冀教版八年级数学下册第二十一章 一次函数 单元测试题
冀教版数学八年级下册第二十一章 一次函数单元测试卷(含答案)
冀教版数学八年级下册第二十一章 一次函数单元测试卷(含答案)一、单选题1.一次函数y =(k ﹣1)x +3的图象经过点(﹣2,1),则k 的值是( ) A .﹣1 B .2 C .1 D .0 2.下列函数中y 是x 的一次函数的是( )A .y =1xB .y =3x +1C .y =1x 2 D .y =3x 2+13.下列函数关系中表示一次函数的有( )①21y x =+ ①1y x =①12x y x +=- ①60s t = ①10025y x =- A .1个 B .2个 C .3个 D .4个 4.将直线y =﹣2x+3沿y 轴向下平移3个单位后与y 轴的交点坐标为( ) A .(0,﹣6) B .(0,0) C .(0,6) D .(0,9) 5.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,观察图象可得( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0 6.根据下表中一次函数自变量x 与因变量y 的对应值,可得P 的值为( )A .3B .2C .1D .07.如图,一次图数y =﹣x+3与一次函数y =2x+m 图象交于点(2,n ),则关于x 的不等式组3023x x m x -+>⎧⎨+>-+⎩的解集为( )A .x >﹣2B .x <3C .﹣2<x <3D .0<x <3 8.已知二元一次方程组521x y x y +=⎧⎨-=⎩的解是23x y =⎧⎨=⎩,则一次函数5y x =-+与21y x =-的图象的交点坐标为( )A .(2,3)B .(3,2)C .(2,3)-D .(2,3)- 9.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=⎧⎨-=⎩B .121x y x y -=-⎧⎨-=-⎩C .121x y x y -=-⎧⎨-=⎩D .121x y x y -=⎧⎨-=-⎩10.速度分别为100km /h 和akm /h (0<a <100)的两车分别从相距s 千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y (km )与行驶时间t (h )之间的函数关系如图所示.下列说法:①a =60;①b =2;①c =b +52;①若s =60,则b =32.其中说法正确的是( )A .①①①B .①①①C .①①①D .①①①二、填空题 11.已知函数y =3+(m ﹣2)23m x -是一次函数,则m =_____.12.若一次函数12y kx =+经过点(-2,0),则k =_____________.13.若点P (-1,y 1)和点Q (-2,y 2)是一次函数y =13-x +b 的图象上的两点,则y 1,y 2的大小关系是___. 14.在平面直角坐标系中,(),3,03()0A B ,,直线21y x =+与x 轴交于点C ,与y 轴交于点,D P 为直线CD 上的一个动点,过P 作PQ x ⊥轴,交直线AB 于点Q ,若2PQ BD =,则点P 的横坐标为__________.三、解答题15.已知函数()1y m x n =-+,(1)m 为何值时,该函数是一次函数(2)mn 、为何值时,该函数是正比例函数.16.已知:一次函数(3)5y m x m =-+-.(1)若一次函数的图象过原点,求实数m 的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m 的取值范围.(3)当一次函数的图象不经过第二象限时,求实数m 的取值范围.(4)当y 随x 的增大而增大时,求m 的取值范围.17.九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?18.如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,(1)关于x,y的方程组13x yax y-=-⎧⎨-=-⎩的解是;(2)a=;(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.答案1.B2.B3.D4.B5.A6.C7.C8.A9.C10.D11.-212.k=113.y 1<y 214.2或23- 15.(1)1m ≠;(2)1m ≠且0n =.16.(1)5m =;(2)35m <<;(3)3m <;(4)3m <17.20.24y x =﹣;(2)骑自行车的学生先到达百花公园,先到了10分钟. 18.(1)12x y =⎧⎨=⎩;(2)-1;(3)4。
冀教版初中数学八年级下册《第21章 一次函数》单元测试卷
冀教新版八年级下学期《第21章一次函数》单元测试卷一.选择题(共30小题)1.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0 2.下列函数中是一次函数的是()A.y=2014B.y=﹣C.y=D.y=x2+2x﹣3 3.下列函数中,是一次函数但不是正比例函数的是()A.B.C.D.y=x2+1 4.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2B.b=1C.a≠2且b=1D.a,b可取任意实数5.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.6.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.7.在平面直角坐标系中,一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.一次函数y=﹣x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限9.如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b(a>0,b>0 ).若直线AB为一次函数y=kx+m的图象,则当是整数时,满足条件的整数k 的值共有()A.1个B.2个C.3个D.4个10.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.当y>0时,x>1D.它的图象不经过第二象限11.已知正比例函数y=kx(k≠0),点(2,﹣3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定12.若一个正比例函数的图象经过点(2,﹣3),则这个图象一定也经过点()A.(﹣3,2)B.(,﹣1)C.(,﹣1)D.(﹣,1)13.已知自变量为x的一次函数y=a(x﹣b)的图象经过第二、三、四象限,则()A.a>0,b<0B.a<0,b>0C.a<0,b<0D.a>0,b>0 14.已知函数y=(m﹣3)x+2,若函数值y随x的增大而减小,则m的取值范围是()A.m>3B.m<3C.m≥3D.m≤315.若点A(a,b)在一次函数y=2x﹣1的图象上,则代数式4a﹣2b+3的值为()A.1B.2C.4D.516.直线y=﹣2x+b与两坐标轴围成的三角形的面积为4,则b的值为()A.4B.﹣4C.±4D.±217.把一次函数y=x+1的图象绕点(1,0)旋转180°,则所得直线的表达式为()A.y=x+1B.y=﹣x﹣1C.y=x﹣3D.y=﹣x+3 18.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()A.y=x+1B.y=x﹣1C.y=x D.y=x﹣219.下表给出的是关于一次函数y=kx+b的自变量x及其对应的函数值y的若干信息:则根据表格中的相关数据可以计算得到m的值是()A.0B.1C.2D.320.若一次函数y=﹣x+b的图象经过点(3,2),则一次函数的解析式为()A.y=x+1B.y=﹣x+5C.y=﹣x﹣5D.y=﹣x+1 21.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x 22.已知正比例函数的图象过点(﹣2,3),则此函数的解析式是()A.B.C.D.23.以方程组的解为坐标的点在()A.第一象限B.第二象限C.第三象限D.第四象限24.若两条直线的交点为(2,3),则这两条直线对应的函数解析式可能是()A.B.C.D.25.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50﹣2x(0<x<50)B.y=50﹣2x(0<x<25)C.y=(50﹣2x)(0<x<50)D.y=(50﹣x)(0<x<25)26.为了改善生态环境,政府决心绿化荒地,计划第一年先植树2万亩,以后每年都种2.5万亩,结果植树的总面积y(万亩)与时间x(年)的函数关系式是()A.y=2.5x+2B.y=2x+2.5C.y=2.5x﹣0.5D.y=2x﹣0.5 27.已知A、B两地相距180km,甲、乙两车分別从A、B两地同时出发,匀速开往对方所在地.甲车的速度是90km/h,乙车的速度是60km/h,甲、乙两车之间的距离y(km)与时间x(h)的函数图象是()A.B.C.D.28.在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回B地.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象.下列说法中正确的个数为()①A,B两地距离是30千米;②甲的速度为15千米/时;③点M的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时.A.1个B.2个C.3个D.4个29.如图,已知点A(﹣1,0)和点B(1,2),在y轴上确定点P,使得△ABP为直角三角形,则满足条件的点P共有()A.5个B.4个C.3个D.2个30.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二.填空题(共8小题)31.已知函数y=(n+3)x|n|﹣2是一次函数,则n=.32.若函数y=(m﹣2)x+4﹣m2是关于x的正比例函数,则常数m的值是.33.如图是y=kx+b的图象,则b=,与x轴的交点坐标为,y的值随x的增大而.34.直线与y轴负半轴相交,而且函数值y随x的增大而增大,请写出一个符合要求的一次函数.35.若直线y=(k﹣2)x中y随x的增大而减小,则k.36.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,⊙O经过A,B两点,已知AB=2,则的值为.37.如图,已知A1,A2,……,A n,A n﹣1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n=1,分别过点A1,A2,…A n,A n﹣1作x轴的垂线交直线y=2x于点B1,B2,…B n,﹣1B n﹣1,连接A1B2,B1A2,A2B3,B2A3,……,A n B n﹣1,B n A n﹣1,依次相交于点P1,P2,P3,……,P n,△A1B1P1,△A2B2P2,……,△A n B n P n的面积依次为S1,S2,……,S n,则S n为.38.将直线y=x向上平移2个单位长度,平移后直线的解析式为.三.解答题(共11小题)39.已知y+a与x+b(a、b为常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下y是x的正比例函数.40.已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.41.学习完一次函数后,小荣遇到过这样的一个新颖的函数:y=|x﹣1|,小荣根据学校函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小荣的探究过程,请补充完成:(1)列表:下表是y与x的几组对应值,请补充完整.(2)描点连线:在平面直角坐标系xOy中,请描出以上表中各对对应值为坐标的点,画出该函数的图象;(3)进一步探究发现,该函数图象的最低点的坐标是(1,0),结合函数的图象,写出该函数的其他性质(一条即可):.42.已知一次函数y=(3﹣m)x+2m﹣9的图象与y轴的负半轴相交,y随x的增大而减小,且m为整数.(1)求m的值.(2)当﹣1≤x≤2时,求y的取值范围.43.已知关于x的一次函数y=mx+4m﹣2.(1)若这个函数的图象经过原点,求m的值;(2)若这个函数的图象不过第四象限,求m的取值范围;(3)不论m取何实数这个函数的图象都过定点,试求这个定点的坐标.44.已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?45.声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音速:求y与x之间的函数关系式.46.规定:在平面直角坐标系内,某直线l1绕原点O顺时针旋转90°,得到的直线l2称为l1的“旋转垂线”.(I)求出直线y=﹣x+2的“旋转垂线”的解析式;(II)若直线y=k1x+1(k1≠0)的“旋转垂线”为直线y=k2x+b.求证:k1•k2=﹣1.47.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过点B作直线BP,与x轴相交于点P,且使OP=2OA,求直线BP的函数表达式.48.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T变换后得到点N(6,﹣),则点M的坐标为.(2)点A(2,m)是函数y=x图象上的一点,经过T变换后得到点B.求经过点O,点B的直线的函数表达式.49.如图,直线l1:y=x﹣1与直线l2:y=﹣x+2在同一直角坐标中交于点A(2,1).(1)直接写出方程组的解是.(2)请判断三条直线y=x﹣1,y=﹣x+2,y=x+是否经过同一个点,请说明理由.冀教新版八年级下学期《第21章一次函数》2018年单元测试卷参考答案与试题解析一.选择题(共30小题)1.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m﹣2≠0,n﹣1=1,可得答案.【解答】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选:C.【点评】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.2.下列函数中是一次函数的是()A.y=2014B.y=﹣C.y=D.y=x2+2x﹣3【分析】根据一次函数、反比例函数、二次函数的定义回答即可.【解答】解:A、是一个常数函数,不是一次函数,故A错误,B、是反比例函数,故B错误;C、是正比例函数、也是一次函数,故C正确;D、是一次二次函数,故D错误.故选:C.【点评】本题主要考查的是一次函数的定义,掌握一次函数的定义是解题的关键.3.下列函数中,是一次函数但不是正比例函数的是()A.B.C.D.y=x2+1【分析】根据一次函数和正比例函数的概念解答即可.【解答】解:A、是一次函数,不是正比例函数,故选项正确;B、是反比例函数,故选项错误;C、是正比例函数也是一次函数,故选项错误;D、是二次函数,故选项错误.故选:A.【点评】本题主要考查一次函数和正比例函数的概念:若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量);一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2B.b=1C.a≠2且b=1D.a,b可取任意实数【分析】根据正比例函数的意义得出2﹣a≠0,b﹣1=0,求出即可.【解答】解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选:C.【点评】本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a≠0和b﹣1=0是解此题的关键.5.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.【分析】根据图象,确定一次项系数及常数项的性质符号,再作判断.若不等式的解集有公共部分,则有可能;反之,则不可能.【解答】解:根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选:B.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.注意当k>0时,且k值变大时,图象与x轴的夹角的锐角变大.6.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选:C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7.在平面直角坐标系中,一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】分别求出函数与x、y轴的交点,过两点作直线,根据直线即可求出答案.【解答】解:当x=0时,y=1,当y=0时,x=﹣,∴A(0,1),B(﹣,0),∴y=2x+1的图象如图所示:图象经过第一、二、三象限.故选:D.【点评】本题主要考查对一次函数的图象,一次函数图象上点的坐标特征等知识点的理解和掌握,能根据一次函数的图象和性质进行说理是解此题的关键.8.一次函数y=﹣x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【分析】根据一次函数的性质判断出一次函数y=﹣x的图象所经过的象限,进而可得出答案.【解答】解:∵k=﹣1<0,∴一次函数y=﹣x的图象经过二、四象限,∴一次函数y=﹣x的图象平分二、四象限.故选:D.【点评】本题考查的是一次函数的图象,熟知一次函数的性质是解答此题的关键.9.如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b(a>0,b>0 ).若直线AB为一次函数y=kx+m的图象,则当是整数时,满足条件的整数k 的值共有()A.1个B.2个C.3个D.4个【分析】先求出A,B两点的坐标,然后代入函数y=kx+m,用a,b表示k,利用整除的性质变形讨论可得到答案.【解答】解:根据题意得A(a,a),B(b,8b),把A,B坐标代入函数y=kx+m,得,②﹣①得:k==8+,∵a>0,b>0,是整数,∴为整数时,k为整数;则﹣1=1或7,所以满足条件的整数k的值共有两个.故选:B.【点评】掌握点在直线上,则点的横纵坐标满足直线的解析式.掌握整除的性质和代数式的变形.10.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.当y>0时,x>1D.它的图象不经过第二象限【分析】根据一次函数的性质进行计算即可.【解答】解:A、把x=1代入解析式得到y=1,即函数图象经过(1,1),不经过点(1,0),故本选项错误;B、函数y=2x﹣1中,k=2>0,则该函数图象y值随着x值增大而增大,故本选项错误;C、当y>0时,即2x﹣1>0,x>,故本选项错误;D、函数y=2x﹣1中,k=2>0,b=﹣1<0,则该函数图象经过第一、三、四象限,不经过第二象限,故本选项正确;故选:D.【点评】本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.11.已知正比例函数y=kx(k≠0),点(2,﹣3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定【分析】首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可.【解答】解:∵点(2,﹣3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选:B.【点评】本题考查了正比例函数的性质,解题的关键是牢记正比例函数的比例系数对函数图象的影响.12.若一个正比例函数的图象经过点(2,﹣3),则这个图象一定也经过点()A.(﹣3,2)B.(,﹣1)C.(,﹣1)D.(﹣,1)【分析】利用一次函数图象上点的坐标特征,将点(2,﹣3)代入y=kx求得k值,求出函数解析式,然后再判断点是否在函数图象上.【解答】解:∵正比例函数y=kx经过点(2,﹣3),∴﹣3=2k,解得k=﹣;∴正比例函数的解析式是y=﹣x;A、∵当x=﹣3时,y≠2,∴点(﹣3,2)不在该函数图象上;故本选项错误;B、∵当x=时,y≠﹣1,∴点(,﹣1)不在该函数图象上;故本选项错误;C、∵当x=时,y=﹣1,∴点(,﹣1)在该函数图象上;故本选项正确;D、∵当x=时,y≠1,∴点(1,﹣2)不在该函数图象上;故本选项错误.故选:C.【点评】本题主要考查了一次函数图象上的点的坐标特征.解答此题时,利用正比例函数y =kx中的k是定值来确定函数的图象一定的点.13.已知自变量为x的一次函数y=a(x﹣b)的图象经过第二、三、四象限,则()A.a>0,b<0B.a<0,b>0C.a<0,b<0D.a>0,b>0【分析】首先将一次函数整理成一般形式,然后根据其位置确定a、b的符号.【解答】解:一次函数y=a(x﹣b)整理为:y=ax﹣ab,∵经过第二、三、四象限,∴a<0,﹣ab<0即:a<0,b<0,故选:C.【点评】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.14.已知函数y=(m﹣3)x+2,若函数值y随x的增大而减小,则m的取值范围是()A.m>3B.m<3C.m≥3D.m≤3【分析】由一次函数y随x的增大而减小,得到该一次函数为减函数,得到m﹣3小于0,求出不等式的解集即可得到m的范围.【解答】解:∵一次函数y=(m﹣3)x+2,y随x的增大而减小,∴一次函数为减函数,即m﹣3<0,解得:m<3,则m的取值范围是m<3.故选:B.【点评】此题考查了一次函数图象与系数的关系,一次函数y=kx+b(k≠0),当k>0时,y 随x的增大而增大;当k<0时,y随x的减小而减小.15.若点A(a,b)在一次函数y=2x﹣1的图象上,则代数式4a﹣2b+3的值为()A.1B.2C.4D.5【分析】先把点A(a,b)代入一次函数y=2x﹣1,求出2a﹣b=1,再将代数式4a﹣2b+3变形为2(2a﹣b)+3,然后代入计算即可.【解答】解:∵点A(a,b)在一次函数y=2x﹣1的图象上,∴2a﹣1=b,即2a﹣b=1,∴4a﹣2b+3=2(2a﹣b)+3=2×1+3=5.故选:D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点坐标一定适合此函数的解析式是解答此题的关键.16.直线y=﹣2x+b与两坐标轴围成的三角形的面积为4,则b的值为()A.4B.﹣4C.±4D.±2【分析】直线y=﹣2x+b与x轴的交点为(,0),与y轴的交点是(0,b),由题意得,×|×b|=4,求解即可.【解答】解:∵直线y=﹣2x+b与x轴的交点为(,0),与y轴的交点是(0,b),直线y=﹣2x+b与两坐标轴围成的三角形的面积是4,∴×|×b|=4,解得:b=±4.故选:C.【点评】本题考查了一次函数图象上点的坐标特征.本题需注意在计算平面直角坐标系中的三角形面积时,用不确定的未知字母来表示线段长时,应该使用该字母的绝对值表示.17.把一次函数y=x+1的图象绕点(1,0)旋转180°,则所得直线的表达式为()A.y=x+1B.y=﹣x﹣1C.y=x﹣3D.y=﹣x+3【分析】分别令x=0、y=0,可得出直线y=x+1与y轴、x轴的交点坐标,找出该两点绕点(1,0)旋转180°后的坐标,设旋转后所得直线的表达式为y=kx+b,结合点的坐标利用待定系数法即可得出结论.【解答】解:令x=0,则y=1,即直线y=x+1与y轴交点为(0,1);令y=0,则x=﹣1,即直线y=x+1与x轴交点为(﹣1,0).点(0,1)绕点(1,0)旋转180°变为(2,﹣1);点(﹣1,0)绕点(1,0)旋转180°变为(3,0).设旋转后所得直线的表达式为y=kx+b,则有,解得:.故旋转后所得直线的表达式为y=x﹣3.故选:C.【点评】本题考查了一次函数图象与几何变换,解题的关键是找出直线与y轴、x轴的交点坐标绕点(1,0)旋转180°后的新坐标,再利用待定系数法即可得出旋转后的函数解析式.18.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()A.y=x+1B.y=x﹣1C.y=x D.y=x﹣2【分析】根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为y=x+1.故选:A.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.19.下表给出的是关于一次函数y=kx+b的自变量x及其对应的函数值y的若干信息:则根据表格中的相关数据可以计算得到m的值是()A.0B.1C.2D.3【分析】设一次函数解析式为y=kx+b(k≠0),将(﹣1,0)、(0,1)、(1,m)代入即可得出答案.【解答】解:设一次函数解析式为:y=kx+b(k≠0).根据图示知,该一次函数经过点(﹣1,0)、(0,1),则,解得,;∴该一次函数的解析式为y=x+1:又∵该一次函数经过点(1,m),∴m=1+1=2,即m=2;故选:C.【点评】本题考查待定系数法求函数解析式的知识,比较简单,注意掌握待定系数法的运用.20.若一次函数y=﹣x+b的图象经过点(3,2),则一次函数的解析式为()A.y=x+1B.y=﹣x+5C.y=﹣x﹣5D.y=﹣x+1【分析】把点的坐标代入解析式求出b,即可得出答案.【解答】解:∵一次函数y=﹣x+b的图象经过点(3,2),∴当x=3时,y=2,∴2=﹣3+b,解得b=5,∴一次函数解析式为:y=﹣x+5,故选:B.【点评】本题主要考查待定系数法求函数解析式,把点的坐标代入计算求出b的值是解题的关键.21.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x【分析】直接把点(1,﹣2)代入y=kx,然后求出k即可.【解答】解:把点(1,﹣2)代入y=kx得k=﹣2,所以正比例函数解析式为y=﹣2x.故选:B.【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.22.已知正比例函数的图象过点(﹣2,3),则此函数的解析式是()A.B.C.D.【分析】本题可设该正比例函数的解析式为y=kx,该函数图象过点A(﹣2,3),由此可利用方程求出k的值,进而解决问题.【解答】解:设正比例函数是y=kx(k≠0),则3=﹣2k,解得,k=﹣.∴此函数的解析式是:y=﹣x.故选:C.【点评】本题考查了待定系数法求正比例函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.23.以方程组的解为坐标的点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】解方程组求得方程组的解,然后依据各象限内点的坐标特点求解即可.【解答】解:根据题意得:﹣x+2=x+1.解得:x=.将x=代入y=﹣x+2得y=.故该点的坐标为(,).故选:A.【点评】本题主要考查的是一次函数与二元一次方程组,求得方程组的解是解题的关键.24.若两条直线的交点为(2,3),则这两条直线对应的函数解析式可能是()A.B.C.D.【分析】将交点坐标代入四个选项中,若同时满足两个函数关系式,即可得到答案.【解答】解:将交点(2,3)代入,使得两个函数关系式成立,故选:D.【点评】本题考查了一元一次方程与一次函数的知识,解题的关键是了解两个函数的交点坐标就是两个函数关系式组成的二元一次方程组的解.25.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50﹣2x(0<x<50)B.y=50﹣2x(0<x<25)C.y=(50﹣2x)(0<x<50)D.y=(50﹣x)(0<x<25)【分析】根据等腰三角形的腰长=(周长﹣底边长)×,及底边长x>0,腰长>0得到.【解答】解:依题意有y=(50﹣x).∵x>0,50﹣x>0,且x<2y,即x<2×(50﹣x),得到0<x<25.故选:D.【点评】本题的难点在于根据线段应大于0,得到自变量的取值范围.26.为了改善生态环境,政府决心绿化荒地,计划第一年先植树2万亩,以后每年都种2.5万亩,结果植树的总面积y(万亩)与时间x(年)的函数关系式是()A.y=2.5x+2B.y=2x+2.5C.y=2.5x﹣0.5D.y=2x﹣0.5【分析】用第一年的植树量加上以后每年的植树量即可得到函数关系式.【解答】解:∵第一年先植树2万亩,以后每年都种2.5万亩,∴结果植树的总面积y(万亩)与时间x(年)的函数关系式是y=2+2.5(x﹣1)=2.5x﹣0.5,故选:C.【点评】本题根据实际问题列一次函数关系式的知识,解题的关键是弄清两个变量之间的关系.27.已知A、B两地相距180km,甲、乙两车分別从A、B两地同时出发,匀速开往对方所在地.甲车的速度是90km/h,乙车的速度是60km/h,甲、乙两车之间的距离y(km)与时间x(h)的函数图象是()A.B.C.D.【分析】两车之间的距离从开始一直减小到两车相遇,随着两车错开,距离逐渐增加直到甲车到达B,两车间距离随着乙车运动逐渐增加.