产品结构设计准则壁厚篇
塑胶产品结构设计准则--壁厚篇
塑胶产品结构设计准则--壁厚篇基本设计守则壁厚的大小取决于产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
一般的热塑性塑料壁厚设计应以4mm为限。
从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低于0.01mm/mm 时,产品可容许厚度的改变达;但当收缩率高于0.01mm/mm时,产品壁厚的改变则不应超过。
对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充的热固性塑料于过薄的位置往往形成不够填充物的情况发生。
不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。
厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固后出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。
壁厚基本设计守则
壁厚 (Wall Thickness)基本设计守则壁厚得大小取决於产品需要承受得外力、就是否作为其她零件得支撑、承接柱位得数量、伸出部份得多少以及选用得塑胶材料而定。
一般得热塑性塑料壁厚设计应以4mm为限。
从经济角度来瞧,过厚得产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来瞧,过厚得产品增加引致产生空穴”气孔〔得可能性,大大削弱产品得刚性及强度。
最理想得壁厚分布无疑就是切面在任何一个地方都就是均一得厚度,但为满足功能上得需求以致壁厚有所改变总就是无可避免得。
在此情形,由厚胶料得地方过渡到薄胶料得地方应尽可能顺滑。
太突然得壁厚过渡转变会导致因冷却速度不同与产生乱流而造成尺寸不稳定与表面问题。
对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm 时,产品可容许厚度得改变达 ;但当收缩率高於0。
01mm/mm时,产品壁厚得改变则不应超过。
对一般热固性塑料来说,太薄得产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充得热固性塑料於过薄得位置往往形成不够填充物得情况发生、不过,一些容易流动得热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低得厚度可达0.25mm。
此外,采用固化成型得生产方法时,流道、浇口与部件得设计应使塑料由厚胶料得地方流向薄胶料得地方。
这样使模腔内有适当得压力以减少在厚胶料得地方出现缩水及避免模腔不能完全充填得现象。
若塑料得流动方向就是从薄胶料得地方流向厚胶料得地方,则应采用结构性发泡得生产方法来减低模腔压力。
平面准则在大部份热融过程操作,包括挤压与固化成型,均一得壁厚就是非常得重要得。
厚胶得地方比旁边薄胶得地方冷却得比较慢,并且在相接得地方表面在浇口凝固後出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶得地方渐变成薄胶得就是无可避免得话,应尽量设计成渐次得改变,并且在不超过壁厚3:1得比例下。
塑胶产品结构设计准则
在塑胶件上开孔使其和其它部件相接合或增加产品功能上的组合是常用的手法,洞 孔的大小及位置应尽量不会对产品的强度构成影响或增加生产的复杂性, 常见孔的 类型如下:
孔离边位或内壁边之要点 :
confidential
16
四、塑胶产品结构设计准则-洞孔 (Hole)
盲孔设计要点: 盲孔是靠模具上的镶针形成,而镶针的设计只能单边支撑在模具上,因此很容易 被溶融的塑料使其弯曲变形,造成盲孔出现椭圆的形状,所以镶针的长度不能过长。 盲孔深度最大是直径的3倍,考虑模具镶针强度要求直径最小0.8mm。 外观件上的各种凹槽,如雕刻文字等,要求棱线分明,导致过渡太急,易产生气
confidential
12
三、塑胶产品结构设计准则-支柱 ( Boss )
对于外观件,当有螺丝柱子,需要进行缩水验证,依照上页图示意,塑胶壁厚 1.5 ,螺丝柱子外径3.4,验证结果 NG:(1.8-1.5)/1.5*100%=20% >8%。 外观面有可能会有缩水痕迹。
改善方案如下图:
当缩水验证NG时,可在增加火山口及加深螺丝孔深度来改善。 外观部品综合考虑缩水与螺丝柱子强度,塑胶壁厚要求大于1.3。 适当的辅以三角或十字加强筋方式,可大幅度提高强度和改善料流填充。
confidential
4
一、塑胶产品结构设计准则-壁厚
