】利用概率的意义和必然事件的概念的概念进行分析.【解答】解:A、367 人中至少有2 人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100 张彩票不一定有1 张中奖,错误;故选:A.【点评】此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念. 7.(3 分)利用计算器求值时,小明将按键顺序为显示结果记为a,的显示结果记为b.则a,b 的大小关系为( )A.a<b B.a>b C.a=b D.不能比较【分析】由计算器的使用得出a、b 的值即可.【解答】解:由计算器知a=(sin30°)﹣4=16、b= =12,∴a>b,故选:B.【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握计算器的使用.8.(3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n 个图形中有120 朵玫瑰花,则n 的值为( )A.28 B.29 C.30 D.31【分析】根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即可求得相应的n 的值,从而可以解答本题.【解答】解:由图可得,第n 个图形有玫瑰花:4n,令4n=120,得n=30,故选:C.【点评】本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.9.(3 分)对角线长分别为6 和8 的菱形ABCD 如图所示,点O 为对角线的交点,过点O 折叠菱形,使B,B′两点重合,MN 是折痕.若B'M=1,则CN 的长为( )A.7 B.6 C.5 D.4【分析】连接AC、BD,如图,利用菱形的性质得OC= AC=3,OD= BD=4,∠COD=90°,再利用勾股定理计算出CD=5,接着证明△OBM≌△ODN 得到DN=BM,然后根据折叠的性质得BM=B'M=1,从而有DN=1,于是计算CD﹣DN 即可.【解答】解:连接AC、BD,如图,∵点O 为菱形ABCD 的对角线的交点,∴OC= AC=3,OD= BD=4,∠COD=90°,在Rt△COD 中,CD= =5,∵AB∥CD,∴∠MBO=∠NDO,在△OBM 和△ODN 中,∴△OBM≌△ODN,∴DN=BM,∵过点O 折叠菱形,使B,B′两点重合,MN 是折痕,∴BM=B'M=1,∴DN=1,∴CN=CD﹣DN=5﹣1=4.故选:D.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了菱形的性质.10.(3 分)如图,四边形ABCD 内接于⊙O,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A.56° B.62° C.68° D.78°【分析】由点I 是△ABC 的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I 是△ABC 的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD 内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.11.(3 分)如图,二次函数y=ax2+bx+c 的图象与x 轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3 时,y<0;④当a=1 时,将抛物线先向上平移2 个单位,再向右平移1 个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是( )A.①③B.②③C.②④D.③④【分析】根据二次函数图象与系数之间的关系即可求出答案.【解答】解:①图象与x 轴交于点A(﹣1,0),B(3,0),∴二次函数的图象的对称轴为x= =1∴=1∴2a+b=0,故①错误;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)2=b2,故②错误;③由图可知:当﹣1<x<3 时,y<0,故③正确;④当a=1 时,∴y=(x+1)(x﹣3)=(x﹣1)2﹣4将抛物线先向上平移2 个单位,再向右平移1 个单位,得到抛物线y=(x﹣1﹣1)2﹣4+2=(x﹣2)2﹣2,故④正确;故选:D.【点评】本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型.12.(3 分)如图,矩形ABCD 中,AB=8cm,BC=6cm,点P 从点A 出发,以lcm/s 的速度沿A→D→C 方向匀速运动,同时点Q 从点A 出发,以2cm/s 的速度沿A→B→C方向匀速运动,当一个点到达点C 时,另一个点也随之停止.设运动时间为t(s),△APQ 的面积为S(cm2),下列能大致反映S 与t 之间函数关系的图象是( )A. B .C.D.【分析】先根据动点P 和Q 的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4 时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,发现是开口向上的抛物线,可知:选项C、D 不正确;②当4<t≤6 时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,发现是一次函数,是一条直线,可知:选项B 不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4 时,Q 在边AB 上,P 在边AD 上,如图1,S△APQ= AP•AQ= =t2,故选项C、D 不正确;②当4<t≤6 时,Q 在边BC 上,P 在边AD 上,如图2,S△APQ= AP•AB= =4t,故选项B 不正确;故选:A.【点评】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3 分)(π﹣3.14)0+tan60°= 1+ .【分析】直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=1+.故答案为:1+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.(3 分)与最简二次根式5 是同类二次根式,则a= 2 .【分析】先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a 的方程,解出即可.【解答】解:∵与最简二次根式是同类二次根式,且,∴a+1=3,解得:a=2.故答案为2.