直到乙车到A.【解答】解:根据题意两车相遇时间为:h∴当0≤x≤时,y=180﹣(90+60)x=﹣150x+180由于甲车到达B地时用时为:h,∴当≤x≤2时,两车之间距离逐渐增加y=(90+60)(x﹣)=150x﹣180当甲车到达B时,乙车还未到达A,距离B地120km则y=120+60(x﹣2)=60x故选:D.【点评】本题是一次函数实际应用问题,解答时要注意两车的相对运动状态与距离之间的关系.根据题意,可以通过方程思想快捷的列出函数关系式.28.在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回B地.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象.下列说法中正确的个数为()①A,B两地距离是30千米;②甲的速度为15千米/时;③点M的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时.A.1个B.2个C.3个D.4个【分析】根据题意,确定①﹣③正确,当两人相距10千米时,应有3种可能性.【解答】解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得y甲=﹣15x+30y乙=由此可知,①②正确.当15x+30=30x时,解得x=则M坐标为(,20),故③正确.当两人相遇前相距10km时,30x+15x=30﹣10x=,当两人相遇后,相距10km时,30x+15x=30+10,解得x=15x﹣(30x﹣30)=10解得x=∴④错误.故选:C.【点评】本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.29.如图,已知点A(﹣1,0)和点B(1,2),在y轴上确定点P,使得△ABP为直角三角形,则满足条件的点P共有()A.5个B.4个C.3个D.2个【分析】当∠BP A=90°时,即点P的位置有2个;当∠ABP=90°时,点P的位置有1个;当∠BAP=90°时,在y轴上共有1个交点.【解答】解:①以A为直角顶点,可过A作直线垂直于AB,与y轴交于一点,这一点符合点P的要求;②以B为直角顶点,可过B作直线垂直于AB,与y轴交于一点,这一点也符合P点的要求;③以P为直角顶点,与y轴共有2个交点.所以满足条件的点P共有4个.故选:B.【点评】主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.30.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.【分析】根据题目已知条件可推出,AA1=OC=,B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.【解答】解:∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.故选:A.【点评】本题考查了一次函数综合题.解题时,将一次函数、等边三角形的性质及解直角三角形结合在一起,从而归纳出边长的规律.二.填空题(共8小题)31.已知函数y=(n+3)x|n|﹣2是一次函数,则n=3.【分析】根据一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1解答即可.【解答】解:∵函数y=(n+3)x|n|﹣2是一次函数,∴|n|﹣2=1,n+3≠0,∴n=±3,n≠﹣3,∴n=3,故答案为:n=3.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.32.若函数y=(m﹣2)x+4﹣m2是关于x的正比例函数,则常数m的值是﹣2.【分析】根据正比例函数的定义列式计算.【解答】解:∵函数y=(m﹣2)x+4﹣m2是关于x的正比例函数,∴4﹣m2,=0,m﹣2≠0,解得,m=﹣2,故答案为:﹣2.【点评】本题考查的是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.33.如图是y=kx+b的图象,则b=﹣2,与x轴的交点坐标为(,0),y的值随x的增大而增大.【分析】利用待定系数法求出一次函数的表达式即可解答.【解答】解:把(1,2),(0,﹣2)代入y=kx+b得,解得,所以一次函数的表达式为y=4x﹣2,令y=0,得4x﹣2=0,解得x=,所以x轴的交点坐标为(,0)y的值随x的增大而增大.故答案为:﹣2,(,0),增大.【点评】本题主要考查了一次函数的图象,解题的关键是根据图象求出一次函数的表达式.34.直线与y轴负半轴相交,而且函数值y随x的增大而增大,请写出一个符合要求的一次函数y=2x﹣3(答案不唯一,k>0且b<0即可)..【分析】直线与y轴负半轴相交,而且函数值y随x的增大而增大,请写出一个符合要求的一次函数。
2022年冀教版八年级数学下册第二十一章一次函数章节测试试题(含解析)
八年级数学下册第二十一章一次函数章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、已知()231m y m x -=-+是一次函数,则m 的值是( )A .-3B .3C .±3D .±22、如图,平面直角坐标系中,直线:l y =+x 轴、y 轴于点B 、A ,以AB 为一边向右作等边ABC ,以AO 为一边向左作等边ADO △,连接DC 交直线l 于点E .则点E 的坐标为( )A .14⎛ ⎝⎭B .13⎛ ⎝⎭C .12⎛ ⎝⎭D .12⎛ ⎝⎭3、已知()1,1A -、()2,3B 两点,在y 轴上存在点P 使得AP BP +的值最小,则点P 的坐标为( )A .10,4⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .10,4⎛⎫- ⎪⎝⎭D .10,3⎛⎫- ⎪⎝⎭4、一次函数21y x =-+的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)的关系,则当0≤x ≤500时,y 与x 的函数关系是( ).A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系6、若一次函数y kx b =+(k ,b 为常数,0k ≠)的图象不经过第三象限,那么k ,b 应满足的条件是( ) A .0k <且0b > B .0k >且0b > C .0k >且0b ≥D .0k <且0b ≥7、下列图形中,表示一次函数y =mx +n 与正比例函数y =﹣mnx (m ,n 为常数,且mn ≠0)的图象不正确的是( )A .B .C .D .8、已知点(﹣1,y 1),(4,y 2)在一次函数y =3x +a 的图象上,则y 1,y 2的大小关系是( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定9、关于函数y =-2x +1,下列结论正确的是( ) A .图像经过点()2,1- B .y 随x 的增大而增大 C .图像不经过第四象限D .图像与直线y =-2x 平行10、如图,点()1,1A ,()2,3B -,若点P 为x 轴上一点,当PA PB -最大时,点P 的坐标为( )A .1,02⎛⎫ ⎪⎝⎭B .5,04⎛⎫ ⎪⎝⎭C .1,02⎛⎫- ⎪⎝⎭D .()1,0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若正比例函数y =kx (k 是常数,k ≠0)的图象经过第一、三象限,请写出一个满足上述要求的k 的值______.2、如图,直线y =kx +b 交坐标轴于A ,B 两点,则关于x 的不等式kx +b <0的解集是_____.3、已知一次函数的图象过点(3,5)与(-4,-9),求一次函数的解析式.分析:求一次函数y =kx +b 的解析式,关键是求出k ,b 的值.从已知条件可以列出关于k ,b 的二元一次方程组,并求出k ,b .解:设这个一次函数的解析为:y =kx +b因为y =kx +b 的图象过点(3,5)与(-4,-9),所以3549k b k b +=⎧⎨-+=-⎩, 解方程组得:21k b =⎧⎨=-⎩,这个一次函数的解析式为:___4、正比例函数(1)y k x =+图像经过点(1,-1),那么k =__________.5、一次函y =kx +b (k ≠0)的图象可以由直线y =kx 平移______个单位长度得到(当b >0时,向______平移;当b <0时,向______平移). 三、解答题(5小题,每小题10分,共计50分) 1、已知一次函数24y x =-+,完成下列问题: (1)求此函数图像与x 轴、y 轴的交点坐标;(2)画出此函数的图像:观察图像,当04y ≤≤时,x 的取值范围是______.2、已知一次函数 y =-x +2.(1)求这个函数的图像与两条坐标轴的交点坐标; (2)在平面直角坐标系中画出这个函数的图像; (3)结合函数图像回答问题:①当 x >0 时,y 的取值范围是 ; ②当 y <0 时,x 的取值范围是 .3、已知点0(P x ,0)y 和直线y kx b =+,则点p 到直线y kx b =+的距离d 可用公式d =例如:求点(1,2)P -到直线37y x =+的距离. 解:因为直线37y x =+,其中3k =,7b =.所以点P 到直线的距离:d ===. 根据以上材料,解答下列问题: (1)求点(2,2)P 到直线2y x =-的距离.(2)已知C 的圆心C 的坐标为(2,1),半径r C 与直线1y x =-+的位置关系并说明理由.(3)已知互相平行的直线1y x =-与y x b =+b 的值.4、如图,在平面直角坐标系xOy 中,点(0,)A a ,(,0)B b ,(0,)C c ,且a ,b ,c 满足关于x ,y 的二元一次方程25235a b a b x y --+-=,直线l 经过点C ,且直线l x ∥轴,点(,2)D m 为直线l 上的一个动点,连接AB ,AD ,BD .(1)求a ,b ,c 的值;(2)在点D 运动的过程中,当三角形ABD 的面积等于三角形AOB 的面积的16时,求m 的值;(3)在点D 运动的过程中,当AD BD +取得最小值时,直接写出m 的值.5、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水x 吨,应交水费y 元. (1)若08x <≤,请写出y 与x 的函数关系式. (2)若8x >,请写出y 与x 的函数关系式.(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?-参考答案-一、单选题 1、A 【解析】 略2、C 【解析】 【分析】由题意求出C 和D 点坐标,求出直线CD 的解析式,再与直线AB 解析式联立方程组即可求出交点E 的坐标. 【详解】解:令直线:l y =+0x =,得到y =(0,A ,令直线:l y =+0y =,得到2x =,故(2,0)B ,由勾股定理可知:4===AB ,∵12OB AB =,且AOB 90∠=, ∴30OAB ∠=,60ABO ∠=,过C 点作CH ⊥x 轴于H 点,过D 点作DF ⊥x 轴于F ,如下图所示:∵ABC 为等边三角形, ∴60ABC ∠=,4BC AB ==∴18060∠=-∠-∠=CBH ABO ABC , ∴30BCH =∠,∴1=22,===BH BC CH∴(4,C ,同理,∵ADO △为等边三角形,∴==DO AO 60AOD ∠=, ∴30DOF ∠=,∴132====DF DO OF ,∴(D -,设直线CD 的解析式为:y=kx+b,代入(4,C和(D -,得到:43⎧=+⎪=-+k b k b,解得⎧=⎪⎪⎨⎪=⎪⎩k b∴CD的解析式为:=y与直线:l y =+解得12⎧=⎪⎪⎨⎪=⎪⎩x y E点坐标为1(2,故选:C . 【点睛】本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C 、D 的坐标,进而求解. 3、B【分析】解:作点A 关于y 轴的对称点C ,得C (-1,-1),直线AC 与y 轴交点即为点P ,此时AP BP +的值最小,求出直线BC 的函数解析式,令x =0时得y 的值即为点P 的坐标. 【详解】解:作点A 关于y 轴的对称点C ,得C (-1,-1),直线AC 与y 轴交点即为点P ,此时AP BP +的值最小,设直线BC 的函数解析式为y=kx+b ,将()2,3B 、C (-1,-1)代入,得123k b k b -+=-⎧⎨+=⎩,解得4313k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线BC 的函数解析式为y=43x+13,当x =0时,得y =13,∴P (0,13). 故选:B . 【点睛】此题考查了轴对称求最短路径,求一次函数解析式,一次函数图象与坐标轴交点坐标,正确掌握利用轴对称知识解决最短路径问题是解题的关键. 4、C 【解析】 【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数21y x =-+的图象经过第一、二、四象限,此题得解.解:∵k=-2<0,b=1>0,∴一次函数y=-2x+1的图象经过第一、二、四象限,∴一次函数y=-2x+1的图象不经过第三象限.故选:C.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.5、B【解析】【分析】根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可【详解】根据表格数据,描点、连线画出函数的图象如图:故y与x的函数关系是一次函数.故选B.【点睛】本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.6、D【解析】【分析】根据一次函数图象与系数的关系解答即可.【详解】 解:一次函数(y kx b k =+、b 是常数,0)k ≠的图象不经过第三象限,0k ∴<且0b ≥,故选:D .【点睛】本题主要考查了一次函数图象与系数的关系,直线y =kx +b 所在的位置与k 、b 的符号有直接的关系为:k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b =0时,直线过原点;b <0时,直线与y 轴负半轴相交.7、B【解析】【分析】利用一次函数的性质逐项进行判断即可解答.【详解】解:A 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项不符合题意;B 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn >,两结论不一致,故本选项符合题意;C. 由一次函数的图象可知,0m >,0n >故0mn >;由正比例函数的图象可知0mn >,两结论一致,故本选项不符合题意;D. 由一次函数的图象可知,0m >,0n <故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项不符合题意;故选B .【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:当0k >,0b >函数y kx b =+的图象经过第一、二、三象限;当0k >,0b <函数y kx b =+的图象经过第一、三、四象限;当0k <,0b >函数y kx b =+的图象经过第一、二、四象限;当0k <,0b <函数y kx b =+的图象经过第二、三、四象限.8、A【解析】【分析】根据一次函数y =3x +a 的一次项系数k >0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:∵一次函数y =3x +a 的一次项系数为3>0,∴y 随x 的增大而增大,∵点(﹣1,y 1),(4,y 2)在一次函数y =3x +a 的图象上,﹣1<4,∴y 1<y 2,故选:A .【点睛】本题考查了一次函数的性质,掌握y kx b =+,0k >时,y 随x 的增大而增大是解题的关键.9、D【解析】【分析】根据一次函数的性质对各选项进行逐一判断即可.【详解】解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;B、由于k=−2<0,则y随x增大而减小,故本选项错误;C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x 的上方,则图象还过第一象限,故本选项错误;D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;故选:D.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.10、A【解析】【分析】作点A关于x轴的对称点A',连接BA'并延长交x轴于P,根据三角形任意两边之差小于第三边可-最大,利用待定系数法求出直线BA'的函数表达式并求出与x轴的交点坐标即知,此时的PA PB可.【详解】解:如图,作点A关于x轴的对称点A',则PA=PA',-≤BA'(当P、A'、B共线时取等号),∴PA PB-最大,且点A'的坐标为(1,-1),连接BA'并延长交x轴于P,此时的PA PB设直线BA'的函数表达式为y=kx+b,将A '(1,-1)、B (2,-3)代入,得:132k b k b -=+⎧⎨-=+⎩,解得:21k b =-⎧⎨=⎩, ∴y =-2x +1,当y =0时,由0=-2x +1得:x =12,∴点P 坐标为(12,0),故选:A【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x 轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.二、填空题1、2(满足k >0即可)【解析】【分析】根据函数图象经过第一、三象限,可判断k >0,任取一个正值即可.【详解】解:∵正比例函数y =kx (k 是常数,k ≠0)的图象经过第一、三象限,∴k>0.故答案为:2(满足k>0即可).【点睛】本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.2、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x<-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.3、y=2x-1【解析】略4、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k +1,即可得出k 值.【详解】解:∵正比例函数(1)y k x =+的图象经过点(1,-1),∴-1=k +1,∴k =-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y =kx 是解题的关键.5、 b 上 下【解析】略三、解答题1、 (1)()2,0;()0,4(2)作图见解析;02x ≤≤【解析】【分析】(1)分别令,x y 0=,进而即可求得此函数图象与坐标轴的交点坐标;(2)根据(1)所求得的点的坐标,画出一次函数图象即可,根据图象写出当04y ≤≤时,自变量的取值范围即可.(1)令0x =,解得4y =,令0y =,解得2x =则此函数图像与x 轴的交点坐标为()2,0、与y 轴的交点坐标为()0,4(2)过点()2,0;()0,4作直线,如图,根据函数图象可得当04y ≤≤时,x 的取值范围是:02x ≤≤故答案为:02x ≤≤【点睛】本题考查了画一次函数图象,一次函数与坐标轴的交点,根据函数图象求自变量的范围,掌握一次函数的图象的性质是解题的关键.2、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)见解析(3)①y <2;②x >2【解析】【分析】(1)令x =0,求函数与y 轴的交点,令y =0,求函数与x 轴的交点;(2)两点法画出函数图象;(3)通过观察函数图象求解即可.(1)解:令x=0,则y=2,令y=0,则x=2,∴这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)解:这个函数的图像如图所示:,(3)解:①观察图像可知:当x>0时,y<2,故答案为:y<2;②观察图像可知:当y<0时,x>2,故答案为:x>2.【点睛】本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.3、(2)相切,理由见解析(3)1b =或3b =-【解析】【分析】(1)将P 点直接代入距离公式计算.(2)计算圆心到直线的距离,将距离与半径比较,判断圆与直线之间的关系,(3)在直线1y x =-上任取一点,计算该点到y x b =+的距离,可求得b .(1)因为直线2y x =-,其中1k =,2b =-,所以点P 到直线的距离:d ===(2)因为直线1y x =-+,其中1k =-,1b =,所以圆心C 到直线的距离::d ===圆心到直线的距离d r ==, C 与直线1y x =-+相切.(3)在直线1y x =-上取一点(0,1)A -,根据题意得,点A 到直线y x b =+因为直线y x b =+,其中1k =,b b =,所以点A 到直线的距离:d ==即:|1|2b +=,解得:1b =或3b =-.【点睛】本题属于一次函数的综合题,主要考查了点到直线的距离公式应用,解题关键是能够理解题目中距离的计算公式,并能结合圆、另一条直线进行计算.根据各数量之间的关系,正确列出一元一次不等式.4、 (1)6a =,5b =,2c = (2)256m =或52 (3)103 【解析】【分析】(1)根据二次根式有意义的条件求出c ,根据二元一次方程的定义列出方程组,解方程组求出a 、b ;(2)根据三角形的面积公式求出△AOB 的面积,根据S △ABD =16×S △AOB 求出S △ABD ,根据三角形的面积公式计算,得到答案;(3)利用待定系数法求出直线AB 的解析式,进而求出m .(1)20c -,20c -,2c ∴=,由二元一次方程的定义,得1251a b a b -=⎧⎨-+=⎩, 解得:65a b =⎧⎨=⎩, 6a ∴=,5b =,2c =;(2)设AB 与直线l 交于E ,连接OE ,由(1)可知:5OB =,6OA =,2OC =,11651522AOB S OA OB ∆∴=⨯⨯=⨯⨯=, 1562ABD AOB S S ∆∆∴=⨯=, 12552BOE S ∆=⨯⨯=, 15510AOE S ∆∴=-=,即16102CE ⨯⨯=, 解得:103CE =, 103DE CD CE m ∴=-=-, ∴11056232m ⨯-⨯=,解得:256m =或52; (3) 当AD BD +取得最小值时,点D 在AB 上,设直线AB 的解析式为:y kx b =+,则506k b b +=⎧⎨=⎩, 解得:656k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 的解析式为:665y x =-+, 当2y =时,103x =, m ∴的值为103. 【点睛】本题考查的是二次根式有意义的条件、二元一次方程的定义、三角形的面积计算、函数解析式的确定,掌握待定系数法求一次函数解析式的一般步骤是解题的关键.5、 (1) 1.5y x =(2) 2.2 5.6y x =-(3)13吨【解析】【分析】(1)当0<x ≤8时,根据水费=用水量×1.5,即可求出y 与x 的函数关系式;(2)当x >8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y 与x 的函数关系式;(3)当0<x ≤8时,y ≤12,由此可知这个月该户用水量超过8吨,将y =23代入(2)中所求的关系式,求出x 的值即可.(1)根据题意可知:当08x <时, 1.5y x =;(2)根据题意可知:当8x >时, 1.58 2.2(8) 2.2 5.6y x x =⨯+⨯-=-; (3)当08x <时, 1.5y x =,y 的最大值为1.5812⨯=(元),1223<,∴该户当月用水超过8吨.令 2.2 5.6y x =-中23y =,则23 2.2 5.6x =-,解得:13x =.答:这个月该户用了13吨水.【点睛】本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.。
冀教版八年级数学下册第二十一章 一次函数练习
第二十一章 一次函数一、单选题1.下列函数中,是一次函数的有( )A .212y x = B .31y x =+ C .4y x=D .2y ax =-(a 为常数)2.正比例函数y kx =,当x 每增加3时,y 就减小2,则k 的值为( ) A .32B .32-C .23D .23-3.若正比例函数的图象经过点(−1,2),则这个图象必经过点( ). A .(1,2)B .(−1,−2)C .(2,−1)D .(1,−2)4.以下关于直线24y x =-的说法正确的是( )A .直线24y x =-与x 轴的交点的坐标为(0,-4)B .坐标为(3,3)的点不在直线24y x =-上C .直线24y x =-不经过第四象限D .函数24y x =-的值随x 的增大而减小5.已知直线 y=-3x+4 过点 A (-1,y 1)和点(-3,y 2),则 y 1 和 y 2 的大小关系是( ) A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定6.在直角坐标系中A (2,0)、B (-3,-4)、O (0,0),则△AOB 的面积( ) A .4B .6C .8D .37.如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩8.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体构造学的研究成果表明,一般情况下人的身高h 是指距d 的一次函数.下表是测得的指距与身高的一组数据:根据上表解决下面这个实际问题:姚明的身高是226厘米,他的指距为( )A .26.8厘米B .26.9厘米C .27.5厘米D .27.3厘米9.已知直线3y mx =+经过点(2,0),则关于x 的不等式30mx +>的解集是( ) A .x >2B .x <2C .x≥2D .x≤210.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中射线l 1和l 2分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系. 下列说法:△乙晚出发1小时; △乙出发3小时后追上甲;△甲的速度是4千米/小时,乙的速度是6千米/小时; △乙先到达B 地.其中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题11.我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____.12.直线26y x =-+与x 轴的交点为M ,将直线26y x =-+向左平移5个单位长度,点M 平移后的对应点M '的坐标为______________,平移后的直线表示的一次函数的解析式为_____________.13.已知一次函数46y x =--,与x 轴、y 轴的交点坐标为A 、B ,则AOB V 的面积为__________.14.在平面直角坐标系xOy 中,已知点A (0,1),B (1,2),点P 在x 轴上运动,当点P 到A 、B 两点距离之差的绝对值最大时,点P 的坐标是_______.三、解答题15.已知 y + 2 与 x - 1成正比例,且 x = 3时 y = 4 。
冀教版八年级数学下册第二十一章一次函数测试题含答案
故选B.
考点:一次函数图象与几何变换
8.B
【解析】
【分析】
根据正比例函数的定义,知1-m=0,即可求出m的值.
【详解】
依题意得1-m=0,2m+6 0,求得m=1,故选B.
【点睛】
此题主要考察正比例函数的定义.
9.A
【解析】
由题意可得: ,即: .
故选A.
10.C
(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.
(2)求甲、乙第一次相遇的时间.
(3)直接写出乙回到侧门时,甲到侧门的路程.
参考答案
1.C
【解析】
【分析】
根据一次函数的定义即可判断.
【详解】
①y=x;②y=2x-1是一次函数;;③y= ;④y=x2-1不是一次函数,
故选C.
∴它是递增的一次函数,与x、y轴的交点分别是(1,0)、(0,1)
∴它的图象经过第一、二、四象限
5.D
【解析】
试题分析:根据正比例函数图象的特点可直接解答.
解:∵正比例函数y=(k+5)x中若y随x的增大而减小,
∴k+5<0.
∴k<﹣5,
故选D.
6.B
【解析】
【分析】
把(-2,-6),(0,4)代入一次函数解析式,求出k、b的值,即可知解析式,再令y=0,求得x即可.
【详解】
把(-2,-6),(0,4)代入y=kx+b,得 ,
解得 ,∴y=5x+4,
当y=0时,即5x+4=0,解得x=- ,故选B.
【点睛】
此题主要考察待定系数法确定函数关系式,熟练利用二元一次方程组是解题的关键.