B. 转角位的设计准则亦适用於悬梁式扣位。因这种扣紧方式是需要将悬梁臂弯 曲嵌入,转角位置的设计图说明如果转角弧位R太小时会引致其应力集中系数 (Stress Concentration Factor)过大,因此,产品弯曲时容易折断,弧位R太大 的话则容易出现收缩纹和空洞。因此,圆弧位和壁厚是有一定的比例。一般 介乎0.2至0.6T之间,理想数值是在0.5T左右。
结构设计规范
1.产品壁厚1)A类:塑料外形高低小于150mm,如MP4、GPRS、遥控器等(ABS)。
壁厚一般为1.2mm~2.0mm。
2)B类:塑料件外形高低150~250mm,如座式电话机(ABS),壁厚一般为1.8mm~2.5mm。
3)C类:塑料件外形高低250mm以上,如电饭煲(pp),器械外罩(ABS)。
壁厚一般为2.5mm~3mm。
4)D类:对于对壳体有特别要求的产品,如音箱(壁厚对音响效果影响较大),壁厚由3.0mm~4.0mm 不等。
5)A类产品通常会有小装饰件,装饰件壁厚为0.8~1.2mm。
6)尽可能保持塑件厚度均一,若有不可避免的产生厚薄胶渐变,塑件的局部壁厚不小于平均壁厚的一半,而且要做平缓过渡面加大的倒圆角(过渡面与局部壁厚比为3:1)。
7)塑件转角位置用圆角过渡。
圆角是壁厚的0.2~0.6倍,理想数值是壁厚的0.5倍。
2.止口1)单止口、凸止口宽一般为壁厚的0.45倍。
高位宽度的1~1.5倍。
(常用高度0.8mm,1.0mm,1.2mm,1.5mm,2.0mm。
大产品还有3.0mm,4.0mm)。
2)凹凸止口间隙通常为0.05mm~0.2mm(常用0.05mm,0.08mm,0.1mm,0.15mm)。
3)止口宽度设计要求不小于0.7mm。
4)A类产品侧壁厚要求1.8以上,凸止口为0.8×1.0或1.0×1.0(宽×长);B类产品侧壁厚要求2.3以上,凸止口为1.0×1.0或1.2×1.5(宽×长);C类产品侧壁厚要求3.0以上,凸止口为1.5×1.5或1.5×2.0(宽×长)。
3.美观线A类0.3×0.3B类0.5×0.5C类0.8×0.84.拔模1)凡塑件精度高的,应选用较小斜度;2)凡高、大的尺寸,应选用较小斜度;3)塑件收缩率大的,应选用较大斜度;4)塑件壁厚较大的,应选用较大斜度;5)透明件以免划伤,一般ps料大于3°,ABS及PC料应大于2°;6)粗纹、喷砂应加3°~5°的斜度;7)擦穿斜度高3~5应错位0.3~0.5(1°~3°)。
产品结构设计准则--壁厚篇
产品结构设计准则--壁厚篇在产品结构设计中,壁厚是一个非常关键的因素。
合理的壁厚设计可以保证产品的稳定性、强度和耐用性,同时还能降低材料成本,提高产品的生产效率。
以下是一些关于壁厚设计的准则:1.根据产品的用途和功能确定合适的壁厚。
不同的产品需要不同的壁厚来满足其特定的使用需求。
例如,对于需要承受较大压力的零部件,壁厚应该设计得较厚,以确保其强度和稳定性;而对于需要轻量化的产品,壁厚可以设计得较薄,以减少重量和材料成本。
2.考虑产品的结构特点和几何形状。
一些结构复杂的产品可能需要较厚的壁厚来确保其稳定性和耐用性,而简单的几何形状则可以使用较薄的壁厚。
此外,还应该避免壁厚的突变和过度的薄厚交替,以免产生应力集中和失稳现象。
3.进行材料力学性能和材料性质的分析。
不同材料具有不同的力学性能和性质,因此在确定壁厚时,需要考虑材料的强度、韧性和可加工性等因素。
在工程实践中,通常会对材料进行力学性能测试和分析,以确定适当的壁厚。
4.进行结构的内部和外部力学分析。
在产品设计过程中,需要进行内部和外部力学分析,以确定产品所需的最小壁厚。
内部力学分析可以帮助确定应力和变形情况,以避免设计过于薄壁的结构;外部力学分析可以帮助确定最大应力情况,以确保产品在使用时的强度和稳定性。
5.考虑生产工艺和成本因素。
在确定壁厚时,还需要考虑产品的生产工艺和成本因素。
较厚的壁厚可能需要更多的材料和更多的加工步骤,从而增加成本;较薄的壁厚可能需要更高的加工精度和更复杂的工艺来保证产品的品质。
因此,需要在产品设计和制造之间找到一个平衡点。
总之,合理的壁厚设计是产品结构设计中一个至关重要的环节。
通过考虑产品的用途和功能、结构特点、材料力学性能、力学分析以及生产工艺和成本因素,可以确定合适的壁厚,从而保证产品的稳定性、强度和耐用性,并提高产品的生产效率和竞争力。
在产品结构设计中,壁厚是一个非常关键的因素。
合理的壁厚设计可以保证产品的稳定性、强度和耐用性,同时还能降低材料成本,提高产品的生产效率。
注塑件壁厚设计准则
注塑件壁厚设计准则一、壁厚均匀注塑件的壁厚应设计得尽可能均匀,以减少材料的不必要浪费和成型周期的延长。
在设计中,应考虑到不同部位对强度的要求,以及模具冷却对壁厚的影响。
二、避免锐角在壁厚的转折处,应避免设计成锐角,因为锐角可能会导致模具制作难度增大,同时锐角部分也容易产生应力集中,降低注塑件的使用寿命。
三、考虑材料流动性在设计注塑件的壁厚时,应充分考虑材料的流动性。