【点评】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.15.(3 分)如图,反比例函数y= 的图象经过▱ABCD 对角线的交点P,已知点A,C,D 在坐标轴上,BD⊥DC,▱ABCD 的面积为6,则k= ﹣3 .【分析】由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.【解答】解:过点P 做PE⊥y 轴于点E∵四边形ABCD 为平行四边形∴AB=CD又∵BD⊥x 轴∴ABDO 为矩形∴AB=DO∴S 矩形ABDO=S▱ABCD=6∵P 为对角线交点,PE⊥y 轴∴四边形PDOE 为矩形面积为3即DO•EO=3∴设P 点坐标为(x,y)k=xy=﹣3故答案为:﹣3【点评】本题考查了反比例函数比例系数k 的几何意义以及平行四边形的性质.16.(3 分)如图,方格纸上每个小正方形的边长均为1 个单位长度,点O,A,B,C 在格点(两条网格线的交点叫格点)上,以点O 为原点建立直角坐标系,则过A,B,C 三点的圆的圆心坐标为 (﹣1,﹣2) .【分析】连接CB,作CB 的垂直平分线,根据勾股定理和半径相等得出点O 的坐标即可.【解答】解:连接CB,作CB 的垂直平分线,如图所示:在CB 的垂直平分线上找到一点D,CD═DB=DA= ,所以D 是过A,B,C 三点的圆的圆心,即D 的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置.17.(3 分)已知关于x 的一元二次方程x2﹣4x+m﹣1=0 的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m 的取值范围是 3<m≤5 .【分析】根据根的判别式△>0、根与系数的关系列出关于m 的不等式组,通过解该不等式组,求得m 的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m 的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c 为常数,a≠0)①当b2﹣4ac>0 时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0 时,一元二次方程有两个相等的实数根,③当b2﹣4ac <0 时,一元二次方程没有实数根.18.(3 分)如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM的长为半径画弧得到扇形MON,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF,把扇形MON 的两条半径OM,ON 重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r2,则r1:r2= :2 .【分析】根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.【解答】解:连OA由已知,M 为AF 中点,则OM⊥AF∵六边形ABCDEF 为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,OM=∵正六边形中心角为60°∴∠MON=120°∴扇形MON 的弧长为: a则r1= a同理:扇形DEF 的弧长为:则r2=r1:r2=故答案为::2【点评】本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题(本大题共7个小题,满分66分)19.(6 分)先化简,再求值:(1+)÷,其中x 满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式= • = • =x(x﹣2)=x2﹣2x,由x2﹣2x﹣5=0,得到x2﹣2x=5,则原式=5.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(8 分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了 200 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 81° ;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“ 微信 ”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】(1)用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用360° 乘以“支付宝”人数所占比例即可得;(2)用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的定义求解可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.【解答】解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200 人,则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,故答案为:200、81°;(2)微信人数为200×30%=60 人,银行卡人数为200×15%=30 人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9 种等可能的结果,其中两人恰好选择同一种支付方式的有3 种,∴两人恰好选择同一种支付方式的概率为= .【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(8 分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40 千米/小时数学实践活动小组设计了如下活动:在l 上确定A,B 两点,并在AB 路段进行区间测速.在l 外取一点P,作PC⊥l,垂足为点C.测得PC=30 米,∠APC=71°,∠BPC=35°.上午9 时测得一汽车从点A 到点B 用时6 秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71° ≈2.90)【分析】先求得AC=PCtan∠APC=87、BC=PCtan∠BPC=21,据此得出AB=AC﹣BC=87﹣21=66,从而求得该车通过AB 段的车速,比较大小即可得.【解答】解:在Rt△APC 中,AC=PCtan∠APC=30tan71°≈30×2.90=87,在Rt△BPC 中,BC=PCtan∠BPC=30tan35°≈30×0.70=21,则AB=AC﹣BC=87﹣21=66,∴该汽车的实际速度为=11m/s,又∵40km/h≈11.1m/s,∴该车没有超速.