冀教版八年级数学下册第二十一章 一次函数检测卷综合测试题
第二十一章一次函数检测卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中是一次函数的是()A.y=B.y=-C.y=2x2-1D.y=3x+2x2-12.函数y=3x+1的图像过点()A.(3,5)B.(-2,3)C.(2,7)D.(4,10)3.已知点A(x1,y1)和点B(x1+1,y2)都在一次函数y=2 019x-2 020的图像上,则下列结论正确的是()A.y1>y2B.y1<y2C.y1=y2D.y1≥y24.不论实数k取何值,一次函数y=kx-3的图像必过的点的坐标为()A.(0,-3)B.(0,3)C.(,0)D.(-,0)5.函数y=2x,y=-3x,y=-x的共同特点是()A.图像位于同样的象限B.y随x的增大而减小C.y随x的增大而增大D.图像都过原点6.在同一直角坐标系中,一次函数y=(k-2)x+k的图像与正比例函数y=kx的图像的位置可能是()A B C D7.已知变量y与x的关系满足下表,那么能反映y与x之间的函数关系式的是()A.y=-2xB.y=x+4C.y=2x-2D.y=-x+28.对于一次函数y=-2x+4,下列说法错误的是()A.函数值随自变量的增大而减小B.函数的图像不经过第三象限C.函数的图像与x轴的交点坐标是(0,4)D.函数的图像向下平移4个单位长度得y=-2x的图像9.若弹簧的总长度y(cm)与所挂重物的质量x(kg)的一次函数关系的图像如图所示,则不挂重物时,弹簧的长度是()A.5 cmB.8 cmC.9 cmD.10 cm10.直线y=2x+2沿x轴向左平移3个单位长度后与y轴的交点坐标是()A.(0,2)B.(0,4)C.(0,-4)D.(0,8)11.已知一次函数y1=kx+b与y2=x+a的图像如图所示,给出下列结论:①k<0;②a>0;③关于x的方程kx+b=x+a的解为x=3;④x>3时,y1<y2.其中正确结论的个数是() A.1 B.2 C.3 D.4第11题图第12题图12.一次函数y=(k+2)x+1-k的图像如图所示,则使式子+(1+k)0有意义的k的值可能为()A.-2B.-1C.0D.213.已知直线y=kx-4(k<0)与两坐标轴所围成的三角形的面积等于4,则直线的表达式为()A.y=-2x-4B.y=-x-4C.y=-3x-4D.y=-4x-414.如图,在平面直角坐标系中,直线y=x-与四边形ABCO的边OC,BC分别交于点E,F.已知∠BCO=90°,OC=4,则△CEF的面积是()A.6B.3C.12D.第14题图第15题图第16题图15.如图,小明购买一种笔记本付款金额y(元)与购买量x(本)之间的函数图像由线段OB和射线BE组成.则一次购买8本笔记本比分8次购买每次购买1本节省()A.2元B.4元C.6元D.8元16.甲和乙两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,甲和乙两人离开A城的距离y(km)与甲行驶的时间t(h)之间的函数关系如图所示.给出下列结论: ①A,B两城相距300 km;②乙比甲晚出发1 h,却早到1 h;③乙出发2.5 h后追上甲;④当甲、乙两人相距50 km时,t=或t=.其中正确的结论有()A.①②B.①②④C.②③④D.①②③④二、填空题(本大题有3个小题,共12分.17~18小题各3分,19小题有2个空,每空3分)17.已知某一次函数的图像与直线y=-x+1平行,且过点(8,2),那么该一次函数的表达式是.18.如图,已知一次函数y=2x+b和y=ax-3的图像交于点P(-2,-5),根据图像可得方程2x+b=ax-3的解是.19.当-2≤x≤2时,函数y=kx-k+1(k为常数且k<0)有最大值3,则k的值为,函数的最小值为.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8 分)已知函数y=(3m-1)x+m+5.(1)若函数图像经过原点,求m的值;(2)若这个函数是一次函数,且y的值随x的值的增大而减小,求m的取值范围.21.(本小题满分9分)已知一次函数y=2x-6.(1)在如图所示的平面直角坐标系中,画出该函数的图像;(2)判断点(4,3)是否在此函数的图像上;(3)观察画出的图像,写出当x在什么范围内时y<0.22.(本小题满分9分)已知直线l经过A(6,0),B(0,12)两点,且与直线y=x交于点C.(1)求直线l的表达式;(2)已知点P(3,0),过点P作直线l的平行线交直线y=x于点D,求△PCD的面积.23.(本小题满分9分)某工厂计划生产甲、乙两种产品共2 500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x吨,生产甲、乙两种产品获得的总利润为y万元.(1)求y与x之间的函数关系式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1 000吨,其他原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.24.(本小题满分10分)某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5 h,A种机器人于某日0时开始搬运,过了1 h,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(kg)与时间x(时)的函数图像,线段EF表示B种机器人的搬运量y B(kg)与时间x(时)的函数图像.根据图像提供的信息,解答下列问题:(1)求y B关于x的函数表达式;(2)如果A,B两种机器人各连续搬运5 h,那么B种机器人比A种机器人多搬运了多少千克?25.(本小题满分10分)如图,直线y=kx+6与x轴、y轴分别交于点E,F,点E的坐标为(-8,0),点A的坐标为(-6,0).(1)求k的值;(2)若点P(x,y)是第二象限内直线y=kx+6上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x 的函数关系式,并写出自变量x的取值范围;(3)探究:在(2)的条件下,当点P运动到什么位置时,△OPA的面积为?请说明理由.26.(本小题满分11分)如图,l1,l2分别表示一种白炽灯和一种节能灯的费用(费用=灯的售价+电费,单位:元)y1,y2与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2 000 h,照明效果一样.(1)根据图像分别求出l1,l2对应的函数表达式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2 500 h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.(直接给出答案,不必写出解答过程)第二十一章20. (1)把(0,0)代入y=(3m-1)x+m+5,得m+5=0,解得m=-5.(2)因为函数y=(3m-1)x+m+5是一次函数,且y的值随x的值的增大而减小,所以3m-1<0,解得m<.21. (1)∵一次函数y=2x-6的图像与两坐标轴的交点坐标分别为(0,-6),(3,0),∴函数图像如图所示.(2)∵当x=4时,y=8-6=2≠3,∴该点不在此函数的图像上.(3)由图可知,当x<3时,y<0.22. (1)设直线l的表达式为y=kx+b(k≠0),把A,B两点的坐标分别代入可得解得∴直线l的表达式为y=-2x+12.(2)由可得∴C点坐标为(4,4).设直线PD的表达式为y=-2x+n,把P(3,0)代入,得-6+n=0,解得n=6,∴直线PD的表达式为y=-2x+6.由可得∴D点的坐标为(2,2).∴S△POD=×3×2=3,S△POC=×3×4=6,∴S△PCD=S△POC-S△POD=6-3=3.23. (1)由题意,得y=0.3x+0.4(2 500-x)=-0.1x+1 000,因此y与x之间的函数关系式为y=-0.1x+1 000.(2)由题意,得所以1 000≤x≤2 500,在函数y=-0.1x+1 000中,因为k=-0.1<0,所以y的值随x的值的增大而减小,所以当x=1 000时,y最大.2 500-1 000=1 500(吨).因此生产甲产品1 000吨,乙产品1 500吨时,利润最大.24. (1)根据题图,设y B关于x的函数表达式为y B=kx+b(k≠0).将(1,0),(3,180)代入,得解得所以y B关于x的函数表达式为y B=90x-90(1≤x≤6).(2)根据题图,设y A关于x的函数表达式为y A=k1x(k1≠0).根据题意,得3k1=180,解得k1=60.所以y A=60x(0≤x≤5).当x=5时,y A=60×5=300.当x=6时,y B=90×6-90=450.450-300=150(kg).答:如果A,B两种机器人各连续搬运5 h,那么B种机器人比A种机器人多搬运了150 kg.25. (1)因为直线y=kx+6与x轴交于点E(-8,0),所以-8k+6=0,解得k=.(2)过点P作PH⊥x轴于点H.因为点A的坐标为(-6,0),所以AO=6.因为点P(x,y)是第二象限内直线y=x+6上的一个动点,所以PH=y=x+6,所以S=AO×PH=×6×(x+6)=x+18(-8<x<0).(3)当点P的坐标为(-,)时,△OPA的面积为.理由如下:当S=时,x+18=,解得x=-,此时y=×(-)+6=.所以当点P的坐标为(-,)时,△OPA的面积为.26. (1)设l1的函数表达式为y1=k1x+b1(k1≠0),l2的函数表达式为y2=k2x+b2(k2≠0).由题图可知l1过点(0,2),(500,17),∴∴∴y1=0.03x+2(0≤x≤2 000).由l2过点(0,20),(500,26),同理可得y2=0.012x+20(0≤x≤2 000).(2)由y1=y2,得x=1 000,∴当照明时间为1 000 h时,两种灯的费用相同.(3)先用节能灯2 000 h,再用白炽灯500 h.(或先用白炽灯500 h,再用节能灯2 000 h)。
冀教版数学八下第二十一章《一次函数》word测试题(含答案)
第二十一章测试题一、慧眼识金选一选!(每小题3分,共24分)1.某人要在规定的时间内加工100个零件,则工作效率η与时间t 之间的关系中,下列说法正确的是( ).(A )数100和η,t 都是变量 (B )数100和η都是常量 (C )η和t 是变量 (D )数100和t 都是常量2. 汽车离开甲站10千米后,以60千米/时的速度匀速前进了t 小时,则汽车离开甲站所走的路程s (千米)与时间t (小时)之间的关系式是( ).(A )1060s t =+ (B )60s t = (C )6010s t =- (D )1060s t =- 3.(课本39页习题1变形)如图,若输入x 的值为-5,则输出的结果( ).(A )―6 (B )―5 (C )5 (D )64.下列图表列出了一项实验的统计数据,表示将皮球从高d 处落下时,弹跳高度b 与下落高度d 的关系:(A )2b d = (B )2b d = (C )2db = (D )25b d =- 5.下列函数中,自变量x 不能为1的是( ).(A )1y x =(B )21x y x +=- (C )21y x =+ (D )8x y = 6.(2008年广安)下列图形中的曲线不表示y 是x 的函数的是()7. 甲乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (时)之间的函数关系的图象,如(B )y O x图所示。
根据图中提供的信息,有下列说法: ① 他们都行驶了18千米。
② 甲车停留了0.5小时。
③ 乙比甲晚出发了0.5小时。
④ 相遇后甲的速度小于乙的速度。
⑤ 甲、乙两人同时到达目的地。
其中符合图象描述的说法有( )(A )2个 (B )3个 (C )4个 (D )5个8.(2008年烟台)如图,四幅图象分别表示变量之间的关系,请按图象..的顺序,将下面的四种情境与之对应排序.① ② ③ ④.a 运动员推出去的铅球(铅球的高度与时间的关系).b 静止的小车从光滑的斜面滑下(小车的速度与时间的关系).c 一个弹簧由不挂重物到所挂重物的质量逐渐增加(弹簧的长度与所挂重物的质量的关系).d 小明从A 地到B 地后,停留一段时间,然后按原速度原路返回(小明离A 地的距离与时间的关系) 正确的顺序是( )(A )abcd (B )adbc (C )acbd (D )acdb二、画龙点睛填一填!(每小题3分,共24分)9.已知等式24x y +=,则y 关于x 的函数关系式为________________.10. 市场上一种豆子每千克售2元,即单价是2元/千克,豆子总的售价y (元)与所售豆子的数量x kg 之间的关系为_______,当售出豆子5kg 时,豆子总售价为______元;当售出豆子10kg 时,豆子总售价为______元.11.函数是表达现实世界中数量之间变化规律的一种数学模型,它的三种数学表示方法分别为_________、_________、_________.12.函数y =x 的取值范围是______________.13.导弹飞行高度h (米)与飞行时间t (秒)之间存在着的数量关系为213004h t t =-+,当15t =时,h =____________.14.如图,表示一辆汽车行驶的速度和时间的图象,你能用语言描述汽车的行驶情况吗?________________________________.v(千米/时)t(时)60O15.用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n 个三角形需要S 支火柴棒,那么S 与n 的关系可以用式子表示为 (n 为正整数).16.假定甲、乙两人在一次赛跑中,路程S 与时间t 的关系如图所示,看图填空: (1)这是一次_______赛跑.(2)甲、乙两人中先到达终点的是_________.(3)乙在这次赛跑中的平均速度是_________m /s.三、考考你的基本功!(共40分)17.(10分)长方形的周长为20cm ,它的长为a cm ,宽为b cm.(1)上述的哪些是常量?哪些是变量? (2)写出a 与b 满足的关系式;(3)试求宽b 的值分别为2,3.5时,相应的长a 是多少? (4)宽为多少时,长为8cm ?18.(10分)如图所示,三角形的底边长为8cm ,高为x cm. (1)写出三角形的面积y 与高x 之间的函数关系式;(2)用表格表示高从5cm 变到10cm 时(每次增加1cm )y 的对应值; (3)当x 每次增加1cm 时,y 如何变化?说说你的理由.19.(10分)如图,表示甲骑电动自行车和乙驾驶汽车的均行驶90km 的过程中,行驶的路程y 与经过的时间x 之间的函数关系,请根据图象填空: _________出发的早,早了________小时,_____________先到达,先到_________小时,电动自行车的速度为__________km/h ,汽车的速度为__________km/h.20.同点即可)?(2)预测哪一个函数值先到达100.四、同步大闯关!(12分)21.(12分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量的关系? (2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远? (4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案: 1.C ; 2.A ; 3.D ; 4.C ; 5.B ; 6.C ; 7.C ; 8.D ;9.24y x =-+; 10.2y x =, 10, 20;11.图像法,表达式法,表格法; 12.2x ≥; 13. 4443.75;14.答案不唯一,略; 15. 21S n =+;16. (1)100m ,(2)甲 ,(3)8; 17.(1)常量是20,变量是a ,b .(2)因为2()20a b +=,所以10a b =-.(3)当2b =时,1028a =-=;当 3.5b =时,10 3.5 6.5a =-=; (4)当8a =时,1082b =-=. 18.(1)4y x =(0x >); (2(319. 甲(或电动自行车),2,乙(或汽车),2,18,90; 20.填表如下:(1)不同点有:①1y 图象不经过原点,2y 图象经过原点;②当3x <时, 1y 图象在2y 图象上方,当103x >时,1y 图象在2y 图象下方;③随着x 增大,2y 的值比1y 的值增大的快等.y的函数值先到达100.(2)221. (1)时间与距离;(2)10时和13时,分别离家10千米和30千米;(3)到达离家最远的时间是12时,离家30千米;(4)11时到12时,他行驶了13千米;(5)他可能在12时到13时间休息,吃午餐;(6)共用了2时,因此平均速度为15千米/时.提升能力超越自我1.甲、乙两人(甲骑自行车、乙骑摩托车)从A城出发到B城旅行,如图所示的是甲、乙两人离开A城的路程与时间的关系图象.根据此图象你能得到关于甲、•乙两人旅行的哪些信息?至少写出三条信息.2.(课本44页第3题变形)(1)“龟兔赛跑”讲述了这样的故事:“领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还时先到达了终点……”用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()(A)(B)(C)(D)(2)请你以A、B、C图像为背景,以竞赛的方式叙述出“龟兔赛跑”的创新故事.(选择其中的一副叙述即可)答案:1.(1)甲做变速运动;(2)乙做匀速运动;(3)两地相距100千米(4)甲行驶时间为8小时;(5)甲比乙早出发4小时等等.2.(1)D:(2)答案不唯一,提供一例供参考:A图:听到赛跑开始信号,乌龟和兔子同时同地以自己最快速度离开起跑线,冲向终点.“不一会儿,就把乌龟抛在后边,我何不休息片刻!”兔子骄傲地说着便停了下来.“拿不拿奖并不重要,重要的是参与,我一定要持之以恒地爬向终点”乌龟毫不气馁,自言自语地说.兔子一觉醒来发现乌龟已跑到自己前边,于是,以更快的速度跑向终点,便在终点等候乌龟的到来.最终兔子获得此次长跑冠军,乌龟获得最佳参与奖.B图:乌龟决定和自己力量悬殊很大的兔子开展长跑比赛,听到开始的信号,同时,从起点向终点跑去.经过一段时间兔子跑到乌龟前面,于是高傲地说:“我就是停下来睡一觉,乌龟也追不上”,便高枕无忧地睡着了.乌龟并没有因为自己跑的慢而气馁,它一鼓作气跑到终点,获得此次长跑冠军,而兔子还在那里,做着“唯我领先的美梦”呢!C图:乌龟和兔子商议,以长跑来锻炼身体.听到开始的信号,它们同时从起点出发跑向终点.比赛前一段时间,兔子明显领先于乌龟.于是,兔子自语到:“我何不休息一会儿缩短与乌龟的差距,调动一下乌龟长跑的积极性呢?”于是,停了下来.乌龟还在继续向前爬且超过了兔子,快到终点时,兔子突然猛跑和乌龟同时到达终点,它们双双取得长跑冠军.。
初中数学冀教版八年级下册第二十一章 一次函数21.1 一次函数-章节测试习题
章节测试题1.【答题】下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1B.2C.3D.4【答案】C【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:①y=x是一次函数,故①符合题意;②y=是一次函数,故②符合题意;③y=自变量次数不为1,故不是一次函数,故③不符合题意;④y=2x+1是一次函数,故④符合题意.综上所述,是一次函数的个数有3个,选C.2.【答题】下列函数中,一次函数是()A.y=8x2B.y=x+1C.;D.【答案】B【分析】一次函数y=kx+b的定义条件逐一分析即可.【解答】解:A、自变量次数不为1;B、是一次函数;C、不符合一次函数的形式;D、分母中含有未知数不是一次函数.选B.3.【答题】在地表以下不太深的地方,温度y(℃)与所处的深度x(km)之间的关系可以近似用关系式y=35x+20表示,这个关系式符合的数学模型是()A.正比例函数B.反比例函数C.二次函数D.一次函数【答案】D【分析】根据一次函数的定义解答即可.【解答】解:∵关系式y=35x+20符合一次函数的形式,∴这个关系式符合的数学模型是一次函数.选D.4.【答题】下列关于x的函数中,是一次函数的是()A.y=3(x﹣1)2+1B.y=x+C.y=﹣xD.y=(x+3)2﹣x2【答案】D【分析】化简后,看是否符合y=kx+b(k≠0)的形式即可.【解答】解:A、y=3(x﹣1)2+1自变量次数不为1,故不是一次函数,不符合题意;B、y=x+不符合一次函数的一般形式,不符合题意;C、y=﹣x不符合一次函数的一般形式,不符合题意;D、化简后可得y=6x+9,符合一次函数的一般形式,符合题意;选D.5.【答题】若y=是一次函数,则m的值为()A.0B.﹣1C.0或﹣1D.±1【答案】B【分析】根据形如y=kx+b(k、b为常数,k≠0)是一次函数,可得答案.【解答】解:由y=是一次函数,得,解得m=﹣1,选B.6.【答题】如果y=(m﹣1)x2﹣m²+3是一次函数,那么m的值是()A.1B.﹣1C.+1D.±【答案】B【分析】根据一次函数的一次项的系数不等于零,可得不等式,根据解不等式,可得答案.【解答】解:y=(m﹣1)x2﹣m²+3是一次函数,得.解得m=1(不符合题意要舍去),m=﹣1,选B.7.【答题】函数,一次函数和正比例函数之间的包含关系是()A. B.C. D.【答案】A【分析】根据函数、正比例函数及一次函数的定义解答.【解答】解:函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.根据函数的定义知,一次函数和正比例函数都属于函数的范畴;一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.当b=0时,则成为正比例函数y=kx;所以,正比例函数是一次函数的特殊形式;8.【答题】下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】根据一次函数的定义解答即可.【解答】解:①y=﹣x是一次函数;②y=2x+11是一次函数;③y=x2+x+1是二次函数;④是反比例函数.选B.9.【答题】已知关于x的函数y=(m﹣5)x m²-24+m+1是一次函数,则m=______,直线y=(m﹣5)x m²-24+m+1不经过第______象限.【答案】-5 一【分析】一次函数的系数m﹣5≠0,自变量x的次数m2﹣24=1,据此解答m、n的值.【解答】解:(1)m﹣5≠0,m≠5;m2﹣24=1所以m=﹣5;(2)∵m=﹣5,∴y=﹣10x﹣4,﹣10<0,﹣4<0,图象过二、三、四象限,∴不经过第一象限.故答案为:﹣5,一.10.【答题】一般的,如果两个变量x与y之间的函数关系式可以表示为y=kx+b (k≠0,k、b是常数)的形式,那么称y是x的一次函数.当b=______时,y是x的正比例函数.【答案】0【分析】根据一次函数的定义和正比例函数的定义解答.【解答】解:一般的,如果两个变量x与y之间的函数关系式可以表示为y=kx+b (k≠0,k、b是常数)的形式,那么称y是x的一次函数.当b=0时,y是x的正比例函数.故答案为:y=kx+b(k≠0,k、b是常数);b=0.11.【答题】若y=(a2﹣4)x2+(a+2)x+5﹣b是正比例函数,则a﹣b=______.【答案】-3【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,即可列出有关a或b的方程,求出a、b值.【解答】解:∵y=(a2﹣4)x2+(a+2)x+5﹣b是正比例函数,∴a2﹣4=0,5﹣b=0,且a+2≠0,解得a=2,b=5,则a﹣b=2﹣5=﹣3.故答案是:﹣3.12.【答题】若函数是正比例函数,则常数m的值是______.【答案】-3【分析】正比例函数的一般式为y=kx,k≠0.根据题意即可完成题目要求.【解答】解:依题意得:,解得:m=﹣3.13.【答题】已知函数y=(m﹣1)+1是一次函数,则m=______.【答案】-1【分析】根据一次函数的定义,令m2=1,m﹣1≠0即可解答.【解答】若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).因而有m2=1,解得:m=±1,又m﹣1≠0,∴m=﹣1.14.【答题】已知函数y=3x+1,当自变量增加3时,相应的函数值增加______.【答案】9【分析】把x+3代入函数y=3x+1计算即可.【解答】解:当自变量增加3时,y=3(x+3)+1=3x+10,则相应的函数值增加9.15.【答题】当x=______时,函数y=(m﹣2)x m²-3+(m﹣2)x+1是一次函数.【答案】﹣2或【分析】此题要分两种情况进行讨论:①m2﹣3=1且m﹣2≠0;②m2﹣3=0分别算出m的值即可.【解答】解:由题意得:①m2﹣3=1,解得:m=±2,∵m﹣2≠0,∴m=﹣2,②m2﹣3=0,解得:m=,故答案为:﹣2或.16.【题文】当m是何值时,函数y=(m+2)x+m+1是:(1)一次函数;(2)是正比例函数.【答案】见解析【分析】(1)根据一次函数定义y=kx+b(k≠0)可得m+2≠0,再解即可.(2)根据正比例函数y=kx(k≠0)可得m+1=0,m+2≠0,再解即可.【解答】解:(1)由题意得:m+2≠0,解得:m≠﹣2;(2)由题意得:m+1=0,m+2≠0,解得:m=﹣1.17.【题文】已知函数y=(2﹣m)x+2m﹣3.求当m为何值时.(1)此函数为一次函数?(2)此函数为正比例函数?【答案】见解析【分析】(1)根据形如y=kx+b(k≠0)的形式是一次函数,可得答案;(2)根据形如y=kx(k≠0)的形式是正比例函数,可得答案.【解答】解:(1)2﹣m≠0,即m≠2时,y=(2﹣m)x+2m﹣3是一次函数;(2)2m﹣3=0,且2﹣m≠0,即m=时,y=(2﹣m)x+2m﹣3是正比例函数.18.【题文】试将函数3x+2y=1改成y=kx+b的形式,并指出k和b的值.【答案】见解析【分析】把3x+2y=1通过移项、化系数为1化为y=kx+b的形式,对比求出k、b 的数值即可.【解答】解:由3x+2y=1,得2y=﹣3x+1,化系数为1,得y=﹣x+,则k=﹣,b=.19.【题文】已知一次函数y=(5m﹣3)x2﹣n+m+n,①求m、n的值和取值范围;②若函数经过原点,求m、n的值.【答案】见解析【分析】①根据一次函数的定义,x的次数等于1,且x的系数不等于0即可求解;②把(0,0)代入函数解析式即可求解.【解答】解:①根据题意得:2﹣n=1,且5m﹣3≠0,解得:n=1且m≠;②函数的解析式是y=(5m﹣1)x+m+1,把(0,0)代入解析式得:m+1=0,解得:m=﹣1,则m=﹣1,n=1.20.【题文】已知函数是一次函数,求k和b的取值范围.【答案】见解析【分析】若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量),因而函数是一次函数的条件是k2﹣3=1,且k﹣2≠0.【解答】解:根据题意得:k2﹣3=1,且k﹣2≠0,∴k=﹣2或k=2(舍去)∴k=﹣2.b是任意的常数.。
冀教版八年级数学下册 第二十一章 一次函数 单元综合测试卷
冀教版八年级数学下册第二十一章一次函数单元综合测试卷姓名:________ 班级:________ 成绩:________一、单选题1 . 已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|PA﹣PB|最大时,点P的坐标为()A.(﹣1,0)D.(1,0)B.(,0)C.(,0)2 . 一次函数,下列结论错误的是()A.若两点A(),B()在该函数图象上,且,则B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得到的图象D.函数的图象与轴的交点坐标是(0,4)3 . 下列函数中,不是一次函数的是()D.A.B.C.4 . 若函数y=(2m+6)x+(1-m)是正比例函数,则m的值是()A.-3B.1C.-7D.35 . 已知一次函数的图像平行,则一次函数的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限6 . 如图,直线y=x+1分别交x轴、y轴于点A、C,点B是点A关于y的对称点,点D是线段BC上一点,把△ABD沿AD翻折使AB落在射线AC上,得△AB'D,则△ABC与△AB'D重叠部分的面积为()A.B.C.D.7 . 下列函数的图象经过(0,1),且y随x的增大而减小的是()A.y=一x B.y=x-1C.y=2x+1D.y=一x+18 . 关于的一次函数的图象可能正确的是()A.B.C.D.9 . 直线y=﹣5x+10一定通过下列点中的()A.(0,2)B.(2,0)C.(1,﹣5)D.(﹣1,5)10 . 已知直线y=kx-4(k<0)与两坐标轴所围成的三角形面积等于4,则该直线的表达式为()A.y= -x-4B.y= -2x-4C.y= -3x+4D.y= -3x-411 . 将直线向上平移2个单位长度后得到直线,则下列关于直线说法正确的是()A.与轴交点为B.与轴交点为C.随的增大而增大D.与两坐标轴围成的三角形面积为12 . 对于一次函数y=2x+4,下列结论中正确的是()①若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y2.②函数的图象不经过第四象限.③函数的图象与x轴的交点坐标是(0,4).④函数的图象向下平移4个单位长度得y=2x的图象.A.1个B.2个C.3个D.4个13 . 若一次函数y=kx+b(k、b是常数,且k≠0)的图像经过第二、三、四象限,则以下关于k、b的取值范围描述正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<014 . 点和都在直线上,则与的关系是A.B.C.D.15 . 一次函数y=ax-b中,a<0,b>0,则它的图象可能是()A.B.C.D.二、填空题16 . 若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为________.17 . 填上适当的数,使等式成立:x2+6x+________=(x+_______)2.三、解答题18 . 已知关于的一次函数.(1)若此函数图象经过点,当时,求的取值范围.(2)若此一次函数图象经过第一、二、四象限,求的取值范围.19 . 在如图所示的平面直角坐标系中,(1)画出函数的图象;(2)填空:请写出图象与x轴的交点A(___,___)的坐标,与y轴交点B(___,__)的坐标;(3)在(2)的条件下,求出△AOB的面积;20 . 某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W 的值最少.(本题10分)已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4)21 . (1)求这两个函数的解析式22 . (2)在同一坐标系内,分别画出这两个函数的图象23 . (3)求出的面积24 . 在平面直角坐标系中画出直线y=x+1的图象,并根据图象回答下列问题:(1)写出直线与x轴、y轴的交点坐标;(2)求出直线与坐标轴围成的三角形的面积;(3)若直线y=kx+b与直线y=x+1关于y轴对称,求k,b的值.25 . 如图①,对于平面内小于等于90°的,我们不妨约定:若点P在内部或边上,作于点E,于点F,则将称为点P与的“点角距”,记作.如图②,在平面直角坐标系中,x、y正半轴所组成的角为.(1)已知点、点则_________,_______;(2)已知,的半径为4,P是上的动点,且满足,求点P的横坐标的取值范围;(3)如图③,在平面直角坐标系中,抛物线经过与两点,点Q是A、D之间的抛物线上的动点(点Q可以与A、D两点重合),求当取最大值时点Q的坐标.26 . (1)化简:;(2)解方程组:.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、二、填空题1、2、三、解答题1、2、3、4、5、6、7、。