较厚的壁厚需要更高的注射压力才能填满模具,而过薄的壁厚可能会使材料流动困难,导致成型不良。
因此,应根据材料的流动性进行合理的壁厚设计。
四、热传导性壁厚的厚度也会影响到模具的冷却时间。
较厚的壁厚需要更长的冷却时间,而过薄的壁厚则会导致冷却过快,影响注塑件的质量。
因此,在设计壁厚时,应考虑到材料的热传导性和冷却时间的需求。
五、强度要求在满足使用要求的前提下,应尽可能减小壁厚,以提高注塑件的强度。
在设计中,应考虑到注塑件的不同部位对强度的要求,并据此进行合理的壁厚设计。
六、脱模斜度在壁厚的转折处,应设置适当的脱模斜度,以便于脱模。
脱模斜度的大小应根据模具的具体情况和注塑件的要求进行设计。
七、模具冷却在设计壁厚时,应考虑到模具冷却对壁厚的影响。
较厚的壁厚需要更长的冷却时间,而过薄的壁厚则会导致冷却过快。
因此,在设计中应充分考虑模具的冷却效率和冷却液的流动情况。
八、加工方式注塑件的壁厚也会影响到其加工方式。
较厚的壁厚可能需要采用更复杂的加工工艺或多次加工才能完成,而过薄的壁厚则可能导致加工困难或无法加工。
因此,在设计壁厚时,还应考虑到加工方式和加工成本的需求。
塑胶产品结构设计准则
confidential
13
三、塑胶产品结构设计准则-支柱 ( Boss )
对于外观件,当有螺丝柱子,需要进行缩水验证,依照上页图示意,塑胶壁厚 1.5 ,螺丝柱子外径3.4,验证结果 NG:(1.8-1.5)/1.5*100%=20% >8%。 外观面有可能会有缩水痕迹。
改善方案如下图:
当缩水验证NG时,可在增加火山口及加深螺丝孔深度来改善。 外观部品综合考虑缩水与螺丝柱子强度,塑胶壁厚要求大于1.3。 适当的辅以三角或十字加强筋方式,可大幅度提高强度和改善料流填充。
confidential
18
四、塑胶产品结构设计准则-洞孔 (Hole)
对于塑胶部品,结合线处强度较弱,受力容易破裂。当通孔处于产品边部,同 时有配合力量要求时,要求孔壁距离外侧壁1.5mm(如因结构原因无法保证 1.5mm, 采用模具设置冷料槽成型后再剪除,但最小要1.0mm),对于卡勾槽尽 量采用盲孔。
10
三、塑胶产品结构设计准则-支柱 ( Boss )
支柱 ( Boss )基本设计守则:
A. 支柱尽量不要单独使用,应尽量连接至外壁或与加强筋一同使用,目的是加 强支柱的强度及使胶料流动更顺畅。
B. 实心支柱的直径大小取壁厚的0.5~0.7倍,当有缩水管理要求时,需使用使用 缩水公式验证。
C. 过高的支柱会导致塑胶部件成型时困气,所以支柱高度一般是不会超过支柱 直径的3倍。过高的支柱要考虑其强度及逃气问题。
塑胶产品结构设计准则
Paul ren
confidential
1
塑胶产品结构设计准则
一. 壁厚 (Thickness) 二. 加强筋(Rib) 三. 支柱 (Boss) 四. 洞孔 (Hole) 五. 扣位(Snap Joint) 六. 出模角(Draft Angle) 七. 螺紋(Screw) 八. 文字(Text) 九. 咬花(Texture)
塑料件壁厚的设计原则
塑料件壁厚的设计原则以塑料件壁厚的设计原则为标题,我们来探讨一下塑料件壁厚设计的一些基本原则和注意事项。
一、塑料件壁厚的重要性塑料件的壁厚是指塑料制品在各个部位的壁厚大小。
合理的壁厚设计对于塑料件的性能、质量和成本都有着重要影响。
过厚的壁厚会导致材料的浪费和成本的增加,同时还会增加产品的重量和生产周期。
而过薄的壁厚则容易出现变形、开裂等问题,影响产品的使用寿命和性能。
二、设计原则1. 结构性原则:根据塑料件的结构和功能要求合理设计壁厚。
不同的部位和功能对于壁厚的要求是不同的。
例如,需要承受较大压力的部位应该有较厚的壁厚,而需要保持较轻重量的部位可以选择较薄的壁厚。
2. 注塑性原则:考虑到注塑工艺的要求,尽量避免壁厚突变和过于复杂的结构。
壁厚的突变容易导致注塑过程中的流动不均匀,造成缩孔、气泡等问题。
过于复杂的结构会增加注塑成本和生产周期,并且也容易导致产品品质问题。
3. 材料性原则:根据所选用的塑料材料的特性,合理选择壁厚。
不同的塑料材料对于壁厚的要求是不同的。
一般来说,刚性塑料可以选择较薄的壁厚,而柔性塑料需要选择较厚的壁厚以保证产品的强度和耐用性。
4. 结构强度原则:根据塑料件所需的强度和刚度要求,设计合理的壁厚。
一般来说,壁厚越大,产品的强度和刚度也越高。
但是过大的壁厚会导致产品重量增加和成本上升,因此需要在强度和成本之间进行权衡。
5. 工艺性原则:考虑到塑料件的成型工艺,尽量选择符合工艺要求的壁厚。
不同的成型工艺对于壁厚的要求是不同的。
一般来说,注塑成型工艺对于壁厚的要求相对较宽松,挤出和吹塑等工艺对于壁厚的要求相对较严格。
6. 经济性原则:在满足产品性能和质量要求的前提下,尽量选择较薄的壁厚以降低成本。
通过合理设计壁厚可以减少材料的使用量,降低成本。