【点评】此题考查了解直角三角形的应用,涉及的知识有:锐角三角函数定义,熟练掌握三角函数的定义是解本题的关键.22.(9 分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B 两种不同款型,其中A 型车单价400 元,B 型车单价320 元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100 辆,总价值36800 元.试问本次试点投放的A 型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B 两车型的数量比进行投放,且投资总价值不低于184 万元.请问城区10 万人口平均每100 人至少享有A 型车与B 型车各多少辆?【分析】(1)设本次试点投放的A 型车x 辆、B 型车y 辆,根据“两种款型的单车共100 辆,总价值36800 元”列方程组求解可得;(2)由(1)知A、B 型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A 型车3a辆、B 型车2a 辆,根据“投资总价值不低于184 万元”列出关于a 的不等式,解之求得a 的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A 型车x 辆、B 型车y 辆,根据题意,得:,解得:,答:本次试点投放的A 型车60 辆、B 型车40 辆;(2)由(1)知A、B 型车辆的数量比为3:2,设整个城区全面铺开时投放的A 型车3a 辆、B 型车2a 辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A 型车至少3000 辆、B 型车至少2000 辆,则城区10 万人口平均每100 人至少享有A 型车3000×=3 辆、至少享有B 型车2000×=2 辆.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程组.23.(10 分)如图,已知D,E 分别为△ABC 的边AB,BC 上两点,点A,C,E 在⊙D 上,点B,D 在⊙E 上.F 为上一点,连接FE 并延长交AC 的延长线于点N,交AB 于点M.(1)若∠EBD 为α,请将∠CAD 用含α的代数式表示;(2)若EM=MB,请说明当∠CAD 为多少度时,直线EF 为⊙D 的切线;(3)在(2)的条件下,若AD= ,求的值.【分析】(1)根据同圆的半径相等和等边对等角得:∠EDB=∠EBD=α,∠CAD=∠ACD,∠DCE= ∠DEC=2α,再根据三角形内角和定理可得结论;(2)设∠MBE=x,同理得:∠EMB=∠MBE=x,根据切线的性质知:∠DEF=90°,所以∠CED+∠MEB=90°,同理根据三角形内角和定理可得∠CAD=45°;(3)由(2)得:∠CAD=45°;根据(1)的结论计算∠MBE=30°,证明△CDE 是等边三角形,得CD=CE=DE=EF=AD= ,求EM=1,MF=EF﹣EM=﹣1,根据三角形内角和及等腰三角形的判定得:EN=CE= ,代入化简可得结论.【解答】解:(1)连接CD、DE,⊙E 中,∵ED=EB,∴∠EDB=∠EBD=α,∴∠CED=∠EDB+∠EBD=2α,⊙D 中,∵DC=DE=AD,∴∠CAD=∠ACD,∠DCE=∠DEC=2α,△ACB 中,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴∠CAD= = ;(2)设∠MBE=x,∵EM=MB,∴∠EMB=∠MBE=x,当EF 为⊙D 的切线时,∠DEF=90°,∴∠CED+∠MEB=90°,∴∠CED=∠DCE=90°﹣x,△ACB 中,同理得,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴2∠CAD=180°﹣90∴=90∴,∴∠CAD=45°;(3)由(2)得:∠CAD=45°;由(1)得:∠CAD= ;∴∠MBE=30°,∴∠CED=2∠MBE=60°,∵CD=DE,∴△CDE 是等边三角形,∴CD=CE=DE=EF=AD= ,Rt△DEM 中,∠EDM=30°,DE= ,∴EM=1,MF=EF﹣EM=﹣1,△ACB 中,∠NCB=45°+30°=75°,△CNE 中,∠CEN=∠BEF=30°,∴∠CNE=75°,∴∠CNE=∠NCB=75°,∴EN=CE= ,∴= = =2+.【点评】本题考查三角形内角和定理、三角形的外角的性质、等腰三角形的性质和判定等知识,解题的关键是学会利用三角形角之间的关系确定边的关系,学会构建方程解决问题,属于中考常考题型.24.(11 分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P 是正方形ABCD 内一点,PA=1,PB=2,PC=3.你能求出∠APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC 绕点B 逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB 的度数;思路二:将△APB 绕点B 顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P 是正方形ABCD 外一点,PA=3,PB=1,PC= ,求∠APB 的度数.【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【解答】解:(1)思路一、如图1,将△BPC 绕点B 逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'= BP=2 ,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;思路二、同思路一的方法;(2)如图2,将△BPC 绕点B 逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP= ,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'= BP= ,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.【点评】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.25.