冀教版八年级下册第二十一章一次函数单元检测( 解析版)
第二十一章一次函数单元检测(考试总分:100 分考试时长: 90 分钟)一、单选题(本题共计 12 小题,共计 36 分)1、(3分)一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A. m<﹣1 B. m>﹣1 C. m>0D. m<02、(3分)下列式子中,表示y是x的正比例函数的是()A. y=2x2B. y=C. y=D. y2=3x3、(3分)若点在函数的图象上,则的值是 ( ) A.B.C.D.4、(3分)如图:等腰△ABC,点E在BC边上由B到C匀速移动,过E点做BC的垂线交等腰△ABC腰于D点,设E点的经过的路程为x,DE的长为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.5、(3分).如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y 、y2.若y1≠y2,1取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0. 下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是( )A.①②B.①④C.②③D.③④6、(3分)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=B.210{3210x yx y--=--=C.210{3250x yx y--=+-=D.20{210x yx y+-=--=7、(3分)已知函数是正比例函数,则m的值是()A. 2 B.﹣2 C. ±2 D.8、(3分)如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为( )A. B. C. D.9、(3分)设点是一次函数图象上的任意一点,则下列式子一定成立的是A.B.C.D.10、(3分)6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A. 8000,13200 B. 9000,10000 C. 10000,13200 D. 13200,1540011、(3分)在下列四个函数中,是正比例函数的是()A. y=2x+1 B. y=2x2+1 C. y=D. y=2x12、(3分)直线y=2x经过( )A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限.二、填空题(本题共计 4 小题,共计 16 分)13、(4分)如果是正比例函数,则k=________________.14、(4分)一次函数y=3x+6中,y的值随x的增大而.15、(4分)若直线y=x﹣1上有两点A(﹣2,y1)和B(1,y2),则y1_____y2(填上“>”或“<”)16、(4分)如图,在平面直角坐标系中,点A在直线y=12x上,过点A作y轴的平行线交直线y=2x于点B,点A,B均落第一象限,以AB为边向右作正方形ABCD,若AB=1,则点C的坐标为______三、解答题(本题共计 4 小题,共计 48 分)17、(12分)已知y与x﹣1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当x=﹣1时,求y的值;(3)当﹣3<y<5时,求x的取值范围.18、(12分)如图,反比例函数y=(k≠0)的图象与一次函数y=﹣x+1的图象交于A(﹣2,m),B(n,﹣1)两点.(1)求反比例函数的解析式;(2)连接OA,OB,求△AOB的面积.19、(12分)用图形法解下列二元一次方程组(1)(2)(3)(4)20、(12分)如图,在平面直角坐标系中,O为原点,直线y=2x﹣1,与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q,当四边形PBQC为菱形时,求点P的坐标.一、单选题(本题共计 12 小题,共计 36 分)1、(3分)【答案】A【解析】∵y=(m+1)x+5,y的值随x的增大而减小,∴m+1<0,∴m<−1.故选A.2、(3分)【答案】C【解析】A、y=2x2表示y是x的二次函数,故本选项错误;B、y=表示y是x的反比例函数,故本选项错误;C、y=表示y是x的正比例函数,故本选项正确;D、y2=3x不符合正比例函数的含义,故本选项错误;故选:C.3、(3分)【答案】D【解析】将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m-n=-1.故选D.4、(3分)【答案】A【解析】,,∴y与x成正比例关系,当点D在线段AB 上时,y随x的增大而增大,当点D在线段AC上时,y随x的增大而减小.故选A.5、(3分)【答案】D【解析】∵当y1=y2时,即-2x2+2=2x+2时,解得:x=0或x=-1,∴当x<-1时,利用函数图象可以得出y2>y1;当-1<x<0时,y1>y2;当x>0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②错误;∵抛物线y1=-2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=-2x2+2,最大值为2,故M大于2的x值不存在;∴使得M大于2的x值不存在,∴③正确;∵如图:当-1<x<0时,y1>y2;∴使得M=1时,y2=2x+2=1,解得:x=-;当x>0时,y2>y1,使得M=1时,即y1=-2x2+2=1,解得:x1=,x2=-(舍去),∴使得M=1的x值是-或.∴④正确;故选D.6、(3分)【答案】D【解析】由图知,两函数经过的点的坐标为:(0,-1),(1,1),(0,2),设两函数的解析式分别为:y=kx+b,y=ax+c,则有1{1k bb+==-,1{2a cc+==,解得2{1kb==-,1{2ac=-=,所以图中两条直线的解析式分别为y=2x-1,y=-x+2,因此所解的二元一次方程组是20{210x yx y+-=--=,故选D.7、(3分)【答案】A【解析】∵函数y=(m+2)是正比例函数,∴m2﹣3=1,m+2≠0,解得:m=2.故选A.8、(3分)【答案】A【解析】因为两函数的图象的交点坐标是(2,4),所以方程组的解为.故答案为:.9、(3分)【答案】B【解析】把点A(a,b)代入一次函数y=x+5,可得:a+5=b,可得:2b-3a=10,故选B.10、(3分)【答案】C【解析】由题意可知A、B、C三市派往D市的运输车的辆数分别是x、x、(18-2x)辆,派往E市的运输车的辆数为10-x,10-x,2x-10,则总运费W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.依题意有0≤x≤10,0≤18-2x≤8,解得:5≤x≤9,当x=5时,W最大 =13200元,当x=9时,W 最小 =10000元.故选C.11、(3分)【答案】D【解析】A.是一次函数,不是正比例函数.B.是二次函数.C.是反比例函数.D.是正比例函数.故选D.12、(3分)【答案】D【解析】∵直线y=2x是k=2〉0的正比例函数,∴它的图像经过了第一、三象限.故选D.二、填空题(本题共计 4 小题,共计 16 分)13、(4分)【答案】0【解析】依题意得:k2-2k=0且k-2≠0,解得k=0,故答案是:0.14、(4分)【答案】增大.【解析】根据一次函数的性质可知“当k>0时,变量y的值随x的值增大而增大”,由此可得出结论.故答案为:增大.15、(4分)【答案】<【解析】方法一:方法二:根据一次函数的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
初中数学冀教版八年级下册第二十一章 一次函数21.2 一次函数的图象和性质-章节测试习题
章节测试题1.【答题】函数y=x﹣1的图象是()A. B. C. D.【答案】D【分析】根据函数解析式求得该函数图象与坐标轴的交点,然后再作出选择.【解答】解:∵一次函数解析式为y=x﹣1,∴令x=0,y=﹣1.令y=0,x=1,即该直线经过点(0,﹣1)和(1,0).选D.2.【答题】如图所示的计算程序中,y与x之间的函数关系所对应的图象(A. B. C. D.【答案】C【分析】先根据程序框图列出正确的函数关系式,然后再根据函数关系式来判断其图象是哪一个.【解答】解:根据程序框图可得y=(﹣x)×3+2=﹣3x+2,化简,得y=﹣3x+2,y=﹣3x+2的图象与y轴的交点为(0,2),与x轴的交点为(,0).选C.3.【答题】正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A. B. C.D.【答案】B【分析】根据正比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【解答】解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.选B.4.【答题】一次函数y=kx﹣k(k<0)的图象大致是()A. B. C.D.【答案】A【分析】首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,选A.5.【答题】已知一次函数y=kx+b的图象如图所示,当x<0时,y的取值范围是()A.y>0B.y<0C.y>﹣2D.﹣2<y<0【答案】C【分析】通过观察图象得到x<0时,图象在y轴的左边,即可得到对应的y的取值范围.【解答】解:当x<0时,图象在y轴的左边,所以对应的y的取值范围为:y>﹣2.选C.6.【答题】一次函数y=﹣x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】观察函数的解析式,找到k、b的值,结合一次函数中系数及常数项与图象分布之间关系,可得答案.【解答】解:分析次函数y=﹣x﹣2,可得k=﹣1<0,b=﹣2<0,则其图象不经过第一象限;选A.7.【答题】已知一次函数y=kx+3,y随x的增大而减小,那么它的图象可能是()A. B. C. D.【答案】B【分析】根据y随x的增大而减小,得k<0,因为b=3,所以与y轴的正半轴相交,从而得出答案.【解答】解:∵一次函数y=kx+3,y随x的增大而减小,∴k<0,∴图象过第二和第四象限,∵b=3,∴与y轴的正半轴相交,选B.8.【答题】一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2【答案】C【分析】根据函数图象与x轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.选C.9.【答题】函数y=kx+b的图象如图所示,当y<0时,x的取值范围是______.【答案】x>2【分析】根据函数图象与x轴的交点坐标,当y<0即图象在x轴下侧,求出即可.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知x>2时,当y<0即图象在x轴下侧,∴当y<0时,x>2.故答案为:x>2.10.【答题】已知一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是______.【答案】y<﹣2【分析】根据一次函数过(2,0),(0,﹣4)求出k的值,得到一次函数解析式,然后用y表示x,再解关于x的不等式即可.【解答】解:一次函数y=kx+b的图象与y轴交于点(0,﹣4),∴b=﹣4,与x轴点(2,0),∴0=2k﹣4,∴k=2,∴y=kx+b=2x﹣4,∴x=(y+4)÷2<1,∴y<﹣2.故答案为y<﹣2.11.【答题】如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是______.【答案】x>2【分析】根据一次函数的图象可直接进行解答.【解答】解:由函数图象可知,此函数是减函数,当y=3时x=2,故当y<3时,x>2.故答案为:x>2.12.【答题】一次函数y=mx+n的图象如图所示,则代数式|m+n|﹣|m﹣n|化简后的结果为______.【答案】2n【分析】根据一次函数图象的特点确定m﹣n的符号,代入原式计算即可.【解答】解:由一次函数的性质可知,m>0,n>0,即m+n>0;且当x=﹣1时,y<0,即﹣m+n<0,∴m﹣n>0.所以|m+n|﹣|m﹣n|=m+n﹣(m﹣n)=2n.13.【答题】一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是______.【答案】x<2【分析】首先根据图象可知,该一次函数y=kx+b的图象经过点(2,0)、(0,3).因此可确定该一次函数的解析式为y=.由于y>0,根据一次函数的单调性,那么x的取值范围即可确定.【解答】解:由图象可知一次函数y=kx+b的图象经过点(2,0)、(0,3).∴可列出方程组,解得,∴该一次函数的解析式为y=,∵<0,∴当y>0时,x的取值范围是:x<2.故答案为:x<2.14.【答题】已知一次函数y=kx+b的图象经过点A(2,1)(如图),当x______时,y≥1.【答案】x≤2【分析】仔细读图,确定A点的坐标,直接判断即可.【解答】解:根据题意和图示可知,当y≥1即直线在点A的上方时,x≤2.15.【题文】如图,在平面直角坐标系中,画出函数y=2x﹣4的图象,并写出图象与坐标轴交点的坐标.【答案】见解析【分析】令x=0,y=0分别求出与坐标轴的交点,然后利用两点法作出函数图象即可.【解答】解:令x=0,y=﹣4,令y=0,则2x﹣4=0,解得x=2,所以,与坐标轴的交点为(0,﹣4),(2,0).16.【题文】知一次函数y=kx+b的图象如图所示(1)当x<0时,y的取值范围是______;(2)求k,b的值.【答案】见解析【分析】(1)由图得,当x=0时,y=﹣4,所以,当x<0时,y<﹣4;(2)函数图象过(2,0)和(0,﹣4)两点,代入可求出k、b的值;【解答】解:(1)由图得,当x<0时,y<﹣4;(2)由图可得:函数图象过(2,0)和(0,﹣4)两点,代入得,,解得:k=2,b=﹣4,故答案为y<﹣4,k=2,b=﹣4.17.【题文】已知函数y=﹣2x+6与函数y=3x﹣4.(1)在同一平面直角坐标系内,画出这两个函数的图象;(2)求这两个函数图象的交点坐标;(3)根据图象回答,当x在什么范围内取值时,函数y=﹣2x+6的图象在函数y=3x﹣4的图象的上方?【答案】见解析【分析】(1)可用两点法来画函数y=﹣2x+6与函数y=3x﹣4的图象;(2)两函数相交,那么交点的坐标就是方程组的解;(3)函数y=﹣2x+6的图象在函数y=3x﹣4的图象的上方,即﹣2x+6>3x﹣4,解得x<2.【解答】解:(1)函数y=﹣2x+6与坐标轴的交点为(0,6),(3,0)函数y=3x﹣4与坐标轴的交点为(0,﹣4),(,0)作图为:(2)解:根据题意得方程组解得即交点的坐标是(2,2)∴两个函数图象的交点坐标为(2,2)(3)由图象知,当x<2时,函数y=﹣2x+6的图象在函数y=3x﹣4的图象上方.18.【题文】作出函数y=x﹣2的图象,求出:(1)与坐标轴的交点坐标;(2)x取何值时,y>0?x取何值时,y<0?(3)图象与坐标轴所围成的三角形面积.【答案】见解析【分析】(1)令x=0时,y=﹣2,y=0时,x=4,可确定与坐标轴的交点坐标.(2)根据图示可以直接得到答案.(3)根据三角形的面积公式进行解答;【解答】解:(1)当x=0时,y=﹣2,当y=0时,x=4,即直线y=x﹣2与坐标轴的交点坐标为(0,﹣2),(4,0),过这两点作直线即为y=x﹣2的图象,(2)根据图象知,当x>4时,y>0,当x<4时,y<0,(3)∵A(0,﹣2),B(4,0),∴OA=2,OB=4∴S△AOB=OA•OB=×2×4=4,即图象与坐标轴围成的三角形面积是4;19.【题文】请画出一次函数y=﹣x﹣3的图象,并且求出该图象与x轴、y轴围成的三角形面积.【答案】见解析【分析】先根据直线y=﹣x﹣3求出直线与两坐标轴的交点,再根据三角形的面积公式即可解答.【解答】解:如图所示,直线AB就是一次函数y=﹣x﹣3的图象;∵函数的解析式可知,函数图象与x轴的交点坐标为(﹣6,0),与y轴的交点坐标为(0,﹣3),∴直线y=﹣x﹣3与两坐标轴围成的三角形面积=×6×3=9.20.【题文】作出函数y=x﹣4的图象,并根据图象回答问题:(1)当x取何值时,y>﹣4?(2)当﹣1≤x≤2时,求y的取值范围.【答案】见解析【分析】(1)根据函数与不等式的关系,可得不等式的解集;(2)根据函数与不等式的关系,可得不等式组的解集.【解答】解:如图:(1)观察图象:由y>﹣4,得x>0;(2)观察图象:由﹣1≤x≤2,得﹣4.5≤y≤﹣3.。
2022年最新冀教版八年级数学下册第二十一章一次函数专项测试试卷(含答案详解)
八年级数学下册第二十一章一次函数专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点()1,1A ,()2,3B -,若点P 为x 轴上一点,当PA PB -最大时,点P 的坐标为( )A .1,02⎛⎫ ⎪⎝⎭B .5,04⎛⎫ ⎪⎝⎭C .1,02⎛⎫- ⎪⎝⎭D .()1,02、当2m >时,直线2y x m =+与直线4y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限3、下列语句是真命题的是( ).A .内错角相等B .若22a b =,则a b =C .直角三角形中,两锐角A ∠和B 的函数关系是一次函数D .在ABC 中,::3:4:5A B C ∠∠∠=,那么ABC 为直角三角形4、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min 后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min 的时间修好了自行车,并立刻以原速到位于家正西方500m 的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y (m )与小豪的出发时间x (min )之向的函数图象,请根据图象判断下列哪一个选项是正确的( )A .小豪爸爸出发后12min 追上小豪B .小李爸爸的速度为300m /minC .小豪骑自行车的速度为250m /minD .爸爸到达公司时,小豪距离书店500m5、已知一次函数4y kx =+,其中y 的值随x 值的增大而减小,若点A 在该函数图象上,则点A 的坐标可能是( )A .(1,6)B .(3,4)C .(1,2)--D .(2,5)-6、A ,B 两地相距80km ,甲、乙两人沿同一条路从A 地到B 地.甲、乙两人离开A 地的距离s (单位:km )与时间t (单位:h )之间的关系如图所示.下列说法错误的是( )A.乙比甲提前出发1h B.甲行驶的速度为40km/hC.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km7、如图,直线443y x=-+与x轴交于点B,与y轴交于点C,点(1,0)E,D为线段BC的中点,P为y轴上的一个动点,连接PD、PE,当PED的周长最小时,点P的坐标为()A.40,5⎛⎫⎪⎝⎭B.(0,1)C.(1,0)D.30,2⎛⎫⎪⎝⎭8、一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离y(单位:km)和两车行驶时间x(单位:h)之间的关系如图所示.下列说法错误的是().A.两车出发2h时相遇B.甲、乙两地之间的距离是360kmC.货车的速度是80km/h D.3h时,两车之间的距离是160km9、下列各点在函数y=﹣3x+2图象上的是()A.(0,﹣2)B.(1,﹣1)C.(﹣1,﹣1)D.(﹣13,1)10、下列函数中,y是x的一次函数的是()A.y=1xB.y=﹣3x+1 C.y=2 D.y=x2+1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一次函数y=2x+3 的图象经过第____________象限,y随x的增大而______ ,与y轴交点坐标为_________.2、将一次函数123=+y x向上平移5个单位长度后得到直线AB,则平移后直线AB对应的函数表达式为______.3、像h=0.5n,T=-2t,l=2πr这些函数解析式都是______与______的积的形式.一般地,形如y=kx(k是常数,k≠0)的函数,叫做______函数,其中k叫做______.4、一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.5、观察图象可知:当k>0时,直线y=kx+b从左向右______;当k<0时,直线y=kx+b从左向右______.由此可知,一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:当k>0时,y随x的增大而______;当k<0时,y随x的增大而______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC ∆三个顶点的坐标分别为(5,1)A -,(4,4)B -,(1,1)C --,将ABC ∆进行平移,使点A 移动到点()'0,2A ,得到△A B C ''',其中点A '、B '、C '分别为点A 、B 、C 的对应点(1)请在所给坐标系中画出△A B C ''',并直接写出点C '的坐标;(2)求ABC ∆的面积;(3)直线l 过点(0,3)-且平行于x 轴,在直线l 上求一点使ABC ∆与ABQ ∆的面积相等,请写出点Q 的坐标.2、如图,在△ABC 中,∠ACB =90°,AC =BC ,BC 与y 轴交于D 点,点C 的坐标为(-2,0),点A 的坐标为(-6,3),求点D的坐标.3、【数学阅读】如图1,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.小明的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.【推广延伸】如图3,当点P在BC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD,PE与CF的数量关系,并证明.【解决问题】如图4,在平面直角坐标系中,点C在x轴正半轴上,点B在y轴正半轴上,且AB=AC.点B到x轴的距离为3.(1)点B的坐标为_____________;(2)点P为射线..CB上一点,过点P作PE⊥AC于E,点P到AB的距离为d,直接写出PE与d的数量关系_______________________________;(3)在(2)的条件下,当d =1,A 为(-4,0)时,求点P 的坐标.4、如图,直线l :22y x =-与y 轴交于点G ,直线l 上有一动点P ,过点P 作y 轴的平行线PE ,过点G 作x 轴的平行线GE ,它们相交于点E .将△PGE 沿直线l 翻折得到△PGE′,点E 的对应点为E′.(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E 的对应点E′;(2)如图2,当点E 的对应点E′落在x 轴上时,求点P 的坐标;(3)如图3,直线l 上有A ,B 两点,坐标分别为(-2,-6),(4,6),当点P 从点A 运动到点B 的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.5、甲、乙两人相约周末登山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)b =______米;(2)求出甲距地面的高度y 与登山时间x 的关系式,并指出一次项系数的实际意义;(3)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则在整个爬山过程中,登山多长时间时,甲乙两人距离地面的高度差为70米?-参考答案-一、单选题1、A【解析】【分析】作点A 关于x 轴的对称点A ',连接BA '并延长交x 轴于P ,根据三角形任意两边之差小于第三边可知,此时的PA PB -最大,利用待定系数法求出直线BA '的函数表达式并求出与x 轴的交点坐标即可.【详解】解:如图,作点A 关于x 轴的对称点A ',则PA =PA ', ∴PA PB -≤BA '(当P 、A '、B 共线时取等号),连接BA '并延长交x 轴于P ,此时的PA PB -最大,且点A '的坐标为(1,-1),设直线BA '的函数表达式为y=kx+b ,将A '(1,-1)、B (2,-3)代入,得:132k b k b -=+⎧⎨-=+⎩,解得:21k b =-⎧⎨=⎩, ∴y =-2x +1,当y =0时,由0=-2x +1得:x =12,∴点P 坐标为(12,0),故选:A【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x 轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.2、B【解析】【分析】根据一次函数解析式中k b 、的值,判断函数的图象所在象限,即可得出结论.【详解】 解:一次函数4y x =-+中,10k =-<,40b =>∴函数图象经过一二四象限∵在一次函数2y x m =+中,10k =>,24b m =>∴直线2y x m =+经过一二三象限函数图象如图∴直线2y x m =-+与4y x =-+的交点在第二象限故选:B .【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.3、C【解析】【分析】根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.【详解】解:A 、两直线平行,内错角相等,故原命题是假命题,不符合题意;B 、若22a b =,则a b =±,故原命题是假命题,不符合题意;C 、直角三角形中,两锐角A ∠和B 的函数关系是一次函数,故原命题是真命题,符合题意;D 、在ABC 中,::3:4:5A B C ∠∠∠=,那么最大角∠C =518075345⨯︒=︒++,故△ABC 为锐三角形,故原命题是假命题,不符合题意;故选:C .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.熟练掌握平行线的性质,三角形内角和定理是解题的关键.4、B【解析】【分析】根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(563,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.【详解】解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:(5x+5×12x)÷5=32x(m/min),∵公司位于家正西方500米,∴(563−10−2)×32x=500+(5+2.5)x,解得x=200,∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×32=300m/min,爸爸到达公司时,丁丁距离商店路程为:3500-(563−12)×(300+200)=5003m.综上,正确的选项为B.故选:B.【点睛】本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.5、D【解析】【分析】先判断0,k < 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.