三、注意事项1. 避免壁厚过于薄或过于厚,需要根据具体的产品要求和材料特性进行合理选择。
2. 尽量避免壁厚的突变和过于复杂的结构,以减少生产工艺问题和提高产品质量。
塑胶件产品设计之准则-壁厚
壁厚 (Wall Thickness)基本设计守则壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
一般的热塑性塑料壁厚设计应以4mm为限。
从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。
对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。
不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。
厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。
产品结构设计——压铸模壁厚结构设计
——压铸模壁厚结构设计压铸件壁厚对生产有哪些影响? 1.压铸件的壁厚对铸件厚壁处,为了避免缩松等缺陷,应通过减薄厚度并增设加强肋来解决压铸件壁厚增加,内部气孔、缩孔等缺陷也随之增加,故在保证铸件有足够强度和刚度的前提下应尽量减少厚度并保持各截面的厚薄均匀一致。
设计肋来增加零件的强度和刚性,同时也改善了压铸的工艺,使金属的流路顺畅,消除单纯依靠加大壁厚而引起的气孔和收缩缺陷。
压铸件基本结构的设计压铸件壁厚设计以镁合金、铝合金、锌合金为例,压铸产品壁厚应符合设计要求壁的单面面积axb(cm2)镁合金铝合金锌合金壁厚h(mm)最小正常最小正常最小正常≦250.8 2.00.8 2.00.5 1.5>25~100 1.2 2.5 1.2 2.5 1.0 1.8>100~500 1.8 3.0 1.8 3.0 1.5 2.2>500 2.5 3.5 2.5 3.5 2.0 2.5压铸件适宜的壁厚:铝合金为1~6mm,锌合金为1~4mm,镁合金为1.5~5mm,铜合金为2~5mm压注件壁厚与浇注温度的关系浇注温度越高,溶解空气越多,难以析出直接影响塑性;含铁量也随着温度的升高而升高,含铁量高导致流动性差,结晶粗大,性能恶化;溶解氧化加剧,氧化夹渣增多产生缺陷;温度高易产生紊流,饱气等。
合金铸件壁厚≦3mm 铸件壁厚>3mm结构简单结构复杂结构简单结构复杂锌合金含铝420~440430~450410~430420~440含铜520~540530~550510~530520~540铝合金含铝610~650640~700590~630610~650含铜620~650640~720600~640620~650含镁640~680660~700620~660640~680镁合金640~680660~700620~660640~680铜合金普通黄铜870~920900~950850~900870~920硅黄铜900~940930~970880~920940常用压铸合金的浇注温度 单位℃压注件壁厚与压铸模具温度的关系常用压铸合金的压铸模具温度 单位℃铸件壁厚≦3mm铸件壁厚>3mm合金结构简单结构复杂结构简单结构复杂预热温度130~180150~200110~140120~150锌合金连续工作保持温度180~220190~220140~170150~200预热温度170~190220~230150~170170~190铝合金连续工作保持温度200~220260~280180~200200~240预热温度150~180200~230120~150150~180镁合金连续工作保持温度180~240250~280150~180180~220预热温度200~230230~250170~200200~230铜合金连续工作保持温度300~325325~350250~300300~3500模具温度高,模具的冷却能力降低将直接影响铸件细晶粒层的厚度,铸件晶粒粗化,强度下降,并且容易出现收缩;模具温度过低,影响铸件料流流动,形成冷料,造成充填不足等缺陷。
产品管理产品结构设计准则壁厚篇
(产品管理)产品结构设计准则壁厚篇产品结构设计准则--壁厚篇基本设计守则壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
壹般的热塑性塑料壁厚设计应以4mm为限。
从经济角度来见,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来见,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面于任何壹个地方均是均壹的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
于此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