(14 分)如图1,抛物线y=ax2+2x+c 与x 轴交于A(﹣4,0),B(1,0)两点,过点B 的直线y=kx+分别与y 轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P 从点O 出发,在x 轴的负半轴上以每秒1 个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4 个单位后,与x 轴,y 轴分别交于E,F 两点,在抛物线的对称轴上是否存在点M,在直线EF 上是否存在点N,使DM+MN 的值最小?若存在,求出其最小值及点M,N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE⊥x 轴、DF⊥y 轴,分P1D⊥P1C、P2D⊥DC、P3C⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.【解答】解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得,解得:,∴抛物线解析式为:y= ,∵过点B 的直线y=kx+,∴代入(1,0),得:k=﹣,∴BD 解析式为y=﹣;(2)由得交点坐标为D(﹣5,4),如图1,过D 作DE⊥x 轴于点E,作DF⊥y 轴于点F,当P1D⊥P1C 时,△P1DC 为直角三角形,则△DEP1∽△P1OC,∴= ,即= ,解得t= ,当P2D⊥DC 于点D 时,△P2DC 为直角三角形由△P2DB∽△DEB 得= ,即= ,解得:t= ;当P3C⊥DC 时,△DFC∽△COP3,∴= ,即= ,解得:t= ,∴t 的值为、、.(3)由已知直线EF 解析式为:y=﹣x﹣,在抛物线上取点D 的对称点D′,过点D′作D′N⊥EF 于点N,交抛物线对称轴于点M过点N 作NH⊥DD′于点H,此时,DM+MN=D′N最小.则△EOF∽△NHD′设点N 坐标为(a,﹣),∴= ,即= ,解得:a=﹣2,则N 点坐标为(﹣2,﹣2),求得直线ND′的解析式为y= x+1,当x=﹣时,y=﹣,∴M 点坐标为(﹣,﹣),此时,DM+MN 的值最小为= =2 .【点评】本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.。

[试卷合集3套]烟台市2018届中考数学阶段模拟试题

[试卷合集3套]烟台市2018届中考数学阶段模拟试题
详解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
所以丙和△ABC全等;
不能判定甲与△ABC全等;
故选B.
点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
故选C.
【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
3.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是( )
详解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵ ,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH= PG,
在Rt△ABM中,AB=5,BM=3,
∴根据勾股定理得:AM=
=
=4,
又S△AMC= MN•AC= AM•MC,
∴MN=
= .
故选A.
【点睛】
综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年山东省烟台市中考模拟试题数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.下列实数中,无理数是()A.0 B.C.﹣2 D .2.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个3.一台机器有大、小齿轮用同一转送带连接,若大小齿轮的齿数分别为12和36个,大齿轮每分钟2.5×103转,则小齿轮10小时转()A.1.5×106转B.5×105转C.4.5×106转D.15×106转4.如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A . B.C .D .5.如图,在△ABC中,AB=AC,∠A=40°,顶点B在直线DE上,△ABC绕着点B旋转,当AC∥DE时,∠CBE的度数是()A.50°B.60°C.70°D.80°6.式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9 B.4.87 C.4.88 D.4.897.如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70 B.71 C.72 D.738.一次数学测试后,随机抽取5名学生成绩如下:86,85,88,88,93,关于这组数据说法错误的是()A.众数是88 B.中位数是88 C.平均数是88 D.方差是889.如图,在▱ABCD中,BD=4,将▱ABCD绕其对称中心O旋转90°,则点D经过的路径长为()A.4πB.3πC.2πD.π10.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.12考生须知1.本试卷共三道大题,25道小题,满分120分。

2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题卡一并交回。

11.已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0;其中正确的个数为()A.1个B.2个C.3个D.4个12.如图,两建筑物水平距离为32米,从点A测得对点C的俯角为30°,对点D 的俯角为45°,则建筑物CD的高约为()A.14米B.17米C.20米D.22米二、填空题(本大题共6小题,每小题3分,共18分)13.计算:()﹣2+(π﹣3)0﹣=.14.如图,在网格中,△ABC的顶点都在网格上,则sin∠A=.15.一位老师说,他班学生的一半在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩不足6名同学在操场上踢足球,则这个班的学生最多有人.16.如图,在直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是.17.如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x >0)的图象经过矩形的对称中点E,且与边BC交于点D,若过点D的直线y=mx+n 将矩形OABC的面积分成3:5的两部分,则此直线的解析式为.18如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB 长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).