【详解】 解: 一次函数4y kx =+,其中y 的值随x 值的增大而减小,0,k ∴<当1,6x y ==时,则46,k 解得2k =,故A 不符合题意,当3,4x y ==时,则344,k 解得0,k = 故B 不符合题意;当1,2x y =-=-时,则42,k 解得6,k = 故C 不符合题意;当2,5x y =-=时,则245,k 解得1,2k =- 故D 符合题意; 故选D【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.6、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:A 、根据图象可得乙比甲提前出发1h ,故选项A 说法正确,不符合题意;B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;C、乙行驶的速度为4020 1.5=(km/h)3÷∴3h时,甲、乙两人相距4040(31)340km3⨯--⨯=,故选项C说法错误,符合题意;D、404030.75==10km 334⨯⨯;4040911.12540(1.1251)4010km3388⨯-⨯-=⨯-⨯=∴0.75h或1.125h时,乙比甲多行驶10km,∴选项D说法正确,不符合题意.故选C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答7、A【解析】【分析】作点E关于y轴的对称点F,连接DF,交y轴于点Q,则QE QF=,进而根据对称性求得当点P与Q重合时,PED的周长最小,通过求直线DF的解析式,即可求得P点的坐标【详解】解:如图,作点E关于y轴的对称点F,连接DF,交y轴于点Q,则QE QF=,连接PF,PED的周长PD PE DE PF PE PD DF DE=++=++≥+,点,D E是定点,则DE的长不变,∴当PQ重合时,PED的周长最小,由443y x=-+,令0,x=4y=,令0y=,则3x=(3,0),(0,4)B C∴D是BC的中点3(,2)2D∴(1,0)E,点F是E关于y轴对称的点(1,0)F∴-设直线DF的解析式为:y kx b=+,将3(,2)2D,(1,0)F-代入,322k bk b=-+⎧⎪⎨=+⎪⎩解得4545kb⎧=⎪⎪⎨⎪=⎪⎩∴直线DF的解析式为:44+55y x=令0x=,则45y=即4(0,)5P故选A【点睛】本题考查了轴对称的性质求最值,求一次函数解析式,求直线与坐标轴的交点,求线段中点坐标,掌握根据轴对称的性质求线段和的最值是解题的关键.8、D【解析】【分析】根据函数图象分析,当2x =时,函数图象有交点,即可判断A 选项;根据最大距离为360即可判断B 选项,根据A 选项可得两车的速度进而判断C ,根据时间乘以速度求得两车的路程,进而求得两车的距离即可判断D 选项.【详解】解:根据函数图象可知,当2x =时,200y =,总路程为360km ,所以,轿车的速度为2002100km/h ÷=,货车的速度为:()360200280km/h -÷=故A,B,C 正确 3h 时,轿车的路程为3100300⨯=km ,货车的路程为380240⨯=km ,则两车的距离为3602300240180⨯--=km故D 选项不正确故选D【点睛】本题考查了一次函数的应用,从图象上获取信息是解题的关键.9、B【解析】【分析】根据一次函数图象上点的坐标满足函数解析式,逐一判断,即可得到答案.【详解】∵2302-≠-⨯+,∴A不符合题意,∵1312-=-⨯+,∴B符合题意,∵13(1)2-≠-⨯-+,∴C不符合题意,∵11(3)()23≠-⨯-+,∴D不符合题意,故选B.【点睛】本题主要考查一次函数图象上点的坐标,掌握一次函数图象上点的坐标满足函数解析式,是解题的关键.10、B【解析】【分析】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:∵y=1x不符合一次函数的形式,故不是一次函数,∴选项A不符合题意;∵形如y=kx+b(k,b为常数).∴y=﹣3x+1中,y是x的一次函数.故选项B符合题意;∵y=2是常数函数,∴选项C不符合题意;∵y=x2+1不符合一次函数的形式,故不是一次函数,∴选项D不符合题意;综上,y是x的一次函数的是选项B.故选:B.【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.二、填空题1、一,二,三增大(0,3)【解析】略2、y=13x+7【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把直线y=13x+2向上平移5个单位长度后所得直线的解析式为:y=1 3x+2+5,即y=13x+7.∴直线AB对应的函数表达式为y=13x+7.故答案为:y=13x+7.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3、常数自变量正比例比例系数【解析】略4、k<1【解析】【分析】利用一次函数图象与系数的关系列出关于m的不等式k-1<0,然后解不等式即可.【详解】解:∵一次函数y=(k-1)x+3中,y随x的增大而减小,∴k-1<0,解得k<1;故答案为:k<1.【点睛】本题主要考查一次函数图象与系数的关系.解答本题注意理解:k>0时,直线必经过一、三象限,y 随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.5、上升下降增大减小【解析】略三、解答题1、 (1)见解析,(4,0)(2)7 (3)5(3-,3)-【解析】【分析】(1)根据将ABC ∆进行平移,使点()5,1A -移动到A ()'0,2,得出平移方式为向右移动5个单位向上移动1个单位,据此平移,B C 得到,B C '',顺次连接,,A B C ''',则△A B C '''即为所求;(2)根据网格的特点用长方形减去三个三角形的面积即可;(3)根据题意可知Q 点在过点C 且平行于AB 的直线上,先求得直线AB 解析式为316y x =+,根据平行,设直线QC 解析式为3y x m =+,将点(1,1)C --代入,求得m ,联立QC 与3y =-即可求得Q 点的坐标.(1)如图所示,△A B C '''即为所求,由图知,点C '的坐标为(4,0); 故答案为:(4,0);(2)ABC ∆的面积为111451324357222, 故答案为:7;(3)如图,过点C 作AB 的平行线,与直线3y =-的交点即为所求点Q , 由(5,1)A -、(4,4)B -,设直线AB 解析式为y kx b =+ 则4415k b k b =-+⎧⎨=-+⎩解得316k b =⎧⎨=⎩即直线AB 的解析式为316y x =+, 设直线QC 解析式为3y x m =+,将点(1,1)C --代入,得:31m -+=-,解得2m =,∴直线QC 的解析式为32y x =+,当3y =-时,323x +=-, 解得53x =-, ∴点Q 的坐标为5(3-,3)-, 故答案为:5(3-,3)-.【点睛】本题考查了坐标与图形,平移作图,求一次函数解析式,一次函数的平移,两直线交点问题,掌握平移的性质是解题的关键.2、(0,83)【解析】【分析】过A 和B 分别作AF ⊥x 轴于F ,BE ⊥x 轴于E ,可证得△AFC ≌△CEB ,从而得到FC =BE ,AF =CE ,再由点C 的坐标为(-2,0),点A 的坐标为(-6,3),可得OC =2,AF =CE =3,OF =6,从而得到B 点的坐标是(1,4),再求出直线BC 的解析式,即可求解.【详解】解:过A 和B 分别作AF ⊥x 轴于F ,BE ⊥x 轴于E ,∵∠ACB =90°,∴∠ACF +∠BCE =90°,∵AF ⊥x 轴,BE ⊥x 轴,∴90AFC CEB ∠=∠=︒ ,∴∠ACF +∠CAF =90°,∴∠CAF =∠BCE ,在△AFC 和△CEB 中,90AFC CEB CAF BCE AC BC ⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△AFC ≌△CEB (AAS ),∴FC =BE ,AF =CE ,∵点C 的坐标为(-2,0),点A 的坐标为(-6,3),∴OC =2,AF =CE =3,OF =6,∴CF =OF -OC =4,OE =CE -OC =2-1=1,∴BE =4,∴则B 点的坐标是(1,4),设直线BC 的解析式为:y =kx +b ,{k +k =4−2k +k =0 ,解得:4383k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线BC 的解析式为:y =43x +83 , 令0x = ,则83y = ,∴ D (0,83).【点睛】本题主要考查了求一次函数解析式,全等三角形的判定和性质,根据题意得到△AFC ≌△CEB 是解题的关键.3、推广延伸:PD=PE+CF ,证明见解析;解决问题:(1)(0,3);(2)PE =3+d 或PE =3-d ;(3)1,43⎛⎫- ⎪⎝⎭或1,23⎛⎫ ⎪⎝⎭ 【解析】【分析】推广延伸:连接AP ,由△ABP 与△ACP 面积之差等于△ABC 的面积可以证得三线段间的关系; 解决问题:(1)由点B 到x 轴的距离及点B 在y 轴正半轴上即可得到点B 的坐标;(2)分两种情况:当点P 在CB 延长线上时,由推广延伸的结论即可得PE 与d 的关系;当点P 在线段CB 上时,由阅读材料中的结论可得PE 与d 的关系;(3)由点A 的坐标及AB =AC 可求得点C 的坐标,从而可求得直线CB 的解析式;分两种情况:点P 在CB 延长线上及当点P 在线段CB 上,由(2)中结论即可求得点P 的纵坐标,从而由点P 在直线CB 上即可求得点P 的横坐标,从而得到点P 的坐标.【详解】推广延伸:猜想:PD =PE +CF证明如下:连接AP ,如图3∵ABP ACP ABC SS S =- 即111222AB PD AB CF AC PE ⨯-⨯=⨯∴AB=AC∴PD-CF=PE∴PD=PE+CF解决问题:(1)∵点B在y轴正半轴上,点B到x轴的距离为3 ∴B(0,3)故答案为:(0,3)(2)当点P在CB延长线上时,如图由推广延伸的结论有:PE=OB+PF=3+d;当点P在线段CB上时,如图由阅读材料中的结论可得PE=OB-PF=3-d;故答案为:PE=3+d或PE=3-d(3)∵A(-4,0),B(0,3)∴OA=4,OB=3由勾股定理得:5AB==∴AC=AB=5∴OC=AC-OA=5-4=1∴C(1,0)设直线CB的解析式为y=kx+b(k≠0)把C、B的坐标分别代入得:3k bb+=⎧⎨=⎩解得:33 kb=-⎧⎨=⎩即直线CB的解析式为y=-3x+3由(2)的结论知:PE=3+1=4或PE=3-1=2∵点P在射线CB上∴点P的纵坐标为正,即点P的纵坐标为4或2当y =4时,-3x +3=4,解得:13x =-,即点P 的坐标为1,43⎛⎫- ⎪⎝⎭; 当y =2时,-3x +3=2,解得:13x =,即点P 的坐标为1,23⎛⎫ ⎪⎝⎭综上:点P 的坐标为1,43⎛⎫- ⎪⎝⎭或1,23⎛⎫ ⎪⎝⎭【点睛】本题是材料阅读题,考查了等腰三角形的性质及一次函数的图象与性质,读懂材料的内容并能灵活运用于新的情境中是本题的关键.4、 (1)见解析 (2)5,32⎛⎫ ⎪⎝⎭(3)6【解析】【分析】(1)作出过点E 的l 的垂线即可解决;(2)设直线l 交x 轴于点D ,则由直线解析式可求得点D 、点G 的坐标,从而可得OD 的长.由对称性及平行可得E D E G ''=,设点P 的坐标为(a ,2a -2),则可得点E 的坐标,由E G EG '=及勾股定理可求得点E '的坐标;(3)分别过点A 、B 作y 轴的平行线,与过点G 的垂直于y 轴的直线分别交于点C 、M ,则点E 在线段CM 上运动,根据对称性知,点E '运动路径的长度等于CM 的长,故只要求得CM 的长即可,由A 、B 两点的坐标即可求得CM 的长.(1)所作出点E 的对应点E′如下图所示:(2)设直线l 交x 轴于点D在y =2x -2中,令y =0,得x =1;令x =0,得y =-2则点D 、点G 的坐标分别为(1,0)、(0,-2)∴OD =1,OG =2由对称性的性质得:E G EG '=,EGD E GD '∠=∠∵GE ∥x 轴∴EGD E DG '∠=∠∴E GD E DG ''∠=∠∴E D E G ''=∴E D EG '=设点P 的坐标为(a ,2a -2),其中a >0,则可得点E 的坐标为(a ,-2)∴EG =a∴E D a '=∴1OE E D OD a ''=-=-在Rt △OGE '中,由勾股定理得:2222(1)a a +-= 解得:52a =当52a =时,5232232a -=⨯-= 所以点P 的坐标为5,32⎛⎫ ⎪⎝⎭(3)分别过点A 、B 作y 轴的平行线,与过点G 的垂直于y 轴的直线分别交于点C 、M ,则点E 在线段CM 上运动,根据对称性知,点E '运动路径的长度等于CM 的长∵A ,B 两点的坐标分别为(-2,-6),(4,6)∴CM =4-(-2)=6则点E '运动路径的长为6故答案为:6【点睛】本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.5、 (1)30;(2)y=10x+100;一次项的系数是表示甲登山的速度;(3)3或10或13分钟【解析】【分析】(1)根据图象直接得到答案;(2)利用待定系数法解答;(3)求出甲登山速度,由此求出乙登山的函数解析式,列方程当10x+100−(30x−30)=70时,解得,当30x−30−(10x+100)=70时,当300−(10x+100)=70时,解方程即可.(1)解:由图象可得b=15÷1×2=30米,故答案为:30.(2)解:设甲距地面的高度y与登山时间x的关系式y=kx+m,由图象可得,过点C(0,100)、D(20,300),∴10020300mk m=⎧⎨+=⎩,解得10010mk=⎧⎨=⎩,∴甲距地面的高度y与登山时间x的关系式y=10x+100;一次项的系数是表示甲登山的速度;(3)解:甲登山速度为(300-100)÷20=10(米/分钟),当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x-2)=30x-30.当y=30x-30=300时,x=11.甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0⩽x⩽20),当10x+100−(30x−30)=70时,解得:x=3;当30x−30−(10x+100)=70时,解得:x=10;当300−(10x+100)=70时,解得:x=13.∴登山3分钟、10分钟或13分钟时,甲乙两人距离地面的高度差为70米.【点睛】此题考查了一次函数的图象,一元一次方程的应用,待定系数法求函数解析式,正确理解函数图象并应用解决问题是解题的关键.。
2021-2022学年最新冀教版八年级数学下册第二十一章一次函数章节练习试题(含答案解析)
八年级数学下册第二十一章一次函数章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各点中,不在一次函数2y x =-的图象上的是( )A .()2,0B .()1,1C .()2,4--D .31,22⎛⎫- ⎪⎝⎭ 2、已知一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象经过点(0,-1),且y 的值随x 值的增大而增大,则这个一次函数的表达式可能是( )A .y =﹣2x +1B .y =2x +1C .y =﹣2x ﹣1D .y =2x ﹣13、下列函数中,y 是x 的一次函数的是( )A .y =1x B .y =﹣3x +1 C .y =2 D .y =x 2+14、直线1:y b l kx =-和2:2l y kx b =-+在同一直角坐标系中的图象可能是( )A .B .C .D .5、一次函数y 1=kx +b 与y 2=mx +n 的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0B .x <0C .x <﹣1D .x >﹣16、关于一次函数31y x =-+,下列结论不正确的是( )A .图象与直线3y x =-平行B .图象与y 轴的交点坐标是(0,1)C .y 随自变量x 的增大而减小D .图象经过第二、三、四象限7、A 、B 两地相距350km ,甲骑摩托车从A 地匀速驶向B 地.当甲行驶1小时途径C 地时,一辆货车刚好从C 地出发匀速驶向B 地,当货车到达B 地后立即掉头以原速匀速驶向A 地.如图表示两车与B 地的距离(km)y 和甲出发的时间(h)x 的函数关系.则下列说法错误的是( )A .甲行驶的速度为80km/hB .货车返回途中与甲相遇后又经过3h 8甲到B 地 C .甲行驶2.7小时时货车到达B 地 D .甲行驶到B 地需要35h 88、甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离()km y 与行驶时间()h t 的函数图象如图所示,下列说法正确的有( )①甲车的速度为50km/h ;②乙车用了5h 到达B 城;③甲车出发4h 时,乙车追上甲车A .0个B .1个C .2个D .3个9、下列不能表示y 是x 的函数的是( )A .B .C .D .21y x =+10、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点()5,A m 是直线2y x =上一点,则m =______.2、已知正比例函数y =kx (k ≠0)的函数值y 随x 增大而减小,则直线:y =﹣kx +k 不经过第____象限.3、如图,直线y =-x +2与y =kx +b (k ≠0且k ,b 为常数)的交点坐标为(3,-1),则关于x 的不等式kx +b ≥-x +2的解集为 ___.4、将直线y x =-向上平移p 个单位后,经过点(,)m n ,若3m n +=,则p =___.5、像y =x +1,s =-3t +1这些函数解析式都是常数k 与自变量的______与常数b 的______的形式.一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做______函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.三、解答题(5小题,每小题10分,共计50分)1、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水x 吨,应交水费y 元.(1)若08x <≤,请写出y 与x 的函数关系式.(2)若8x >,请写出y 与x 的函数关系式.(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?2、如图,已知直线l 1:y =kx +2与x 轴相交于点A ,与y 轴相交于点B ,且AB l 2经过点(2,2)且平行于直线y =−2x .直线l 2与x 轴交于点C ,与y 轴交于点D ,与直线l 1交于点N .(1)求k的值;(2)求四边形OCNB的面积;(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.3、如图,在平面直角坐标系中,直线AB为y=﹣34x+b交y轴于点A(0,3),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求点B的坐标及点O到直线AB的距离;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=72时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.4、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.(1)当线段PC 与线段AB 平行时,求点P 的坐标,并求此时△POC 的面积与△AOB 的面积的比值.(2)当△AOB 被线段PC 分成的两部分面积相等时,求线段PC 所在直线的解析式;(3)若△AOB 被线段PC 分成的两部分面积比为1:5时,求线段PC 所在直线的解析式.5、如图,在△ABC 中,∠ACB =90°,AC =BC ,BC 与y 轴交于D 点,点C 的坐标为(-2,0),点A 的坐标为(-6,3),求点D 的坐标.-参考答案-一、单选题1、B【解析】【分析】根据一次函数解析变形可得2x y -=,进而判断即可.【详解】解:∵2y x =-∴2x y -=A. ()2,0,202-=,则()2,0在一次函数2y x =-的图象上 ,不符合题意;B. ()1,1,110-=,则()1,1不在一次函数2y x =-的图象上,符合题意;C. ()2,4--,()242---=,则()2,4--在一次函数2y x =-的图象上 ,不符合题意;D.31,22⎛⎫-⎪⎝⎭,31222⎛⎫--=⎪⎝⎭,,则31,22⎛⎫-⎪⎝⎭在一次函数2y x=-的图象上,不符合题意;故选B【点睛】本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.2、D【解析】【分析】根据题意和一次函数的性质,可以解答本题.【详解】解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,∴b=-1,k>0,故选:D.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.3、B【解析】【分析】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:∵y=1x不符合一次函数的形式,故不是一次函数,∴选项A 不符合题意;∵形如y =kx +b (k ,b 为常数).∴y =﹣3x +1中,y 是x 的一次函数.故选项B 符合题意;∵y =2是常数函数,∴选项C 不符合题意;∵y =x 2+1不符合一次函数的形式,故不是一次函数,∴选项D 不符合题意;综上,y 是x 的一次函数的是选项B .故选:B .【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.4、D【解析】【分析】根据两个解析式中一次项系数的符号相反、常数项的符号相反,结合一次函数的图象与性质即可解决.【详解】根据直线1:y b l kx =-和2:2l y kx b =-+的解析式知,k 与-2k 符号相反,b 与-b 符号相反(由图知b ≠0);A 选项中的直线与y 轴的交点均在y 轴正半轴上,故不合题意;B 、C 两选项中两直线从左往右均是上升的,则k 与-2k 全为正,也不合题意;D 选项中两直线满足题意;故选:D【点睛】本题考查了一次函数的图象与性质,掌握一次函数的图象与性质,数形结合是关键本题的关键.5、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.6、D【解析】【分析】根据一次函数的性质对A 、C 、D 进行判断;根据一次函数图象上点的坐标特征对D 进行判断,0k >,y 随x 的增大而增大,函数从左到右上升;0k <,y 随x 的增大而减小,函数从左到右下降.由于y kx b =+与y 轴交于(0,)b ,当0b >时,(0,)b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,(0,)b 在y 轴的负半轴,直线与y 轴交于负半轴.【详解】解:A 、函数31y x =-+的图象与直线3y x =-平行,故本选项说法正确;B 、把0x =代入311y x =-+=,所以它的图象与y 轴的交点坐标是(0,1),故本选项说法正确;C 、30k =-<,所以y 随自变量x 的增大而减小,故本选项说法正确;D 、30k =-<,10b =>,函数图象经过第一、二、四象限,故本选项说法不正确;故选:D .【点睛】本题考查了一次函数的性质,以及k 对自变量和因变量间的关系的影响,熟练掌握k 的取值对函数的影响是解决本题的关键.7、C【解析】【分析】根据函数图象结合题意,可知AC 两地的距离为350270-80km =,此时甲行驶了1小时,进而求得甲的速度,即可判断A 、D 选项,根据总路程除以速度即可求得甲行驶到B 地所需要的时间,根据货车行驶的时间和路程结合图像可得第4小时时货车与甲相遇,据此判断B 选项,求得相遇时,甲距离B 地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达B 地所需要的时间.【详解】解:AC 两地的距离为350270-80km =,80180km /h ÷=故A 选项正确,不符合题意;35350808÷=h 故D 选项正确,不符合题意;根据货车行驶的时间和路程结合图像可得第4小时时货车与甲相遇, 则353488-=即货车返回途中与甲相遇后又经过3h 8甲到B 地 故B 选项正确,相遇时为第4小时,此时甲行驶了480320km ⨯=,货车行驶了()270350320300+-=km则货车的速度为300(41)100km/h ÷-=则货车到达B 地所需的时间为270100 2.7h ÷=即第2.71+ 3.7=小时故甲行驶3.7小时时货车到达B 地故C 选项不正确故选C【点睛】本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.8、C【解析】【分析】求出正比函数的解析式,k 值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y =kx ,∴6k =300,解得k =50,∴y 甲=50x ,∴甲车的速度为50km/h ,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h )到达B 城,∴②错误;设y =mx b +乙,∴2m =05m 300b b +⎧⎨+=⎩, ∴m 100200b =⎧⎨=-⎩, ∴y =100x-200乙,∵=50100200y x y x ⎧⎨=-⎩, ∴x 4200y =⎧⎨=⎩, 即甲行驶4小时,乙追上甲,∴③正确;故选C .【点睛】本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.9、B【分析】根据函数的定义(如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,我们就把x 称为自变量,把y 称为因变量,y 是x 的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.【详解】解:A 、根据图表进行分析为一次函数,设函数解析式为:(0)y kx b k =+≠,将0x =,3y =,5x =, 3.5y =分别代入解析式为:33.55b k b =⎧⎨=+⎩, 解得:0.1k =,3b =,所以函数解析式为:0.13y x =+,∴y 是x 的函数;B 、从图象上看,一个x 值,对应两个y 值,不符合函数定义,y 不是x 的函数;C 、D 选项从图象及解析式看可得y 是x 的函数.故选:B .【点睛】题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.10、C【解析】【分析】根据一次函数的增减性解答.解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.二、填空题1、10【解析】【分析】把点()5,A m 代入解析式,即可求解.【详解】解:∵点()5,A m 是直线2y x =上一点,∴2510m =⨯= .故答案为:10【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.2、二【解析】根据正比例函数的图象和性质得出k 的取值范围,再根据k 的取值和一次函数的增减性进行判断即可.【详解】 解:正比例函数(0)y kx k =≠的函数值y 随x 增大而减小,0k ∴<,0k ∴->,即直线:y kx k =-+中的0k ->,0k <,因此直线经过一、三、四象限,不过第二象限,故答案为:二.【点睛】本题考查一次函数的图象和性质,解题的关键是掌握一次函数的图象和性质是正确判断的前提,理解一次函数y kx b =+中k 、b 的符号决定一次函数的性质也是正确判断的关键.3、3x ≥【解析】【分析】根据题意结合函数图象,可得当3x ≥时,2y x =-+的图象对应的点在函数y kx b =+(0k ≠且k ,b 为常数)的图象下面,据此即可得出不等式的解集.【详解】解:从图象得到,当3x ≥时,2y x =-+的图象对应的点在函数y kx b =+(0k ≠且k ,b 为常数)的图象下面,∴不等式2kx b x +≥-+的解集为3x ≥,故答案为:3x ≥.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,解决此类问题的关键是仔细观察图形,注意几个关键点,做到数形结合.4、3【解析】【分析】根据直线平移的规律得到平移后的函数解析式,将点(,)m n 代入即可.【详解】解:将直线y x =-向上平移p 个单位后得到的直线解析式为y x p =-+,点(,)m n 在平移后的直线上,n m p ∴=-+,3m n +=,3p ∴=.故答案为:3.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记规律是解题的关键.5、 积 和 一次【解析】略三、解答题1、 (1) 1.5y x =(2) 2.2 5.6y x =-(3)13吨【解析】【分析】(1)当0<x ≤8时,根据水费=用水量×1.5,即可求出y 与x 的函数关系式;(2)当x >8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y 与x 的函数关系式;(3)当0<x ≤8时,y ≤12,由此可知这个月该户用水量超过8吨,将y =23代入(2)中所求的关系式,求出x 的值即可.(1)根据题意可知:当08x <时, 1.5y x =;(2)根据题意可知:当8x >时, 1.58 2.2(8) 2.2 5.6y x x =⨯+⨯-=-; (3)当08x <时, 1.5y x =,y 的最大值为1.5812⨯=(元),1223<,∴该户当月用水超过8吨.令 2.2 5.6y x =-中23y =,则23 2.2 5.6x =-,解得:13x =.答:这个月该户用了13吨水.【点睛】本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.2、 (1)k =2;(2)7;(3)32≤m≤3【解析】【分析】(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;(2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;(3)先求得点P的纵坐标,根据题意列不等式组求解即可.