对壹般热塑性塑料来说,当收缩率”ShrinkageFactor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。
对壹般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。
不过,壹些容易流动的热固性塑料如环氧树脂”Epo xies〔等,如厚薄均匀,最低的厚度可达0.25mm。
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔内有适当的压力以减少于厚胶料的地方出现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则于大部份热融过程操作,包括挤压和固化成型,均壹的壁厚是非常的重要的。
厚胶的地方比旁边薄胶的地方冷却得比较慢,且且于相接的地方表面于浇口凝固後出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,且且于不超过壁厚3:1的比例下。
产品结构设计准则壁厚篇
————————————————————————————————作者:
—————————————————————————
壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm为限。从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
转角准则
壁厚均一的要诀在转角的地方也同样需要,以免冷却时间不一致。冷却时间长的地方就会有收缩现象,因而发生部件变形和挠曲。此外,尖锐的圆角位通常会导致部件有缺陷及应力集中,尖角的位置亦常在电镀过程後引起不希望的物料聚积。集中应力的地方会在受负载或撞击的时候破裂。较大的圆角提供了这种缺点的解决方法,不但减低应力集中的因素,且令流动的塑料流得更畅顺和成品脱模时更容易。下图可供叁考之用。
壁厚由厚的过渡到薄的地方是要尽量使其畅顺。所有情况塑料是从最厚的地方进入模腔内,以避免缩水和内应力。ﻫ均一的壁厚是要很重要的。不论在平面转角位也是要达到这种要求,可减少成型後的变型问题。
LCP
a)壁厚ﻫ由於液晶共聚物在高剪切情况下有高流动性,所以壁厚会比其它的塑料薄。最薄可达0.4mm,一般厚度在1.5mm左右。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。ﻫ对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。
塑胶件壁厚设计原则
塑胶件壁厚设计原则
1. 合理的壁厚选择:塑胶件的壁厚应根据零件的结构和功能要求来确定。
一般情况下,壁厚应尽量均匀,过薄易导致零件强度不足,过厚则增加材料成本。
2. 考虑材料的流动性:在设计壁厚时,需要考虑塑胶材料的流动性,以确保塑胶能够充分填充模具腔体,避免产生缺陷,如短充、气孔等。
3. 避免壁厚过大的转角:在设计塑胶件的结构时,应避免过大的转角,因为过大的转角会导致塑胶流动不畅,易产生缺陷。
通常情况下,转角半径应大于材料厚度的2倍。
4. 避免壁厚突变:在相邻区域的壁厚差异较大的情况下,容易导致塑胶件出现应力集中的问题。
在设计时应尽量避免壁厚的突变,或通过逐渐过渡的方式进行壁厚的变化。
5. 考虑收缩率和变形:塑胶件在注塑成型后会产生一定的收缩和变形。
在设计壁厚时,需要考虑材料的收缩率和零件的整体结构,以确保最终的零件尺寸符合要求。
6. 注意壁厚与加工工艺的关系:塑胶件壁厚与加工工艺密切相关。
过大的壁厚会增加成型压力和注塑周期,过小的壁厚则容易产生脱模困难等问题。
在设计壁厚时,需考虑实际生产过程中的工艺要求。
7. 根据不同功能区域进行壁厚规划:根据塑胶件的不同功能要求和受力情况,可以进行壁厚的分区设计。
在受力较大的区域可以采用较大的壁厚,而在外观要求较高的区域可以适当减小壁厚。
8. 测试和优化:为了确保塑胶件的质量,建议在设计完成后进行测试和优化。
通过实际的试制和测试,可以验证设计的合理性,发现问题并进行相应的调整。
以上为塑胶件壁厚设计的一些原则,根据具体项目的要求和材料特性,可作适当调整和补充。
产品结构设计具体参数
塑胶产品结构设计要点1. 胶厚(胶位):塑胶产品的胶厚(整体外壳)通常在0.80-3.00左右,太厚容易缩水和产生汽泡,太薄难走满胶,大型的产品胶厚取厚一点,小的产品取薄一点,一般产品取1.0-2.0为多。
而且胶位要尽可能的均匀,在不得已的情况下,局部地方可适当的厚一点或薄一点,但需渐变不可突变,要以不缩水和能走满胶为原则,一般塑料胶厚小于0.3时就很难走胶,但软胶类和橡胶在0.2-0.3的胶厚时也能走满胶。