三、解答题(本大题共7小题,共66分)19.(6分)先化简再求值:,其中x=2+.20.(8分)某校七年级有400名学生,在一次生物测验后,为了解本次测验的成绩情况,从中随机取了部分学生的成绩进行统计,并绘制了如下图表:等级 分数 频数 频率 A 90≤x ≤100 6 0.15B 80≤x <90 20 aC 70≤x <80 b 0.2D 60≤x <70c0.15 合计1请你根据以上信息,解答下列问题:(1)a= ,b= ,c= ,并补全条形统计图; (2)请你估计该校七年级共有多少名学生本次成绩不低于80分;(3)现从样本中的A 等和D 等学生中各随机选取一名同学组成互助学习小组,则直接写出两名同学恰好是一名男生和一名女生的概率.21.(9分)如图,在△ABC 中,AC=50m ,BC=40m ,∠C=90°,点P 从点A 开始沿AC 边向点C 以2m 每秒的速度匀速移动,同时另一点Q 由C 点开始以3m 每秒的速度沿着CB 匀速移动,几秒后,△PCQ 的面积等于450m 2?22.(9分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.23.(10分)在△ABC中,AB=AC=2,∠A=90°,取一块含45°角的直角三角形尺,将直角顶点放在斜边BC边的中点O处,顺时针方向旋转(如图1);使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2),设BE=x,CF=y.(1)求y与x的函数解析式,并写出x的取值范围;(2)将三角尺绕O点旋转的过程中,△OEF是否能成为等腰直角三角形?若能,请证明你的结论;(3)若将直角三角形尺45°角的顶点放在斜边BC边的中点O处,顺时针方向旋转(如图3),其它条件不变.①试直接写出y与x的函数解析式,及x的取值范围;②将三角尺绕O点旋转(图4)的过程中,△OEF是否能成为等腰三角形?若能,求出△OEF为等腰三角形时x的值;若不能,请说明理由.24.(11分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA 于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.25.(13分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.参考答案:一、选择题1.B2.C3.C4.A5.C6.C7.B8.D9.D10.C11.A12.A 二、填空题13.214.15.2816.(﹣2,)17.y=﹣2x+4或y=﹣x +18.π+1.三、解答题19.(6分)解:原式= ==;当时,原式=﹣=﹣4+2.20.解:(1)6÷0.15=40,a=20÷40=0.5,b=40×0.2=8,c=40×0.15=6,补全条形统计图为:(2)400×(0.15+0.5)=260,所以估计该校七年级共有260名学生本次成绩不低于80分;(3)A等中有2个男生,4个女生,D等中有4个男生,2个女生,共有36种等可能的结果数,其中两名同学恰好是一名男生和一名女生的结果数为20,所以两名同学恰好是一名男生和一名女生概率==.21.(9分)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.23.解:(1)如图2,连接AO,,∵AB=AC,∠BAC=90°,∴△ABC为等腰直角三角形,∠B=∠C=45°,∵点O为BC的中点,∴∠AOC=90°,∠EAO=∠C=45°,AO=CO,∵∠EOA+∠AOF=90°,∠COF+∠AOF=90°,∴∠EOA=∠FOC,在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF,∴y=2﹣x(0≤x≤2).(2)将三角尺绕O点旋转的过程中,△OEF能构成等腰直角三角形.①当F与A重合时,x=0,此时OE=EF;②当E与A重合时,x=2,此时OE=OF.③∵∠EOF=90°,∴OF=EF不可能成立.(3)①如图3,连接AO ,,∵AB=AC,∠BAC=90°,∴△ABC为等腰直角三角形,∠B=∠C=45°,∴∠BEO+∠EOB=135°,∵∠EOF=45°,∴∠FOC+∠EOB=180°﹣45°=135°,∴∠BEO=∠FOC,在△BEO和△COF中,∴△BEO∽△COF,∴,在Rt△ABC中,BC===2,∵点O为BC的中点,∴BO=C0=,∵BE=x,CF=y,∴,即xy=2,∴y=.②将三角尺绕O点旋转的过程中,△OEF能构成等腰三角形.Ⅰ、当F与A重合时,x=1,此时OE=EF;Ⅱ、当E与A重合时,x=2,此时EF=OF;Ⅲ、当E、F分别在A点的两边时,x=,此时OE=OF.24.证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;‘’(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O 的半径为.25.(13分)解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t ,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t ,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t ﹣)2+联立直线CD 与抛物线解析式可得,解得或,∴C (0,3),D (7,),分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE=t ,DF=7﹣t ,∴S △PCD =S △PCN +S △PDN =PN•CE +PN•DF=PN=[﹣(t ﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD 的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ 与△PBM 相似时,有或=两种情况,∵CQ ⊥PM ,垂足为Q ,∴Q (t ,3),且C (0,3),N (t ,t +3),∴CQ=t ,NQ=t +3﹣3=t , ∴=,∵P (t ,t 2﹣t +3),M (t ,0),B (5,0),∴BM=5﹣t ,PM=0﹣(t 2﹣t +3)=﹣t 2+t ﹣3,当时,则PM=BM ,即﹣t 2+t ﹣3=(5﹣t ),解得t=2或t=5(舍去),此时P (2,﹣); 当=时,则BM=PM ,即5﹣t=(﹣t 2+t ﹣3),解得t=或t=5(舍去),此时P (,﹣);综上可知存在满足条件的点P ,其坐标为(2,﹣)或(,﹣).。

相关文档
最新文档