(1)解:令x=0,则y=2;∴B (0,2),∴OB=2,∵AB∴OA1,∴A (-1,0),把B (-1,0)代入y=kx+2得:0=-k+2,∴k=2;(2)解:∵直线l2平行于直线y=−2x.∴设直线l2的解析式为y=−2x+b.把(2,2)代入得2=−2⨯2+b,解得:b=6,∴直线l 2的解析式为26y x =-+.令x =0,则y =6,则D (0,6);令y =0,则x =3,则C (3,0),由(1)得直线l 1的解析式为22y x =+.解方程组2226y x y x =+⎧⎨=-+⎩得:14x y =⎧⎨=⎩, ∴N (1,4),四边形OCNB 的面积=S △ODC - S △NBD =()113662122⨯⨯-⨯-⨯=7;(3)解:∵点P 的横坐标为m ,∴点P 的纵坐标为26m -+,∴PM =26m -+,∵PM ≤3,且点P 在线段CD 上,∴26m -+≤3,且m ≤3. 解得:32≤m ≤3.【点睛】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.3、 (1)B (4,0),125 (2)922n -(3)(5,7)或(8,3)或(92,72)【解析】【分析】(1)求出直线AB的解析式,可求点B坐标,由面积法可求解;(2)求出点D坐标,由三角形的面积公式可求解;(3)先计算当S△ABP=72时,P的坐标,以PB为边在第一象限作等腰直角三角形BPC,分三种情况讨论:分别以三个顶点为直角顶点画三角形,根据图形可得C的坐标.(1)解:∵直线AB为y=34-x+b交y轴于点A(0,3),∴b=3,AO=3,∴直线AB解析式为:y=34-x+3,令y=0,则0=34-x+3,x=4,∴B(4,0),∴OB=4,∴AB,∴S△AOB=12×OA×OB=12×AB×点O到直线AB的距离,∴点O到直线AB的距离=345⨯=125;(2)∵点D在直线AB上,∴当x=1时,y=94,即点D(1,94),∴PD=n-94,∵OB=4,∴S△ABP=19424n⎛⎫-⨯⎪⎝⎭=922n-;(3)当S△ABP=72时,97222n-=,解得n=4,∴点P(1,4),∵E(1,0),∴PE=4,BE=3,第1种情况,如图,当∠CPB=90°,BP=PC时,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∴∠CPN+∠BPE=90°,又∠CPN+∠PCN=90°,∴∠BPE=∠PCN,又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△PEB(AAS),∴PN=EB=3,PE=CN=4,∴NE=NP+PE=3+4=7,∴C(5,7);第2种情况,如图,当∠PBC=90°,BP=BC时,过点C作CF⊥x轴于点F.同理可证:△CBF≌△BPE(AAS),∴CF=BE=3,BF=PE=4,∴OF=OB+BF=4+4=8,∴C(8,3);第3种情况,如图3,当∠PCB=90°,CP=CB时,过点C作CH⊥BE,垂足为H,过点P作PG⊥CH,垂足为G,同理可证:△PCG≌△CBH(AAS),∴CG=BH,PG=CH,∵PE=4,BE=3,设CG=BH=x,PG=CH=y,则PE=GH=x+y=4,BE=PG-BH=y-x=3,解得:x=12,y=72,∴C(92,72),∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(5,7)或(3,8)或(92,72).【点睛】本题是一次函数综合题,考查了待定系数法,三角形面积公式,全等三角形的判定和性质,利用分类讨论思想解决问题是解题的关键.4、 (1)P(0,1);△POC的面积与△AOB的面积的比值为14;(2)y=﹣2x+2;(3)线段PC所在直线的解析式为:y=4x﹣4或y=45-x+45【解析】【分析】(1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;(2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;(3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P 纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.(1)解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,∴A(2,0),B(0,2),∴OA=OB=2,∴∠OAB=∠OBA=45°,∴1122222AOBS OA OB∆=⋅⋅=⨯⨯=.当线段PC与线段AB平行时,可画出图形,设PC所在直线的解析式为y=﹣x+m,∵C(1,0),∴﹣1+m=0,解得,m=1,∴PC所在直线的解析式为:y=﹣x+1,∴P(0,1);此时,11111222 OPCS OP OC∆=⋅⋅=⨯⨯=,∴1::21:42OPC AOBS S∆∆==.即P(0,1);△POC的面积与△AOB的面积的比值为14;(2)解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B 重合,此时P(0,2),设PC所在直线的解析式为:y=kx+b,∴2k bb+=⎧⎨=⎩,解得,22kb=-⎧⎨=⎩,∴线段PC所在直线的解析式为:y=﹣2x+2.(3)解:根据题意,需要分类讨论:①当点P 在线段AB 上时,如图所示,此时1255APC AOB S S ∆∆==,过点P 作PD ⊥x 轴于点D ,∴1225APC S AC PD ∆=⋅⋅=,解得:45PD =,∴AD =PD =45,∴OD =OA ﹣AD =2﹣45=65,∴P (45,65),设线段PC 所在直线的解析式:y =k 1x +b 1,∴111106455k b k b +=⎧⎪⎨+=⎪⎩,解得,1144k b =⎧⎨=-⎩, ∴线段PC 所在直线的解析式:y =4x ﹣4;②当点P 在线段OB 上时,如图所示,此时1255POC AOB S S ∆∆==,∴1225POC S OP OC ∆=⋅⋅=,解得,45OP =, ∴P (0,45),设线段PC 所在直线的解析式:y =k 2x +b 2,∴222045k b b +=⎧⎪⎨=⎪⎩,解得,224545k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴线段PC 所在直线的解析式:y =45-x +45;综上可知,线段PC 所在直线的解析式为:y =4x ﹣4或y =45-x +45. 【点睛】本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键. 5、(0,83) 【解析】 【分析】过A 和B 分别作AF ⊥x 轴于F ,BE ⊥x 轴于E ,可证得△AFC ≌△CEB ,从而得到FC =BE ,AF =CE ,再由点C 的坐标为(-2,0),点A 的坐标为(-6,3),可得OC =2,AF =CE =3,OF =6,从而得到B 点的坐标是(1,4),再求出直线BC 的解析式,即可求解.【详解】解:过A 和B 分别作AF ⊥x 轴于F ,BE ⊥x 轴于E ,∵∠ACB =90°, ∴∠ACF +∠BCE =90°, ∵AF ⊥x 轴,BE ⊥x 轴, ∴90AFC CEB ∠=∠=︒ , ∴∠ACF +∠CAF =90°, ∴∠CAF =∠BCE , 在△AFC 和△CEB 中,90AFC CEB CAF BCE AC BC ⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△AFC ≌△CEB (AAS ), ∴FC =BE ,AF =CE ,∵点C 的坐标为(-2,0),点A 的坐标为(-6,3), ∴OC =2,AF =CE =3,OF =6, ∴CF =OF -OC =4,OE =CE -OC =2-1=1, ∴BE =4,∴则B 点的坐标是(1,4),设直线BC 的解析式为:y =kx +b ,{k +k =4−2k +k =0 ,解得:4383k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为:y =43x +83 ,令0x = ,则83y = ,∴ D (0,83). 【点睛】本题主要考查了求一次函数解析式,全等三角形的判定和性质,根据题意得到△AFC ≌△CEB 是解题的关键.。
2021-2022学年冀教版八年级数学下册第二十一章一次函数单元测试试卷
八年级数学下册第二十一章一次函数单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.王明跑步的速度为8km/hC.陈启浩到达目的地时两人相距10kmD.陈启浩比王明提前1.5h到目的地2、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度y(m)与挖掘时同x(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是()A .甲队的挖掘速度大于乙队的挖掘速度B .开挖2h 时,甲、乙两队所挖的河渠的长度相差8mC .乙队在06x ≤≤的时段,y 与x 之间的关系式为520y x =+D .开挖4h 时,甲、乙两队所挖的河渠的长度相等3、AB 两地相距20km ,甲从A 地出发向B 地前进,乙从B 地出发向A 地前进,两人沿同一直线同时出发,甲先以8km/h 的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A 地的距离s (km )与时间t (h )的关系如图所示,则甲出发( )小时后与乙相遇.A .1.5B .2C .2.5D .34、下列不能表示y 是x 的函数的是( )A .B .C .D .21y x =+5、如图,点A 的坐标为()0,1,点B 是x 轴正半轴上的动点,以AB 为腰作等腰直角ABC ,使90BAC ∠=︒,设点B 的横坐标为x ,设点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .6、下列各点中,不在一次函数2y x =-的图象上的是( )A .()2,0B .()1,1C .()2,4--D .31,22⎛⎫- ⎪⎝⎭ 7、点()11,A x y 和()22,B x y 都在直线y x m =-+上,且12x x ≥,则1y 与2y 的关系是( )A .12y y ≤B .12y y ≥C .12y y <D .12y y >8、如图,甲乙两人沿同一直线同时出发去往B 地,甲到达B 地后立即以原速沿原路返回,乙到达B 地后停止运动,已知运动过程中两人到B 地的距离y (km )与出发时间t (h )的关系如图所示,下列说法错误的是( )A .甲的速度是16km/hB .出发时乙在甲前方20kmC .甲乙两人在出发后2小时第一次相遇D .甲到达B 地时两人相距50km9、如图,点()1,1A ,()2,3B -,若点P 为x 轴上一点,当PA PB -最大时,点P 的坐标为( )A .1,02⎛⎫ ⎪⎝⎭B .5,04⎛⎫ ⎪⎝⎭C .1,02⎛⎫- ⎪⎝⎭D .()1,010、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线1y x =+与y mx n =+相交于点()1,2P ,则关于x ,y 的二元一次方程组1y x y mx n =+⎧⎨=+⎩的解为______.2、如图,直线l 是一次函数y =kx +b 的图象,填空:(1)b =______,k =______;(2)当x =30时,y =______;(3)当y =30时,x =______.3、一般地,形如y =kx +b (k ≠0,k 、b 为常数)的函数,叫做______函数.注意:k 是常数,k ≠0,k 可以是正数、也可以是负数;b 可以取______ .4、关于正比例函数y =2x ,有下列结论:①函数图象都经过点(2,1);②函数图象经过第二、第四象限;③y 随x 的增大而增大;④不论x 取何值,总有y >0,其中,错误的结论是______.5、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.三、解答题(5小题,每小题10分,共计50分)1、已知一次函数图象与直线2y x =平行且过点(1,4).(1)求一次函数解析式;(2)若(1)中一次函数图象,分别与x 、y 轴交于A 、B 两点,求A 、B 两点坐标;(3)若点P 在x 轴上,且ΔΔ2ABP AOB S S =,求点P 坐标.2、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水x 吨,应交水费y 元.(1)若08x <≤,请写出y 与x 的函数关系式.(2)若8x >,请写出y 与x 的函数关系式.(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?3、平面直角坐标系内有一平行四边形点()00O ,,()40A ,,()52B ,,()12C ,,有一次函数y kx b =+的图象过点()61P ,(1)若此一次函数图象经过平行四边形OA 边的中点,求k 的值(2)若此一次函数图象与平行四边形OABC 始终有两个交点,求出k 的取值范围4、如图,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1,并写出△A1B1C1三顶点坐标:A1,B1,C1;(2)计算△ABC的面积;(3)若点P为x轴上一点,当PA+PB最小时,写出此时P点坐标.5、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).(1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;(2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;(3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.-参考答案-一、单选题1、C【解析】【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A正确;王明跑步的速度为24÷3=8(km/h),故选项B正确;陈启浩的速度为:24÷1-8=16(km/h),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.2、D【解析】【分析】根据图象依次分析判断.【详解】解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;开挖2h时,乙队所挖的河渠的长度为30m,甲队每小时挖606=10m,故2h时,甲队所挖的河渠的长度为20m,开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;甲队开挖4h时,所挖河渠的长度为10440m⨯=,乙队开挖2小时后的函数解析式为503030(2)52062y x x-=+-=+-,当开挖4h时,共挖40m,故选项D符合题意;故选:D.【点睛】此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.3、B【解析】【分析】根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.【详解】解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),设甲出发x小时后与乙相遇,根据题意得8+4(x﹣1)+4x=20,解得x=2.即甲出发2小时后与乙相遇.故选:B.【点睛】本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.4、B【解析】【分析】根据函数的定义(如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,我们就把x 称为自变量,把y 称为因变量,y 是x 的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.【详解】解:A 、根据图表进行分析为一次函数,设函数解析式为:(0)y kx b k =+≠,将0x =,3y =,5x =, 3.5y =分别代入解析式为:33.55b k b =⎧⎨=+⎩, 解得:0.1k =,3b =,所以函数解析式为:0.13y x =+,∴y 是x 的函数;B 、从图象上看,一个x 值,对应两个y 值,不符合函数定义,y 不是x 的函数;C 、D 选项从图象及解析式看可得y 是x 的函数.故选:B .【点睛】题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.5、A【解析】【分析】根据题意作出合适的辅助线,可以先证明△ADC 和△AOB 的关系,即可建立y 与x 的函数关系,从而可以得到哪个选项是正确的.【详解】解:作AD ∥x 轴,作CD ⊥AD 于点D ,如图所示,由已知可得,OB =x ,OA =1,∠AOB =90°,∠BAC =90°,AB =AC ,点C 的纵坐标是y ,∵AD ∥x 轴,∴∠DAO +∠AOB =180°,∴∠DAO =90°,∴∠OAB +∠BAD =∠BAD +∠DAC =90°,∴∠OAB =∠DAC ,在△OAB 和△DAC 中AOB ADC OAB DAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OAB ≌△DAC (AAS ),∴OB =CD ,∴CD =x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1,∴y =x +1(x >0).【点睛】本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.6、B【解析】【分析】根据一次函数解析变形可得2x y -=,进而判断即可.【详解】解:∵2y x =-∴2x y -=A. ()2,0,202-=,则()2,0在一次函数2y x =-的图象上 ,不符合题意;B. ()1,1,110-=,则()1,1不在一次函数2y x =-的图象上,符合题意;C. ()2,4--,()242---=,则()2,4--在一次函数2y x =-的图象上 ,不符合题意;D. 31,22⎛⎫- ⎪⎝⎭,31222⎛⎫--= ⎪⎝⎭,,则31,22⎛⎫- ⎪⎝⎭在一次函数2y x =-的图象上 ,不符合题意; 故选B【点睛】本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.7、A【解析】根据一次函数图象的增减性,结合横坐标的大小关系,即可得到答案.【详解】解:∵直线y=-x+m的图象y随着x的增大而减小,又∵x1≥x2,点A(x1,y1)和B(x2,y2)都在直线y=-x+m上,∴y1≤y2,故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.8、D【解析】【分析】由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.【详解】解:由图可知:甲10小时所走路程是80×2=160(km),∴甲的速度是16km/h,故A正确,不符合题意;∵出发时甲距B地80千米,乙距B地60千米,∴发时乙在甲前方20km,故B正确,不符合题意;由图可得乙的速度是60÷10=6(km/h),∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),即甲2小时比乙多走20km ,∴甲乙两人在出发后2小时第一次相遇,故C 正确,不符合题意;∵甲5小时达到B 地,此时乙所走路程为5×6=30(km ),∴甲到达B 地时两人相距60-30=30(km ),故D 不正确,符合题意;故选:D .【点睛】本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.9、A【解析】【分析】作点A 关于x 轴的对称点A ',连接BA '并延长交x 轴于P ,根据三角形任意两边之差小于第三边可知,此时的PA PB -最大,利用待定系数法求出直线BA '的函数表达式并求出与x 轴的交点坐标即可.【详解】解:如图,作点A 关于x 轴的对称点A ',则PA =PA ', ∴PA PB -≤BA '(当P 、A '、B 共线时取等号),连接BA '并延长交x 轴于P ,此时的PA PB -最大,且点A '的坐标为(1,-1),设直线BA '的函数表达式为y=kx+b ,将A '(1,-1)、B (2,-3)代入,得:132k b k b -=+⎧⎨-=+⎩,解得:21k b =-⎧⎨=⎩, ∴y =-2x +1,当y =0时,由0=-2x +1得:x =12,∴点P 坐标为(12,0),故选:A【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x 轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.10、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.二、填空题1、12x y =⎧⎨=⎩ 【解析】【分析】根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.【详解】∵直线1y x =+与y mx n =+相交于点()1,2P∴()1,2P 的坐标既满足1y x =+,也满足y mx n =+∴12x y =⎧⎨=⎩是方程组1y x y mx n =+⎧⎨=+⎩的解 故答案为:12x y =⎧⎨=⎩ 【点睛】本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.2、 2 23- 18 -42【解析】略3、 一次 任意实数【解析】略4、①②④【解析】略5、一次函数【解析】略三、解答题1、 (1)22y x =+(2)(1,0)A -,(0,2)B(3)(1,0)P 或(3,0)-【解析】【分析】(1)由一次函数图象平移的性质得到k =2,再将点(1,4)代入求出解析式;(2)分别求出y =0及x =0时的对应值,即可得到A 、B 两点坐标;(3)由2ABP AOB SS =结合三角形的面积公式得到AP =2AO ,即可得到点P 坐标.(1)解:设一次函数的解析式为y kx b =+,一次函数图象与直线2y x =平行,2k ∴=, 过点(1,4),∴421b =⨯+,2b ∴=,∴一次函数解析式为22y x =+;(2)解:把0y =代入22y x =+得,022x =+,1x ∴=-,(1,0)A ∴-,把x =0代入22y x =+得,2y =,(0,2)B ∴;(3)解:∵2ABP AOB S S =,(1,0)A -,∴AP =2AO =2,-1-2=-3,-1+2=1,(1,0)P ∴或(3,0)-.【点睛】此题考查了一次函数平移的性质,一次函数图象与坐标轴的交点坐标,一次函数与图形面积问题,正确掌握一次函数的综合知识是解题的关键.2、 (1) 1.5y x =(2) 2.2 5.6y x =-(3)13吨【解析】【分析】(1)当0<x ≤8时,根据水费=用水量×1.5,即可求出y 与x 的函数关系式;(2)当x >8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y 与x 的函数关系式;(3)当0<x ≤8时,y ≤12,由此可知这个月该户用水量超过8吨,将y =23代入(2)中所求的关系式,求出x 的值即可.(1)根据题意可知:当08x <时, 1.5y x =;(2)根据题意可知:当8x >时, 1.58 2.2(8) 2.2 5.6y x x =⨯+⨯-=-; (3)当08x <时, 1.5y x =,y 的最大值为1.5812⨯=(元),1223<,∴该户当月用水超过8吨.令 2.2 5.6y x =-中23y =,则23 2.2 5.6x =-,解得:13x =.答:这个月该户用了13吨水.【点睛】本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.3、 (1)k =14; (2)−1<k <12,且k ≠0.【解析】【分析】(1)设OA的中点为M,根据M、P两点的坐标,运用待定系数法求得k的值;(2)当一次函数y=kx+b的图象过B、P两点时,求得k的值;当一次函数y=kx+b的图象过A、P两点时,求得k的值,最后判断k的取值范围.(1)解:设OA的中点为M,∵O(0,0),A(4,0),∴OA=4,∴OM=2,∴M(2,0),∵一次函数y=kx+b的图象过M(2,0),P(6,1)两点,∴61 20k bk b+=⎧⎨+=⎩,解得:k=14;(2)如图,由一次函数y=kx+b的图象过定点P,作直线BP,AP与平行四边形只有一个交点,由于直线与平行四边形有两个交点,所以直线应在直线BP,AP之间,当一次函数y=kx+b的图象过B、P两点时,代入表达式y=kx+b得到:61 52k bk b+=⎧⎨+=⎩,解得:k=-1,当一次函数y=kx+b的图象过A、P两点时,代入表达式y =kx +b 得到:6140k b k b +=⎧⎨+=⎩, 解得:k =12,所以−1<k <12,由于要满足一次函数的存在性,所以−1<k <12,且k ≠0.【点睛】本题考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y =kx ,只要一对x ,y 的值;而求一次函数y =kx +b ,则需要两组x ,y 的值.4、 (1)()()()1,1,,4,2,3,4---(2)3.5(3)()2,0【解析】【分析】(1)依据轴对称的性质进行作图,即可得到△A 1B 1C 1,进而得出△A 1B 1C 1三顶点坐标;(2)依据割补法进行计算,即可得到△ABC 的面积;(3)作点A 关于x 轴的对称点Q ,连接Q B ,交x 轴于点P ,依据一次函数的图象可得点P 的坐标.(1)如图,△A 1B 1C 1即为所求;其中A 1,B 1,C 1的坐标分别为:()()()1111,1,4,2,3,4A B C ---故答案为:()()()1,1,,4,2,3,4---(2)△ABC 的面积为:3×3-12×3×1-12×1×2-12×2×3=3.5. (3)如图,作点A关于x轴的对称点Q,连接Q B,则Q B与x轴的交点即是点P的位置.设Q B的解析式为y=kx+b(k≠0),把(1,1)Q-和B(4,2)代入可得:{−1=k+k2=4k+k ,解得12kb=⎧⎨=-⎩,∴y=x-2,令y=0,则x=2,∴P点坐标为()2,0,故答案为:()2,0.【点睛】本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.5、 (1)点E,点F;(2)(4133-,)或(2533-,);(3)b 的取值范围1<b <2或2<b <3.【解析】【分析】(1)根据以点B 为直角顶点,点B 与点E 横坐标相同,点E 在过点B 与AB 垂直的直线上,△ABE 为直角三角形,且AE 大于AB ;以点A 为直角顶点,点A 与点F 横坐标相同,△AFB 为直角三角形,BF 大于AB 即可;(2)根据点A (0,1)点B (-1,0),OA =OB ,∠AOB =90°,得出△AOB 为等腰直角三角形,可得∠ABO =∠BAO =45°,以点A 为直角顶点,过点A ,与AB 垂直的直线交x 轴于S ,利用待定系数法求出AS 解析式为1y x =-+,联立方程组123y x y x =-+⎧⎨=-⎩,以点B 为直角顶点,过点B ,与AB 垂直的直线交y 轴于R ,∠OBR =90°-∠ABO =45°,可得△OBR 为等腰直角三角形,OR =OB =1,点R (0,-1),利用平移的性质可求BR 解析式为1y x =--,联立方程组123y x y x =--⎧⎨=-⎩,解方程组即可; (3)过点A 与AB 垂直的直线交直线y =2x +2于U ,把△AOB 绕点A 顺时针旋转90°,得△AO′U,AO′=AO =1,O′U =OB =b ,根据点U (-1,b -1)在直线22y x =+上,得出方程()1212b -=⨯-+,求出b 的值,当过点A 的直线与直线22y x =+平行时没有 “关联点”,OB =OW =b =2,得出在1<b <2时,直线22y x =+上存在两个AB 的“关联点”,当b >2时,根据旋转性质将△AOB 绕点A 逆时针旋转90°得到△AO′U ,得出AO′=AO =1,O′U =OB =b ,根据点U (1,1+b )在直线22y x =+上,列方程1212b +=⨯+,得出3b =即可.(1)解:点D 与AB 纵坐标相同,在直线AB 上,不能构成直角三角形,以点B 为直角顶点,点B 与点E 横坐标相同,点E 在过点B 与AB 垂直的直线上,∴△ABE 为直角三角形,且AE 大于AB ;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,∴点E与点F是AB关联点,点G不在A、B两点垂直的直线上,故不能构成直角三角形,故答案为点E,点F;(2)解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,∴△AOB为等腰直角三角形,AB∴∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,∴∠OAS=90°-∠BAO=45°,∴△AOS为等腰直角三角形,∴OS =OA =1,点S (1,0),设AS 解析式为y kx b =+代入坐标得:10b k b =⎧⎨+=⎩, 解得11b k =⎧⎨=-⎩, AS 解析式为1y x =-+,∴123y x y x =-+⎧⎨=-⎩, 解得4313x y ⎧=⎪⎪⎨⎪=-⎪⎩, 点P (4133-,), AP=AP >AB 以点B 为直角顶点,过点B ,与AB 垂直的直线交y 轴于R ,∴∠OBR =90°-∠ABO =45°,∴△OBR 为等腰直角三角形,∴OR =OB =1,点R (0,-1),过点R 与AS 平行的直线为AS 直线向下平移2个单位,则BR 解析式为1y x =--,∴123y x y x =--⎧⎨=-⎩,解得2353x y ⎧=⎪⎪⎨⎪=-⎪⎩, 点P 1(2533-,), AP 1∴点P 为线段AB 的关联点,点P 的坐标为(4133-,)或(2533-,);(3)解:过点A 与AB 垂直的直线交直线y =2x +2于U ,把△AOB 绕点A 顺时针旋转90°,得△AO′U,∴AO′=AO =1,O′U =OB =b ,点U (-1,b -1)在直线22y x =+上,∴()1212b -=⨯-+∴1b =,∴当b >1时存在两个“关联点”,当b <1时,UA <AB ,不满足定义,没有两个“关联点”当过点A 的直线与直线22y x =+平行时没有 “关联点”22y x =+与x 轴交点X (-1,0),与y 轴交点W (0,2)∵OA =OX =1,∠XOW =∠AOB =90°,AB ⊥XW ,∴△OXW 顺时针旋转90°,得到△OAB ,∴OB =OW =2,∴在1<b <2时,直线22y x =+上存在两个AB 的“关联点”,当b >2时,将△AOB 绕点A 逆时针旋转90°得到△AO′U ,∴AO′=AO =1,O′U =OB =b ,点U (1,1+b )在直线22y x =+上,∴1212b +=⨯+∴解得3b =∴当2<b <3时, 直线22y x =+上存在两个AB 的“关联点”,当b >3时,UA <AB ,不满足定义,没有两个“关联点”综合得,b 的取值范围1<b <2或2<b <3.【点睛】本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC >AB ,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC >AB ,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.。