1)2. 加强筋(骨位):塑胶产品大部分都有加强筋,因加强筋在不增加产品整体胶厚的情况下可以大大增加其整体强度,对大型和受力的产品尤其有用,同时还能防止产品变形。
加强筋的厚度通常取整体胶厚的0.5-0.7倍,如大于0.7倍则容易缩水。
加强筋的高度较大时则要做0.5-1的斜度(因其出模阻力大),高度较矮时可不做斜度。
加强筋厚度通常是相交的胶料壁厚的60%以下。
在一些非决定性的表面肋骨厚度可最多到70%。
如果加强筋没连着外壁则高度不应高於胶料厚的三倍,如果太高应加辅助加强筋(图12-1)。
当超过两条加强筋的时侯,加强筋之间的距离尽可能大于於胶料厚度的两倍。
3. 脱模斜度:塑料产品都要做脱模斜度,但高度较浅的(如一块平板)和有特殊要求的除外(但当侧壁较大而又没出模斜度时需做行位)。
出模斜度通常为1-5度,常取2度左右,具体要根据产品大小、高度、形状而定,以能顺利脱模和不影响使用功能为原则。
产品的前模斜度通常要比后模的斜度大0.5度为宜,以便产品开模事时能留在后模。
通常枕位、插穿、碰穿等地方均需做斜度,其上下断差(即大端尺寸与小端尺寸之差)单边要大于0.1以上。
4. 圆角(R 角):塑胶产品除特殊要求指定要锐边的地方外,在棱边处通常都要做圆角,以便减小应力集中、利于塑胶的流动和容易脱模。
最小R 通常大于0.3,因太小的R 模具上很难做到。
圆角是壁厚的0.2~0.6,理想数值是壁厚的0.5。
倒圆角应不小于R 0,30m m ,小于R 0.30mm 会被视为工艺角。
铸件壁厚的设计原则
铸件壁厚的设计原则
铸件壁厚设计原则是:
薄壁结构有利于提高散热效果,加快热处理速度。
同时,壁厚不能太均匀,要适当分段(如前薄后厚、中间局部较厚),以防止传热不良和形成白点缺陷。
在铸造合金中应用最广的镁含量约为3%~4%。
当含镁量超过5%,铸件的强度和塑性会降低过多,而韧性却下降得更厉害。
因此,在设计铸件时需要考虑到这些因素。
此外,壁厚应当逐渐过渡,避免突变。
铸件最小壁厚应不小于规定的最小晶粒度直径,以保证其力学性能和减小缩孔的可能;确定合理的工艺浇冒系统以及铸件允许的最大厚度(即断面比)等都要考虑这一因素。
总之,要根据铸件的具体情况来设计铸件的壁厚,以便达到最佳的性能和工艺性。
壁厚基本设计守则(20210402154444)
壁厚(Wall Thick ness)基本设计守则壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
一般的热塑性塑料壁厚设计应以4mr为限。
从经济角度来看,过厚的产品不但增加物料成本,延长生产周期” 冷却时间〔,增加生产成本。
从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
对一般热塑性塑料来说,当收缩率” Shrinkage Factor 〔低於0.01mm/m时,产品可容许厚度的改变达;但当收缩率高於0.01mm/m时,产品壁厚的改变则不应超过。
对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。
不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。
厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。
更甚者引致产生缩水印、热应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产品结构设计准则壁厚篇基本设计守则壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
一般的热塑性塑料壁厚设计应以4mm为限。
从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。
从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。
最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。
在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。
太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。
对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm 时,产品壁厚的改变则不应超过。
对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。
此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。