2022年最新冀教版八年级数学下册第二十一章一次函数达标测试试卷(精选含答案)
八年级数学下册第二十一章一次函数达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于函数y =-2x +1,下列结论正确的是( )A .图像经过点()2,1-B .y 随x 的增大而增大C .图像不经过第四象限D .图像与直线y =-2x 平行2、如图,一次函数y =kx +b (k >0)的图像过点()1,0-,则不等式()20k x b -+>的解集是( )A .x >-3B .x >-2C .x >1D .x >23、直线1:y b l kx =-和2:2l y kx b =-+在同一直角坐标系中的图象可能是( )A .B .C .D .4、若实数a 、c 满足0a c +=且a c >,则关于x 的一次函数y cx a =-的图像可能是( )A .B .C .D .5、下列图形中,表示一次函数y =mx +n 与正比例函数y =﹣mnx (m ,n 为常数,且mn ≠0)的图象不正确的是( )A .B .C .D .6、已知正比例函数y kx =的图像经过点(2,-4)、(1,1y )、(-1,2y ),那么1y 与2y 的大小关系是( )A . 12y y <B . 12y y =C . 12y y >D .无法确定7、下列各点中,不在一次函数2y x =-的图象上的是( )A .()2,0B .()1,1C .()2,4--D .31,22⎛⎫- ⎪⎝⎭ 8、无论m 为何实数.直线2y x m =+与4y x =-+的交点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限9、如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A .0,0k b >>B .y 随x 的增大而增大C .当0x >时,0y <D .关于x 的方程2kx b +=的解是1x =10、点()11,A y -和点()23,B y -都在直线21y x =-+上,则1y 与2y 的大小关系为( )A .12y y >B .12y y <C .12y y =D .12y y ≥第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线y =-x +2与y =kx +b (k ≠0且k ,b 为常数)的交点坐标为(3,-1),则关于x 的不等式kx +b ≥-x +2的解集为 ___.2、甲、乙两车分别从A ,B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距A 地300千米的C 地(中途休息时间忽略不计).设两车行驶的时间为x (小时),两车之间的距离为y (千米),y 与x 之间的函数关系如图所示,则当甲车到达B 地时,乙车距A 地 __千米.3、函数y =-7x 的图象在______象限内,从左向右______,y 随x 的增大而______.函数y =7x 的图象在______象限内,从左向右______,y 随x 的增大而______.4、写出一个过点(0,2)的一次函数解析式__.5、若点()5,A m 是直线2y x =上一点,则m =______.三、解答题(5小题,每小题10分,共计50分)1、如图,直线l 经过点A (﹣1,﹣2)和B (0,1).(1)求直线l 的函数表达式;(2)线段AB 的长为_____;(3)在y 轴上存在点C ,使得以A 、B 、C 为顶点的三角形是以AB 为腰的等腰三角形,请直接写出点C 的坐标.2、如图,在平面直角坐标系中,直线112l :y x b =+与直线2:2l y x =相交于点(,4)B m .(1)求m ,b 的值;(2)求AOB 的面积;(3)点P 是x 轴上的一点,过P 作垂于x 轴的直线与12,l l 的交点分别为C ,D ,若P 点的横坐标为n ,当2CD >时直接写出n 的取值范围.3、如图,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)(3,4).(1)若△A 1B 1C 1与△ABC 关于y 轴成轴对称,请在网格中画出△A 1B 1C 1,并写出△A 1B 1C 1三顶点坐标:A 1 ,B 1 ,C 1 ;(2)计算△ABC 的面积;(3)若点P 为x 轴上一点,当PA +PB 最小时,写出此时P 点坐标 .4、已知点0(P x ,0)y 和直线y kx b =+,则点p 到直线y kx b =+的距离d 可用公式d =例如:求点(1,2)P -到直线37y x =+的距离.解:因为直线37y x =+,其中3k =,7b =.所以点P 到直线的距离:d ===. 根据以上材料,解答下列问题:(1)求点(2,2)P 到直线2y x =-的距离.(2)已知C 的圆心C 的坐标为(2,1),半径r C 与直线1y x =-+的位置关系并说明理由.(3)已知互相平行的直线1y x =-与y x b =+b 的值.5、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止,甲、乙两车之间的距离(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车行驶的速度是千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.(3)直接写出两车相距85千米时x的值.-参考答案-一、单选题1、D【解析】【分析】根据一次函数的性质对各选项进行逐一判断即可.【详解】解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;B、由于k=−2<0,则y随x增大而减小,故本选项错误;C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x 的上方,则图象还过第一象限,故本选项错误;D 、由于直线y =−2x +1与直线y =−2x 的倾斜角相等且与y 轴交于不同的点,所以它们相互平行,故本选项正确;故选:D .【点睛】本题考查了一次函数y =kx +b (k ≠0)的性质:当k >0,图象经过第一、三象限,y 随x 增大而增大;当k <0,图象经过第二、四象限,y 随x 增大而减小;当b >0,图象与y 轴的交点在x 的上方;当b =0,图象经过原点;当b <0,图象与y 轴的交点在x 的下方.2、C【解析】【分析】先将(-1,0)代入y =kx +b 中得到k=b ,则不等式()20k x b -+>化为()20k x k -+>,根据k >0解关于x 的不等式即可.【详解】解:将(-1,0)代入y =kx +b 中得:-k +b =0,解得:k=b ,则不等式()20k x b -+>化为()20k x k -+>,∵k >0,∴(x -2)+1>0,解得:x >1,故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系,根据一次函数图象上的点的坐标特征求得k 与b 的关系是解答的关键.3、D【分析】根据两个解析式中一次项系数的符号相反、常数项的符号相反,结合一次函数的图象与性质即可解决.【详解】根据直线1:y b l kx =-和2:2l y kx b =-+的解析式知,k 与-2k 符号相反,b 与-b 符号相反(由图知b ≠0);A 选项中的直线与y 轴的交点均在y 轴正半轴上,故不合题意;B 、C 两选项中两直线从左往右均是上升的,则k 与-2k 全为正,也不合题意;D 选项中两直线满足题意;故选:D【点睛】本题考查了一次函数的图象与性质,掌握一次函数的图象与性质,数形结合是关键本题的关键.4、B【解析】【分析】根据实数a 、c 满足0a c +=可知,a 、c 互为相反数,再根据a c >,可确定a 、c 的符号,进而确定图象的大致位置.【详解】解:∴实数a 、c 满足0a c +=,∴a 、c 互为相反数,∵a c >,∴0a >,0c <,∴一次函数y cx a =-的图像经过二、三、四象限,故选:B .【点睛】本题考查了一次函数图象的性质,解题关键是根据已知条件,确定a 、c 的符号.5、B【解析】【分析】利用一次函数的性质逐项进行判断即可解答.【详解】解:A 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项不符合题意;B 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn >,两结论不一致,故本选项符合题意;C. 由一次函数的图象可知,0m >,0n >故0mn >;由正比例函数的图象可知0mn >,两结论一致,故本选项不符合题意;D. 由一次函数的图象可知,0m >,0n <故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项不符合题意;故选B .【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:当0k >,0b >函数y kx b =+的图象经过第一、二、三象限;当0k >,0b <函数y kx b =+的图象经过第一、三、四象限;当0k <,0b >函数y kx b =+的图象经过第一、二、四象限;当0k <,0b <函数y kx b =+的图象经过第二、三、四象限.6、A【解析】【分析】先求出正比例函数解析式2y x =-根据正比例函数2y x =-的图象性质,当k <0时,函数随x 的增大而减小,可得y 1与y 2的大小.【详解】解:∵正比例函数y kx =的图像经过点(2,-4)、代入解析式得42k -=解得2k =-∴正比例函数为2y x =-∵2k =-<0,∴y 随x 的增大而减小,由于-1<1,故y 1<y 2.故选:A .【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数y kx =的图象,当k <0时,y 随x 的增大而减小是解题关键.7、B【解析】【分析】根据一次函数解析变形可得2x y -=,进而判断即可.【详解】解:∵2y x =-∴2x y -=A. ()2,0,202-=,则()2,0在一次函数2y x =-的图象上 ,不符合题意;B. ()1,1,110-=,则()1,1不在一次函数2y x =-的图象上,符合题意;C. ()2,4--,()242---=,则()2,4--在一次函数2y x =-的图象上 ,不符合题意;D. 31,22⎛⎫- ⎪⎝⎭,31222⎛⎫--= ⎪⎝⎭,,则31,22⎛⎫- ⎪⎝⎭在一次函数2y x =-的图象上 ,不符合题意; 故选B【点睛】本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.8、C【解析】【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y =-x +4中,k =-1<0,b =4>0,∴函数图象经过一二四象限,∴无论m 为何实数,直线y =x +2m 与y =-x +4的交点不可能在第三象限.故选:C .【点睛】本题考查的是两条直线相交或平行问题,熟知一次函数的图象与系数的关系是解答此题的关键.9、D【解析】【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.10、B【解析】【分析】根据20-< ,可得y 随x 的增大而减小,即可求解.解:∵20-< ,∴y 随x 的增大而减小,∵13->- ,∴12y y < .故选:B【点睛】本题主要考查了一次函数的性质,熟练掌握对于一次函数()0y kx b k =+≠ ,当0k > 时,y 随x 的增大而增大,当0k < 时,y 随x 的增大而减小是解题的关键.二、填空题1、3x ≥【解析】【分析】根据题意结合函数图象,可得当3x ≥时,2y x =-+的图象对应的点在函数y kx b =+(0k ≠且k ,b 为常数)的图象下面,据此即可得出不等式的解集.【详解】解:从图象得到,当3x ≥时,2y x =-+的图象对应的点在函数y kx b =+(0k ≠且k ,b 为常数)的图象下面,∴不等式2kx b x +≥-+的解集为3x ≥,故答案为:3x ≥.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,解决此类问题的关键是仔细观察图形,注意几个关键点,做到数形结合.【解析】【分析】由图象可知甲车从A 地到B 地用了4小时,从B 地到C 地用1248-=小时,乙从B 地到C 地用了12小时,进而求得甲车的速度,A 、B 两地的距离,乙车的速度,然后根据甲车到达B 地的时间求解乙车距A 地的距离即可.【详解】解:由图象可知,甲车从A 地到B 地用了4小时,从B 地到C 地用1248-=小时,乙从B 地到C 地用了12小时∴甲车的速度是()3008475÷-=(千米/时)∴A 、B 两地之间的距离是754300⨯=千米∴乙车的速度是(300300)1250+÷=(千米/时)∵甲车到达B 地时,用时4小时∴此时乙车距A 地300504100-⨯=(千米)故答案为:100.【点睛】本题以行程问题为背景的函数图象的应用.解题的关键是根据函数图象理解题意,求得两车的速度.3、 第二、四象限 下降 减少 第一、三象限 上升 增大【解析】略4、2y x =+(答案不唯一)【解析】【分析】设该一次函数的解析式为(0)y kx b k =+≠,取1k =(或其他值都可以),将点(0,2)代入求解即可得.【详解】解:设该一次函数的解析式为(0)y kx b k =+≠,取1k =,点(0,2)在一次函数图象上,2b ∴=.∴一次函数的解析式为2y x =+,故答案为:2y x =+(答案不唯一).【点睛】题目主要考查一次函数解析式的确定,理解题意,熟练掌握待定系数法确定函数解析式是解题关键. 5、10【解析】【分析】把点()5,A m 代入解析式,即可求解.【详解】解:∵点()5,A m 是直线2y x =上一点,∴2510m =⨯= .故答案为:10【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.三、解答题1、 (1)y =3x +1(3)C的坐标为(0,﹣5)或(0)或(0).【解析】【分析】(1)根据题意设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入即可得直线l 的函数表达式为y=3x+1;(2)根据题意由A(﹣1,﹣2),B(0,1),可得AB(3)由题意设C(0,m),则AC BC=|m﹣1|,①若AB=AC可解得C(0,﹣5);②若AB=BC|m﹣1|,解得C(0+1)或(0+1).【详解】解:(1)设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入得:21k bb-=-+⎧⎨=⎩,解得31kb=⎧⎨=⎩,∴直线l的函数表达式为y=3x+1;(2)∵A(﹣1,﹣2),B(0,1),∴AB(3)设C(0,m),则AC BC=|m﹣1|,①若AB=AC,如图:解得m=1(与B重合,舍去)或m=﹣5,∴C(0,﹣5);②若AB=BC,如图:=|m﹣1|,解得m或m+1,∴C(0)或(0+1),综上所述,以A、B、C为顶点的三角形是以AB为腰的等腰三角形,则C的坐标为(0,﹣5)或(0,+1)或(0+1).【点睛】本题考查一次函数及应用,涉及待定系数法、两点间的距离、等腰三角形等知识,解题的关键是根据题意,列出满足条件的方程.2、 (1)m=2,b=3(2)12(3)23n<或103n>【解析】【分析】(1)先根据直线l2求出m的值,再将点B(m,4)代入直线l1即可得b的值.(2)求出点A坐标,结合点B坐标,利用三角形面积公式计算即可;(3)求出点C和点D的纵坐标,再分C、D在点B左侧和右侧两种情况分别求解.(1)解:∵点B(m,4)直线l2:y=2x上,∴4=2m,∴m=2,∴点B(2,4),将点B(2,4)代入直线11 2l:y x b=+得:1242b⨯+=,解得b=3;(2)将y=0代入132y x=+,得:x=-6,∴A(-6,0),∴OA=6,∴△AOB 的面积=1642⨯⨯=12;(3)令x =n ,则113322x n +=+,22x n =, 当C 、D 在点B 左侧时, 则13222n n +->, 解得:23n <;当C 、D 在点B 右侧时, 则12322n n ⎛⎫-+> ⎪⎝⎭, 解得:103n >; 综上:n 的取值范围为23n <或103n >. 【点睛】 本题是一次函数综合题,考查两条直线平行、相交问题,三角形的面积,解题的关键是灵活应用待定系数法,学会利用图象,根据条件确定自变量取值范围.3、 (1)()()()1,1,,4,2,3,4---(2)3.5(3)()2,0【解析】【分析】(1)依据轴对称的性质进行作图,即可得到△A 1B 1C 1,进而得出△A 1B 1C 1三顶点坐标;(2)依据割补法进行计算,即可得到△ABC 的面积;(3)作点A 关于x 轴的对称点Q ,连接Q B ,交x 轴于点P ,依据一次函数的图象可得点P 的坐标.(1)如图,△A 1B 1C 1即为所求;其中A 1,B 1,C 1的坐标分别为:()()()1111,1,4,2,3,4A B C ---故答案为:()()()1,1,,4,2,3,4---(2)△ABC 的面积为:3×3-12×3×1-12×1×2-12×2×3=3.5. (3)如图,作点A关于x轴的对称点Q,连接Q B,则Q B与x轴的交点即是点P的位置.设Q B的解析式为y=kx+b(k≠0),把(1,1)Q-和B(4,2)代入可得:{−1=k+k2=4k+k ,解得12kb=⎧⎨=-⎩,∴y=x-2,令y=0,则x=2,∴P点坐标为()2,0,故答案为:()2,0.【点睛】本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.4、(2)相切,理由见解析(3)1b =或3b =-【解析】【分析】(1)将P 点直接代入距离公式计算.(2)计算圆心到直线的距离,将距离与半径比较,判断圆与直线之间的关系,(3)在直线1y x =-上任取一点,计算该点到y x b =+的距离,可求得b .(1)因为直线2y x =-,其中1k =,2b =-,所以点P 到直线的距离:d ===(2)因为直线1y x =-+,其中1k =-,1b =,所以圆心C 到直线的距离::d ===圆心到直线的距离d r ==, C 与直线1y x =-+相切.(3)在直线1y x =-上取一点(0,1)A -,根据题意得,点A 到直线y x b =+因为直线y x b =+,其中1k =,b b =,所以点A 到直线的距离:d ==即:|1|2b +=,解得:1b =或3b =-.【点睛】本题属于一次函数的综合题,主要考查了点到直线的距离公式应用,解题关键是能够理解题目中距离的计算公式,并能结合圆、另一条直线进行计算.根据各数量之间的关系,正确列出一元一次不等式.5、 (1)60(2)y=20x-40(2 6.5x ≤≤); (3)254或7912【解析】【分析】(1)用甲车行驶0.5小时的路程30除以时间即可得到速度;(2)分别求出相应线段的两个端点的坐标,再利用待定系数法求函数解析式;(3)分两种情况讨论:将x =85代入AB 的解析式,求出一个值;另一种情况是乙停止运动,两车还相距85千米.(1)解:甲车行驶的速度是300.560÷=(千米/小时),故答案为:60;(2)解:设甲出发x 小时后被乙追上,根据题意:60x =80(x -0.5),解得x =2,∴甲出发2小时后被乙追上,∴点A 的坐标为(2,0),∵480800.5 6.5÷+=,∴B (6.5,90),设AB 的解析式为y=kx+b ,∴206.590k b k b ,解得2040k b ,∴AB 的解析式为y=20x-40(2 6.5x ≤≤);(3)解:根据题意得:20x-40=85或60x =480-85,解得x =254或7912. ∴两车相距85千米时x 为254或7912. 【点睛】此题考查了一次函数的图象,一次函数的实际应用,利用待定系数法求函数解析式,并与行程问题的路程、时间、速度相结合,读出图形中的已知信息是关键,是一道综合性较强的函数题,有难度,同时也运用了数形结合的思想解决问题.。
2022年最新冀教版八年级数学下册第二十一章一次函数专题测评试题
八年级数学下册第二十一章一次函数专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图1,在Rt ABC 中,90C ∠=︒,点D 是BC 的中点,动点P 从点C 出发沿CA AB -运动到点B ,设点P 的运动路程为x ,PCD 的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( ).A .10B .12C .D .2、如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A .0,0k b >>B .y 随x 的增大而增大C .当0x >时,0y <D .关于x 的方程2kx b +=的解是1x =3、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x 件(x >2),则应付货款y (元)与商品件数x 的函数关系式( )A .y =54x (x >2)B .y =54x +10(x >2)C .y =54x -90(x >2)D .y =54x +100(x >2)4、如图,直线y =kx +b 与x 轴的交点的坐标是(﹣3,0),那么关于x 的不等式kx +b >0的解集是( )A .x >﹣3B .x <﹣3C .x >0D .x <05、已知一次函数y =mnx 与y =mx +n (m ,n 为常数,且mn ≠0),则它们在同一平面直角坐标系内的图象可能为( )A .B .C .D .6、在平面直角坐标系中,已知点()1,2A -,点()5,6B -,在x 轴上确定点C ,使得ABC 的周长最小,则点C 的坐标是( )A .()4,0-B .()3,0-C .()2,0-D .()2.5,0-7、若实数a 、c 满足0a c +=且a c >,则关于x 的一次函数y cx a =-的图像可能是( )A .B .C .D .8、已知正比例函数y kx =的图像经过点(2,-4)、(1,1y )、(-1,2y ),那么1y 与2y 的大小关系是( )A . 12y y <B . 12y y =C . 12y y >D .无法确定9、直线1:y b l kx =-和2:2l y kx b =-+在同一直角坐标系中的图象可能是( )A .B .C .D .10、一次函数21y x =-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、己知y 是关于x 的一次函数,下表给出的4组自变量x 的值及其对应的函数y 的值,其中只有一个y 的值计算有误,则它的正确值是_______.2、当k >0时,直线y =kx +b 由左到右逐渐______,y 随x 的增大而______.① b >0时,直线经过第______象限;② b <0时,直线经过第______ 象限.当k <0时,直线y =kx +b 由左到右逐渐______,y 随x 的增大而______.①b >0时,直线经过第______象限;② b <0时,直线经过第______象限.3、已知点A (-2,a ),B (3,b )在直线y =2x +3上,则a ___b .(填“>”“<”或“=”号)4、如图,已知函数y ax b =+和y kx =的图象交于点A ,则根据图象可得,二元一次方程组y ax b y kx=+⎧⎨=⎩的解是_______.5、已知一次函数y kx b =+的图象(如图),则不等式 +kx b <0的解集是___________三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy 中,对于线段AB 和点C ,若△ABC 是以AB 为一条直角边,且满足AC >AB 的直角三角形,则称点C 为线段AB 的“关联点”,已知点A 的坐标为(0,1).(1)若B (2,1),则点D (3,1),E (2,0),F (0,-3),G (-1,-2)中,是AB 关联点的有_______;(2)若点B (-1,0),点P 在直线y =2x -3上,且点P 为线段AB 的关联点,求点P 的坐标;(3)若点B (b ,0)为x 轴上一动点,在直线y =2x +2上存在两个AB 的关联点,求b 的取值范围.2、已知一次函数22y x =+的图象与x 轴交于点A ,与y 轴交于点B(1)求A 、B 两点的坐标;(2)画出函数22y x =+的图象3、如图,在平面直角坐标系中,直线AB 为y =﹣34x +b 交y 轴于点A (0,3),交x 轴于点B ,直线x =1交AB 于点D ,交x 轴于点E ,P 是直线x =1上一动点,且在点D 的上方,设P (1,n ).(1)求点B 的坐标及点O 到直线AB 的距离;(2)求△ABP 的面积(用含n 的代数式表示);(3)当S△ABP=72时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.4、如图,平面直角坐标系xOy中,点A、B的坐标分别为A(a,0),B(0,b),其中a,b满足b2﹣8b+16=0,点P在y轴上,且在B点上方,PB=m(m>0),以AP为边作等腰直角△APM,∠APM=90°,PM=PA,点M落在第一象限.(1)a=;b=;(2)求点M的坐标(用含m代数式表示);(3)若射线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,若不变,求出Q点的坐标;若变化,请说明理由.5、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离1y(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).(1)在图中画出乙离A地的距离2y(单位:m)与时间x之间的函数图象;(2)求甲、乙两人在途中相遇的时间.-参考答案-一、单选题1、D【解析】【分析】由图像可知, 当08x ≤≤时,y 与x 的函关系为:y =x ,当x =8时,y =8,即P 与A 重合时,PCD ∆的面积为8,据此求出CD ,BC ,再根据勾股定理求出AB 即可P .【详解】解:如图2,当08x ≤≤时,设y =kx ,将(3,3)代入得,k =1,()08y x x ∴=≤≤ ,当P 与A 重合时,即:PC =AC =8,由图像可知,把x =8代入y =x ,y =8,8PCD S ∆∴=,1882DC ∴⨯=, 2DC ∴=, D 是BC 的中点,24BC CD ==在Rt ABC ∆中,AB故选:D .【点睛】本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.2、D【解析】【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.3、B【解析】【分析】由题意得2x >,则销售价超过100元,超过的部分为60100x -,即可得.【详解】解:∵2x >,∴销售价超过100元,超过的部分为60100x -,∴100(60100)0.910054905410y x x x =+-⨯=+-=+(2x >且为整数),故选B .【点睛】本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.4、A【解析】【分析】根据图象直接解答即可.【详解】∵直线y =kx +b 与x 轴交点坐标为(﹣3,0),∴由图象可知,当x >﹣3时,y >0,∴不等式kx +b >0的解集是x >﹣3.故选:A .【点睛】此题考查了一次函数图象与不等式的关系,不等式的解集即为一次函数的函数值大于零、等于零或小于零,正确理解二者之间的关系是解题的关键.5、D【解析】【分析】根据一次函数的图象与系数的关系,由一次函数y mx n =+图象分析可得m 、n 的符号,进而可得mn 的符号,从而判断y mnx =的图象是否正确,进而比较可得答案.【详解】A 、由一次函数y mx n =+图象可知0m >,0n <,即0mn <,与正比例函数y mnx =的图象可知0mn >,矛盾,故此选项错误;B 、由一次函数y mx n =+图象可知0m <,0n >,即0mn <,与正比例函数y mnx =的图象可知0mn >,矛盾,故此选项错误;C 、由一次函数y mx n =+图象可知0m >,0n >,即0mn >;正比例函数y mnx =的图象可知0mn <,矛盾,故此选项错误;D 、由一次函数y mx n =+图象可知0m <,0n >,即0mn <,与正比例函数y mnx =的图象可知0mn <,故此选项正确;故选:D .【点睛】此题主要考查了一次函数图象,注意:一次函数y =kx +b 的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.6、C【解析】【分析】因为AB 的长度是确定的,故△CAB 的周长最小就是CA +CB 的值最小,作点A 关于x 轴的对称点A ′,连接A ′B 交x 轴于点C ,求出C 点坐标即可.【详解】解:如图,作点A 关于x 轴的对称点A ′,连接A ′B 交x 轴于点C ,此时,AC +BC =A′C +BC =AC ,长度最小,∵A (-1,2),∴A ′(-1,﹣2),设直线A ′B 的解析式为y =kx +b (k ≠0),把A ′(-1,﹣2),()5,6B -代入得,∴562k b k b -+=⎧⎨-+=-⎩,解得24k b =-⎧⎨=-⎩, ∴直线A ′B 的解析式为y =-2x ﹣4,当y =0时,x =-2,∴C (-2,0).故选:C【点睛】本题考查了轴对称-最短路径问题,一次函数与坐标轴交点问题,解题关键是确定点C 的位置,利用一次函数解析式求坐标.7、B【解析】【分析】根据实数a 、c 满足0a c +=可知,a 、c 互为相反数,再根据a c >,可确定a 、c 的符号,进而确定图象的大致位置.【详解】解:∴实数a 、c 满足0a c +=,∴a 、c 互为相反数,∵a c >,∴0a >,0c <,∴0a -<∴一次函数y cx a =-的图像经过二、三、四象限,故选:B .本题考查了一次函数图象的性质,解题关键是根据已知条件,确定a 、c 的符号.8、A【解析】【分析】先求出正比例函数解析式2y x =-根据正比例函数2y x =-的图象性质,当k <0时,函数随x 的增大而减小,可得y 1与y 2的大小.【详解】解:∵正比例函数y kx =的图像经过点(2,-4)、代入解析式得42k -=解得2k =-∴正比例函数为2y x =-∵2k =-<0,∴y 随x 的增大而减小,由于-1<1,故y 1<y 2.故选:A .【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数y kx =的图象,当k <0时,y 随x 的增大而减小是解题关键.9、D【解析】【分析】根据两个解析式中一次项系数的符号相反、常数项的符号相反,结合一次函数的图象与性质即可解决.根据直线1:y b l kx =-和2:2l y kx b =-+的解析式知,k 与-2k 符号相反,b 与-b 符号相反(由图知b ≠0);A 选项中的直线与y 轴的交点均在y 轴正半轴上,故不合题意;B 、C 两选项中两直线从左往右均是上升的,则k 与-2k 全为正,也不合题意;D 选项中两直线满足题意;故选:D【点睛】本题考查了一次函数的图象与性质,掌握一次函数的图象与性质,数形结合是关键本题的关键.10、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数21y x =-+的图象经过第一、二、四象限,此题得解.【详解】解:∵k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,∴一次函数y =-2x +1的图象不经过第三象限.故选:C .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b >0⇔y=kx+b 的图象在一、二、四象限”是解题的关键.二、填空题1、11【解析】【分析】经过观察4组自变量和相应的函数值(0,20),(1,17),(2,14)符合解析式320y x =-+,(3,10)不符合,即可判定.【详解】解:(0,20),(1,17),(2,14)符合解析式320y x =-+,(3,10)不符合,∴这个计算有误的函数值是10,则它的正确值是11,故答案为:11.【点睛】本题考查了一次函数图象上点的坐标特征,解题的关键是掌握图象上点的坐标符合解析式.2、 上升 增大 一、二、三 一、三、四 下降 减小 一、二、四二、三、四【解析】略3、<【解析】【分析】根据一次函数的解析式可得到函数的增减性,则可比较a 、b 的大小.【详解】解:∵在y =2x +3中,k =2>0,∴y 随x 的增大而增大,∵点A(−2,a),B(3,b)在直线y=2x+3上,且−2<3,∴a<b,故答案为:<.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.4、23 xy=⎧⎨=⎩【解析】【分析】根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.【详解】解:由图像可知二元一次方程组y ax by kx=+⎧⎨=⎩的解是23xy=⎧⎨=⎩,故答案为:23 xy=⎧⎨=⎩【点睛】本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.5、x<1【解析】【分析】根据一次函数与一元一次不等式的关系即可求出答案.【详解】解:∵y =kx +b ,kx +b <0,∴y <0,由图象可知:x <1,故答案为:x <1.【点睛】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.三、解答题1、 (1)点E ,点F ;(2)(4133-,)或(2533-,); (3)b 的取值范围1<b <2或2<b <3.【解析】【分析】(1)根据以点B 为直角顶点,点B 与点E 横坐标相同,点E 在过点B 与AB 垂直的直线上,△ABE 为直角三角形,且AE 大于AB ;以点A 为直角顶点,点A 与点F 横坐标相同,△AFB 为直角三角形,BF 大于AB 即可;(2)根据点A (0,1)点B (-1,0),OA =OB ,∠AOB =90°,得出△AOB 为等腰直角三角形,可得∠ABO =∠BAO =45°,以点A 为直角顶点,过点A ,与AB 垂直的直线交x 轴于S ,利用待定系数法求出AS 解析式为1y x =-+,联立方程组123y x y x =-+⎧⎨=-⎩,以点B 为直角顶点,过点B ,与AB 垂直的直线交y 轴于R ,∠OBR =90°-∠ABO =45°,可得△OBR 为等腰直角三角形,OR =OB =1,点R (0,-1),利用平移的性质可求BR 解析式为1y x =--,联立方程组123y x y x =--⎧⎨=-⎩,解方程组即可; (3)过点A 与AB 垂直的直线交直线y =2x +2于U ,把△AOB 绕点A 顺时针旋转90°,得△AO′U,AO′=AO =1,O′U =OB =b ,根据点U (-1,b -1)在直线22y x =+上,得出方程()1212b -=⨯-+,求出b 的值,当过点A 的直线与直线22y x =+平行时没有 “关联点”,OB =OW =b =2,得出在1<b <2时,直线22y x =+上存在两个AB 的“关联点”,当b >2时,根据旋转性质将△AOB 绕点A 逆时针旋转90°得到△AO′U ,得出AO′=AO =1,O′U =OB =b ,根据点U (1,1+b )在直线22y x =+上,列方程1212b +=⨯+,得出3b =即可.(1)解:点D 与AB 纵坐标相同,在直线AB 上,不能构成直角三角形,以点B 为直角顶点,点B 与点E 横坐标相同,点E 在过点B 与AB 垂直的直线上,∴△ABE 为直角三角形,且AE 大于AB ;以点A 为直角顶点,点A 与点F 横坐标相同,△AFB 为直角三角形,AF=4>AB =2,∴点E 与点F 是AB 关联点,点G 不在A 、B 两点垂直的直线上,故不能构成直角三角形,故答案为点E ,点F ;(2)解:∵点A (0,1)点B (-1,0),OA =OB ,∠AOB =90°, ∴△AOB 为等腰直角三角形,AB∴∠ABO =∠BAO =45°,以点A 为直角顶点,过点A ,与AB 垂直的直线交x 轴于S , ∴∠OAS =90°-∠BAO =45°,∴△AOS 为等腰直角三角形,∴OS =OA =1,点S (1,0),设AS 解析式为y kx b =+代入坐标得:10b k b =⎧⎨+=⎩, 解得11b k =⎧⎨=-⎩, AS 解析式为1y x =-+,∴123y x y x =-+⎧⎨=-⎩, 解得4313x y ⎧=⎪⎪⎨⎪=-⎪⎩, 点P (4133-,), AP=AP >AB以点B 为直角顶点,过点B ,与AB 垂直的直线交y 轴于R ,∴∠OBR =90°-∠ABO =45°,∴△OBR 为等腰直角三角形,∴OR =OB =1,点R (0,-1),过点R 与AS 平行的直线为AS 直线向下平移2个单位,则BR 解析式为1y x =--,∴123y x y x =--⎧⎨=-⎩, 解得2353x y ⎧=⎪⎪⎨⎪=-⎪⎩, 点P 1(2533-,), AP 1∴点P 为线段AB 的关联点,点P 的坐标为(4133-,)或(2533-,);(3)解:过点A 与AB 垂直的直线交直线y =2x +2于U ,把△AOB 绕点A 顺时针旋转90°,得△AO′U,∴AO′=AO =1,O′U =OB =b ,点U (-1,b -1)在直线22y x =+上,∴()1212b -=⨯-+∴1b =,∴当b >1时存在两个“关联点”,当b <1时,UA <AB ,不满足定义,没有两个“关联点”当过点A 的直线与直线22y x =+平行时没有 “关联点”22y x =+与x 轴交点X (-1,0),与y 轴交点W (0,2)∵OA =OX =1,∠XOW =∠AOB =90°,AB ⊥XW ,∴△OXW 顺时针旋转90°,得到△OAB ,∴OB =OW =2,∴在1<b <2时,直线22y x =+上存在两个AB 的“关联点”,当b >2时,将△AOB 绕点A 逆时针旋转90°得到△AO′U ,∴AO′=AO =1,O′U =OB =b ,点U (1,1+b )在直线22y x =+上,∴1212b +=⨯+∴解得3b =∴当2<b <3时, 直线22y x =+上存在两个AB 的“关联点”,当b >3时,UA <AB ,不满足定义,没有两个“关联点”综合得,b 的取值范围1<b <2或2<b <3.【点睛】本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC >AB ,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC >AB ,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.2、 (1)()1,0A -,()0,2B(2)见解析【解析】【分析】(1)分别令,0x y =,即可求得点,A B 的坐标;(2)根据,A B 两点,作出一次函数的图象即可(1)令0x =,则2y =,即()0,2B ,令0y =,则1x =-,即()1,0A -(2)过()1,0A -,()0,2B 作直线22y x =+的图象,如图所示,【点睛】本题考查了一次函数与坐标轴的交点问题,画一次函数图象,掌握一次函数的性质是解题的关键.3、 (1)B(4,0),12 5(2)922n-(3)(5,7)或(8,3)或(92,72)【解析】【分析】(1)求出直线AB的解析式,可求点B坐标,由面积法可求解;(2)求出点D坐标,由三角形的面积公式可求解;(3)先计算当S△ABP=72时,P的坐标,以PB为边在第一象限作等腰直角三角形BPC,分三种情况讨论:分别以三个顶点为直角顶点画三角形,根据图形可得C的坐标.(1)解:∵直线AB为y=34-x+b交y轴于点A(0,3),∴b=3,AO=3,∴直线AB解析式为:y=34-x+3,令y=0,则0=34-x+3,x=4,∴B(4,0),∴OB=4,∴AB,∴S△AOB=12×OA×OB=12×AB×点O到直线AB的距离,∴点O到直线AB的距离=345⨯=125;(2)∵点D在直线AB上,∴当x=1时,y=94,即点D(1,94),∴PD=n-94,∵OB=4,∴S△ABP=19424n⎛⎫-⨯⎪⎝⎭=922n-;(3)当S△ABP=72时,97222n-=,解得n=4,∴点P(1,4),∵E(1,0),∴PE=4,BE=3,第1种情况,如图,当∠CPB=90°,BP=PC时,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∴∠CPN+∠BPE=90°,又∠CPN+∠PCN=90°,∴∠BPE=∠PCN,又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△PEB(AAS),∴PN=EB=3,PE=CN=4,∴NE=NP+PE=3+4=7,∴C(5,7);第2种情况,如图,当∠PBC=90°,BP=BC时,过点C作CF⊥x轴于点F.同理可证:△CBF≌△BPE(AAS),∴CF=BE=3,BF=PE=4,∴OF=OB+BF=4+4=8,∴C(8,3);第3种情况,如图3,当∠PCB=90°,CP=CB时,过点C作CH⊥BE,垂足为H,过点P作PG⊥CH,垂足为G,同理可证:△PCG≌△CBH(AAS),∴CG=BH,PG=CH,∵PE=4,BE=3,设CG=BH=x,PG=CH=y,则PE=GH=x+y=4,BE=PG-BH=y-x=3,解得:x =12,y =72,∴C (92,72), ∴以PB 为边在第一象限作等腰直角三角形BPC ,点C 的坐标是(5,7)或(3,8)或(92,72). 【点睛】本题是一次函数综合题,考查了待定系数法,三角形面积公式,全等三角形的判定和性质,利用分类讨论思想解决问题是解题的关键.4、 (1)4;4(2)(m +4,m +8)(3)不变,(﹣4,0)【解析】【分析】(128160b b -+=进行变形,然后根据二次根式有意义的条件及平方的非负性质即可进行求解;(2)过点M 作MN y ⊥轴于点N ,利用同角的余角相等可得OPA NMP ∠=∠,根据全等三角形的判定和性质可得AOP PNM ≌,4NM OP m ==+,4NP OA ==,结合图象即可得出结果;(3)设直线MB 的解析式为()40y kx k =+≠,由(2)结论将点M 的坐标代入整理可得()44k m m +=+,根据题意可得:1k =,将其代入可确定函数解析式,即可确定点Q 的坐标. (1)28160b b -+=,()240b -=,0,()240b -≥,∴40a -=,40b -=,解得:4a =,4b =,故答案为:4;4;(2)过点M 作MN y ⊥轴于点N ,∵90APM ∠=︒,∴90OPA NPM ∠+∠=︒,∵90NMP NPM ∠+∠=︒,∴OPA NMP ∠=∠,在AOP 和PNM △中,90OPA NMP AOP PNM AP PM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴AOP PNM ≌,∴4NM OP m ==+,4NP OA ==,∴8ON OP NP m =+=+,∴点M 的坐标为()48m m ++,;(3)点Q 的坐标不变,理由如下:设直线MB 的解析式为()40y kx k =+≠,则()448k m m ++=+,整理得,()44k m m +=+,∵0m >,∴40m +≠,解得:1k =,∴直线MB 的解析式为4y x =+,∴无论m 的值如何变化,点Q 的坐标都不变,为()4,-0.【点睛】题目主要考查二次根式有意义的条件及平方的非负性质,全等三角形的判定和性质,利用待定系数法确定一次函数解析式等,理解题意,综合运用这些知识点是解题关键.5、 (1)图象见解析;(2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.【解析】【分析】(1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;(2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.(1)乙离A 地的距离2y (单位:m )与时间x 之间的函数图像,如图2y 即是.(2)根据题意结合图象可知甲、乙两人在途中相遇3次.如图,第一次相遇在AB 段,第二次相遇在BC 段,第三次相遇在CD 段,根据题意可设2y 的解析式为:21y k x =,∴19000120k =,解得:175k =,∴2y 的解析式为275y x =.∵甲的步行速度为100m/min ,他每走半个小时就休息15min ,∴甲第一次休息时走了100303000⨯=米,对于275y x =,当23000y =时,即300075x =,解得:40x =.故第一次相遇的时间为40分钟的时候;设BC 段的解析式为:12y k x b =+,根据题意可知B (45,3000),D (75,6000).∴22300045600075k b k b=+⎧⎨=+⎩, 解得:21001500k b =⎧⎨=-⎩, 故BC 段的解析式为:11001500y x =-.相遇时即12y y =,故有100150075x x -=,解得:60x =.故第二次相遇的时间为60分钟的时候;对于275y x =,当26000y =时,即600075x =,解得:80x =.故第三次相遇的时间为80分钟的时候;综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.【点睛】本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 一次函数一、选择题(每小题3分,共24分) 1.下列函数中是正比例函数的是( )A .y =-3x +3B .y =-3xC .y =-3x 2D .y =-3x2.在一次函数y =(2m +2)x +5中,如果y 随x 的增大而减小,那么( ) A .m <-1 B .m >-1 C .m =1 D .m <13.若一次函数y =ax +b 的图像经过第一、二、四象限,则下列不等式中总成立的是( )A .ab >0B .a -b >0C .a 2+b >0D .a +b >0 4.对于函数y =-2x +1,下列结论正确的是( )A .它的图像必经过点(-1,2)B .它的图像经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大 5.若一次函数y =kx +b 的图像与直线y =-x +1平行,且过点(8,2),则此一次函数的表达式为( )A .y =-x -2B .y =-x -6C .y =-x -1D .y =-x +10 6.已知直线y =-x +4与y =x +2如图21-Z -1所示,则方程组⎩⎨⎧y =-x +4,y =x +2的解为( )图21-Z -1A.⎩⎨⎧x =3,y =1B.⎩⎨⎧x =1,y =3C.⎩⎨⎧x =0,y =4D.⎩⎨⎧x =4,y =0 7.已知A ,B 两地相距180 km ,甲、乙两车分別从A ,B 两地同时出发,匀速开往对方所在地.甲车的速度是90 km/h ,乙车的速度是60 km/h ,甲、乙两车之间的距离y (km)与时间x (h)的函数图像大致是( )图21-Z-28.在一次自行车越野赛中,甲、乙两名选手行驶的路程y(千米)随时间x(分)变化的图像(全程)如图21-Z-3,根据图像判定下列结论不正确的是( ) A.甲先到达终点B.前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇D.这次比赛的全程是28千米二、填空题(每小题5分,共20分)9.若直线y=-2x+1与y=kx相交于点(-2,a),则a=________,k=________.图21-Z-3 图21-Z-4 10.五一期间,王老师一家自驾游去了离家170千米的某地,图21-Z-4是他们离家的距离y(千米)与汽车行驶时间x(时)之间的函数图像.当他们离目的地还有20千米时,汽车一共行驶的时间是________小时.11.若点A(m,n)在直线y=kx(k≠0)上,当-1≤m≤1时,-1≤n≤1,则这条直线的函数表达式为____________.图21-Z-512.如图21-Z-5,在等腰三角形ABC中,AB=AC,BD=CE,BE,CD相交于点P,BC∥x轴.若点A(3,5),B(1,1),D(2,3),则点P的坐标为________.三、解答题(共56分)13.(12分)如图21-Z-6,一次函数y=-x+m的图像和y轴交于点B,与正比例函数y=x的图像交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.图21-Z-614.(14分)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图21-Z -7①所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图21-Z-7②所示,请结合图像回答下列问题:(1)甲车间每天加工大米______吨,a=______;(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间的函数表达式;(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?图21-Z-715.(14分)为响应绿色出行号召,越来越多的市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员支付两种支付方式,如图21-Z-8描述了两种方式下支付金额y(元)与骑行时间x(时)之间的函数关系,根据图像回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)之间的函数表达式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.图21-Z-816.(16分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图21-Z-9所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数表达式;(2)广场上甲、乙两种花卉种植面积共1200 m2,如果甲种花卉的种植面积不少于200 m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积,才能使种植总费用最少?最少费用为多少元?图21-Z-9【详解详析】1.B [解析] 利用正比例函数的定义直接判断.2.A3.C [解析] ∵一次函数y=ax+b的图像经过第一、二、四象限,∴a<0,b>0,∴ab<0,a-b<0,a+b的值不确定,∴A,B,D选项错误;C选项,a2+b >0正确.故选C.4.C [解析] A.令y=-2x+1中x=-1,则y=3,∴一次函数的图像不过点(-1,2),即A项不正确;B.一次函数的图像经过第一、二、四象限,即B 项不正确;C.当x=1时,y=-2x+1=-1,∵k=-2<0,∴y随x的增大而减小,∴当x>1时,y<0成立,即C项正确;D.∵k=-2<0,∴一次函数y=-2x+1中y随x的增大而减小,D项不正确.5.D [解析] ∵一次函数y=kx+b的图像与直线y=-x+1平行,∴k=-1.∵一次函数图像过点(8,2),∴2=-8+b,解得b=10,∴一次函数的表达式为y=-x+10.6.B7.D [解析] 根据题意,知两车相遇的时间为18090+60=65(h),∴当0≤x≤65时,y=180-(90+60)x=-150x+180.∵甲车到达B地用时为18090=2(h),∴当65≤x≤2时,两车之间距离逐渐增加,y=(90+60)(x-65)=150x-180,当甲车到达B地时,乙车还未到达A地,距离B地120 km,则y=120+60(x-2)=60x.8.D [解析] A项,由横坐标看,甲用时86分钟,乙用时96分钟,甲先到达终点,说法正确;B项,由横坐标看,在30分钟以前,在相同的时间内,甲走的路程多于乙走的路程,所以甲在乙的前面,说法正确;C 项,由图像上两点(30,10),(66,14)可得线段AB 所在直线对应的函数表达式为y =19x +203,那么由图像可得路程为12时,出现交点,当y =12时,x =48,说法正确;D 项,乙是匀速运动,速度为12÷48=14(千米/分),那么比赛的全程为14×96=24(千米),说法错误.故选D.9.5 -52[解析] 先将点(-2,a )代入到关系式y =-2x +1中,可以求出a =5;再将点(-2,5)代入到关系式y =kx 中,从而求出k =-52.10.2.25 [解析] 设AB 段所对应的函数表达式是y =kx +b (k ≠0). ∵一次函数y =kx +b 的图像过点A (1.5,90),B (2.5,170), ∴⎩⎨⎧1.5k +b =90,2.5k +b =170,解得⎩⎨⎧k =80,b =-30.∴AB 段所对应的函数表达式是y =80x -30. 离目的地还有20千米时,即y =170-20=150, 当y =150时,即80x -30=150, 解得x =2.25.11.y =x 或y =-x [解析] ∵点A (m ,n )在直线y =kx (k ≠0)上,-1≤m ≤1时,-1≤n ≤1,∴点(-1,-1)或点(-1,1)在该直线上,∴k =1或k =-1,∴y =x 或y =-x .12.⎝ ⎛⎭⎪⎫3,73 [解析] 由题意易知AP 所在直线对应的函数表达式是x =3,则点E 的坐标是(4,3).设直线BE 所对应的函数表达式是y =kx +b (k ≠0),则⎩⎨⎧k +b =1,4k +b =3,解得⎩⎪⎨⎪⎧k =23,b =13,则直线BE 所对应的函数表达式是y =23x +13. 当x =3时,y =23×3+13=73, 所以点P 的坐标是⎝⎛⎭⎪⎫3,73. 13.解:(1)把点P (2,n )代入y =x ,得n =2,∴点P 的坐标为(2,2).把点P (2,2)代入y =-x +m ,得-2+m =2,解得m =4,即m 和n 的值分别为4和2.(2)把x =0代入y =-x +4,得y =4,∴点B 的坐标为(0,4),∴△POB 的面积为12×4×2=4.14.解:(1)由图像可知,第一天甲、乙共加工220-185=35(吨),第二天乙停止工作,甲单独加工185-165=20(吨),则乙一天加工35-20=15(吨),故a =15.故答案为20,15.(2)设y =kx +b (k ≠0).把(2,15),(5,120)代入,得⎩⎨⎧15=2k +b ,120=5k +b ,解得⎩⎨⎧k =35,b =-55,∴y =35x -55(2≤x ≤5).(3)由题图②可知,当w =220-55=165时,恰好是第二天加工结束.故加工2天装满第一节车厢.当2≤x ≤5时,两个车间每天加工速度为1655-2=55(吨), ∴再加工1天恰好装满第二节车厢.15.解:(1)当0≤x <0.5时,y =0;当x ≥0.5时,设手机支付金额y (元)与骑行时间x (时)之间的函数表达式为y =kx +b (k ≠0),把(0.5,0)和(1,0.5)代入上式,得⎩⎨⎧0.5k +b =0,k +b =0.5,解得⎩⎨⎧k =1,b =-12,所以手机支付金额y (元)与骑行时间x (时)之间的函数表达式为y =⎩⎨⎧0(0≤x <0.5),x -12(x ≥0.5).(2)设会员支付金额y 会员(元)与骑行时间x (时)之间的函数表达式为y会员=k 1x ,由图知,该图像过点(1,0.75),代入求得k 1=0.75=34,所以会员支付金额y 会员(元)与骑行时间x (时)之间的函数表达式为y 会员=34x .①当y 手机>y 会员时,即x -12>34x ,解得x >2,所以当x >2时,选会员支付比较合算;②当y 手机<y 会员时,即x -12<34x ,解得x <2,所以当0<x <2时,选手机支付比较合算;③当y 手机=y 会员时,即x -12=34x ,解得x =2,所以当x =2时,选手机支付或会员支付价格一样.16.解:(1)当0≤x ≤300时,设函数表达式为y =k 1x (k 1≠0),把(300,39000)代入,得39000=300k 1,解得k 1=130,∴当0≤x ≤300时,y =130x .当x >300时,设函数表达式为y =k 2x +b (k 2≠0).把(300,39000)和(500,55000)代入,得⎩⎨⎧39000=300k 2+b ,55000=500k 2+b ,解得⎩⎨⎧k 2=80,b =15000,∴y =80x +15000. 综上,y =⎩⎨⎧130x (0≤x ≤300),80x +15000(x >300).(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2.根据题意,得⎩⎨⎧a ≥200,a ≤2(1200-a ).解得200≤a ≤800.当200≤a ≤300时,总费用W 1=130a +100(1200-a )=30a +120000,当a =200时,总费用最少,W min =30×200+120000=126000;当300≤a ≤800时,总费用W 2=80a +15000+100(1200-a )=-20a +135000,当a =800时,总费用最少,W min =-20×800+135000=119000.∵119000<126000,∴当a =800时,总费用最少,最少为119000元,此时1200-a =400,∴当甲、乙两种花卉种植面积分别为800 m 2和400 m 2时,种植总费用最少,最少费用为119000元.。