不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。
此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。
这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。
若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。
平面准则在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。
厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。
更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。
若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。
下图可供叁考。
转角准则壁厚均一的要诀在转角的地方也同样需要,以免冷却时间不一致。
冷却时间长的地方就会有收缩现象,因而发生部件变形和挠曲。
此外,尖锐的圆角位通常会导致部件有缺陷及应力集中,尖角的位置亦常在电镀过程後引起不希望的物料聚积。
集中应力的地方会在受负载或撞击的时候破裂。
较大的圆角提供了这种缺点的解决方法,不但减低应力集中的因素,且令流动的塑料流得更畅顺和成品脱模时更容易。
下图可供叁考之用。
转角位的设计准则亦适用於悬梁式扣位。
因这种扣紧方式是需要将悬梁臂弯曲嵌入,转角位置的设计图说明如果转角弧位R太小时会引致其应力集中系数(Stress Concentration Factor)过大,因此,产品弯曲时容易折断,弧位R太大的话则容易出现收缩纹和空洞。
因此,圆弧位和壁厚是有一定的比例。
一般介乎0.2至0.6之间,理想数值是在0.5左右。
壁厚限制不同的塑胶物料有不同的流动性。
胶位过厚的地方会有收缩现象,胶位过薄的地方塑料不易流过。
以下是一些建议的胶料厚度可供叁考。
热塑性塑料的胶厚设计叁考表其实大部份厚胶的设计可从使用加强筋及改变横切面形状取缔之。
除了可减省物料以致减省生产成本外,取缔後的设计更可保留和原来设计相若的刚性、强度及功用。
下图的金属齿轮如改成使用塑胶物料,更改後的设计理应如图一般。
此塑胶齿轮设计相对原来金属的设计不但减省材料,消取因厚薄不均引致的内应力增加及齿冠部份收缩引致整体齿轮变形的情况发生。
不同材料的设计要点ABSa) 壁厚壁厚是产品设计最先被考虑,一般用於注塑成型的会在1.5 mm (0.06 in) 至4.5 mm (0.18 in)。
壁厚比这范围小的用於塑料流程短和细小部件。
典型的壁厚约在2.5mm (0.1 in)左右。
一般来说,部件愈大壁厚愈厚,这可增强部件强度和塑料充填。
壁厚在3.8mm (0.15 in) 至6.4mm (0.25 in)范围是可使用结构性发泡。
b) 圆角建议的最小圆角半径是胶料厚度的25%,最适当的半径胶料厚比例在60%。
轻微的增加半径就能明显的减低应力。
PCa) 壁厚壁厚大部份是由负载要求内应力几何形状外型塑料流量可注塑性和经济性来决定。
PC的建议最大壁厚为9.5mm (0.375 in)。
若要效果好,则壁厚应不过3.1mm (0.125 in)。
在一些需要将壁厚增加使强度加强时,肋骨和一些补强结构可提供相同结果。
PC大部份应用的最小壁厚在0.75 mm(0.03 in)左右,再薄一些的地方是要取决於部件的几何和大小。
短的塑料流程是可以达到0.3 mm (0.012 in) 壁厚。
壁厚由厚的过渡到薄的地方是要尽量使其畅顺。
所有情况塑料是从最厚的地方进入模腔内,以避免缩水和内应力。
均一的壁厚是要很重要的。
不论在平面转角位也是要达到这种要求,可减少成型後的变型问题。
LCPa) 壁厚由於液晶共聚物在高剪切情况下有高流动性,所以壁厚会比其它的塑料薄。
最薄可达0.4mm,一般厚度在1.5mm左右。
PSa) 壁厚一般的设计胶料的厚度应不超过4mm ,太厚的话会导致延长了生产周期。
因需要更长的冷却时间,且塑料收缩时有中空的现象,并减低部件的物理性质。
均一的壁厚在设计上是最理想的,但有需要将厚度转变时,就要将过渡区内的应力集中除去。
如收缩率在0.01以下则壁厚的转变可有的变化。
若收缩率在0.01以上则应只有的改变。
b) 圆角在设计上直角是要避免。
直角的地方有如一个节点,会引致应力集中使抗撞击强度降低。
圆角的半径应为壁厚的25%至75%,一般建议在50%左右。
PAa) 壁厚尼龙的塑胶零件设计应采用结构所需要的最小厚度。
这种厚度可使材料得到最经济的使用。
壁厚尽量能一致以消除成型後变型。
若壁厚由厚过渡至薄胶料则需要采用渐次变薄的方式。
b) 圆角建议圆角R值最少0.5mm (0.02 in),此一圆角一般佳可接受,在有可能的范围,尽量使用较大的R值。
因应力集中因素数值因为R/T之比例由0.1增至0.6而减少了50% ,即由3减至1.5 。
而最佳的圆角是为R/T在0.6之间。
PSUa) 壁厚常用於大型和长流距的壁厚最小要在2.3mm (0.09in)。
细小的部件可以最小要有0.8 mm (0.03in) 而流距应不可超过76.2 mm (3 in) PBTa) 壁厚壁厚是产品成本的一个因素。
薄的壁厚要视乎每种塑料特性而定。
设计之前宜先了解所使用塑料的流动长度限制来决定壁厚。
负载要求时常是决定壁厚的,而其它的如内应力,部件几何形状,不均一化和外形等。
典型的壁厚介乎在0.76mm至3.2mm (0.03至0.125in)。
壁厚要求均一,若有厚薄胶料的地方,以比例3:1的锥巴渐次由厚的地方过渡至薄的地方。
b) 圆角转角出现尖角所导致部件的破坏最常见的现象,增加圆角是加强塑胶部件结构的方法之一。
若将应力减少5% (由3减至1.5) 则圆角与壁厚的比例由0.1增加至0.6。
而0.6是建议的最理想表现。
产品结构设计资料--禁用之塑料材质.产品和制程上应该避免使用的东西石棉、多氯联苯、多溴联苯、多氯二苯、氯乙烯单体、苯2.制程及产品上需要管制的材质铍及其化合物---含小于2%的铍的合金是可以被接受的。
镉及其化合物---当防生锈的扣件如果镀锌或其它加工都不适合的话,镀镉是可以被接受的。
取代品是镀锌,无电解镍,镀锡或用不锈钢产品。
铅及其化合物---铅使用在焊接剂的场合是可以接受的。
假如镀锡在PCB 或者表面黏着镀锡则需要格外的管制。
为了减少铅蒸气的产生,焊锡设备应处以不超过800℉温度为极限。
镍及其化合物---在非持续接触的情况下使用应属可接受。
所有镀镍的应用应尽量避免使用在经常接触的零件表面,镀铬是常用取代镀镍的例如在按键或其它经常接触的零件。
水银及其化合物---如果使用在水银开关,水银电池及水银接点是可以接受的,但应尽量避免。
可以用结构或电子开关,非水银电池也很普遍。
铬及其化合物---铬分解产生的酸有剧毒,主要的危险是制造过程中暴露在铬化合物的环境中,如果零件在做铬酸盐表面处理时,有环境,卫生,安全单位严格管制,则应可接受。
锡的有机化合物---纯锡,含锡的焊剂以及锡合金是可以被使用的,在制程中是不可以含有有机锡产生。
硒及其化合物---硒如果使用在复制的仪器(如激光打印机)的磁鼓作为镀层之用是可以接受的。
所有使用过含有硒的仪器和设备,须由有执照的回收公司回收。
金它及其化合物---都含有剧毒。
砷及其化合物---可使用在半导体的制造。
四甲基氯化物---在产品上必须标注此溶剂对人体的健康有潜在的危险,替代品是氟氯碳化物溶剂。
氯化物溶剂---大部分氯化物溶剂都有强烈的毒性,氯化物溶剂应该尽量避免使用,除非是在制造或整修时之清洗或去脂的时候,而且找不到其它合适的替代品,替代品为水溶性的清洁剂或专用的溶剂。
甲醛------甲醛必须与盐酸溶液隔离,否则这两种化合物的气体会形成二氯甲基醚(致癌物质)。
当甲醛含有泡沫是表示尚未有反映是可以接受的,当树脂含有甲醛时要避免过高的温度和保持适当的通风。
乙二醇醚和醋酸盐---导致畸形,如用做抗光剂需有环境,卫生,安全单位严格管制。
四氟化碳---破坏臭氧层的主要原因,但四氟化碳聚脂是不受管制而且是可接受的材质。
3-1信息产品绿色环保塑料外壳外壳应该含有极少量的小零件,小零件应该使用同样的塑料材质几颜色塑料材质必须不可以含PVC或PVCD成份,在零件尚必须打上该材质的编号和记号。
如塑料材质因为要更稳定或配色或防火而需使用添加物,则禁止1.含有镉,铬, 汞,砷,铍,锑以有机的组成,每个小零件最多只能含有50mg/kg的PBB或PBBO。
2.含有铅,氯,溴化物的组成。
金属外壳结构以使用SPCC及SECC为主要,铝合金则尽量减少使用,如果非使用铝为金属配件者,须与金属外壳容易拆卸为原则。
金属制外壳在制程上不可含有镉,铅,铬,汞金属及塑料的组合件如果可能的话,塑料件及金属件应该分开组装,金属件及铜合金应该避免黏合使用。
电子组件1.PVC材质只使用在Cable的产品上面2.非含有PCBV的电容器3.不含水银的开关4.零件间如果是非黏着性密接,废弃时候须拆卸及分类5.不含铍成份的零件包装只有纸张、玻璃纸、纸板、聚乙烯和聚丙是被允许的。
塑料和纸板的组合是不好的一种包装方式。
包装材质应该打上能够回收的标志,黏贴胶布应该只能含有聚合丙烯及黏贴层。
该种胶布尽量少用因为无法回收。
印刷材料为传递信息或促销用的印刷标签应该印刷在能回收使用的纸上,以及用氯漂白的纸上。
纸的加工方式必须载明在纸上,含有塑料成份的纸或纸板应拒绝使用。
产品结构设计资料--塑料材质热硬化性塑料---在原料状态下是没有什么用,在某一温度下加热,经硬化作用,聚合作用或硫化作用后,热硬化塑料就会保持稳定而不能回到原料状态。